CN105189771B - 在重组宿主中有效产生甜菊醇糖苷 - Google Patents

在重组宿主中有效产生甜菊醇糖苷 Download PDF

Info

Publication number
CN105189771B
CN105189771B CN201480008381.6A CN201480008381A CN105189771B CN 105189771 B CN105189771 B CN 105189771B CN 201480008381 A CN201480008381 A CN 201480008381A CN 105189771 B CN105189771 B CN 105189771B
Authority
CN
China
Prior art keywords
glucose
polypeptide
steviol
steviol glycoside
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480008381.6A
Other languages
English (en)
Other versions
CN105189771A (zh
Inventor
埃内斯托·西蒙
伊本·努德马克·安诺生
迈克尔·达尔埃格德·米克尔森
约恩·汉森
韦罗尼克·杜尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danstar Ferment AG
Original Assignee
Evolva AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evolva AG filed Critical Evolva AG
Publication of CN105189771A publication Critical patent/CN105189771A/zh
Application granted granted Critical
Publication of CN105189771B publication Critical patent/CN105189771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/0042NADPH-cytochrome P450 reductase (1.6.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1062Sucrose synthase (2.4.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P15/00Preparation of compounds containing at least three condensed carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/02Oxidoreductases acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12Y106/02004NADPH-hemoprotein reductase (1.6.2.4), i.e. NADP-cytochrome P450-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13078Ent-kaurene oxidase (1.14.13.78)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01013Sucrose synthase (2.4.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01035Phenol beta-glucosyltransferase (2.4.1.35)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01029Geranylgeranyl diphosphate synthase (2.5.1.29)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03019Ent-kaurene synthase (4.2.3.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)
    • C12Y505/01013Ent-copalyl diphosphate synthase (5.5.1.13)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

公开了产生甜菊醇糖苷的重组微生物,其具有一种或更多种内源转运蛋白或转录因子基因的表达改变或者过表达一种或更多种异源转运蛋白,导致目的甜菊醇糖苷的分泌增加。

Description

在重组宿主中有效产生甜菊醇糖苷
相关申请的交叉引用
本申请要求于2013年2月11日提交的美国临时申请No:61/763,290和于2013年2月11日提交的美国临时申请No:61/763,308的权益,其各自的公开内容均通过引用并入。
技术领域
本公开内容涉及重组产生甜菊醇糖苷(steviol glycoside)及其分离方法。特别地,本公开内容涉及由重组宿主(如重组微生物)产生甜菊醇糖苷,如莱鲍迪苷(rebaudioside)A(RebA)、莱鲍迪苷B(RebB)、莱鲍迪苷D(RebD)、莱鲍迪苷E(RebE)和莱鲍迪苷M(RebM)。本公开内容还涉及修饰重组宿主中的转运系统以增加这样的甜菊醇糖苷的产生、分泌或二者。
背景技术
甜味剂作为食品、饮料或糖果业中最常用于的成分是公知的。甜味剂既可以在产生过程中加入最终食品,也可以在适当稀释的情况下作为佐餐甜味剂(tabletop sweeter)或者作为烘培中糖的家用替代品来单独使用。甜味剂包括天然甜味剂(例如蔗糖、高果糖玉米糖浆、糖蜜、枫糖浆和蜂蜜)和人工甜味剂(例如阿斯帕坦、糖精和三氯半乳蔗糖(sucralose))。甜菊提取物(stevia extract)是可以从多年生灌木甜菊(Steviarebaudiana)中分离和提取的天然甜味剂。甜菊在南美洲和亚洲被广泛种植用于商业生产甜菊提取物。纯化程度各不相同的甜菊提取物在商业中用作食品中的高强度甜味剂,以及在共混物种或单独地作为佐餐甜味剂。
甜菊属植物的提取物含有莱鲍迪苷和其他带来甜味的甜菊醇糖苷,但不同产品批次之间每种糖苷的量往往不同。通常,甜菊苷(stevioside)和莱鲍迪苷A是在商业上生产的甜菊提取物中的主要化合物。据报道,甜菊苷的味道比莱鲍迪苷A更苦并且甜味更少。根据种植植物的土壤和气候,甜菊提取物的组成可大不相同。据报道,根据植物来源、气候条件和提取工艺,商业制备物中莱鲍迪苷A的量为甜菊醇糖苷总含量的20%至97%不等。在甜菊提取物中,其他甜菊醇糖苷以不同的量存在。例如,莱鲍迪苷B通常以小于1%至2%存在,而莱鲍迪苷C可以以高至7%至15%的水平存在。莱鲍迪苷D通常以2%或更低的水平存在,莱鲍迪苷M通常以痕量水平(<0.1%)存在,而莱鲍迪苷F通常在组合物中以总甜菊醇糖苷的3.5%或更低存在。次要甜菊醇糖苷的量可影响甜菊(Stevia)提取物的风味特征(flavorprofile)。
图1中示出了甜菊提取物中发现的多种化合物的化学结构,包括二萜甜菊醇和多种甜菊醇糖苷。下表1中示出了CAS编号。还参见Harriet Wallin,在第69次JE CFA上准备的Steviol Glycosides Chemical and Technical Assessment,Food Agric.Org.(2007)。
表1.
化合物 CAS#
甜菊醇 471-80-7
莱鲍迪苷A(RebA) 58543-16-1
甜菊醇二糖苷 41093-60-1
甜菊苷 57817-89-7
莱鲍迪苷B(RebB) 58543-17-2
莱鲍迪苷C(RebC) 63550-99-2
莱鲍迪苷D(RebD) 63279-13-0
莱鲍迪苷E(RebE) 63279-14-1
莱鲍迪苷F(RebF) 438045-89-7
莱鲍迪苷M(RebM) 1220616-44-3
覆盆子苷(Rubu) 63849-39-4
杜尔可苷A 64432-06-0
发明内容
本文件描述了可用于通过修饰重组宿主中参与甜菊醇糖苷的分泌的转运系统来有效产生甜菊醇糖苷组合物的材料和方法。在一些实施方案中,本文所述重组宿主可产生至少一种甜菊醇糖苷,并表达异源转运蛋白,例如主动分泌抗生素的转运蛋白。在一些实施方案中,本文所述重组宿主产生至少一种甜菊醇糖苷,并且宿主中内源转运蛋白基因的表达被改变和/或转录因子基因的表达被改变,其中所述转录因子调节至少一种内源转运蛋白基因的表达。主动分泌抗生素的内源转运蛋白之表达的改变特别有用。在一些实施方案中,多个内源转运蛋白基因、转录因子基因或二者的表达被改变。这样的重组宿主可包含一个或更多个其表达可导致产生甜菊醇糖苷(如莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E或莱鲍迪苷M)的生物合成基因。这样的生物合成基因包括13-单葡糖苷β1,2糖基转移酶和/或19-单葡糖苷-β1,2-糖基转移酶(例如,91D2e和EUGT11)以及其他UDP糖基转移酶(如UGT74G1、UGT76G1和/或UGT85C2),以允许在重组宿主中产生甜菊醇糖苷。
本文件的特点还在于用于产生甜菊醇糖苷产物的方法。这些方法包括使用具有改变的内源转运蛋白基因表达的重组微生物(例如,酿酒酵母(Saccharomyces cerevisiae))的发酵方法以产生甜菊醇糖苷,其随后任选地可从发酵液中纯化。
在一个方面,本文件的特点在于用于鉴定影响甜菊醇糖苷之分泌的基因以及使用其重组实施方案来对重组细胞(特别是微生物)进行遗传改造以产生本文所述甜菊醇糖苷的方法。这些方法包括:修饰能够产生甜菊醇或甜菊醇糖苷的重组微生物中至少一种内源转运蛋白的表达;在合成甜菊醇糖苷的条件下在培养基中培养经修饰的微生物;以及相对于缺少修饰的相应微生物产生的量,测量培养步骤期间产生的细胞外和/或细胞内甜菊醇糖苷的量,从而鉴定影响甜菊醇糖苷之分泌的内源转运蛋白。
本文件的特点还在于用于鉴定影响甜菊醇糖苷之分泌的基因以及使用其重组实施方案对重组细胞(特别是微生物)进行遗传改造以产生本文所述甜菊醇糖苷的可选方法。所述方法包括修饰微生物中至少一种内源转运蛋白的表达以产生经修饰的微生物;向经修饰的微生物中引入一个或更多个能够产生甜菊醇糖苷的重组基因;在合成甜菊醇糖苷的条件下在培养基中培养经修饰的微生物;以及相对于缺少修饰的相应微生物产生的量,测量培养步骤期间产生的细胞外和/或细胞内甜菊醇糖苷的量,从而鉴定影响甜菊醇糖苷之分泌的内源转运蛋白。
本文件的特点还在于用于鉴定影响甜菊醇糖苷之分泌的基因的额外方法。这些方法包括修饰能够产生甜菊醇或甜菊醇糖苷的重组微生物中调节内源转运蛋白基因之表达的至少一种内源转录因子的表达;在合成甜菊醇糖苷的条件下在培养基中培养经修饰的微生物;以及相对于缺少修饰的相应微生物产生的量,测量培养步骤期间产生的细胞外和/或细胞内甜菊醇糖苷的量,从而鉴定影响甜菊醇糖苷之分泌的转录因子。
在另一个实施方案中,本文件的特点还在于用于鉴定影响甜菊醇糖苷之分泌的基因的另一些方法。这些方法包括修饰微生物中调节内源转运蛋白基因之表达的至少一种内源转录因子的表达以产生经修饰的微生物;向经修饰的微生物中引入一个或更多个能够产生甜菊醇糖苷的重组基因;在合成甜菊醇糖苷的条件下在培养基中培养经修饰的微生物;以及相对于缺少修饰的相应微生物产生的量,测量培养步骤期间产生的细胞外和/或细胞内甜菊醇糖苷的量,从而鉴定影响甜菊醇糖苷之分泌的转录因子。
在另一个方面,本文件涉及通过修饰被鉴定为影响甜菊醇糖苷之分泌的基因的表达来增加甜菊醇糖苷的分泌的方法,其中能够产生甜菊醇或甜菊醇糖苷的重组微生物中被鉴定的基因的表达将被修饰。在一些实施方案中,被鉴定的基因是内源基因,可通过分别用与野生型启动子相比更强的启动子或更弱的启动子代替内源启动子来过表达或抑制所述内源基因。在另一些实施方案中,被鉴定的基因可以是内源基因,可通过引入被改造以过表达或抑制所述内源基因的外源DNA来过表达或抑制所述内源基因。在另一些实施方案中,所鉴定之内源基因的同源或直系同源基因可过表达。在另一些实施方案中,可使用重组微生物的天然机制(例如,热休克、应激、重金属或抗生素暴露)来诱导内源基因的过表达或抑制。
在任何本文所述方法中,表达修饰可以包括与相应缺少修饰的微生物中观察的表达水平相比,内源转运蛋白或转录因子的表达或活性增加或减少至少5%。
在任何本文所述方法中,重组基因可包含由外源核酸编码的一个或更多个以下基因:
(a)编码蔗糖转运蛋白和蔗糖合酶的一个或更多个重组基因;
(b)编码GGPPS多肽的核酸;
(c)编码内部-柯巴基二磷酸合酶多肽的核酸;
(d)编码贝壳杉烯合酶(KS)多肽的核酸;
(e)编码贝壳杉烯氧化酶(KO)多肽的核酸;
(f)编码甜菊醇合酶(KAH)多肽的核酸;
(g)编码细胞色素P450还原酶(CPR)多肽的核酸;以及还有适当组合的
(h)编码UGT85C2多肽的核酸;
(i)编码UGT76G1多肽的核酸;
(j)编码UGT74G1多肽的核酸;
(k)编码UGT91D2多肽的核酸;或
(l)编码EUGT11多肽的核酸。
本文件特点在于用于鉴定影响甜菊醇糖苷之分泌的基因以及使用其重组实施方案对重组细胞(特别是微生物)进行遗传改造以产生本文所述甜菊醇糖苷的方法。所述方法包括在能够产生甜菊醇或甜菊醇糖苷的重组微生物中表达至少一种异源转运蛋白;在合成甜菊醇糖苷的条件下在培养基中培养所述微生物;以及相对于缺少修饰的相应微生物产生的量,测量培养步骤期间产生的细胞外和/或细胞内甜菊醇糖苷的量,从而鉴定影响甜菊醇糖苷之分泌的异源转运蛋白。所述异源转运蛋白可以是甜菊(Stevia)转运蛋白。
在任何本文所述方法中,微生物可以包括但不限于选自以下属的合适物种:伞菌属(Agaricus)、曲霉属(Aspergillus)、芽孢杆菌属(Bacillus)、念珠菌属(Candida)、棒状杆菌属(Corynebacterium)、埃希菌属(Escherichia)、镰孢菌(Fusarium)/赤霉属(Gibberella)、克鲁维酵母属(Kluyveromyce)、硫磺菌属(Laetiporus)、香菇属(Lentinus)、红发夫酵母属(Phaffia)、平革菌属(Phanerochaete)、毕赤酵母属(Pichia)、藓属(Physcomitrella)、红酵母属(Rhodoturula)、酵母属(Saccharomyces)、裂殖酵母属(Schizosaccharomyces)、痂圆孢属(Sphaceloma)、红发夫酵母属(Xanthophyllomyces)和耶氏酵母属(Yarrowia)。来自这些属的示例性物种包括但不限于:酿酒酵母(Saccharomyces cerevisiae)、粟酒裂殖酵母(Schizosaccharomyces pombe)、解脂耶氏酵母(Yarrowia lipolytica)、光滑念珠菌(Candida glabrata)、棉阿舒囊霉(Ashbyagossypii)、产朊假丝酵母(Cyberlindnera jadinii)、巴斯德毕赤酵母(Pichiapastoris)、乳酸克鲁维酵母(Kluyveromyces lactis)、多形汉逊酵母(Hansenulapolymorpha)、博伊丁念珠菌(Candida boidinii)、Arxula adeninivorans、红发夫酵母(Xanthophyllomyces dendrorhous)或白色念珠菌(Candida albicans)物种。
通过以下发明详述以及所附权利要求,将能更充分地理解本发明的这些和其他特征和优点。应注意,权利要求的范围由其中的记载限定,而不是由本说明书陈述的特征和优点的具体讨论来限定。
附图说明
图1示出了多种甜菊醇糖苷的化学结构和合成途径。
图2是来自过表达转运蛋白基因的RebA生产酵母菌株的培养物上清液中RebA百分比的柱状图。通过同源重组,将天然转运蛋白启动子替换为强组成型启动子TEF1。将菌株在合成完全(SC)培养基中培养48小时,并且通过LC-MS测量沉淀和上清液级分中的RebA含量。
图3是与在YOR1基因前具有天然启动子的野生型菌株相比,YOR1过表达酵母菌株的上清液中RebA百分比的柱状图。通过LC-MS测量沉淀和上清液级分中的RebA含量。
图4A-M是与含有空质粒的酵母菌株(PSB314)相比,在酵母菌株EFSC2797中的2微米质粒上过表达的多种转运蛋白(如每幅图所示)总量或者每种甜菊醇糖苷在上清液中的分泌百分比(图4A-I)或者微摩尔/OD600(图4J-K)或微摩尔浓度(图4L-M)的柱状图。使用PSB314质粒在EFSC2797 Reb生产菌株中过表达内源酵母转运蛋白基因PDR1、PDR3、PDR13、SNQ2、YOR1_BY、YOR1_IS1、FLR1、AZR1和DTR1,并且通过LC-MS测量沉淀和上清液级分中每种甜菊醇糖苷的含量。
图5A-I是与对照菌株(PSB314)相比,酵母菌株EFSC2797中使用PSB314过表达的内源酵母转运蛋白基因PDR1、SNQ2、YOR1_BY、YOR1_IS1和FLR1的上清液中分泌的每种甜菊醇糖苷的量(图5A-D中AUC)或百分比(图5E-I)的柱状图。使用PSB314质粒在ERSC2797 Reb生产菌株中过表达内源酵母转运蛋白基因PDR1、SNQ2、YOR1_BY、YOR1_IS1和FLR1,并且通过LC-MS测量沉淀和上清液级分中每种甜菊醇糖苷的含量。
图6是说明在酵母ERSC2797菌株中过表达内源酵母转运蛋白基因PDR1、SNQ2、YOR1_BY、YOR1_IS1和FLR1对酵母生长的影响的柱状图。
图7是说明在RebA生产菌株中表达甜菊转运蛋白的影响的柱状图。
图8是示出了将在四种内源转运蛋白的基因座中具有突变的酵母菌株培养在供给甜菊醇的培养基中后,产生的甜菊醇-19-O-葡糖苷的浓度(微摩尔)的柱状图。Sup 19-SMG=上清液中甜菊醇-19-O-葡糖苷的量;Pel 19-SMG=细胞沉淀中甜菊醇-19-O-葡糖苷的量;WT=表达四种甜菊UGT(76G1、74G1、91D2e和85C2)的野生型;以及4X KO=表达四种甜菊UGT并且具有pdr5、pdr10、pdr15、snq2转运蛋白基因座之缺失的4X转运蛋白破坏突变体酵母菌株。
图9是示出了在将4X转运蛋白破坏酵母菌株培养在供给甜菊醇的培养基中后,产生的19-SMG和莱鲍迪苷A的浓度(微摩尔)的柱状图。示出的量是每一菌株的总细胞外(左柱)和细胞内(右柱)19-SMG和莱鲍迪苷A。
图10是表达四种甜菊UGT(76G1、74G1、91D2e和85C2)的酵母野生型菌株产生的甜菊醇糖苷的色谱迹线。Y轴=根据显示器中自动化标度的相对量。从上到下的行是对应于单葡糖苷、二糖苷、甜菊醇加3葡萄糖残基、甜菊醇+4葡萄糖残基以及甜菊醇+5葡萄糖残基的m/z迹线。
图11是表达四种甜菊UGT(76G1、74G1、91D2e和85C2)的酵母4X转运蛋白破坏突变体菌株产生的甜菊醇糖苷的色谱迹线。Y轴=根据显示器中自动化标度的相对量。从上到下的行是对应于单葡糖苷、二糖苷、甜菊醇加3葡萄糖残基、甜菊醇+4葡萄糖残基以及甜菊醇+5葡萄糖残基的m/z迹线。
图12是表达四种甜菊UGT(76G1、74G1、91D2e和85C2)的酵母7X转运蛋白破坏突变体菌株产生的甜菊醇糖苷的色谱迹线。Y轴=根据显示器中自动化标度的相对量。从上到下的行是对应于单葡糖苷、二糖苷、甜菊醇加3葡萄糖残基、甜菊醇+4葡萄糖残基以及甜菊醇+5葡萄糖残基的m/z迹线。
图13A-D是含有特定转运蛋白基因(PDR5、SNQ2、YOR1、YHK8、FLR1)之单个缺失的酵母菌株的上清液中分泌的每种甜菊醇糖苷的浓度(图13A-B)或微摩尔/OD600(图13C)或百分比(图13D-F)的柱状图。
具体实施方式
除非另有限定,否则本文使用的所有技术和科学术语具有与本发明所属领域技术人员的通常理解相同的含义。下文描述了合适的方法和材料,但是可使用与本文所述方法和材料类似或等同的那些来实施本发明。本文提到的所有出版物、专利申请、专利和其他参考文献均通过引用整体并入。在冲突的情况下,以包括定义的本说明书为准。此外,材料、方法和实例仅是说明性的,而不是旨在限制。通过以下发明详述,本发明的其他特征和优点将变得明显。根据专利法中的标准实践,申请人保留对使用过渡性短语“包括”、“基本上由......组成”或“由......组成”的任何公开的本发明可选地要求保护的权利。
可使用本领域技术人员周知的方法来构建根据本发明的遗传表达构建体和重组细胞。这些方法包括体外重组DNA技术、合成技术、体内重组技术和聚合酶链式反应(PCR)技术。参见,例如,Maniatis等,1989,MOLECULAR CLONING:A LABORATORY MANUAL,ColdSpring Harbor Laboratory,New York;Ausubel等,1989,CURRENT PROTOCOLS INMOLECULAR BIOLOGY,Greene Publishing Associates and Wiley Interscience,NewYork,以及PCR Protocols:A Guide to Methods and Applications(Innis等,1990,Academic Press,San Diego,CA)中描述的技术。
在详细描述本发明之前,将定义若干术语。除非上下文明确的另有指示,本文使用的未用量词限定的名词包括复数指示物。例如,提到“核酸”意指一个/种或更多个/种核酸。
应注意,术语如“优选”、“一般”和“通常”在本文中并不是用于限制要求保护的发明的范围,或暗示某些特征对于要求保护的发明的结构或功能是关键的、必要的或甚至是重要的。相反,这些术语仅旨在突出可被用在或不被用在本发明的特定实施方案中的替选的或额外的特征。
为了描述和限定本发明的目的,应注意术语“基本上”在本文中用于表示可归因于任何定量比较、值、测量或其他表述的固有的不确定程度。术语“基本上”在本文中也用于表示在不导致所讨论主题的基本功能改变的情况下,定量表达可不同于所述参考的程度。
本文中使用的术语“多核苷酸”、“核苷酸”“寡核苷酸”和“核酸”可互换使用,是指包括DNA、RNA、其衍生物或其组合的核酸。
本文中使用的术语“和/或”用于描述彼此组合或排斥的多种组分。例如,“x、y和/或z”可指单独“x”、单独“y”、单独“z”、“x、y和z”、“(x和y)或z”、“x和(y或z)”或者“x或y或z”。在一些实施方案中,“和/或”用于指示重组细胞所包含的外源核酸,其中重组细胞包含选自一个组的一种或更多种外源核酸。在一些实施方案中,“和/或”用于指示产生甜菊醇糖苷,其中产生选自一个组的一种或更多种甜菊醇糖苷。在一些实施方案中,“和/或”用于指示产生菊醇糖苷,其中通过一个或更多个以下步骤产生一种或更多种甜菊醇糖苷:培养重组微生物、在重组微生物中合成一种或更多种甜菊醇糖苷,以及分离一种或更多种甜菊醇糖苷。
本文件描述了可用于通过修饰重组宿主中参与甜菊醇糖苷之分泌的转运系统来有效生产甜菊醇糖苷组合物的材料和方法。在一些实施方案中,本文所述重组宿主可产生至少一种甜菊醇糖苷,并表达异源转运蛋白,例如主动分泌抗生素的转运蛋白。在一些实施方案中,本文所述重组宿主产生至少一种甜菊醇糖苷,并且宿主中内源转运蛋白基因的表达被改变和/或转录因子基因的表达被改变,其中所述转录因子调节至少一种内源转运蛋白基因的表达。主动分泌抗生素的内源转运蛋白表达的改变特别有用。在一些实施方案中,多个内源转运蛋白基因、转录因子基因或二者的表达被改变。这样的重组宿主可包含一个或更多个其表达导致产生甜菊醇糖苷(如莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E或莱鲍迪苷M)的生物合成基因。这样的生物合成基因包括13-单葡糖苷β1,2糖基转移酶和/或19-单葡糖苷-β1,2-糖基转移酶(例如,UGT91D2e和EUGT11)以及其他UDP糖基转移酶(如UGT74G1、UGT76G1和/或UGT85C2),以允许在重组宿主中产生甜菊醇糖苷。
在一个方面,本文件涉及能够合成至少一种甜菊醇糖苷的重组微生物,其包含对至少一种以下基因的表达修饰:转运蛋白基因、调节至少一种转运蛋白基因之表达的转录因子基因或二者。在一个实施方案中,转运蛋白基因可以是内源转运蛋白基因或异源转运蛋白基因。在另一个实施方案中,转运蛋白基因可编码ABC转运蛋白或MFS转运蛋白,其中所述转运蛋白基因或转录因子基因是PDR1、PDR3、PDR5、PDR8、PDR10、PDR11、PDR12、PDR15、PDR18、YOR1、AUS1、SNQ2、PDR12、STE6、THI73、NFT1、ADP1、FLR1、QDR1、QDR2、QDR3、DTR1、TPO1、TPO2、TPO4、TPO3、AQR1、AZR1、ENB1、SGE1、YHK8、GEX2、HOL1、ATR1、HXT11、ENB1、ARN1、ARN2、SSU1、THI7、TPN1、SEO1、SIT1或DTR1。
在另一个实施方案中,重组微生物中目标基因的表达修饰包括转运蛋白基因或转录因子基因的过表达或降低的表达。在另一个实施方案中,重组微生物包含多个内源转运蛋白基因或转录因子基因的过表达或降低的表达。在一个实施方案中,重组微生物包含通过破坏各个基因座使PDR5、PDR10、PDR15和SNQ2基因的表达降低。在另一些实施方案中,重组微生物包括通过破坏各个基因座使PDR1、PDR3、PDR5、PDR10、PDR15、SNQ2和TPO1基因的表达降低。
在另一个实施方案中,本文件的重组微生物包含以下外源核酸中的一种或更多种:编码蔗糖转运蛋白和蔗糖合酶的一个或更多个重组基因;编码GGPPS多肽的核酸;编码内部-柯巴基二磷酸合酶多肽的核酸;编码贝壳杉烯合酶(KS)多肽的核酸;编码贝壳杉烯氧化酶(KO)多肽的核酸;编码甜菊醇合酶(KAH)多肽的核酸;编码细胞色素P450还原酶(CPR)多肽的核酸;编码UGT85C2多肽的核酸;编码UGT76G多肽的核酸;编码UGT74G1多肽的核酸;编码UGT91D2多肽的核酸;或编码EUGT11多肽的核酸。在一个实施方案中,重组微生物包含编码UGT85C2、UGT76G1和UGT91D2多肽的外源核酸。在另一个实施方案中,重组微生物包含编码UGT85C2、UGT76G1、UGT74G1和UGT91D2多肽的外源核酸。在又一个实施方案中,重组微生物包含编码UGT85C2、UGT76G1、UGT74G1和EUGT11多肽的外源核酸。在又一个实施方案中,重组微生物包含编码UGT85C2、UGT76G1、UGT74G1、UGT91D2(尤其包括91D2e、91D2m、91D2e-b及其功能同源物)和EUGT11多肽的外源核酸。
在另一个方面,本文件涉及产生莱鲍迪苷的方法,其包括:在其中编码GGPPS、内部-柯巴基二磷酸合酶(ent-copalyl diphosphate synthase,CDPS)多肽、贝壳杉烯氧化酶(kaurene oxidase,KO)多肽、贝壳杉烯合酶(kaurene synthase,KS)多肽、甜菊醇合酶(KAH)多肽、细胞色素P450还原酶(cytochrome P450 reductase,CPR)多肽、UGT85C2多肽、UGT74G1多肽、UGT76G1多肽、UGT91D2多肽或EUGT11多肽的基因表达的条件下,在培养基中培养本文所述重组微生物,其包括诱导所述基因表达或组成型地表达所述基因;在重组微生物中合成包含莱鲍迪苷的一种或更多种化合物;以及分离包含莱鲍迪苷的一种或更多种化合物。在一个实施方案中,莱鲍迪苷是莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E或莱鲍迪苷M。在另一个实施方案中,重组微生物过表达YOR1、SNQ2、PDR1或FLR1。
在一个实施方案中,重组微生物是选自(但不限于)以下属的本文所述微生物:伞菌属(Agaricus)、曲霉属(Aspergillus)、芽孢杆菌属(Bacillus)、念珠菌属(Candida)、棒状杆菌属(Corynebacterium)、埃希菌属(Escherichia)、镰孢菌(Fusarium)/赤霉属(Gibberella)、克鲁维酵母属(Kluyveromyce)、硫磺菌属(Laetiporus)、香菇属(Lentinus)、红发夫酵母属(Phaffia)、平革菌属(Phanerochaete)、毕赤酵母属(Pichia)、藓属(Physcomitrella)、红酵母属(Rhodoturula)、酵母属(Saccharomyces)、裂殖酵母属(Schizosaccharomyces)、痂圆孢属(Sphaceloma)、红发夫酵母属(Xanthophyllomyces)和耶氏酵母属(Yarrowia)。在另一个实施方案中,重组微生物是来自以下物种的酵母细胞:酿酒酵母(Saccharomyces cerevisiae)、粟酒裂殖酵母(Schizosaccharomyces pombe)、解脂耶氏酵母(Yarrowia lipolytica)、光滑念珠菌(Candida glabrata)、棉阿舒囊霉(Ashbyagossypii)、产朊假丝酵母、巴斯德毕赤酵母(Pichia pastoris)、乳酸克鲁维酵母(Kluyveromyces lactis)、多形汉逊酵母(Hansenula polymorpha)、博伊丁念珠菌(Candida boidinii)、Arxula adeninivorans、红发夫酵母(Xanthophyllomycesdendrorhous)或白色念珠菌(Candida albicans)。
在另一个方面中,本文件涉及影响甜菊醇糖苷之分泌的方法,包括使用本文所述方法产生甜菊醇糖苷,其中表达至少一种重组基因,并且在其中合成甜菊醇糖苷的条件下在培养基中培养重组微生物;以及表达至少一种以下基因:转运蛋白基因、调节至少一种转运蛋白基因之表达的转录因子基因或二者;以及分离培养步骤期间产生的甜菊醇糖苷。
I.甜菊醇和甜菊醇糖苷生物合成多肽
A.甜菊醇生物合成多肽
除了表达异源转运蛋白和/或转录因子基因或修饰上述内源转运蛋白基因的表达外,本文所述宿主包含并表达参与类异戊二烯前体向甜菊醇转变的基因产物。
产生甜菊醇的生化途径涉及形成牻牛儿基牻牛儿基二磷酸,环化成(-)柯巴基二磷酸,然后氧化和羟基化以形成甜菊醇。因此,重组微生物中牻牛儿基牻牛儿基二磷酸转变为甜菊醇涉及编码贝壳杉烯合酶(KS)的基因、编码贝壳杉烯氧化酶(KO)的基因、以及编码甜菊醇合成酶(KAH)的基因的表达。甜菊醇合成酶也被称为异贝壳杉烯酸13-羟化酶。
合适的KS多肽是已知的。例如,合适的KS酶包括由甜菊、玉米(Zea mays)、毛果杨(Populus trichocarpa)和拟南芥(Arabidopsis thaliana)所产生的那些。参见表2以及PCT申请No.PCT/US2012/050021和PCT/US2011/038967,其通过引用整体并入本文。
表2:贝壳杉烯(Kuarene)合酶(KS)克隆
合适的KO多肽是已知的。例如,合适的KO酶包括甜菊、拟南芥、藤仓赤霉(Gibberella fujikuroi)和变色栓菌(Trametes versicolor)所产生的那些。参见表3以及PCT申请No.PCT/US2012/050021和PCT/US2011/038967,其通过引用整体并入本文。
表3:贝壳杉烯氧化酶(KO克隆)
合适的KAH多肽是已知的。例如,合适的KAH酶包括甜菊、拟南芥、葡萄(Vitisvinifera)和蒺藜苜蓿(Medicago trunculata)所产生的那些。参见例如,表4、PCT申请No.PCT/US2012/050021和PCT/US2011/038967、美国专利公开No.2008/0271205和2008/0064063、以及Genbank登录号gi 189098312(SEQ ID NO:11)和GenBank登录ABD60225;GI:89242710(SEQ ID NO:12),其通过引用整体并入本文。来自拟南芥的甜菊醇合成酶被归类为CYP714A2。
表4:甜菊醇合成酶(KAH)克隆
*=序列由示于美国专利公开No.2008-0064063中的序列辨识码2辨识。
此外,在如PCT申请No.PCT/US2012/050021中所述鉴定的来自甜菊的KAH多肽特别地可用于重组宿主。同一PCT申请中给出了编码甜菊KAH(SrKAHe1;SEQ ID NO:18)以及经针对在酵母中表达而进行了密码子优化的甜菊KAH的核苷酸序列,以及甜菊KAH的编码氨基酸序列(SEQ ID NO:19)。当在酿酒酵母中表达时,与Yamaguchi等(美国专利公开No.2008/0271205 A1)所述的拟南芥内部-贝壳杉烯酸羟化酶(ent-kaurenoic acid hydroxylase)相比,所述甜菊KAH表现出显著更高的甜菊醇合酶活性。所述甜菊KAH多肽与美国专利公开No.2008/0271205的KAH具有小于20%的同一性,并且与美国专利公开No.2008/0064063的KAH具有小于35%的同一性。
在一些实施方案中,重组微生物含有编码KO和/或KAH多肽的重组基因。这样的微生物通常还含有编码细胞色素P450还原酶(CPR)多肽的重组基因,因为某些KO和/或KAH多肽的组合需要外源CPR多肽的表达。特别地,通过包含编码外源CPR多肽的重组基因可以显著地提高不同转运蛋白来源的KO和/或KAH多肽的活性。合适的CPR多肽是已知的。例如,合适的CPR酶包括甜菊和拟南芥所产生的那些。参见例如,表5以及PCT申请No.PCT/US2012/050021和PCT/US2011/038967,其通过引用整体并入本文。
表5:细胞色素P450还原酶(CPR)克隆
例如,通过由基因NCP1(YHR042W)编码的酿酒酵母CPR来激活由甜菊KAHe1编码的甜菊醇合酶。当由基因ATR2(SEQ ID NO:99)编码的拟南芥CPR或者由基因CPR7(SEQ ID NO:23)或基因CPR8(SEQ ID NO:24)编码的甜菊CPR共表达时,甚至观察到由SrKAHe1编码的甜菊醇合酶的更佳激活。PCT申请No.PCT/US2012/050021中示出了拟南芥多肽ATR1(SEQ IDNO:25)和ATR2(SEQ ID NO:26)以及甜菊CPR7(SEQ ID NO:27)和CPR8(SEQ ID NO:28)多肽的氨基酸序列。
这些基因在重组微生物中的表达导致牻牛儿基牻牛儿基二磷酸转化为甜菊醇。
B.甜菊醇糖苷生物合成多肽
除了上述转运蛋白突变外,本文所述宿主细胞还可将甜菊醇转化为甜菊醇糖苷。这样的宿主(例如微生物)含有编码一种或更多种UDP糖基转移酶(也称为UGT)的基因。UGT将活化的核苷酸糖上的单糖单元转移到接受体部分,在这种情况下,甜菊醇上的-OH或-COOH部分甜菊醇糖苷或甜菊醇衍生物上的葡萄糖部分。基于序列同源性,UGT被分为多个家族和亚家族。参见Li等J.Biol.Chem.276:4338-4343(2001)。
B.1覆盆子苷生物合成多肽
覆盆子苷的生物合成涉及甜菊醇13-OH和19-COOH的糖基化。参见图1。重组宿主(例如微生物)中甜菊醇转化为覆盆子苷可以通过编码UGT 85C2和74G1之基因的表达来实现,其分别向甜菊醇的13-OH或者19-COOH转移葡萄糖单元。
合适的UGT85C2作为尿苷5’-二磷酸葡糖基:甜菊醇13-OH转移酶和尿苷-5’-二磷酸葡糖基:甜菊醇-19-O-葡糖苷13-OH转移酶起作用。功能性UGT85C2多肽还可以催化葡糖基转移酶反应,该反应使用甜菊醇和甜菊醇-19-O-糖苷以外的甜菊醇糖苷底物。
合适的UGT74G1多肽作为尿苷5’-二磷酸葡糖基:甜菊醇19-COOH转移酶和尿苷-5’-二磷酸葡糖基:甜菊醇-13-O-葡糖苷19-COOH转移酶起作用。功能性UGT74G1多肽还可以催化糖基转移酶反应,该反应使用甜菊醇和甜菊醇-13-O-葡糖苷以外的甜菊醇糖苷底物,或者转移来自除尿苷二磷酸葡萄糖以外的供体的糖部分。
当将甜菊醇用作培养基中的原料时,表达功能性UGT74G1和功能性UGT85C2的重组微生物可以产生覆盆子苷和两种甜菊醇单糖苷(即,甜菊醇13-O-单葡糖苷和甜菊醇19-O-单葡糖苷)。宿主中可能天然存在一个或更多个这样的基因。但通常来说,这样的基因是被转化到天然情况下不具备这些基因的宿主(例如微生物)中的重组基因。
本文使用的术语重组宿主意在指这样的宿主,其基因组被至少一个引入的DNA序列所增加。这样的DNA序列包括但不限于天然情况下不存在的基因、通常不会被转录为RNA或翻译为蛋白质(“表达”)的DNA序列,以及希望引入非重组宿主中的其他基因或DNA序列。应理解,通常来说,本文所述重组宿主的基因组通过稳定引入一个或更多个重组基因来增加。一般来说,引入的DNA本来不存在于DNA接受者宿主中,但本发明的范围包括从给定宿主中分离DNA区段,并随后将该DNA的一个或更多个额外拷贝引入同一宿主中,例如以提高基因产物的产量或者改变基因的表达模式。在一些情况下,所引入的DNA会通过例如同源重组或定点诱变来修饰或者甚至取代内源基因或DNA序列。合适的重组宿主包括微生物。
术语“重组基因”是指被引入接受者宿主的基因或DNA序列,无论这样的宿主中是否可能已经存在相同或类似的基因或DNA序列。上下文中的“引入”或“增加”在本领域中已知意为人为引入或增加。因此,重组基因可以是来自另一个物种的DNA序列,或者可以是来源于相同物种或存在于相同物种中但已通过重组方法整合入宿主中从而形成重组宿主的DNA序列。应理解,被引入宿主的重组基因可以与被转化宿主中正常存在的DNA序列相同,并且引入它是为了提供该DNA的一个或更多个额外拷贝,从而使得能够过表达该DNA的基因产物或者修饰其表达。
合适的UGT74G1和UGT85C2多肽包括甜菊产生的那些。Richman等,Plant J.41:56-67(2005)中报道了来自甜菊的编码功能性UGT74G1和UGT85C2多肽的基因。PCT申请No.PCT/US2012/050021的SEQ ID NO:1和3中分别给出了甜菊UGT74G1(SEQ ID NO:29)和UGT85C2(SEQ ID NO:30)多肽的氨基酸序列。提供了编码UGT74G1(SEQ ID NO:100)和UGT85C2(SEQID NO:31)以及经过优化用于在酵母中表达的UGT序列(例如UGT 85C2(SEQ ID NO:32)、91D2e、91D2e-b、EUGT11和76G1)的核苷酸序列。另参见在下文的“功能同源物”部分描述的UGT85C2和UGT74G1变体。例如,可使用可在第65、71、270、289和389位包含替换(例如,A65S、E71Q、T270M、Q289H和A389V)的UGT85C2多肽。
在一些实施方案中,重组宿主是微生物。可以将重组微生物培养在含有甜菊醇的培养基中以产生覆盆子苷。但在另一些实施方案中,重组微生物表达参与甜菊醇生物合成的一个或更多个重组基因,例如CDPS基因、KS基因、KO基因和/或KAH基因。合适的CDPS多肽是已知的。
例如,合适的CDPS酶包括甜菊、棒状链霉菌(Streptomyces clavuligerus)、大豆慢生根瘤菌(Bradyrhizobium japonicum)、玉米和拟南芥所产生的那些。参见,例如表6以及PCT申请No.PCT/US2012/050021和PCT/US2011/038967,其通过引用整体并入本文。
在一些实施方案中,可以使用在未经修饰多肽的氨基末端处缺少叶绿体转运肽的CDPS多肽。例如,可以移除PCT公开No.PCT/US2012/050021的图14所示之玉米CDPS编码序列之5’端的前150个核苷酸。这样做移除了编码叶绿体转运肽的氨基酸序列的氨基末端的50个残基。截短的CDPS基因可以适合于新的ATG翻译起始位点并且与启动子有效连接,所述启动子通常为组成型启动子或高表达启动子。当将截短的编码序列的多个拷贝引入微生物中时,CDPS多肽由启动子表达导致朝向内部-贝壳杉烯生物合成的碳流增加。
表6:CDPS克隆
还可以使用CDPS-KS双功能蛋白质。表7中示出的编码CDPS-KS双功能酶的核苷酸序列被修饰以用于在酵母中表达(参见,PCT申请No.PCT/US2012/050021)。还可以使用来自藤仓赤霉的双功能酶。
表7:CDPS-KS克隆
因此,除了UGT74G1和UGT85C2基因外还含有CDPS基因、KS基因、KO基因和KAH基因的微生物不需要使用甜菊醇作为原料就能够产生甜菊醇单糖苷和覆盆子苷二者。
在一些实施方案中,重组微生物还表达编码牻牛儿基牻牛儿基二磷酸合酶(GGPPS)的重组基因。合适的GGPPS多肽是已知的。例如,合适的GGPPS酶包括甜菊、藤仓赤霉、小鼠、假微型海链藻(Thalassiosira pseudonana)、棒状链霉菌、嗜酸热硫化叶菌(Sulfulobus acidocaldarius)、聚球藻属(Synechococcus sp.)以及拟南芥所产生的那些。参见表8和以及PCT申请No.PCT/US2012/050021和PCT/US2011/038967,其通过引用整体并入本文。
表8:GGPPS克隆
在一些实施方案中,重组微生物还可表达参与二萜生物合成或类萜前体产生的重组基因,例如下文中讨论的甲基赤藓糖醇4-磷酸(methylerythritol 4-phosphate,MEP)途径中的基因或者甲羟戊酸(mevalonate,MEV)途径中的基因,所述重组基因具有降低的磷酸酶活性和/或表达如本文所讨论的蔗糖合酶(sucrose synthase,SUS)。在另一些实施方案中,可使内源基因(例如,DPP1)失活或缺失以影响一些GGPP/FPP前体的可用性。
B.2莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E和莱鲍迪苷M生物合成多肽
莱鲍迪苷A的生物合成涉及糖苷配基甜菊醇的葡糖基化。具体地,莱鲍迪苷A的形成可以通过甜菊醇的13-OH的葡糖基化形成13-O-甜菊醇单糖苷、甜菊醇单糖苷之13-O-葡萄糖的C-2’的葡糖基化形成甜菊醇-1,2-二糖苷、甜菊醇-1,2-二糖苷之C-19羧基的葡糖基化形成甜菊苷、以及甜菊苷之C-13-O-葡萄糖的C-3’的葡糖基化来进行。各个葡糖基化反应发生的顺序可以改变。参见图1。
莱鲍迪苷B的生物合成涉及糖苷配基甜菊醇的葡糖基化。具体地,莱鲍迪苷B的形成可以通过甜菊醇的13-OH的葡糖基化形成13-O-甜菊醇单糖苷、甜菊醇单糖苷之13-O-葡萄糖的C-2’的葡糖基化形成甜菊醇-1,2-二糖苷、以及甜菊醇-1,2-二糖苷之C-13-O-葡萄糖的C-3’的葡糖基化来进行。各个葡糖基化反应发生的顺序可以改变。
莱鲍迪苷E和/或莱鲍迪苷D的生物合成涉及糖苷配基甜菊醇的葡糖基化。具体地,莱鲍迪苷E的形成可以通过甜菊醇的13-OH的葡糖基化形成甜菊醇-13-O-葡糖苷、甜菊醇13-O-葡糖苷之13-O-葡萄糖的C-2’的葡糖基化形成甜菊醇-1,2-二糖苷、1,2-二糖苷之C-19羧基的葡糖基化形成1,2-甜菊苷、以及1,2-甜菊苷之19-O-葡萄糖的C-2’的葡糖基化形成莱鲍迪苷E。莱鲍迪苷D的形成可以通过莱鲍迪苷E的C-13-O-葡萄糖之C-3’的葡糖基化来进行。各个糖基化反应发生的顺序可以改变。例如19-O-葡萄糖的C-2’的葡糖基化可以是该途径的最后一个步骤,其中莱鲍迪苷A是该途径的中间体。参见图1。
已经发现,重组宿主中甜菊醇转化为莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E和/或莱鲍迪苷M可以通过表达以下功能性UGT来实现:EUGT11、91D2、74G1、85C2和76G1。因此,当使用甜菊醇作为原料时,表达这些UGT之组合的重组微生物可以产生莱鲍迪苷A和莱鲍迪苷D。通常来说,这些基因中的一个或更多个是被转化到天然情况下不具备这些基因的微生物中的重组基因。还发现在本文命名为SM12UGT的UGT可以替换成UGT91D2。
在一些实施方案中,宿主中表达少于5种(例如,1种、2种、3种或4种)UGT。例如,当使用莱鲍迪苷A作为原料时,表达功能性EUGT11的重组微生物可以产生莱鲍迪苷D。表达UGT85C、91D2e或EUGT11,但是优选91D2e和76G1的重组微生物可产生莱鲍迪苷B。当使用覆盆子苷或1,2-甜菊苷作为原料时,表达EUGT11、76G1和91D12(例如,91D2e)的重组微生物可以产生莱鲍迪苷D。作为另一个替选,当在培养基中供给单糖苷、甜菊醇-13-O-葡糖苷时,表达三种功能性UGT(EUGT11、74G1、76G1)和任选的91D2的重组微生物可以产生莱鲍迪苷D。类似地,在供给甜菊醇-19-O-葡糖苷时,甜菊醇-19-O-葡糖苷在重组微生物中转化为莱鲍迪苷D可以通过编码UGT EUGT11、85C2、76G1和任选的91D2(例如,91D2e)之基因的表达来实现。通常来说,这些基因中的一个或更多个是被转化到天然情况下不具备这些基因的宿主中的重组基因。
莱鲍迪苷M多肽
重组宿主中甜菊醇转化成莱鲍迪苷M可通过表达以下功能性UGT的组合来实现:91D2、EUGT11、74G1、85C2和76G1。参见图1。特别有用的是使用高拷贝数质粒或使用强启动子或多重整合的基因拷贝或用于高基因拷贝数选择下的附加体来高水平地表达EUGT11。因此,表达这些UGT的组合的重组微生物可产生莱鲍迪苷A(85C2;76G1;74G1;91D2e)、莱鲍迪苷D(85C2;76G1;74G1;91D2e;EUGT11)、莱鲍迪苷E(85C2;74G1;91D2e;EUGT11)或莱鲍迪苷M(85C2;76G1;74G1;91D2e;EUGT11)。参见图1。通常来说,这些基因中的一个或更多个是被转化到天然情况下不具备这些基因的微生物中的重组基因。还发现在本文命名为SM12UGT的UGT可以替换成UGT91D2。
通过控制UDP-糖基转移酶活性的相对水平来实现图1所示各个莱鲍迪苷的靶向产生。这可通过UGT编码基因的不同拷贝数、不同启动子强度和/或使用对目的产物具有增加的特异性/活性的突变体来实现。参见图1。例如,如果与有利于莱鲍迪苷A形成的其他UGT相比,EUGT11以低水平表达,则将形成低水平的莱鲍迪苷D、E和M。高EUGT11表达水平导致产生更多19-O 1,2二葡糖苷,其作为UGT76G1的可反应底物以形成莱鲍迪苷M。由于这不是UGT76G1多肽的优选活性,UGT76G1的额外拷贝或突变形式可提高由莱鲍迪苷D形成莱鲍迪苷M的速率。合适的UGT76G1还催化葡萄糖部分向接受体分子的19-O葡萄糖的C-3’转移,其中接受体分子可在甜菊醇的19-O位包含1,2糖苷部分。
合适的UGT74G1和UGT85C2多肽包括在上文中讨论过的那些。合适的UGT76G1向接受体分子(甜菊醇1,2糖苷)的C-13-O-葡萄糖的C-3’添加葡萄糖部分。因此,UGT76G1例如作为尿苷5’-二磷酸葡糖基:甜菊醇13-O-1,2葡糖苷C-3’葡糖基转移酶和尿苷5’-二磷酸葡糖基:甜菊醇-19-O-葡萄糖、13-O-1,2二糖苷C-3’葡糖基转移酶起作用。功能性UGT76G1多肽还可以催化葡糖基转移酶反应,所述反应利用含有葡萄糖以外的糖的甜菊醇糖苷底物。合适的UGT76G1多肽包括甜菊产生的那些和Richman等,Plant J.41:56-67(2005)中报道的那些。PCT公开No.PCT/US2012/050021中给出了甜菊UGT76G1多肽的氨基酸序列(例如SEQ IDNO:85),以及编码UGT76G1多肽并且经过优化用于在酵母中表达的核苷酸序列。另参见“功能同源物”部分中给出的UGT76G1变体。
合适的EUGT11或UGT91D2多肽作为尿苷5’-二磷酸葡糖基:甜菊醇-13-O-葡糖苷转移酶(也称为甜菊醇-13-单葡糖苷1,2-转葡糖基酶)起作用,将葡萄糖部分转移至接受体分子甜菊醇-13-O-葡糖苷之13-O-葡萄糖的C-2’处。
合适的EUGT11或UGT91D2多肽还作为尿苷5’-二磷酸葡糖基:覆盆子苷转移酶起作用,将葡萄糖部分转移至接受体分子覆盆子苷之13-O-葡萄糖的C-2’处,以产生甜菊苷。EUGT11多肽还可将葡萄糖部分有效转移至接受体分子覆盆子苷之19-O-葡萄糖的C-2’处,以产生19-O-1,2-二糖基化覆盆子苷。EUGT11对于向19-O-葡萄糖取代的甜菊醇糖苷分子转移葡萄糖分子特别有效。
功能性EUGT11或UGT91D2多肽还可以催化利用除甜菊醇-13-O-葡糖苷和覆盆子苷以外的甜菊醇糖苷底物的反应。例如,功能性EUGT11多肽可以有效利用甜菊苷作为底物,将葡萄糖部分转移至19-O-葡萄糖残基的C-2’处从而产生莱鲍迪苷E。功能性EUGT11和UGT91D2多肽还可以利用莱鲍迪苷A作为底物,将葡萄糖部分转移至莱鲍迪苷A之19-O-葡萄糖残基的C-2’处从而产生莱鲍迪苷D。当反应在类似的条件(即,类似的时间、温度、纯度和底物浓度)下进行时,EUGT11(SEQ ID NO:51)可以以比UGT91D2e(SEQ ID NO:54)的相应速率快至少20倍的速率(例如,快至少25倍或至少30倍)将莱鲍迪苷A转化为莱鲍迪苷D。因此,在类似的条件下,EUGT11产生与UGT91D2e相比更大量的RebD。
此外,在使用覆盆子苷或甜菊苷作为底物时,功能性EUGT11表现出显著的C-2’19-O-二糖基化活性,而在使用这些底物时,UGT91D2e具有较少的二糖基化活性。因此,可以通过甜菊醇糖苷底物特异性的差异来区分功能性EUGT11与UGT91D2e。
在大部分条件下,功能性EUGT11或UGT91D2多肽通常不将葡萄糖部分转移至在C-13位处具有1,3结合的葡萄糖的甜菊醇化合物,即,不发生可检测水平的葡萄糖部分转移至甜菊醇1,3-二糖苷和1,3-甜菊苷。
合适的EUGT11多肽可包括来自稻(Oryza sativa)的EUGT11多肽(GenBank登录号:AC133334;SEQ ID NO:51)。例如,EUGT11多肽可以具有与SEQ ID NO:51中所示氨基酸序列具有至少70%序列同一性(例如,至少75%、80%、85%、90%、95%、96%、97%、98%或99%序列同一性)的氨基酸序列。在SEQ ID NO:52中给出了编码EUGT11之氨基酸序列的核苷酸序列,以及针对在酵母中表达而进行了密码子优化的核苷酸序列(SEQ ID NO:53)。
合适的功能性UGT91D2多肽包括命名为UGT91D2e和UGT91D2m的多肽。SEQ ID NO:54中给出了来自甜菊的示例性UGT91D2e多肽的氨基酸序列(由PCT申请No.PCT/US2012/050021的核苷酸标识号5编码),其还公开了编码所述多肽的甜菊核苷酸序列,编码所述多肽并且已经针对在酵母中表达而进行了密码子优化的核苷酸序列(SEQ ID NO:158)、来自甜菊的示例性UGT91D2m多肽的氨基酸序列和编码所述示例性UGT91D2m多肽的核酸序列。SEQ ID NO:55中示出了示例性UGT91D2m的氨基酸序列。还可以使用在第206、207和343位氨基酸残基处包含替换的UGT91D2变体。例如,可以使用相对于野生型UGT92D2e具有以下突变的氨基酸序列:G206R、Y207C和W343R。另外,还可以使用在第211和286位氨基酸残基处包含替换的UGT91D2变体。例如,UGT91D2变体可以包含第211位处的甲硫氨酸替换为亮氨酸和第286位处的丙氨酸替换为缬氨酸。另参见“功能同源物”部分中给出的UGT91D2变体。
如上文所表明的,在本文中命名为SM12UGT的UGT可以替换UGT91D2。合适的功能性SM12UGT多肽包括圆叶牵牛(Ipomoea purpurea)(日本牵牛花)产生的那些和Morita等,Plant J.42,353-363(2005)中所述的那些。使用PCT申请No.PCT/US2012/050021中的序列标识号76给出了编码圆叶牵牛IP3GGT多肽的氨基酸序列(SEO ID NO:56),以及编码所述多肽的针对在酵母中表达而进行了密码子优化的核苷酸序列(SEQ ID NO:57)。另一种合适的SM12UGT多肽是具有R25S突变的Bp94B1多肽。参见Osmani等,Plant Phys.148:1295-1308(2008)和Sawada等,J.Biol.Chem.280:899-906(2005)。PCT申请No.PCT/US2012/050021中使用序列标识号78给出了雏菊(Beilis perennis)(红色雏菊)UGT94B1多肽的氨基酸序列(SEQ ID NO:58),以及编码所述多肽的针对在酵母中表达而进行了密码子优化的核苷酸序列(SEQ ID NO:59)。
在一些实施方案中,为了产生莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E和/或莱鲍迪苷M,将重组微生物培养在含有甜菊醇-13-O-葡糖苷或甜菊醇-19-O-葡糖苷的培养基上。在这样的实施方案中,微生物含有并表达编码功能性EUGT11、功能性UGT74G1、功能性UGT85C2、功能性UGT76G1和功能性UGT91D2的基因,并且在使用甜菊醇、甜菊醇单糖苷或覆盆子苷中之一或二者作为原料时能够积累莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E和/或莱鲍迪苷M。
在另一些实施方案中,为了生产莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E和/或莱鲍迪苷M,将重组微生物培养在含有覆盆子苷的培养基上。在这样的实施方案中,微生物含有并表达编码功能性EUGT11、功能性UGT76G1和功能性UGT91D2的基因,并且能够在使用覆盆子苷作为原料时能够产生莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E和/或莱鲍迪苷M。
在另一些实施方案中,重组微生物表达一个或更多个参与甜菊醇生物合成的基因,例如CDPS基因、KS基因、KO基因和/或KAH基因。因此,例如,除了EUGT11、UGT74G1、UGT85C2、UGT76G1和任选地功能性UGT91D2(例如,UGT91D2e)外,还含有CDPS基因、KS基因、KO基因和KAH基因的微生物不需要在培养基中包含甜菊醇即能够产生莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E和/或莱鲍迪苷M。在另一个实例中,除了UGT74G1、UGT85C2、UGT76G1和任选地功能性UGT91D2(例如,UGT91D2e)外,还含有CDPS基因、KS基因、KO基因和KAH基因的微生物不需要在培养基中包含甜菊醇即能够产生莱鲍迪苷A。在又一个实例中,除了UGT85C2、UGT76G1和任选地功能性UGT91D2(例如,UGT91D2e)外,还含有CDPS基因、KS基因、KO基因和KAH基因的微生物不需要在培养基中包含甜菊醇即能够产生莱鲍迪苷B。
在一些实施方案中,为了提供提高水平的二萜前体牻牛儿基牻牛儿基二磷酸,所述重组宿主还含有并表达重组GGPPS基因,以便提高经甜菊醇生物合成途径的通量。
在一些实施方案中,所述重组宿主还含有构建体以沉默消耗牻牛儿基牻牛儿基二磷酸、内部-异贝壳杉烯酸或法尼基焦磷酸的非甜菊醇途径的表达,从而提供增加的经甜菊醇和甜菊醇糖苷生物合成途径的通量。例如,可以通过下调ERG9基因来减少向固醇产生途径(例如麦角固醇)的通量。参见下文C.4部分。在产生赤霉素的细胞中,可以下调赤霉素合成来提高内部-异贝壳杉烯酸到甜菊醇的通量。在产生类胡萝卜素的生物体中,通过下调一个或更多个类胡萝卜素生物合成基因可以提高到甜菊醇的通量。在一些实施方案中,重组微生物还可以表达参与二萜生物合成或者类萜前体产生的重组基因,例如在MEP或MEV途径中的基因,所述重组微生物具有降低的磷酸酶活性,和/或表达SUS。
本领域技术人员将理解,通过调节不同UGT基因的相对表达水平,可以使重组宿主适合特异地以期望比例产生甜菊醇糖苷产物。甜菊醇生物合成基因和甜菊醇糖苷生物合成基因的转录调控可以利用本领域技术人员已知的技术,组合转录的激活和抑制来实现。就体外反应而言,本领域技术人员将认识到,添加不同水平的UGT酶组合或者在影响组合中不同UGTS相对活性的条件下,会使合成朝向每种甜菊醇糖苷为期望比例的方向进行。本领域技术人员将认识到,可以使用与13-O-葡糖苷反应(底物莱鲍迪苷A和甜菊苷)相比对19-O-葡糖苷反应具有更高活性的二糖基化酶以获得较高比例的莱鲍迪苷D或E或者更有效地转化为莱鲍迪苷D或E。
在一些实施方案中,重组宿主(例如微生物)产生富含莱鲍迪苷D的甜菊醇糖苷组合物,其含有占甜菊醇糖苷总重量的大于至少3%的莱鲍迪苷D,例如至少4%的莱鲍迪苷D、至少5%的莱鲍迪苷D、10%至20%的莱鲍迪苷D、20%至30%的莱鲍迪苷D、30%至40%的莱鲍迪苷D、40至50%的莱鲍迪苷D、50%至60%的莱鲍迪苷D、60%至70%的莱鲍迪苷D、70%至80%莱鲍迪苷D。
在一些实施方案中,重组宿主(例如微生物)产生的甜菊醇糖苷组合物含有至少90%的莱鲍迪苷D,例如90%至99%的莱鲍迪苷D。其他存在的甜菊醇糖苷可包括甜菊醇单糖苷、甜菊醇葡糖二糖苷(glucobioside)、莱鲍迪苷A、莱鲍迪苷E和甜菊苷。在一些实施方案中,可以进一步纯化宿主(例如微生物)产生的富含莱鲍迪苷D的组合物,然后可以将这样纯化的莱鲍迪苷D或莱鲍迪苷E与其他甜菊醇糖苷、矫味剂或甜味剂混合从而得到期望的矫味体系或甜味组合物。例如,可以将重组宿主产生的富含莱鲍迪苷D的组合物与不同重组宿主产生的富含莱鲍迪苷A或F的组合物、与从甜菊提取物纯化的莱鲍迪苷A或F、或者与在体外产生的莱鲍迪苷A或F组合。
在一些实施方案中,可以使用供给包含前体分子(例如甜菊醇和/或甜菊醇糖苷)之原料(包括来自植物提取物的甜菊醇糖苷的混合物)的全重组细胞来生产莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E和/或莱鲍迪苷M,其中所述重组细胞表达全部UGT多肽或UGT多肽的合适组合,以实现所述甜菊醇葡糖基化为每一特定葡糖基化的覆盆子苷。在一些实施方案中,重组细胞可任选地表达转运蛋白,以使得其有效分泌覆盆子苷而不需要添加透化剂(permeabilizing agent)。原料可以在细胞生长期间或细胞生长之后供给。所述全细胞可以是悬浮的或固定化的。所述全细胞可以截留在珠中,例如藻酸钙珠或藻酸钠珠。所述全细胞可以与中空纤维管反应器系统相连。所述全细胞可以浓缩并截留在膜反应器系统中。所述全细胞可以在发酵液中或者在反应缓冲液中。在一些实施方案中,使用透化剂来使底物有效转移入细胞中。在一些实施方案中,使用溶剂(例如甲苯)或去污剂(例如Triton-X或Tween)来使细胞透化。在一些实施方案中,使用表面活性剂来使细胞透化,所述表面活性剂例如阳离子表面活性剂,例如十六烷基三甲基溴化铵(CTAB)。在一些实施方案中,用周期性机械冲击(例如电穿孔或轻微渗透冲击)来使细胞透化。所述细胞可以含有一个重组UGT或多个重组UGT。例如,所述细胞可含有UGT76G1和EUGT11,使得甜菊苷和RebA的混合物有效地转化为RebD。在一些实施方案中,所述全细胞是III A部分中所述的宿主细胞。在一些实施方案中,所述全细胞是革兰氏阴性菌例如大肠杆菌。在一些实施方案中,所述全细胞是革兰氏阳性菌例如芽孢杆菌属(Bacillus)。在一些实施方案中,所述全细胞是真菌物种,例如曲霉菌(Aspergillus),或酵母例如酵母属(Saccharomyces)。在一些实施方案中,术语“全细胞生物催化”用于指如下过程:按照如上所述培养全细胞(例如,在培养基中并且任选地透化),提供底物(例如rebA或甜菊苷),并使用来自细胞的酶转化成终产物。所述细胞可以是活的或者可以不是活的,并且在生物转化反应期间可以生长或者可以不生长。相比之下,在发酵中,将细胞培养在生长培养基中,并供给碳源和能量源例如葡萄糖,并用活细胞生产终产物。
C.其它多肽
还可以向重组宿主中引入那些其表达便于更有效或更大规模地产生甜菊醇或甜菊醇糖苷的其它多肽的基因。例如,重组微生物还可以含有一个或更多个编码牻牛儿基牻牛儿基二磷酸合酶(GGPPS,也称为GGDPS)的基因。作为另一个实例,所述重组宿主可以含有一个或更多个编码鼠李糖合成酶的基因,或者一个或更多个编码UDP-葡糖脱氢酶和/或UDP-葡糖醛酸脱羧酶的基因。作为另一个实例,重组宿主还可以含有一个或更多个编码细胞色素P450还原酶(CPR)的基因。重组CPR的表达有助于NADP+循环以再生NADPH,NADPH被用作类萜生物合成中的辅因子。也可以采用其它方法来再生NADHP水平。在NADPH变得有限的情况下,可以将菌株进一步修饰为包含外源的转氢酶基因。参见例如,Sauer等,J.Bi0l.Chem.279:6613-6619(2004)。用于减少或者以其它方式调整NADH/NADPH的比率从而提高期望的辅因子水平的其它方法是本领域技术人员已知的。
作为另一个实例,所述重组宿主可以含有一个或更多个编码MEP途径或甲羟戊酸途径中的一个或更多个酶的基因。这样的基因是有用的,因为它们可以提高碳进入二萜生物合成途径的通量,从而由该途径所产生的异戊烯基二磷酸和二甲基烯丙基二磷酸生成牻牛儿基牻牛儿基二磷酸。由于甜菊醇生物合成多肽和甜菊醇糖苷生物合成多肽的表达,这样产生的牻牛儿基牻牛儿基二磷酸可以被引导向甜菊醇和甜菊醇糖苷生物合成。
作为另一个实例,所述重组宿主可以含有一个或更多个编码蔗糖合酶的基因,并且还可以在需要时包含蔗糖摄取基因。蔗糖合酶反应可用于在发酵宿主或在全细胞生物转化过程中增加UDP-葡萄糖合并物(pool)。这使得由在糖基化期间产生的UDP和蔗糖再生UDP-葡萄糖,使得能够进行有效的糖基化。在一些生物体中,内源转化酶的破坏有利于防止蔗糖降解。例如,可以破坏酿酒酵母SUC2转化酶。蔗糖合酶(SUS)可以来自任何合适的生物体。例如,可以将来自但不限于拟南芥、甜菊或小果咖啡的蔗糖合酶编码序列在合适的启动子的控制下克隆入表达质粒中,并在微生物中表达。蔗糖合酶可以在这样的菌株中与蔗糖转运蛋白(例如,拟南芥SUC1转运蛋白或其功能同源物)和一种或更多种UGT(例如,UGT85C2、UGT74G1、UGT76G1和UGT91D2e、EUGT11或其功能同源物中的一个或更多个)组合表达。在含有蔗糖的培养基中培养宿主可以促进UDP-葡萄糖以及一种或更多种葡糖苷(例如,甜菊醇糖苷)的产生。
还可以在重组宿主中降低ERG9基因的表达(其编码角鲨烯合酶(SQS)),从而在重组宿主中存在前体向角鲨烯合酶的累积。SQS在EC 2.5.1.21下被分类并且是第一个指定的生物合成途径的酶,其导致固醇的产生。其催化角鲨烯由法尼基焦磷酸经中间体角鲨烯焦磷酸合成。该酶是类萜/类异戊二烯生物合成中的关键临界点酶,并且认为其调节异戊二烯中间体经固醇途径的通量。有时将该酶称为法尼基二磷酸法尼基转移酶(FDFT1)。SQS的机制是将两个法尼基焦磷酸单元转化为角鲨烯。认为SQS是真核细胞或高级生物体的酶,但至少一种原核细胞已示出具有功能上类似的酶。
在重组宿主中可以修饰其失活便于更有效或更大规模地产生甜菊醇或甜菊醇糖苷的多肽的基因。例如,编码磷酸酶(如由DPP1基因编码的酵母二酰基甘油焦磷酸酯磷酸酶和/或由LPP1基因编码的酵母类脂磷酸酯磷酸酶)的内源基因可以失活,以使法尼基焦磷酸(farnesyl pyrophosphate,FPP)向法尼醇的降解减少并且牻牛儿基牻牛儿基焦磷酸(geranylgeranylpyrophosphate,GGPP)向牻牛儿基牻牛儿醇(geranylgeraniol,GGOH)的降解减少。可以使这些基因失活或者具有由已知技术(如同源重组、诱变或转录激活样效应因子核酸酶(TALEN))减少的表达。
C.1 MEP生物合成多肽
在一些实施方案中,重组宿主含有一个或更多个编码参与类异戊二烯生物合成的甲基赤藓糖醇4-磷酸(MEP)途径之酶的基因。MEP途径中的酶包括脱氧木酮糖5-磷酸合酶(DXS)、D-1-脱氧木酮糖5-磷酸还原异构酶(DXR)、4-二磷酸胞苷-2-C-甲基-D-赤藓糖醇合酶(CMS)、4-二磷酸胞苷-2-C-甲基-D-赤藓糖醇激酶(CMK)、4-二磷酸胞苷-2-C-甲基-D-赤藓糖醇2,4-环二磷酸合酶(MCS)、1-羟基-2-甲基-2(E)-丁烯基4-二磷酸合酶(HDS)以及1-羟基-2-甲基-2(E)-丁烯基4-二磷酸还原酶(HDR)。可以将一个或更多个DXS基因、DXR基因、CMS基因、CMK基因、MCS基因、HDS基因和/或HDR基因并入重组微生物中。参见Rodríguez-Concepción and Boronat,Plant Phys.130:1079-1089(2002)。
合适的编码DXS、DXR、CMS、CMK、MCS、HDS和/或HDR多肽的基因包括大肠杆菌、拟南芥和聚球藻(Synechococcus leopoliensis)产生的那些。例如美国专利No.7,335,815中描述了编码DXR多肽的核苷酸序列。
C.2甲羟戊酸生物合成多肽
在一些实施方案中,重组宿主含有一个或更多个编码参与类异戊二烯生物合成的甲羟戊酸途径之酶的基因。适合转化到宿主中的基因编码甲羟戊酸途径中的酶,例如截短的3-羟基-3-甲基-戊二酸单酰(HMG)-CoA还原酶(tHMG)和/或编码甲羟戊酸激酶(MK)的基因;和/或编码磷酸甲羟戊酸激酶(PMK)的基因;和/或编码甲羟戊酸焦磷酸脱羧酶(MPPD)的基因。因此,可以向重组宿主(例如微生物)中并入一个或更多个HMG-CoA还原酶基因、MK基因、PMK基因和/或MPPD基因。
合适的编码甲羟戊酸途径多肽的基因是已知的。例如,合适的多肽包括大肠杆菌、脱氮副球菌(Paracoccus denitrificans)、酿酒酵母、拟南芥、灰北里孢菌(Kitasatosporagriseola)、人(Homo sapiens)、黑腹果蝇(Drosophila melanogaster)、鸡(Gallusgallus)、链霉菌属KO-3988、渐窄叶烟草(Nicotiana attenuate)、灰北里孢菌、巴西橡胶树(Hevea brasiliensis)、屎肠球菌(Enterococcus faecium)以及雨生红球藻(Haematococcus pluvialis)产生的那些。参见例如表9、美国专利No.7,183,089、5,460,949和5,306,862以及PCT申请No.PCT/US2012/050021和PCT/US2011/038967,其通过引用整体并入本文。
表9:HMG CoA还原酶及其他甲羟戊酸基因的来源
C.3蔗糖合酶多肽
蔗糖合酶(SUS)可以用作用于产生UDP-糖的工具。SUS(EC2.4.1.13)催化由蔗糖和UDP形成UDP-葡萄糖和果糖。因此,在蔗糖的存在下,可以将由UGT的反应产生的UDP转化为UDP-葡萄糖。参见例如,Chen等,(2001)J.Am.Chem.Soc.123:8866-8867;Shao等,(2003)Appl.Env.Microbiol.69:5238-5242;Masada等,(2007)FEBS Lett.581:2562-2566;以及Son等,(2009)J.Microbiol.Biotechnol.19:709-712。
蔗糖合酶可用于产生UDP-葡萄糖并除去UDP,在多种系统中促进化合物的有效糖基化。例如,可以通过引入蔗糖转运蛋白和SUS,将不能利用蔗糖的酵母培养在蔗糖上。例如,酿酒酵母不具有有效的蔗糖摄取系统,并且依赖于胞外SUC2来利用蔗糖。破坏内源酿酒酵母SUC2转化酶与表达重组SUS的组合导致能够代谢细胞内蔗糖但不能代谢胞外蔗糖的酵母菌株(Riesmeier等,(1992)EMBOJ.11:4705-4713)。通过用cDNA表达文库转化和选择获得了摄取蔗糖之能力的转化株来使用该菌株分离蔗糖转运蛋白。
重组蔗糖合酶与蔗糖转运蛋白在体内的组合表达可能导致提高的UDP-葡萄糖可用性并且除去非期望的UDP。例如,重组蔗糖合酶、蔗糖转运蛋白和糖基转移酶的功能性表达与天然蔗糖降解系统(在酿酒酵母情况下的SUC2)之敲除组合可用于产生能够生产增加量的糖基化化合物(例如甜菊醇糖苷)的细胞。所述较高的糖基化能力至少是由于(a)较高的以更节能的方式生产UDP-葡萄糖的能力和(b)从培养基中去除UDP,因为UDP可以抑制糖基化反应。
蔗糖合酶可以来自任何合适的生物体。例如,可以将来自但不限于拟南芥(例如,SEQ ID NO:78)、或小果咖啡(例如,SEQ ID NO:80)的蔗糖合酶编码序列(参见例如PCT/US2012/050021的SEQ ID NO:178、179和180)在合适的启动子的控制下克隆入表达质粒中,并在宿主(例如,微生物或植物)中表达。SUS编码序列可以在SUC2(蔗糖水解酶)缺陷型酿酒酵母菌株中表达,以避免胞外蔗糖被酵母降解。蔗糖合酶可以在这样的菌株中与蔗糖转运蛋白(例如,拟南芥SUC1转运蛋白或其功能同源物)以及一个或更多个UGT(例如,UGT85C2、UGT74G1、UGT76G1、EUGT11和UGT91D2e或其功能同源物中的一个或更多个)组合表达。在含有蔗糖的培养基中培养宿主可以促进UDP-葡萄糖以及一种或更多个葡糖苷(例如,甜菊醇糖苷)的产生。应注意,在一些情况下,蔗糖合酶和蔗糖转运蛋白可以与UGT一起在宿主细胞(其还重组用于产生特定化合物,例如甜菊醇)中表达。
C.4角鲨烯合酶多肽
可使用核酸构建体在本文所述的重组宿主中改变内源角鲨烯合酶基因的表达,所述构建体包含例如分别与编码角鲨烯合酶基因的启动子或编码角鲨烯合酶的开放阅读框(ORF)之5’端内的基因组序列的一部分同源的两个区。例如,在酵母中,这种构建体可包含分别与ERG9启动子或ERG9开放阅读框之5’端内的基因组序列的一部分同源的两个区。构建体还可包含启动子,如野生型ScKex2或用于酵母的野生型ScCyc1。该启动子还可以包含在其3’端处的异源插入,例如发夹。由ORF编码的多肽与角鲨烯合酶(EC 2.5.1.21)或其生物活性片段具有至少70%同一性,与所述角鲨烯合酶具有至少70%序列同一性的所述片段在重叠至少100个氨基酸的范围内。参见,例如PCT/US2012/050021。
异源插入片段可以适应发夹环内发夹二级结构元件。异源插入序列具有通式(I):
-X1-X2-X3-X4-X5
X2包含与X4的至少4个连续核苷酸互补并且形成发夹二级结构元件的至少4个连续核苷酸,并且X3是任选的,并且如果存在的话,包含参与在X2与X4之间形成发夹环的核苷酸,并且
X1和X5独立地并任选地包含一个或更多个核苷酸,并且X2和X4可以独立地由任何合适数目的核苷酸组成,只要X2的至少4个核苷酸的连续序列与X4的至少4个核苷酸的连续序列互补。在一些实施方案中,X2和X4由相同数目的核苷酸组成。
异源插入足够长从而使得完成发夹,但也足够短从而使得存在于框内并紧靠异源插入3’处的ORF的翻译受限。通常地,异源插入为10至50个核苷酸长度,例如10至30个核苷酸、15至25个核苷酸、17至22个核苷酸、18至21个核苷酸、18至20个核苷酸或者19个核苷酸长。
X2可以例如由4至25个核苷酸、例如4至20个、4至15个、6至12个、8至12个或者9至11个核苷酸组成。
X4可以例如由4至25个核苷酸、例如4至20个、4至15个、6至12个、8至12个或者9至11个核苷酸组成。
在一些实施方案中,X2由与X4的核苷酸序列互补的核苷酸序列组成,X2的全部核苷酸与X4的核苷酸序列互补。
可以不存在X3,即,X3可以由零个核苷酸组成。X3还可能由1至5(例如,1至3个核苷酸)个核苷酸组成。
可以不存在X1,即,X1可以由零个核苷酸组成。X1还可能由1至25(例如1至20、1至15、1至10、1至5或者1至3个核苷酸)个核苷酸组成。
可以不存在X5,即,X5可以由零个核苷酸组成。X5还可能由1至5(例如,1至3个核苷酸)个核苷酸组成。
异源插入可以是任何合适的实现本文所定义的需求的序列。例如,异源插入可以包含:tgaattcgttaacgaattc(SEQ ID NO:81)、tgaattcgttaacgaactc(SEQ ID NO:82)、tgaattcgttaacgaagtc(SEQ ID NO:83)或tgaattcgttaacgaaatt(SEQ ID NO:84)。
不受特定机理的限制,可以通过至少部分地、使核糖体与RNA的结合有空间位阻从而减少角鲨烯合酶的翻译来降低ERG9在酵母中的表达。使用构建体可以减少法尼基焦磷酸转换(turnover)为角鲨烯和/或增强选自如下的化合物的积累:法尼基焦磷酸、异戊二烯基焦磷酸、二甲基烯丙基焦磷酸、牻牛儿基焦磷酸和牻牛儿基牻牛儿基焦磷酸。
有时,可能有利的是在培养本文所述的重组宿主时包括角鲨烯合酶抑制剂。角鲨烯合酶的化学抑制(例如通过拉帕司他)在本领域中是已知的。其他角鲨烯合酶抑制剂包括Zaragozic酸和RPR 107393。因此,在一个实施方案中,在角鲨烯合酶抑制剂的存在下进行本文所定义的方法的培养步骤。
在一些实施方案中,本文所述的重组酵母宿主在ERG9开放阅读框中包含突变。
在一些实施方案中,本文所述的重组酵母宿主包含ERG9[Δ]::HIS3缺失/插入等位基因。
D.功能同源物
本文中描述的多肽的功能同源物也适合用于在重组宿主中产生甜菊醇或甜菊醇糖苷。功能同源物是与参照多肽具有序列相似性,并且执行参照多肽的一项或更多项生化或生理功能的多肽。功能同源物和参照多肽可以是天然多肽,并且序列相似性可能是由于趋同或趋异进化事件。因此,功能同源物在文献中有时被称为同源物或直系同源物或旁系同源物。天然功能同源物的变体,例如由野生型编码序列的突变体编码的多肽可能自身是功能同源物。还可以通过对多肽的编码序列进行定点诱变,或者通过将来自不同天然多肽的编码序列的结构域合并(“结构域互换(domain swapping)”)来生成功能同源物。用于修饰编码本文所述的功能性UGT多肽之基因的技术是已知的,尤其包括定向进化技术、定点诱变技术和随机诱变技术,并且可以用于以期望的方式提高多肽的比活、改变底物特异性、改变表达水平、改变亚细胞定位或者修饰多肽:多肽相互作用。认为这样的经修饰多肽是功能同源物。术语“功能同源物”有时用于指编码功能上同源的多肽的核酸。
通过对核苷酸和多肽序列比对分析可以鉴定功能同源物。例如,对核苷酸或多肽序列数据库进行查询可以鉴定出甜菊醇或甜菊醇糖苷生物合成多肽或者转运蛋白基因或蛋白质或调解至少一个转运蛋白基因表达的转录因子基因或蛋白质的同源物。序列分析可以涉及用GGPPS、CDPS、KS、KO、KAH或转运蛋白或转录因子氨基酸序列作为参照序列,对非冗余数据库进行BLAST、Reciprocal BLAST或PS1-BLAST分析。在一些情况下,氨基酸序列是从核苷酸序列推测出的。数据库中那些具有大于40%序列同一性的多肽是进一步评估是否适合作为甜菊醇或甜菊醇糖苷生物合成多肽的功能同源物或者转运蛋白或作为调节至少一个转运蛋白基因表达的转录因子的功能同源物的候选物。氨基酸序列相似性允许保守性氨基酸替换,例如一个疏水残基替换成另一个,或者一个极性残基替换成另一个。如果期望的话,可以对这类候选物进行人工检查,以便缩小要进一步评估的候选物的数量。人工检查可以通过选择似乎具有甜菊醇生物合成多肽或转运蛋白或调节至少一个转运蛋白基因表达的转录因子中存在的结构域(例如保守的功能结构域)的那些候选物来进行。
保守区的鉴定可以通过对甜菊醇或甜菊醇糖苷生物合成多肽或者转运蛋白基因或调节为重复序列之至少一个转运蛋白基因表达的转录因子的一级氨基酸序列中的结构域进行定位,形成一些二级结构(例如螺旋和β片层)、形成带正电或负电的结构域或者代表蛋白质基序或结构域。参见例如,在互联网上描述多种蛋白质基序和结构域之共有序列的Pfam网站,sanger.ac.uk/Software/Pfam/和pfam.janeIia.org/。Sonnhammer等,Nucl.Acids Res.,26:320-322(1998);Sonnhammer等,Proteins,28:405-420(1997);以及Bateman等,Nucl.Acids Res.,27:260-262(1999)中描述了Pfam数据库中包含的信息。保守区还可以通过将来自密切相关物种的相同或相关多肽的序列进行比对来确定。密切相关的物种优选来自相同的科。在一些实施方案中,来自两个不同种的序列的比对是足够的。
通常来说,显示出至少约40%氨基酸序列同一性的多肽可以用于鉴定保守区。相关多肽的保守区显示出至少45%的氨基酸序列同一性(例如,至少50%、至少60%、至少70%、至少80%或至少90%氨基酸序列同一性)。在一些实施方案中,保守区显示出至少92%、94%、96%、98%或99%的氨基酸序列同一性。
例如,适合用于在重组宿主中产生甜菊醇糖苷的多肽包括EUGT11、UGT91D2e、UGT91D2m、UGT85C和UGT76G的功能同源物。这样的同源物与PCT申请No.PCT/US2012/050021所示的EUGT11、UGT91D2e、UGT91D2m、UGT85C或UGT76G的氨基酸序列具有大于90%(例如,至少95%或99%)的序列同一性。EUGT11、UGT91D2、UGT85C和UGT76G多肽的变体在氨基酸一级序列内通常有10个或更少的氨基酸替换,例如7个或更少的氨基酸替换、5个或保守的氨基酸替换、或者1至5个替换。但在一些实施方案中,EUGT11、UGT91D2、UGT85C和UGT76G多肽的变体可以具有10个或更多个氨基酸替换(例如10、15、20、25、30、35、10-20、10-35、20-30或25-35个氨基酸替换)。替换可以是保守的,或者在一些实施方案中,是非保守的。UGT91D2e多肽中的非保守性变化的非限制性实例包括甘氨酸替换成精氨酸和色氨酸替换成精氨酸。UGT76G多肽中的非保守性替换的非限制性实例包括缬氨酸替换成谷氨酸、甘氨酸替换成谷氨酸、谷氨酰胺替换成丙氨酸以及丝氨酸替换成脯氨酸。UGT85C多肽中的变化的非限制性实例包括组氨酸替换成天冬氨酸、脯氨酸替换成丝氨酸、赖氨酸替换成苏氨酸以及苏氨酸替换成精氨酸。
在一些实施方案中,有用的UGT91D2同源物可以在预测的环以外的多肽区域具有氨基酸替换(例如,保守氨基酸替换),例如第20-26、39-43、88-95、121-124、142-158、185-198和203-214位残基是预测的UGT91D2e的N末端结构域中的环,而第381-386位残基是预测的UGT91D2e的C末端结构域中的环(参见SEQ ID NO:54)。例如,有用的UGT91D2同源物可以在第1-19、27-38、44-87、96-120、125-141、159-184、199-202、215-380或387-473位残基处包含至少一个氨基酸替换。在一些实施方案中,UGT91D2同源物可以在选自第30、93、99、122、140、142、148、153、156、195、196、199、206、207、211、221、286、343、427和438位残基的一个或更多个残基处具有氨基酸替换。例如,UGT91D2功能同源物可以在第206、207和343位的一个或更多个残基处具有氨基酸替换,例如第206位残基处的精氨酸、第207位处的半胱氨酸和第343位处的精氨酸。参见例如SEQ ID NO:86。UGT91D2的其它功能同源物可以具有下述中的一个或更多个:第30位残基处的酪氨酸或苯丙氨酸、第93位残基处的脯氨酸或谷氨酰胺、第99位残基处的丝氨酸或缬氨酸、第122位残基处的酪氨酸或苯丙氨酸、第140位残基处的组氨酸或酪氨酸、第142位残基处的丝氨酸或半胱氨酸、第148位残基处的丙氨酸或苏氨酸、第152位残基处的甲硫氨酸、第153位残基处的丙氨酸、第156位残基处的丙氨酸或丝氨酸、第162位残基处的甘氨酸、第195位残基处的亮氨酸或甲硫氨酸、第196位残基处的谷氨酸、第199位残基处的赖氨酸或谷氨酸、第211位残基处的亮氨酸或甲硫氨酸、第213位残基处的亮氨酸、第221位残基处的丝氨酸或苯丙氨酸、第253位处的缬氨酸或异亮氨酸、第286位处的缬氨酸或丙氨酸、第427位处的赖氨酸或天冬酰胺、第438位残基处的丙氨酸以及第462位残基处的丙氨酸或苏氨酸。在另一个实施方案中,UGT91D2功能同源物含有第211位残基处的甲硫氨酸和第286位残基处的丙氨酸。
在一些实施方案中,有用的UGT85C同源物可以具有位于第9、10、13、15、21、27、60、65、71、87、91、220、243、270、289、298、334、336、350、368、389、394、397、418、420、440、441、444和471位残基处的一个或更多个氨基酸替换。有用的UGT85C同源物的非限制性实例包括这样的多肽,所述多肽具有(相对SEQ ID NO:30)位于以下的替换:第65位残基(例如,第65位残基处的丝氨酸);第65位残基与第15(第15位残基处的亮氨酸)、270(例如,第270位残基处的甲硫氨酸、精氨酸或丙氨酸)、418(例如,第418位残基处的缬氨酸)、440(例如,第440位残基处的天冬氨酸)或441(例如,第441位残基处的天冬酰胺)位残基组合;位于第13(例如,第13位残基处的苯丙氨酸)、15、60(例如,第60位残基处的天冬氨酸)、270、289(例如,位于第289位残基处的组氨酸)和418位残基;位于第13、60和270位残基处的替换;位于第60和87(例如,第87位残基处的苯丙氨酸)位残基处的替换;位于第65、71(例如,第71位残基处的谷氨酰胺)、220(例如,第220位残基处的苏氨酸)、243(例如,第243位残基处的色氨酸)和270位处的替换;位于第65、71、220、243、270和441位残基处的替换;位于第65、71、220、389(例如,第389位残基处的缬氨酸)和394(例如,第394位残基处的缬氨酸)位残基处的替换;位于第65、71、270和289位残基处的替换;位于第220、243、270和334(例如,第334位残基处的丝氨酸)位残基处的替换;或者位于第270和289位残基处的替换。以下氨基酸突变不导致85C2多肽活性的损失:V13F、F15L、H60D、A65S、E71Q、I87F、K220T、R243W、T270M、T270R、Q289H、L334S、A389V、I394V、P397S、E418V、G440D以及H441N。在活性克隆中可见的其它突变包括K9E、K10R、Q21H、M27V、L91P、Y298C、K350T、H368R、G420R、L431P、R444G和M471T。在一些实施方案中,UGT85C2包含位于第65(例如,丝氨酸)、71(谷氨酰胺)、270(甲硫氨酸)、289(组氨酸)以及389(缬氨酸)位的替换。
SEQ ID NO:88、89、90和91给出了甜菊UGT 74G1、76G1和91D2e的氨基酸序列(其在N末端框内融合有人MDM2蛋白的前158个氨基酸)和甜菊UGT85C2(其在N末端框内融合有PMI合成肽的4个重复)(4XTSFAEYWNLLSP,SEQ ID NO:87)的氨基酸序列。
在一些实施方案中,有用的UGT76G同源物可以具有位于SEQ ID NO:85的第29、74、87、91、116、123、125、126、130、145、192、193、194、196、198、199、200、203、204、205、206、207、208、266、273、274、284、285、291、330、331和346位残基处的一个或更多个氨基酸替换。
有用的UGT76G同源物的非限制性实例包括这样的多肽,所述多肽具有位于以下的替换:第74、87、91、116、123、125、126、130、145、192、193、194、196、198、199、200、203、204、205、206、207、208和291位残基;第74、87、91、116、123、125、126、130、145、192、193、194、196、198、199、200、203、204、205、206、207、208、266、273、274、284、285和291位残基;或者第74、87、91、116、123、125、126、130、145、192、193、194、196、198、199、200、203、204、205、206、207、208、266、273、274、284、285、291、330、331和346位残基。参见表10。
表10.
修饰例如EUGT11或UGT91D2e的底物特异性的方法是本领域技术人员已知的,并且包括但不限于定点/理性诱变手段、随机定向进化手段及组合,其中在酶的活性位点附近进行随机诱变/饱和技术。例如,参见Osmani等,Phytochemistry 70:325-347(2009)。
候选序列的长度通常是参照序列长度的80%至200%,例如参照序列长度的82%、85%、87%、89%、90%、93%、95%、97%、99%、100%、105%、110%、115%、120%、130%、140%、150%、160%、170%、180%、190%或200%。功能同源物多肽的长度通常是参照序列长度的95%至105%,例如参照序列长度的90%、93%、95%、97%、99%、100%、105%、110%、115%或120%,或者其间的任意范围。任意候选核酸或多肽相对参照核酸或多肽的同一性百分比可以按照如下来确定。使用计算机程序ClustalW(1.83版本,缺省参数)将参照序列(例如,核酸序列或氨基酸序列)与一条或更多条候选序列进行比对,该程序使核酸或多肽序列能够在其全长上进行比对(全局比对)。Chenna等,Nucl.Acids Res.,31(13):3497-500(2003)。
ClustalW计算参照序列与一条或更多条候选序列之间的最佳匹配,并将它们对位排列,从而可以确定同一性、相似性和差异。可以向参照序列、候选序列或者两者中插入一个或更多个残基空位以实现序列对位排列的最大化。对于核酸序列的快速逐对比对,使用以下缺省参数:词长:2;窗口大小:4;打分方法:百分比;上对角线(top diagonal)的数量:4;以及空位罚分:5。对于核酸序列的多重比对,使用以下参数:空位开放罚分:10.0;空位延伸罚分:5.0;以及加权转换:是。对于蛋白质序列的快速逐对比对,使用以下参数:词长:1;窗口大小:5;打分方法:百分比;上对角线的数量:5;空位罚分:3。对于蛋白质序列的多重比对,使用以下参数:加权矩阵:blosum;空位开放罚分:10.0;空位延伸罚分:0.05;亲水性空位:开;亲水性残基:Gly、Pro、Ser、Asn、Asp、Gln、Glu、Arg和Lys;残基特异性空位罚分:开。ClustalW的输出是反映序列之间的关系的序列比对。ClustalW可以在例如Baylor Collegeof Medicine Search Launcher互联网站(searchlauncher.bcm.tmc.edu/mult1-align/mult1-align.html)和European Bioinformatics Institute互联网站(eb1.ac.uk/clustalw)运行。
为了确定候选核酸或氨基酸序列与参照序列的同一性百分比,将序列用ClustalW进行比对,比对中相同匹配的数量除以参照序列的长度,结果乘以100。注意可以将同一性百分比数值取舍到最接近的十分位。例如,78.11、78.12、78.13和78.14向下取舍到78.1,而78.15、78.16、78.17、78.18和78.19向上取舍到78.2。
可以理解,功能性UGT可以包含不参与葡糖基化或者所述酶执行的其它酶促活性的额外氨基酸,因此这样的多肽可以比不含额外氨基酸的多肽更长。例如,EUGT11多肽可以包含纯化标签(例如,HIS标签或GST标签)、叶绿体转运肽、线粒体转运肽、造粉体肽、信号肽或者添加在氨基或羧基末端的分泌标签。在一些实施方案中,EUGT11多肽包含具有报告分子作用的氨基酸序列,例如绿色荧光蛋白或黄色荧光蛋白。
II.甜菊醇和甜菊醇糖苷生物合成核酸
编码本文所述的多肽的重组基因包含所述多肽的编码序列,该序列与适合表达多肽之一个或更多个调控区按照有义方向有效连接。因为许多微生物能够由多顺反子mRNA表达多种基因产物,因此如果期望的话,可以将这些微生物在单一调控区的控制下表达多个多肽。当调控区和编码序列被定位成使得调控区能够有效地调节所述序列的转录或翻译时,认为该编码序列和调控区有效连接。通常来说,对于单顺反子基因,编码序列的翻译阅读框的翻译起始位点位于调控区下游1到约50个核苷酸之间。
在许多情况下,本文所述的多肽之编码序列是在重组宿主以外的物种中鉴定到的,即编码序列是异源核酸。因此,如果重组宿主是微生物,则编码序列可以来自其它原核或真核微生物、植物或动物。然而在一些情况下,编码序列是宿主先天具有的被重新引入该生物体的序列。天然序列与天然存在的序列的区别通常在于存在与外源核酸连接的非天然序列,例如例如位于重组核酸构建体中天然序列侧翼的非天然调节序列。此外,稳定转化的外源核酸通常整合到发现天然序列之位点外的位点。“调控区”是指含有影响转录或翻译的起始和速率、以及转录或翻译产物的稳定性和/或移动性之核苷酸序列的核酸。调控区包括但不限于,启动子序列、增强子序列、反应元件、蛋白质识别位点、诱导型元件、蛋白质结合序列、5’和3’非翻译区(UTR)、转录起始位点、终止序列、多腺苷酸化序列、内含子及其组合。调控区通常包含至少一个核心(基本)启动子。调控区还可以包含至少一个控制元件,例如增强子序列、上游元件或者上游激活区(UAR)。通过将调控区与编码序列定位成使得调控区有效地调节序列的转录或翻译来使得调控区与编码序列有效连接。例如,为了有效连接编码序列和启动子序列,编码序列的翻译阅读框的翻译起始位点通常定位于启动子下游的1到约50个核苷酸之间。但调控区也可能被定位在翻译起始位点上游多达约5000个核苷酸或者转录起始位点上游约2000核苷酸的位置。
对要包含的调控区的选择取决于几个因素,包括但不限于效率、可选择性、可诱导性、期望的表达水平,以及在某些培养阶段期间优先表达。对于本领域技术人员而言,通过相对编码序列适当选择和定位调控区来调整编码序列的表达是常规问题。应理解可能存在多于一个调控区,例如内含子、增强子、上游激活区、转录终止子和诱导型元件。
可以将一个或更多个基因组合在重组核酸构建体中形成“模块(modules)”,可用于甜菊醇和/或甜菊醇糖苷生产的一个独立方面。在模块中组合多个基因,特别是多顺反子模块,便于在多种物种中使用所述模块。例如,可以将甜菊醇生物合成基因簇或者UGT基因簇组合在多顺反子模块中,从而使得在插入合适的调控区后,可以将模块引入众多的物种中。作为另一个实例,可以将UGT基因簇组合,使每个UGT编码序列有效连接独立的调控区从而形成UGT模块。这样的模块可以用在那些必须或者期望单顺反子表达的物种中。除了对甜菊醇或甜菊醇糖苷产生有用的基因以外,重组构建体通常还含有复制原点和使构建体保持在合适的物种中的一个或更多个可选择标志物。
应理解,由于遗传密码的简并性,许多核酸可以编码特定多肽,即对于许多氨基酸,有多于一个核苷酸三联体充当该氨基酸的密码子。因此,使用针对宿主(例如,微生物)的合适密码子偏向性表格,可以将给定多肽的编码序列中的密码子进行修饰,从而实现在所述特定宿主中的最佳表达。作为分离的核酸,这些经过修饰的序列可以作为纯化分子存在,也可以整合到载体或病毒中用于构建重组核酸构建体的模块。
在一些情况下,为了将代谢中间体转向甜菊醇或甜菊醇糖苷生物合成,期望抑制内源多肽的一个或更多个功能。例如,可能期望通过例如下调角鲨烯环氧酶来下调酵母菌株中的固醇合成以便进一步提高甜菊醇或甜菊醇糖苷产量。作为另一个实例,可能期望抑制某些内源基因产物(例如,去除次级代谢物的葡萄糖部分的糖基水解酶或如本文所述的磷酸酶)的降解功能。作为另一个实例,可以抑制参与甜菊醇糖苷转运的膜转运蛋白的表达,从而抑制糖基化甜菊苷的分泌。这种调控可以是有益的,因为可以在微生物的培养过程中将甜菊醇糖苷的分泌抑制期望的一段时间,从而提高收获时糖苷产物的产率。在这种情况下,转化到菌株中的重组构建体中可包含抑制多肽或基因产物之表达的核酸。替代地,可以利用诱变来生成期望抑制其功能的基因的突变体。
III.表达转运蛋白
本文件涉及其中内源转运蛋白基因的表达被修饰或者其中表达异源转运蛋白基因的重组宿主细胞。在一些实施方案中,可通过用导致转运蛋白表达增加(例如,表达增加至少5%,例如表达增加至少10%、15%、20%或25%)的不同启动子替换内源启动子来修饰内源转运蛋白的表达。例如,可将内源启动子替换成导致转运蛋白表达增加的组成型或诱导型启动子。可利用同源重组来将内源基因的启动子替换成导致转运蛋白表达增加的不同启动子。在另一些实施方案中,可利用同源重组来将诱导型或组成型启动子和内源转运蛋白或转录因子基因整合到基因组的另一基因座中。在另一些实施方案中,可使用含有导致微生物中转运蛋白过表达之启动子的外源质粒来将转运蛋白基因导入该微生物中。在又一个实施方案中,外源质粒还可包含转运蛋白基因的多个拷贝。在另一个实施方案中,可利用重组微生物的天然机制(例如,热休克、应激、重金属或抗生素暴露)来诱导内源转运蛋白以被过表达。例如,可向培养基添加寡霉素和/或镉(其中所述分子可诱导YOR1表达)以增加YOR1的表达,并从而增加甜菊醇糖苷的分泌。参见,例如Hallstrom&Moye-Rowley(1998)JBC273(4):2098-104;Nagy等,(2006)Biochimie.88(11):1665-71;和Katzmann等,(1995)MolCell Biol.15(12):6875-83。
如本文中所述的,增加重组宿主中某些内源转运蛋白的表达或者在重组宿主中表达异源转运蛋白(例如,在微生物(例如酿酒酵母)中表达甜菊转运蛋白)可赋予该宿主更有效地产生并分泌甜菊醇糖苷的能力。可通过如本文中所述的液相色谱-质谱法(LC-MS)来测量在培养宿主期间产生的细胞内和/或细胞外甜菊醇糖苷的量。
转运蛋白(也称为膜转运蛋白)是一种参与将分子和离子移动通过生物膜的膜蛋白。转运蛋白横跨膜,它们定位于膜中并将物质运输通过膜。转运蛋白可通过易化扩散或者通过主动运输来发挥其移动物质的作用。已根据转运蛋白质分类数据库(TransporterClassification Database)的不同标准对转运蛋白进行了分类。参见,Saier Jr.等,Nucl.Acids Res.,37:D274-278(2009)。认为,质膜转运蛋白中有两个家族普遍存在于活生物体中:ATP-结合盒(ATP-Binding Cassette,ABC)转运蛋白和主要易化子超家族(MajorFacilitator Superfamily,MFS)转运蛋白。ATP结合盒转运蛋白(ABC转运蛋白)是利用腺苷三磷酸(ATP)水解的能量来进行多种底物之跨膜易位的跨膜蛋白。ATP结合盒转运蛋白可将广泛多种底物运输穿过细胞外膜或细胞内膜,包括代谢产物、脂质和固醇以及药物。蛋白质基于其ATP结合盒结构域的序列和结构而被分类为ABC转运蛋白。通常,ABC家族转运蛋白是能够响应ATP水解而运输分子的多成分初级主动转运蛋白。内源ABC转运蛋白基因的非限制性实例包括在PDR5、PDR10、PDR15、SNQ2、YOR1、YOL075c和PDR18的基因(或其功能同源物)。
主要易化子超家族(MFS)转运蛋白是可响应化学渗透离子梯度而运输小溶质的多肽。Saier,Jr.等,J.Mol.Microbiol.Biotechnol.1:257-279(1999)。有时将MFS转运蛋白家族称为单向转运蛋白-同向转运蛋白-反向转运蛋白(uniporter-symporter-antiporter)家族。MFS转运蛋白尤其在糖摄取和药物流出系统中发挥功能。MFS转运蛋白通常包含保守的MFS特异性基序。内源MFS转运蛋白基因的非限制性实例包括在TPO1、TPO3和FLR1基因座的基因(或其功能同源物)。
另一些转运蛋白家族包括SMR(small multidrug resistant,小多重耐药)家族、RND(Resistance-Nodulation-Cell Division,抗性-结节-细胞分裂)家族和MATE(multidrug and toxic compound extrusion,多药及毒性化合物外排)家族。SMR家族成员是以4个α-螺旋跨膜链为特征的整合膜蛋白,其在细菌中赋予对多种防腐剂、亲脂性季铵化合物(QAC)的抗性和氨基糖苷抗性。参见,Bay和Turner,BMC Evol Biol.,9:140(2009)。例如,大肠杆菌中的EmrE流出转运蛋白(GenBank:BAE76318.1;SEQ ID NO:92)与氨基糖苷抗性相关。其是外排带正电的芳香药物(即,甲基紫精或乙锭)以交换两个质子的同源寡聚体(homooligomer)。
RND家族成员分布广泛,其中包括革兰氏阴性细菌,并且催化很多抗生素和化学治疗剂的主动流出。参见,Nikaido和Takatsuk,Biochim Biophys Acta.,1794(5):769-81(2009)。一种示例性的蛋白质是来自大肠杆菌的AcrAB,其参与红霉素D转运(GenBank:BAE76241.1;SEQ ID NO:93,和AAA23410.1;SEQ ID NO:94)。
MATE家族成员包含12个跨膜(TM)结构域。已在原核生物、酵母(例如酿酒酵母和粟酒裂殖酵母)和植物中鉴定到MATE家族的成员。Diener等,Plant Cell.13(7):1625-1638(2001)。MATE家族成员是钠或质子反向转运蛋白。一种示例性的靶分子是来自大肠杆菌的ydhE(GenBank AAB47941.1;SEQ ID NO:95),其运输氟喹诺酮、卡那霉素、链霉素、其他氨基糖苷和黄连素。
A.转录因子
还可利用转录因子的表达修饰来增加转运蛋白表达。例如,酵母转录因子PDR1和/或PDR3调控编码ABC转运蛋白PDR5、SNQ2和YOR1之基因的表达。因此,在一些实施方案中,可将内源PDR1和PDR3基因座的启动子替换成导致转录因子表达增加的不同启动子,这样可增加内源转运蛋白的产生。在另一些实施方案中,可使用含有导致微生物中转录因子过表达之启动子的外源质粒将转录因子导入该微生物中。在又一个实施方案中,内源质粒还可包含转录因子的多个拷贝。在另一个实施方案中,可利用重组微生物的天然机制(例如,热休克、应激、重金属或抗生素暴露)来激活内源转录因子或诱导内源转录因子过表达。
B.鉴定影响甜菊醇途径中间体分泌的基因
本文中公开了用于鉴定影响甜菊醇途径中间体之分泌的基因的方法。这样的方法可包括失活至少一个内源转运蛋白基因或者修饰至少一个转运蛋白基因的表达。通常来说,制备突变体微生物的文库,该文库中的每个突变体具有不同的失活的内源转运蛋白基因。在一些实施方案中,在文库中的每个微生物中修饰不同内源转运蛋白基因的表达。其中产生修饰的亲本微生物可缺乏甜菊醇糖苷途径基因,但是如有需要其可包含一个或更多个这样的基因。一般来说,更加方便的是在不存在甜菊醇糖苷途径基因的情况下产生修饰并随后引入有利于产生期望的不同目标糖苷产物的那些途径基因。将含有一个或更多个甜菊醇糖苷途径基因的突变体微生物在其中合成甜菊醇或甜菊醇糖苷的条件下在培养基中培养,并按照本文中所述(例如,使用LC-MS)测量该微生物产生的细胞外和/或细胞内甜菊醇糖苷途径中间体的量。
所表征的中间体取决于微生物中的特定目的途径。例如,表达76G1、74G1、91D2e和85C2 UGT的微生物(下文所述)可由甜菊醇经由中间化合物甜菊醇-19-O-葡糖苷(19-SMG)、覆盆子苷和甜菊苷合成目标产物莱鲍迪苷A。参见图1。因此,如果莱鲍迪苷A是目标产物,可测量微生物分泌到培养上清液中的19-SMG的量和保留在微生物内的19-SMG的量。可测量在培养微生物期间产生的单个中间体的量或每种中间体的量。如果突变体微生物产生之细胞外途径中间体的量大于对应的转运蛋白基因野生型微生物所产生的量,则该内源转运蛋白基因被鉴定为影响甜菊醇途径中间体的分泌。可采用类似的方法来确定转运蛋白是否影响其他中间体的分泌。
IV.失活内源转运蛋白
本文件可涉及含有一个或更多个失活的内源转运蛋白基因的重组宿主。通常如下失活内源转运蛋白基因:破坏该基因的表达或者引入突变以降低或甚至完全消除含有该突变之宿主中的转运蛋白活性,例如破坏一个或更多个内源转运蛋白基因,使得该宿主的转运蛋白表达降低或由所破坏基因编码之转运蛋白的活性降低。
在一些实施方案中,所敲除的转运蛋白还可对较大分子量莱鲍迪苷(例如,RebA)的分泌具有特异性,并且因此可用于在期望RebA被分泌到培养基中的菌株中过表达。在通过表达途径UGT来适当平衡糖基化活性速率的情况下,较小分子量的甜菊醇糖苷在其被分泌到培养基中之前被进一步糖基化。例如,与UGT74G1和UGT85C2酶相比,UGT76G1以及UGT91D2e和/或EUGT11的较高表达水平可防止更易被分泌的甜菊醇单葡糖苷积累。如果UGT活性水平高于运输速率(则糖基化速率更快),那么将产生更多较大分子量的甜菊醇糖苷。
由于很多转运蛋白具有重叠的底物特异性并且由于某些转运蛋白的破坏可通过上调其他转运蛋白而得到补偿,因此产生含有多个失活的转运蛋白基因的宿主通常是有用的。例如,如本文中所述,可如下文的实施例中所示破坏PDR5、PDR10、PDR15和SNQ2基因座。在一些实施方案中,可如下文的实施例中所示破坏TPO1、PDR5、PDR10、PDR15和SNQ2基因座。
可基于相关序列的功能来鉴定可被失活的另外转运蛋白基因,例如在酵母PDR5、PDR10、PDR15和SNQ2基因座发现的序列。可通过破坏基因的突变来失活内源转运蛋白基因。例如,可以以这样的方式将基因替换载体构建成包含可选择标志物基因,在所述可选择标志物之5’和3’两端侧翼的是长度足以介导同源重组的转运蛋白基因部分。可选择标志物可以是补充宿主细胞营养缺陷性、提供抗生素抗性或产生颜色变化的任意数目基因之一。然后,采用已知方法将不含质粒DNA或ars元件之基因替换载体的线性化DNA片段导入细胞中。可基于可选择标志物确定并可通过例如Southern印记分析验证线性片段被整合到基因组中并且转运蛋白基因遭到破坏。由于在转运蛋白的基因座处插入了可选择标志物,所得细胞含有失活的突变体转运蛋白基因。可利用已知技术并借助同源重组以类似的方式构建缺失-破坏基因替换载体、将其整合在内源转运蛋白基因中,从而使内源转运蛋白基因失活。在一些实施方案中,可在确定已引入期望的破坏突变后将可选择标志物从宿主细胞的基因组中除去。参见,例如Gossen等(2002)Ann.Rev.Genetics 36:153-173和U.S.申请公开No.20060014264。
还可通过利用转录激活因子样效应核酸酶(TALEN)或经修饰的锌指核酸酶引入期望的插入或缺失突变来失活内源转运蛋白基因。参见,美国专利公开No.2012-0178169。在一些实施方案中,通过在野生型转运蛋白基因序列中引入导致核苷酸插入、核苷酸缺失或者转换或颠换点突变的突变来失活内源转运蛋白基因。转运蛋白基因中可引入的其他类型突变包括野生型序列中的重复和倒位。突变可发生在转运蛋白基因座的编码序列中以及非编码序列(例如调控区、内含子以及其他非翻译序列)中。编码序列中的突变可导致相应的基因产物中插入一个或更多个氨基酸、缺失一个或更多个氨基酸和/或发生非保守的氨基酸替换。在一些情况下,转运蛋白基因的序列包含一个以上突变或一种以上类型的突变。编码序列中氨基酸的插入或缺失可例如破坏所得基因产物的底物结合口袋的构象。
氨基酸插入或缺失还可破坏基因产物活性的重要催化位点。本领域中已知的是,与较少数目的插入或缺失氨基酸相比,插入或缺失越多数目的连续氨基酸使基因产物丧失功能的可能性越大。非保守替换可使基因产物的电荷和疏水性发生显著改变。非保守氨基酸替换还可使残基侧链的体积发生显著改变,例如将异亮氨酸残基替换成丙氨酸残基。非保守替换的实例包括碱性氨基酸替换非极性氨基酸或极性氨基酸替换酸性氨基酸。
在一些实施方案中,转运蛋白基因中的突变可导致无氨基酸改变,尽管不影响所编码转运蛋白的氨基酸序列,但是可改变转录水平(例如,增加或降低转录)、降低翻译水平、改变DNA或mRNA的二级结构、改变用于转录或翻译机器的结合位点或降低tRNA结合效率。
可如下产生转运蛋白基因座中的突变:对转运蛋白基因序列进行体外定点诱变,之后如上文所述进行同源重组以将突变引入宿主基因组中。然而,还可通过在宿主细胞中诱导诱变、使用诱变剂以在细胞群中诱导遗传突变来产生突变。特别地,诱变可用于体外诱变和同源重组不能很好建立或不方便的那些物种或菌株。用于特定物种或菌株的诱变化学物剂量或辐射剂量可根据经验来确定,使得获得低于以致死性或生殖不育性为特征之阈值水平的突变频率。
A.转录因子
还可利用修饰转录因子的表达来降低或消除转运蛋白表达。例如,酵母转录因子PDR1和/或PDR3调控编码ABC转运蛋白PDR5、SNQ2和YOR1之基因的表达。破坏该基因座或者降低DR1和/或PDR3的表达可导致甜菊醇糖苷中间体的分泌可检测地降低。因此,在一些实施方案中,酵母宿主包含失活的内源PDR1和PDR3基因座与多个失活的转运蛋白基因之组合,以与通过失活任意单独转运蛋白或转录因子所提供的分泌减少相比使中间体的分泌减少更多。在另一个实施方案中,鉴定通过破坏或降低转录因子的表达降低甜菊醇糖苷分泌的转录因子,然后将其在重组微生物中过表达以增加甜菊醇糖苷的分泌。
B.鉴定影响甜菊醇途径中间体分泌的基因
本文中公开了用于鉴定影响甜菊醇途径中间体分泌的基因的方法。这样的方法包括失活、破坏至少一个内源转运蛋白基因或者降低至少一种内源转运蛋白基因的表达。通常来说,制备突变体微生物的文库,该文库中每个突变体的不同内源转运蛋白基因被失活、被破坏或表达降低。其中产生突变的亲本微生物可缺乏甜菊醇糖苷途径基因,但是其可包含一个或更多个这样的基因。一般来说,更加方便的是在不存在甜菊醇糖苷途径基因的情况下产生突变并随后导入有利于产生期望的不同目标糖苷产物的那些途径基因。将含有一个或更多个甜菊醇糖苷途径基因的突变体微生物在其中合成甜菊醇或甜菊醇糖苷的条件下在培养基中培养,并测量该微生物产生的细胞外和/或细胞内甜菊醇糖苷途径中间体的量。
所表征的中间体取决于微生物中的特定目的途径,例如,表达76G1、74G1、91D2e和85C2 UGT的微生物(下文所述)可由甜菊醇经由中间化合物甜菊醇-19-O-葡糖苷(19-SMG)、甜菊醇-13-O-葡萄糖(13-SMG)、覆盆子苷和甜菊苷合成目标产物莱鲍迪苷A。参见图1。因此,如果莱鲍迪苷A是目标产物,可测量微生物分泌到培养上清液中的19-SMG的量和保留在微生物内的19-SMG的量(例如,采用液相色谱-质谱法(LC-MS))。可测量在培养微生物期间产生的单独中间体的量或每种中间体的量。如果突变体微生物产生之细胞外途径中间体的量大于对应的转运蛋白基因野生型微生物所产生的量,则该内源转运蛋白基因被鉴定为影响甜菊醇途径中间体的分泌。可采用类似的方法来确定转运蛋白是否影响其他中间体的分泌。
V.宿主
有许多原核生物和真核生物适用于构建本文所述的重组微生物,例如革兰氏阴性细菌、酵母和真菌。首先对被选定用作甜菊醇或甜菊醇糖苷生产菌株的物种和菌株进行分析,以确定哪些生产基因对于该菌株而言是内源的以及哪些基因不存在。将菌株中不含有其内源对应物的基因装配在一个或更多个重组构建体中,然后将其转化到菌株中以提供缺少的功能。
示例性原核物种和真核物种在下文中更详细的描述。但可以理解其他种类可能也是合适的。例如,合适的物种可能属于酵母纲(Saccharomycetes)。另外的合适的物种可能属于选自以下的属:伞菌属、曲霉属、芽孢杆菌属、念珠菌属、棒状杆菌属、埃希菌属、镰孢菌/赤霉属、克鲁维酵母属、硫磺菌属、香菇属、红发夫酵母属、平革菌属、毕赤酵母属、藓属、红酵母属、酵母属、裂殖酵母属、痂圆孢属、发夫酵母属以及耶氏酵母。
来自这些属的示例性种包括虎皮香菇(Lentinus tigrinus)、硫磺菌(Laetiporussulphureus)、黄孢原毛平革菌(Phanerochaete chrysosporium)、巴斯德毕赤酵母(Pichiapastoris)、小立碗藓(Physcomitrella patens)、粘红酵母(Rhodoturula glutinis)32、胶红酵母(Rhodoturula mucilaginosa)、红发夫酵母(Phaffia rhodozyma)UBV-AX、红发夫酵母(XanthophyIlomyces dendrorhous)、藤仓镰刀菌(Fusarium fujikuroi)/腾仓赤霉(Gibberella fujikuroi)、产朊假丝酵母(Candida utilis)和解脂耶氏酵母。在一些实施方案中,微生物可以是子囊菌(Ascomycete),例如腾仓赤霉、乳酸克鲁维酵母、粟酒裂殖酵母、黑曲霉或者酿酒酵母。在一些实施方案中,微生物可以是原核生物,例如大肠杆菌、球形红细菌(Rhodobacter sphaeroides)或者荚膜红细菌(Rhodobacter capsulatus)。可以理解,某些微生物可以用于以高通量的方式对目的基因进行筛选和测试,而其他具有期望的产率或生长特性之微生物可以用于大规模生产甜菊醇糖苷。
酿酒酵母及相关酵母物种
酿酒酵母是合成生物学中广泛使用的载体生物(chassis organism),并且可以用作重组微生物平台。酿酒酵母拥有可供使用的突变体文库、质粒、代谢的详细计算机模型和其他信息,因此允许合理设计各种模块来提高产物的产量。制备重组微生物的方法是已知的。利用多种已知启动子中的任一种都可以在酵母中特别是在酵母纲(Saccharomycetes)中表达甜菊醇生物合成基因簇。过量产生萜的菌株是已知的,并且可以用于提高牻牛儿基牻牛儿基二磷酸的量,以供甜菊醇和甜菊醇糖苷的生产。酿酒酵母是一种示例性酵母属物种。
曲霉属
曲霉属物种(例如米曲霉(4.oryzae)、黑曲霉(4.niger)和酱油曲霉(A.sojae))是食品生产中广泛使用的微生物,并且还可用作重组微生物平台。构巢曲霉(A.nidulans)、烟曲霉(A.fumigatus)、米曲霉、棒曲霉(A.clavatus)、黄曲霉(A.flavus)、黑曲霉和土曲霉(A.terreus)的基因组核苷酸序列是均是可获得的,从而允许合理设计和修饰内源途径以提高通量和提高产物产率。已经开发了用于曲霉属的代谢模型,以及转录组学研究和蛋白组学研究。黑曲霉被培养用于工业化生产多种食品成分,例如柠檬酸和葡糖酸,并且因此例如黑曲霉的物种通常适用于生产食品成分例如甜菊醇和甜菊醇糖苷。
大肠杆菌
合成生物学中广泛使用的另一种平台生物大肠杆菌也可用作重组微生物平台。与酵母属类似,大肠杆菌拥有可供使用的突变体文库、质粒、代谢的详细计算机模型以及其他信息,从而允许合理设计多种模块以提高产物的产率。可使用与上文针对酵母属所述的那些类似的方法来制备重组大肠杆菌微生物。
伞菌属、赤霉属和平革菌属
伞菌属、赤霉属和平革菌属是可用的,因为已知它们在培养物中产生大量赤霉素。因此用于大量产生甜菊醇和甜菊醇糖苷的萜前体已由内源基因产生。因此,可将包含甜菊醇或甜菊醇糖苷生物合成多肽的重组基因的模块导入来自这些属的物种中,而无需导入甲羟戊酸或MEP途径基因。
Arxula adeninivorans(Blastobotrys adeninivorans)
Arxula adeninivorans是具有独特生化特征的二态酵母(其在高至42℃的温度下生长为类似于面包酵母的出芽酵母,高于该阈值时,其以丝状形式生长)。Arxulaadeninivorans可在多种底物上生长,并且可同化硝酸盐。Arxula adeninivorans已成功地应用于产生可以产生天然塑料的菌株或者应用于开发用于环境样品中之雌激素的生物传感器。
解脂耶氏酵母
解脂耶氏酵母是可在多种底物上生长的二态酵母(参见Arxula adeninivorans)。解脂耶氏酵母具有高的工业应用的潜力,但仍没有市售可得的重组产品。
红细菌属
红细菌(Rhodobacter)可用作重组微生物平台。与大肠杆菌类似,红细菌拥有可供使用的突变体文库以及合适的质粒载体,从而允许合理设计多种模块以提高产物产率。红细菌之膜状细菌物种中的类异戊二烯途径己经过改造并且类胡萝卜素和CoQ10的产生提高。参见美国专利公开No.20050003474和20040078846。可使用与上文针对大肠杆菌所述的那些类似的方法来制备重组红细菌微生物。
博伊丁念珠菌(Candida boidinii)
博伊丁念珠菌是甲基营养型酵母(其可在甲醇上生长)。与其他的甲基营养型物种(例如多形汉逊酵母(Hansenula polymorpha)和巴斯德毕赤酵母)类似,博伊丁念珠菌为异源蛋白质的产生提供优异的平台。已报道了外源分泌蛋白的多克级范围的产率。最近,计算方法IPRO预测了在实验上将博伊丁念珠菌木糖还原酶的辅因子特异性从NADPH转化至NADH的突变。
多形汉逊酵母(安格斯毕赤酵母,Pichia angusta)
多形汉逊酵母是另一种甲基营养型酵母(参见,博伊丁念珠菌)。其还可在多种其他底物上生长;其耐热并且可以同化硝酸盐(另参见乳酸克鲁维酵母)。多形汉逊酵母已被应用于产生乙型肝炎疫苗、胰岛素和用于治疗丙型肝炎的干扰素α-2a,还用于一系列技术酶。
乳酸克鲁维酵母
乳酸克鲁维酵母是常规地应用于产生克非尔(kefir)的酵母。其可在数种糖上生长,最重要的是可在存在于乳和乳清中的乳糖上生长。乳酸克鲁维酵母已被成功地应用于产生凝乳酶(通常存在于牛的胃中的一种酶)等以生产奶酪。生产以40,000L的规模在发酵罐中进行。
巴斯德毕赤酵母
巴斯德毕赤酵母是甲基营养型酵母(参见博伊丁念珠菌和多形汉逊酵母)。巴斯德毕赤酵母为外来蛋白质的产生提供有效的平台。平台元件可作为试剂盒获得并且在世界范围内在学术界中被用于产生蛋白质。已将菌株改造成可产生复杂的人N-多糖(酵母多糖与在人中发现的那些类似但不相同)。
藓属
小立碗藓苔藓当在混悬培养物中培养时具有与酵母或其他真菌培养物类似的特征。该属正成为用于产生在其他细胞类型中难以产生的植物次级代谢物的重要细胞类型。
VI.生产甜菊醇糖苷的方法
本文所述的重组微生物可以用于生产甜菊醇或甜菊醇糖苷的方法中。例如,该方法可以包括将重组微生物在其中甜菊醇和/或甜菊醇糖苷生物合成基因能够得以表达的条件下培养在培养基中。重组微生物可以分批培养或者持续培养。通常来说,将重组微生物在限定的温度下在发酵罐中培养期望的一段时间。根据方法中使用的特定微生物,还可以存在并表达其他重组基因,例如异戊二烯生物合成基因和萜合酶以及环化酶基因。底物和中间体(例如异戊二烯基二磷酸、二甲基烯丙基二磷酸、牻牛儿基牻牛儿基二磷酸、贝壳杉烯和异贝壳杉烯酸)的水平可以通过从培养基中提取样品,按照公开的方法进行分析来确定。
重组微生物已经在培养基中培养期望的一段时间后,可以采用本领域已知的多种技术从培养物中回收甜菊醇和/或一种或更多种甜菊醇糖苷。在一些实施方案中,可以添加透化剂以辅助原料进入宿主和使产物出去。例如,可以将培养的微生物的粗裂解物离心,以获得上清液。然后将所得上清液加样到色谱柱(例如C-18柱),用水洗涤来去除亲水性化合物,之后用溶剂(例如甲醇)来洗脱目的化合物。然后可以通过制备型HPLC将化合物进一步纯化。另参见WO 2009/140394。
产生的甜菊醇糖苷(例如,莱鲍迪苷A或莱鲍迪苷D)的量可为约1mg/L至约2000mg/L,例如约1mg/L至约10mg/L、约3mg/L至约10mg/L、约5mg/L至约20mg/L、约10mg/L至约50mg/L、约10mg/L至约100mg/L、约25mg/L至约500mg/L、约100mg/L至约1,500mg/L,或者约200mg/L至约1,000mg/L、至少约1,000mg/L、至少约1,200mg/L、至少约至少1,400mg/L、至少约1,600mg/L、至少约1,800mg/L或至少约2,000mg/L。一般来说,培养时间越长,将导致产物的量越大。因此,可以将重组微生物培养1天至7天、1天至5天、3天至5天、约3天、约4天或者约5天。
可以理解,本文讨论的多种基因和模块可以存在于两个或更多个重组微生物中,而不是单个微生物中。当使用多种重组微生物时,可以将它们培养在混合培养物中来产生甜菊醇和/或甜菊醇糖苷。例如,第一微生物可以包含一个或更多个用于产生甜菊醇的生物合成基因以及在第一组内源转运蛋白中的无效突变,而第二微生物包含甜菊醇糖苷生物合成基因以及在第二组内源转运蛋白中的无效突变。
或者,两个或更多个微生物可以各自培养在独立的培养基中,可以将第一培养基中的产物(例如甜菊醇)引入第二培养基中以转化为后续的中间体或者终产物(例如莱鲍迪苷A)。然后回收第二微生物或者最终的微生物所产生的产物。微生物可具有在内源转运蛋白中的相同组或不同组的突变。同样可以理解,在一些实施方案中,重组微生物的培养使用了营养源而不是培养基,并且利用的是发酵罐以外的系统。
甜菊醇糖苷在不同食品系统中不一定有等同的性能。因此期望的是有能力指导合成所选甜菊醇糖苷组合物。本文描述的重组宿主可以产生选择性富集了特定甜菊醇糖苷(例如,莱鲍迪苷D)并具有一致的口味特性的组合物。因此,本文所述的重组微生物可以有助于生产这样的组合物,所述组合物能够适于满足给定食品所期望的甜化特性并且批次之间每种甜菊醇糖苷的比例是一致的。本文所述的微生物不会产生甜菊提取物中存在的不需要的植物副产品。因此,本文所描述的重组微生物所产生的甜菊醇糖苷组合物与来自甜菊植物的组合物是有区别的。
VII.甜菊醇糖苷、组合物和食品
通过本文所公开的方法获得的甜菊醇糖苷和组合物可以用于制作食品、膳食补充剂和甜味剂组合物。例如,可以将基本纯的甜菊醇或甜菊醇糖苷(例如莱鲍迪苷A或莱鲍迪苷D)包含在食品中,例如冰淇淋、碳酸饮料、果汁、酸奶、烘培食品(baked goods)、口香糖、硬糖和软糖以及调味汁。还可以将基本纯的甜菊醇或甜菊醇糖苷包含在非食品产品中,例如医药产品、药品、膳食补充剂和营养补充剂。还可以在农业和陪伴动物业二者的动物饲料产品中包含基本纯的甜菊醇或甜菊醇糖苷。或者,可以通过以下来制备甜菊醇和/或甜菊醇糖苷的混合物:分开培养重组微生物,所述重组微生物各自产生特定的甜菊醇或甜菊醇糖苷;从每种微生物中回收基本纯形式的甜菊醇或甜菊醇糖苷;然后将化合物组合以得到含有处于期望比例的每种化合物的混合物。本文所述的重组微生物使得可以获得比现有甜菊产品更精确和一致的混合物。在另一种替代方法中,可以将基本纯的甜菊醇或甜菊醇糖苷与其他甜味剂一起掺入食品中,所述甜味剂例如糖精、葡聚糖、蔗糖、果糖、赤藓糖醇、阿斯帕坦、三氯半乳蔗糖、莫那甜(monatin)或乙酰磺胺酸钾(acesulfame potassium)。根据需要可以改变甜菊醇或甜菊醇糖苷相对其他甜味剂的重量比以实现最终食品中的满意口味。参见例如,美国专利申请No.2007/0128311。在一些实施方案中,可以将甜菊醇或甜菊醇糖苷与调味品(例如,柑橘)一起提供作为调味品的调整剂。
可以将本文所述的重组微生物产生的组合物掺入食品中。例如,可以根据甜菊醇糖苷和食品的类型,将重组微生物产生的甜菊醇糖苷组合物按照基于干重约20mg甜菊醇糖苷/kg食品至约1800mg甜菊醇糖苷/kg食品的量掺入食品中。例如,可以将重组微生物产生的甜菊醇糖苷组合物掺入甜点、冷的甜品(例如冰淇淋)、奶制品(例如酸奶)或者饮料(例如碳酸饮料)中,使食品含有基于干重的最多500mg甜菊醇糖苷/kg食品。可以将重组微生物产生的甜菊醇糖苷组合物掺入烘培食品(例如,饼干)中,使食品含有基于干重的最多300mg甜菊醇糖苷/kg食品。可以将重组微生物产生的甜菊醇糖苷组合物掺入调味汁(例如,巧克力糖浆)或蔬菜制品(例如,腌菜)中,使食品含有基于干重的最多1000mg甜菊醇糖苷/kg食品。可以将重组微生物产生的甜菊醇糖苷组合物掺入面包中,使食品含有基于干重的最多160mg甜菊醇糖苷/kg食品。可以将重组微生物、植物或植物细胞产生的甜菊醇糖苷组合物掺入硬糖或软糖中,使食品含有基于干重的最多1600mg甜菊醇糖苷/kg食品。可以将重组微生物、植物或植物细胞产生的甜菊醇糖苷组合物掺入加工过的水果制品(例如,果汁、果馅、果酱和果冻)中,使食品含有基于干重的最多1000mg甜菊醇糖苷/kg食品。
例如,这样的甜菊醇糖苷组合物可以含有90%至99%莱鲍迪苷A和不可检出量的来自甜菊植物的污染物,并且可以按照基于干重的25mg/kg至1600mg/kg掺入食品中,例如100mg/kg至500mg/kg、25mg/kg至100mg/kg、250mg/kg至1000mg/kg、50mg/kg至500mg/kg或者500mg/kg至1000mg/kg。
这样的甜菊醇糖苷组合物可以是含有大于3%的莱鲍迪苷B的富含莱鲍迪苷B的组合物,并且可以掺入食品中使产品中莱鲍迪苷B的量为基于干重为25mg/kg至1600mg/kg,例如100mg/kg至500mg/kg、25mg/kg至100mg/kg、250mg/kg至1000mg/kg、50mg/kg至500mg/kg或500mg/kg至1000mg/kg。通常来说,富含莱鲍迪苷B的组合物含有不可检出量的来自甜菊植物的污染物。
这样的甜菊醇糖苷组合物可以是含有大于3%的莱鲍迪苷D的富含莱鲍迪苷D的组合物,并且可以掺入食品中使产品中莱鲍迪苷D的量基于干重为25mg/kg至1600mg/kg,例如100mg/kg至500mg/kg、25mg/kg至100mg/kg、250mg/kg至1000mg/kg、50mg/kg至500mg/kg或500mg/kg至1000mg/kg。通常来说,富含莱鲍迪苷D的组合物含有不可检出量的来自甜菊植物的污染物。
这样的甜菊醇糖苷组合物可以是含有大于3%莱鲍迪苷E的富含莱鲍迪苷E的组合物,并且可以掺入食品中使产品中莱鲍迪苷E的量基于干重为25mg/kg至1600mg/kg,例如100mg/kg至500mg/kg、25mg/kg至100mg/kg、250mg/kg至1000mg/kg、50mg/kg至500mg/kg或500mg/kg至1000mg/kg。一般来说,富含莱鲍迪苷E的组合物含有不可检出量的来自甜菊植物的污染物。
这样的甜菊醇糖苷组合物可以是含有大于3%的莱鲍迪苷M的富含莱鲍迪苷M的组合物,并且可以掺入食品中使产品中莱鲍迪苷M的量基于干重为25mg/kg至1600mg/kg,例如100mg/kg至500mg/kg、25mg/kg至100mg/kg、250mg/kg至1000mg/kg、50mg/kg至500mg/kg或500mg/kg至1000mg/kg。通常来说,富含莱鲍迪苷M的组合物含有不可检出量的来自甜菊植物的污染物。
在一些实施方案中,将基本纯的甜菊醇或甜菊醇糖苷掺入佐餐甜味剂或“代糖(cup-for-cup)”产品中。这样的产品通常用本领域技术人员已知的一种或更多种膨化剂(例如麦芽糊精)稀释到合适的甜度。可以将富含莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E或莱鲍迪苷M的甜菊醇糖苷组合物以例如基于干重的10,000mg至30,000mg甜菊醇糖苷/kg产品的量包装在小袋中供佐餐使用。
在以下实施例中将进一步描述本发明,其并不限制在权利要求中所描述的本发明的范围。
实施例
实施例1.LC-MS分析方法
除非另有说明,否则采用装配有waters acquityBEH shield RP18柱(2.1×50mm,1.7μm颗粒,孔径)的Ultimate 3000 UPLC系统(Dionex),其连接到具有加热电喷雾离子(HESI)源的TSQ Quantum Access(ThermoFisher Scientific)三重四极杆质谱仪上进行LC-MS分析。使用洗脱剂B(含有0.1%甲酸的MeCN)和洗脱剂A(含有0.1%甲酸的水)的流动相,通过逐渐增加梯度来进行洗脱,所述梯度为:0.0至4.0分钟25%至47%B;4.0至5.0分钟47%增加至100%B;5.0至6.5分钟保持100%B再平衡。流量为0.4ml/分钟,柱温度为35℃。采用SIM(单离子监测,Single Ion Monitoring)用下述m/z迹线来检测甜菊醇糖苷。
表11:对甜菊醇糖苷的MS分析信息
通过与用来自LGC标准的可信标准获得的校准曲线进行比较来定量甜菊醇糖苷的水平。例如,通常使用0.5μM至100μM莱鲍迪苷A的标准溶液来构建校准曲线。
实施例2.产生莱鲍迪苷之酵母菌株的构建
A.由含有三种营养缺陷型修饰(即缺失URA3、LEU2和HIS3)的野生型酿酒酵母菌株构建酵母菌株EFSC2772。野生型菌株可采用标准遗传方法进行操作并且可用作常规的二倍体或单倍体酵母菌株。通过4种DNA构建体的基因组整合将EFSC2772转变成产生甜菊醇糖苷之酵母。每种构建体含有通过同源重组引入酵母基因组的多个基因。此外,通过同源重组装配第一、第二构建体。
第一构建体含有8个基因,并且被插入DPP1基因座中,其破坏并部分地缺失DPP1(磷酸酶)。所插入的DNA包含:表达natMX基因(可选择标志物)的棉阿舒囊霉TEF启动子,接着是棉阿舒囊霉的TEF终止子;由天然酵母GPD1启动子表达的Gene Art密码子优化的甜菊UGT85C2(GenBank AAR06916.1;SEQ ID NO:32),接着是天然酵母CYC1终止子;使用天然酵母TPI1启动子表达的甜菊CPR-8(SEQ ID NO:24),接着是天然酵母TDH1终止子;由天然酵母PDC1启动子表达的拟南芥贝壳杉烯合酶(与GenBank AEE36246.1类似,SEQ ID NO:96),接着是天然酵母FBA1终止子;使用天然酵母TEF2启动子表达的聚球藻属GGPPS(GenBankABC98596.1,SEQ ID NO:97),接着是天然酵母PGI1终止子;由天然酵母TEF1启动子表达的DNA2.0密码子优化的甜菊KAHe1(SEQ ID NO:18),接着是天然酵母ENO2终止子;使用天然酵母FBA1启动子表达的甜菊KO-1(GenBank ABA42921.1;gi 76446107,SEQ ID NO:98),接着是天然酵母TDH2终止子;以及使用天然酵母PGK1启动子表达的玉米截短的CDPS,接着是天然酵母ADH2终止子。
第二构建体被插入YPRCΔ15基因座处,且包含在kanMX基因(可选择标志物)之前的来自棉阿舒囊霉的TEF1启动子,接着是来自棉阿舒囊霉的TEF1终止子;由天然酵母PGK1启动子表达的Gene Art密码子优化的拟南芥ATR2(SEQ ID NO:99),接着是天然酵母ADH2终止子;由天然酵母TPI1启动子表达的甜菊UGT74G1(GenBank AAR06920.1,SEQ ID NO:100),接着是天然酵母TDH1终止子;由天然酵母TEF1启动子表达的Gene Art密码子优化的甜菊UGT76G1(GenBank AAR06912,SEQ ID NO:101),接着是天然酵母ENO2终止子;以及由天然酵母GPD1启动子表达的产生具有氨基酸修饰L211M和V286A的UGT91D2e多肽之GeneArt密码子优化的甜菊UGT91D2e-b(SEQ ID NO:54是野生型序列的UGT91D2e氨基酸序列;密码子优化的核苷酸序列示于SEQ ID NO:102中),接着是天然酵母CYC1终止子。
通过接合和分离在相同的孢子克隆中将第一构建体和第二构建体组合。接下来,在两个连续事件中用构建体三和四转化酵母菌株。
构建体三整合在基因PRP5与YBR238C之间,并且包含表达棉阿舒囊霉LEU2基因的棉阿舒囊霉LEU2启动子,接着是棉阿舒囊霉的LEU2终止子;表达DNA2.0优化的甜菊KAHe1(SEQ ID NO:18)的天然酵母GPD1启动子,接着是天然酵母CYC1终止子;以及表达玉米截短的CDPS(SEQ ID NO:103)的天然酵母TPI1启动子,接着是天然酵母TPI1终止子。
构建体四被整合在基因组的ECM3与YOR093C基因之间,且包含表达肺炎克雷伯菌(K.pneumoniae)hphMX基因的棉阿舒囊霉TEF启动子,接着是棉阿舒囊霉的TEF1终止子;由天然酵母GPD1启动子表达的聚球藻属GGPPS(SEQ ID NO:97),接着是天然酵母CYC1终止子;以及表达拟南芥贝壳杉烯合酶(SEQ ID NO:96)的天然酵母TPI1启动子,接着是天然酵母TPI1终止子。
通过转化引入两种质粒p413TEF(具有HIS3标志物的CEN/ARS穿梭质粒)和p416-TEF(具有URA3标志物的CEN/ARS穿梭质粒)来使菌株成为原养型,并命名为EFSC2772。
如通过LC-MS所证实的,在两个不同批次的EFSC2772中,组合的细胞和胞外产物浓度为920mg/L至1660mg/L的RebA和约300mg/L至320mg/L的RebD,当获得了较高的滴度结果时,在培养液中检测到了约700mg/L的RebA。此外,对于RebB见到了大峰,并且本领域技术人员认识到,UGT74G1的额外拷贝或UGT74G1的上调将进一步增加RebB转化为RebA。相反,如果RebB是目标糖苷,那么UGT74G1可被破坏或从染色体中缺失。
B.EFSC2763酵母菌株来自含有三种营养缺陷型修饰(即缺失URA3、LEU2和HIS3)的野生型酿酒酵母菌株。菌株的遗传学已稳定并且可用作常规的二倍体或单倍体酵母菌株。通过4种DNA构建体的基因组整合来将EFSC2763转化为产生甜菊醇糖苷的酵母。每种构建体含有通过同源重组引入酵母基因组的多个基因。此外,通过同源重组装配第一、第二构建体。
第一构建体含有8个基因,并且插入DPP1基因座中,破坏和部分地缺失DPP1。所插入的DNA包含:表达NatMX基因(可选择标志物)的棉阿舒囊霉TEF启动子,接着是棉阿舒囊霉TEF终止子;由天然酵母GPD1启动子表达的Gene Art密码子优化的甜菊UGT85C2(SEQ IDNO:32),接着是天然酵母CYC1终止子;使用TPI1启动子表达的甜菊CPR-8(SEQ ID NO:24),接着是天然酵母TDH1终止子;由PDC1启动子表达的拟南芥贝壳杉烯合酶(KS-5,SEQ ID NO:96),接着是天然酵母FBA1终止子;使用TEF2启动子表达的聚球藻属GGPPS(GGPPS-7;SEQ IDNO:97),接着是天然酵母PFI1终止子;由TEF1启动子表达的DNA2.0密码子优化的甜菊KAHe1(SEQ ID NO:18),接着是ENO2终止子;使用FBA1启动子表达的甜菊KO-1(SEQ ID NO:98),接着是天然酵母TDH2终止子;以及使用PGK1启动子表达的玉米截短的CDPS(SEQ ID NO:103),接着是天然酵母ADH2终止子。
第二构建体插入在YPRCΔ15基因座处,并且含有在表达KanMX基因(可选择标志物)之前的来自棉阿舒囊霉的天然酵母TEF启动子,接着是来自棉阿舒囊霉的TEF终止子;由PGK1启动子表达的Gene Art密码子优化的拟南芥ATR2(SEQ ID NO:9),接着是酵母ADH2终止子;由TPI1启动子表达的甜菊UGT74G1(SEQ ID NO:100),接着是酵母TDH1终止子;由TEF1启动子表达的Gene Art密码子优化的甜菊UGT76G1(SEQ ID NO:101),接着是酵母ENO2终止子;以及由GPD1启动子表达的GeneArt密码子优化的甜菊UGT91D2e-b(SEQ ID NO:102),接着是酵母CYC1终止子。
通过接合和分离在相同的孢子克隆中将第一构建体和第二构建体组合。接下来,在两个连续事件中用构建体三和四转化酵母菌株。
构建体三整合在基因PRP5与YBR238C之间,并且包含表达棉阿舒囊霉LEU2基因的棉阿舒囊霉的TEF启动子,接着是棉阿舒囊霉的TEF终止子;表达DNA2.0优化的甜菊KAHe1(SEQ ID NO:18)的GPD1启动子,接着是CYC1终止子;以及表达玉米截短的CDPS(SEQ ID NO:103)的TPI1启动子。
构建体四整合在基因组的ECM3与YOR093C之间,其中表达盒包含表达肺炎克雷伯菌hph基因(SEQ ID NO:157;参见Gritz等,(1983)Gene 25:179-88)的棉阿舒囊霉的TEF启动子,接着是棉阿舒囊霉的TEF终止子,由GPD1启动子表达的聚球藻属GGPPS,接着是CYC1终止子,以及表达拟南芥贝壳杉烯合酶的TPI1启动子。然后移除四种所用遗传标志物。
如在从细胞和培养液中对总甜菊醇糖苷进行DMSO提取之后通过LC-MS所分析的,在30℃于3ml SC(合成完全)培养基中在深孔培养板中以320RPM振荡培养四天之后,EFSC2763产生40μM至50μM或2μM至3μM/OD600的莱鲍迪苷A。
C.EFSC2797菌株是通过在YORW基因座再添加一种组装构建体从EFSC2763菌株产生。另外的构建体如下。表达来自S.pombe的HIS基因(可选择标志物)的棉阿舒囊霉TEF启动子,接着是来自棉阿舒囊霉的TEF终止子;使用GPD1启动子表达的甜菊KO-1(SEQ ID NO:98),接着是天然酵母tCYC1终止子;使用TPI1启动子表达的甜菊CPR-8(SEQ ID NO:24),接着是天然酵母TDH1终止子;由PDC1启动子表达的拟南芥贝壳杉烯合酶(KS-5;SEQ ID NO:96),接着是天然酵母FBA1终止子;TEF2启动子表达的水稻EUGT11(SEQ ID NO:53),接着是酵母PGI1终止子;由TEF1启动子表达的DNA2.0密码子优化的甜菊KAHe1(SEQ ID NO:18),接着是ENO2终止子;以及PGK1启动子表达的玉米截短的CDPS(SEQ ID NO:103),接着是ADH2终止子。
从细胞(细胞于30℃在24孔板中生长4天)和培养液对总甜菊醇糖苷进行DMSO提取之后的LC-MS分析表明,EFSC2797产生不同量的RebA、RebB、RebD、RebM和覆盆子苷,参见下表12。
表12.从EFSC2797产生甜菊醇糖苷
Rubu(μM) RebB(μM) RebA(μM) RebD(μM) RebM(μM)
1.349 8.477 46.737 47.691 75.952 平均值
0.0611 2.2025 16.7505 17.1447 28.1131 标准差
D.EFSC3248酵母菌株来自与以上描述相同的母体野生型酿酒酵母菌株,并且使用与上文类似的方法对表13中描述的下列基因进行整合。此外,该菌株为HO-以防止转换配对类型。
表13.菌株EFSC 3248中使用的重组途径基因和启动子的列表。
实施例3.过表达转运蛋白的酵母菌株的构建
在上面的实施例2以及国际申请号:PCT/US2011/038967(WO/2011/153378)和PCT/US2012/050021(WO/2013/022989)(二者均通过引用整体并入本文)中描述了产生莱鲍迪苷的酵母菌株。由对相似菌株的摇瓶研究的观察表明,在上清液中RebA的级分随着时间增加,且确定该影响不是细胞裂解的结果。为了确定在酿酒酵母中多种转运蛋白对甜菊醇糖苷分泌的影响,通过将用于转运蛋白基因的内源启动子替换为TEF1组成型启动子来构建酿酒酵母菌株库。
构建由TEF启动子和HIS5(粟酒裂殖酵母(Schizosaccharomyces pombe))标志物构成的盒,HIS5标志物的两侧为Lox P位点。具有特定尾巴的引物用于盒的PCR扩增且在上文所述的RebA生产者EFSC2763中,通过同源重组将产物整合到目标基因的上游。将Kosak序列添加到与基因的起始处进行退火的引物的尾巴处,以便使其正好位于起始密码子的前面。使用与TEF1启动子退火的正向引物以及与特定转运蛋白基因退火的基因特异性反向引物通过PCR确认盒的正确插入。表14包含了44个转运相关基因的列表,其中TEF1组成型启动子用于替换内源启动子。
表14:转运相关基因(UniProtKB/SWISS-PROT编号)
测试了44个菌株的RebA分泌。在3ml合成完全(SC)培养基中孵育重复培养物48小时(30℃,310rpm,24孔板)。通过离心100μl的培养物(4000rcf,7分钟)获得上清液样品。将25μl的上清液添加至双倍量的50%DMSO中。
通过LC-MS分析这些样品,作为上清液(无细胞)样品。使用的LC-MS方法类似于实施例1,不同之处在于使用Kinetex C18柱(150×2.1mm,2.6μm颗粒,孔径)以及采用40%至50%B的更浅梯度,这通常导致更长的保留时间。除去来自原始样品的剩余上清液,在100μl的水中洗涤沉淀。将沉淀重悬浮于100μl的50%DMSO中,并加热至80℃保持10分钟,然后将样品离心(4000rcf,5分钟)。将从重悬浮的沉淀中得到的25μl上清液添加至等量的50%DMSO和等量的水中,之后将样品转移到过滤板上。从过滤板上收获样品(2000rcf,2分钟)并在LC-MS上进行测量,作为沉淀样品。结果示于图2。
与EFSC2763对照菌株相比,菌株“12_YOR1”显示出在上清液中比在沉淀中更高的RebA百分比。与其他菌株相比,“18_ADP1”和“EFSC2763”菌株产生少的总RebA且“40_THI7”在样品之间具有很大的偏差。再次测试YOR1过表达菌株。在第二次实验中,与EFSC2763对照菌株相比,YOR1过表达菌株“YOR1_OE”产生较少的总RebA,但与对照菌株相比,在上清液中仍显示出更高的RebA百分比(图3)。测定了候选转运蛋白的信使RNA水平,在许多情况下,表达水平没有比野生型水平显著增加。
在另一个生产菌株EFSC2797(如上所述)和在2微米质粒(PSB314)中,重新测试了九个候选物(PDR1、PDR3、PDR13、SNQ2、YOR1_BY、YOR1_IS1、FLR1、AZR1和DTR1)的莱鲍迪苷的产生和分泌。在3ml合成完全(SC)培养基中孵育重复培养物48小时(30℃,310rpm,24孔板)。通过离心100μl的培养物(13,000rcf,5分钟)获得上清液样品。将50μl的上清液添加至等量的100%DMSO中。通过LC-MS分析这些样品作为上清液样品。用等体积的100%DMSO混合总的培养液样品并加热至80℃保持10分钟,之后将样品离心(4000rcf,5分钟),通过LC-MS分析液体部分作为“总的”甜菊醇糖苷水平。通过在实施例1中描述的LC-MS来测量分泌到培养基上清液中的多种甜菊醇糖苷的量(包括RebA、RebB、RebD、RebM、覆盆子苷、13-SMG、1.2甜菊苷、1.2二糖苷和未知的甜菊醇糖苷(在4.13分钟处的LC-MS峰))以及在整个培养液中的总量。结果见于图4A-M。分泌的百分比作图是图4A-K中的上清液值除以“总”量,或者还绘出了以微摩尔每OD 600计的浓度(图4J-K),或者绘出了在上清液中的浓度或总的浓度(图4L-M)。
各自独立地过表达9个候选基因(PDR1、PDR3、PDR13、SNQ2、YOR1_BY、YOR1_IS1、FLR1、AZR1和DTR1)表明,与对照菌株(对照是具有空PSB314质粒的EFSC2797;在图4A-M中示为“PSB314”)相比,在上清液中多种甜菊醇糖苷有更高的百分比和/或浓度的分泌。YOR1_BY(SEQ ID NO:148)表示YOR1基因的DNA序列,所述YOR1基因是已从BY4741基因组DNA中扩增的并在含有URA营养缺陷型标志物(P426-GPD)的2微米质粒中进行了克隆;YOR1_IS1(SEQID NO:149)表示YOR1基因的DNA序列,所述YOR1基因是已从另外的野生型酿酒酵母基因组DNA中扩增的并在含有URA营养缺陷型标志物(P426-GPD)的2微米质粒中进行了克隆。例如,在4.13分钟时,与具有空PSB314质粒的EFSC2797对照菌株(在图4-6中示为“PSB314”或“空质粒”)相比,上清液中的菌株“SNQ2”显示更高百分比的RebA、RebB、RebD、RebM、1.2甜菊苷、1.2二糖苷和未知的甜菊醇糖苷,而总的生产相同。在4.13分钟时,与EFSC2797对照菌株相比,在上清液中的菌株“YOR1_IS1”比在总样品中显示了更高百分比的RebB、RebD、覆盆子苷、1.2甜菊苷、1.2二糖苷和未知的甜菊醇糖苷。此外,SNQ2和YOR1过表达表明与对照相比,在上清液中RebD和RebA的浓度增加(参见图4J-M)。
再次测试了上述九个候选物中的四个在生产性EFSC2797菌株中莱鲍迪苷的产生和分泌,并使用PSB314 2微米质粒来过表达转运蛋白。在3ml合成完全(SC)培养基-URA(选择压力)中孵育培养物72小时(30℃,310rpm,24孔板)。通过离心100μl的培养物(13,000rcf,5分钟)获得上清液样品。将50μl的上清液添加至50μl的100%DMSO中。通过LC-MS分析这些样品作为上清液样品。用50μl的100%DMSO混合50μl的细胞悬浮液并加热至80℃保持10分钟,之后将样品进行离心(4000rcf,5分钟);在LC-MS上测量液体部分作为“总”样品。通过在实施例1中描述的LC-MS来测量分泌到培养基上清液中的多种甜菊醇糖苷(包括RebA、RebB、RebD、RebM、覆盆子苷、13-SMG、1.2甜菊苷、1.2二糖苷和未知的甜菊醇糖苷(在4.13分钟处的LC-MS峰))的量以及在整个培养液中的总量。在数据处理过程中使用Xcalibur软件(Thermo)通过整合确定曲线下面积(AUC)。图5A-D示出了表明分泌量(AUC)的结果和图5E-I示出了表明在上清液中分泌的百分比(上清液/总值的比率)的结果。
分别各自过表达四个候选基因(PDR1、SNQ2、YOR1_BY、YOR1_IS1和FLR1)表明,与对照菌株(具有空PSB314质粒的EFSC2797;在图5A-I中示为“PSB314”)相比,在上清液中有更高的百分比和/或浓度的多种甜菊醇糖苷的分泌。例如,在4.13分钟时,与EFSC2797对照菌株相比,菌株“YOR1_BY”和“YOR1_IS1”两者都显示在上清液中比在总量中更高百分比的RebA、RebB、1.2甜菊苷和未知的甜菊醇糖苷。此外,与对照相比,分别过表达的SNQ2、YOR1、PDR1和FLR1表明出在上清液中RebB的AUC的增加(参见图5A-D)。与对照相比,四个候选基因各自分别的过表达没有显著改变如通过EFSC2797酵母菌株的OD600测量的生长速度(参见图6)。
实施例4.过表达甜菊转运蛋白的酵母菌株
在焦磷酸测序数据中鉴定了6个推定的甜菊RebA转运蛋白:SrDTX24(SEQ ID NO:150)、SrMRP10(SEQ ID NO:151)、SrPDR12(SEQ ID NO:152)、SrMRP2(SEQ ID NO:153)、SrMRP4a(SEQ ID NO:154),和SrMRP4b(SEQ ID NO:155)。选择5个推定的转运蛋白SrDTX24、SrMRP10、SrPDR12、SrMRP4a和SrMRP4b进行进一步研究并克隆。在稳定生产RebA的酿酒酵母中表达克隆的转运蛋白序列。测量甜菊醇糖苷的分泌水平并示于图7。
实施例5.用于在酵母中鉴定甜菊醇糖苷转运蛋白的方法
四转运蛋白突变体酵母菌株的构建
在上述实施例2以及国际申请号:PCT/US2011/038967(WO/2011/153378)和PCT/US2012/050021(WO/2013/022989)(二者均通过引用整体并入本文)中描述了产生甜菊醇糖苷的酵母菌株。由对相似菌株的摇瓶研究的观察表明,从酿酒酵母细胞分泌的甜菊醇糖苷随着分子的分子量增加其效率似乎降低。为了确定多种转运蛋白对酿酒酵母中甜菊醇糖苷分泌的影响,构建了各自携带的内源转运蛋白被破坏的酿酒酵母突变体库。
在酿酒酵母菌株BY4741和/或BY4742(BY4741可作为ATCC 201388获得;且BY4742可作为ATCC 201389获得;参见Brachmann等“Designer deletion strains derived fromSaccharomyces cerevisiae S288C:a useful set of strains and plasmids for PCR-mediated gene disruption and other applications.”Yeast 14:115-32,1998)中将定位于质膜的ABC和MFS转运蛋白单独破坏;使用由具有45-65bp基因特异性长尾巴的引物扩增的抗生素标志物盒。将盒转化到菌株中且通过抗生素标志物盒的同源重组破坏特定的转运蛋白基因。使用对天然基因的上游序列特异的正向引物和位于抗生素标志物盒内部的反向引物通过PCR证实天然转运蛋白基因的破坏。该突变体库涵盖了总计34个转运蛋白(14个ABC、19个MFS和1个其他)以及两个转录因子。参见表15。
表15:转运相关基因敲除以在实验室菌株中建立酵母突变体
*--在<uniprot.org/uniprot>网站列出的登录号。
初步分析表明,这36个基因的突变体中,由酵母PDR5、PDR10、PDR15和SNQ2基因座编码的转运蛋白对于将甜菊醇糖苷(例如19-SMG和覆盆子苷)分泌到培养基中具有可检测的影响。由TPO1、TPO3、YOR1、YOL075c、PDR18和FLR1基因座编码的酵母内源转运蛋白,以及由PDR1和PDR3基因座编码的转录因子对甜菊醇糖苷的分泌也具有可检测的影响,虽然其影响程度小于PDR5、PDR10、PDR15和SNQ2。由于鉴定了几个影响甜菊醇糖苷分泌的转运蛋白,在酵母中似乎没有任何一种的转运蛋白全权负责甜菊醇糖苷的分泌。
为了确定多于一种转运蛋白的破坏对甜菊醇糖苷分泌的影响,创建了四重破坏突变体(pdr5、pdr10、pdr15、snq2)。用可选择标志物缺失盒转化缺失突变体pdr15(基于BY4742在酿酒酵母菌株中构建),所述可选择标志物缺失盒是使用以PDR10侧翼序列作为尾部的引物的PCR制备的,使其一经转化即进行同源重组。以同样的方式,创建snq2缺失菌株(基于BY4741)并使用PDR5侧翼序列作为引物尾部的第二选择标志物缺失盒进行转化。使产生的两个双突变体菌株(pdr15-pdr10和snq2-pdr5)配对来构建破坏了所有四个转运蛋白基因的孢子产品。使用如用于单破坏突变体所述的引物策略,通过PCR来验证破坏,导致形成了四重的pdr5、pdr10、pdr15、snq2破坏突变体,称为4X破坏突变体。
用编码4个甜菊UGT:76G1、74G1、91D2e和85C2的2微米质粒转化4X破坏突变体。参见WO 2011/153378A1。将表达4个UGT的4X破坏突变体的培养物在13ml缺乏组氨酸和尿嘧啶的含有2至3ml合成完全(SC)培养基上预生长过夜。具有UGT质粒但在PDR5、PDR10、PDR15、SNG2基因座处为野生型的亲本菌株的培养物作为对照。
第二天,离心0.25OD600单位,在含有100μM甜菊醇的新鲜培养基中重悬浮,并于30℃下在培养管中摇动2小时。离心100μL的等分试样并将等体积的DMSO添加至该上清液中。用H2O洗涤细胞沉淀,随后重悬浮于200μl的50%DMSO中。然后将混合物涡旋,在80℃下加热10分钟并离心以除去碎片。使用类似于实施例1中描述的方法通过LC-MS分析所得溶液(细胞沉淀样品)的19-SMG的量,不同之处在于使用kinetex C18柱(150×2.1mm,2.6μm颗粒,孔径)以及采用40%至50%B的更浅梯度,这通常导致更长的保留时间。如图8所示,结果表明由4X破坏突变体菌株产生的19-SMG其总量的约90%在沉淀中。与此相反,由野生型菌株产生的19-SMG其总量仅有约25%在沉淀中。
测试了表达4个甜菊UGT的4X破坏突变株的莱鲍迪苷A生产。将预培养的细胞浓缩至OD600=20,于250μl含有甜菊醇的培养基中(SC-His-Ura,100μM甜菊醇)。在24小时孵育后(在30℃和200rpm),收获细胞。离心100μL等分试样的培养物,向该样品的上清液中加入等体积的DMSO。将细胞沉淀在H2O洗涤一次并向沉淀中添加200μL的50%DMSO。将样品涡旋,加热至80℃保持10分钟并离心。来自两个DMSO混合物的上清液被合并并用kinetex C18柱通过LC-MS分析甜菊醇糖苷的含量。结果示于图9。这些结果表明,与表达4个甜菊UGT的野生型菌株相比,在表达4个甜菊UGT的4X突变体菌株中观察到RebA积累的大量增加。这些结果表明,在4X突变体菌株中不太可能分泌单糖苷中间体,而是将单糖苷中间体作为底物以在这些酵母菌株的细胞质中进一步糖基化。然而,一些被敲除了的转运蛋白对于较大分子量的莱鲍迪苷(例如RebA)的分泌也可具有特异性,并且对于其中需要在培养基中分泌RebA的菌株来说,过表达可能是有用的。随着通过通路UGT的表达来适当平衡糖基化活性的速率,较小分子量的甜菊醇糖苷在其分泌到培养基之前进一步被糖基化。例如,与UGT74G1和UGT85C2酶相比,更高表达水平的UGT76G1和UGT91D2e和/或EUGT11UGT将防止甜菊醇单糖苷的积累(甜菊醇单糖苷更易分泌)。如果UGT活性水平比用于特定的甜菊醇糖苷的转运蛋白的速率更高的话(这样糖基化速率更快),则将会产生更多较大分子量的甜菊醇糖苷。
7X转运蛋白突变体酵母菌株的构建
基于上述的四重转运蛋白突变体的结果,生成7X转运蛋白破坏突变体(pdr15-pdr10-snq2-pdr5-tpo1-pdr1-pdr3)。在BY4741背景下创建pdr1和pdr3双突变体。然后除去用于产生双突变体的标记物。用可选择标志物缺失盒转化所得的双突变体。所述盒是用以TPO1侧翼序列作为尾部之引物的PCR制备的,使其一经转化即进行同源重组。将三重突变体pdr1-pdr3-tpo1与上述4X破坏突变体进行配对(基于BY4742)。在所得的孢子中,发现了所有七个位置破坏的菌株。通过PCR确认基因的破坏。在用盒替换靶基因的情况下,使用以上所述PCR策略来确认基因的破坏。对于pdr1和pdr3基因座,使用设计成与每个基因上游和下游序列退火的正向引物和反向引物来证实破坏。所有克隆中都存在PCR产物且短的PCR产物指示靶基因的丢失。
利用同源重组将上述4个甜菊UGT整合到4X和7X转运蛋白破坏突变体以及野生型菌株的基因组中。进行甜菊醇梯度、时间过程实验以研究在野生型、4X突变株和7X突变株中甜菊醇糖苷积累的影响。将各自表达4个甜菊UGT的4X破坏突变株和7X破坏突变株的预培养细胞浓缩至OD600=1,于400μl含有甜菊醇的培养基中(SC-Ura,0μM、20μM、50μM、100μM或250μM甜菊醇)。在30℃,320rpm下,使菌株生长于96深孔板中并在约0、1、2、4、8或24小时的培养后,将50μl等分试样的每种培养物离心,将等体积的DMSO添加至各等分试样的上清液中。用kinetex C18柱通过如上所述的LC-MS分析甜菊醇糖苷的含量。
结果示于图10-12。如图10所示,野生型菌株分泌19-SMG和13-SMG到细胞外培养液中。如图11和图12所示,4X-和7X转运蛋白破坏突变体不分泌19-SMG和13-SMG到细胞外培养液中。然而,与野生型菌株相比,4X-和7X转运蛋白破坏突变体分泌了更大量的1,3-二糖苷(参见图12)。这些数据表明,破坏内源转运蛋白对酵母中甜菊醇糖苷的积聚具有影响。
上述数据证明了,在酵母中内源转运蛋白的单独或组合敲除且筛选增加的甜菊醇糖苷保留,对于鉴定其过表达能提高培养基中甜菊醇糖苷分泌的潜在转运蛋白来说是个好方法。
转运蛋白突变体的进一步筛选
在实施例2中描述的酵母菌株EFSC3248中,测试了酵母基因的敲除对较高分子量的莱鲍迪苷的分泌的影响。通过前面所述的同源重组,在染色体上进行了各特定转运蛋白基因(PDR5、SNQ2、YOR1、YHK8和FLR1)的破坏。在96小时(在30℃和200rpm)孵育后收获细胞。将100μL等分试样的培养物进行离心,并将等体积的100%DMSO添加至上清液中。通过LC-MS分析80μL的混合物作为“上清液”样品。将在100uL的100%DMSO中的100uL细胞悬浮液加热至80℃保持10分钟,然后离心。将混合物进行涡旋,在80℃下加热10分钟,并且离心以除去任何残留的碎片。用40μL的DMSO(50%)混合40μL的所得溶液且通过LC-MS分析样品作为“总”样品。通过在实施例1中描述的LC-MS来测量分泌到培养上清液中的多种甜菊醇糖苷(包括RebA、RebB、RebD、RebM、覆盆子苷、13-SMG、1.2甜菊苷、1.2二糖苷和未知的甜菊醇糖苷(在4.13分钟处的LC-MS峰))的量以及在整个培养液中的总量。数据证明单个内源酵母转运蛋白基因的破坏导致在培养基上清液中多种甜菊醇糖苷的分泌百分比(图13D-F)或分泌量(图13A-C)的减少。具体而言,与对照相比,SNQ2、YOR1和FLR1的破坏导致分泌到上清液或酵母菌株中的RebA、RebB和RebD的减少或在酵母菌株中RebA、RebB和RebD浓度的下降(参见图13A-F;在图13中对照是“EFSC3248”)。
尽管已经参照本发明的具体实施方案对其进行了详细描述,但显而易见的是可对其进行修改和变化,而不偏离所附权利要求书中限定的本发明的范围。更具体地,虽然本发明的一些方面在本文中被认为是特别有利的,但是应想到本发明不必局限于本发明的这些具体方面。

Claims (35)

1.能够在细胞培养物中产生甜菊醇糖苷的重组微生物,其中所述微生物具有对至少一种内源转运蛋白基因的表达修饰,
其中所述表达修饰包括与相应缺少修饰的微生物中观察的表达或活性水平相比,SEQID NO:148或149所示核苷酸序列的至少一种所述内源转运蛋白基因或者编码SEQ ID NO:104、113或122中任一个所示的氨基酸序列的多肽的至少一种所述内源转运蛋白基因的表达增加,或者通过破坏或缺失各自基因座来使编码SEQ ID NO:107、108、111或113中任一个所示的氨基酸序列的多肽之基因的降低表达;
其中所述甜菊醇糖苷是莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E、莱鲍迪苷M、或其组合。
2.根据权利要求1所述的重组微生物,其中所述内源转运蛋白基因编码ATP-结合盒(ABC)转运蛋白或主要易化子超家族(MFS)转运蛋白。
3.根据权利要求1至2中任一项所述的重组微生物,其还包含:
(a)编码蔗糖转运蛋白(SUC1)多肽和蔗糖合酶(SUS1)多肽的一个或更多个基因,
其中所述SUS1多肽为SEQ ID NO:78或80所示的氨基酸序列的多肽;
(b)编码能够由法尼基二磷酸(FPP)和异戊烯基二磷酸(IPP)合成牻牛儿基牻牛儿基焦磷酸(GGPP)的多肽的基因,
其中所述多肽为SEQ ID NO:43-50中任一个所示的氨基酸序列的多肽;
(c)编码能够由GGPP合成内部-柯巴基二磷酸的多肽的基因,
其中所述多肽为SEQ ID NO:33-39中任一个所示的氨基酸序列的多肽;
(d)编码能够由内部-柯巴基焦磷酸合成内部-贝壳杉烯的多肽的基因,
其中所述多肽为SEQ ID NO:1-6中任一个所示的氨基酸序列的多肽;
(e)编码能够由内部-贝壳杉烯合成内部-贝壳杉烯酸的多肽的基因,
其中所述多肽为SEQ ID NO:7-10中任一个所示的氨基酸序列的多肽;
(f)编码能够由内部-贝壳杉烯酸合成甜菊醇的多肽的基因,
其中所述多肽为SEQ ID NO:11-17或19中任一个所示的氨基酸序列的多肽;
(g)编码能够还原细胞色素P450复合物的多肽的基因,
其中所述多肽为SEQ ID NO:20、22、27或28中任一个所示的氨基酸序列的多肽;
并且还包含:
(h)编码能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽的基因,
其中所述多肽为SEQ ID NO:30或91所示的氨基酸序列的多肽;
(i)编码能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽的基因,
其中所述多肽为SEQ ID NO:85或89所示的氨基酸序列的多肽;
(j)编码能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽的基因,
其中所述多肽为SEQ ID NO:29或88所示的氨基酸序列的多肽;和/或
(k)编码能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽的基因,
其中所述基因具有2个或更多个拷贝数;并且
其中所述多肽为SEQ ID NO:51、54、55、86或90中任一个所示的氨基酸序列的多肽;
其中(a)-(k)中的至少一个所述基因是重组基因。
4.根据权利要求3所述的重组微生物,其中部分(a)-(k)中的至少一个所述基因针对在权利要求1所述的重组微生物中表达而进行了密码子优化,其中所述基因针对在所述微生物中表达而进行了密码子优化。
5.根据权利要求4所述的重组微生物,其中所述基因针对在酿酒酵母中表达而进行了密码子优化。
6.根据权利要求3所述的重组微生物,其包含编码以下多肽的基因:
(a)能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽;
(b)能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽;能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽;或者
(c)能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽;
其中至少一个编码(a)-(c)的所述基因是重组基因。
7.根据权利要求1至2中任一项所述的重组微生物,其中所述重组微生物是真菌细胞、藻类细胞或细菌细胞。
8.根据权利要求7所述的重组微生物,其中所述细菌细胞包括:埃希菌属(Escherichia)细胞、乳杆菌属(Lactobacillus)细胞、乳球菌属(Lactococcus)细胞、棒状杆菌属(Cornebacterium)细胞、醋杆菌属(Acetobacter)细胞、不动杆菌属(Acinetobacter)细胞或假单胞菌属(Pseudomonas)细胞。
9.根据权利要求7所述的重组微生物,其中所述真菌细胞包括酵母细胞。
10.根据权利要求9所述的重组微生物,其中所述酵母细胞是来自以下物种的细胞:酿酒酵母(Saccharomyces cerevisiae)、粟酒裂殖酵母(Schizosaccharomyces pombe)、解脂耶氏酵母(Yarrowia lipolytica)、光滑念珠菌(Candida glabrata)、棉阿舒囊霉(Ashbyagossypii)、产朊假丝酵母(Cyberlindnera jadinii)、巴斯德毕赤酵母(Pichiapastoris)、乳酸克鲁维酵母(Kluyveromyces lactis)、多形汉逊酵母(Hansenulapolymorpha)、博伊丁念珠菌(Candida boidinii)、Arxula adeninivorans、红发夫酵母(Xanthophyllomyces dendrorhous)或白色念珠菌(Candida albicans)物种。
11.根据权利要求9所述的重组微生物,其中所述酵母细胞是酵母纲(Saccharomycetes)。
12.根据权利要求11所述的重组微生物,其中所述酵母细胞是酿酒酵母细胞。
13.根据权利要求1至2中任一项所述的重组微生物,其中所述重组微生物是来自解脂耶氏酵母物种的酵母细胞。
14.影响细胞培养物的甜菊醇糖苷之分泌的方法,其包括在其中基因得以表达的条件下培养根据权利要求1至13中任一项所述的重组微生物;
其中表达至少一种内源转运蛋白基因、至少一种调节至少一种内源转运蛋白基因之表达的内源转录因子基因或二者;
其中所述甜菊醇糖苷由所述重组微生物产生;并且
其中所述甜菊醇糖苷是莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E、莱鲍迪苷M、或其组合。
15.一种在细胞培养物中产生甜菊醇糖苷的方法,所述方法包括在其中基因得以表达的条件下培养根据权利要求1至13中任一项所述的重组微生物;
其中表达至少一种内源转运蛋白基因、至少一种调节至少一种内源转运蛋白基因之表达的内源转录因子基因或二者;
其中培养包括诱导一种或更多种所述基因表达或者组成型地表达一种或更多种所述基因;
其中所述甜菊醇糖苷由所述重组微生物产生;并且
其中所述甜菊醇糖苷是莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E、莱鲍迪苷M、或其组合。
16.根据权利要求15所述的方法,其中:
(a)莱鲍迪苷A在表达以下多肽的重组微生物中合成:能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽;能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽;
(b)莱鲍迪苷B在表达以下多肽的重组微生物中合成:能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽;
(c)莱鲍迪苷D在表达以下多肽的重组微生物中合成:能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽;能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽;
(d)莱鲍迪苷E在表达以下多肽的重组微生物中合成:能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽;和/或
(e)莱鲍迪苷M在表达以下多肽的重组微生物中合成:能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽;能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽。
17.根据权利要求16所述的方法,其中莱鲍迪苷A在表达以下多肽的重组微生物中合成:能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽;能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽。
18.根据权利要求16所述的方法,其中莱鲍迪苷D在表达以下多肽的重组微生物中合成:能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽;能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽。
19.根据权利要求16所述的方法,其中莱鲍迪苷M在表达以下多肽的重组微生物中合成:能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽;能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽;能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽;以及能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽。
20.根据权利要求14至19中任一项所述的方法,其中所述重组微生物过表达SEQ IDNO:148或149所示核苷酸序列的基因或者编码SEQ ID NO:104、113或122中任一个所示的氨基酸序列的多肽的基因。
21.产生莱鲍迪苷M的方法,其包括使用以下多肽的植物来源的或合成的甜菊醇或甜菊醇糖苷在根据权利要求1至13中任一项所述的重组微生物的细胞培养物中的全细胞生物转化:
能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C2’进行β1,2糖基化的多肽,其中所述多肽为SEQ ID NO:51、54、55、86或90中任一个所示的氨基酸序列的多肽;以及一个或更多个以下基因:
(a)编码能够在其C-13羟基处使甜菊醇或甜菊醇糖苷糖基化的多肽的基因,
其中所述多肽为SEQ ID NO:30或91所示的氨基酸序列的多肽;
(b)编码能够使甜菊醇糖苷之13-O-葡萄糖、19-O-葡萄糖或13-O-葡萄糖和19-O-葡萄糖二者的C3’进行β1,3糖基化的多肽的基因,
其中所述多肽为SEQ ID NO:85或89所示的氨基酸序列的多肽;
(c)编码能够在其C-19羧基处使甜菊醇或甜菊醇糖苷进行糖基化的多肽的基因,
其中所述多肽为SEQ ID NO:29或88所示的氨基酸序列的多肽,
其中所述甜菊醇糖苷包含甜菊醇-13-O-葡萄糖、甜菊醇-19-O-葡糖苷、覆盆子苷、甜菊苷、1,2-二糖苷、莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E、或其组合。
22.根据权利要求14至19或21中任一项所述的方法,其还包括从所述细胞培养物中分离单独的或与至少一种其他甜菊醇糖苷一起的莱鲍迪苷M。
23.根据权利要求14至19或21中任一项所述的方法,其还包括从所述细胞培养物中回收包含单独的或与至少一种其他甜菊醇糖苷一起的莱鲍迪苷M的甜菊醇糖苷组合物。
24.根据权利要求23所述的方法,其中所回收的甜菊醇糖苷组合物相对于甜菊属植物的甜菊醇糖苷组合物富集了莱鲍迪苷M并且相对于从植物来源的甜菊提取物获得的甜菊醇糖苷组合物具有降低水平的甜菊属植物来源的组分。
25.根据权利要求14所述的方法,其中所述细胞培养物包含:
(a)由所述重组微生物产生的所述甜菊醇糖苷,
其中所述甜菊醇糖苷是莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷D、莱鲍迪苷E或莱鲍迪苷M;
(b)葡萄糖、尿苷二磷酸(UDP)-葡萄糖、UDP-鼠李糖、UDP-木糖和/或N-乙酰基-葡萄糖胺;和/或
(c)补充营养物,包括微量金属、维生素、盐、酵母氮源(YNB)和/或氨基酸。
26.根据权利要求14至19或21中任一项所述的方法,其中将所述重组微生物在一定的温度下在发酵罐中培养一段时间,其中所述温度和所述时间有利于所述甜菊醇糖苷组合物的产生。
27.根据权利要求14至19或21中任一项所述的方法,其中所述重组微生物是真菌细胞、藻类细胞或细菌细胞。
28.根据权利要求27所述的方法,其中所述细菌细胞包括埃希菌属(Escherichia)细胞、乳杆菌属(Lactobacillus)细胞、乳球菌属(Lactococcus)细胞、棒状杆菌属(Cornebacterium)细胞、醋杆菌属(Acetobacter)细胞、不动杆菌属(Acinetobacter)细胞或假单胞菌属(Pseudomonas)细胞。
29.根据权利要求27所述的方法,其中所述真菌细胞包括酵母细胞。
30.根据权利要求29所述的方法,其中所述酵母细胞是来自以下物种的细胞:酿酒酵母(Saccharomyces cerevisiae)、粟酒裂殖酵母(Schizosaccharomyces pombe)、解脂耶氏酵母(Yarrowia lipolytica)、光滑念珠菌(Candida glabrata)、棉阿舒囊霉(Ashbyagossypii)、产朊假丝酵母(Cyberlindnera jadinii)、巴斯德毕赤酵母(Pichiapastoris)、乳酸克鲁维酵母(Kluyveromyces lactis)、多形汉逊酵母(Hansenulapolymorpha)、博伊丁念珠菌(Candida boidinii)、Arxula adeninivorans、红发夫酵母(Xanthophyllomyces dendrorhous)或白色念珠菌(Candida albicans)物种。
31.根据权利要求29所述的方法,其中所述酵母细胞是酵母纲(Saccharomycetes)。
32.根据权利要求31所述的方法,其中所述酵母细胞是酿酒酵母(Saccharomycescerevisiae)细胞。
33.根据权利要求14至19或21中任一项所述的方法,其中所述重组微生物是来自解脂耶氏酵母物种的酵母细胞。
34.细胞培养物,其包含根据权利要求1至13中任一项所述的重组微生物,所述细胞培养物还包含:
(a)由所述重组微生物产生的甜菊醇糖苷;
(b)葡萄糖、果糖、蔗糖、木糖、鼠李糖、尿苷二磷酸(UDP)-葡萄糖、UDP-鼠李糖、UDP-木糖和/或N-乙酰基-葡萄糖胺;和
(c)补充营养物,包括微量金属、维生素、盐、YNB和/或氨基酸;
其中所述甜菊醇糖苷以至少1mg/l细胞培养物的浓度存在。
35.来自在细胞培养物中生长的权利要求1至13中任一项所述的重组微生物的细胞裂解物,其包含:
(a)由所述重组微生物产生的甜菊醇糖苷,
(b)葡萄糖、果糖、蔗糖、木糖、鼠李糖、尿苷二磷酸(UDP)-葡萄糖、UDP-鼠李糖、UDP-木糖和/或N-乙酰基-葡萄糖胺;和
(c)补充营养物,包括微量金属、维生素、盐、YNB和/或氨基酸;
其中由所述重组微生物产生的所述甜菊醇糖苷以至少1mg/l细胞培养物的浓度存在。
CN201480008381.6A 2013-02-11 2014-02-11 在重组宿主中有效产生甜菊醇糖苷 Active CN105189771B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361763290P 2013-02-11 2013-02-11
US201361763308P 2013-02-11 2013-02-11
US61/763,308 2013-02-11
US61/763,290 2013-02-11
PCT/EP2014/052675 WO2014122328A1 (en) 2013-02-11 2014-02-11 Efficient production of steviol glycosides in recombinant hosts

Publications (2)

Publication Number Publication Date
CN105189771A CN105189771A (zh) 2015-12-23
CN105189771B true CN105189771B (zh) 2019-11-05

Family

ID=50112893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480008381.6A Active CN105189771B (zh) 2013-02-11 2014-02-11 在重组宿主中有效产生甜菊醇糖苷

Country Status (12)

Country Link
US (3) US10017804B2 (zh)
EP (1) EP2954061B1 (zh)
JP (2) JP6576247B2 (zh)
KR (1) KR20150128705A (zh)
CN (1) CN105189771B (zh)
AU (2) AU2014213918B2 (zh)
BR (1) BR112015019160A2 (zh)
CA (1) CA2900882A1 (zh)
MX (1) MX2015010098A (zh)
MY (1) MY184253A (zh)
SG (2) SG10201705993YA (zh)
WO (1) WO2014122328A1 (zh)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107436B2 (en) 2011-02-17 2015-08-18 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US10696706B2 (en) 2010-03-12 2020-06-30 Purecircle Usa Inc. Methods of preparing steviol glycosides and uses of the same
NZ708078A (en) 2010-06-02 2017-01-27 Evolva Nutrition Inc Recombinant production of steviol glycosides
US11690391B2 (en) 2011-02-17 2023-07-04 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US9771434B2 (en) 2011-06-23 2017-09-26 Purecircle Sdn Bhd Products from stevia rebaudiana
BR112014003037B1 (pt) 2011-08-08 2022-04-05 Evolva Sa Hospedeiro recombinante e método para produzir um glicosídeo de esteviol
MX352678B (es) * 2012-05-22 2017-12-04 Purecircle Sdn Bhd Glucosidos de esteviol de alta pureza.
US9752174B2 (en) 2013-05-28 2017-09-05 Purecircle Sdn Bhd High-purity steviol glycosides
EP2954058B1 (en) 2013-02-06 2021-03-31 Evolva SA Methods for improved production of rebaudioside d and rebaudioside m
AU2014273055A1 (en) * 2013-05-31 2015-12-17 Dsm Ip Assets B.V. Microorganisms for diterpene production
US10952458B2 (en) 2013-06-07 2021-03-23 Purecircle Usa Inc Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
WO2014197898A1 (en) 2013-06-07 2014-12-11 Purecircle Usa Inc. Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
EP3021689B1 (en) * 2013-07-15 2021-03-24 DSM IP Assets B.V. Diterpene production
US10370418B2 (en) * 2014-05-20 2019-08-06 Lawrence Livermore National Security, Llc Engineered microorganisms having resistance to ionic liquids
SG11201700651RA (en) 2014-08-11 2017-02-27 Evolva Sa Production of steviol glycosides in recombinant hosts
US11230567B2 (en) 2014-09-02 2022-01-25 Purecircle Usa Inc. Stevia extracts enriched in rebaudioside D, E, N and/or O and process for the preparation thereof
CN107109358B (zh) * 2014-09-09 2022-08-02 埃沃尔瓦公司 在重组宿主中生产甜菊醇糖苷
MY179680A (en) * 2014-10-03 2020-11-11 Conagen Inc Non-caloric sweeteners and methods for synthesizing
US10472661B2 (en) 2014-10-08 2019-11-12 Dsm Ip Assets B.V. Method for increasing glycosylation of a composition comprising steviol glycosides
EP3223628A4 (en) * 2014-11-24 2018-07-04 Cargill, Incorporated Glycoside compositions
CN107249356B (zh) 2014-12-17 2021-08-06 嘉吉公司 用于口服摄入或使用的甜菊醇糖苷化合物、组合物以及用于增强甜菊醇糖苷溶解度的方法
WO2016120486A1 (en) 2015-01-30 2016-08-04 Evolva Sa Production of steviol glycosides in recombinant hosts
MX2017010311A (es) * 2015-02-10 2017-12-14 Purecircle Usa Inc Metodos de produccion y recuperacion de rebaudiosido m biosintetico.
WO2016146711A1 (en) 2015-03-16 2016-09-22 Dsm Ip Assets B.V. Udp-glycosyltransferases
BR112017021066B1 (pt) 2015-04-03 2022-02-08 Dsm Ip Assets B.V. Glicosídeos de esteviol, método para a produção de um glicosídeo de esteviol, composição, usos relacionados, gênero alimentício, alimento para animais e bebida
CN107613785A (zh) 2015-05-20 2018-01-19 嘉吉公司 糖苷组合物
EP4063513A1 (en) 2015-05-29 2022-09-28 Cargill, Incorporated Heat treatment to produce glycosides
BR112017025709B1 (pt) * 2015-05-29 2024-03-05 Cargill, Incorporated Método para produzir glicosídeos de esteviol
BR112017025614A2 (pt) 2015-05-29 2018-09-11 Cargill, Incorporated método para produzir glicosídeo de esteviol e composição
CN105154348B (zh) * 2015-08-05 2018-05-04 大连理工大学 一种提高酿酒酵母对纤维素水解液抑制物耐受性的方法
CA2994288A1 (en) 2015-08-06 2017-02-09 Cargill, Incorporated Fermentation methods for producing steviol glycosides
AU2016307066A1 (en) 2015-08-07 2018-02-08 Evolva Sa Production of steviol glycosides in recombinant hosts
US20180230505A1 (en) 2015-08-13 2018-08-16 Dsm Ip Assets B.V. Steviol glycoside transport
CA2994355A1 (en) 2015-08-13 2017-02-16 Dsm Ip Assets B.V. Steviol glycoside transport
US10774314B2 (en) 2015-08-21 2020-09-15 Manus Bio Inc. Increasing productivity of E. coli host cells that functionally express P450 enzymes
US9765117B2 (en) 2015-08-24 2017-09-19 Romek Figa Peptides for treating cancer
EP3141610A1 (en) 2015-09-12 2017-03-15 Jennewein Biotechnologie GmbH Production of human milk oligosaccharides in microbial hosts with engineered import / export
BR122020008481B1 (pt) 2015-10-26 2022-10-18 Purecircle Usa Inc Composição de glicosídeo de esteviol contendo rebaudiosídeo q glicosilado e rebaudiosídeo r glicosilado e método para melhorar o perfil de doçura de um adoçante de estévia
RU2764635C2 (ru) 2015-12-15 2022-01-19 ПЬЮРСЁРКЛ ЮЭсЭй ИНК. Композиция стевиол гликозида
US20190048356A1 (en) 2016-03-11 2019-02-14 Evolva Sa Production of steviol glycosides in recombinant hosts
WO2017178632A1 (en) 2016-04-13 2017-10-19 Evolva Sa Production of steviol glycosides in recombinant hosts
EP3458599A1 (en) 2016-05-16 2019-03-27 Evolva SA Production of steviol glycosides in recombinant hosts
US11299723B2 (en) 2016-06-15 2022-04-12 Codexis, Inc. Engineered beta-glucosidases and glucosylation methods
BR112018075816A2 (pt) * 2016-06-15 2019-04-02 Codexis, Inc. métodos para glicosilação de um substrato e para produção de glicose-1-fosfato.
BR112018076303B1 (pt) * 2016-06-17 2022-10-11 Cargill, Incorporated Composição adoçante, bebida e método de modificação de uma característica sensorial de uma composição
ES2906310T3 (es) 2016-08-12 2022-04-18 Amyris Inc Glicosiltransferasa dependiente de UDP para la producción de alta eficiencia de rebaudiósidos
US11396669B2 (en) 2016-11-07 2022-07-26 Evolva Sa Production of steviol glycosides in recombinant hosts
CN108085262B (zh) * 2016-11-23 2022-08-05 中国科学院天津工业生物技术研究所 对萜类或含萜精油耐受性提高或萜类产量提高的重组宿主细胞、其产生方法及其用途
EP3564369A4 (en) 2016-12-27 2020-07-29 Suntory Holdings Limited STEVIOL GLYCOSIDE HEXOSE TRANSFERASE AND CODING GENE FOR THIS
ES2959508T3 (es) 2017-01-26 2024-02-26 Manus Bio Inc Ingeniería metabólica para la producción microbiana de productos terpenoides
CN110914445B (zh) 2017-02-03 2024-08-27 泰莱解决方案美国有限责任公司 工程化糖基转移酶和甜菊醇糖苷葡糖基化方法
JP7011649B2 (ja) 2017-04-12 2022-02-10 サントリーホールディングス株式会社 ステビア由来ラムノース合成酵素及び遺伝子
WO2018211032A1 (en) 2017-05-17 2018-11-22 Evolva Sa Production of steviol glycosides in recombinant hosts
KR102683624B1 (ko) * 2017-06-30 2024-07-11 피티티 글로벌 케미칼 피씨엘 기능적 dna 서열의 안정화된 카피 수를 갖는 미생물 및 관련 방법
US11365417B2 (en) 2017-09-12 2022-06-21 Bio Capital Holdings, LLC Biological devices and methods of use thereof to produce steviol glycosides
WO2019099649A1 (en) * 2017-11-20 2019-05-23 Manus Bio, Inc. Microbial host cells for production of steviol glycosides
EP3720968A1 (en) 2017-12-05 2020-10-14 Evolva SA Production of steviol glycosides in recombinant hosts
CN108070602B (zh) * 2017-12-12 2020-11-06 山东隆科特酶制剂有限公司 一种减少及推迟芽孢杆菌芽孢生成的分子改造方法
WO2019211230A1 (en) 2018-04-30 2019-11-07 Dsm Ip Assets B.V. Steviol glycoside transport
KR101929158B1 (ko) * 2018-06-07 2018-12-13 씨제이제일제당 (주) 5'-크산틸산을 생산하는 미생물 및 이를 이용한 5'-크산틸산의 제조방법
SG11202107656TA (en) * 2019-01-24 2021-08-30 Amyris Inc Abc transporters for the high efficiency production of rebaudiosides
CN112322648A (zh) * 2019-07-30 2021-02-05 上海市农业科学院 一种abc转运蛋白基因mrp1s及其制备方法和应用
WO2021076924A1 (en) * 2019-10-16 2021-04-22 Sweegen, Inc. Steviol glycoside formulations for food and beverages
CN110846363B (zh) * 2019-11-11 2023-02-17 天津大学 一锅法生产莱鲍迪苷d的方法
CN115836083A (zh) * 2020-04-27 2023-03-21 布鲁塞尔自由大学 用于减少乳酸菌污染的酵母菌菌株
CN114214378A (zh) * 2021-11-23 2022-03-22 安徽金禾实业股份有限公司 一种利用枯草芽孢杆菌发酵催化制备莱鲍迪苷m的方法
CA3242184A1 (en) * 2021-12-24 2023-06-29 The Regents Of The University Of California Saponin production in yeast
CN114561310B (zh) * 2022-03-17 2022-12-02 江南大学 一种生产甜茶苷的酿酒酵母及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024865A2 (en) * 2000-09-19 2002-03-28 Microbia, Inc. Modulation of secondary metabolite production by zinc binuclear cluster proteins
WO2011153378A1 (en) * 2010-06-02 2011-12-08 Abunda Nutrition, Inc. Recombinant Production of Steviol Glycosides
WO2011151326A2 (en) * 2010-05-31 2011-12-08 Vib Vzw The use of transporters to modulate flavor production by yeast

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149697A (ja) 1982-02-27 1983-09-06 Dainippon Ink & Chem Inc β−1,3グリコシルステビオシドの製造方法
JPS591408A (ja) 1982-06-28 1984-01-06 Fukue Ito ヘヤ−トニツクの製造方法
JPS59101408A (ja) 1982-12-02 1984-06-12 Junichi Iwamura 植物生長調整剤
US5484956A (en) 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
US6946587B1 (en) 1990-01-22 2005-09-20 Dekalb Genetics Corporation Method for preparing fertile transgenic corn plants
JPH03277275A (ja) 1990-03-28 1991-12-09 Dainippon Ink & Chem Inc 新規酵素及びその酵素を用いた配糖体の製造方法
US5204253A (en) 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
US5306862A (en) 1990-10-12 1994-04-26 Amoco Corporation Method and composition for increasing sterol accumulation in higher plants
US5460949A (en) 1990-11-15 1995-10-24 Amoco Corporation Method and composition for increasing the accumulation of squalene and specific sterols in yeast
US5712112A (en) 1992-11-04 1998-01-27 National Science Council Of R.O.C. Gene expression system comprising the promoter region of the alpha-amylase genes
CN1129953A (zh) 1993-07-15 1996-08-28 尼奥斯药品公司 糖组分的合成方法
US7186891B1 (en) 1996-04-12 2007-03-06 University Of Kentucky, Research Foundation Plant cells and plants expressing chimeric isoprenoid synthases
JPH10117776A (ja) 1996-10-22 1998-05-12 Japan Tobacco Inc インディカイネの形質転換方法
CA2309791A1 (en) 1997-10-06 1999-04-15 The Centre National De Recherche Scientifique Plant fatty acid hydroxylase genes
US6255557B1 (en) 1998-03-31 2001-07-03 Her Majesty The Queen In Right Of Canada As Represented By The Ministerof Agriculture And Agri-Food Canada Stevia rebaudiana with altered steviol glycoside composition
KR100657388B1 (ko) 1998-04-14 2006-12-13 교와 학꼬 고교 가부시키가이샤 미생물에 의한 이소프레노이드 화합물의 제조 방법
TWI250210B (en) 1998-05-06 2006-03-01 Dsm Ip Assets Bv An isolated DNA sequence coding for an enzyme involved in the mevalonate pathway or the pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate
EP0955363A3 (en) 1998-05-06 2004-01-28 F. Hoffmann-La Roche Ag Dna sequences encoding enzymes involved in production of isoprenoids
DE69943009D1 (de) 1998-07-06 2011-01-13 Dcv Inc Verfahren zur vitaminherstellung
US6531303B1 (en) 1998-07-06 2003-03-11 Arkion Life Sciences Llc Method of producing geranylgeraniol
AR021636A1 (es) 1998-12-17 2002-07-31 Rubicon Forests Holdings Ltd Materiales y metodos para la modificacion del contenido, la composicion y el metabolismo de los isoprenoides
WO2000037663A2 (en) 1998-12-23 2000-06-29 The Samuel Roberts Noble Foundation, Inc. Plant transformation process
AU776316B2 (en) 1999-04-15 2004-09-02 Monsanto Company Nucleic acid sequences to proteins involved in tocopherol synthesis
AU4365200A (en) 1999-04-21 2000-11-02 Samuel Roberts Noble Foundation, Inc., The Plant transformation process
AU6280300A (en) 1999-08-04 2001-03-05 Adelbert Bacher Isoprenoid biosynthesis
AU6780700A (en) 1999-08-18 2001-03-13 Paradigm Genetics, Inc. Methods and apparatus for transformation of monocotyledenous plants using agrobacterium in combination with vacuum filtration
WO2001083769A2 (en) 2000-05-03 2001-11-08 The Salk Institute For Biological Studies Crystallization of 4-diphosphocytidyl-2-c-methylerythritol synthesis
DE10027821A1 (de) 2000-06-05 2001-12-06 Adelbert Bacher Der Mevalonat-unabhängige Isoprenoidbiosyntheseweg
EP2292776A1 (en) 2000-07-31 2011-03-09 Danisco US Inc. Manipulation of genes of the mevalonate and isoprenoid pathways to create novel traits in transgenic organisms
AU8681101A (en) 2000-08-24 2002-03-04 Scripps Research Inst Stress-regulated genes of plants, transgenic plants containing same, and methodsof use
US6818424B2 (en) 2000-09-01 2004-11-16 E. I. Du Pont De Nemours And Company Production of cyclic terpenoids
US6660507B2 (en) 2000-09-01 2003-12-09 E. I. Du Pont De Nemours And Company Genes involved in isoprenoid compound production
US6689601B2 (en) 2000-09-01 2004-02-10 E. I. Du Pont De Nemours And Company High growth methanotropic bacterial strain
AU2001296359B2 (en) 2000-09-29 2006-04-27 Cargill Incorporated Isoprenoid production
US6949362B2 (en) 2000-12-12 2005-09-27 E. I. Du Pont De Nemours And Company Rhodococcus cloning and expression vectors
WO2002059297A2 (en) 2001-01-25 2002-08-01 Evolva Biotech A/S A library of a collection of cells
US20040078846A1 (en) 2002-01-25 2004-04-22 Desouza Mervyn L. Carotenoid biosynthesis
US20050003474A1 (en) 2001-01-26 2005-01-06 Desouza Mervyn L. Carotenoid biosynthesis
DE10201458A1 (de) 2001-04-11 2002-10-17 Adelbert Bacher Intermediate und Enzyme des Mevalonat-unabhängigen Isoprenoidbiosyntheseweg
US7034140B2 (en) 2001-04-24 2006-04-25 E.I. Du Pont De Nemours And Company Genes involved in isoprenoid compound production
DE60228439D1 (de) 2001-06-06 2008-10-02 Dsm Ip Assets Bv Verbesserte isoprenoid herstellung
EP1402042A2 (en) 2001-06-22 2004-03-31 Syngenta Participations AG Abiotic stress responsive polynucleotides and polypeptides
NZ513755A (en) * 2001-08-24 2001-09-28 Ann Rachel Holmes Protein expression system in yeast comprising a vector encoding a heterologous membrane protein and its application in screening for drugs
US20040072311A1 (en) 2001-08-28 2004-04-15 Dicosimo Deana J. Production of cyclic terpenoids
US20040010815A1 (en) 2001-09-26 2004-01-15 Lange B. Markus Identification and characterization of plant genes
US7172886B2 (en) 2001-12-06 2007-02-06 The Regents Of The University Of California Biosynthesis of isopentenyl pyrophosphate
JP4392483B2 (ja) 2002-08-20 2010-01-06 サントリーホールディングス株式会社 新規糖転移酵素遺伝子
DE60320812D1 (en) 2002-09-27 2008-06-19 Dsm Ip Assets Bv Squalene synthase (sqs) gen
US7098000B2 (en) 2003-06-04 2006-08-29 E. I. Du Pont De Nemoure And Company Method for production of C30-aldehyde carotenoids
KR101190897B1 (ko) 2003-06-12 2012-10-12 디에스엠 아이피 어셋츠 비.브이. 피드백 내성 메발로네이트 키나아제
US7569389B2 (en) 2004-09-30 2009-08-04 Ceres, Inc. Nucleotide sequences and polypeptides encoded thereby useful for modifying plant characteristics
US7183089B2 (en) 2004-05-21 2007-02-27 The Regents Of The University Of California Method for enhancing production of isoprenoid compounds
EP2080769A3 (en) 2004-07-02 2010-12-01 Metanomics GmbH Process for the production of fine chemicals
US20060014264A1 (en) 2004-07-13 2006-01-19 Stowers Institute For Medical Research Cre/lox system with lox sites having an extended spacer region
JPWO2006016395A1 (ja) 2004-08-09 2008-05-01 国立大学法人東北大学 Udp−グルクロニル基転移酵素およびその遺伝子
KR101169824B1 (ko) 2004-08-19 2012-07-30 디에스엠 아이피 어셋츠 비.브이. 아이소프레노이드의 제조
US7923552B2 (en) 2004-10-18 2011-04-12 SGF Holdings, LLC High yield method of producing pure rebaudioside A
DE602005026692D1 (de) 2004-12-14 2011-04-14 Dsm Ip Assets Bv Verbesserte mevalonatkinase
CA2598792A1 (en) 2005-03-02 2006-09-08 Metanomics Gmbh Process for the production of fine chemicals
WO2006093289A1 (ja) 2005-03-04 2006-09-08 National Institute Of Advanced Industrial Science And Technology Udp-キシロースの製造方法
WO2006096392A2 (en) 2005-03-04 2006-09-14 Diversa Corporation Enzymes involved in astaxanthin, carotenoid and isoprenoid biosynthetic pathways, genes encoding them and methods of making and using them
WO2007022318A2 (en) 2005-08-17 2007-02-22 Cornell Research Foundation Nucleic acids and proteins associated with sucrose accumulation in coffee
US8293307B2 (en) 2005-10-11 2012-10-23 Purecircle Sdn Bhd Process for manufacturing a sweetener and use thereof
DK2526783T3 (en) 2005-11-23 2017-02-06 Coca Cola Co Natural high-potency sweetener compositions with improved time profile and / or flavor profile
KR100784261B1 (ko) 2006-01-02 2007-12-11 한국과학기술원 탄저균의 포자외막 단백질을 이용한 목적단백질의 미생물표면발현방법
US7927851B2 (en) 2006-03-21 2011-04-19 Vineland Research And Innovation Centre Compositions having ent-kaurenoic acid 13-hydroxylase activity and methods for producing same
AU2007299219A1 (en) 2006-04-05 2008-03-27 Metanomics Gmbh Process for the production of a fine chemical
WO2007136847A2 (en) 2006-05-19 2007-11-29 The Regents Of The University Of California Methods for increasing isoprenoid and isoprenoid precursor production by modulating fatty acid levels
EP2035827B1 (en) 2006-06-19 2012-10-17 Givaudan S.A. Nucleic acid, polypeptide and its use
WO2008008256A2 (en) 2006-07-07 2008-01-17 The Regents Of The University Of California Methods for enhancing production of isoprenoid compounds by host cells
DK3020799T3 (da) 2006-09-26 2020-09-21 Amyris Biotechnologies Inc Fremstilling af isoprenoider og isoprenoid-prækursorer
US7741119B2 (en) 2006-09-28 2010-06-22 E. I. Du Pont De Nemours And Company Xylitol synthesis mutant of xylose-utilizing zymomonas for ethanol production
US7629156B2 (en) 2006-09-28 2009-12-08 E.I. Du Pont De Nemours And Company Ethanol production in fermentation of mixed sugars containing xylose
CN101200480B (zh) 2006-12-15 2011-03-30 成都华高药业有限公司 莱鲍迪甙a的提取方法
JP4915917B2 (ja) 2006-12-22 2012-04-11 独立行政法人農業・食品産業技術総合研究機構 ラクト−n−ビオースi及びガラクト−n−ビオースの製造方法
JP2008237110A (ja) 2007-03-27 2008-10-09 Institute Of Physical & Chemical Research ステビオール合成酵素遺伝子及びステビオールの製造方法
WO2008144060A2 (en) 2007-05-17 2008-11-27 Tetravitae Bioscience, Inc. Methods and compositions for producing solvents
US20080292775A1 (en) 2007-05-22 2008-11-27 The Coca-Cola Company Delivery Systems for Natural High-Potency Sweetener Compositions, Methods for Their Formulation, and Uses
WO2009005704A1 (en) 2007-07-03 2009-01-08 The Regents Of The University Of California Methods of increasing isoprenoid or isoprenoid precursor production
JP2009034080A (ja) 2007-08-03 2009-02-19 Sanei Gen Ffi Inc 新規糖転移酵素、及びそれを利用した配糖体の製造
US7964232B2 (en) 2007-09-17 2011-06-21 Pepsico, Inc. Steviol glycoside isomers
EP2594647A3 (en) 2007-09-21 2013-07-24 BASF Plant Science GmbH Plants with increased yield
BRPI0820009A2 (pt) 2007-12-03 2015-05-19 Dsm Ip Assets Bv Composições nutracêuticas contendo extrato de estévia ou constituintes do extrato de estévia e uso das mesmas
NZ586358A (en) 2007-12-27 2013-04-26 Mcneil Nutritionals Llc Synergistic sweetening compositions comprising sucralose and a purified extract of stevia
EP2250268A4 (en) 2008-02-20 2011-08-24 Ceres Inc IMPROVED NITROGEN USE OF EFFICIENCY PROPERTIES IN PLANT NUCLEOTIDE SEQUENCES AND CORRESPONDING POLYPEPTIDES
TWI475963B (zh) 2008-02-25 2015-03-11 Coca Cola Co 甜菊糖苷a衍生性產物以及製造彼的方法
CN102015995B (zh) 2008-03-03 2014-10-22 焦耳无限科技公司 产生碳基目的产物的二氧化碳固定工程微生物
US9005444B2 (en) 2008-05-13 2015-04-14 Cargill, Incorporated Separation of rebaudioside A from stevia glycosides using chromatography
WO2010021001A2 (en) 2008-08-19 2010-02-25 Kaushik Ramakrishnan S Process for preparing sweetener from stevia rebaudiana
EP3101023B1 (en) 2008-10-03 2023-08-30 Morita Kagaku Kogyo Co., Ltd. New steviol glycosides
CN101720910B (zh) 2008-10-23 2012-07-25 大闽食品(漳州)有限公司 一种甜菊糖甙的制备方法
US8614085B2 (en) * 2009-02-27 2013-12-24 Butamax(Tm) Advanced Biofuels Llc Yeast with increased butanol tolerance involving a multidrug efflux pump gene
US20100297722A1 (en) 2009-05-20 2010-11-25 Board Of Trustees Of Southern Illinois University Transgenic moss producing terpenoids
WO2010142305A1 (en) 2009-06-08 2010-12-16 Jennewein Biotechnologie Gmbh Hmo synthesis
EP2482676B1 (en) 2009-06-16 2014-10-22 EPC (Beijing) Natural Products Co., Ltd. Reducing or eliminating aftertaste in a sweetener using rebaudioside d
WO2011028671A1 (en) 2009-09-04 2011-03-10 Redpoint Bio Corporation Sweetness enhancers including rebaudioside a or d
AU2010298437B2 (en) 2009-09-22 2014-06-19 Redpoint Bio Corporation Novel polymorphs of rebaudioside C and methods for making and using the same
EP2708548B1 (en) 2009-10-15 2017-12-06 Purecircle SDN BHD High-Purity Rebaudioside D and Applications
US8299224B2 (en) 2009-10-15 2012-10-30 Purecircle Sdn Bhd High-purity Rebaudioside D
US8703224B2 (en) 2009-11-04 2014-04-22 Pepsico, Inc. Method to improve water solubility of Rebaudioside D
CN102812129B (zh) 2009-11-10 2015-08-26 麻省理工学院 用于从类异戊二烯途径生产化学和医药产品的微生物工程
EP2504441B1 (en) 2009-11-23 2020-07-22 E. I. du Pont de Nemours and Company Sucrose transporter genes for increasing plant seed lipids
US8586363B2 (en) 2009-12-10 2013-11-19 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
RU2572756C2 (ru) 2009-12-28 2016-01-20 Дзе Кока-Кола Компании Усилители сладости, их композиции и способы применения
KR101244315B1 (ko) 2010-10-19 2013-03-14 이화여자대학교 산학협력단 에탄올―저항성 효모 유전자 및 이의 용도
WO2011140329A1 (en) 2010-05-06 2011-11-10 Ceres, Inc. Transgenic plants having increased biomass
EP2571991A1 (en) 2010-05-20 2013-03-27 Evolva SA Method of producing isoprenoid compounds in yeast
US20120021111A1 (en) 2010-07-23 2012-01-26 Aexelon Therapeutics, Inc. Natural Low Caloric Sweetener Compositions for Use in Beverages, Foods and Pharmaceuticals, and Their Methods of Manufacture
US20120050021A1 (en) 2010-08-27 2012-03-01 Ford Global Technologies, Llc Method and Apparatus for In-Vehicle Presence Detection and Driver Alerting
US20120083593A1 (en) 2010-10-01 2012-04-05 Shanghai Yongyou Bioscience Inc. Separation and Purification of Stevioside and Rebaudioside A
US9284570B2 (en) 2010-11-30 2016-03-15 Massachusetts Institute Of Technology Microbial production of natural sweeteners, diterpenoid steviol glycosides
KR20130014227A (ko) 2011-07-29 2013-02-07 한국생명공학연구원 신규한 α-글루코실 스테비오사이드 및 이의 제조 방법
EP2742131B1 (en) 2011-08-08 2018-11-28 Evolva SA Methods and materials for recombinant production of saffron compounds
BR112014003037B1 (pt) 2011-08-08 2022-04-05 Evolva Sa Hospedeiro recombinante e método para produzir um glicosídeo de esteviol
KR101791597B1 (ko) 2011-11-23 2017-10-30 에볼바 에스아 모그로사이드 화합물을 효소에 의해 합성하기 위한 방법 및 재료
CN103159808B (zh) 2011-12-09 2017-03-29 上海泓博智源医药股份有限公司 一种制备天然甜味剂的工艺方法
CN104684414A (zh) 2011-12-19 2015-06-03 可口可乐公司 纯化甜叶菊醇糖苷的方法和其用途
EP3444338A1 (en) 2012-01-23 2019-02-20 DSM IP Assets B.V. Diterpene production
CA2867112C (en) 2012-03-16 2021-04-20 Suntory Holdings Limited Steviol glucosyltransferases and genes encoding the same
MX352678B (es) 2012-05-22 2017-12-04 Purecircle Sdn Bhd Glucosidos de esteviol de alta pureza.
CA2886893C (en) 2012-09-29 2019-05-07 Yong Wang Method for producing stevioside compounds by microorganism
EP2928321A1 (en) 2012-12-05 2015-10-14 Evolva SA Steviol glycoside compositions sensory properties
EP2954058B1 (en) 2013-02-06 2021-03-31 Evolva SA Methods for improved production of rebaudioside d and rebaudioside m
MX2015016379A (es) 2013-05-31 2016-04-13 Dsm Ip Assets Bv Produccion de diterpeno extracelular.
AU2014273055A1 (en) 2013-05-31 2015-12-17 Dsm Ip Assets B.V. Microorganisms for diterpene production
KR101559478B1 (ko) 2013-06-24 2015-10-13 한국생명공학연구원 효소전환법을 이용한 천연 고감미료의 제조방법
EP3021689B1 (en) 2013-07-15 2021-03-24 DSM IP Assets B.V. Diterpene production
US10273519B2 (en) 2013-07-23 2019-04-30 Dsm Ip Assets B.V. Diterpene production in Yarrowia
US20160185813A1 (en) 2013-07-31 2016-06-30 Dsm Ip Assets B.V. Recovery of steviol glycosides
BR112016001950A2 (pt) 2013-07-31 2017-08-29 Dsm Ip Assets Bv Glicosídeos de esteviol
JPWO2015016393A1 (ja) 2013-08-02 2017-03-02 サントリーホールディングス株式会社 ヘキセノール配糖体化酵素の利用方法
CN103397064B (zh) 2013-08-14 2015-04-15 苏州汉酶生物技术有限公司 一种酶法制备瑞鲍迪甙m的方法
EP3039132A2 (en) 2013-08-30 2016-07-06 Evolva SA A method for producing modified resveratrol
SG11201606673RA (en) 2014-03-07 2016-09-29 Evolva Sa Methods for recombinant production of saffron compounds
SG11201700651RA (en) 2014-08-11 2017-02-27 Evolva Sa Production of steviol glycosides in recombinant hosts
CN107109358B (zh) 2014-09-09 2022-08-02 埃沃尔瓦公司 在重组宿主中生产甜菊醇糖苷
WO2016120486A1 (en) 2015-01-30 2016-08-04 Evolva Sa Production of steviol glycosides in recombinant hosts
CN104845990A (zh) 2015-06-11 2015-08-19 山东大学 拟南芥糖基转移酶基因ugt73c7在提高植物抗病性中的应用
AU2016307066A1 (en) 2015-08-07 2018-02-08 Evolva Sa Production of steviol glycosides in recombinant hosts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024865A2 (en) * 2000-09-19 2002-03-28 Microbia, Inc. Modulation of secondary metabolite production by zinc binuclear cluster proteins
WO2011151326A2 (en) * 2010-05-31 2011-12-08 Vib Vzw The use of transporters to modulate flavor production by yeast
WO2011153378A1 (en) * 2010-06-02 2011-12-08 Abunda Nutrition, Inc. Recombinant Production of Steviol Glycosides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
重组酿酒酵母全细胞催化合成莱鲍迪苷A;刘欢等;《食品与发酵工业》;20120731;第38卷(第7期);第6-10页 *

Also Published As

Publication number Publication date
JP6576247B2 (ja) 2019-09-18
US20180371517A1 (en) 2018-12-27
EP2954061B1 (en) 2023-11-22
MY184253A (en) 2021-03-29
AU2014213918A1 (en) 2015-08-20
MX2015010098A (es) 2016-04-19
WO2014122328A1 (en) 2014-08-14
US10017804B2 (en) 2018-07-10
JP2016506743A (ja) 2016-03-07
BR112015019160A2 (pt) 2017-08-22
AU2014213918B2 (en) 2017-11-09
CA2900882A1 (en) 2014-08-14
SG10201705993YA (en) 2017-08-30
WO2014122328A8 (en) 2015-09-17
EP2954061A1 (en) 2015-12-16
US20150361476A1 (en) 2015-12-17
SG11201506127WA (en) 2015-09-29
US20220017932A1 (en) 2022-01-20
JP2019162110A (ja) 2019-09-26
KR20150128705A (ko) 2015-11-18
AU2018200950A1 (en) 2018-03-01
US11021727B2 (en) 2021-06-01
CN105189771A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
CN105189771B (zh) 在重组宿主中有效产生甜菊醇糖苷
JP7465252B2 (ja) レバウディオサイドdおよびレバウディオサイドmの改良された産生方法
AU2020200887B2 (en) Production of steviol glycosides in recombinant hosts
EP3332018B1 (en) Production of steviol glycosides in recombinant hosts
CN106572688B (zh) 在重组宿主中生产甜菊醇糖苷
CN108337892A (zh) 在重组宿主中生产甜菊醇糖苷
CN108473995B (zh) 在重组宿主中产生甜菊醇糖苷
CN108396044A (zh) 甜菊醇糖苷类的重组生产
CN109195457A (zh) 在重组宿主中产生甜菊醇糖苷
CN109477128A (zh) 在重组宿主中甜菊醇糖苷的生产
US11396669B2 (en) Production of steviol glycosides in recombinant hosts
CN109154010A (zh) 在重组宿主中生产甜菊醇糖苷

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240814

Address after: Switzerland

Patentee after: DANSTAR FERMENT AG

Country or region after: Switzerland

Address before: Swiss Lai

Patentee before: EVOLVA S.A.

Country or region before: Switzerland

TR01 Transfer of patent right