CN109570490B - 纯净表面形貌可控的海胆状中空金纳米帽的制备方法 - Google Patents

纯净表面形貌可控的海胆状中空金纳米帽的制备方法 Download PDF

Info

Publication number
CN109570490B
CN109570490B CN201811622313.5A CN201811622313A CN109570490B CN 109570490 B CN109570490 B CN 109570490B CN 201811622313 A CN201811622313 A CN 201811622313A CN 109570490 B CN109570490 B CN 109570490B
Authority
CN
China
Prior art keywords
roughened
gold nano
cap
film
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811622313.5A
Other languages
English (en)
Other versions
CN109570490A (zh
Inventor
刘广强
张鹏
蔡伟平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201811622313.5A priority Critical patent/CN109570490B/zh
Publication of CN109570490A publication Critical patent/CN109570490A/zh
Application granted granted Critical
Publication of CN109570490B publication Critical patent/CN109570490B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0549Hollow particles, including tubes and shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种纯净表面形貌可控的海胆状中空金纳米帽的制备方法,包括:粗糙化PS球表面,并将PS球转移到PE膜上,得到载有粗糙化的PS球的PE膜;将载有粗糙化的PS球的PE膜放入离子溅射仪的真空室中,得到载有金纳米帽/粗糙化PS球阵列PE膜;将载有金纳米帽/粗糙化PS球阵列PE膜放入CH2Cl2溶液中,待PS球完全被CH2Cl2溶解后取出PE膜,并通过超声机中超声清洗,得到纯净的海胆状金纳米帽。利用反应离子刻蚀粗糙化PS球为掩膜版并在其表面离子溅射一层金膜得到的纯净、尺寸可调以及表面形貌可控的海胆状中空的金纳米帽。

Description

纯净表面形貌可控的海胆状中空金纳米帽的制备方法
技术领域
本发明涉及一种海胆状中空金纳米帽的制备,尤其涉及一种纯净表面形貌可控的海胆状中空金纳米帽的制备方法。
背景技术
一般而言,粗糙化的贵金属金微纳结构具有很好的SERS性能,为此许多科研工作者对其进行研究,制备出各种形貌的金微纳结构,如金纳米棒、纳米花、纳米针尖、纳米球以及纳米多面体等等。为了得到这些微纳结构,科研工作者普遍采用“水热法”,得到形貌可控的微纳结构,但上述方法条件较为苛刻,且通常涉及到两种或两种以上的化学物质参与反应,这种方案往往会引入其它杂质,使最终得到的样品不纯。通常而言,对于金纳米帽的制备往往是利用PS球或者硅球为掩膜版,进而在溅射或者电沉积一层金膜得到金纳米帽,但是直接以PS球或者硅球为掩膜版往往会使最终得到的金纳米帽尺寸局限于PS球的固有尺寸,此外对于金纳米帽的表面形貌无法过多调控。
发明内容
本发明的目的是提供一种纯净表面形貌可控的海胆状中空金纳米帽的制备方法。
本发明的目的是通过以下技术方案实现的:
本发明的纯净表面形貌可控的海胆状中空金纳米帽的制备方法,包括:
步骤一:粗糙化PS球表面,并将PS球转移到PE膜上,得到载有粗糙化的PS球的PE膜;
步骤二:载有金纳米帽/粗糙化PS球阵列PE膜的制备:
将载有粗糙化的PS球的PE膜放入离子溅射仪的真空室中,溅射完成后,待真空度回升至外界大气压时,取出样品即得到载有金纳米帽/粗糙化PS球阵列PE膜;
步骤三:海胆状中空金纳米帽的制备:
将载有金纳米帽/粗糙化PS球阵列PE膜放入CH2Cl2溶液中,待PS球完全被CH2Cl2溶解后取出PE膜,用酒精反复冲洗后,将装有PE膜的带有酒精的试管放入超声机中超声清洗,取出PE膜,则海胆状金纳米帽充分溶解到酒精中,待酒精自然挥发完后,即得到纯净的海胆状金纳米帽。
由上述本发明提供的技术方案可以看出,本发明实施例提供的纯净表面形貌可控的海胆状中空金纳米帽的制备方法,利用反应离子刻蚀粗糙化PS球为掩膜版并在其表面离子溅射一层金膜得到的纯净、尺寸可调以及表面形貌可控的海胆状中空的金纳米帽。
附图说明
图1为本发明实施例提供的纯净表面形貌可控的海胆状中空金纳米帽的制备方法流程示意图;图中:
(a)刻蚀后PS球表面微纳化,(b)喷金后海胆状金纳米帽/粗糙化PS球阵列的制备,(c)用CH2Cl2溶液溶解粗糙化PS球,(d)取出载有海胆状金纳米帽阵列的PE膜多次用酒精洗涤后并用超声机超声后得到的海胆状中空金纳米帽。
图2为本发明实施例中不同刻蚀时间的金纳米帽/粗糙化PS球阵列的SEM照片,喷金3min;图中:
a)刻蚀时间为30s的SEM照片。b)刻蚀时间为60s的SEM照片。c)刻蚀时间为90s的SEM照片。d)刻蚀时间为120s的SEM照片。e)刻蚀时间为150s的SEM照片。f)刻蚀时间为180s的SEM照片。
图3为本发明实施例中刻蚀时间2min、喷金3min的产品照片;图中:
(a)载有金纳米帽/粗糙化PS球阵列的PE膜直接放入酒精中超声得到的金纳米帽/粗糙化PS球照片。(b)载有金纳米帽/粗糙化PS球阵列的PE膜放入CH2Cl2溶液中浸泡12h,后用在酒精中多次洗涤并超声得到的海胆状中空的金纳米帽照片。
具体实施方式
下面将对本发明实施例作进一步地详细描述。本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
本发明的纯净表面形貌可控的海胆状中空金纳米帽的制备方法,其较佳的具体实施方式是:
包括:
步骤一:粗糙化PS球表面,并将PS球转移到PE膜上,得到载有粗糙化的PS球的PE膜;
步骤二:载有金纳米帽/粗糙化PS球阵列PE膜的制备:
将载有粗糙化的PS球的PE膜放入离子溅射仪的真空室中,溅射完成后,待真空度回升至外界大气压时,取出样品即得到载有金纳米帽/粗糙化PS球阵列PE膜;
步骤三:海胆状中空金纳米帽的制备:
将载有金纳米帽/粗糙化PS球阵列PE膜放入CH2Cl2溶液中,待PS球完全被CH2Cl2溶解后取出PE膜,用酒精反复冲洗后,将装有PE膜的带有酒精的试管放入超声机中超声清洗,取出PE膜,则海胆状金纳米帽充分溶解到酒精中,待酒精自然挥发完后,即得到纯净的海胆状金纳米帽。
所述步骤一具体包括:
将500nmPS球和酒精按照一定配比制成,超声后在玻璃片上铺展开来后将PS球转移到PE膜上;
选取载有PS球的PE膜放入反应离子刻蚀机的真空室中,先打开机械泵进行抽气,将真空度尽量较小至不再下降时,打开离子泵,继续降低真空度至0.25Pa,打开六氟化硫气阀让六氟化硫气体缓缓通入,稳定气压一段时间挤出真空室内残留的空气,缓慢调节进气阀使真空度回升至12Pa,六氟化硫流速稳定在65sccm,调节射频功率至200W,刻蚀时间由30s变化到180s,刻蚀结束后,关闭六氟化硫进气阀,由于机械泵和离子泵的作用,真空度继续下降,待真空度下降到0.25Pa时,关闭离子泵,打开N2进气阀,待真空度回升至外界大气压时,取出样品即可得到载有粗糙化的PS球的PE膜。
所述步骤二具体包括:
将载有粗糙化的PS球的PE膜放入离子溅射仪的真空室中,将金靶固定好,待装置密封好后,设置好真空度0.1mbar,溅射时间3min,溅射电流30mA,待一切设置完成后,点击运行按钮,溅射完成后,待真空度回升至外界大气压时,取出样品即可得到一种载有金纳米帽/粗糙化PS球阵列PE膜。
所述步骤三具体包括:
取出一定量的CH2Cl2溶液置于2mL的试管中,将载有金纳米帽/粗糙化PS球阵列PE膜放入其中,静置12h,待PS球完全被CH2Cl2溶解后取出PE膜,放入装有酒精的2ml试管中,静置半小时,再取出PE膜,放入装有酒精的2ml试管中,重复若干次,将装有PE膜的试管(带有酒精)放入超声机中超声半小时,取出PE膜,则海胆状金纳米帽充分溶解到酒精中,待酒精自然挥发完后,即得到纯净的金纳米帽。
本发明的纯净表面形貌可控的海胆状中空金纳米帽的制备方法,是一种并不常见的海胆状中空金纳米帽的制备,且相对其它方法,利用反应离子刻蚀法得到的PS球表面形貌可调,且PS球的尺寸可控,故而得到在其基础上沉积的金膜得到的金纳米帽表面形貌可调,且尺寸可控,由于基本上没有外加的化学物质参与反应,所得到的金纳米帽纯净。
本发明解决的第一个问题是制备了一种金纳米帽/粗糙化PS球阵列的柔性衬底。
本发明解决的第二个问题是利用粗糙化PS球为掩膜版以及离子溅射制备了一种极为纯净的金纳米帽。
本发明解决的第三个问题是制备了一种尺寸可控,表面形貌可调的金纳米帽。
具体实施例,如图1至图3所示,包括步骤:
步骤一:粗糙化PS球表面。将500nmPS球和酒精按照一定配比制成,超声后在玻璃片上铺展开来后将PS球转移到PE膜上。选取载有PS球的PE膜放入反应离子刻蚀机的真空室中,先打开机械泵进行抽气,将真空度尽量较小至不再下降时,打开离子泵,继续降低真空度至0.25Pa,打开六氟化硫气阀让六氟化硫气体缓缓通入,稳定气压一段时间挤出真空室内残留的空气,缓慢调节进气阀使真空度回升至12Pa,六氟化硫流速稳定在65sccm,调节射频功率至200W,刻蚀时间由30s变化到180s,刻蚀结束后,关闭六氟化硫进气阀,由于机械泵和离子泵的作用,真空度继续下降,待真空度下降到0.25Pa时,关闭离子泵,打开N2进气阀,待真空度回升至外界大气压时,取出样品即可得到载有粗糙化的PS球的PE膜。
步骤二:载有金纳米帽/粗糙化PS球阵列PE膜的制备。将载有粗糙化的PS球的PE膜放入离子溅射仪的真空室中,将金靶固定好,待装置密封好后,设置好真空度0.1mbar,溅射时间3min,溅射电流30mA,待一切设置完成后,点击运行按钮,溅射完成后,待真空度回升至外界大气压时,取出样品即可得到一种载有金纳米帽/粗糙化PS球阵列PE膜。
步骤三:海胆状中空金纳米帽的制备。取出一定量的CH2Cl2溶液置于2mL的试管中,将载有金纳米帽/粗糙化PS球阵列PE膜放入其中,静置12h,待PS球完全被CH2Cl2溶解后取出PE膜,放入装有酒精的2ml试管中,静置半小时,再取出PE膜,放入装有酒精的2ml试管中,重复若干次,将装有PE膜的试管(带有酒精)放入超声机中超声半小时,取出PE膜,则海胆状金纳米帽充分溶解到酒精中,待酒精自然挥发完后,即得到纯净的金纳米帽。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (3)

1.一种纯净表面形貌可控的海胆状中空金纳米帽的制备方法,其特征在于,包括:
步骤一:粗糙化PS球表面,并将PS球转移到PE膜上,得到载有粗糙化的PS球的PE膜;
步骤二:载有金纳米帽/粗糙化PS球阵列PE膜的制备:
将载有粗糙化的PS球的PE膜放入离子溅射仪的真空室中,将金靶固定好,待装置密封好后,设置好真空度0.1mbar,溅射时间3min,溅射电流30mA,待一切设置完成后,点击运行按钮,溅射完成后,待真空度回升至外界大气压时,取出样品即可得到一种载有金纳米帽/粗糙化PS球阵列PE膜;
步骤三:海胆状中空金纳米帽的制备:
将载有金纳米帽/粗糙化PS球阵列PE膜放入CH2Cl2溶液中,待PS球完全被CH2Cl2溶解后取出PE膜,用酒精反复冲洗后,将装有PE膜的带有酒精的试管放入超声机中超声清洗,取出PE膜,则海胆状金纳米帽充分溶解到酒精中,待酒精自然挥发完后,即得到纯净的海胆状金纳米帽。
2.根据权利要求1所述的纯净表面形貌可控的海胆状中空金纳米帽的制备方法,其特征在于,所述步骤一具体包括:
将500nmPS球和酒精按照一定配比制成,超声后在玻璃片上铺展开来后将PS球转移到PE膜上;
选取载有PS球的PE膜放入反应离子刻蚀机的真空室中,先打开机械泵进行抽气,将真空度尽量较小至不再下降时,打开离子泵,继续降低真空度至0.25Pa,打开六氟化硫气阀让六氟化硫气体缓缓通入,稳定气压一段时间挤出真空室内残留的空气,缓慢调节进气阀使真空度回升至12Pa,六氟化硫流速稳定在65sccm,调节射频功率至200W,刻蚀时间由30s变化到180s,刻蚀结束后,关闭六氟化硫进气阀,由于机械泵和离子泵的作用,真空度继续下降,待真空度下降到0.25Pa时,关闭离子泵,打开N2进气阀,待真空度回升至外界大气压时,取出样品即可得到载有粗糙化的PS球的PE膜。
3.根据权利要求2所述的纯净表面形貌可控的海胆状中空金纳米帽的制备方法,其特征在于,所述步骤三具体包括:
取出一定量的CH2Cl2溶液置于2mL的试管中,将载有金纳米帽/粗糙化PS球阵列PE膜放入其中,静置12h,待PS球完全被CH2Cl2溶解后取出PE膜,放入装有酒精的2ml试管中,静置半小时,再取出PE膜,放入装有酒精的2ml试管中,重复若干次,将装有PE膜并带有酒精的试管放入超声机中超声半小时,取出PE膜,则海胆状金纳米帽充分溶解到酒精中,待酒精自然挥发完后,即得到纯净的金纳米帽。
CN201811622313.5A 2018-12-28 2018-12-28 纯净表面形貌可控的海胆状中空金纳米帽的制备方法 Active CN109570490B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811622313.5A CN109570490B (zh) 2018-12-28 2018-12-28 纯净表面形貌可控的海胆状中空金纳米帽的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811622313.5A CN109570490B (zh) 2018-12-28 2018-12-28 纯净表面形貌可控的海胆状中空金纳米帽的制备方法

Publications (2)

Publication Number Publication Date
CN109570490A CN109570490A (zh) 2019-04-05
CN109570490B true CN109570490B (zh) 2021-01-22

Family

ID=65932209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811622313.5A Active CN109570490B (zh) 2018-12-28 2018-12-28 纯净表面形貌可控的海胆状中空金纳米帽的制备方法

Country Status (1)

Country Link
CN (1) CN109570490B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079505A (zh) * 2009-12-01 2011-06-01 中国科学院合肥物质科学研究院 二维空心球有序结构阵列及其制备方法
CN102328093A (zh) * 2011-08-30 2012-01-25 吉林大学 种子中介法制备具有海胆状结构金纳米粒子的方法
CN105755431A (zh) * 2016-04-25 2016-07-13 上海交通大学 一种基于置换法合成金纳米颗粒的sers基底制备方法
CN106475039A (zh) * 2016-10-09 2017-03-08 同济大学 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用
CN107308462A (zh) * 2017-06-08 2017-11-03 浙江大学 一种海胆状纳米金的绿色制备方法及其在肿瘤成像及治疗中的应用
CN108686592A (zh) * 2018-05-21 2018-10-23 陕西科技大学 一种海胆状双壳层中空微球的制备方法
CN108895690A (zh) * 2018-07-05 2018-11-27 南京大学 一种硅基半导体-金属纳米复合材料及其制备方法
CN109012731A (zh) * 2018-08-17 2018-12-18 南京理工大学 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765387B1 (ko) * 2015-06-24 2017-08-23 서강대학교산학협력단 금속 코아 간 초미세 보이드를 가지는 나노 갭 구조체 및 이를 이용한 분자 검출 장치 및 방법, 선택적 에칭을 통한 상기 나노 갭 구조체의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079505A (zh) * 2009-12-01 2011-06-01 中国科学院合肥物质科学研究院 二维空心球有序结构阵列及其制备方法
CN102328093A (zh) * 2011-08-30 2012-01-25 吉林大学 种子中介法制备具有海胆状结构金纳米粒子的方法
CN105755431A (zh) * 2016-04-25 2016-07-13 上海交通大学 一种基于置换法合成金纳米颗粒的sers基底制备方法
CN106475039A (zh) * 2016-10-09 2017-03-08 同济大学 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用
CN107308462A (zh) * 2017-06-08 2017-11-03 浙江大学 一种海胆状纳米金的绿色制备方法及其在肿瘤成像及治疗中的应用
CN108686592A (zh) * 2018-05-21 2018-10-23 陕西科技大学 一种海胆状双壳层中空微球的制备方法
CN108895690A (zh) * 2018-07-05 2018-11-27 南京大学 一种硅基半导体-金属纳米复合材料及其制备方法
CN109012731A (zh) * 2018-08-17 2018-12-18 南京理工大学 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用

Also Published As

Publication number Publication date
CN109570490A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
Latthe et al. Self-cleaning and superhydrophobic CuO coating by jet-nebulizer spray pyrolysis technique
CN109648096B (zh) 一种任意纳米锥阵列原位转化为银纳米片构筑的微/纳米结构阵列的方法
CN110243506A (zh) 一种压阻式压力传感器及其制备方法
CN104459854B (zh) 金属光栅的制备方法
TW201038779A (en) Silicon substrate with periodical structure
CN103499847A (zh) 一种具有光学增透功能的中空纳米锥阵列膜的制备方法
CN108517696B (zh) 一种图案化柔性导电石墨烯布的制备方法
CN108963001A (zh) 一种定位生长钙钛矿薄膜阵列的方法
TW201108321A (en) Method for etching of silicon surfaces
CN104498907B (zh) 一种在低功耗低气压条件制备疏水性碳膜的方法
CN109570490B (zh) 纯净表面形貌可控的海胆状中空金纳米帽的制备方法
CN103588165A (zh) 一种三维跨尺度碳电极阵列结构及其制备方法
CN103979485B (zh) 一种微纳多孔硅材料的制备方法
CN103995435A (zh) 纳米图案化蓝宝石衬底及其制备方法
CN106220237A (zh) 一种单层有序二氧化硅纳米球阵列的制备方法
CN115440585A (zh) 金属纳米结构及其离子束刻蚀加工方法
US20180298507A1 (en) Transfer of vertically aligned ultra-high density nanowires onto flexible substrates
CN103489753B (zh) 一种大面积小尺寸核壳结构硅纳米线阵列的制备方法
CN107170679A (zh) 一种导电图形的制作方法、导电图形及显示基板
CN100373588C (zh) 一种交叉线阵列结构有机分子器件的制备方法
CN110931165B (zh) 透明银电极的制备方法
CN110294456A (zh) 一种利用硅纳米线模板制备银纳米棒阵列结构材料的方法
CN208796979U (zh) 一种三维吸气剂薄膜结构
CN205948186U (zh) 一种微结构体模版
CN111081541B (zh) 一种基于深硅刻蚀的柔性硅片的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant