CN106582771B - 一种宽光谱响应的磁性可见光催化剂的制备方法 - Google Patents

一种宽光谱响应的磁性可见光催化剂的制备方法 Download PDF

Info

Publication number
CN106582771B
CN106582771B CN201611257560.0A CN201611257560A CN106582771B CN 106582771 B CN106582771 B CN 106582771B CN 201611257560 A CN201611257560 A CN 201611257560A CN 106582771 B CN106582771 B CN 106582771B
Authority
CN
China
Prior art keywords
cqds
preparation
wide spectrum
magnetic photocatalyst
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611257560.0A
Other languages
English (en)
Other versions
CN106582771A (zh
Inventor
石建惠
冯淑婷
温月丽
高珊
李育珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201611257560.0A priority Critical patent/CN106582771B/zh
Publication of CN106582771A publication Critical patent/CN106582771A/zh
Application granted granted Critical
Publication of CN106582771B publication Critical patent/CN106582771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于涉及光催化剂的制备领域,具体为一种宽光谱响应的磁性可见光催化剂的制备方法。解决了目前纯的g‑C3N4光催化剂存在催化活性不高、光谱相应范围较窄且易引入二次污染的问题。本发明步骤如下:(1)二维层状结构g‑C3N4纳米片的制备:将g‑C3N4反应前驱体在500℃下保温2h,研磨后在500~580℃条件下保温2~4h,得到二维层状结构g‑C3N4纳米片;(2)制备Fe3O4纳米晶;(3)制备g‑C3N4/CQDs@Fe3O4三元复合磁性光催化剂。本发明所提出的三元复合磁性纳米光催化剂可实现纳米催化剂对有机污染物的高效降解及其重复回收。碳量子点的上转换荧光性质,可以有效地将长波长光转换成短波长光,实现复合物催化剂的宽光谱响应。

Description

一种宽光谱响应的磁性可见光催化剂的制备方法
技术领域
本发明属于涉及光催化剂的制备领域,具体为一种宽光谱响应的磁性可见光催化剂的制备方法。
背景技术
工业废水中染料、酚类化合物等有机污染物引发的水污染问题及对人类可持续发展造成的影响已受到人们的高度关注。这些有机污染物可通过印染、纺织、炼焦、煤化工、制药等工业生产过程直接进入水体,对水体造成污染,危害人体健康,破坏生态系统[1]。因此,工业废水中有机污染物的处理刻不容缓。我国对工业废水污染防控和治理高度重视。2015年4月2日,国务院正式发布“水十条”《水污染防治行动计划》中列出专项整治的十大重点行业,包括造纸、焦化、印染、原料药制造等行业。近年来国内外学者对染料、酚类有机污染物的处理通常采用萃取法,化学法,生化法,物理法等[2]。然而,上述技术对于此类废水的处理存在降解率低、成本高、难回收、易引入二次污染等缺点。
目前,光催化降解技术是处理工业废水较为有效的方法之一,利用光催化剂表面的光生电子-空穴,通过氧化还原反应去除水中有机污染物,具有高效、节能、成本低、净化彻底,不产生二次污染等优点。TiO2作为使用最早、最广泛、最具代表性的光催化剂,由于宽的带隙(3.2eV)只对紫外光有响应,且光生电子-空穴容易复合、催化活性低等极大地限制了其实际应用。因此,寻求环境友好、低成本、可回收且兼具宽光谱响应和高效催化活性的催化剂是光催化发展走向实用化的关键。2009年,福州大学王心晨教授等发现石墨相氮化碳(g-C3N4)可以在可见光的照射下将水分解为氢气和氧气[3]。从此,g-C3N4引起越来越多科研工作者的关注与研究[4-6],它具有很好的化学稳定性,热稳定性,可见光响应性质,被认为在光催化领域有很大潜力。合成g-C3N4的原料和方法都比较简单,完全满足低成本的要求。但纯的g-C3N4还存在以下几方面的缺点:(1)具有较高的光生电子-空穴复合率,低的量子效率和催化活性;(2)g-C3N4的禁带宽度约2.7 eV,光谱响应范围较窄,对太阳能利用率不高;(3)纳米级光催化剂难以回收,重复利用率低,易引入二次污染。
相关文献
[1] L. Q. Jing, W. Zhou, G. H.Tian and H. G. Fu. Surface tuning foroxide-based nanomaterials as efficient photocatalysts, Chem Soc Rev., 2013,42 (24), 9509-9549.
[2] M. N. Chong, B. Jin, C. Chow. Recent developments inphotocatalytic water treatment technology: A review, Water Res.,2010, 44(10),2997-3027.
[3] X. C. Wang, K. Maeda, A. Thomas K. Takanabe, G.Xin, J. M.Carlsson, K. Domen and M. Antonietti. A metal-free polymeric photocatalystfor hydrogen production from water under visible light, Nat Mater, 2009, 8,76-80.
[4] M. M. Li, L. X. Zhang, M. Y. Wu, Y. Y. Du, X. Q. Fan, M. Wang, L.L. Zhang, Q. L. Kong and J. L. Shi. Mesostructured CeO2/g-C3N4nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reductionby mutual component activations, Nano Energy, 2016, 19, 145-155.
[5] Q. L. Tay, P. Kanhere, C. F. Ng, S Chen, S. Chakraborty, A. C. H.Huan, T. C. Sum, R. Ahuja and Z. Chen. Defect Engineered g-C3N4 for EfficientVisible Light Photocatalytic Hydrogen Production, Chem. Mater., 2015, 27(14), 4930–4933.
[6] Q. Han, B. Wang, J. Gao, Z. H. Cheng, Y. Zhao, Z. P. Zhang and L.T. Qu. Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution, ACS Nano, 2016, 10 (2), 2745–2751。
发明内容
本发明为解决目前纯的g-C3N4光催化剂存在催化活性不高、光谱响应范围较窄且易引入二次污染的技术问题,提供一种宽光谱响应的磁性可见光催化剂的制备方法。
本发明是采用以下技术方案实现的:一种宽光谱响应的磁性可见光催化剂的制备方法,包括如下步骤:(1)二维层状结构g-C3N4纳米片的制备:将g- C3N4反应前驱体在500℃下保温2h,研磨后在500~580℃条件下保温2~4h,得到二维层状结构g-C3N4纳米片;
(2)制备Fe3O4纳米晶;
(3)制备g-C3N4/CQDs@Fe3O4三元复合磁性光催化剂:
(a)以Fe3O4纳米晶为核,通过3-氨丙基三乙氧基硅烷进行表面氨基化修饰;
(b)将碳量子点CQDs与表面氨基化的Fe3O4纳米晶在80℃条件下超声混合8h,形成核壳结构Fe3O4@CQDs复合物;
(c)通过静态生长的方法将CQDs@Fe3O4核壳结构复合物负载在二维层状结构g-C3N4纳米片上,得到g-C3N4/CQDs@Fe3O4三元复合磁性光催化剂。
本发明所述g-C3N4/CQDs@Fe3O4三元复合磁性光催化剂的制备是解决现有的g-C3N4光催化剂存在的催化活性不高、光谱响应范围较窄且易引入二次污染等技术问题的有效途径之一。本发明构建的g-C3N4/CQDs@Fe3O4三元复合光催化剂具有以下优点:(1)碳量子点(简称CQDs)作为一类新型的纳米碳材料,合成原材料丰富价廉、水溶性好且具有宽的光吸收光谱、优秀的电子转移和存储能力等优点,与半导体耦合可提高光的捕获效率;改善界面电子转移,有效降低光生电子-空穴复合率,提高光催化活性。。(2)碳量子点(≤ 4 nm)特有的上转换荧光性质,可以将长波长光(近红外光)转换为短波长光(紫外-可见光),使复合光催化剂得以宽光谱响应,提高太阳能利用效率,改善催化活性。(3)从实际应用角度考虑,小尺寸、单分散并具有亚铁磁性的Fe3O4纳米颗粒具有良好的磁响应特性,可实现催化剂的重复回收再利用,避免引入二次污染。
采用本发明所述的方法,能够有效制备出g-C3N4/CQDs@Fe3O4三元复合磁性光催化剂,可以充分利用碳量子点的上转换荧光性质以及宽光谱响应特性。
本发明的有益效果:(1):本发明所提出的三元复合磁性纳米光催化剂 g-C3N4/CQDs@Fe3O4,可实现纳米催化剂对太阳能的充分利用,对有机污染物的高效降解及其重复回收再利用。这一方法构思巧妙新颖,相关的研究目前鲜有报道。
(2):碳量子点特有的上转换荧光性质,可以有效地将长波长光(近红外光)转换成短波长光(紫外-可见光),实现复合物催化剂的宽光谱响应,提高太阳能的利用效率,增强复合物的光催化活性。为新型纳米催化剂的设计合成提供新思路,进一步提高其实际应用价值。
附图说明
图1 为g-C3N4可见光催化剂的合成过程示意图。
图2 为Fe3O4纳米晶合成过程示意图。
图3 为g-C3N4/CQDs@Fe3O4的合成过程示意图。
图4为不同前躯体制得的g-C3N4的XRD图(a:三聚氰胺;b:尿素;c:二氰二胺;d:三聚氰胺盐酸盐)。
图5为制得的碳量子点的上转换荧光发射光谱图。
图6 图A和图B是选用不同前躯体制得的具有不同形貌的g-C3N4二维层状纳米片TEM图;图C和图D是分别在图A和图B的基础上沉积碳量子点制得的g-C3N4/CQDs复合物TEM图。
图7 图中(1)-(3)是不同前驱体合成的C3N4在可见光下降解对羟基苯酚的测试曲线(a:尿素;b:C3N4(三聚氰胺)g-/CQDs;c:三聚氰胺;d:三聚氰胺盐酸盐);(4)是样品在近红外光下降解对羟基苯酚的测试曲线。
具体实施方式
一种宽光谱响应的磁性可见光催化剂的制备方法,包括如下步骤:(1)二维层状结构g-C3N4纳米片的制备:将g- C3N4反应前驱体在500℃下保温2h,研磨后在500~580℃条件下保温2~4h,得到二维层状结构g-C3N4纳米片;
(2)制备Fe3O4纳米晶;
(3)制备g-C3N4/CQDs@Fe3O4三元复合磁性光催化剂:
(a)以Fe3O4纳米晶为核,通过3-氨丙基三乙氧基硅烷进行表面氨基化修饰;
(b)将碳量子点CQDs与表面氨基化的Fe3O4纳米晶在80℃条件下超声混合8h,形成核壳结构Fe3O4@CQDs复合物;
(c)通过静态生长的方法将CQDs@Fe3O4核壳结构复合物负载在二维层状结构g-C3N4纳米片上(混合在一起),得到g-C3N4/CQDs@Fe3O4三元复合磁性光催化剂,生长温度80℃,时间8h。
如图1为g-C3N4可见光催化剂的合成过程示意图, g-C3N4反应前驱体采用三聚氰胺或三聚氰胺盐酸盐或尿素或二氰二胺。
所述碳量子点CQDs通过选取葡萄糖作为碳源,采用水热法合成。
图2为Fe3O4纳米晶的合成过程示意图。以乙二醇为溶剂和还原剂,以六水合三氯化铁( FeCl3·6H2O)为铁源,用无水醋酸钠调节溶液的pH值,以十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTAB),油酸钠,柠檬酸钠等作为表面活性剂,合成表面修饰、粒径可调、结晶度高、分散性好的Fe3O4纳米晶。
图4是选用不同的前躯体,在选定的焙烧温度和时间条件下,制得不同结构、形貌的g-C3N4的XRD图,可以看出,所有样品在2θ为12.8°和27.5°处有两个明显特征峰,分别对应g-C3N4的(100)和(002)晶面,表明其所有衍射峰均归属于典型的类石墨六角晶相氮化碳。图5为碳量子点上转换荧光光谱,如图所示,其上转换波长随着激发光波长增加而増加,在1000 nm激发光处,拥有最佳的上转换效率,且发射光波长为525 nm左右。随着激发光从600nm増加到1000 nm,其发射光从450 nm増加到550 nm,表明做制备的碳量子点具有上转换荧光性质。图6 TEM结果表明不同的前驱体可得到不同表面结构的g-C3N4,并且可以看到碳量子均成功地沉积在不同结构的g-C3N4表面上。图7是我们研究的g-C3N4及g-C3N4/CQDs复合物降解对硝基苯酚的催化活性,结果显示,g-C3N4/CQDs复合物比纯的g-C3N4表现出更优越的可见光催化性能,降解时间能缩短20 min;同时在近红外光照射下也表现出一定的催化活性,降解效率达25%。

Claims (3)

1.一种宽光谱响应的磁性可见光催化剂的制备方法,其特征在于,包括如下步骤:(1)二维层状结构g-C3N4纳米片的制备:将g- C3N4反应前驱体在500℃下保温2h,研磨后在500~580℃条件下保温2~4h,得到二维层状结构g-C3N4纳米片;
(2)制备Fe3O4纳米晶;
(3)制备g-C3N4/CQDs@Fe3O4三元复合磁性光催化剂:
(a)以Fe3O4纳米晶为核,通过3-氨丙基三乙氧基硅烷进行表面氨基化修饰;
(b)将碳量子点CQDs与表面氨基化的Fe3O4纳米晶在80℃条件下超声混合8h,形成核壳结构Fe3O4@CQDs复合物;
(c)通过静态生长的方法将CQDs@Fe3O4核壳结构复合物负载在二维层状结构g-C3N4纳米片上,生长温度80℃,时间8h,得到g-C3N4/CQDs@Fe3O4三元复合磁性光催化剂。
2.如权利要求1所述的一种宽光谱响应的磁性可见光催化剂的制备方法,其特征在于,步骤(1)中g-C3N4反应前驱体采用三聚氰胺或三聚氰胺盐酸盐或尿素或二氰二胺。
3.如权利要求1或2所述的一种宽光谱响应的磁性可见光催化剂的制备方法,其特征在于,所述碳量子点CQDs通过选取葡萄糖作为碳源,采用水热法合成。
CN201611257560.0A 2016-12-30 2016-12-30 一种宽光谱响应的磁性可见光催化剂的制备方法 Active CN106582771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611257560.0A CN106582771B (zh) 2016-12-30 2016-12-30 一种宽光谱响应的磁性可见光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611257560.0A CN106582771B (zh) 2016-12-30 2016-12-30 一种宽光谱响应的磁性可见光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN106582771A CN106582771A (zh) 2017-04-26
CN106582771B true CN106582771B (zh) 2018-11-30

Family

ID=58583140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611257560.0A Active CN106582771B (zh) 2016-12-30 2016-12-30 一种宽光谱响应的磁性可见光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106582771B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107715882B (zh) * 2017-10-24 2019-12-17 中北大学 碳点杂化多面体镍氧化物光催化剂的制备方法
CN108193220B (zh) * 2017-12-29 2020-05-12 吉林大学 一种CQDs/GCNNs/Fe2-xTixO3/FTO光阳极的制备方法
CN108295880B (zh) * 2018-01-23 2020-07-31 莆田学院 一种磁性多功能光催化剂纳米复合材料及其制备方法
CN108772093B (zh) * 2018-06-27 2021-05-11 中南民族大学 一种高可见光活性石墨相氮化碳纳米片及其制备方法
CN109603879A (zh) * 2018-12-24 2019-04-12 新疆工程学院 一种碳量子点修饰的石墨相氮化碳光催化材料的制备方法
CN109847780A (zh) * 2019-01-30 2019-06-07 太原理工大学 一种AgBr/BiOI/g-C3N4三元复合催化材料的制备方法及其应用
CN112768706B (zh) * 2019-11-05 2022-01-28 中国科学院大连化学物理研究所 一种核壳催化剂及其制备方法与在可充电锌空电池中的应用
CN110903490B (zh) * 2019-12-13 2022-06-17 湖南文理学院 一种金属有机化合物半导体微纳米材料其制备方法及应用
CN112044460B (zh) * 2020-08-05 2022-11-08 太原理工大学 一种增强石墨相氮化碳矿化四环素类抗生素的方法
CN112264075B (zh) * 2020-11-09 2022-08-26 华侨大学 一种适用于中低温条件的高效脱汞光催化剂及其制备方法
CN113600164B (zh) * 2021-07-30 2023-07-21 江苏理工学院 一种铁掺杂碳量子点/石墨相氮化碳复合光催化剂的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2258474A1 (en) * 2008-02-20 2010-12-08 Showa Denko K.K. Catalyst carrier, catalyst and method for producing the same
CN103143377A (zh) * 2013-02-19 2013-06-12 中国科学院理化技术研究所 一种杂原子掺杂的水溶性碳量子点在光催化剂上的应用
CN105536847A (zh) * 2016-02-19 2016-05-04 浙江一清环保工程有限公司 一种水浴合成磁分离g-C3N4Fe3O4光催化剂的方法
CN105688899A (zh) * 2016-03-22 2016-06-22 江苏大学 一种三元复合光催化剂的制备方法和用途
CN106238053A (zh) * 2016-07-06 2016-12-21 华南理工大学 一种光芬顿催化剂Fe3O4/rGO/TiO2及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2258474A1 (en) * 2008-02-20 2010-12-08 Showa Denko K.K. Catalyst carrier, catalyst and method for producing the same
CN103143377A (zh) * 2013-02-19 2013-06-12 中国科学院理化技术研究所 一种杂原子掺杂的水溶性碳量子点在光催化剂上的应用
CN105536847A (zh) * 2016-02-19 2016-05-04 浙江一清环保工程有限公司 一种水浴合成磁分离g-C3N4Fe3O4光催化剂的方法
CN105688899A (zh) * 2016-03-22 2016-06-22 江苏大学 一种三元复合光催化剂的制备方法和用途
CN106238053A (zh) * 2016-07-06 2016-12-21 华南理工大学 一种光芬顿催化剂Fe3O4/rGO/TiO2及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation";Hui Zhang et al.;《Applied Catalysis B: Environmental》;20150717;第180卷;第1656-662页 *
"Construction of high-dispersed Ag/Fe3O4/g-C3N4photocatalyst by selective photo-deposition and improved photocatalytic activity";Zhi Zhu et al.;《Applied Catalysis B: Environmental》;20150914;第182卷;第115-122页 *
"Preparation and characterisation of multifunctional magnetic-fluorescent Fe3O4/carbon dots/silica composites";Yu-jie Ma et al.;《Micro & Nano Letters》;20130630;第8卷(第6期);第302-304页 *

Also Published As

Publication number Publication date
CN106582771A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106582771B (zh) 一种宽光谱响应的磁性可见光催化剂的制备方法
Qi et al. Graphitic carbon nitride, a polymer photocatalyst
Chen et al. Layered photocatalytic nanomaterials for environmental applications
Aghdam et al. Precipitation dispersion of various ratios of BiOI/BiOCl nanocomposite over g-C3N4 for promoted visible light nanophotocatalyst used in removal of acid orange 7 from water
Wang et al. An overview on nitride and nitrogen-doped photocatalysts for energy and environmental applications
Tian et al. Microwave-induced crystallization of AC/TiO2 for improving the performance of rhodamine B dye degradation
CN109603880A (zh) 中空管状氮化碳光催化剂及其制备方法和应用
CN102671683B (zh) 一种纳米片自组装C掺杂(BiO)2CO3微球可见光催化剂的制备方法
Xu et al. Synthesis and behaviors of g-C3N4 coupled with LaxCo3-xO4 nanocomposite for improved photocatalytic activeity and stability under visible light
CN110237834B (zh) 一种碳量子点/氧化锌可见光催化剂的制备方法
CN109126856B (zh) 一种具有紧密连接的可见光催化剂的制备方法
CN102039117B (zh) 以沉淀白炭黑为载体的负载型纳米TiO2复合材料的制备方法
CN109012731A (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
CN102950016A (zh) 一种ZnO/g-C3N4复合光催化剂的制备方法
CN103007944A (zh) 石墨烯基磁性复合可见光催化材料Fe3O4-G-TiO2的制备方法
CN107081166A (zh) 一种g‑C3N4/TiO2多级结构及其制备方法
CN108579727A (zh) 一种石墨烯量子点-钨酸铋复合光催化剂及其制备方法
Hu et al. Investigation on g-C3N4/rGO/TiO2 nanocomposite with enhanced photocatalytic degradation performance
CN102039118A (zh) 以硅藻土助滤剂为载体的负载型纳米TiO2光催化材料的制备方法
CN104801328A (zh) 一种低温制备TiO2/g-C3N4复合光催化剂的方法
CN104056620A (zh) 一种可见光催化剂及其制备方法与应用
CN110721698B (zh) 一种钒酸铋/钒酸铜复合光催化剂及其制备方法和应用
CN107098429B (zh) 一种BiVO4/BiPO4复合材料及其制备方法和应用
CN101966989B (zh) 一种采用四角氧化锌光催化还原氧化石墨烯的方法
CN115283015B (zh) 一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant