CN109012731A - 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用 - Google Patents

海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用 Download PDF

Info

Publication number
CN109012731A
CN109012731A CN201810942169.7A CN201810942169A CN109012731A CN 109012731 A CN109012731 A CN 109012731A CN 201810942169 A CN201810942169 A CN 201810942169A CN 109012731 A CN109012731 A CN 109012731A
Authority
CN
China
Prior art keywords
ldh
coznal
junctions
rgo
sea urchin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810942169.7A
Other languages
English (en)
Other versions
CN109012731B (zh
Inventor
杨勇
吴家家
肖婷婷
唐钲
黄俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810942169.7A priority Critical patent/CN109012731B/zh
Publication of CN109012731A publication Critical patent/CN109012731A/zh
Application granted granted Critical
Publication of CN109012731B publication Critical patent/CN109012731B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种海胆状CoZnAl‑LDH/RGO/g‑C3N4Z型异质结及其制备方法,其通过简单的水热反应制备而成,将经过超声分散的还原氧化石墨烯和石墨悬浮液逐滴加入到硝酸钴、硝酸锌、硝酸铝和尿素的去离子水溶液中,搅拌后转移至高压釜中进行高温水热反应,得到尺度介于5‑7μm的海胆状CoZnAl‑LDH/RGO/g‑C3N4Z型异质结。本发明的海胆状CoZnAl‑LDH/RGO/g‑C3N4Z型异质结具有较高的比表面积、光子利用率和光生电子、空穴分离效率,可应用于催化和能源转化领域。

Description

海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和 应用
技术领域
本发明属于半导体复合材料技术领域,具体涉及一种海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法。
背景技术
随着人类社会的工业化发展和人口的快速增长,能源短缺和环境污染问题成为全世界共同关注的焦点。目前,化石能源(石油、煤炭和天然气)依旧是人类的主要能源,可再生能源的发展仍然需要大量的技术支持。基于半导体材料的光催化技术被誉为解决能源短缺和环境污染的绿色新技术和理想途径。传统的TiO2基光催化剂因存在着禁带宽度较大,可见光利用率低以及光生电子空穴复合率高等缺陷,其应用受到了极大的限制。作为一种多功能材料,层状双金属氢氧化物(Layered Double Hydroxides,LDHs)具有化学组成简单可调、层间阴离子可交换以及层板元素高分散等特性,在催化、环境保护、能源转化等领域得到了广泛应用。然而单纯LDHs构成的半导体材料,光生电子、空穴易于复合,光电转化效率不高。为了进一步改善LDHs的物理及化学性质,通过元素掺杂以及与不同半导体材料进行复合,成为近年LDHs材料的研究热点。
专利CN104941672A公开了一种单层六边Ag3PO4/Fe3O4/Co-Ni LDH复合材料,以Ag3PO4为半导体,Ag和Fe3O4为助催化剂,应用于光催化甲基橙降解,该复合材料没有提及LDHs材料的半导体性能。专利CN107899590A公开了一种金属Ag纳米颗粒沉积NiCo-LDH复合光催化剂,该催化剂通过水浴加热得到NiCo-LDH,再以紫外光照射沉积Ag纳米颗粒制备而成,该复合材料没有突出的形貌特征,且催化剂需要负载贵金属。
发明内容
本发明的目的是提供一种海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用,该异质结采用还原氧化石墨烯、石墨相氮化碳的悬浮液与硝酸钴、硝酸锌、硝酸铝的尿素水溶液混合,通过高温水热反应制备而成,该Z型异质结具有较高的比表面积和良好的可见光响应性,可应用于光催化污染物降解、水分解和二氧化碳资源化转化。
实现本发明目的的技术解决方案是:一种海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结,该材料由CoZnAl-LDH纳米片、还原氧化石墨烯和石墨相氮化碳共同构成的呈海胆状Z型异质结结构,其中,还原氧化石墨烯作为半导体界面之间的电子传导介质,CoZnAl-LDH纳米片自组装形成海胆状空心结构,石墨相氮化碳均匀负载在CoZnAl-LDH表面,石墨相氮化碳的含量为3-7wt%,石墨相氮化碳与还原氧化石墨烯的质量比为4:1~6:1。
进一步的,所述的海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结的尺度介于5-7μm。
上述海胆状CoZnAl-LDH/RGO/g-C3N4型异质结的制备方法,其具体步骤为:
步骤a),将还原氧化石墨烯和石墨相氮化碳分散在水中,超声处理0.5~1h,得到均匀分散的悬浮液;
步骤b),将等摩尔量的硝酸钴、硝酸铝和硝酸锌溶解在水中,然后加入尿素搅拌溶解,得到均匀的混合金属溶液;
步骤c),将步骤a)悬浮液在剧烈搅拌下逐滴加入到步骤b)混合金属溶液中,在室温下搅拌0.5~1h,然后将所得混合溶液于180±10℃下水热反应6~8h,自然冷却至室温,离心分离,洗涤,真空干燥,得到海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结。
进一步的,步骤a)中,石墨相氮化碳与还原氧化石墨烯的质量比为4:1~6:1,制备石墨相氮化碳的前驱体为三聚氰胺、二氰二胺、单氰胺、尿素中的一种。
进一步的,步骤b)中,硝酸钴在混合金属溶液中摩尔浓度为0.05mol/L,硝酸钴与尿素的摩尔浓度比为1:6。
进一步的,步骤c)中,60℃下真空干燥6~12h。
与现有技术相比,本发明的有益效果是:
(1)本发明通过水热反应制备了海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结,该材料具有3D分级结构,粒径均匀,制备过程简单。
(2)本发明的海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结具有空心内腔,海胆状结构由CoZnAl-LDH纳米片自组装形成,石墨相氮化碳均匀分布在CoZnAl-LDH表面。空心内腔具有更大的比表面积,能够提高光子利用率,提升材料的吸附、传质能力,并提供更多的催化反应活性位点。
(3)CoZnAl-LDH和石墨相氮化碳通过还原氧化石墨烯作为电子传导介质,形成典型的半导体Z型异质结,光生电子-空穴的分离效率能够得到显著提高,材料具有较强的氧化还原能力。
下面结合附图对本发明作进一步详细描述。
附图说明
图1 为海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结的制备流程图。
图2 为实施例3所得海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结的SEM照片(a 12000倍,b 24000倍)。
图3为实施例3所得海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结的TEM照片。
图4为实施例3所得海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结的XRD谱图。
图5为实施例3所得海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结的FTIR谱图。
图6为实施例4所得海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结的光催化CO2还原应用效率。
具体实施方式
下面的实施例可以使本专业技术人员更全面地理解本发明。
本发明的海胆状CoZnAl-LDH/RGO/g-C3N4 Z型异质结,采用还原氧化石墨烯作为电子传输介质,能够显著提升体系中两种半导体界面的电子迁移效率,加快光生电子和空穴的分离。同时,3D分级结构赋予材料较大的比表面积,不仅可以增加光子吸收利用率,而且有助于反应物的扩散传质。与传统的Ⅱ型异质结相比,CoZnAl-LDH/RGO/g-C3N4 Z型异质结具有更强的氧化还原能力。
实施例1
将10mg还原氧化石墨烯和0.05g石墨相氮化碳分散在20mL去离子水中,超声处理30min,得到均匀分散的悬浮液。将0.2912g(1.0mmol)的Co(NO3)2·6H2O、0.2974g(1.0mmol)的Zn(NO3)2·9H2O、0.3752g(1.0mmol)的Al(NO3)3·6H2O(1.0mmol)以及0.3600g(6.0mmol)尿素溶于20ml去离子水中,搅拌30min形成均匀的混合金属溶液。然后将还原氧化石墨烯和石墨相氮化碳的悬浮液在剧烈搅拌下逐滴加入到上述混合金属溶液中,在室温下搅拌30min后转移到不锈钢水热釜(100mL)中,并于180℃下水热反应6h。自然冷却后,离心,用蒸馏水和无水乙醇反复洗涤3次,60℃下真空干燥,最终得到海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结。
实施例2
将15mg还原氧化石墨烯和0.06g石墨相氮化碳分散在20mL去离子水中,超声处理30min,得到均匀分散的悬浮液。将0.2912g(1.0mmol)的Co(NO3)2·6H2O、0.2974g(1.0mmol)的Zn(NO3)2·9H2O、0.3752g(1.0mmol)的Al(NO3)3·6H2O(1.0mmol)以及0.3600g(6.0mmol)尿素溶于20ml去离子水中,搅拌30min形成均匀的混合金属溶液。然后将还原氧化石墨烯和石墨相氮化碳的悬浮液在剧烈搅拌下逐滴加入到上述混合金属溶液中,在室温下搅拌30min后转移到不锈钢水热釜(100mL)中,并于180℃下水热反应8h。自然冷却后,离心,用蒸馏水和无水乙醇反复洗涤3次,60℃下真空干燥,最终得到海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结。
实施例3
将15mg还原氧化石墨烯和0.15g石墨相氮化碳分散在20mL去离子水中,超声处理30min,得到均匀分散的悬浮液。将0.2912g(1.0mmol)的Co(NO3)2·6H2O、0.2974g(1.0mmol)的Zn(NO3)2·9H2O、0.3752g(1.0mmol)的Al(NO3)3·6H2O(1.0mmol)以及0.3600g(6.0mmol)尿素溶于20ml去离子水中,搅拌30min形成均匀的混合金属溶液。然后将还原氧化石墨烯和石墨相氮化碳的悬浮液在剧烈搅拌下逐滴加入到上述混合金属溶液中,在室温下搅拌30min后转移到不锈钢水热釜(100mL)中,并于180℃下水热反应8h。自然冷却后,离心,用蒸馏水和无水乙醇反复洗涤3次,60℃下真空干燥。由于加入的石墨相氮化碳和还原氧化石墨烯的质量比超过6:1,导致石墨相氮化碳的含量大于7wt%,所制备样品的海胆状空心结构坍塌,形成大量的纳米颗粒和碎片。
实施例4
将20mg还原氧化石墨烯和0.10g石墨相氮化碳分散在20mL去离子水中,超声处理30min,得到均匀分散的悬浮液。将0.2912g(1.0mmol)的Co(NO3)2·6H2O、0.2974g(1.0mmol)的Zn(NO3)2·9H2O、0.3752g(1.0mmol)的Al(NO3)3·6H2O(1.0mmol)以及0.3600g(6.0mmol)尿素溶于20ml去离子水中,搅拌30min形成均匀的混合金属溶液。然后将还原氧化石墨烯和石墨相氮化碳的悬浮液在剧烈搅拌下逐滴加入到上述混合金属溶液中,在室温下搅拌30min后转移到不锈钢水热釜(100mL)中,并于180℃下水热反应6h。自然冷却后,离心,用蒸馏水和无水乙醇反复洗涤3次,60℃下真空干燥,最终得到海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结。
图2为海胆状CoZnAl-LDH/RGO/g-C3N4 Z型异质结的SEM照片,由图2a和2b可观察到,海胆状结构由CoZnAl-LDH纳米片自组装形成,其分散性良好,平均直径在6μm。石墨相氮化碳纳米片和纳米颗粒随机分布在CoZnAl-LDH表面上。经EDS分析,海胆状微球表层由C、N、O以及Co、Zn、Al六种元素构成,其中g-C3N4的含量为7wt%左右。
图3 为海胆状CoZnAl-LDH/RGO/g-C3N4 Z型异质结的TEM照片,如图所示,由深色边缘和浅色中心的对比可知CoZnAl-LDH/RGO/g-C3N4 Z型异质结具有空心结构。在CoZnAl-LDH/RGO/g-C3N4 Z型异质结的表面及空腔内部具有许多纳米颗粒和片层,为石墨相氮化碳和还原氧化石墨烯的纳米颗粒。
图4为海胆状CoZnAl-LDH/RGO/g-C3N4 Z型异质结的XRD谱图,图中CoZnAl-LDH的各个衍射峰与标准LDH晶型(PDF 51-0045)的衍射峰几乎完全一致,石墨相氮化碳在14.1°和27.4°有两个特征衍射峰,其中14.1°处衍射峰对应于(100)晶面,为层内七嗪结构特征峰,27.4°对应(002)晶面,为层间堆积特征峰,由谱图看出,14.1°处特征峰不大明显,27.4°处有较小尖峰出现。
图5为海胆状CoZnAl-LDH/RGO/g-C3N4 Z型异质结的FTIR谱图,图在810cm -1、1200-1650cm -1和1357 cm -1三处出现了吸收带。其中在810cm -1的强吸收峰是为石墨相氮化碳的三嗪结构的呼吸振动峰,1200-1650 cm-1的区域显示出CN杂环的拉伸振动特征峰,在1357cm-1处的吸收峰为CoZnAl-LDH特有吸收峰,归属于 CO3 2-的υ3振动,证实了层间CO3 2-的存在。
图6为海胆状CoZnAl-LDH/RGO/g-C3N4 Z型异质结的光催化CO2还原性能表征,实验采用300W氙灯作为光源。从图中可以看到,海胆状CoZnAl-LDH/RGO/g-C3N4 Z型异质结具有较好的催化活性,经5个小时光照,CO产量达到50.53μmolg-1

Claims (10)

1.海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结,其特征在于,该材料由CoZnAl-LDH纳米片、还原氧化石墨烯和石墨相氮化碳共同构成的呈海胆状Z型异质结结构,其中,还原氧化石墨烯作为半导体界面之间的电子传导介质,CoZnAl-LDH纳米片自组装形成海胆状空心结构,石墨相氮化碳均匀负载在CoZnAl-LDH表面,石墨相氮化碳的含量为3-7wt%,石墨相氮化碳与还原氧化石墨烯的质量比为4:1~6:1。
2.海胆状CoZnAl-LDH/RGO/g-C3N4型异质结的制备方法,其特征在于,具体步骤为:
步骤a),将还原氧化石墨烯和石墨相氮化碳分散在水中,超声处理0.5~1h,得到均匀分散的悬浮液;
步骤b),将等摩尔量的硝酸钴、硝酸铝和硝酸锌溶解在水中,然后加入尿素搅拌溶解,得到均匀的混合金属溶液;
步骤c),将步骤a)悬浮液在剧烈搅拌下逐滴加入到步骤b)混合金属溶液中,在室温下搅拌0.5~1h,然后将所得混合溶液于180±10℃下水热反应6~8h,自然冷却至室温,离心分离,洗涤,真空干燥,得到海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结。
3.如权利要求2所述的方法,其特征在于,步骤a)中,石墨相氮化碳与还原氧化石墨烯的质量比为4:1~6:1。
4.如权利要求2所述的方法,其特征在于,步骤a)中,制备石墨相氮化碳的前驱体为三聚氰胺、二氰二胺、单氰胺、尿素中的一种。
5.如权利要求2所述的方法,其特征在于,步骤b)中,硝酸钴在混合金属溶液中摩尔浓度为0.05mol/L。
6.如权利要求2所述的方法,其特征在于,步骤b)中,硝酸钴与尿素的摩尔浓度比为1:6。
7.如权利要求2所述的方法,其特征在于,步骤c)中,60℃下真空干燥6~12h。
8.如权利要求1所述的海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结在光催化CO2还原反应中的应用。
9.如权利要求2~7任一所述的方法制备的海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结在光催化污染物降解和光催化还原二氧化碳中的应用。
10.一种CO2光催化剂,其特征在于,包括如权利要求1所述的海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结,或包括如权利要求2~7任一所述的方法制备的海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结。
CN201810942169.7A 2018-08-17 2018-08-17 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用 Expired - Fee Related CN109012731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810942169.7A CN109012731B (zh) 2018-08-17 2018-08-17 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810942169.7A CN109012731B (zh) 2018-08-17 2018-08-17 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109012731A true CN109012731A (zh) 2018-12-18
CN109012731B CN109012731B (zh) 2021-04-27

Family

ID=64631114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810942169.7A Expired - Fee Related CN109012731B (zh) 2018-08-17 2018-08-17 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109012731B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109570490A (zh) * 2018-12-28 2019-04-05 中国科学院合肥物质科学研究院 极度纯净表面形貌可控的海胆状中空金纳米帽的制备方法
CN110230072A (zh) * 2019-05-06 2019-09-13 湖北大学 一种在泡沫镍上的N-NiZnCu LDH/rGO纳米片阵列材料的制备方法和应用
CN110665527A (zh) * 2019-09-29 2020-01-10 南京理工大学 海胆状g-C3N4/NiAl-LDH半导体异质结的制备方法
CN111167499A (zh) * 2020-01-21 2020-05-19 佛山科学技术学院 一种NiM-LDH/g-C3N4复合光催化材料及其制备方法
CN111875546A (zh) * 2020-04-30 2020-11-03 杭州师范大学 一种海胆状钴基光催化剂在转化co2合成苯并氮杂环中的应用
CN113638002A (zh) * 2021-07-14 2021-11-12 上海应用技术大学 一种FeCo LDH/Ti3C2 MXene/NF复合材料及其制备方法和应用
CN113649056A (zh) * 2021-09-08 2021-11-16 广西师范大学 一种光催化二氧化碳还原催化剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514450A (zh) * 2015-12-20 2016-04-20 青岛科技大学 氮掺杂石墨烯/镍铁类水滑石双功能氧催化剂及其制备方法和应用
CN105826574A (zh) * 2016-03-24 2016-08-03 青岛科技大学 氮掺杂石墨烯/钴铁类水滑石双功能氧催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514450A (zh) * 2015-12-20 2016-04-20 青岛科技大学 氮掺杂石墨烯/镍铁类水滑石双功能氧催化剂及其制备方法和应用
CN105826574A (zh) * 2016-03-24 2016-08-03 青岛科技大学 氮掺杂石墨烯/钴铁类水滑石双功能氧催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARTHASARATHI BANDYOPADHYAY ET AL.: "Graphitic carbon nitride modified graphene/Ni-Al layered double hydroxide and 3D functionalized graphene for solid-state asymmetric supercapacitors", 《CHEMICAL ENGINEERING JOURNAL》 *
SURENDAR TONDA ET AL.: "g-C3N4/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuel", 《APPL. MATER. INTERFACES》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109570490A (zh) * 2018-12-28 2019-04-05 中国科学院合肥物质科学研究院 极度纯净表面形貌可控的海胆状中空金纳米帽的制备方法
CN109570490B (zh) * 2018-12-28 2021-01-22 中国科学院合肥物质科学研究院 纯净表面形貌可控的海胆状中空金纳米帽的制备方法
CN110230072A (zh) * 2019-05-06 2019-09-13 湖北大学 一种在泡沫镍上的N-NiZnCu LDH/rGO纳米片阵列材料的制备方法和应用
CN110665527A (zh) * 2019-09-29 2020-01-10 南京理工大学 海胆状g-C3N4/NiAl-LDH半导体异质结的制备方法
CN110665527B (zh) * 2019-09-29 2022-09-27 南京理工大学 海胆状g-C3N4/NiAl-LDH半导体异质结的制备方法
CN111167499A (zh) * 2020-01-21 2020-05-19 佛山科学技术学院 一种NiM-LDH/g-C3N4复合光催化材料及其制备方法
CN111167499B (zh) * 2020-01-21 2022-11-22 佛山科学技术学院 一种NiM-LDH/g-C3N4复合光催化材料及其制备方法
CN111875546A (zh) * 2020-04-30 2020-11-03 杭州师范大学 一种海胆状钴基光催化剂在转化co2合成苯并氮杂环中的应用
CN111875546B (zh) * 2020-04-30 2022-02-01 杭州师范大学 一种海胆状钴基光催化剂在转化co2合成苯并咪唑酮类化合物中的应用
CN113638002A (zh) * 2021-07-14 2021-11-12 上海应用技术大学 一种FeCo LDH/Ti3C2 MXene/NF复合材料及其制备方法和应用
CN113649056A (zh) * 2021-09-08 2021-11-16 广西师范大学 一种光催化二氧化碳还原催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN109012731B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Yu et al. In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity
CN109012731A (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
Guo et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH
CN102671683B (zh) 一种纳米片自组装C掺杂(BiO)2CO3微球可见光催化剂的制备方法
CN106582771B (zh) 一种宽光谱响应的磁性可见光催化剂的制备方法
WO2017071580A1 (en) A composite photocatalyst, preparation and use thereof
CN107456991B (zh) 一种g-C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
Li et al. Acid etching followed by hydrothermal preparation of nanosized Bi2O4/Bi2O3 pn junction as highly efficient visible-light photocatalyst for organic pollutants removal
CN107081166A (zh) 一种g‑C3N4/TiO2多级结构及其制备方法
CN110237834B (zh) 一种碳量子点/氧化锌可见光催化剂的制备方法
CN109046425A (zh) 一种MOF基衍生的复合光催化剂TiO2/g-C3N4的制备方法
CN106925304B (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
CN105396606A (zh) 一种氧化铈/石墨烯量子点/类石墨烯相氮化碳复合光催化材料及其制备方法
CN103861630A (zh) 一种共聚合改性的石墨相氮化碳空心球可见光催化剂
Wang et al. When MoS 2 meets TiO 2: facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications
Zhang et al. Enhanced photocatalytic activities of CdS-BiOCl/PAN composites towards photocatalytic hydrogen evolution
CN111632614A (zh) 三维花瓣状NiAl-LDH/Ti3C2复合光催化剂及其制备方法和应用
CN108246241A (zh) 一种由螺旋状g-C3N4/ZnO复合纳米棒组装的海胆型超结构材料
Yan et al. Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity
CN112473712A (zh) 采用不同气氛处理的CeO2/g-C3N4异质结材料及其制备方法和应用
CN113058617A (zh) 一种光催化剂及其制备方法和应用
Yu et al. Significant improvement of photocatalytic hydrogen evolution rate over g-C3N4 with loading CeO2@ Ni4S3
CN102500350A (zh) 高效二氧化钛复合光催化剂及其制备方法
CN107362792A (zh) 一种钛酸锶/铌酸锡复合纳米材料的制备方法
CN113441145A (zh) 一种钛酸钡/羟基氧化铁光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210427