CN106964389A - 钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法 - Google Patents
钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法 Download PDFInfo
- Publication number
- CN106964389A CN106964389A CN201710220816.9A CN201710220816A CN106964389A CN 106964389 A CN106964389 A CN 106964389A CN 201710220816 A CN201710220816 A CN 201710220816A CN 106964389 A CN106964389 A CN 106964389A
- Authority
- CN
- China
- Prior art keywords
- pucherite
- nitrogen
- quantum dot
- doped graphene
- graphene quantum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 42
- 239000002096 quantum dot Substances 0.000 title claims abstract description 42
- 150000001875 compounds Chemical class 0.000 title claims abstract description 27
- 239000003054 catalyst Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229960000907 methylthioninium chloride Drugs 0.000 claims abstract description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052786 argon Inorganic materials 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims abstract description 4
- 238000000227 grinding Methods 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 abstract description 9
- 239000000975 dye Substances 0.000 abstract description 5
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 238000006731 degradation reaction Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 3
- 229910002915 BiVO4 Inorganic materials 0.000 description 9
- 230000001699 photocatalysis Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 5
- 238000007146 photocatalysis Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明提供了一种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法,称取钒酸铋,在钒酸铋中加入氮掺杂石墨烯量子点,钒酸铋和氮掺杂石墨烯量子点的质量比为1:0.025~0.1,充分搅拌均匀后真空干燥过夜,将充分干燥的样品研磨后置于持续通入氩气的管式炉中170~190℃焙烧1~2h,获得钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂。本发明将钒酸铋与适量的氮掺杂石墨烯量子点复合可以更好地吸附有机染料,同时促进光生载流子的有效分离,提高其可见光催化性能,极大提高降解亚甲基蓝性能,可应用于环境有机污染物治理等领域。
Description
技术领域
本发明属于化工领域,涉及一种光催化剂,具体来说是一种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法。
背景技术
近年来,环境污染和能源危机日益加剧,光催化作为一种无污染、简单易行并可直接利用太阳能的技术备受广泛关注。半导体光催化材料的制备和应用研究虽已取得不小进展,但光催化材料的实际商业应用仍然面临着巨大挑战,主要由于传统半导体光催化剂能带隙过宽,一般只有在紫外光激发下才能显示光催化活性,而紫外光能量在太阳光总能量比例仅4%。因此,高效稳定可见光响应光催化剂的开发成为光催化领域的研究热点。
钒酸盐系光催化剂因其特殊结构及优异的物理化学性能,常被应用于电催化和锂电池领域,在环境治理方面也表现出优异的光催化性能。作为碳纳米材料的新成员,氮掺杂石墨烯量子点由于具有良好的水溶性、生物低毒性、稳定而明亮的荧光等特点,在这几年里吸引了广泛的研究热情。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法,所述的这种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法要解决现有技术中的光催化剂的催化效果不佳的技术问题。
本发明提供了一种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法,称取钒酸铋,在钒酸铋中加入氮掺杂石墨烯量子点,钒酸铋和氮掺杂石墨烯量子点的质量比为1:0.025~0.1,充分搅拌均匀后真空干燥过夜,将充分干燥的样品研磨后置于持续通入氩气的管式炉中170~190℃焙烧1~2h,获得钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂。
进一步的,钒酸铋和氮掺杂石墨烯量子点的质量比为1:0.025。
进一步的,钒酸铋和氮掺杂石墨烯量子点的质量比为1:0.05。
进一步的,钒酸铋和氮掺杂石墨烯量子点的质量比为1:0.1。
进一步的,所述的氮掺杂石墨烯量子点的水溶液浓度为30~50g/L。
本发明还提供了上述的方法制备的钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂用于光催化降解有机染料亚甲基蓝。
本发明使用水热法制备BiVO4@NGQDs样品。本发明制备的钒酸铋/氮掺杂石墨烯量子点复合型可见光催化剂在可见光下具有高光催化活性,特别是在染料吸附和降解有机污染物亚甲基蓝方面,BiVO4@5wt%NGQDs催化活性最佳。钒酸铋与适量的氮掺杂石墨烯量子点复合可以更好地吸附有机染料,同时促进光生载流子的有效分离,提高其可见光催化性能。综合来看,钒酸铋/氮掺杂石墨烯量子点复合型可见光催化剂制备工艺简单可行,少量NGQDs添加即可极大提高降解亚甲基蓝性能,可应用于环境有机污染物治理等领域。
本发明和已有技术相比,其技术进步是显著的。以亚甲基蓝为目标污染物,在可见光激发下,本发明所制备的钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂具有高可见光催化降解亚甲基蓝活性。本发明采用直接掺杂法制备钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂,实验室制备工艺简单、成本低。
附图说明
图1为采用本发明的方法制备的钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的透射电镜图。
图2为采用本发明方法制备的钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂在黑暗条件下对亚甲基蓝(10ppm)的吸附-时间曲线及可见光照射下(>420 nm)对亚甲基蓝(10ppm)的光催化降解-时间曲线。
具体实施方式
以下用实施例对本发明作进一步说明,但不限于此。
实施例1:
BiVO4@2.5wt%NGQDs制备具体步骤:
(1)取1 g BiVO4加入0.625 ml浓度为40 g/L的NGQDs水溶液,充分搅拌均匀后真空干燥过夜;
(2)将充分干燥的样品研磨后置于持续通入氩气的管式炉中180℃焙烧1.5 h。
实施例2:
BiVO4@5wt%NGQDs制备具体步骤:本实施实例与实施例1基本相同,所不同的是 (1)步骤中取1.25 ml浓度为40 g/L的NGQDs水溶液。
实施例3:
BiVO4@10wt%NGQDs制备具体步骤:本实施实例与实施例1基本相同,所不同的是 (1)步骤中取2.5 ml浓度为40 g/L的NGQDs水溶液。
图1(a)为NGQDs透射电镜图,由图1(a)可知,量子点的直径尺寸均为1.5-4.0nm。图1(b)为NGQDs高分辨透射电镜图,由图1(b),我们可以观察到按上述步骤制备的样品清晰的晶格条纹。图1(c)为BiVO4@5wt%NGQDs透射电镜图,图1(d)为BiVO4@5wt%NGQDs高分辨透射电镜图,由图1(c)和图1(d) 可知,按上述步骤制备的样品,NGQDs被成功地负载到BiVO4纳米粒子表面。
图2(a)为钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂,黑暗条件下对亚甲基蓝(10ppm)吸附-时间曲线图,图2(b)为钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂,可见光照射下(λ >420 nm)对亚甲基蓝(10ppm)光催化降解-时间曲线。由图2可知,本发明制备的钒酸铋/氮掺杂石墨烯量子点复合型可见光催化剂在可见光下具有高光催化活性,特别是在染料吸附和降解有机污染物亚甲基蓝方面,BiVO4@5wt%NGQDs催化活性最佳。
上述内容仅为本发明构思下的基本说明,而依据本发明的技术方案所做的任何等效变换,均应属本发明的保护范围。
Claims (6)
1.一种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法,其特征在于:称取钒酸铋,在钒酸铋中加入氮掺杂石墨烯量子点,钒酸铋和氮掺杂石墨烯量子点的质量比为1:0.025~0.1,充分搅拌均匀后真空干燥过夜,将充分干燥的样品研磨后置于持续通入氩气的管式炉中170~190℃焙烧1~2h,获得钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂。
2.根据权利要求1所述的一种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法,其特征在于:钒酸铋和氮掺杂石墨烯量子点的质量比为1:0.025。
3.根据权利要求1所述的一种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法,其特征在于:钒酸铋和氮掺杂石墨烯量子点的质量比为1:0.05。
4.根据权利要求1所述的一种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法,其特征在于:钒酸铋和氮掺杂石墨烯量子点的质量比为1:0.1。
5.根据权利要求1所述的一种钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法,其特征在于:所述的氮掺杂石墨烯量子点的水溶液浓度为30~50g/L。
6.权利要求1所述的方法制备的钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂用于光催化降解有机染料亚甲基蓝。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710220816.9A CN106964389B (zh) | 2017-04-06 | 2017-04-06 | 钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710220816.9A CN106964389B (zh) | 2017-04-06 | 2017-04-06 | 钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106964389A true CN106964389A (zh) | 2017-07-21 |
CN106964389B CN106964389B (zh) | 2018-04-13 |
Family
ID=59337030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710220816.9A Expired - Fee Related CN106964389B (zh) | 2017-04-06 | 2017-04-06 | 钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106964389B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108359462A (zh) * | 2018-04-18 | 2018-08-03 | 兰州大学 | 一种钒酸铋量子点及其制备方法、还原氧化石墨烯气凝胶材料及其制备方法以及光催化剂 |
CN108579727A (zh) * | 2018-01-11 | 2018-09-28 | 湘潭大学 | 一种石墨烯量子点-钨酸铋复合光催化剂及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103263910A (zh) * | 2013-05-20 | 2013-08-28 | 聊城大学 | 一种钒酸铋-石墨烯复合光催化剂及其制备和应用 |
CN105214635A (zh) * | 2015-10-26 | 2016-01-06 | 上海理工大学 | 一种复合光催化剂及其制备方法和应用 |
CN105289689A (zh) * | 2015-11-07 | 2016-02-03 | 南昌航空大学 | 一种氮掺杂石墨烯量子点/类石墨烯相氮化碳复合材料的合成及应用 |
CN105486733A (zh) * | 2015-11-23 | 2016-04-13 | 江苏大学 | 一种镂空状碘化氧铋/氮杂石墨烯量子点微球的制备方法及用途 |
CN106179318A (zh) * | 2016-09-27 | 2016-12-07 | 安阳师范学院 | 一种钒酸铋纳米线‑石墨烯光催化剂的制备方法 |
CN106268761A (zh) * | 2016-08-11 | 2017-01-04 | 广西南宁胜祺安科技开发有限公司 | 一种石墨烯掺杂钒酸铋光催化剂 |
-
2017
- 2017-04-06 CN CN201710220816.9A patent/CN106964389B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103263910A (zh) * | 2013-05-20 | 2013-08-28 | 聊城大学 | 一种钒酸铋-石墨烯复合光催化剂及其制备和应用 |
CN105214635A (zh) * | 2015-10-26 | 2016-01-06 | 上海理工大学 | 一种复合光催化剂及其制备方法和应用 |
CN105289689A (zh) * | 2015-11-07 | 2016-02-03 | 南昌航空大学 | 一种氮掺杂石墨烯量子点/类石墨烯相氮化碳复合材料的合成及应用 |
CN105486733A (zh) * | 2015-11-23 | 2016-04-13 | 江苏大学 | 一种镂空状碘化氧铋/氮杂石墨烯量子点微球的制备方法及用途 |
CN106268761A (zh) * | 2016-08-11 | 2017-01-04 | 广西南宁胜祺安科技开发有限公司 | 一种石墨烯掺杂钒酸铋光催化剂 |
CN106179318A (zh) * | 2016-09-27 | 2016-12-07 | 安阳师范学院 | 一种钒酸铋纳米线‑石墨烯光催化剂的制备方法 |
Non-Patent Citations (2)
Title |
---|
JIULONG LI ET AL: ""Catalytic activity of BiVO4-graphene nanocomposites for the reduction of nitrophenols and the photocatalytic degradation of organic dyes"", 《ELASTOMERS AND COMPOSITES》 * |
TE-FU YEH ET AL: ""Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination"", 《ADVANCED MATERIALS》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108579727A (zh) * | 2018-01-11 | 2018-09-28 | 湘潭大学 | 一种石墨烯量子点-钨酸铋复合光催化剂及其制备方法 |
CN108359462A (zh) * | 2018-04-18 | 2018-08-03 | 兰州大学 | 一种钒酸铋量子点及其制备方法、还原氧化石墨烯气凝胶材料及其制备方法以及光催化剂 |
Also Published As
Publication number | Publication date |
---|---|
CN106964389B (zh) | 2018-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Simultaneously promoting charge separation and photoabsorption of BiOX (X= Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar | |
Cheng et al. | Synthesis of fluorescent carbon quantum dots from aqua mesophase pitch and their photocatalytic degradation activity of organic dyes | |
CN112551571B (zh) | 一种超薄纳米片微单元空心硫化铟锌纳米笼的制备与应用 | |
Xu et al. | In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen generation | |
Hu et al. | Fluorescence and photocatalytic activity of metal-free nitrogen-doped carbon quantum dots with varying nitrogen contents | |
Li et al. | Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production | |
Zou et al. | Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts | |
Wang et al. | Nitrogen doped large mesoporous carbon for oxygen reduction electrocatalyst using DNA as carbon and nitrogen precursor | |
Jiao et al. | Novel BN-Co surface bonding states constructed on hollow tubular boron doped g-C3N4/CoP for enhanced photocatalytic H2 evolution | |
CN106984312B (zh) | 一种复合型光催化剂及其制备方法 | |
CN113036165B (zh) | 一种氮硫掺杂的缺陷化碳纳米管及其制备方法 | |
CN110643637B (zh) | Cu2O/RGO@SW无机/生物杂合光催化剂的制备方法及其应用 | |
CN108855173A (zh) | 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法 | |
CN109569580A (zh) | 一种复合型光催化剂及其制备方法和应用 | |
CN109999884A (zh) | 一种多掺杂石墨烯复合纳米材料及其制备方法和应用 | |
CN109731587A (zh) | 一种二维非金属光催化复合材料及其制备方法和应用 | |
CN106964389B (zh) | 钒酸铋与氮掺杂石墨烯量子点复合型可见光催化剂的制备方法 | |
Yao et al. | Solvothermal-assisted synthesis of biomass carbon quantum dots/bismuth oxyiodide microflower for enhanced photocatalytic activity | |
Zhu et al. | Minimized Pt deposition on CdS simultaneously maximizes the performance of hydrogen production and aromatic alcohols oxidation | |
Sun et al. | Photoelectrocatalytic degradation of wastewater and simultaneous hydrogen production on copper nanorod-supported coal-based N-carbon dot composite nanocatalysts | |
Hu et al. | Fabrication of Er3+/Yb3+ co-doped NiAl-LDH with promoted photocatalytic performance for CO2 reduction under Vis/NIR light irradiation | |
Han et al. | Microtubular carbonized cotton fiber modified g-C3N4 for the enhancement of visible-light-driven photocatalytic activity | |
CN114733543A (zh) | 一种硼修饰的氮化碳材料及其制备方法和应用 | |
Wang et al. | Boosting photocatalytic dehydrogenation and simultaneous selective oxidation of benzyl alcohol to benzaldehyde over flower-like MoS2 modified Zn0. 5Cd0. 5S solid solution | |
Wu et al. | Surface engineering of full-spectrum sunlight-driven CdS/NaYF4: Yb, Er for boosting photocatalytic CO2 reduction reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180413 Termination date: 20210406 |