CN105688939B - 基于能带调制的双重量子点敏化氧化物复合光催化材料 - Google Patents

基于能带调制的双重量子点敏化氧化物复合光催化材料 Download PDF

Info

Publication number
CN105688939B
CN105688939B CN201610108827.3A CN201610108827A CN105688939B CN 105688939 B CN105688939 B CN 105688939B CN 201610108827 A CN201610108827 A CN 201610108827A CN 105688939 B CN105688939 B CN 105688939B
Authority
CN
China
Prior art keywords
graphene
quantum dot
sensitized
oxide composite
energy band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610108827.3A
Other languages
English (en)
Other versions
CN105688939A (zh
Inventor
魏志鹏
方铉
李金华
楚学影
苗元华
方芳
李如雪
陈雪
王晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201610108827.3A priority Critical patent/CN105688939B/zh
Publication of CN105688939A publication Critical patent/CN105688939A/zh
Application granted granted Critical
Publication of CN105688939B publication Critical patent/CN105688939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J35/39

Abstract

本发明涉及一种基于能带调制的双重量子点敏化石墨烯/氧化物复合结构光催化材料的制备方法,属于半导体材料光催化领域。本发明在能带调制原理下,利用石墨烯与氧化物形成复合结构,通过能级位置的差别实现复合结构中光生载流子的有效分离,采用窄带隙半导体量子点对氧化锌进行敏化,采用金属量子点对石墨烯进行敏化,在进一步增加光生载流子的分离和传递的同时,还可以拓宽光谱响应范围。本发明的优势是在宽的光谱响应范围下,利用双重量子点敏化既可以实现载流子的分离,又能够促进光生电子和空穴的快速传递,减少复合几率。

Description

基于能带调制的双重量子点敏化氧化物复合光催化材料
技术领域
本发明涉及一种基于能带调制的双重量子点敏化石墨烯/氧化物复合结构光催化材料的制备方法,属于半导体材料光催化领域。
背景技术
随着环境污染的不断加剧,对污染物的处理一直是各国科研人员的研究热点。半导体光催化材料是降解有机污染物的有效途径之一。目前,实现光生载流子有效分离和传递,减少复合几率;拓宽光谱响应范围,增加太阳光利用效率;增加比表面积,提高与被降解物的有效接触程度是高效率光催化材料研究中的主要内容。常用的方式是对半导体材料进行掺杂、表面修饰或构建半导体复合结构。通过将不同的半导体纳米材料,或者半导体纳米材料与金属量子点、半导体量子点组合在一起,形成新的双组分或者多组分异质结构复合材料,从而提高光催化性能。
目前常用的半导体光催化材料有二氧化钛(TiO2),氧化锌(ZnO)等。氧化锌为直接带隙材料,具有高吸收系数和高量子效率等优点。石墨烯为零带隙材料,载流子迁移率高。因此,石墨烯与氧化锌形成的复合结构可将氧化锌中光生电子快速分离到石墨烯一侧,提高了光生载流子的分离和传递效率。同时利用窄带隙半导体量子点(CdSe、CdS等)和金属量子点(Pt、Au、Ag等)对石墨烯/氧化锌复合结构进行敏化,能够提高光谱响应范围,且进一步提高光生载流子的转移效率。
本发明从能带调制实现载流子有效分离的角度出发,选择石墨烯与氧化物形成复合结构,采用窄带隙半导体量子点对氧化物进行敏化,采用金属量子点对石墨烯进行敏化,本发明的优势是在宽的光谱响应范围下,利用双重量子点敏化既可以实现载流子的分离,又能够促进光生电子和空穴的快速传递,减少复合几率。
发明内容
本发明从能带调制实现载流子有效分离的角度出发,提出一种基于能带调制的双重量子点敏化石墨烯/氧化物复合结构光催化材料的制备方法。首先利用溅射或沉积等方法在衬底材料上生长金属量子点材料(Pt、Au、Ag等);其次利用化学气相沉积(CVD)制备石墨烯并迁移至已沉积金属量子点的衬底材料表面;在此基础上采用原子层沉积(ALD)进一步生长氧化物薄膜;最后采用化学浴(CBD)方法在金属量子点敏化的石墨烯/氧化物复合结构上生长窄带隙半导体量子点(CdSe、CdS等)材料,得到双重量子点敏化的石墨烯/氧化物复合光催化材料。
本发明的技术效果在于利用窄带隙半导体量子点和金属量子点对石墨烯/氧化物进行双重量子点敏化处理,能够在宽的光谱响应范围下,即紫外-可见光范围内,实现载流子的高效分离,促进光生电子和空穴的快速传递,减少复合几率,最终提高半导体材料的光催化性能。
具体实施方式
实施例一:
步骤一:利用等离子体溅射仪在玻璃衬底表面生长Pt量子点材料,电流为15mA,溅射时间为10秒,延长溅射时间将影响Pt量子点的尺寸及密度;
步骤二:利用CVD在常压下用Ni膜作为催化剂生长石墨烯,生长温度为930℃。利用无胶迁移将所生长的石墨烯迁移至沉积Pt量子点的玻璃衬底表面,其中迁移用腐蚀液为FeCl3
步骤三:利用ALD生长ZnO薄膜,Zn源采用Zn(C2H5)2,无需加热,用水(H2O)做氧(O)源,氮气(N2)作为载气,沉积温度120℃,脉冲间隔时间为0.02秒,沉积周期为500周期;
步骤四:利用CBD方法生长CdS量子点,将Pt量子点/石墨烯/氧化锌交替浸泡在0.2mol/L的Na2S和0.2mol/L的Cd(NO3)2溶液中5分钟,期间用去离子水反复冲洗,重复3周期即可。最后在60℃下放置2小时干燥,得到Pt/石墨烯/氧化锌/CdS的双重量子点敏化复合光催化材料。
实施例二:
步骤一:利用等离子体溅射仪在玻璃衬底表面生长Ag量子点材料,电流为15mA,溅射时间为10秒,延长溅射时间将影响Ag量子点的尺寸及密度;
步骤二:利用CVD在常压下用Ni膜作为催化剂生长石墨烯,生长温度为930℃。利用无胶迁移将所生长的石墨烯迁移至沉积Ag量子点的玻璃衬底表面,其中迁移用腐蚀液为FeCl3
步骤三:利用ALD生长ZnO薄膜,Zn源采用Zn(C2H5)2,无需加热,用水(H2O)做氧(O)源,氮气(N2)作为载气,沉积温度150℃,脉冲间隔时间为0.02秒,沉积周期为500周期;
步骤四:利用CBD方法生长CdSe量子点,将Ag量子点/石墨烯/氧化锌交替浸泡在0.2mol/L的H2Se和0.2mol/L的Cd(NO3)2溶液中5分钟,期间用去离子水反复冲洗,重复3周期即可。最后在60℃下放置2小时干燥;得到Ag/石墨烯/氧化锌/CdSe的双重量子点敏化复合光催化材料。
实施例三:
步骤一:利用等离子体溅射仪在玻璃衬底表面生长Au量子点材料,电流为15mA,溅射时间为10秒,延长溅射时间将影响Au量子点的尺寸及密度;
步骤二:利用CVD在常压下用Ni膜作为催化剂生长石墨烯,生长温度为930℃。利用无胶迁移将所生长的石墨烯迁移至沉积Au量子点的玻璃衬底表面,其中迁移用腐蚀液为FeCl3
步骤三:利用ALD生长TiO2薄膜,Ti反应源采用C8H24N4Ti,无需加热,用水(H2O)做氧(O)源,氮气(N2)作为载气,沉积温度200℃,脉冲间隔时间为0.02秒,沉积周期为500周期;
步骤四:利用CBD方法生长CdS量子点,将Au量子点/石墨烯/二氧化钛交替浸泡在0.2mol/L的Na2S和0.2mol/L的Cd(NO3)2溶液中5分钟,期间用去离子水反复冲洗,重复3周期即可。最后在60℃下放置2小时干燥;得到Au/石墨烯/二氧化钛/CdS的双重量子点敏化复合光催化材料。

Claims (4)

1.一种基于能带调制的双重量子点敏化石墨烯/氧化物复合结构光催化材料的制备方法,其特征在于,首先利用溅射或沉积的方法在衬底材料上生长金属量子点材料Pt、Au或Ag;其次利用化学气相沉积制备石墨烯并迁移至已沉积金属量子点的衬底材料表面;在此基础上采用原子层沉积进一步生长氧化物薄膜;最后采用化学浴方法在金属量子点敏化的石墨烯/氧化物复合结构上生长窄带隙半导体量子点材料CdSe或CdS,得到双重量子点敏化的石墨烯/氧化物复合光催化材料;所述的氧化物薄膜为ZnO或TiO2
2.根据权利要求1所述的光催化材料的制备方法,其特征在于,利用窄带隙半导体量子点和金属量子点对石墨烯/氧化物进行双重量子点敏化处理,能够在宽的光谱响应范围下,即紫外-可见光范围内,实现载流子的高效分离,促进光生电子和空穴的快速传递,减少复合几率,提高半导体材料的光催化性能。
3.根据权利要求1所述的光催化材料的制备方法,其特征在于,衬底材料为硬质透明衬底或多孔结构。
4.根据权利要求3所述的光催化材料的制备方法,其特征在于,所述的硬质透明衬底为玻璃或石英,多孔结构为金属网或纤维。
CN201610108827.3A 2016-02-29 2016-02-29 基于能带调制的双重量子点敏化氧化物复合光催化材料 Active CN105688939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610108827.3A CN105688939B (zh) 2016-02-29 2016-02-29 基于能带调制的双重量子点敏化氧化物复合光催化材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610108827.3A CN105688939B (zh) 2016-02-29 2016-02-29 基于能带调制的双重量子点敏化氧化物复合光催化材料

Publications (2)

Publication Number Publication Date
CN105688939A CN105688939A (zh) 2016-06-22
CN105688939B true CN105688939B (zh) 2019-06-28

Family

ID=56222440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610108827.3A Active CN105688939B (zh) 2016-02-29 2016-02-29 基于能带调制的双重量子点敏化氧化物复合光催化材料

Country Status (1)

Country Link
CN (1) CN105688939B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711585A (zh) * 2017-03-22 2018-10-26 合肥仁德电子科技有限公司 一种提高光敏电阻的光催化性能的方法
CN107497427B (zh) * 2017-09-08 2021-04-20 上海戈马环保科技有限公司 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法
CN113244936A (zh) * 2021-03-25 2021-08-13 有研工程技术研究院有限公司 一种内建电场增强的卤氧铋核壳复合结构光催化材料及制备方法
CN115430411A (zh) * 2021-06-02 2022-12-06 长春理工大学 一种处理voc的铝-二氧化钛复合光催化材料及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104164693A (zh) * 2014-06-26 2014-11-26 中国科学院海洋研究所 一种石墨烯敏化CdSe/TiO2纳米管复合膜的制备方法
CN105214635A (zh) * 2015-10-26 2016-01-06 上海理工大学 一种复合光催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140213427A1 (en) * 2013-01-31 2014-07-31 Sunpower Technologies Llc Photocatalyst for the Reduction of Carbon Dioxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104164693A (zh) * 2014-06-26 2014-11-26 中国科学院海洋研究所 一种石墨烯敏化CdSe/TiO2纳米管复合膜的制备方法
CN105214635A (zh) * 2015-10-26 2016-01-06 上海理工大学 一种复合光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Graphene film-functionalized germanium as a chemically stable, electrically conductive, and biologically active substrate;Jinhua Li 等;《Journal of Materials Chemistry B 》;20141230;第3卷;1544-1555
Synthesis of CdS/ZnO/graphene composite with high-efficiencyphotoelectrochemical activities under solar radiation;Weijia Han 等;《Applied Surface Science》;20140205;第299卷;12-18

Also Published As

Publication number Publication date
CN105688939A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
Zhang et al. Scalable low-band-gap Sb2Se3 thin-film photocathodes for efficient visible–near-infrared solar hydrogen evolution
Li et al. Surface, bulk, and interface: rational design of hematite architecture toward efficient photo‐electrochemical water splitting
Yang et al. Recent advances in earth‐abundant photocathodes for photoelectrochemical water splitting
Hoang et al. Nanowire array structures for photocatalytic energy conversion and utilization: a review of design concepts, assembly and integration, and function enabling
Yang et al. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting
Jian et al. A review of recent progress on silicon carbide for photoelectrochemical water splitting
Li et al. Co-nucleus 1D/2D heterostructures with Bi2S3 nanowire and MoS2 monolayer: one-step growth and defect-induced formation mechanism
Shi et al. Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes
Ghosh et al. Silicon nanowire heterostructures for advanced energy and environmental applications: a review
CN105688939B (zh) 基于能带调制的双重量子点敏化氧化物复合光催化材料
Li et al. Synthesis of α-Fe2O3/g-C3N4 photocatalyst for high-efficiency water splitting under full light
Zazpe et al. A 1D conical nanotubular TiO 2/CdS heterostructure with superior photon-to-electron conversion
Wang et al. Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting
CN102208479B (zh) 一种纳米同轴电缆异质结阵列基紫外探测器的制备方法
Bielinski et al. Atomic layer deposition of bismuth vanadate core–shell nanowire photoanodes
Park et al. A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells
JP2012114419A (ja) 量子ドット構造体および量子ドット構造体の形成方法ならびに波長変換素子、光光変換装置および光電変換装置
Alizadeh et al. Cu2O/InGaN heterojunction thin films with enhanced photoelectrochemical activity for solar water splitting
US20170253978A1 (en) Photoelectrode, method for manufacturing same, and photoelectrochemical cell
Nguyen et al. TiO 2 nanotubes with laterally spaced ordering enable optimized hierarchical structures with significantly enhanced photocatalytic H 2 generation
Salehmin et al. Recent advances on state-of-the-art copper (I/II) oxide as photoelectrode for solar green fuel generation: Challenges and mitigation strategies
Hassan et al. Photoelectrochemical water splitting using post-transition metal oxides for hydrogen production: a review
Qadir et al. Structural properties and enhanced photoelectrochemical performance of ZnO films decorated with Cu2O nanocubes
Bai et al. Self-Assembled vertically aligned hetero-epitaxial ZnO/CdS core/shell array by all CBD process: platform for enhanced visible-light-driven pec performance
Lu et al. Semi Transparent Three-Dimensional Macroporous Quaternary Oxynitride Photoanodes for Photoelectrochemical Water Oxidation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant