WO2022157971A1 - 脱硝触媒及びその製造方法 - Google Patents

脱硝触媒及びその製造方法 Download PDF

Info

Publication number
WO2022157971A1
WO2022157971A1 PCT/JP2021/002436 JP2021002436W WO2022157971A1 WO 2022157971 A1 WO2022157971 A1 WO 2022157971A1 JP 2021002436 W JP2021002436 W JP 2021002436W WO 2022157971 A1 WO2022157971 A1 WO 2022157971A1
Authority
WO
WIPO (PCT)
Prior art keywords
denitration catalyst
denitration
metal
catalyst
vanadium oxide
Prior art date
Application number
PCT/JP2021/002436
Other languages
English (en)
French (fr)
Inventor
英嗣 清永
和広 吉田
啓一郎 盛田
徹 村山
雄介 猪股
Original Assignee
中国電力株式会社
東京都公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 東京都公立大学法人 filed Critical 中国電力株式会社
Priority to JP2021554376A priority Critical patent/JP7050244B1/ja
Priority to PCT/JP2021/002436 priority patent/WO2022157971A1/ja
Priority to EP21921079.6A priority patent/EP4282523A1/en
Publication of WO2022157971A1 publication Critical patent/WO2022157971A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2025Lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2027Sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present invention relates to a denitration catalyst and a method for producing the same.
  • Nitrogen oxides are one of the pollutants emitted into the atmosphere by combustion of fuel. be done. Nitrogen oxides cause acid rain, ozone depletion, photochemical smog, etc., and seriously affect the environment and the human body.
  • a selective catalytic reduction reaction (NH 3 -SCR) using ammonia (NH 3 ) as a reducing agent is known as a technique for removing the above nitrogen oxides.
  • a catalyst used for selective catalytic reduction reaction a catalyst in which titanium oxide is used as a carrier and vanadium oxide is supported is widely used. Titanium oxide is considered to be the best carrier because of its low activity against sulfur oxides and its high stability.
  • vanadium oxide plays a major role in NH 3 -SCR, it oxidizes SO 2 to SO 3 , so vanadium oxide could not be supported in the catalyst in an amount of about 1 wt % or more.
  • the catalyst in which vanadium oxide is supported on a titanium oxide carrier hardly reacts at low temperatures, it has to be used at a high temperature of 350-400°C.
  • the present inventors found a denitration catalyst containing 43 wt % or more of vanadium pentoxide, having a BET specific surface area of 30 m 2 /g or more, and used for denitration at 200° C. or lower (Patent Document 2).
  • the denitration catalyst described in Patent Document 2 can obtain a favorable denitration rate at 200° C. or less, but the conditions under which the denitration catalyst is actually used are often accompanied by water vapor, and the denitration rate in the presence of water vapor is still low. There was room for improvement.
  • the inventors of the present invention have attempted to further improve the denitration catalyst disclosed in Patent Document 2, and as a result of intensive studies, have found a denitration catalyst that provides a favorable denitration rate, particularly at 200°C or less and in the presence of steam.
  • the purpose of the present invention is to provide a denitration catalyst that exhibits an excellent denitration rate at low temperatures and in the presence of water vapor during a selective catalytic reduction reaction using ammonia as a reducing agent.
  • the present invention is a denitration catalyst containing vanadium oxide as a main component and a second metal, wherein the second metal M is selected from the group consisting of Li, Na, K, Mg and Ca. is at least one denitrification catalyst.
  • the vanadium oxide is V 2 O 5
  • the second metal is at least one of Li, Na, and K
  • the second metal has a molar ratio to the V 2 O 5 is 0.16 to 0.66, the denitration catalyst according to (1).
  • the ratio of the absorption intensity at 700 nm to the absorption intensity at 400 nm (400 nm:700 nm), normalized by the absorption intensity at 400 nm in the diffuse reflection UV-Vis spectrum, is 1:0.45 to 1:0.88.
  • the denitration catalyst according to any one of (1) to (3).
  • the present invention can provide a denitration catalyst that exhibits an excellent denitration rate at low temperatures and in the presence of water vapor during a selective catalytic reduction reaction using ammonia as a reducing agent.
  • 4 is a graph showing denitration rates of denitration catalysts containing each metal element as a second metal. It is a graph which shows the relationship between the denitration rate and denitration temperature of each denitration catalyst. 4 is a graph showing the relationship between the composition ratio of a denitration catalyst and the denitration rate. 4 is an XRD chart showing the relationship between the composition ratio of the denitration catalyst and the crystal phase. 4 is a graph showing the relationship between the composition ratio of a denitration catalyst and the BET specific surface area. 4 is a graph showing the relationship between the sintering temperature of a denitration catalyst and the denitration rate. 4 is an XRD chart showing the relationship between the sintering temperature of the denitration catalyst and the crystal phase.
  • 4 is a graph showing TG-DTA measurement results of a denitration catalyst.
  • 4 is a graph showing the relationship between the sintering temperature of the denitration catalyst and the diffuse reflectance UV-Vis spectrum.
  • 10 is a graph showing the relationship between the absorption intensity ratio (400 nm:700 nm) normalized from FIG. 9 and the denitrification rate.
  • the denitration catalyst according to the present embodiment contains vanadium oxide as a main component and a second metal.
  • the second metal is at least one selected from the group consisting of Li, Na, K, Mg and Ca.
  • the denitration catalyst according to the present embodiment exhibits a high denitration rate even in a low-temperature environment and in the presence of water vapor compared to conventionally used denitration catalysts.
  • the denitrification rate may be expressed as the NO conversion rate.
  • the NO conversion rate is shown by the following formula (1).
  • NO conversion rate (%) (NO concentration before denitration reaction - NO concentration after denitration reaction) / (NO concentration before denitration reaction) x 100 (1)
  • vanadium oxide examples of vanadium oxide used in the denitration catalyst according to the present embodiment include vanadium oxide (II) (VO), vanadium trioxide (III) (V 2 O 3 ), vanadium tetroxide (IV) (V 2 O 4 ), and vanadium (V) pentoxide (V 2 O 5 ).
  • the vanadium oxide is preferably vanadium pentoxide.
  • the V atom of vanadium pentoxide may have a valence of pentavalent, tetravalent, trivalent, or divalent during the denitration reaction.
  • the content of vanadium oxide in the denitration catalyst is preferably 50 wt% or more in terms of vanadium pentoxide, more preferably 60 wt% or more.
  • the second metal used in the denitration catalyst according to this embodiment is at least one selected from the group consisting of Li, Na, K, Mg, and Ca.
  • the second metal in the denitration catalyst containing vanadium oxide as a main component it is possible to exhibit a high denitration rate even in a low-temperature environment and in the presence of water vapor, compared to conventional denitration catalysts.
  • the second metal has a molar ratio to vanadium (V) pentoxide (V 2 O 5 ) when vanadium (V) pentoxide (V 2 O 5 ) is used as the vanadium oxide is 0.16 to 0.66. and more preferably 0.33 to 0.66.
  • the reason why the molar ratio of the second metal to vanadium pentoxide (V 2 O 5 ) is preferably 0.16 to 0.66 is that the above molar ratio allows the second metal and vanadium pentoxide (V) (V 2 O 5 ) form a specific crystal phase, and this crystal phase is considered to contribute to a high denitrification rate especially at low temperatures and in the presence of water vapor.
  • the crystal phase formed by Na as the second metal and vanadium pentoxide (V) (V 2 O 5 ) preferably includes a Na 0.33 V 2 O 5 crystal phase.
  • the Na 0.33 V 2 O 5 crystal phase is a monoclinic crystal structure assigned to C2/m.
  • Another crystal phase formed by Na and vanadium pentoxide (V) (V 2 O 5 ) is Na 1.2 V 3 having a monoclinic crystal structure assigned to P2 1 /m. O8 crystalline phase.
  • the denitration catalyst according to the present embodiment can be obtained, for example, by calcining a precursor containing vanadium oxide and a second metal.
  • the firing temperature is preferably 260 to 400.degree. C., more preferably 300 to 400.degree.
  • the denitration catalyst By setting the denitration catalyst to a baking temperature of 260° C. or higher, it is believed that the precursor containing vanadium oxide and the second metal is decomposed to form the Na 0.33 V 2 O 5 crystal phase. In addition, as the denitration catalyst sintering temperature rises, O is desorbed from V 2 O 5 and the ratio of V 4+ in the denitration catalyst increases. Since the denitrification reaction proceeds in the oxidation-reduction cycle of V5 + and V4+, it is considered that there exists a preferable ratio of V5 + and V4+ . By setting the calcination temperature of the denitration catalyst to 400° C. or lower, it is presumed that the ratio of V 5+ and V 4+ becomes a preferable ratio.
  • the proportion of V 5+ and V 4+ present in the denitration catalyst can be estimated from the diffuse reflectance UV-Vis spectrum which can be measured by known methods.
  • the absorption intensity at 400 nm of the diffuse reflectance UV-Vis spectrum corresponds to the amount of V 5+ in the denitration catalyst.
  • the absorption intensity at 700 nm of the diffuse reflectance UV-Vis spectrum corresponds to the amount of V 4+ in the denitration catalyst.
  • the ratio of the absorption intensity at 400 nm to the absorption intensity at 700 nm (400 nm:700 nm), normalized by the absorption intensity at 400 nm in the diffuse reflectance UV-Vis spectrum, gives the preferred ratio of V 5+ and V 4+ in the denitration catalyst.
  • the absorption intensity ratio (400 nm:700 nm) is preferably 1:0.45 to 1:0.88.
  • the denitration catalyst according to the present embodiment may contain other substances as long as the effects of the present invention are not impaired.
  • the denitration catalyst according to the present embodiment preferably further contains carbon in addition to the above. It is thought that the inclusion of carbon as an impurity in the denitration catalyst causes strain in the lines and planes in the crystal lattice in the crystal structure of vanadium oxide described above, thereby exhibiting a high denitration rate in a low-temperature environment.
  • the content of carbon in the denitration catalyst is preferably 0.05 wt % or more and 3.21 wt % or less. More preferably, the carbon content is 0.07 wt % or more and 3.21 wt % or less.
  • the carbon content is 0.11 wt % or more and 3.21 wt % or less. More preferably, the carbon content is 0.12 wt % or more and 3.21 wt % or less. More preferably, the carbon content is 0.14 wt % or more and 3.21 wt % or less. More preferably, the carbon content is 0.16 wt % or more and 3.21 wt % or less. More preferably, the carbon content is 0.17 wt % or more and 3.21 wt % or less. More preferably, the carbon content is 0.70 wt % or more and 3.21 wt % or less.
  • the denitration catalyst according to the present embodiment is preferably used for denitration reactions at 350° C. or lower. Moreover, it is preferable because a high denitration rate can be obtained even in the denitration reaction at a reaction temperature of 300° C. or less. In the denitration reaction at a reaction temperature of 200° C. or less, oxidation of SO 2 to SO 3 does not occur, which is preferable.
  • the reaction temperature is more preferably 100 to 250°C, even more preferably 160 to 200°C.
  • the reaction temperature may be 80-150°C.
  • the denitration catalyst containing only vanadium (V) pentoxide (V 2 O 5 ) as the denitration catalyst undergoes changes such as a decrease in the specific surface area when the reaction temperature is 300° C. or higher.
  • the reaction temperature cannot be higher than 300°C.
  • the denitration catalyst according to the present embodiment having the second metal can maintain a high denitration rate even when the reaction temperature is 300° C. or higher.
  • the denitration catalyst according to this embodiment can be produced, for example, as follows. First, a precursor containing each component contained in the denitration catalyst is prepared.
  • the vanadium oxide contained in the denitration catalyst is contained in the precursor as, for example, an aqueous solution of vanadate. Examples of the vanadate include ammonium metavanadate, magnesium vanadate, strontium vanadate, barium vanadate, zinc vanadate, lead vanadate, and lithium vanadate.
  • the second metal in the denitration catalyst can be obtained by mixing nitrates, chlorides, sulfates, chelate complexes, hydrates, ammonium compounds, phosphate compounds, etc. of each metal with the aqueous solution of vanadic acid. contained in Examples of chelate complexes include complexes of oxalic acid, citric acid, and the like.
  • a denitration catalyst precursor powder is obtained by a calcination step of calcining the precursor powder at a predetermined temperature and time.
  • the firing temperature in the firing step is preferably 260 to 400°C, more preferably 300 to 400°C, as described above.
  • the present invention is not limited to the above embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.
  • Example 1 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex solution. To this precursor complex solution, a nitrate salt of Na, which is the second metal, was added in an amount that gave a compositional formula of Na 0.66 V 2 O 5 and mixed to obtain a precursor solution of a denitration catalyst. The denitrification catalyst of Example 1 was obtained by evaporating the precursor solution to dryness and calcining it twice for 4 hours at a temperature of 300° C. in the atmosphere. DeNOx catalysts were also prepared in the same procedure as above for examples containing other metals as the second metal, examples with different composition ratios of Na, and comparative examples with no addition of the second metal.
  • FIG. 1 shows a denitration catalyst according to each example, which uses vanadium pentoxide (V) (V 2 O 5 ) as the main component and Li, Na, K, Mg, or Ca as the second metal
  • V vanadium pentoxide
  • 5 is a graph comparing the denitration rate of denitration catalysts (none) according to comparative examples using only vanadium pentoxide (V 2 O 5 ).
  • the vertical axis in FIG. 1 indicates the NO conversion rate.
  • a denitration catalyst using an alkali metal such as Li, Na, or K as the second metal was used in an amount such that the composition formula, where M is the second metal, is M 0.66 V 2 O 5 .
  • the denitration catalyst using Mg or Ca, which is an alkaline earth metal, as the second metal was used in an amount that gives M 0.33 V 2 O 5 in the composition formula where M is the second metal.
  • the amount of catalyst was 0.375 g and the reaction temperature was 150°C.
  • the reaction gas was NO (250 ppm), NH 3 (250 ppm), 4% by volume O 2 , Ar gas, and the gas flow rate was 250 ml/min ⁇ 1 .
  • a reaction gas containing 10% by volume of H 2 O was used with respect to the reaction gas of "Dry".
  • the denitrification catalysts according to the respective examples containing vanadium oxide as the main component and using Li, Na, K, Mg, or Ca as the second metal are comparative examples containing only vanadium oxide. It is clear that the NO conversion rate is particularly high in the presence of steam compared to such denitration catalysts.
  • FIG. 2 is a graph showing the relationship between the reaction temperature and the denitration rate (NO conversion rate) of denitration catalysts according to examples and comparative examples containing vanadium pentoxide (V) (V 2 O 5 ) as a main component.
  • V vanadium pentoxide
  • VW/TiO 2 is a comparative example simulating an industrial catalyst and has a composition of 1 wt % V 2 O 5 , 5 wt % WO 3 /TiO 2 .
  • Na—V” and “Mg—V” have the same composition as in FIG.
  • the denitration catalyst containing vanadium oxide as the main component and using Na or Mg as the second metal is superior to the denitration catalyst according to the comparative example, especially at low temperatures of 120° C. or less. It is clear that it shows high NO conversion.
  • the comparative examples containing only vanadium pentoxide (V) (V 2 O 5 ) it was impossible to raise the reaction temperature to 300°C or higher, but the denitration catalysts according to the examples raised the reaction temperature to 300°C. It was confirmed that a high NO conversion rate of 80% or more is exhibited even at temperatures above 350°C.
  • FIG. 3 is a graph showing the relationship between the composition of the denitration catalyst and the NO conversion rate when vanadium pentoxide (V) (V 2 O 5 ) is used as the vanadium oxide and Na is used as the second metal.
  • the horizontal axis in FIG. 3 indicates the molar ratio of Na to vanadium pentoxide, and the vertical axis in FIG. 3 indicates the NO conversion rate.
  • the "Dry” and “Wet" conditions in FIG. 3 are the same as the conditions in FIG. As shown in FIG. 3, when the molar ratio of Na to vanadium (V) pentoxide (V 2 O 5 ) is within the range of 0.16 to 0.66, a high NO conversion rate can be obtained. it is obvious.
  • FIG. 4 is a graph showing XRD charts when using Na as the second metal and changing the molar ratio of Na to vanadium pentoxide (V 2 O 5 ).
  • V 2 O 5 vanadium pentoxide
  • the peaks observed when the composition of the denitration catalyst is V 2 O 5 , Na 0.33 V 2 O 5 and Na 1.00 V 2 O 5 are V 2 O 5 (1), Na 0.33 V 2 O 5 (2), and Na 1.2 V 3 O 8 (3) peaks attributed to single-phase crystal phases.
  • the composition of the denitration catalyst was Na 0.16 V 2 O 5 , both peaks attributed to the crystal phases (1) and (2) were observed.
  • FIG. 5 is a graph showing the relationship between the specific surface area and composition of the denitration catalyst.
  • the vertical axis of FIG. 5 indicates the BET specific surface area ( m 2 /g) of the denitration catalyst, and the horizontal axis of FIG.
  • the composition of the denitration catalyst in the case of using Na as is shown. It is clear from FIG. 5 that the specific surface area of the denitration catalyst decreases as the ratio of Na increases. On the other hand, when comparing the results of FIGS. 5 and 3 , the relationship between the specific surface area and the NO conversion rate is , is clearly not proportional. Therefore, it is clear that the inclusion of the Na 0.33 V 2 O 5 crystal phase (2) contributes to a higher denitration rate than simply having a large specific surface area.
  • FIG. 6 is a graph showing the relationship between the sintering temperature of the denitration catalyst and the NO conversion rate.
  • the vertical axis in FIG. 6 indicates the NO conversion rate, and the horizontal axis in FIG. 6 indicates the calcination temperature (° C.) of the denitration catalyst. From FIG. 6, it is clear that a high NO conversion rate of the denitration catalyst can be obtained by setting the sintering temperature of the denitration catalyst to 300 to 400.degree.
  • FIG. 7 is a graph showing XRD charts when the sintering temperature of the denitration catalyst is changed.
  • a denitration catalyst having a composition of Na 0.33 V 2 O 5 was used. From the results of FIG. 7, a peak attributed to the Na 0.33 V 2 O 5 crystal phase of (2) above was observed at any firing temperature. Therefore, it is clear that the difference in NO conversion due to the difference in calcination temperature is not due to the type of crystal phase.
  • FIG. 8 is a chart showing the results of weight change due to heating of a denitration catalyst precursor having a composition of Na 0.33 V 2 O 5 measured by TG-DTA (simultaneous thermogravimetry and differential thermal analysis).
  • the solid line indicates the TG (thermogravimetric analysis) curve
  • the dashed line indicates the DTA (differential thermal analysis) curve.
  • the left vertical axis in FIG. 8 indicates the weight ratio (%) with respect to the initial weight corresponding to the TG curve
  • the right vertical axis indicates the temperature difference ( ⁇ V) from the reference material corresponding to the DTA curve.
  • the horizontal axis of FIG. 8 indicates temperature (° C.). From the results of the TG curve in FIG.
  • FIG. 9 shows the diffuse reflectance UV-Vis spectrum of the denitration catalyst precursor with a composition of Na 0.33 V 2 O 5 at calcination temperatures of 300° C., 400° C., 500° C., and 600° C., respectively. It is a graph normalized by absorption intensity at a wavelength of 400 nm.
  • the vertical axis in FIG. 9 indicates the KM function used for quantitative analysis, and the horizontal axis indicates wavelength (nm).
  • the diffuse reflectance UV-Vis spectrum was measured with an ultraviolet-visible-near-infrared spectrophotometer (UV-3100PC, manufactured by Shimadzu Corporation).
  • the relative intensity ratio of the absorption intensity at 700 nm to the absorption intensity at 400 nm (400 nm:700 nm) calculated from FIG. Similarly, when the firing temperature is 400 ° C., (400 nm:700 nm) is 1:0.88, and when the firing temperature is 500 ° C., (400 nm:700 nm) is 1:1.35. (400 nm:700 nm) was 1:1.69 when the temperature was 600.degree.
  • FIG. 10 is a graph comparing the results of FIG. 9 and the results of FIG.
  • the vertical axis in FIG. 10 indicates the NO conversion rate (%), and the horizontal axis indicates the relative intensity ratio of absorption intensity at 700 nm to absorption intensity at wavelength 400 nm (700 nm/400 nm). From the results of FIG. 10, it is clear that the preferred ratio (400 nm:700 nm) is 1:0.45 to 1:0.88.

Abstract

アンモニアを還元剤とする選択的触媒還元反応の際、低温かつ水蒸気存在下における脱硝率に優れた脱硝触媒を提供する。 酸化バナジウムを主成分とし、第2の金属を含有する脱硝触媒であって、第2の金属が、Li、Na、K、Mg、及びCaからなる群より選ばれる少なくとも1種である、脱硝触媒。第2の金属として、上記アルカリ金属又はアルカリ土類金属を用いることで、低温かつ水蒸気存在下における脱硝率に優れた結晶相を有する化合物が生成する。

Description

脱硝触媒及びその製造方法
 本発明は、脱硝触媒及びその製造方法に関する。
 燃料の燃焼により大気中に排出される汚染物質の一つとして、窒素酸化物(NO,NO,NO,NO,N,N,N)が挙げられる。窒素酸化物は、酸性雨、オゾン層破壊、光化学スモッグ等を引き起こし、環境や人体に深刻な影響を与えるため、その処理が重要な課題となっている。
 上記の窒素酸化物を取り除く技術として、アンモニア(NH)を還元剤とする選択的触媒還元反応(NH-SCR)が知られている。特許文献1に記載のように、選択的触媒還元反応に用いられる触媒としては、酸化チタンを担体とし、酸化バナジウムを担持した触媒が広く使用されている。酸化チタンは硫黄酸化物に対して活性が低く、また安定性が高いため最も良い担体とされている。
 一方で、酸化バナジウムはNH-SCRにおいて主要な役割を果たすものの、SOをSOに酸化するので、触媒中に酸化バナジウムを1wt%程度以上担持できなかった。また、従来のNH-SCRでは、酸化チタン担体に酸化バナジウムを担持させた触媒が低温ではほとんど反応しないので,350-400℃という高温で使用せざるを得なかった。
 その後、本発明者らは、五酸化バナジウムが43wt%以上存在し、BET比表面積が30m/g以上であり、200℃以下での脱硝に用いられる脱硝触媒を見出した(特許文献2)。
特開2004-275852号公報 国際公開第2018/047356号
 特許文献2に記載された脱硝触媒は、200℃以下で好ましい脱硝率を得ることができるが、実際に脱硝触媒が用いられる条件は水蒸気が共存するケースが多く、水蒸気存在下における脱硝率に未だ改善の余地があった。本発明者らは、上記特許文献2に開示された脱硝触媒の更なる改良を試みて鋭意検討した結果、特に200℃以下かつ水蒸気存在下における好ましい脱硝率が得られる脱硝触媒を見出した。
 本発明は、アンモニアを還元剤とする選択的触媒還元反応の際、低温かつ水蒸気存在下における脱硝率に優れた脱硝触媒を提供することを目的とする。
 (1) 本発明は、酸化バナジウムを主成分とし、第2の金属を含有する脱硝触媒であって、前記第2の金属Mが、Li、Na、K、Mg、及びCaからなる群より選ばれる少なくとも1種である、脱硝触媒に関する。
 (2) 前記酸化バナジウムは、Vであり、前記第2の金属は、Li、Na、Kのうち少なくとも何れかであり、前記第2の金属は、前記Vに対するモル比が0.16~0.66である、(1)に記載の脱硝触媒。
 (3) Na0.33結晶相を含む、(1)又は(2)に記載の脱硝触媒。
 (4) 拡散反射UV-Visスペクトルにおける400nmの吸収強度で規格化される、400nmの吸収強度に対する700nmの吸収強度の比(400nm:700nm)が、1:0.45~1:0.88である、(1)~(3)いずれかに記載の脱硝触媒。
 (5) (1)~(4)いずれかに記載の脱硝触媒の製造方法であって、前記酸化バナジウム及び前記第2の金属を含む前駆体を260~400℃で焼成する焼成工程を含む、脱硝触媒の製造方法。
 本発明は、アンモニアを還元剤とする選択的触媒還元反応の際、低温かつ水蒸気存在下における脱硝率に優れた脱硝触媒を提供できる。
第2金属として各金属元素を含む脱硝触媒の脱硝率を示すグラフである。 各脱硝触媒の脱硝率と脱硝温度との関係を示すグラフである。 脱硝触媒の組成比と脱硝率との関係を示すグラフである。 脱硝触媒の組成比と結晶相との関係を示すXRDチャートである。 脱硝触媒の組成比とBET比表面積との関係を示すグラフである。 脱硝触媒の焼成温度と脱硝率との関係を示すグラフである。 脱硝触媒の焼成温度と結晶相との関係を示すXRDチャートである。 脱硝触媒のTG-DTA測定結果を示すグラフである。 脱硝触媒の焼成温度と拡散反射UV-Visスペクトルとの関係を示すグラフである。 図9から規格化される吸収強度の比(400nm:700nm)と脱硝率との関係を示すグラフである。
<脱硝触媒>
 本実施形態に係る脱硝触媒は、酸化バナジウムを主成分として、第2の金属を含有する。上記第2の金属は、Li、Na、K、Mg、及びCaからなる群から選ばれる少なくとも一つである。本実施形態に係る脱硝触媒は、従来用いられている脱硝触媒と比較して、低温環境下かつ水蒸気存在下でも高い脱硝率を発揮する。
 以下の説明において、脱硝率をNO転化率として表現する場合がある。NO転化率は、以下の式(1)で示される。
 NO転化率(%)=(脱硝反応前のNO濃度-脱硝反応後のNO濃度)/(脱硝反応前のNO濃度)×100     (1)
(酸化バナジウム)
 本実施形態に係る脱硝触媒に用いられる酸化バナジウムとしては、例えば、酸化バナジウム(II)(VO)、三酸化バナジウム(III)(V)、四酸化バナジウム(IV)(V)、及び五酸化バナジウム(V)(V)が挙げられる。酸化バナジウムとしては、五酸化バナジウムであることが好ましい。五酸化バナジウムのV原子は、脱硝反応中、5価、4価、3価、又は2価の価数を有してもよい。
 酸化バナジウムは、脱硝触媒中に五酸化バナジウム換算で50wt%以上含まれることが好ましく、60wt%以上存在することがより好ましい。
(第2の金属)
 本実施形態に係る脱硝触媒に用いられる第2の金属は、Li、Na、K、Mg、及びCaからなる群から選ばれる少なくとも一つである。酸化バナジウムを主成分とする脱硝触媒に上記第2の金属が含まれることにより、従来の脱硝触媒と比較して、低温環境下かつ水蒸気存在下でも高い脱硝率を発揮できる。
[第2の金属の含有量]
 第2の金属は、酸化バナジウムとして五酸化バナジウム(V)(V)を用いた場合の五酸化バナジウム(V)(V)に対するモル比が、0.16~0.66であることが好ましく、0.33~0.66であることがより好ましい。第2の金属の五酸化バナジウム(V)(V)に対するモル比が、0.16~0.66であることが好ましい理由としては、上記モル比とすることにより、第2の金属と五酸化バナジウム(V)(V)とが特定の結晶相を形成し、この結晶相が特に低温かつ水蒸気存在下における高い脱硝率に寄与するものと考えられる。
[脱硝触媒の結晶相]
 第2の金属としてのNaと、五酸化バナジウム(V)(V)とが形成する結晶相としては、Na0.33結晶相を含むことが好ましい。Na0.33結晶相は、C2/mに帰属される単斜晶型の結晶構造である。他にNaと、五酸化バナジウム(V)(V)とが形成する結晶相としては、P2/mに帰属される単斜晶型の結晶構造を有する、Na1.2結晶相が挙げられる。
[脱硝触媒の比表面積]
 脱硝触媒は、その比表面積が大きいほど反応サイトが増大し、高い脱硝率が得られることが期待される。しかし、本実施形態に係る脱硝触媒は、比表面積が単に大きいというだけでなく、脱硝触媒が上記好ましい結晶相を含むことがより重要である。
[脱硝触媒の焼成温度]
 本実施形態に係る脱硝触媒は、詳細は後述するが、例えば、酸化バナジウムと第2の金属とを含む前駆体を焼成することで得られる。上記焼成時の温度は、260~400℃であることが好ましく、300~400℃とすることがより好ましい。
 脱硝触媒の焼成温度を260℃以上とすることで、酸化バナジウムと第2の金属とを含む前駆体が分解されて、Na0.33結晶相が生成すると考えられる。また、脱硝触媒の焼成温度が上がるにつれて、VからOが脱離し、脱硝触媒中のV4+の割合が増加する。脱硝反応はV5+とV4+の酸化還元サイクルで進行するため、好ましいV5+とV4+の割合が存在するものと考えられる。脱硝触媒の焼成温度を400℃以下とすることで、V5+とV4+の割合が好ましい割合になるものと推察される。
[拡散反射UV-Visスペクトル]
 脱硝触媒中に存在するV5+とV4+の割合は、公知の方法により測定できる拡散反射UV-Visスペクトルにより推定できる。拡散反射UV-Visスペクトルの400nmにおける吸収強度は、脱硝触媒中のV5+の量に相当する。同様に、拡散反射UV-Visスペクトルの700nmにおける吸収強度は、脱硝触媒中のV4+の量に相当する。従って、拡散反射UV-Visスペクトルの400nmの吸収強度で規格化される、400nmにおける吸収強度と700nmにおける吸収強度との比(400nm:700nm)により、脱硝触媒中の好ましいV5+とV4+の割合を示すことができる。上記吸収強度の比(400nm:700nm)は、1:0.45~1:0.88であることが好ましい。
(他の物質)
 本実施形態に係る脱硝触媒は、本発明の効果を阻害しない範囲で、他の物質を含有していてもよい。例えば、本実施形態に係る脱硝触媒は、上記以外に更に炭素を含有することが好ましい。脱硝触媒が不純物として炭素を含むことで、上述した酸化バナジウムの結晶構造において結晶格子中の線や面にひずみが生じることにより、低温環境下における高い脱硝率を発揮できると考えられる。炭素の含有量は、脱硝触媒中において0.05wt%以上3.21wt%以下であることが好ましい。上記炭素の含有量は、0.07wt%以上3.21wt%以下であることがより好ましい。上記炭素の含有量は、0.11wt%以上3.21wt%以下であることがより好ましい。上記炭素の含有量は、0.12wt%以上3.21wt%以下であることがより好ましい。上記炭素の含有量は、0.14wt%以上3.21wt%以下であることがより好ましい。上記炭素の含有量は、0.16wt%以上3.21wt%以下であることがより好ましい。上記炭素の含有量は、0.17wt%以上3.21wt%以下であることがより好ましい。上記炭素の含有量は、0.70wt%以上3.21wt%以下であることがより好ましい。
 本実施形態に係る脱硝触媒は、350℃以下の脱硝反応に用いられることが好ましい。また、反応温度300℃以下での脱硝反応においても高い脱硝率が得られるため好ましい。反応温度200℃以下での脱硝反応においては、SOからSOへの酸化が発生しないため好ましい。上記反応温度は100~250℃であることがより好ましく、上記反応温度は160~200℃であることが更に好ましい。上記反応温度は80~150℃であってもよい。また、脱硝触媒として五酸化バナジウム(V)(V)のみを含有する脱硝触媒は、反応温度を300℃以上とした場合、比表面積が低下する等、触媒自体が変化してしまい、反応温度を300℃以上にすることができない。第2の金属を有する本実施形態に係る脱硝触媒は、反応温度を300℃以上とした場合であっても高い脱硝率を維持できる。
《脱硝触媒の製造方法》
 本実施形態に係る脱硝触媒は、例えば、以下のようにして製造できる。まず、脱硝触媒に含まれる各成分を含有する前駆体を調製する。脱硝触媒に含まれる酸化バナジウムは、例えば、バナジン酸塩の水溶液として前駆体中に含有される。上記バナジン酸塩としては、例えば、メタバナジン酸アンモニウム、バナジン酸マグネシウム、バナジン酸ストロンチウム、バナジン酸バリウム、バナジン酸亜鉛、バナジン酸鉛、バナジン酸リチウム等を用いてもよい。
 脱硝触媒における第2の金属は、例えば、各金属の硝酸塩、塩化物、硫酸塩、キレート錯体、水和物、アンモニウム化合物、リン酸化合物等を上記バナジン酸の水溶液に混合させることで前駆体中に含有される。キレート錯体としては、例えば、シュウ酸やクエン酸等の錯体が挙げられる。
 上記調整した脱硝触媒の前駆体溶液を蒸発乾固することで、脱硝触媒の前駆体の粉体が得られる。上記前駆体の粉体を所定の温度及び時間で焼成する焼成工程により、脱硝触媒の粉体が得られる。焼成工程における焼成温度は、上記したように260~400℃であることが好ましく、300~400℃とすることがより好ましい。
 本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明を実施例により具体的に説明する。本発明は、これらの実施例によって限定されるものではない。
<脱硝触媒の調製>
(実施例1)
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体溶液を合成した。この前駆体錯体溶液に対し、第2の金属であるNaの硝酸塩を、組成式でNa0.66となる量添加して混合し、脱硝触媒の前駆体溶液を得た。上記前駆体溶液を蒸発乾固させ、大気中で300℃の温度で4時間、2回焼成することにより、実施例1の脱硝触媒を得た。第2の金属として、他の金属を含む実施例、Naの組成比を変更した実施例及び、第2の金属を添加しない比較例についても上記と同様の手順で脱硝触媒を調製した。
[第2金属の有無と脱硝率]
 図1は、五酸化バナジウム(V)(V)を主成分とし、第2の金属として、Li、Na、K、Mg、又はCaをそれぞれ用いた各実施例に係る脱硝触媒と、五酸化バナジウム(V)(V)のみを用いた比較例に係る脱硝触媒(none)の脱硝率を比較するグラフである。図1の縦軸はNO転化率を示す。第2の金属として、アルカリ金属であるLi、Na又はKを用いた脱硝触媒は、第2の金属をMとした場合における組成式でM0.66となる量用いた。第2の金属として、アルカリ土類金属であるMg、又はCaを用いた脱硝触媒は、第2の金属をMとした場合における組成式でM0.33となる量用いた。触媒量は0.375gとし、反応温度を150℃とした。反応ガスとして、図1における「Dry」の場合、NO(250ppm)、NH(250ppm)、4体積%O、Arガス中とし、ガス流量を250ml/min-1とした。図1における「Wet」の場合、「Dry」の反応ガスに対して更に10体積%のHOを含む反応ガスとした。
 図1に示すように、酸化バナジウムを主成分とし、第2の金属としてLi、Na、K、Mg、又はCaをそれぞれ用いた各実施例に係る脱硝触媒は、酸化バナジウムのみを含む比較例に係る脱硝触媒と比較して、特に水蒸気存在下における高いNO転化率を示すことが明らかである。
[第2金属の種類及び反応温度と脱硝率]
 図2は、五酸化バナジウム(V)(V)を主成分とする実施例及び比較例に係る脱硝触媒の、反応温度と脱硝率(NO転化率)との関係を示すグラフである。図2中、「VO」は、五酸化バナジウム(V)(V)のみを含有する比較例を示す。「V-W/TiO」は、工業触媒を模した比較例であり、1wt%V、5wt% WO/TiOの組成を有する。「Na-V」及び「Mg-V」は、五酸化バナジウム(V)(V)を主成分とし、それぞれ第2の金属としてNa及びMgを含有する、図1と同様の組成を有する実施例に係る脱硝触媒を示す。図2中の「Dry」及び「Wet」の反応ガス条件は図1と同一であり、反応温度を変更したこと以外は、図1と同じ条件でNO転化率を測定した。
 図2に示すように、酸化バナジウムを主成分とし、第2の金属として、Na又はMgをそれぞれ用いた脱硝触媒は、比較例に係る脱硝触媒と比較して、特に120℃以下の低温時における高いNO転化率を示すことが明らかである。また、五酸化バナジウム(V)(V)のみを含有する比較例は反応温度を300℃以上にすることが不可能であったが、実施例に係る脱硝触媒は、反応温度を300℃以上、350℃程度とした場合であっても、80%以上の高いNO転化率を示すことが確認された。
[第2の金属の含有量]
 図3は、酸化バナジウムとして五酸化バナジウム(V)(V)を用い、第2の金属としてNaを用いた場合における脱硝触媒の組成とNO転化率との関係を示すグラフである。図3における横軸は、五酸化バナジウムに対するNaのモル比を示し、図3における縦軸は、NO転化率を示す。図3における「Dry」及び「Wet」の条件は、図1における条件と同一である。図3に示すように、五酸化バナジウム(V)(V)に対するNaのモル比が、0.16~0.66の範囲内であることで、高いNO転化率が得られることが明らかである。
[脱硝触媒の結晶相]
 図4は、第2の金属としてNaを用い、Naの五酸化バナジウム(V)(V)に対するモル比を変化させた場合におけるXRDチャートを示すグラフである。図3に示すように、脱硝触媒の組成をそれぞれV、Na0.33、Na1.00、とした場合に観察されるピークはそれぞれV(1)、Na0.33(2)、Na1.2(3)の単相の結晶相に帰属するピークである。一方、脱硝触媒の組成をNa0.16とした場合は上記(1)と(2)の結晶相に帰属するピークがいずれも観察された。また、脱硝触媒の組成をNa0.46又はNa0.66とした場合は上記(2)と(3)の結晶相に帰属するピークがいずれも観察された。従って、図3の結果と併せて考察すると、上記(2)のNa0.33結晶相が脱硝触媒に含まれることによって、高い脱硝率が得られているものと推察される。
[脱硝触媒の比表面積]
 図5は、脱硝触媒の比表面積と組成との関係を示すグラフである。図5の縦軸は脱硝触媒のBET比表面積(m/g)を示し、図5の横軸は、酸化バナジウムとして五酸化バナジウム(V)(V)を用い、第2の金属としてNaを用いた場合における脱硝触媒の組成を示す。図5から、Naの割合を増大させると共に脱硝触媒の比表面積が低下することが明らかである。一方で、図5と図3の結果を照合すると、比表面積とNO転化率の関係は、特にNaの五酸化バナジウム(V)(V)に対する割合が0.66以下である場合において、比例関係にないことが明らかである。従って、脱硝触媒が、単に大きな比表面積を有することよりも、(2)のNa0.33結晶相を含むことが、高い脱硝率により寄与することが明らかである。
[脱硝触媒の焼成温度]
 図6は、脱硝触媒の焼成温度とNO転化率との関係を示すグラフである。図6の縦軸はNO転化率を示し、図6の横軸は脱硝触媒の焼成温度(℃)を示す。図6から、脱硝触媒の焼成温度を300~400℃とすることで、脱硝触媒の高いNO転化率が得られることが明らかである。
 図7は、脱硝触媒の焼成温度を変化させた場合におけるXRDチャートを示すグラフである。図7において、脱硝触媒としては組成をNa0.33としたものを用いた。図7の結果から、いずれの焼成温度においても上記(2)のNa0.33結晶相に帰属するピークが観察された。このため、焼成温度が異なることによるNO転化率の相違は、結晶相の種類に起因するものではないことが明らかである。
 図8は、組成がNa0.33である脱硝触媒前駆体の加熱による重量変化を、TG-DTA(熱重量・示差熱同時分析)によって測定した結果を示すチャートである。図8中、実線がTG(熱重量分析)曲線を示し、破線がDTA(示唆熱分析)曲線を示す。図8の左縦軸はTG曲線に対応する初期重量に対する重量割合(%)を示し、右縦軸はDTA曲線に対応する基準物質との温度差(μV)を示す。図8の横軸は温度(℃)を示す。図8のTG曲線の結果から、260℃~300℃にかけて、顕著な重量減少が発生していることが明らかである。DTA曲線の結果から、300℃付近で大きな発熱ピークが観察された。従って、前駆体の焼成温度を260℃以上とした場合に、Na0.33結晶相が形成されることが推察される。
 図9は、組成がNa0.33である脱硝触媒前駆体の焼成温度を、それぞれ300℃、400℃、500℃、600℃とした脱硝触媒の拡散反射UV-Visスペクトルを、波長400nmの吸収強度で規格化したグラフである。図9の縦軸は、定量分析に用いられるK-M関数を示し、横軸は波長(nm)を示す。拡散反射UV-Visスペクトルは、紫外可視近赤外分析光度計(UV-3100PC、島津製作所製)で測定した。図9から算出される、400nmの吸収強度に対する700nmの吸収強度の相対強度の比(400nm:700nm)は、焼成温度を300℃とした脱硝触媒において1:0.45であった。同様に、焼成温度が400℃の場合には(400nm:700nm)は1:0.88であり、焼成温度が500℃の場合には(400nm:700nm)は1:1.35であり、焼成温度が600℃の場合には(400nm:700nm)は1:1.69であった。
 図10は、図9の結果と図6の結果を照合したグラフである。図10の縦軸はNO転化率(%)を示し、横軸は波長400nmの吸収強度に対する700nmの吸収強度の相対強度の割合(700nm/400nm)を示す。図10の結果から、好ましい(400nm:700nm)は1:0.45~1:0.88であることが明らかである。

Claims (5)

  1.  酸化バナジウムを主成分とし、第2の金属を含有する脱硝触媒であって、
     前記第2の金属Mが、Li、Na、K、Mg、及びCaからなる群より選ばれる少なくとも1種である、脱硝触媒。
  2.  前記酸化バナジウムは、Vであり、前記第2の金属は、Li、Na、Kのうち少なくとも何れかであり、
     前記第2の金属は、前記Vに対するモル比が0.16~0.66である、請求項1に記載の脱硝触媒。
  3.  Na0.33結晶相を含む、請求項1又は2に記載の脱硝触媒。
  4.  拡散反射UV-Visスペクトルにおける400nmの吸収強度で規格化される、400nmの吸収強度に対する700nmの吸収強度の比(400nm:700nm)が、1:0.45~1:0.88である、請求項1~3いずれかに記載の脱硝触媒。
  5.  請求項1~4いずれかに記載の脱硝触媒の製造方法であって、
     前記酸化バナジウム及び前記第2の金属を含む前駆体を260~400℃で焼成する焼成工程を含む、脱硝触媒の製造方法。
PCT/JP2021/002436 2021-01-25 2021-01-25 脱硝触媒及びその製造方法 WO2022157971A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021554376A JP7050244B1 (ja) 2021-01-25 2021-01-25 脱硝触媒及びその製造方法
PCT/JP2021/002436 WO2022157971A1 (ja) 2021-01-25 2021-01-25 脱硝触媒及びその製造方法
EP21921079.6A EP4282523A1 (en) 2021-01-25 2021-01-25 Denitration catalyst and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002436 WO2022157971A1 (ja) 2021-01-25 2021-01-25 脱硝触媒及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022157971A1 true WO2022157971A1 (ja) 2022-07-28

Family

ID=81259472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002436 WO2022157971A1 (ja) 2021-01-25 2021-01-25 脱硝触媒及びその製造方法

Country Status (3)

Country Link
EP (1) EP4282523A1 (ja)
JP (1) JP7050244B1 (ja)
WO (1) WO2022157971A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203602A1 (ja) * 2022-04-18 2023-10-26 中国電力株式会社 脱硝触媒及びその製造方法、並びに脱硝方法
WO2023203603A1 (ja) 2022-04-18 2023-10-26 中国電力株式会社 排ガスの脱硝方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081995A (ja) * 2002-08-27 2004-03-18 Nippon Shokubai Co Ltd 脱硝触媒および当該触媒を用いた脱硝方法
JP2004275852A (ja) 2003-03-14 2004-10-07 Mitsubishi Heavy Ind Ltd 排煙脱硝触媒及びその製造方法
JP2005144299A (ja) * 2003-11-13 2005-06-09 Nippon Shokubai Co Ltd 窒素酸化物除去用触媒および窒素酸化物除去方法
JP2015182067A (ja) * 2014-03-26 2015-10-22 株式会社日本触媒 船舶排ガス処理触媒および排ガス処理方法
WO2018047356A1 (ja) 2016-09-12 2018-03-15 中国電力株式会社 脱硝触媒、及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081995A (ja) * 2002-08-27 2004-03-18 Nippon Shokubai Co Ltd 脱硝触媒および当該触媒を用いた脱硝方法
JP2004275852A (ja) 2003-03-14 2004-10-07 Mitsubishi Heavy Ind Ltd 排煙脱硝触媒及びその製造方法
JP2005144299A (ja) * 2003-11-13 2005-06-09 Nippon Shokubai Co Ltd 窒素酸化物除去用触媒および窒素酸化物除去方法
JP2015182067A (ja) * 2014-03-26 2015-10-22 株式会社日本触媒 船舶排ガス処理触媒および排ガス処理方法
WO2018047356A1 (ja) 2016-09-12 2018-03-15 中国電力株式会社 脱硝触媒、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NING RULIANG, CHEN LI, LI ERWEI, LIU XIAOLONG, ZHU TINGYU: "Applicability of V2O5-WO3/TiO2 Catalysts for the SCR Denitrification of Alumina Calcining Flue Gas", CATALYSTS, vol. 9, no. 3, pages 220, XP055958552, DOI: 10.3390/catal9030220 *

Also Published As

Publication number Publication date
JPWO2022157971A1 (ja) 2022-07-28
JP7050244B1 (ja) 2022-04-08
EP4282523A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
US10746073B2 (en) Denitration catalyst and method for producing the same
US10835866B2 (en) 4-way hybrid binary catalysts, methods and uses thereof
WO2022157971A1 (ja) 脱硝触媒及びその製造方法
TW201201908A (en) Catalyst composition for selective catalytic reduction of exhaust gases
WO2017181570A1 (zh) 兼具抗碱(土)金属和抗硫抗水功能的脱硝催化剂及其制法和应用
US20070129241A1 (en) Exhaust gas catalyst composition
JP7429012B2 (ja) 脱硝触媒、及びその製造方法
WO2016188989A1 (en) Process for the preparation of titania/metal vanadate based catalyst compositions
CN108722477A (zh) 一种抗碱中毒高效脱硝催化剂及其制备方法和应用
US4138469A (en) Process for catalytically treating exhaust gas containing NOx in the presence of ammonia gas
JP7388653B2 (ja) 脱硝触媒、及びその製造方法
WO2022054132A1 (ja) 脱硝触媒成型体及び脱硝触媒成型体の製造方法
JP7216975B1 (ja) 脱硝触媒及びその製造方法、並びに脱硝方法
CN103252232B (zh) 一种锆掺杂的钒基氧化物催化剂、制备方法及其用途
JP7050243B1 (ja) 脱硝触媒成型体及びその製造方法
JP7146890B2 (ja) 窒素酸化物還元用希土類金属バナジウム酸塩触媒
JP7278555B1 (ja) 排ガスの脱硝方法
CN110833827B (zh) 高氮气选择性钒基氧化物催化剂及其制备方法
JP6956988B1 (ja) 脱硝触媒塗布液
JP7193089B2 (ja) 脱硝触媒、及びその製造方法
KR102447605B1 (ko) 질소산화물 환원용 촉매, 이의 제조방법, 및 이의 용도
JP2743336B2 (ja) 窒素酸化物還元用触媒および排ガス中の窒素酸化物の除去方法
KR102068063B1 (ko) 질소산화물 환원용 촉매 및 이를 이용한 질소산화물 환원 시스템
JPS621456A (ja) 燃焼排ガスの窒素酸化物含有量を減少させる触媒
KR20230077765A (ko) SCR 효율 향상을 위해 Cu―Ce 이종 나노 복합체가 표면에 담지된 촉매 및 이의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021554376

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021921079

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021921079

Country of ref document: EP

Effective date: 20230825