CN108367275A - 脱硝催化剂及其制造方法 - Google Patents

脱硝催化剂及其制造方法 Download PDF

Info

Publication number
CN108367275A
CN108367275A CN201680056647.3A CN201680056647A CN108367275A CN 108367275 A CN108367275 A CN 108367275A CN 201680056647 A CN201680056647 A CN 201680056647A CN 108367275 A CN108367275 A CN 108367275A
Authority
CN
China
Prior art keywords
catalyst
denitrating catalyst
vanadic anhydride
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680056647.3A
Other languages
English (en)
Other versions
CN108367275B (zh
Inventor
清永英嗣
引野健治
盛田启郎
盛田启一郎
春田正毅
村山彻
美浓真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Legal Person Of Tokyo Metropolitan Public University
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Tokyo Metropolitan Public University Corp filed Critical Chugoku Electric Power Co Inc
Publication of CN108367275A publication Critical patent/CN108367275A/zh
Application granted granted Critical
Publication of CN108367275B publication Critical patent/CN108367275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2842Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration specially adapted for monolithic supports, e.g. of honeycomb type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/92Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/485Impregnating or reimpregnating with, or deposition of metal compounds or catalytically active elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/64Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/64Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts
    • B01J38/66Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts using ammonia or derivatives thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/08Granular material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/42Honeycomb supports characterised by their structural details made of three or more different sheets, foils or plates stacked one on the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Incineration Of Waste (AREA)

Abstract

本发明提供在以氨为还原剂的选择性催化还原反应时,在较低温度下的脱硝效率良好、并且不伴随SO2的氧化的催化剂。该脱硝催化剂是存在以五氧化二钒换算计为3.3wt%以上的氧化钒、且BET比表面积为10m2/g以上的脱硝催化剂。

Description

脱硝催化剂及其制造方法
技术领域
本发明涉及脱硝催化剂及其制造方法。更具体而言,本发明涉及在对通过使燃料燃烧而产生的排气进行净化时所使用的脱硝催化剂及其制造方法。
背景技术
作为通过燃料的燃烧而向大气中排出的污染物质之一,可举出氮氧化物(NO、NO2、NO3、N2O、N2O3、N2O4、N2O5)。氮氧化物会引起酸雨、臭氧层破坏、光化学烟雾等,对环境及人体造成严重影响,因此其处理已成为重要课题。
作为除去上述氮氧化物的技术,已知有以氨(NH3)为还原剂的选择性催化还原反应(NH3-SCR)。如专利文献1中记载的那样,作为用于选择性催化还原反应的催化剂,以氧化钛为载体、并负载有氧化钒的催化剂已被广泛使用。氧化钛由于对硫氧化物的活性低、并且稳定性高,因此被认为是最好的载体。
现有技术文献
专利文献
专利文献1:日本特开2004-275852号公报
发明内容
发明所要解决的课题
另一方面,氧化钒在NH3-SCR中起主要作用,但由于会将SO2氧化成SO3,因此不能负载1wt%左右以上的氧化钒。因此,通常以相对于载体为1wt%以下的量进行使用。与此同时,在现有的NH3-SCR中,在氧化钛载体上负载氧化钒(以及根据情况而负载氧化钨)而成的催化剂在低温时基本不会发生反应,因此不得不于350-400℃这样的高温进行使用。
然而,为了提高实施NH3-SCR的装置、设备的设计自由度、提高效率,要求开发出即使于低温也显示高氮氧化物还原率活性的催化剂。
本发明是鉴于上述课题而完成的,目的在于提供在以氨为还原剂的选择性催化还原反应时,低温时的脱硝效率良好、并且不伴随SO2的氧化的催化剂。
用于解决课题的手段
本发明涉及存在以五氧化二钒(日文为“五酸化バナジウム”)换算计为3.3wt%以上的氧化钒、且BET比表面积为10m2/g以上的脱硝催化剂。
另外,上述脱硝催化剂优选用于在200℃以下的脱硝。
另外,上述脱硝催化剂的利用NH3-TPD(TPD:程序升温脱附)测得的NH3脱附量优选为10.0mmol/g以上。
另外,本发明涉及制造上述脱硝催化剂的制造方法,该制造方法包括:于300℃~400℃的温度将钒酸盐进行热分解的工序。
另外,本发明涉及制造上述脱硝催化剂的制造方法,该制造方法包括:将钒酸盐溶解于螯合物并干燥,然后进行烧制的工序。
发明的效果
本发明涉及的脱硝催化剂特别是在200℃以下的脱硝效率良好,能够将NO转化为无害的N2。另外,使用了本发明涉及的脱硝催化剂的选择性催化还原反应能够在200℃以下实施,因此不会伴随SO2的氧化。
附图说明
[图1]为由实施例1~3、比较例1制备的五氧化二钒催化剂的X射线粉末衍射的结果。
[图2]为由实施例3~8、比较例2~3制备的五氧化二钒催化剂的X射线粉末衍射的结果。
[图3]为表示由实施例1~3、比较例1、比较例4制备的五氧化二钒催化剂的NH3-SCR活性的图。
[图4]为表示在使用由实施例1、及比较例1制备的五氧化二钒催化剂的选择性催化还原反应中,反应温度与N2选择率的关系的图。
[图5]为表示在将由实施例1制备的五氧化二钒催化剂用于NH3-SCR反应时的空间速度依赖性的图。
[图6]为表示在将由实施例1制备的五氧化二钒催化剂用于水分共存下的选择性催化还原反应时的NO转化率的随时间经过的图。
[图7]为表示在将由实施例1制备的五氧化二钒催化剂用于S成分共存下的选择性催化还原反应时的NH3、NO、SO2浓度的时间经过的图。
[图8]为表示在各反应温度下由各实施例制备的五氧化二钒催化剂的五氧化二钒负载量与NO转化率的关系的图。
[图9]为表示由各实施例及各比较例制备的五氧化二钒催化剂的BET比表面积与NO转化率的关系的图。
[图10]为由实施例10~14制备的五氧化二钒催化剂的X射线粉末衍射的结果。
[图11]为表示由实施例10~14制备的五氧化二钒催化剂的NH3-SCR活性的图。
[图12]为表示由实施例1~2、实施例10~13、比较例1制备的五氧化二钒催化剂的比表面积与NO转化率的关系的图。
[图13]为表示由实施例1~2、实施例11~12、比较例1制备的五氧化二钒催化剂的BET比表面积与NH3脱附量的关系的图。
[图14]为表示由实施例1~2、实施例11~12、比较例1制备的五氧化二钒催化剂的NH3脱附量与NO转化率的关系的图。
具体实施方式
以下,针对本发明的实施方式进行说明。
本发明的脱硝催化剂中,存在以五氧化二钒换算计为3.3wt%以上的氧化钒,并且BET比表面积为10m2/g以上。这样的脱硝催化剂与以往使用的钒/钛催化剂等的脱硝催化剂相比,即使在低温环境下也能够发挥出高脱硝效果。
具体而言,在使用了存在以五氧化二钒换算计为3.3wt%以上的氧化钒的脱硝催化剂的、以氨为还原剂的选择性催化还原反应(NH3-SCR)中,大体而言,在反应温度为120℃的情况下,显示出约35%以上的NO转化率,在反应温度为150℃的情况下,显示出约60%以上的NO转化率。即使是在反应温度为100℃的情况下,也显示出超过20%的NO转化率。另一方面,在脱硝催化剂中仅存在以五氧化二钒换算计小于3.3wt%的氧化钒的情况下,无论是在反应温度120℃的情况下还是在反应温度为150℃的情况下,均仅显示出小于20%的NO转化率。
如上所述,在本发明涉及的脱硝催化剂中,存在以五氧化二钒换算计为3.3wt%以上的氧化钒,但除了氧化钒以外,还可以包含氧化钛作为其它含有物。此外,也可以包含贵金属及贱金属、典型金属。优选地,也可以包含氧化钨、氧化铬、氧化钼等。
另外,在上述记载中,提到了在脱硝催化剂中优选存在以五氧化二钒换算计为3.3wt%以上的氧化钒,但需要说明的是,优选地,在脱硝催化剂中也可以存在以五氧化二钒换算计为9wt%以上的氧化钒。进一步优选地,在脱硝催化剂中也可以存在以五氧化二钒换算计为20wt%以上的氧化钒。进一步优选地,在脱硝催化剂中也可以存在以五氧化二钒换算计为33wt%以上的氧化钒。进一步优选地,在脱硝催化剂中也可以存在以五氧化二钒换算计为43wt%以上的氧化钒。进一步优选地,在脱硝催化剂内也可以存在以五氧化二钒换算计为80wt%以上的氧化钒。进一步优选地,在脱硝催化剂中氧化钒也可以为100%。
上述氧化钒包括氧化钒(II)(VO)、三氧化二钒(III)(V2O3)、二氧化钒(IV)(V2O4)、五氧化二钒(V)(V2O5),在脱硝反应中,五氧化二钒(V2O5)的V元素可以取5价、4价、3价、2价的形态。
另外,关于脱硝催化剂的BET比表面积,例如,在使用了包含五氧化二钒且BET比表面积为13.5m2g-1的脱硝催化剂的、反应温度为120℃的NH3-SCR中,NO转化率大于20%。另外,在使用了包含五氧化二钒且BET比表面积为16.6m2g-1的脱硝催化剂的、反应温度为120℃的NH3-SCR中,NO转化率也大于20%。另一方面,在使用了作为BET比表面积小于10m2/g的脱硝催化剂的例如BET比表面积为4.68m2/g的脱硝催化剂的、反应温度为120℃的NH3-SCR中,NO转化率小于20%。
另外,脱硝催化剂的BET比表面积为10m2/g以上,但优选地,也可以为15m2/g以上。进一步优选地,脱硝催化剂的BET比表面积也可以为30m2/g。进一步优选地,脱硝催化剂的BET比表面积也可以为40m2/g以上。进一步优选地,脱硝催化剂的BET比表面积也可以为50m2/g以上。进一步优选地,脱硝催化剂的BET比表面积也可以为60m2/g以上。
需要说明的是,脱硝催化剂的BET比表面积优选按照JIS Z8830:2013中规定的条件进行测定。具体而言,可以利用以下的实施例中记载的方法来测定BET比表面积。
本发明的脱硝催化剂可用于在200℃以下的脱硝。优选用于在160℃以上且200℃以下的脱硝。由此,在NH3-SCR反应时不会伴随SO2向SO3的氧化。
关于利用NH3-TPD(TPD:程序升温脱附)测得的NH3脱附量,NH3脱附量大于10.0mmol/g的脱硝催化剂在反应温度为120℃时的NH3-SCR中的NO转化率显示为20%以上的值。另一方面,NH3脱附量小于10.0mmol/g的脱硝催化剂在反应温度为120℃时的NH3-SCR中的NO转化率小于20%。
本发明的脱硝催化剂的利用NH3-TPD(TPD:程序升温脱附)测得的NH3脱附量为10.0mmol/g以上,但优选地,利用NH3-TPD测得的NH3脱附量也可以为20.0mmol/g以上。更优选地,利用NH3-TPD测得的NH3脱附量也可以为50.0mmol/g以上。进一步优选地,利用NH3-TPD测得的NH3脱附量也可以为70.0mmol/g以上。
存在以五氧化二钒换算计为3.3wt%以上的氧化钒且BET比表面积为10m2/g以上的脱硝催化剂可利用热分解法、溶胶凝胶法及含浸法中的任意方法制作。以下,示出利用热分解法、溶胶凝胶法及含浸法来制作存在3.3wt%以上的五氧化二钒且比表面积为10m2/g以上的脱硝催化剂的方法。
热分解法包括将钒酸盐进行热分解的工序。作为钒酸盐,可使用例如钒酸铵、钒酸镁、钒酸锶、钒酸钡、钒酸锌、钒酸铅、钒酸锂等。
需要说明的是,上述热分解法中,优选于300℃~400℃将钒酸盐进行热分解。
溶胶凝胶法包括将钒酸盐溶解于螯合物并进行干燥之后进行烧制的工序。作为螯合物,可使用例如:草酸、柠檬酸等具有多个羧基的物质、乙酰丙酮化物、乙二胺等具有多个氨基的物质、乙二醇等具有多个羟基的物质等。
需要说明的是,虽然因螯合物而异,但上述溶胶凝胶法优选包括例如以钒与螯合物的摩尔比成为1:1~1:5的方式将钒酸盐溶解于螯合物的工序。需要说明的是,优选地,钒酸盐与螯合物的摩尔比也可以为1:2~1:4。
含浸法包括下述工序:在将钒酸盐溶解于螯合物之后加入载体,之后进行干燥,然后进行烧制。作为载体,可使用氧化钛、氧化铝、二氧化硅等。与上述同样地,作为螯合物,可使用例如:草酸、柠檬酸等具有多个羧基的物质、乙酰丙酮化物、乙二胺等具有多个氨基的物质、乙二醇等具有多个羟基的物质等。
需要说明的是,在上述含浸法中,可以通过例如将钒酸铵溶解于草酸溶液、再加入作为载体的氧化钛(TiO2)之后进行干燥,然后进行烧制,由此得到作为本发明的实施方式涉及的脱硝催化剂的xwt%V2O5/TiO2(x≥9)。
在这样制备的脱硝催化剂中,通常包含3.3wt%以上的五氧化二钒,且比表面积为10m2/g以上。
根据上述实施方式涉及的脱硝催化剂,可实现以下效果。
(1)如上所述,在上述实施方式涉及的脱硝催化剂中,存在以五氧化二钒换算计为3.3wt%以上的氧化钒,且比表面积为10m2/g以上。
通过使用该脱硝催化剂,即使对于在200℃以下的选择性催化还原反应来说也能够发挥出高脱硝效果。
(2)如上所述,上述实施方式涉及的脱硝催化剂优选用于在200℃以下的脱硝。
由此,在使用了上述实施方式涉及的脱硝催化剂的选择性催化还原反应中,不会导致SO2氧化,可带来高脱硝效果。
(3)如上所述,上述实施方式涉及的脱硝催化剂的利用NH3-TPD(TPD:程序升温脱附)测得的NH3脱附量优选为10.0mmol/g以上。
由此,在反应温度为120℃时的NH3-SCR中使用该脱硝催化剂时,显示出大于20%的NO转化率。
(4)如上所述,上述实施方式涉及的脱硝催化剂的制造方法优选包括于300℃~400℃的温度将钒酸盐进行热分解的工序。
由此,上述实施方式涉及的脱硝催化剂的比表面积变大,使用了上述实施方式涉及的脱硝催化剂的选择性催化还原反应中的脱硝效果提高。
(5)如上所述,上述实施方式涉及的脱硝催化剂的制造方法优选包括将钒酸盐溶解于螯合物并进行干燥之后进行烧制的工序。
由此,上述实施方式涉及的脱硝催化剂的比表面积变大,使用了上述实施方式涉及的脱硝催化剂的选择性催化还原反应中的脱硝效果提高。
需要说明的是,本发明并不限定于上述实施方式,在能够实现本发明目的的范围内所作的变形、改良等包括在本发明中。
实施例
以下,结合比较例对本发明的实施例进行具体说明。需要说明的是,本发明不受这些实施例的限定。
1.催化剂中的氧化钒含量及比表面积与NH3-SCR活性的关系
1.1各实施例和比较例
[实施例1]
将钒酸铵(NH4VO3)在空气中于300℃进行4小时热分解,将由此得到的五氧化二钒(V2O5)作为实施例1的脱硝催化剂。需要说明的是,将该实施例1的脱硝催化剂的样品名设为“V2O5_300”。
[实施例2]
将钒酸铵在空气中于400℃进行4小时热分解,将由此得到的五氧化二钒作为实施例2的脱硝催化剂。需要说明的是,将该实施例2的脱硝催化剂的样品名设为“V2O5_400”。
[比较例1]
将钒酸铵在空气中于500℃进行4小时热分解,将由此得到的五氧化二钒作为比较例1的脱硝催化剂。需要说明的是,将该比较例1的脱硝催化剂的样品名设为“V2O5_500”。
[实施例3]
使钒酸铵溶解于草酸溶液(钒:草酸的摩尔比=1:3)。完全溶解之后,在加热搅拌器上使溶液中的水分蒸发,在干燥机中于120℃干燥过夜。然后,将干燥后的粉末在空气中于300℃进行4小时烧制。将烧制后的五氧化二钒作为实施例3的脱硝催化剂。需要说明的是,将该利用溶胶凝胶法得到的实施例3的脱硝催化剂的样品名设为“V2O5_SG_300”。另外,关于将钒酸铵溶解于草酸溶液时钒与草酸的摩尔比不同的脱硝催化剂,如后文所述。
[比较例2]
将钒酸铵加入草酸溶液中,搅拌10分钟,缓慢地加入作为载体的氧化钛。然后,在加热搅拌器上使溶液中的水分蒸发,在干燥机中于120℃干燥过夜。然后,将干燥后的粉末在空气中于300℃进行4小时烧制。作为其结果,将五氧化二钒的质量百分比成为0.3wt%的烧制后的脱硝催化剂作为比较例2的脱硝催化剂。需要说明的是,将该比较例2的脱硝催化剂的样品名设为“0.3wt%V2O5/TiO2”。
[比较例3]
将利用与比较例2同样的方法得到、并且五氧化二钒的质量百分比为0.9wt%的烧制后的脱硝催化剂作为比较例3的脱硝催化剂。需要说明的是,将该比较例3的脱硝催化剂的样品名设为“0.9wt%V2O5/TiO2”。
[实施例4]
将利用与比较例2同样的方法得到、并且五氧化二钒的质量百分比为3.3wt%的烧制后的脱硝催化剂作为实施例4的脱硝催化剂。需要说明的是,将该实施例4的脱硝催化剂的样品名设为“3.3wt%V2O5/TiO2”。
[实施例5]
将利用与比较例2同样的方法得到、并且五氧化二钒的质量百分比为9wt%的烧制后的脱硝催化剂作为实施例5的脱硝催化剂。需要说明的是,将该实施例5的脱硝催化剂的样品名设为“9wt%V2O5/TiO2”。
[实施例6]
将利用与比较例2同样的方法得到、并且五氧化二钒的质量百分比为20wt%的烧制后的脱硝催化剂作为实施例6的脱硝催化剂。需要说明的是,将该实施例5的脱硝催化剂的样品名设为“20wt%V2O5/TiO2”。
[实施例7]
将利用与比较例2同样的方法得到、并且五氧化二钒的质量百分比为33wt%的烧制后的脱硝催化剂作为实施例7的脱硝催化剂。需要说明的是,将该实施例7的脱硝催化剂的样品名设为“33wt%V2O5/TiO2”。
[实施例8]
将利用与比较例2同样的方法得到、并且五氧化二钒的质量百分比为43wt%的烧制后的脱硝催化剂作为实施例8的脱硝催化剂。需要说明的是,将该实施例8的脱硝催化剂的样品名设为“43wt%V2O5/TiO2”。
[实施例9]
将利用与比较例2同样的方法得到、并且五氧化二钒的质量百分比为80wt%的烧制后的脱硝催化剂作为实施例9的脱硝催化剂。需要说明的是,将该实施例9的脱硝催化剂的样品名设为“80wt%V2O5/TiO2”。
[比较例4]
将现有催化剂作为比较例4。需要说明的是,所述现有催化剂,是指在氧化钛(TiO2)(含有率:79.67wt%)上负载有氧化钨(WO3)(含有率:10.72wt%)及二氧化硅(SiO2)(含有率:6.25wt%)等,且包含0.5%左右的钒的催化剂。
1.2评价
1.2.1X射线粉末衍射
(衍射方法)
作为X射线粉末衍射,利用Rigaku smart lab、使用Cu-Ka进行测定。
(衍射结果)
实施例1(V2O5_300)、实施例2(V2O5_400)、实施例3(V2O5_SG_300)、及比较例1(V2O5_500)的粉末XRD图谱如图1所示,实施例3(V2O5_SG_300)、实施例4~9、及比较例2~3(xwt%V2O5/TiO2)的粉末XRD图谱如图2所示。在实施例1(V2O5_300)、实施例2(V2O5_400)、实施例3(V2O5_SG_300)、比较例1(V2O5_500)的粉末XRD图谱中,不论热分解温度、制备方法如何,均观察到仅V2O5的峰。关于实施例4~9及比较例2~3(xwt%V2O5/TiO2)的粉末XRD图谱,直到9wt%为止未观察到V2O5峰,可认为是高度分散在TiO2中。V2O5负载量增加到20wt%时,在22.2°、27.4°观察到了V2O5的峰,每当增大负载量就会使得V2O5峰强度增大。另一方面,TiO2峰存在减小的倾向。
1.2.2BET比表面积测定
(测定方法)
BET比表面积的测定使用了MicrotracBEL BELSORP-max。在Ar气氛下,于200℃进行了2小时前处理,然后于196℃进行测定。
(测定结果)
[表1]
五氧化二钒催化剂的BET出表面积
实施例1(V2O5_300)、实施例2(V2O5_400)、比较例1(V2O5_500)、实施例3(V2O5_SG_300)、和比较例2~3及实施例4~9(xwt%V2O5/TiO2催化剂)、及比较例4(现有催化剂)的BET比表面积示于表1。对于通过将钒酸铵进行热分解而制备的五氧化二钒催化剂而言,随着热分解温度升高,BET比表面积减少。即,对于显示出最大BET比表面积的五氧化二钒而言,在于300℃发生了热分解的实施例1(V2O5_300)的五氧化二钒中,显示出了最大的BET比表面积16.6m2g-1。另外,利用溶胶凝胶法于300℃制成的五氧化二钒的BET比表面积更大,为62.9m2g-1
关于实施例4~9及比较例2~3(xwt%V2O5/TiO2),随着五氧化二钒的负载量的增加,TiO2的细孔被掩埋,BET比表面积降低。
1.2.3催化活性测定
(测定方法)
在下述表2的条件下,使用固定床流通式催化剂反应装置进行NH3-SCR反应。利用Jasco FT-IR-4700对从催化剂层中通过的气体中的NO、NH3、NO2、N2O进行分析。
[表2]
NH3-SCR测定条件
另外,利用下式计算出NO转化率、N2选择率。需要说明的是,NOin是反应管入口的NO浓度、NOout是反应管出口的NO浓度、N2out是反应管出口的N2浓度、NH3in是反应管入口的NH3浓度、NH3out是反应管出口的NH3浓度。
[数学式1]
[数学式2]
(2*N2out=(NOin+NH3in)-(NOout+NH3out+NO2out+2*N2Oout))
(测定结果)
图3示出了五氧化二钒催化剂的NH3-SCR活性。在为将钒酸铵进行热分解而得到的催化剂的情况下,随着热分解温度降低,NO转化率增大,作为热分解温度为300℃的催化剂的实施例1(V2O5_300℃)显示出最高的活性。另外,在反应温度为200℃的条件下,将实施例1(V2O5_300℃)、实施例2(V2O5_400℃)、实施例3(V2O5_SG_300℃)中的任一者用作催化剂时,均有80%以上的NO转化率。此外,与比较例1及比较例4相比,任意实施例均显示出更高的NO转化率。
热分解温度越低,五氧化二钒的比表面积越大,因此,认为使用了块状(bulk)的五氧化二钒催化剂的低温NH3-SCR活性归因于BET比表面积的大小。因此,如上所述,作为实施例3,为了增大BET比表面积而使用了使用草酸的溶胶凝胶法来制备五氧化二钒。利用该方法制备的五氧化二钒的BET比表面积如表1中记载的那样,为62.9m2g-1,其具有利用热分解法制备的五氧化二钒的约近4倍的大小。与利用热分解法制备的五氧化二钒相比,实施例3(V2O5_SG_300℃)的NO转化率在100-150℃间上升了80-200%。
需要说明的是,在任意温度下,N2选择率基本上均为100%。在图4中,作为例子而示出了实施例1(V2O5_300℃)和比较例1(V2O5_500℃)的N2选择率。
(空间速度依赖性)
在以下的表3的条件下,进行选择性催化还原反应,由此测定将实施例1(V2O5_300℃)用作催化剂时的空间速度(气体处理用)依赖性。测定结果如图5所示。图5(a)示出了反应温度120℃时的NO转化率,图5(b)示出了反应温度100℃时的NO转化率。
对于80%的NO无害化的实现而言,在120℃时约为15Lh-1gcat -1,在100℃时约为11Lh-1gcat -1
在改变空间速度的实验中,向N2的选择率也基本上为100%。
[表3]
NH3-SCR测定条件
(水分共存下的反应)
将实施例1(V2O5_300℃)作为催化剂,将在以下表4的条件下以150℃的反应温度、20Lh-1gcat -1的空间速度进行NH3-SCR反应的实验时的、伴随时间经过的NO转化率示于图6。自反应开始经过1.5小时后添加2.3%的H2O,结果NO转化率由64%下降至50%。即使添加了H2O向N2的选择性仍然未发生变化,为100%。自反应开始经过3.5小时后停止导入水,结果NO转化率增加,成为67%。
[表4]
NH3-SCR测定条件
(S成分共存下的反应)
在与上述水分共存下的反应所涉及的实验相同的条件下,在反应气体中流通100ppm的SO2。实验结果如图7所示。NO的催化活性未发生变化,虽然从直至150℃为止的温度上升结束后起,始终存在H2O和O2,但SO2的浓度并未降低,SO2未发生反应。由此可知,实施例的脱硝催化剂还具有耐S性。
(五氧化二钒负载量与NO转化率的关系)
图8示出了在各反应温度下五氧化二钒负载量与NO转化率的关系。图8(a)示出了反应温度为120℃时的五氧化二钒负载量与NO转化率的关系。同样地,图8(b)示出了反应温度为150℃时的五氧化二钒负载量与NO转化率的关系,图8(c)示出了反应温度为100℃时的五氧化二钒负载量与NO转化率的关系。需要说明的是,在各图中,五氧化二钒负载量成为100wt%的催化剂为上述实施例3中制备的脱硝催化剂V2O5_SG_300。使用四边形进行描绘的点,表示作为比较例4的现有催化剂的NO转化率。
在全部的图中,大体上显示出:五氧化二钒负载量越增加,NO转化率越提高。但是,在任意图中,五氧化二钒负载量为3.3wt%的催化剂均显示出比五氧化二钒负载量为9.0wt%的催化剂更高的NO转化率。
具体而言,如在图8(a)中观察到的,在反应温度120℃的NH3-SCR反应中,在五氧化二钒负载量成为80wt%的阶段,NO转化率成为80%。另外,如在图8(b)中观察到的,在反应温度150℃的NH3-SCR反应中,在五氧化二钒负载量成为3.3wt%的阶段,显示出NO转化率大幅上升。此外,如在图8(c)中所观察到的,在反应温度为100℃的选择性催化还原反应中,与五氧化二钒负载量为43wt%以下的脱硝催化剂相比,采用五氧化二钒负载量为80wt%的脱硝催化剂时,显示出NO转化率大幅提高。
(BET比表面积与NO转化率的关系)
图9(a)示出了将五氧化二钒负载于氧化钛而成的脱硝催化剂的、BET比表面积与NO转化率的关系。在将五氧化二钒负载于氧化钛而成的脱硝催化剂中,随着负载量增加,一般而言会显示出:BET比表面积减少,但另一方面活性增高。
另外,图9(b)示出了将五氧化二钒负载于氧化钛而成的脱硝催化剂、和未负载于氧化钛的脱硝催化剂这两者的BET比表面积与NO转化率的关系。在未使五氧化二钒负载于氧化钛的催化剂中,显示出BET比表面积越增大,活性越增高。
2.利用溶胶凝胶法制造的V2O5催化剂
2.1各实施例(实施例10~14)
在上述的“1.1各实施例和比较例”中,作为“实施例3”,以使钒与草酸的摩尔比成为1:3的方式使钒酸铵溶解于草酸溶液之后使水分蒸发进行干燥,对干燥粉末进行烧制,制作脱硝催化剂。将使该钒与草酸的摩尔比为1:1、1:2、1:3、1:4、1:5的脱硝催化剂作为实施例10~14。
具体而言,如上所述,使钒酸铵溶解于草酸溶液(钒:草酸的摩尔比=1:1~1:5)。完全溶解之后,在加热搅拌器上使溶液中的水分蒸发,并在干燥机中于120℃干燥过夜。然后,将干燥后的粉末在空气中于300℃进行4小时烧制。
将它们的样品名分别设为“V2O5_SG_1:1”(实施例10)、“V2O5_SG_1:2”(实施例11)、“V2O5_SG_1:3”(实施例12)、“V2O5_SG_1:4”(实施例13)、“V2O5_SG_1:5”(实施例14)。
需要说明的是,“1.1各实施例和比较例”中的“实施例3”的“V2O5_SG_300”与实施例12的“V2O5_SG_1:3”实质上为同一物质,但为了便于说明,在此,记载为样品名为“V2O5_SG_1:3”的“实施例12”。
需要说明的是,为了提高BET比表面积,也可以向草酸溶液中加入表面活性剂。作为表面活性剂,可示例例如:十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)、十六烷基胺等阴离子表面活性剂、阳离子表面活性剂、两性表面活性剂、非离子表面活性剂。
2.2评价
2.2.1X射线粉末衍射
(衍射方法)
与上述1.2.1同样地,X射线粉末衍射通过Rigaku smart lab并使用Cu-Ka进行测定。
(衍射结果)
实施例10~14(V2O5_SG)的粉末XRD图谱如图10所示。对于使用钒:草酸比为1:1、1:2、1:5的溶液制作的五氧化二钒(实施例10、11及14)而言,仅检测到了斜方晶V2O5峰,但在使用钒:草酸比为1:3、1:4的溶液制作的五氧化二钒(实施例12及13)中,除了斜方晶V2O5峰以外,还在11°检测到了未确认峰。然而,目前尚无法鉴定。
2.2.2BET比表面积测定
(测定方法)
与上述1.2.3同样地,BET比表面积的测定使用了MicrotracBEL BELSORP-max。在Ar气氛下,于200℃进行了2小时前处理,然后于196℃进行测定。
(测定结果)
[表5]
五氧化二钒催化剂的BET比表面积
实施例10(V2O5_SG_1:1)、实施例11(V2O5_SG_1:2)、实施例12(V2O5_SG_1:3)、实施例13(V2O5_SG_1:4)、实施例14(V2O5_SG_1:5)的BET比表面积示于表5。随着草酸比率增高,比表面积增加,直到钒:草酸比达到1:3为止,在该比例以上时比表面积减少。另外,与催化活性试验之前相比,以下的催化活性试验后的实施例12(V2O5_SG_1:3)的比表面积大幅减少,为43.4m2g-1
2.2.3催化活性测定
(测定方法)
利用与上述1.2.4相同的测定方法测定各V2O5_SG催化剂的NH3-SCR活性,并计算出NO转化率。
(测定结果)
图11示出V2O5_SG催化剂的NH3-SCR活性。图11(a)示出在使用各催化剂的NH3-SCR反应中,各反应温度的NO转化率。另外,图11(b)示出在反应温度120℃时钒:草酸的比率与NO转化率的关系。在作为钒:草酸的比率为1:3的催化剂的实施例12(V2O5_SG_1:3)中,NO转化率最高,而进一步加入草酸时,NO转化率减少。与实施例13(V2O5_SG_1:2)相比,实施例11(V2O5_SG_1:4)虽然比表面积更大,但NO转化率降低。
(比表面积与NO转化率的关系)
图12示出了实施例10~13的各V2O5_SG、以及上述实施例1(V2O5_300)、实施例2(V2O5_400)、比较例1(V2O5_500)中的BET比表面积与NO转化率的关系。需要说明的是,以四边形的点表示的图标示出了实施例12(V2O5_SG_1:3)的、选择性催化还原反应后的BET比表面积与NO转化率的关系。如上所述,就在作为钒:草酸的比率为1:3的催化剂的实施例12(V2O5_SG_1:3)而言,显示出NO转化率最高。
2.2.4利用NH3-TPD的表征(characterization)
(测定方法)
利用NH3-TPD(TPD:程序升温脱附),可以估算催化剂表面的酸性位点的量。于是,使用MicrotracBEL公司制的BELCAT,在装置中,在He(50ml/min)流通下,于300℃对实施例1(V2O5_300)、实施例2(V2O5_400)、比较例1(V2O5_500)、实施例11(V2O5_SG_1:2)、实施例12(V2O5_SG_1:3)的各催化剂0.1g进行1小时前处理。然后,降至100℃,使5%氨/He(50ml/min)流通30分钟,对氨进行吸附。将流通气体切换为He(50ml/min),进行30分钟的稳定化之后,以10℃/min进行升温,利用质谱仪对质量数为16的氨进行监测。
(测定结果)
[表6]
利用NH3-TPD测得的NH3脱附量
分别使用实施例1(V2O5_300)、实施例2(V2O5_400)、比较例1(V2O5_500)、实施例11(V2O5_SG_1:2)、实施例12(V2O5_SG_1:3)时的NH3脱附量的测定结果示于表6。
对这些NH3脱附量的值与各催化剂的BET比表面积进行绘图,得到了图13的图。由该图13的图也可知,显示出NH3脱附量与V2O5的BET比表面积大致成比例地增大。另外,对各催化剂的NH3脱附量与NO转化率的对应关系进行绘图,得到了图14的图。即,显示出:NH3脱附量(=催化剂表面的酸性位点的量)越大的催化剂,其NO转化率越高。
如上所述,在使用了存在以五氧化二钒换算计为3.3wt%以上的氧化钒且比表面积为10m2/g以上的本发明的脱硝催化剂的、以氨为还原剂的选择性催化还原反应中,200℃以下的低温时的脱硝效率高。另一方面,未确认到SO2的氧化。

Claims (5)

1.脱硝催化剂,其中,存在以五氧化二钒换算计为3.3wt%以上的氧化钒,并且BET比表面积为10m2/g以上。
2.根据权利要求1所述的脱硝催化剂,其用于在200℃以下的脱硝。
3.根据权利要求1或2所述的脱硝催化剂,其中,利用NH3-TPD(TPD:程序升温脱附)测得的NH3脱附量为10.0mmol/g以上。
4.权利要求1~3中任一项所述的脱硝催化剂的制造方法,其包括下述工序:
于300℃~400℃的温度将钒酸盐进行热分解。
5.权利要求1~3中任一项所述的脱硝催化剂的制造方法,其包括下述工序:
将钒酸盐溶解于螯合物中并干燥,然后进行烧制。
CN201680056647.3A 2016-09-12 2016-09-12 脱硝催化剂及其制造方法 Active CN108367275B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076870 WO2018047356A1 (ja) 2016-09-12 2016-09-12 脱硝触媒、及びその製造方法

Publications (2)

Publication Number Publication Date
CN108367275A true CN108367275A (zh) 2018-08-03
CN108367275B CN108367275B (zh) 2021-09-21

Family

ID=58261857

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201680056647.3A Active CN108367275B (zh) 2016-09-12 2016-09-12 脱硝催化剂及其制造方法
CN201780003340.1A Expired - Fee Related CN108474554B (zh) 2016-09-12 2017-03-07 燃烧系统
CN201780003339.9A Expired - Fee Related CN108472628B (zh) 2016-09-12 2017-03-07 脱硝催化剂及其制造方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201780003340.1A Expired - Fee Related CN108474554B (zh) 2016-09-12 2017-03-07 燃烧系统
CN201780003339.9A Expired - Fee Related CN108472628B (zh) 2016-09-12 2017-03-07 脱硝催化剂及其制造方法

Country Status (7)

Country Link
US (8) US20180272318A1 (zh)
EP (5) EP3511071B1 (zh)
JP (8) JP6093101B1 (zh)
CN (3) CN108367275B (zh)
MY (2) MY191023A (zh)
SG (3) SG11201802496TA (zh)
WO (8) WO2018047356A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113613779A (zh) * 2019-03-07 2021-11-05 中国电力株式会社 脱硝催化剂及其制造方法
CN113874107A (zh) * 2019-03-07 2021-12-31 中国电力株式会社 脱硝催化剂及其制造方法
CN114682348A (zh) * 2020-12-31 2022-07-01 中国石油化工股份有限公司 废脱硝催化剂的粉碎方法及由此制备的废脱硝催化剂粉体

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201802496TA (en) * 2016-09-12 2018-04-27 The Chugoku Electric Power Co Inc Denitration catalyst and method for producing the same
US10669908B1 (en) 2018-12-03 2020-06-02 Wellhead Power Solutions, Llc Power generating systems and methods for reducing startup NOx emissions in fossile fueled power generation system
WO2020161874A1 (ja) * 2019-02-07 2020-08-13 中国電力株式会社 燃焼システム
JPWO2020161875A1 (ja) * 2019-02-07 2021-12-09 中国電力株式会社 燃焼システム
EP3936766B1 (en) 2019-03-07 2024-01-17 The Chugoku Electric Power Co., Inc. Combustion system having a vanadium oxide denitration catalyst
US20220168712A1 (en) * 2019-03-07 2022-06-02 The Chugoku Electric Power Co., Inc. Denitration catalyst and method for manufacturing same
JP7388653B2 (ja) * 2019-03-07 2023-11-29 中国電力株式会社 脱硝触媒、及びその製造方法
US11560819B2 (en) 2019-03-07 2023-01-24 The Chugoku Electric Power Co., Inc. Combustion system
WO2020179077A1 (ja) * 2019-03-07 2020-09-10 中国電力株式会社 燃焼システム
KR102178815B1 (ko) * 2019-05-09 2020-11-13 주식회사 지스코 환경설비 및 이를 포함하는 발전시스템
WO2022054132A1 (ja) 2020-09-08 2022-03-17 中国電力株式会社 脱硝触媒成型体及び脱硝触媒成型体の製造方法
JP6956988B1 (ja) 2020-09-08 2021-11-02 中国電力株式会社 脱硝触媒塗布液
WO2022157971A1 (ja) 2021-01-25 2022-07-28 中国電力株式会社 脱硝触媒及びその製造方法
JP7050243B1 (ja) * 2021-01-25 2022-04-08 中国電力株式会社 脱硝触媒成型体及びその製造方法
KR102531024B1 (ko) * 2022-02-24 2023-05-10 홍성호 탈질설비의 필터 처리 방법
WO2023203602A1 (ja) * 2022-04-18 2023-10-26 中国電力株式会社 脱硝触媒及びその製造方法、並びに脱硝方法
WO2023203603A1 (ja) * 2022-04-18 2023-10-26 中国電力株式会社 排ガスの脱硝方法
CN115582016B (zh) * 2022-11-08 2024-07-12 山东万达环保科技有限公司 一种石灰窑炉专用超低温脱硫脱硝工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753582A (en) * 1991-12-16 1998-05-19 Rhone-Poulenc Chimie V/Mo/W catalysts for the selective reduction of nitrogen oxides
US6419889B1 (en) * 1995-10-09 2002-07-16 Shell Oil Company Catalyst, process of making catalyst and process for converting nitrogen oxide compounds
CN102335601A (zh) * 2011-07-21 2012-02-01 上海大学 具有介孔泡沫结构的scr脱硝催化剂及制备方法
CN103894180A (zh) * 2014-03-26 2014-07-02 北京工业大学 一种Pr掺杂TiO2为载体的低温SCR催化剂及制备方法
CN104888795A (zh) * 2015-05-29 2015-09-09 上海大学 氧化钛负载钒酸盐脱硝催化剂、制备方法及应用

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100982A (zh) 1975-03-04 1976-09-06 Nippon Steel Corp
JPS51104489A (zh) * 1975-03-13 1976-09-16 Nippon Steel Corp
JPS5235786A (en) 1975-09-16 1977-03-18 Seitetsu Kagaku Co Ltd Regeneration method of catalyst
JPS544873A (en) 1977-06-14 1979-01-13 Mitsubishi Chem Ind Ltd Decomposing method for nitrogen oxides
JPS5455390A (en) 1977-10-12 1979-05-02 Nec Corp Light emitting element
JPS5466390A (en) * 1977-11-08 1979-05-28 Yasushi Kubo Silicon dioxideetitanium dioxideevanadium oxide catalyst for removal of nitrogen oxides
JPS56168835A (en) 1980-05-31 1981-12-25 Mitsubishi Petrochem Co Ltd Denitrating catalyst and denitrating method
JPS5932712A (ja) 1982-08-18 1984-02-22 Gadelius Kk 排煙処理法
JPS5949847A (ja) 1982-09-13 1984-03-22 Ngk Insulators Ltd 脱硝触媒の賦活方法
JPS59217414A (ja) * 1983-05-25 1984-12-07 Babcock Hitachi Kk 排ガス処理装置
CA1291743C (en) * 1986-07-25 1991-11-05 Makoto Imanari Catalyst for removing nitrogen oxides in exhaust gases
JPH0817939B2 (ja) * 1986-11-19 1996-02-28 三菱化学株式会社 排煙脱硝触媒
US5087600A (en) 1987-06-05 1992-02-11 Babcock-Hitachi Kabushiki Kaisha Process for producing a catalyst for denitration by catalytic reduction using ammonia
JPH04225842A (ja) 1990-12-26 1992-08-14 Babcock Hitachi Kk 排ガス脱硝用触媒の再生方法
JP3352494B2 (ja) * 1993-03-25 2002-12-03 三井鉱山株式会社 窒素酸化物分解触媒及びそれを用いた脱硝方法
JPH0760134A (ja) * 1993-08-27 1995-03-07 Mitsubishi Heavy Ind Ltd 触媒フィルタの再生方法
JPH07241476A (ja) 1994-03-07 1995-09-19 Babcock Hitachi Kk ハニカム触媒の製造方法
JP3589529B2 (ja) 1995-08-08 2004-11-17 株式会社荏原製作所 燃焼排ガスの処理方法及び装置
JP3643676B2 (ja) * 1997-07-16 2005-04-27 三菱重工業株式会社 ボイラ排ガスの油田への圧入方法
JPH11253754A (ja) * 1998-03-11 1999-09-21 Mitsubishi Chemical Corp 燃焼排ガスの処理装置
JP2004275852A (ja) 2003-03-14 2004-10-07 Mitsubishi Heavy Ind Ltd 排煙脱硝触媒及びその製造方法
JP2004290924A (ja) 2003-03-28 2004-10-21 Sumitomo Chem Co Ltd 触媒繊維およびその製造方法
JP2005342710A (ja) 2004-05-07 2005-12-15 Mitsubishi Chemical Engineering Corp 耐熱性脱硝触媒
KR100944464B1 (ko) * 2005-06-09 2010-03-03 니폰 쇼쿠바이 컴파니 리미티드 티타늄 산화물, 배기 가스 처리용 촉매 및 배기 가스의정화 방법
JP5215990B2 (ja) 2007-02-27 2013-06-19 株式会社日本触媒 排ガス処理用触媒および排ガス処理方法
JP4909296B2 (ja) 2008-02-12 2012-04-04 三菱重工業株式会社 重質燃料焚ボイラシステム及びその運転方法
EP2189217A1 (en) * 2008-11-17 2010-05-26 Technical University of Denmark Nanoparticular metal oxide/anatase catalysts.
CN101422728A (zh) * 2008-12-18 2009-05-06 哈尔滨工业大学 一种用于电厂燃煤烟气scr脱硝的催化剂及其制备方法
TWI478767B (zh) * 2009-04-23 2015-04-01 Treibacher Ind Ag 用於使廢氣進行選擇性催化還原反應之催化劑組成物
US20110031142A1 (en) * 2009-08-06 2011-02-10 John Gerard Lindeman Golf bag having physical characteristics of a character
JP5377371B2 (ja) 2010-03-12 2013-12-25 株式会社日立製作所 酸素燃焼型石炭火力発電システム
US8211391B2 (en) 2010-06-22 2012-07-03 2E Environmental, LLC Biomass boiler SCR NOx and CO reduction system
JP2012047096A (ja) 2010-08-26 2012-03-08 Mitsubishi Heavy Ind Ltd 舶用脱硝システムおよびこれを備えた船舶ならびに舶用脱硝システムの制御方法
EP3088082A1 (en) * 2012-08-17 2016-11-02 Johnson Matthey Public Limited Company Zeolite promoted v/tiw catalysts
JP6249689B2 (ja) 2012-09-05 2017-12-20 三菱日立パワーシステムズ株式会社 排ガス処理再生触媒及び排ガス処理触媒の再生方法
KR101426601B1 (ko) * 2012-09-18 2014-08-05 박광희 이산화황 내구성이 높은 탈질촉매와 그 제조방법 및 이를 이용하여 질소산화물을 제거하는 방법
US9856149B2 (en) 2012-09-29 2018-01-02 Nanjing Tech University Vanadium-titanium compound material with high thermal stability and high activity and preparation method thereof
JP6064498B2 (ja) 2012-10-02 2017-01-25 株式会社Ihi 脱硝システム
CN103157480B (zh) * 2013-02-04 2015-02-18 合肥工业大学 一种氧化钒/铁氧化物脱硝催化剂及其制备方法和应用
US8946105B2 (en) 2013-03-13 2015-02-03 Steag Energy Services Gmbh Methods for removing iron material from a substrate
JP2014213293A (ja) * 2013-04-26 2014-11-17 バブコック日立株式会社 使用済み脱硝触媒の再生方法
JP6157916B2 (ja) * 2013-04-30 2017-07-05 三菱日立パワーシステムズ株式会社 脱硝触媒およびその製造方法
EP2875863A1 (de) 2013-11-25 2015-05-27 Umicore AG & Co. KG SCR-Katalysator
DE102014201263A1 (de) 2014-01-23 2015-07-23 Johnson Matthey Catalysts (Germany) Gmbh Katalysator
JP5863885B2 (ja) 2014-06-06 2016-02-17 三菱日立パワーシステムズ株式会社 ボイラシステムおよびそれを備えた発電プラント
JP6560007B2 (ja) 2015-04-08 2019-08-14 三菱日立パワーシステムズ株式会社 排ガス処理装置
JP2017018919A (ja) 2015-07-14 2017-01-26 三菱日立パワーシステムズ株式会社 使用済み脱硝触媒の再生方法
WO2017042895A1 (ja) * 2015-09-08 2017-03-16 中国電力株式会社 火力発電システム
SG11201802496TA (en) 2016-09-12 2018-04-27 The Chugoku Electric Power Co Inc Denitration catalyst and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753582A (en) * 1991-12-16 1998-05-19 Rhone-Poulenc Chimie V/Mo/W catalysts for the selective reduction of nitrogen oxides
US6419889B1 (en) * 1995-10-09 2002-07-16 Shell Oil Company Catalyst, process of making catalyst and process for converting nitrogen oxide compounds
CN102335601A (zh) * 2011-07-21 2012-02-01 上海大学 具有介孔泡沫结构的scr脱硝催化剂及制备方法
CN103894180A (zh) * 2014-03-26 2014-07-02 北京工业大学 一种Pr掺杂TiO2为载体的低温SCR催化剂及制备方法
CN104888795A (zh) * 2015-05-29 2015-09-09 上海大学 氧化钛负载钒酸盐脱硝催化剂、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRANS J. J. G. JANSSEN ET AL.: "Mechanism of the Reaction of Nitric Oxide, Ammonia, and Oxygen over Vanadia Catalysts. 1. The Role of Oxygen Studied by Way of Isotopic Transients under Dilute Conditions", 《THE JOURNAL OF PHYSICAL CHEMISTRY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113613779A (zh) * 2019-03-07 2021-11-05 中国电力株式会社 脱硝催化剂及其制造方法
CN113874107A (zh) * 2019-03-07 2021-12-31 中国电力株式会社 脱硝催化剂及其制造方法
CN114682348A (zh) * 2020-12-31 2022-07-01 中国石油化工股份有限公司 废脱硝催化剂的粉碎方法及由此制备的废脱硝催化剂粉体

Also Published As

Publication number Publication date
EP3511071A4 (en) 2020-04-01
EP3511539B1 (en) 2022-11-02
US20180280941A1 (en) 2018-10-04
JP6410200B2 (ja) 2018-10-24
EP3511621B8 (en) 2022-03-23
WO2018047379A1 (ja) 2018-03-15
EP3511621B1 (en) 2022-02-16
SG11201802496TA (en) 2018-04-27
CN108472628A (zh) 2018-08-31
US20180280965A1 (en) 2018-10-04
JP6558560B2 (ja) 2019-08-14
JP6410202B2 (ja) 2018-10-24
US10746074B2 (en) 2020-08-18
CN108367275B (zh) 2021-09-21
US20180272278A1 (en) 2018-09-27
US10865684B2 (en) 2020-12-15
US10519837B2 (en) 2019-12-31
WO2018047380A1 (ja) 2018-03-15
EP3511620A4 (en) 2020-04-08
US10746073B2 (en) 2020-08-18
US20190054448A1 (en) 2019-02-21
JPWO2018047379A1 (ja) 2018-11-29
JPWO2018047383A1 (ja) 2018-10-04
JP6093101B1 (ja) 2017-03-08
EP3511071B1 (en) 2023-02-15
US20190055871A1 (en) 2019-02-21
US10767535B2 (en) 2020-09-08
EP3511621A1 (en) 2019-07-17
JP6489596B2 (ja) 2019-03-27
EP3511620A1 (en) 2019-07-17
WO2018047382A1 (ja) 2018-03-15
JPWO2018047382A1 (ja) 2018-12-13
CN108474554A (zh) 2018-08-31
EP3511072A1 (en) 2019-07-17
CN108474554B (zh) 2019-11-05
JPWO2018047378A1 (ja) 2018-11-22
US10550747B2 (en) 2020-02-04
US20180272318A1 (en) 2018-09-27
WO2018047381A1 (ja) 2018-03-15
EP3511621A4 (en) 2020-04-08
WO2018047383A1 (ja) 2018-03-15
SG11201802497XA (en) 2018-04-27
JPWO2018047381A1 (ja) 2018-11-22
JP6489598B2 (ja) 2019-03-27
US10385750B2 (en) 2019-08-20
JP6489597B2 (ja) 2019-03-27
WO2018047377A1 (ja) 2018-03-15
WO2018047378A1 (ja) 2018-03-15
EP3511539A4 (en) 2020-04-08
JPWO2018047356A1 (ja) 2018-09-06
JP6410201B2 (ja) 2018-10-24
WO2018047356A1 (ja) 2018-03-15
EP3511539A1 (en) 2019-07-17
MY191023A (en) 2022-05-29
SG11201802506QA (en) 2018-04-27
EP3511072A4 (en) 2020-04-01
US20180280936A1 (en) 2018-10-04
US20180280875A1 (en) 2018-10-04
MY196942A (en) 2023-05-11
JPWO2018047380A1 (ja) 2018-11-29
EP3511071A1 (en) 2019-07-17
EP3511620B1 (en) 2022-02-16
CN108472628B (zh) 2022-02-18
EP3511620B8 (en) 2022-03-23
JPWO2018047377A1 (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
CN108367275A (zh) 脱硝催化剂及其制造方法
KR101629483B1 (ko) 바나듐계 탈질촉매 및 그 제조방법
CN107376896A (zh) 一种铈钨钛复合氧化物scr脱硝催化剂及其制备方法
CN106582874A (zh) 一种耐高温磷钨酸吸附型铁基氧化物催化剂及其制备方法
RU2493908C2 (ru) Катализатор окисления ртути и способ его приготовления
CN109092324A (zh) 低温scr烟气脱硝催化剂及其制备方法和应用
EP0208434A1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
KR102161131B1 (ko) 안티몬/티타니아 담체 및 그 제조방법, 상기 담체를 이용한 가스상 유해물질 제거를 위한 촉매 및 그 제조방법
CN108236943A (zh) 一种钒基氧化物催化剂的制备方法
CN108236944A (zh) 一种钒基氧化物催化剂及其应用
JPS6029288B2 (ja) 触媒の製造法および脱硝方法
KR100473080B1 (ko) 천연망간광석을 이용하여, 향상된 배연탈질 효율을 갖고암모니아의 소비 및 이산화질소의 배출을 감소시키는질소산화물의 제거방법
JP7278555B1 (ja) 排ガスの脱硝方法
JPS6335298B2 (zh)
WO2023203602A1 (ja) 脱硝触媒及びその製造方法、並びに脱硝方法
JPH038820B2 (zh)
JPS6152727B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Hiroshima County, Japan

Patentee after: THE CHUGOKU ELECTRIC POWER Co.,Inc.

Patentee after: Legal person of Tokyo Metropolitan Public University

Address before: Hiroshima County, Japan

Patentee before: THE CHUGOKU ELECTRIC POWER Co.,Inc.

Patentee before: Public University Corporation Capital University Tokyo

CP01 Change in the name or title of a patent holder