CN105214635A - 一种复合光催化剂及其制备方法和应用 - Google Patents

一种复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN105214635A
CN105214635A CN201510700829.7A CN201510700829A CN105214635A CN 105214635 A CN105214635 A CN 105214635A CN 201510700829 A CN201510700829 A CN 201510700829A CN 105214635 A CN105214635 A CN 105214635A
Authority
CN
China
Prior art keywords
catalyst
metal oxide
composite photo
point material
quanta point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510700829.7A
Other languages
English (en)
Other versions
CN105214635B (zh
Inventor
王现英
许颖
祝元坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201510700829.7A priority Critical patent/CN105214635B/zh
Publication of CN105214635A publication Critical patent/CN105214635A/zh
Priority to PCT/CN2016/103370 priority patent/WO2017071580A1/en
Priority to US15/763,239 priority patent/US20180264440A1/en
Application granted granted Critical
Publication of CN105214635B publication Critical patent/CN105214635B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明公开了一种复合光催化剂及其制备和应用,所述复合光催化剂由金属氧化物与量子点材料复合而成,所述金属氧化物占所述催化剂的质量百分含量为80%~99.99%,所述量子点材料占所述催化剂的质量百分含量为0.01%~20%;所述金属氧化物为氧化锌或氧化钛;所述量子点材料为石墨烯量子点。其制备方法即将金属氧化物和量子点材料依次经搅拌、混合、超声、干燥,即得光催化剂,该光催化剂既能实现对太阳光全波段光的吸收又能提高其光电转化效率,同时还能抑制载流子的复合,全方位提高光催化效率;相比其他类型的光催化剂,对分解物具有更高的催化效率和更快的催化速度。对太阳光的利用率更充分,更全面,且具有廉价、易得的特点。

Description

一种复合光催化剂及其制备方法和应用
技术领域
本发明涉及一种光催化剂及其制备方法和应用,尤其涉及一种复合光催化剂及其制备方法和应用。
背景技术
光催化技术在光催化环境净化、光催化分解水产氢和光催化转化二氧化碳为可再生燃料方面具有重要的应用。光催化材料要想取得广泛应用,必须要有简单的合成工艺和稳定的化学性能。近年来利用光催化技术来降解染料废水成为一个研究热点,光催化技术具有无毒无害、成本低、高活性、易操作可重复使用等优点,同时该技术能有效地破坏许多结构稳定的生物难降解污染物,与传统水处理技术相比具有明显的优势,光催化技术已成为一种有重要应用前景的环境治理方法,引起了国内外学者的普遍重视。目前国内外用于光催化的材料主要为TiO2,得益于其廉价、物化性质好和生物兼容性高等特点,使其成为了一种天然优异的光催化材料,但是由于其禁带较宽(3.2eV),阻碍其吸光性能,使其只能吸收紫外波段的光仅仅占太阳光的5%,大大降低了对太阳光的利用。另一种近几年也普遍应用的光催化剂是氧化锌,其存在多种不同的纳米结构但是禁带宽度为3.37eV,在光催化应用方面存在和TiO2同样的局限性,此外氧化锌作为光催化剂还有耐光腐蚀性差、对环境pH值要求苛刻等缺点,通过对其进行掺杂以及表面修饰以调整其能带结构、改良其性能是解决上述问题的常用手段。
纳米结构的金属氧化物具有大的比表面积、合适的禁带宽度,易于制备等方面的优异特性而备受推崇,然而自身又存在一些弊端。同时二维结构的石墨烯材料由于其具有较大的比表面积、优异的导电导热性能成为制备氧化锌纳米复合材料的首选禁带宽度的直带隙单原子层结构,大大增强其对太阳光的利用尤其是可见光波长,从而提高光催化的效率。这两种物质的完美结合所制备的复合光催化剂将具有很高的催化性能。
中国公开号为CN102921416A的专利文献公开了一种新型光催化材料的制备方法及其应用。用水热法将石墨烯与氧化锌纳米颗粒复合,利用石墨烯的优异的电子传导性能促进氧化锌的光生载流子迁移,达到电子与空穴的高效分离,从而提升氧化锌的光催化性能。该复合物对罗丹明B具有较好的吸附和可见光光催化降解效果。纳米复合光催化材料在波长为200-800nm的紫外-可见光区具有强的吸收,吸光度均超过0.6;黑暗条件下,纳米复合材料对有机染料的吸附率超过20%,在可见光照射下,2小时内可以降解超过50%的有机染料罗丹明B,纳米复合光催化材料对有机染料罗丹明的去除率超过75%。
中国公开号为CN1472007A的专利文献公开了硫酸与二氧化钛复合光催化剂,具有可见光活性,能被波长387-510纳米的可见光激发,提高了Ti4+的活性,即捕获光生电子的能力,而表面羟基或氧阴离子自由基捕获光生空穴,从而降低光生电子空穴对的复合率,提高了对有机污染降解效果。
以上两篇专利文献均未公开复合光催化剂的配方,且该复合光催化剂对光的利用效率较低、光生电子和空穴易复合、需要贵金属作为助催化剂等方面的缺点和不足。
发明内容
本发明所要解决的技术问题是提供一种复合光催化剂及其制备方法和应用,能够利用全波段太阳光,延迟光生载流子快速复合,且在不需要任何其他助催化剂的作用就能快速实现对有机物的降解。
本发明为解决上述技术问题而采用的技术方案是提供一种复合光催化剂,所述复合光催化剂由金属氧化物与量子点材料复合而成,所述金属氧化物占所述催化剂的质量百分含量为80%~99.99%,所述量子点材料占所述催化剂的质量百分含量为0.01%~20%。
上述的复合光催化剂,其中,所述金属氧化物占所述催化剂的质量百分含量为90%~99.99%,所述量子点材料占所述催化剂的质量百分含量为0.01%~10%。
上述的复合光催化剂,其中,所述金属氧化物为氧化锌或氧化钛;所述量子点材料为石墨烯量子点。
上述的复合光催化剂,其中,所述金属氧化物为无规则的纳米片状结构,所述金属氧化物的尺寸大小为10~900nm,厚度为10~50nm;所述量子点材料为圆形纳米片状结构,所述量子点材料的尺寸大小为5~50nm,厚度为0.6~5nm。
本发明为解决上述技术问题还提供一种上述复合光催化剂的制备方法,包括如下步骤:制备纳米级金属氧化物和量子点材料;将所述金属氧化物和所述量子点材料按80%-99.99%:0.01%-20%的质量百分比例在液相中混合后搅拌10~60min;控制频率为100~200W进行超声30~90min;最后在50~100℃温度下干燥,即得所述复合光催化剂。
上述的复合光催化剂的制备方法,其中,所述金属氧化物用化学气相沉积法、水热法、脉冲激光沉积或分子束外延法方法制备而成;所述量子点材料采用水热法、微波辐射法、溶剂热法或刻蚀法制备而成。
上述的复合光催化剂的制备方法,其中,所述金属氧化物的化学气相沉积法制备过程如下:以镀贵金属的硅片或Al2O3为衬底,将纯度为99.99%的金属氧化物粉末和纯度为99.99%的碳粉按质量比1:10~10:1混合,掺入质量百分含量2.5%~25%的五氧化二磷进行化学气相沉积。
上述的复合光催化剂的制备方法,其中,所述金属氧化物的化学气相沉积法制备过程的控制参数如下:生长温度为800~1000℃,生长时间小于15min,升温速度40℃/min,氩气流量10~120sccm、氧气流量10~80sccm。
本发明为解决上述技术问题还提供一种将上述复合光催化剂用于罗丹明B的光催化降解。
本发明对比现有技术有如下的有益效果:本发明提供的复合光催化剂及其制备方法和应用,选用了两种很适合用于光催化剂的材料即金属氧化物和石墨烯材料且其复合以后具有适于进行光催化的禁带宽度,故两者复合以后既能实现对太阳光全波段光的吸收又能提高其光电转化效率,同时还能延缓载流子的复合,全方位提高光催化效率。由于所选定的材料为金属氧化物是常见且应用广泛的金属化合物;因此原料易得,且生产成本低。其制备工艺简单,在紫外和可见光下均有良好的催化效果,能有效适应大规模工业生产并能应用于大型水处理工艺中。由于金属氧化物和石墨烯量子点都是二维的结构因此具有巨大的比表面积,并且投加量少而催化效果高,且化学性质稳定,能有效兼容到现有水处理的任意一项深度处理工艺中,回收率高,具有巨大的环保意义与价值。相比于其他类型的光催化剂,对罗丹明B具有更高的催化效率和更快的催化速度;该种催化剂对太阳光的利用率更充分,更全面。
附图说明
图1为本发明的ZnO纳米片的扫描电镜的SEM图;
图2为本发明的GQDs在790000X倍率下的透射电镜的TEM图;
图3为本发明的ZnO-GQDs复合光催化剂在790000X倍率下的透射电镜下的TEM图;
图4为本发明的ZnO-GQDs复合光催化剂的X射线光电子能谱的XPS图;
图5为本发明的ZnO-GQDs复合光催化剂、纯ZnO、纯GQDs粉末的光吸收曲线;
图6为本发明的ZnO-GQDs复合光催化剂、纯ZnO、纯GQDs粉末的光电流曲线;
图7为本发明的ZnO-GQDs复合光催化剂降解罗丹明B的吸收曲线;
图8为本发明的ZnO-GQDs复合光催化剂与纯ZnO固体粉末的降解罗丹明B的降解曲线;
图9为本发明的ZnO-GQDs复合光催化剂与纯ZnO固体粉末的降解罗丹明B的反应动力学计算曲线;
图10为本发明的ZnO-GQDs复合光催化剂与纯ZnO固体粉末的降解罗丹明B的条状图。
具体实施方式
下面结合附图和实施例对本发明作进一步的描述。
本发明提供的复合光催化剂,为金属氧化物与量子点材料按质量百分比计算,即量子点材料占复合物总质量百分比分别为0.4wt%,1.0wt%,1.6wt%,2.1wt%,2.7wt%;
所述的金属氧化物为氧化锌;
所述的量子点材料为石墨烯量子点;
所述氧化锌为无规则的纳米片状结构,其纳米片状结构的尺寸为10-900nm,厚度为10-50nm;
所述石墨烯量子点为无规则的纳米片状结构,其纳米片状结构的尺寸为2-100nm,厚度为0.6-5nm。
上述的光催化剂的制备方法,具体包括如下步骤:
1、采用传统的化学气相沉积法制备氧化锌纳米片
(1)将相同质量的氧化锌粉末和石墨粉混合并充分研磨,再加入2.5%五氧化二磷,然后装入石英舟中;
(2)将镀有Au薄膜的Al2O3衬底放在石英舟粉末上,将石英舟放在石英玻璃管中;
(3)将石英舟玻璃管放入管式炉中,并使石英舟对准炉子正中央的热电偶;
(4)升温至1000℃,升温速率为40℃/min;
(5)通入氩气(Ar)流量70Sccm、氧气(O2)流量30Sccm,生长时间5min;
(6)一直保持通气状态,直至自然冷却至室温;
(7)衬底上白色物质即为氧化锌纳米片;
2、以石墨烯为原料制备石墨烯量子点。
3、复合光催化剂的制备
将步骤1金属氧化物和步骤2石墨烯量子点混合加入无水乙醇和去离子水,搅拌30min混合后,控制频率为200W进行超声30min,然后控制温度60℃干燥24h,得光催化剂,即ZnO-GQDs复合光催化剂。
上述所得的ZnO纳米片以及ZnO-GQDs复合光催化剂的形貌分别采用扫描电子显微镜(生产厂家:FEI,型号:QuantaFEG)和透射电子显微镜(生产厂家:TESEQ,型号:D-TEM)进行扫描。所得的SEM图如图1所示,从图1可以观察到大片的不规则且很薄的氧化锌纳米片,氧化锌纳米片具有大的面积而且很薄,所得的TEM图如图2、图3所示,从图2和图3的TEM图中进一步得到证实,可以很清楚明了的看到氧化锌和石墨烯量子点的存在并且形成复合物。
上述所得的ZnO-GQDs复合光催化剂的元素采用X射线光电子能谱(生产厂家:英国Kratos公司,型号:XSAM800)进行分析,所得的XPS图如图4所示,从图4的XPS图中再次证明本发明所得的光催化剂中的石墨烯量子点的存在。
上述实施例中所得的ZnO-GQDs复合光催化剂以及纯ZnO,纯石墨烯量子点在室温条件下利用紫外可见光谱仪(生产厂家:岛津公司,型号:岛津UV-2600)所测得的对光的吸收曲线如图5所示,图5中沿a至g箭头方向的曲线依次代表a、b、c、d、e、f、g;从图5中可以看出相对纯ZnO,本实验所得的ZnO-GQDs复合光催化剂对可见光的吸收大大加强,由此表明了所述的复合光催化剂在提高对太阳光全波段光吸收方面效果突出,这对其光催化效率的提高是非常有利的。
上述实施例中所得的ZnO-GQDs复合光催化剂以及纯ZnO室温条件下利用探针台(生产厂家:美国CascadeMicrotch,型号:M150)测得的光电流曲线如图6所示,从图6中可以看出相对于纯的ZnO,本实验所得的ZnO-GQDs复合光催化剂在光照下光电流值明显增大,由此表明所述的复合光催化剂在一定程度上提高了其光电转化效率。
光催化实验
取实施例中所得的ZnO-GQDs复合光催化剂分别用于有机物罗丹明B的光催化降解,具体步骤如下:
(1)分别取40mg上述实施例中所得的ZnO-GQDs复合光催化剂、20mg纯ZnO固体粉末置于烧杯中,分别加入40ml浓度为10mg/L罗丹明B水溶液中;
(2)将上述烧杯先置于暗室10min,取5ml置于离心管中,然后再移置于太阳光下(光率密度为1800uV/cm2),磁力搅拌,每隔2min取样;
(3)将离心管离心,离心速度为12000r/min,离心10min;
(4)将离心完毕的上清液置于紫外—可见光谱仪中,由于罗丹明B的特征吸收峰在554nm处,故在此处观察其吸光值的变化。
上述实施例中所得石墨烯量子点质量比为1.6wt%的ZnO-GQDs复合光催化剂降解罗丹明B后的吸收曲线如图7所示,图7中沿a至f箭头方向的曲线依次代表a、b、c、d、e、f;从图7中可以看出在太阳光照射下10分钟后罗丹明B完全降解,由此表明了复合催化剂具有很好的催化效果。
上述实施例所得的五种不同配比的ZnO-GQDs复合光催化剂与纯ZnO固体粉末降解罗丹明B的降解曲线如图8所示,从图8中可以看出加入GQDs以后对ZnO降解罗丹明B产生一定影响,随着GQDs量的增加罗丹明B的降解速率逐逐渐加快,但是当GQDs的量达到一定值以后反而制约其降速率,这主要是因为过多的GQDs会阻碍复合催化剂对光的吸收,从而降低催化效率,由此表明了加入适量的GQDs对ZnO的光催化效率具有显著的增强效果。
上述实施例中所得的ZnO-GQDs复合光催化剂、纯ZnO固体粉末降解罗丹明B后的反应动力学计算曲线以及条状图分别如图9和如图10所示,图9中沿a至f箭头方向的曲线依次代表a、b、c、d、e、f;进一步证明了适量的GQDs对ZnO光催化效率的提高。
综上所述,所得的氧化锌纳米片和石墨烯量子点复合的光催化剂相对于纯的ZnO纳米片固体粉末具有非凡的吸光能力,对光生载流子的分离能力以及很好的光催化降解有机物的能力。
本发明的光催化剂仅以金属氧化物氧化锌和石墨烯量子点复合所得的光催化剂为例进行说明,但并不限制其他金属氧化物和其他量子点材料所得的复合光催化剂。
综述所述,本发明的复合光催化剂既能实现对太阳光全波段光的吸收又能提高其光电转化效率,同时还能延缓并抑制载流子的复合,全方位提高光催化效率。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (9)

1.一种复合光催化剂,其特征在于,所述复合光催化剂由金属氧化物与量子点材料复合而成,所述金属氧化物占所述催化剂的质量百分含量为80%~99.99%,所述量子点材料占所述催化剂的质量百分含量为0.01%~20%。
2.如权利要求1所述的复合光催化剂,其特征在于,所述金属氧化物占所述催化剂的质量百分含量为90%~99.99%,所述量子点材料占所述催化剂的质量百分含量为0.01%~10%。
3.如权利要求1所述的复合光催化剂,其特征在于,所述金属氧化物为氧化锌或氧化钛;所述量子点材料为石墨烯量子点。
4.如权利要求1所述的复合光催化剂,其特征在于,所述金属氧化物为无规则的纳米片状结构,所述金属氧化物的尺寸大小为10~900nm,厚度为10~50nm;所述量子点材料为圆形纳米片状结构,所述量子点材料的尺寸大小为5~50nm,厚度为0.6~5nm。
5.一种复合光催化剂的制备方法,其特征在于,包括如下步骤:
制备纳米级金属氧化物和量子点材料;
将所述金属氧化物和所述量子点材料按80%-99.99%:0.01%-20%的质量百分比例在液相中混合后搅拌10~60min;
控制频率为100~200W进行超声30~90min;
最后在50~100℃温度下干燥,即得所述复合光催化剂。
6.如权利要求5所述的复合光催化剂的制备方法,其特征在于,所述金属氧化物用化学气相沉积法、水热法、脉冲激光沉积或分子束外延法方法制备而成;所述量子点材料采用水热法、微波辐射法、溶剂热法或刻蚀法制备而成。
7.如权利要求6所述的复合光催化剂的制备方法,其特征在于,所述金属氧化物的化学气相沉积法制备过程如下:以镀贵金属的硅片或Al2O3为衬底,将纯度为99.99%的金属氧化物粉末和纯度为99.99%的碳粉按质量比1:10~10:1混合,掺入质量百分含量2.5%~25%的五氧化二磷进行化学气相沉积。
8.如权利要求7所述的复合光催化剂的制备方法,其特征在于,所述金属氧化物的化学气相沉积法制备过程的控制参数如下:生长温度为800~1000℃,生长时间小于15min,升温速度40℃/min,氩气流量10~120sccm、氧气流量10~80sccm。
9.如权利要求1~4任一项所述的复合光催化剂用于罗丹明B的光催化降解。
CN201510700829.7A 2015-10-26 2015-10-26 一种复合光催化剂及其制备方法和应用 Expired - Fee Related CN105214635B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510700829.7A CN105214635B (zh) 2015-10-26 2015-10-26 一种复合光催化剂及其制备方法和应用
PCT/CN2016/103370 WO2017071580A1 (en) 2015-10-26 2016-10-26 A composite photocatalyst, preparation and use thereof
US15/763,239 US20180264440A1 (en) 2015-10-26 2016-10-26 A composite photocatalyst, preparation method hereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510700829.7A CN105214635B (zh) 2015-10-26 2015-10-26 一种复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105214635A true CN105214635A (zh) 2016-01-06
CN105214635B CN105214635B (zh) 2019-03-05

Family

ID=54984105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510700829.7A Expired - Fee Related CN105214635B (zh) 2015-10-26 2015-10-26 一种复合光催化剂及其制备方法和应用

Country Status (3)

Country Link
US (1) US20180264440A1 (zh)
CN (1) CN105214635B (zh)
WO (1) WO2017071580A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105688939A (zh) * 2016-02-29 2016-06-22 长春理工大学 基于能带调制的双重量子点敏化氧化物复合光催化材料
CN105688899A (zh) * 2016-03-22 2016-06-22 江苏大学 一种三元复合光催化剂的制备方法和用途
CN106215920A (zh) * 2016-08-29 2016-12-14 佛山市高明区尚润盈科技有限公司 一种多孔石墨烯负载二氧化钛复合材料及其制备方法
WO2017071580A1 (en) * 2015-10-26 2017-05-04 University Of Shanghai For Science And Technology A composite photocatalyst, preparation and use thereof
CN106629988A (zh) * 2016-10-07 2017-05-10 玉灵华科技有限公司 一种量子碳素光介质的制备、活化及污水处理方法
CN106964389A (zh) * 2017-04-06 2017-07-21 上海理工大学 钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法
CN106994355A (zh) * 2017-04-17 2017-08-01 桂林理工大学 一种石墨烯量子点/SnS2纳米片复合光催化剂的制备方法
CN107051425A (zh) * 2017-04-19 2017-08-18 桂林理工大学 一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法
CN108855035A (zh) * 2018-06-29 2018-11-23 江苏弗瑞仕环保科技有限公司 空气净化用光催化材料的制备方法
CN108855040A (zh) * 2018-06-29 2018-11-23 江苏弗瑞仕环保科技有限公司 石墨烯量子点修饰的Dy掺杂ZnO光催化材料的制备方法
CN109201029A (zh) * 2018-09-17 2019-01-15 绍兴文理学院 一种高效多孔复合光催化材料的制备方法
CN109289781A (zh) * 2016-12-07 2019-02-01 天津市金鳞水处理科技有限公司 一种复合水凝胶纤维的制备方法
CN109395709A (zh) * 2018-07-12 2019-03-01 重庆交通大学 一种石墨烯量子点/二维二氧化钛及其制备方法
WO2019061583A1 (zh) * 2017-09-30 2019-04-04 五邑大学 一种热驱动催化剂及其应用
CN109926039A (zh) * 2017-12-18 2019-06-25 湖北臻润环境科技股份有限公司 制备氧化锌-还原氧化石墨烯的复合材料的方法
CN111097398A (zh) * 2018-10-29 2020-05-05 中国石油化工股份有限公司 催化复合材料及其制备方法以及环烯烃的催化氧化方法
CN112982032A (zh) * 2021-02-18 2021-06-18 陕西科技大学 一种用于室内甲醛净化的壁纸复合材料制备方法
CN113262645A (zh) * 2021-05-14 2021-08-17 江南大学 一种自清洁复合超滤膜及其制备方法
CN113713798A (zh) * 2021-09-06 2021-11-30 新疆大学 一种石墨烯量子点修饰氧化锌的制备方法及降解染料应用
CN114836772A (zh) * 2022-05-25 2022-08-02 河北工业大学 一种金属氧化物负载石墨烯量子点复合催化剂的制备方法及应用
CN115090290A (zh) * 2022-07-27 2022-09-23 北方民族大学 Co基双金属氧化物负载GQDs复合光催化剂及其制备方法和应用

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282030B (zh) * 2017-05-11 2019-12-10 华南理工大学 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用
CN107670664A (zh) * 2017-10-31 2018-02-09 云南健牛生物科技有限公司 二氧化钛复合光催化体系制备及其应用
CN109794234A (zh) * 2019-03-04 2019-05-24 合肥工业大学 一种石墨烯量子点修饰氧化锰/氧化钛纳米管阵列材料及其制备方法和应用
CN109985612A (zh) * 2019-03-14 2019-07-09 四川轻化工大学 一种微波改性石墨烯基TiO2催化剂及其制备方法
CN111715213A (zh) * 2019-03-20 2020-09-29 东北林业大学 一种以波斯菊为原料制备CQDs/Mn(0H)2的方法及其应用
CN110180521B (zh) * 2019-06-05 2022-07-26 陕西科技大学 一种碳量子点/二氧化钛纳米复合材料的制备方法
CN110354845A (zh) * 2019-06-28 2019-10-22 广东工业大学 一种碳纳米点修饰的钨酸铋光催化剂及其制备方法和应用
CN110665492A (zh) * 2019-09-24 2020-01-10 安徽工程大学 一种TiO2/Cr2O3/C纳米材料及其制备方法
CN110639498B (zh) * 2019-10-11 2022-09-02 西北师范大学 一种棒状结构石墨烯量子点/氧化铈复合光催化剂的制备方法
CN112768706B (zh) * 2019-11-05 2022-01-28 中国科学院大连化学物理研究所 一种核壳催化剂及其制备方法与在可充电锌空电池中的应用
CN111482200B (zh) * 2020-04-23 2023-05-12 西安近代化学研究所 Zn-Bim-His/GQDs复合可见光催化剂的制备方法
CN111450823A (zh) * 2020-04-24 2020-07-28 南京奇安威尔环境科技有限公司 一种降解NO的复合催化剂GQD/Bi2WO6及其制备方法
CN113697822B (zh) * 2020-05-20 2022-11-29 中国科学院理化技术研究所 一种硼量子点及其制备方法和应用
CN112010387A (zh) * 2020-08-13 2020-12-01 西安工程大学 一种超声辅助棒状氧化锌光催化降解染料的方法
JP2022047294A (ja) * 2020-09-11 2022-03-24 株式会社クレハ 光触媒複合体
CN112429838B (zh) * 2020-11-06 2021-11-30 中润祥实业发展有限公司 量子水处理基材
CN112495450A (zh) * 2020-12-04 2021-03-16 中国矿业大学 坡缕石-二氧化钛-石墨烯量子点复合光催化剂及制备方法
CN113042027A (zh) * 2021-03-31 2021-06-29 苏州大学 一种ZnO/CQDs复合纳米纤维膜的制备方法
CN113134371B (zh) * 2021-04-20 2022-05-31 青岛科技大学 一种硒化镉铟/硫化锌铜纳米复合材料及其制备方法与应用
CN113117659B (zh) * 2021-04-22 2023-06-23 鄂尔多斯市永胜污水处理有限公司 花瓣状H2Ti3O7光催化剂及其制备方法和应用
CN113198546A (zh) * 2021-04-27 2021-08-03 华中科技大学 一种量子点/过氧化物复合材料、制备方法及其应用
CN113145141B (zh) * 2021-04-28 2023-09-22 武汉理工大学 用于CO2还原的CsPbBr3量子点/纳米CuCo2O4复合光催化剂及其制备方法
CN113471427A (zh) * 2021-05-20 2021-10-01 福建海峡石墨烯产业技术研究院有限公司 碳量子点和石墨烯复合材料及其制备方法和应用
CN113856713B (zh) * 2021-09-26 2024-04-12 武汉理工大学 用于co2光催化还原的无铅双钙钛矿量子点@二维材料复合光催化剂及其制备方法和应用
CN113828293B (zh) * 2021-10-22 2023-05-05 四川轻化工大学 一种提高TiO2表面光电压的方法
CN114272930A (zh) * 2021-11-24 2022-04-05 东莞理工学院 一种异质结光催化剂及其制备方法和应用
CN114054054B (zh) * 2021-12-08 2023-11-17 桂林理工大学 一种三元可见光光催化纳米复合材料及其制备方法
CN115975413B (zh) * 2022-12-21 2024-05-10 天津博迈科海洋工程有限公司 碳量子点改性的水性无机富锌涂料及碳量子点改性锌粉制备方法
CN116161647B (zh) * 2023-03-15 2024-05-14 云南师范大学 一种山梨酸碳量子点的制备方法
CN117482975A (zh) * 2023-11-06 2024-02-02 海南师范大学 一种碳聚合物点复合碳酸氧铋纳米片材料及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941651A (zh) * 2015-07-13 2015-09-30 北京科技大学 一种含铜的氧化锌/石墨烯量子点催化剂及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921416B (zh) * 2012-11-05 2014-08-20 江苏大学 一种纳米复合光催化材料及其制备方法
CN104941643A (zh) * 2015-06-16 2015-09-30 北京科技大学 一种银-石墨烯量子点/氧化锌三元光催化剂的制备方法
CN105214635B (zh) * 2015-10-26 2019-03-05 上海理工大学 一种复合光催化剂及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941651A (zh) * 2015-07-13 2015-09-30 北京科技大学 一种含铜的氧化锌/石墨烯量子点催化剂及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN WANG ET AL: "Improving photocatalytic performance of ZnO via synergistic effects of Ag nanoparticles and graphene quantum dots", 《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》 *
ZHUO,S.J. ET AL.: "Upconversion and Downconversion Fluorescent Graphene Quantum Dots:Ultrasonic Preparation and Photocatalysis", 《ACSNANO》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017071580A1 (en) * 2015-10-26 2017-05-04 University Of Shanghai For Science And Technology A composite photocatalyst, preparation and use thereof
CN105688939A (zh) * 2016-02-29 2016-06-22 长春理工大学 基于能带调制的双重量子点敏化氧化物复合光催化材料
CN105688939B (zh) * 2016-02-29 2019-06-28 长春理工大学 基于能带调制的双重量子点敏化氧化物复合光催化材料
CN105688899B (zh) * 2016-03-22 2018-06-01 江苏大学 一种三元复合光催化剂的制备方法和用途
CN105688899A (zh) * 2016-03-22 2016-06-22 江苏大学 一种三元复合光催化剂的制备方法和用途
CN106215920A (zh) * 2016-08-29 2016-12-14 佛山市高明区尚润盈科技有限公司 一种多孔石墨烯负载二氧化钛复合材料及其制备方法
CN106629988B (zh) * 2016-10-07 2019-07-26 玉灵华科技有限公司 一种量子碳素光介质的制备、活化及污水处理方法
CN106629988A (zh) * 2016-10-07 2017-05-10 玉灵华科技有限公司 一种量子碳素光介质的制备、活化及污水处理方法
CN109289781A (zh) * 2016-12-07 2019-02-01 天津市金鳞水处理科技有限公司 一种复合水凝胶纤维的制备方法
CN106964389B (zh) * 2017-04-06 2018-04-13 上海理工大学 钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法
CN106964389A (zh) * 2017-04-06 2017-07-21 上海理工大学 钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法
CN106994355A (zh) * 2017-04-17 2017-08-01 桂林理工大学 一种石墨烯量子点/SnS2纳米片复合光催化剂的制备方法
CN107051425A (zh) * 2017-04-19 2017-08-18 桂林理工大学 一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法
WO2019061583A1 (zh) * 2017-09-30 2019-04-04 五邑大学 一种热驱动催化剂及其应用
CN109926039A (zh) * 2017-12-18 2019-06-25 湖北臻润环境科技股份有限公司 制备氧化锌-还原氧化石墨烯的复合材料的方法
CN108855035A (zh) * 2018-06-29 2018-11-23 江苏弗瑞仕环保科技有限公司 空气净化用光催化材料的制备方法
CN108855040A (zh) * 2018-06-29 2018-11-23 江苏弗瑞仕环保科技有限公司 石墨烯量子点修饰的Dy掺杂ZnO光催化材料的制备方法
CN109395709A (zh) * 2018-07-12 2019-03-01 重庆交通大学 一种石墨烯量子点/二维二氧化钛及其制备方法
CN109201029A (zh) * 2018-09-17 2019-01-15 绍兴文理学院 一种高效多孔复合光催化材料的制备方法
CN109201029B (zh) * 2018-09-17 2021-04-06 绍兴文理学院 一种高效多孔复合光催化材料的制备方法
CN111097398A (zh) * 2018-10-29 2020-05-05 中国石油化工股份有限公司 催化复合材料及其制备方法以及环烯烃的催化氧化方法
CN111097398B (zh) * 2018-10-29 2023-01-13 中国石油化工股份有限公司 催化复合材料及其制备方法以及环烯烃的催化氧化方法
CN112982032A (zh) * 2021-02-18 2021-06-18 陕西科技大学 一种用于室内甲醛净化的壁纸复合材料制备方法
CN112982032B (zh) * 2021-02-18 2022-08-23 陕西科技大学 一种用于室内甲醛净化的壁纸复合材料制备方法
CN113262645A (zh) * 2021-05-14 2021-08-17 江南大学 一种自清洁复合超滤膜及其制备方法
CN113713798A (zh) * 2021-09-06 2021-11-30 新疆大学 一种石墨烯量子点修饰氧化锌的制备方法及降解染料应用
CN113713798B (zh) * 2021-09-06 2023-11-17 新疆大学 一种石墨烯量子点修饰氧化锌的制备方法及降解染料应用
CN114836772A (zh) * 2022-05-25 2022-08-02 河北工业大学 一种金属氧化物负载石墨烯量子点复合催化剂的制备方法及应用
CN115090290A (zh) * 2022-07-27 2022-09-23 北方民族大学 Co基双金属氧化物负载GQDs复合光催化剂及其制备方法和应用
CN115090290B (zh) * 2022-07-27 2024-01-23 北方民族大学 Co基双金属氧化物负载GQDs复合光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN105214635B (zh) 2019-03-05
WO2017071580A1 (en) 2017-05-04
US20180264440A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
CN105214635A (zh) 一种复合光催化剂及其制备方法和应用
Hao et al. Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production
Yang et al. Visible light-driven photocatalytic H2 generation and mechanism insights into Bi2O2CO3/G-C3N4 Z-scheme photocatalyst
Tian et al. Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting
Liu et al. Green synthetic approach for Ti 3+ self-doped TiO 2− x nanoparticles with efficient visible light photocatalytic activity
Yu et al. Novel Fe2 (MoO4) 3/g-C3N4 heterojunction for efficient contaminant removal and hydrogen production under visible light irradiation
Zhang et al. Development of modified N doped TiO 2 photocatalyst with metals, nonmetals and metal oxides
CN103962159B (zh) 一种光催化剂及其制备方法和应用
Tian et al. Microwave-induced crystallization of AC/TiO2 for improving the performance of rhodamine B dye degradation
Li et al. Ultrasonic-assisted pyrolyzation fabrication of reduced SnO 2–x/gC 3 N 4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation
Luo et al. Utilization of LaCoO3 as an efficient co-catalyst to boost the visible light photocatalytic performance of g-C3N4
CN109794268B (zh) MoSe2纳米片包覆KNbO3纳米线异质结构光催化材料的制备方法
CN102125863A (zh) 一种石墨相氮化碳/金红石单晶二氧化钛纳米线阵列的制备方法
CN102489293B (zh) 一种二氧化锡/钨酸铋复合光催化剂的制备方法
Gai et al. 2D-2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation
CN102600823A (zh) 一种石墨烯/二氧化钛复合材料的制备方法
Rasheed et al. Synthesis and studies of ZnO doped with g-C3N4 nanocomposites for the degradation of tetracycline hydrochloride under the visible light irradiation
Zeng et al. Construction of two dimensional Sr2Ta2O7/S-doped g-C3N4 nanocomposites with Pt cocatalyst for enhanced visible light photocatalytic performance
CN111036189B (zh) 活性炭负载ZnO/CuO或ZnO/CuO/Cu2O光催化复合粉体的制备方法
CN110721698B (zh) 一种钒酸铋/钒酸铜复合光催化剂及其制备方法和应用
CN109012731A (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
Liu et al. CoS/ZnWO4 composite with band gap matching: simple impregnation synthesis, efficient dye sensitization system for hydrogen production
Sun et al. Heteroatom-induced domain electrostatic potential difference in ZnIn 2 S 4 nanosheets for efficient charge separation and boosted photocatalytic overall water splitting
He et al. A highly efficient NiFe-layer double hydroxide/TiO2 heterojunction photoanode-based high-performance bifunctional photocatalytic fuel cell
Priya et al. Construction of MoS2 nanoparticles incorporated TiO2 nanosheets heterojunction photocatalyst for enhanced visible light driven hydrogen production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190305

Termination date: 20211026