CN107051425A - 一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法 - Google Patents

一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法 Download PDF

Info

Publication number
CN107051425A
CN107051425A CN201710258798.3A CN201710258798A CN107051425A CN 107051425 A CN107051425 A CN 107051425A CN 201710258798 A CN201710258798 A CN 201710258798A CN 107051425 A CN107051425 A CN 107051425A
Authority
CN
China
Prior art keywords
quantum dot
graphene quantum
composite photo
gqds
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710258798.3A
Other languages
English (en)
Inventor
吕慧丹
朱琴
刘勇平
耿鹏
林剑飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201710258798.3A priority Critical patent/CN107051425A/zh
Publication of CN107051425A publication Critical patent/CN107051425A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

本发明公开了一种石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂的制备方法。采用超声法使石墨烯量子点与被剥离的WO3·2H2O超薄纳米片结合,将一定量的WO3·2H2O块状粉末,加入到一定浓度的GQDs溶液中(WO3·2H2O与GQDs的质量比为4:3),超声3‑5h,高速离心去除上清液(含未与WO3·2H2O结合的石墨烯量子点),加入适量蒸馏水,再3000r/min离心分离,取上清液,冷冻干燥,得到GQDs/WO3·2H2O纳米片复合光催化剂。该方法工艺条件简单,可操作性强,所制备的石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂能产生较大的光电流,具有较高的光催化活性。

Description

一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的 制备方法
技术领域
本发明所属技术领域为光催化、光电化学材料技术领域,特别涉及石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂的制备方法。
背景技术
三氧化钨为一种宽禁带的n型半导体材料,室温下的禁带宽度为2.63eV,可吸收500nm以下的可见光及紫外光,在电致变色、气敏传感器、光催化与光电转换领域具有重要的应用价值。2D超薄纳米结构是一种厚度在单分子层或少分子层范围的特殊形貌,其平铺尺寸从几十个纳米到微米以上,具有超高的比表面积,表现出高度的各向异性和量子限域效应。当这种特殊的超薄结构材料作为光催化剂时,光生载流子从体内扩散到表面所需要的时间变短,光生电荷分离效率明显提高。因此,2D超薄水合三氧化钨将比其体相材料具有更高的光催化活性。
为了追求更高的光催化效率,可通过构建异质结来达到目的,进一步抑制光生载流子复合,提高电子-空穴分离效率。石墨烯量子点的直径在10nm左右,是一种零维的纳米材料,它具有较好的荧光稳定性、生物相容性、低毒性和化学性质稳定等特性,使其在细胞成像研究、传感器等领域有着良好的应用前景。另外,石墨烯量子点(GQDs)具有比表面积大、价格便宜、无毒等优点,借助GQDs对光催化剂进行改性以提高对可见光的利用率是目前光催化材料研究的热点。Saud等人制备出GQDs与TiO2纳米线复合物,表征结果显示该复合物对污水处理有明显的效果;Gupta等人通过水热法制备出了GQDs和TiO2纳米管复合物,由于GQDs具有广泛吸收可见光和强大的吸附能力,大量的光生电子从TiO2转移到石墨烯量子点上,明显提高了光催化速率。
因此,本发明将石墨烯量子点与WO3·2H2O超薄纳米片结合,制备石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂,进一步提高WO3·2H2O超薄纳米片的光催化效率,使其在光电转换、光催化、传感器等领域有重大的应用价值,对于解决环境污染、节约能源具有重要的实际意义。
发明内容
本发明的目的是提供一种石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂的制备方法,该方法操作简便、条件简单,所制备的石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂具有较高的光催化活性。
本发明具体步骤如下:
(1)采用超声法制备石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂,将WO3·2H2O粉末加入到石墨烯量子点溶液中进行超声剥离复合。称取2-4mg WO3·2H2O块状粉末,加入到15ml浓度为1-2mg/mL的GQDs溶液中(WO3·2H2O与GQDs的质量比为4:3),超声3-5h后,以10000r/min离心10min,去除上清液,加入适量蒸馏水,再3000r/min离心10min,取上清液,进行冷冻干燥,得到GQDs/WO3·2H2O纳米片复合光催化剂。
所述的一种制备石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂的方法,其特征在于:步骤(1)中石墨烯量子点为带有氨基的石墨烯量子点,带有羟基的石墨烯量子点和带有羧基的石墨烯量子点中的一种。
所述化学试剂纯度均为化学纯以上纯度。
本发明合成的石墨烯量子点/WO3·2H2O超薄纳米片复合材料,石墨烯量子点均匀的分布在WO3·2H2O超薄纳米片表面,其禁带宽度为2.5eV之间,能够较好的吸收可见光。与纯的石墨烯量子点和WO3·2H2O超薄纳米片相比,石墨烯量子点/WO3·2H2O超薄纳米片复合产生更大的光电流,具有高效的光催化性能。因此,石墨烯量子点/WO3·2H2O超薄纳米片异质结复合材料作为一种可见光响应材料,在环境净化如降解染料和有毒气体、光催化制氢,太阳能电池等方面具有较大的应用潜能。
附图说明
图1为本发明实施例1制备的石墨烯量子点/WO3·2H2O超薄纳米片复合材料的TEM图;
图2为本发明实施例1制备石墨烯量子点、WO3·2H2O超薄纳米片和石墨烯量子点/WO3·2H2O超薄纳米片复合材料的XRD对比图;
图3为本发明实施例1制备的石墨烯量子点、WO3·2H2O超薄纳米片和石墨烯量子点/WO3·2H2O超薄纳米片复合材料的光电化学性能对比图。
具体实施方式
实施例1
将WO3·2H2O粉末加入到氨基石墨烯量子点溶液中进行超声复合。称取20mg WO3·2H2O块状粉末,加入到15ml浓度为1mg/mL的氨基GQDs溶液中,超声5h后,以10000r/min离心10min,去除上清液,加入适量蒸馏水,再3000r/min离心10min,取上清液,进行冷冻干燥,得到GQDs/WO3·2H2O纳米片复合光催化剂。
实施例2
将WO3·2H2O粉末加入到羟基石墨烯量子点溶液中进行超声剥离复合。称取40mgWO3·2H2O块状粉末,加入到15ml浓度为2mg/mL的羟基GQDs溶液中,超声5h后,以10000r/min离心10min,去除上清液,加入适量蒸馏水,再3000r/min离心10min,取上清液,进行冷冻干燥,得到GQDs/WO3·2H2O纳米片复合光催化剂。
实施例3
将WO3·2H2O粉末加入到羧基石墨烯量子点溶液中进行超声剥离复合。称取30mgWO3·2H2O块状粉末,加入到15ml浓度为1.5mg/mL的羧基GQDs溶液中,超声3h后,以10000r/min离心10min,去除上清液,加入适量蒸馏水,再3000r/min离心10min,取上清液,进行冷冻干燥,得到GQDs/WO3·2H2O纳米片复合光催化剂。
实施例4
将WO3·2H2O粉末加入到氨基石墨烯量子点溶液中进行超声剥离复合。称取40mgWO3·2H2O块状粉末,加入到15ml浓度为2mg/mL的氨基GQDs溶液中,超声4h后,以10000r/min离心10min,去除上清液,加入适量蒸馏水,再3000r/min离心10min,取上清液,进行冷冻干燥,得到GQDs/WO3·2H2O纳米片复合光催化剂。
上述各实施例所制备的石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂分散液,通过旋涂法在ITO表面做成光电极,制备电极作为工作电极(面积为1cm2),辅助电极为铂电极,饱和甘汞电极(SCE)作为参比电极,0.5M Na2SO4为支持电解质溶液,在太阳光模拟器(一个太阳的光强)下测试光电化学性能,从图3可以看出石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂的光电流明显高于石墨烯量子点和WO3·2H2O超薄纳米片的光电流。

Claims (2)

1.一种石墨烯量子点(GQDs)/WO3·2H2O超薄纳米片复合光催化剂的制备方法,其特征在于具体步骤为:
(1)采用超声法制备石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂,将WO3·2H2O粉末加入到石墨烯量子点溶液中进行超声复合。称取20-40mg WO3·2H2O块状粉末,加入到15ml浓度为1-2mg/mL的GQDs溶液中(WO3·2H2O与GQDs的质量比为4:3),超声3-5h,然后以10000r/min离心10min,去除上清液,加入适量蒸馏水,再3000r/min离心10min,取上清液,进行冷冻干燥,得到GQDs/WO3·2H2O纳米片复合光催化剂。
2.根据权利要求1所述的一种制备石墨烯量子点/WO3·2H2O超薄纳米片复合光催化剂的方法,其特征在于:步骤(1)中石墨烯量子点为带有氨基的石墨烯量子点,带有羟基的石墨烯量子点和带有羧基的石墨烯量子点中的一种。
CN201710258798.3A 2017-04-19 2017-04-19 一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法 Pending CN107051425A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710258798.3A CN107051425A (zh) 2017-04-19 2017-04-19 一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710258798.3A CN107051425A (zh) 2017-04-19 2017-04-19 一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN107051425A true CN107051425A (zh) 2017-08-18

Family

ID=59599808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710258798.3A Pending CN107051425A (zh) 2017-04-19 2017-04-19 一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107051425A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108607539A (zh) * 2018-04-23 2018-10-02 南京信息工程大学 一种片状三氧化钨及其制备方法和用作光催化剂的用途
CN108906032A (zh) * 2018-07-05 2018-11-30 山东理工大学 一种GOQDS/TiO2/WO3光催化剂的制备及其应用
WO2019061583A1 (zh) * 2017-09-30 2019-04-04 五邑大学 一种热驱动催化剂及其应用
CN109665718A (zh) * 2019-01-30 2019-04-23 金陵科技学院 一种氧化钨-石墨烯光致变色复合薄膜、制备方法及应用
CN112844371A (zh) * 2021-02-03 2021-05-28 黑河学院 一种用于光解水制氧的催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531063A (zh) * 2011-11-20 2012-07-04 湖南理工学院 一种石墨烯负载wo3纳米线复合材料及其制备方法
CN104437548A (zh) * 2013-09-12 2015-03-25 华东师范大学 一种可见光光催化薄膜及制备方法以及具有他的照明灯具
CN104941651A (zh) * 2015-07-13 2015-09-30 北京科技大学 一种含铜的氧化锌/石墨烯量子点催化剂及制备方法
CN105214635A (zh) * 2015-10-26 2016-01-06 上海理工大学 一种复合光催化剂及其制备方法和应用
US20160144348A1 (en) * 2014-11-20 2016-05-26 Korea Institute Of Science And Technology Photocatalyst using semiconductor-carbon nanomaterial core-shell composite quantum dot and method for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531063A (zh) * 2011-11-20 2012-07-04 湖南理工学院 一种石墨烯负载wo3纳米线复合材料及其制备方法
CN104437548A (zh) * 2013-09-12 2015-03-25 华东师范大学 一种可见光光催化薄膜及制备方法以及具有他的照明灯具
US20160144348A1 (en) * 2014-11-20 2016-05-26 Korea Institute Of Science And Technology Photocatalyst using semiconductor-carbon nanomaterial core-shell composite quantum dot and method for preparing the same
CN104941651A (zh) * 2015-07-13 2015-09-30 北京科技大学 一种含铜的氧化锌/石墨烯量子点催化剂及制备方法
CN105214635A (zh) * 2015-10-26 2016-01-06 上海理工大学 一种复合光催化剂及其制备方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061583A1 (zh) * 2017-09-30 2019-04-04 五邑大学 一种热驱动催化剂及其应用
CN108607539A (zh) * 2018-04-23 2018-10-02 南京信息工程大学 一种片状三氧化钨及其制备方法和用作光催化剂的用途
CN108906032A (zh) * 2018-07-05 2018-11-30 山东理工大学 一种GOQDS/TiO2/WO3光催化剂的制备及其应用
CN108906032B (zh) * 2018-07-05 2021-04-30 山东理工大学 一种GOQDs/TiO2/WO3光催化剂的制备及其应用
CN109665718A (zh) * 2019-01-30 2019-04-23 金陵科技学院 一种氧化钨-石墨烯光致变色复合薄膜、制备方法及应用
CN112844371A (zh) * 2021-02-03 2021-05-28 黑河学院 一种用于光解水制氧的催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN107051425A (zh) 一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法
Teng et al. Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition
Hanaei et al. Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review
Zhang et al. Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable Au nanoparticles
Zhao et al. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells
Hu et al. Photo-responsive metal/semiconductor hybrid nanostructure: a promising electrocatalyst for solar light enhanced fuel cell reaction
Ahmad et al. Hydrogen from photo-catalytic water splitting process: A review
Zhang et al. Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light
Huang et al. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution
Bu et al. Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O-C3N4@ TiO2 with quasi-shell-core nanostructure
Song et al. WO3 cocatalyst improves hydrogen evolution capacity of ZnCdS under visible light irradiation
Liu et al. Carbon doped honeycomb-like graphitic carbon nitride for photocatalytic hydrogen production
Shu et al. CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction
Lang et al. Photocatalytic water splitting utilizing electrospun semiconductors for solar hydrogen generation: Fabrication, Modification and Performance
Li et al. Loading Ni (OH) 2 on the Ti-doped hematite photoanode for photoelectrochemical water splitting
Jiang et al. Charge transfer properties and photoelectrocatalytic activity of TiO2/MWCNT hybrid
Zeng et al. ZnxCd1-xSe nanoparticles decorated ordered mesoporous ZnO inverse opal with binder-free heterojunction interfaces for highly efficient photoelectrochemical water splitting
Zhao et al. Facile preparation of Z-scheme CdSAgTiO2 composite for the improved photocatalytic hydrogen generation activity
Wang et al. Ultra-thin rGO nanosheet modified TiO2 nanotube arrays for boosted photoelectrochemical performance
Wang et al. Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum-dot/Bi4Ti3O12 nanosheets
CN103599802A (zh) 一种磷酸银/石墨烯纳米复合材料的制备方法
CN102828219A (zh) 一种三元纳米复合材料Au/RGO-TiO2纳米管阵列及其制备方法和应用
Gan et al. Facile preparation and photoelectrochemical properties of CdSe/TiO2 NTAs
Zhang et al. A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode
Hu et al. Simple solid-state synthesis and improved performance of Ni (OH) 2-TiO2 nanocomposites for photocatalytic H2 production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170818

WD01 Invention patent application deemed withdrawn after publication