CN1020625C - 烃转化方法及催化剂 - Google Patents

烃转化方法及催化剂 Download PDF

Info

Publication number
CN1020625C
CN1020625C CN87103828A CN87103828A CN1020625C CN 1020625 C CN1020625 C CN 1020625C CN 87103828 A CN87103828 A CN 87103828A CN 87103828 A CN87103828 A CN 87103828A CN 1020625 C CN1020625 C CN 1020625C
Authority
CN
China
Prior art keywords
weight
type
modified zeolite
zeolite
described catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN87103828A
Other languages
English (en)
Other versions
CN87103828A (zh
Inventor
阿兰德·霍克
汤姆·休金加
伊安·恩斯特·马克思维尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Shell Research Corp
Shell Internationale Research Maatschappij BV
Original Assignee
International Shell Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Shell Research Corp filed Critical International Shell Research Corp
Publication of CN87103828A publication Critical patent/CN87103828A/zh
Application granted granted Critical
Publication of CN1020625C publication Critical patent/CN1020625C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

将烃类油品转化为具有较低平均分子量及较低平均沸点产品的方法,包括在提高温度及压力下以及氢气存在下使烃类油品与催化剂接触,该催化剂含有改性Y-型沸石,其晶胞大小低于24.45,在提高SiO2/Al2O3摩尔比时至少保持一定的结晶度,吸水能力(25℃,P/P0值为0.2)至少为改性沸石重量的8%、孔容至少为0.25毫升/克,其中占总孔容10-60%之间的孔径至少为8nm,还含有无定形裂化组分、粘合剂以及至少一种元素周期表VI族金属氢化组分和/或至少一种VIII族金属氢化组分。本发明也涉及适用于该方法的催化剂组合物。

Description

本发明涉及烃转化方法及可用于该方法的催化剂。本发明也涉及适作加氢处理的催化剂物质或催化剂基材的组成。
在现有技术已知的一些加氢转化中,由于加氢裂化具有产品灵活性及其质量可靠性而变得日益重要。由于能对重质原料进行加氢裂化,显然要更多地致力于加氢裂化催化剂的开发工作。
现代加氢裂化催化剂一般是以沸石材料为基础的,为了改进以这类沸石为基础的加氢裂化催化剂的性能,一般采用类似铵离子交换和各种形式的锻烧的技术。
有一种沸石可考虑作为加氢裂化催化剂所用的良好的起始材料,即US-A-3,130,007所介绍的公知的合成沸石Y。有关这类沸石材料,特别是包括超稳定Y型(US-A-3,536,605)及超疏水性Y型(GB-A2,014,970)在内的为数众多的改性工作均有报道。总之,可以说这些改性处理根据其处理条件导致缩小沸石晶胞大小。
在GB-A-2,014,970中所介绍的超疏水性Y型沸石在EP-B28,938和70,824也有引用,它适作加氢裂化催化剂组分。从所述出版物中看出,这类沸石具有固有的低吸水能力。以沸石重量计,吸水能力低于5%(EP-B-28,938),或8%(EP-B-70,824)被认为是可容许的最大限度。试验(EP-B-28,938)证实,以沸石重量计吸水能力为8.5%时,可引起催化选择性明显下降。
EP-A-162,733所介绍的加氢裂化催化剂组分沸石Y必须具有相当精确的孔经分布,大体上至少有80%的总孔容所所具有的孔径低于2nm,最好是至少85%的总孔容所具有的孔径低于2nm。
GB-B-2,114,594揭示了中间馏分油的生产方法,所用的催化剂含有所谓的扩孔faujastic沸石。根据该专利说明书制得的扩孔沸石,其第一步是在至少538℃下向faujastic沸石通蒸汽,最好高于760℃,然后使通入蒸汽的faujastic沸石与酸,最好与PH低于2的酸接触。应予指出的是,保留于扩孔沸石中的结晶度随着酸用量的增加而明显下降(参见GB-B-2,114,594中的图3)。由于SiO2/Al2O3摩尔比基本上与酸用量呈线性增加(参见GB-B-2,114,594中的图2),根据GB-B-2,114,594介绍的方法处理过的faujastic沸石结晶度随着SiO2/Al2O3摩尔比的增加因其固有特性而下降。
现在发现,某些改性Y型沸石与无定形裂化组分一起用作加氢裂化催化剂,比之采用迄今以Y型沸石为基础的催化剂所做的试验,对理想产品的选择性出人意料的高,且生成的气体明显低。在用于加工的进料原料中存在极其难以加工的大量多环烷基化合物时,无论各种情况,根据本发明提出的方法可顺利地进行转化反应。
现在还发现,无定形裂化组分的存在,对多环烷基化合物的转化具有重要影响。此处所用的“多环烷基化合物”一词可以理解为,在其以稠环为主的相应结构中经质谱测试具有四个或较多的环的多环烷基化合物。此外,发现管消耗较少量的氢,产品的质量也有提高。由于采用比迄今所用Y型沸石所能达到的更高活性的催化剂,而使这一改进更为显著。
因此,本发明涉及将烃类油品转化为具有较低平均分子量及较低平均沸点产品的方法,该方法包括在提高温度及压力下以及氢气存在下使烃类油品与催化剂接触,该催化剂所用沸石的晶胞大小低于24.45
Figure 871038285_IMG5
,在增加SiO2/Al2O3摩尔比时至少保留一定的结晶度,吸水能力(25℃,P/Po值为0.2)至少为改性沸石重量的8%,孔容至少为0.25毫升/克,其中占总孔容10%和60%之间的孔径至少为8nm,该催化剂还含有无定形裂化组分,粘合剂以及至少一种元素周期表Ⅵ族金属氢化组分和/或至少一种 Ⅷ族金属氢化组分。
在所用的催化剂中,最好占改性Y型沸石总孔容10%和40%之间的孔径至少为8nm。孔经分布采用E.P.Barrett,G.Joyner及P.P.Halenda〔见美国化学会志(J.Am.Chem.Soc.)73,373(1951)〕所介绍的方法以及根据充氮等温脱附数值分析加以确定。应予指出的是,在测定占总孔容百分率过程中,所指百分率在10%和40%之间孔径至少为8nm时并未把晶体内部孔隙计算在内。
发现采用吸水能力至少为沸石重量10%,特别是介于沸石重量10%及15%之间的改性Y型沸石时,在操作性能、催化活性以及转化不需要的多环烷基化合物等方面均能取得非常优良的结果。存在于根据本发明方法制得的催化剂中的改性Y型沸石的吸水能力是在25℃及P/Po值为0.2下测定的。为了测定改性Y型沸石吸水能力,在提高温度下,最好在400℃,蒸发改性Y型沸石,然后在25℃下将水压相应调节到P/Po值为0.2(设备中水的分压及25℃水的饱和压之比值)。
根据本发明方法所采用的催化剂组分中,改性Y型沸石的晶胞大小低于24.45
Figure 871038285_IMG6
(采用ASTM-D-3492方法测定,沸石以其
Figure 871038285_IMG7
形态存在),最好低于24.40
Figure 871038285_IMG8
,尤以低于24.35
Figure 871038285_IMG9
为佳。应予指出的是,沸石的晶胞大小只不过是确定改性Y型沸石适宜度的一个参数。现在发现,沸石的吸水能力、孔径分布以及结晶度对于获得前述性能的明显改进均有裨益。
关于结晶度应予说明的是,根据本发明,改性Y型沸石当把其结晶度做为增加SiO2/Al2O3摩尔比的函数对比时,至少应保留一定结晶度(参比某些标准,例如Na-Y)。一般说,将改性Y型沸石与其SiO2/Al2O3摩尔比的增加对比,结晶度略有改善。
根据本发明方法采用的催化剂组合物含有50~90%重量的改性Y型沸石和无定形裂化组分,以及10~50%的粘合剂为宜。该催化剂组合物最好具有高含量的改性Y型沸石;尤以含有60~85%重量的改性Y型沸石及无定 形裂化组分,以及15~40%重量粘合剂为佳。
根据本发明方法所采用的催化剂中,改性Y型沸石的含量范围宜在改性Y型沸石和无定形裂化组分总量的5%和95%之间。最好是,根据本发明方法所采用的催化剂中,改性Y型沸石的含量范围在改性Y型沸石和无定形裂化组分总量的10~75%之间。
在本发明方法中,适于采用二氧化硅为基础的无定形裂化组分。最好采用二氧化硅一氧化铝作为无定形裂化组分。在二氧化硅为基础的裂化组分中,二氧化硅的含量以50~95%(重量)为宜。所称的X-射线无定形沸石(即由标准X-射线分析技术不能检测的结晶度很小的沸石)也适于作为根据本发明提出的方法中的裂化组分。
催化剂组合物中的粘合剂以含有无机氧化物为宜。非晶态的及晶体粘合剂两种类型均可采用。适宜的粘合剂的例子包括二氧化硅,氧化铝,粘土及氧化锆。最好采用氧化铝作为粘合剂。
根据所期望的晶胞大小,必须调节改性Y型沸石的SiO2/Al2O3摩尔比。在已知技术中,可用于调节晶胞大小的技术已有过介绍。已发现,SiO2/Al2O3摩尔比在4和25之间的改性Y型沸石适作根据本发明提出的催化剂组合物的沸石组分。最好采用SiO2/Al2O3摩尔比在8和15之间的改性Y型沸石。
在本发明方法中所采用的催化剂组合物宜于包括一种或多种镍和/或钴的组分,一种或多种钼和/或钨的组分,或者一种或多种铂和/或钯的组分。
氢化组分在催化剂组合物中的含有范围是0.05~10%的Ⅷ族金属组分以及2~40%的Ⅵ族金属组分,按每100份催化剂总重量中金属含量加以计算。催化剂组合物中的氢化组分可以氧化物和/或硫化物的形态如以使用。如将至少一种Ⅵ族和至少一种Ⅷ族金属组分的(混合的)的氧化物加以组合使用时,最好在用于加氢裂化之前经过硫化处理。
根据本发明提出的加氢转化过程在于显著降低产物的平均分子量及沸点,通过使进料与催化剂接触来实现这些操作,所用催化剂组合物包括前述改性Y型沸石、无定形裂化组分以及粘合剂。
这类加氢转化过程的实例包括一步法加氢裂化,两步法加氢裂化,连续加氢裂化以及轻度加氢裂化。
值得重视的是,根据本发明提出的加氢转化方法适于采用料斗型操作,即通过采用釜式反应器进行周期性或间歇地清除催化剂以及重新填装催化剂。在现有技术中对于可以采用的各种料斗型操作技术早有介绍。
适作本发明方法的原料可用轻柴油,减压柴油,脱沥青油,常压渣油,催化裂化循环油,焦化粗柴油,其它热裂化油和由焦油砂,页岩油,改质加工渣油或生物物质制成的合成原油(synerudes)。也可用不同原料的掺混物。
根据本发明提出的方法,在将原料用于烃转化加工之前,可先将一部分或者全部原料进行一段或多段(加氢)处理。通常发现将原料进行(部分)加氢处理是适宜的。当采用重质原料进行加工时,将这类原料经过(加氢)脱金属处理是有利的。
所用适宜的加工条件包括温度范围从250℃到500℃,压力达300巴,时空速度(Kg/l.h)为每小时每升催化剂进料介于0.1和10公斤之间。所采用的气/进料比以介于100和5000Nl/kg进料为宜。
已经发现在单程转化率至少为40%(重量)的一般反应条件下,至少还有10%重量的多环烷基化合物(或已存在起始原料之中,或伴随循环操作而积累其中)可被转化。
根据本发明提出的加氢转化方法,温度最好介于300℃和450℃之间,压力最好介于25和200巴之间,时空速度最好为每小时每升催化剂进料介于0.2和5公斤之间。所用的气/进料比最好介于250和2000之间。
本发明应用于烃转化方法的催化剂,特别是用于加氢裂化方法,由于 其极限过度裂化固有特性而有可能使生成的产品具有非常窄的沸点范围而显示出极大的灵活性。因此,有利于根据所期望的产品组成而应用于不同的操作方式。
因此,可以采用沸程略高于用本法制得的产品沸程的烃类油品馏分作为进料。但也可采用沸点特别高的原料,使其顺利地生成具有同类产品沸程的材料。例如,采用本发明催化剂时,减压柴油是生成中间馏分油非常优良的原料。但是也可生产石脑油,并且得到高收率产品。例如,通过调节操作温度和/或循环切割点(当采用循环操作方式时),无论中间馏分油或石脑油均可成为主产品,同时对所期望的产品保持高选择性。
本发明也涉及催化剂组合物,该催化剂组合物含有改性Y型沸石,其晶胞大小低于24.45 ,且随着SiO2/Al2O3摩尔比增加至少保持一定的结晶度,吸水能力(25℃,P/Po值为0.2)至少为改性沸石重量的8%,孔容至少为0.25毫升/克,其中占总孔容10%和60%之间的孔径至少为8nm,还含有无定形裂化成分,粘合剂以及至少一种元素周期表Ⅵ族金属氢化组分和/或至少一种Ⅷ族金属氢化组分,其中改性Y型沸石及无定形裂化组分占催化剂重量的50~90%,粘合剂占催化剂重量的10~50%。最好是,在催化剂组合物中,改性Y型沸石及无定形裂化组分占催化剂重量的60~85%,粘合剂占催化剂重量的15~40%。
最好是,催化剂组合物所含的改性Y型沸石中,占总孔容10%和40%之间的孔径至少为8nm。催化剂组合物最好含有吸水能力为改性沸石重量10%和15%之间的改性Y型沸石。该改性Y型沸石的晶胞大小以低于24.40 为宜,尤以低于24.35
Figure 871038285_IMG12
为佳。
本发明催化剂组合物中改性Y型沸石的含量范围,最好在改性Y型沸石及无定形裂化组分总量的10%和75%之间。最好采用以二氧化硅为基础的裂化组分。本发明改性Y型沸石具有的SiO2/Al2O3摩尔比为4到25,尤以8到15为佳。
根据金属占催化剂总重量%计算,本发明的催化剂组合物中,镍的含量在0.05和10%之间,钨的含量在2和40%之间。
通过下述实例现对本发明加以说明。
实例1
1)催化剂制备
将96.5克改性Y型沸石,其晶胞大小为24.37
Figure 871038285_IMG13
,吸水能力(25℃,P/Po值为0.2)为沸石重量11.8%,充氮法孔容0.28毫升/克,其中>8nm的孔径占总孔容的21%,灼烧失重(550℃)6.7%,与625.8克灼烧失重18.5%的无定形二氧化硅-氧化铝(商名ex AKZO)进行混合。向该粉状混合物中添加由500克水,191克灼烧失重22%的水合氧化铝(boehmite,ex,Condea)及7.5克乙酸组成浆料。将所得到的混合物研磨后,用装有模板的Bonnot挤压机进行挤压制成1.5毫米的压出物,将其在120℃下干燥2小时,最后在500℃下煅烧2小时。这样制得的压出物其充水孔容为0.83毫升/克。
由107克硝酸镍溶液(镍重量占14%),76克水及68克偏钨酸铵(钨重量占69.5%)制成镍/钨溶液。将25.2克该镍/钨溶液用水稀释至42毫升,用其浸渍50克前述压出物。最后将浸渍过的压出物在120℃下干燥4小时,并在500℃下煅烧1小时。产物含2.6%重量的镍及8.2%重量的钨。制得备用催化剂含10.6%重量的改性Y型沸石,68.5%重量的无定形裂化组分以及20.9%重量的粘合剂,均以干燥料为基础计算。
2)加氢裂化试验
采用实例1.1)所述催化剂对具有下列性能的经过加氢处理的重质减压柴油进行加氢裂化性能试验:
C(重量%)    86.1
H(重量%)    13.9
S(ppm)    400
N(ppm)    9
比重(d)(70/4)    0.8277
倾点(℃)    36(ASTMD-97)
初沸石    205℃
10%(相应重量)    360°
20%(相应重量)    399°
30%(相应重量)    427°
40%(相应重量)    447°
50%(相应重量)    465°
60%(相应重量)    482°
70%(相应重量)    500°
80%(相应重量)    521°
90%(相应重量)    544°
终沸点    >620°
首先使催化剂经过预硫化处理,在10%(体积)H2S/H2的气氛中缓慢加热升温到370℃。用1∶1的0.2毫米SiC颗粒冲淡催化剂,在下列条件下进行试验:
重量时空速度(WHSV)为1.45kg·l·h,H2S分压为1.2巴,总压为118巴,气/进料比为1.500Nlkg。试验采用一段法操作。使催化剂得到稳定化后,用进料中320℃+沸点的原料转化率为50%(重量)来表示催化剂性能。得到下列结果:
要求温度(320℃+原料转化率50%):351℃。
320℃-产品分布(重量%):
C1~C46
C5~140℃ 40
140℃~320℃    54
氢的化学消耗量为进料重量的0.7%。
实例2
1)催化剂的制备
将295克改性Y型沸石,其晶胞大小为24.37
Figure 871038285_IMG14
,吸水能力(25℃,P/Po值为0.2)占沸石重量11.8%,充氮法孔容0.28毫升/克,其中>8nm的孔径占总孔容的21%,灼烧失重(550℃)6.8%,与337克灼烧失重18.4%的无定形二氧化硅-氧化铝(商名ex AKZO)进行混合。向该粉状混合物中,添加由500克水,175克的灼烧失重21.4%的水合氧化铝(商名boehmite,ex Condea)及6.8克乙酸组成浆料。将所得到的混合物研磨后,用装有模板的Bonnot挤压机进行挤压制成1.5毫米的压出物,将其在120℃下干燥2小时,最后在500℃下煅烧2小时。这样制得的压出物充水法孔容为0.73毫升/克。
由107.2克硝酸镍溶液(镍重量占14%),76克水及68.4克偏钨酸铵(钨重量占69.5%)制成镍/钨溶液。将25.2克该镍/钨溶液用水稀释至36.5毫升,用该溶液浸渍50克前述压出物。采用辗轧机将浸渍过的压出物均混1小时后,在120℃下干燥1小时,并在500℃下煅烧1小时。制得的产物含镍重量2.6%及含钨重量8.2%。所得备用催化剂含36.6%重量的改性Y型沸石,41.8%重量的无定形裂化组分以及21.6%重量的粘合剂,均以干燥料为基础计算。
2)加氢裂化试验
实例2.1)所述催化剂按实例1.2)所述方法进行预行预硫化处理,然后按实例1.2所述操作条件下用1∶1的0.2毫米SiC微粒冲淡催化剂进 行试验。
使催化剂达到稳定化后,用进料中320℃沸点原料的转化率为50%(重量)来表示催化剂性能。得到下列结果:
要求温度(320℃+原料转化率50%):334℃。
320℃-产品分布(重量%):
C1~C49
C5~140℃ 41
140℃~320℃    49
氢的化学消耗量为进料重量的0.9%。
实例3
1)催化剂的制备
将商业上可以购到的铵-超稳定Y型沸石,其晶胞大小为24.57 ,氧化钠含量为0.12%(重量),SiO2/Al2O3摩尔比约为6,先在回流条件下与0.2M硫酸铝进行离子交换处理1小时。然后将这样处理过的材料在蒸汽存在下于700℃下煅烧1小时。经过煅烧得到的材料其晶胞大小为24.30 ,SiO2/Al2O3摩尔比为6.85。然后将得到的材料在回流条件下与0.16M硫酸铝进行离子交换处理1小时,再在同样条件下用1M硝酸铵进行处理。将这种处理重复一次。所得到的改性Y型沸石的晶胞大小为24.32
Figure 871038285_IMG17
,SiO2/Al2O3摩尔比为10.2。
将317克改性Y型沸石,其晶胞大小为24.32 ,SiO2/Al2O3摩尔比为10.2,吸水能力(25℃,P/Po值为0.2)为沸石重量的10.6%,充氮法孔容为0.47毫升/克,其中>8nm孔径占总孔容27%,灼烧失重(550℃)为21%,与356克灼烧失重为30%的无定形二氧化硅-氧化铝(ex Crosfield)以及168克灼烧失重为25.8%的水合氧化铝(boehmite,ex Condea)进行混合。向该粉状混合物中加入由18.8克乙酸和342克水组成的溶液。经过研磨后,将得到的混合物用装有模板的Bonnot挤压机进行挤压制成1.5毫米的压出物,将其在120℃下干燥2小时,并在500℃下煅烧2小时。所得到的压出物充水法孔容为0.71毫升/克。由214克硝酸镍溶液(镍重量占14%),150克水及136.7克偏钨酸铵(钨重量占69.5%)制成镍/钨溶液。将65.7克镍/钨溶液用水稀释至93毫升,并用其浸渍131克前述压出物。采用辗轧机将浸渍过的压出物均混1小时后,将其在120℃下干燥2小时,最后在500℃下煅烧1小时。得到的产物含2.6%重量的镍和8.2%重量的钨。所得备用催化剂含37.7%重量的改性Y型沸石,42.3%重量的无定形裂化组分以及20.0%重量的粘合剂、均以干燥料为基础计算。
2)加氢裂化试验
实例3.1)所述催化剂按实例1.2)所述方法进行预硫化处理,然后按实例2.2)所述进行试验。
使催化剂得到稳定化后,用进料中320℃+沸点原料转化率为50%(重量)来表示催化剂性能。得到下列结果:
要求温度(320℃+原料转化率50%):330℃。
320℃-产品分布(重量%):
C1~C47
C5~140℃ 40
140℃~320℃    53
氢的化学消耗量占进料重量0.8%。
比较例A
1)催化剂的制备
将113.8克商业上可以购到的超稳定Y型沸石,其晶胞大小为24.56
Figure 871038285_IMG19
,吸水能力(25℃,P/Po值为0.2)为沸石重量24%,充氮法孔容为0.38毫升/克,其中>8nm的孔径占总孔容8%,灼烧失重(550℃)为21%,与626克灼烧失重(550℃)为18.5%的无定形二氧化硅-氧化铝(ex AKZO)进行混合。向该粉状混合物中加入由500克水,191克灼烧失重22%的水含氧化铝(boebmite,ex Condea)以及7.5克乙酸组成的浆料。得到的混合物经过研磨后,用装有模板的Bonnot挤压机进行挤压制成1.5毫米压出物,将其在120℃下干燥2小时,最后在500℃下煅烧2小时。所得压出物充水法孔容为0.80毫升/克。由107.3克硝酸镍(镍重量占14%),76克水以及68.4克偏钨酸铵(钨重量占69,5%)制成镍/钨溶液。25.2克镍/钨溶液加水至40毫升,用其浸渍50克前述压出物。采用辗轧机将浸渍过的压出物均混1小时后,将其在120℃下干燥2小时,并在500℃下煅烧1小时。所得产物含2.6%重量的镍及8.2%重量的钨。制成的备用催化剂含12.2%重量的沸石,67.3%重量的无定形裂化组分及20.5%重量的粘合剂,均以干燥料为基础计算。
2)加氢裂化试验
比较例A1)所述催化剂按实例1.2)所述方法经过预硫化处理,然后按实例1.2)所述方法进行试验。
使催化剂达到稳定化后,用进料中沸点320℃+的原料转化率为50%(重量)来表示催化剂的性能。得到下列结果:
要求温度(320℃+原料转化率50%):361℃
320℃-产品分布(重量%):
C1~C49
C5~140℃ 56
140℃~320℃    35
氢的化学消耗量占进料重量的1.0%。
比较例B
1)催化剂的制备
将379.3克商业上可以购到的超稳定Y型沸石,其晶胞大小为24.56
Figure 871038285_IMG20
,吸水能力(25℃,P/Po值为0.2)为沸石重量的24%,充氮法孔容为0.38毫升/克,其中>8nm的孔径占总孔容8%,灼烧失重(550℃)为21%,与368克灼烧失重(550℃)为18.5%的无定形二氧化硅-氧化铝(ex AKZO)进行混合。向该粉状混合物中加入由191.1克水合氧化铝(boehmite,ex Condea),500克水及7.5克乙酸组成的浆料。得到的混合物经过研磨后,用装有模板的Bonnot挤压机进行挤压制成1.5毫米压出物,将其在120℃下干燥2小时,最后在500℃下煅烧2小时。所得压出物充水法孔容为0.71毫升/克。
由107.2克硝酸镍(镍重量占14%)、76克水和68.3克偏钨酸铵(钨重量占69.5%)制成镍/钨溶液,25.2克镍/钨溶液用水调至36毫升,用其浸渍50克这样制得的压出物。采用辗轧机将浸渍过的压出物均混1小时后,将其在120℃下干燥2小时,并在500℃下煅烧1小时。所得产物含2.6%重量的镍及8.2%重量的钨。制成的备用催化剂含40.4%重量的沸石,39.2%重量的无定形裂化组分及20.4%重量的粘合剂,均以干燥料为基础计算。
2)加氢裂化试验
比较例B1)所述催化剂按实例1.2)所述方法进行预硫化处理,然后按实例1.2)所述方法进行试验。
使催化剂达到稳定化后,用进料中320℃+的原料转化率为50%(重量)来表示催化剂性能。得到下列结果:
要求温度(320℃+原料转化率50%):338℃。
320℃-产品分布(重量%):
C1~C422
C5~140℃ 58
140℃~320℃    20
氢的化学消耗量占进料重量的1.2%。
显然,本发明催化剂与已知超稳定Y沸石为基础的催化剂相比,不仅具有较高活性,而且也具有较高的选择性。氢的化学消耗量也略有降低。

Claims (10)

1、用于加氢过程的催化剂组合物,包括改性Y型沸石,其晶胞大小低于24.45 ,增加SiO2/Al2O3摩尔比时至少仍保持一定的结晶度,吸水能力(25℃,P/PO值为0.2)至少为改性沸石重量的8%,孔体积至少为0.25毫升/克,其中,总孔体积的10-60%由孔径至少为8纳米的孔组成,还包括无定形裂化组分,粘合剂以及至少一种元素周期表Ⅵ族金属的氢化组分和/或至少一种Ⅷ族金属的氢化组分,其中50-90%重量的催化剂由改性Y型沸石和无定形裂化组分组成,10-50%重量的催化剂由粘合剂组成。
2、根据权利要求1所述催化剂组合物,其中60-85%重量的催化剂由改性Y型沸石和无定形裂化组分组成,15-40%重量由粘合剂组成。
3、根据权利要求1或2所述催化剂组合物,其中改性Y型沸石总孔体积的10%-40%由孔径至少为8nm的孔组成。
4、根据权利要求1或2所述催化剂组合物,其中改性Y型沸石所具有的吸水能力为改性沸石的10%至15%重量。
5、根据权利要求1或2所述催化剂组合物,其中改性Y型沸石所具有的晶胞大小低于24.40
Figure 871038285_IMG3
,尤以低于24.35
Figure 871038285_IMG4
为佳。
6、根据权利要求1或2所述催化剂组合物,其中改性Y型沸石的含量介于改性Y型沸石和无定形裂化组分总量的10-75%之间。
7、根据权利要求1或2所述催化剂组合物,其中无定型裂化组分为以二氧化硅为基础的裂化组分。
8、根据权利要求1或2所述催化剂组合物,其中改性Y型沸石所具有的SiO2/Al2O3摩尔比为4至25,尤以8至15为佳。
9、根据权利要求1或2所述催化剂组合物,其中催化剂含有0.05%-10%重量的镍及2%-40%重量的钨,按每100份催化剂总重量所含金属计算。
10、权利要求1所述的催化剂组合物在将烃类油品转化为具有较低平均分子量及较低平均沸点产品的方法中的用途。
CN87103828A 1986-05-30 1987-05-27 烃转化方法及催化剂 Expired - Fee Related CN1020625C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8613131 1986-05-30
GB868613131A GB8613131D0 (en) 1986-05-30 1986-05-30 Hydrocarbon conversion

Publications (2)

Publication Number Publication Date
CN87103828A CN87103828A (zh) 1988-02-24
CN1020625C true CN1020625C (zh) 1993-05-12

Family

ID=10598662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN87103828A Expired - Fee Related CN1020625C (zh) 1986-05-30 1987-05-27 烃转化方法及催化剂

Country Status (23)

Country Link
US (2) US4857171A (zh)
EP (1) EP0247678B1 (zh)
JP (1) JP2562322B2 (zh)
KR (1) KR950009000B1 (zh)
CN (1) CN1020625C (zh)
AR (1) AR243586A1 (zh)
AU (1) AU588691B2 (zh)
BR (1) BR8702718A (zh)
CA (1) CA1295311C (zh)
CS (1) CS274295B2 (zh)
DD (1) DD260937A5 (zh)
DE (1) DE3761666D1 (zh)
ES (1) ES2012799B3 (zh)
FI (1) FI88264C (zh)
GB (1) GB8613131D0 (zh)
HU (1) HU206492B (zh)
IN (1) IN170028B (zh)
NL (1) NL193661C (zh)
NZ (1) NZ220461A (zh)
SG (1) SG28092G (zh)
SU (1) SU1722232A3 (zh)
TR (1) TR22746A (zh)
ZA (1) ZA873826B (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8613132D0 (en) * 1986-05-30 1986-07-02 Shell Int Research Hydrocarbon conversion catalysts
GB8722839D0 (en) * 1987-09-29 1987-11-04 Shell Int Research Hydrocracking of hydrocarbon feedstock
JP2521506B2 (ja) * 1987-10-13 1996-08-07 ピーキュー ゼオライツ ビー.ブイ. 修飾ゼオライトyの製造方法
US5207892A (en) * 1988-04-07 1993-05-04 Uop Hydrocarbon conversion process employing a modified form of zeolite Y
GB8814601D0 (en) * 1988-06-20 1988-07-27 Shell Int Research Process for preparation of zeolitic catalysts
GB8824944D0 (en) * 1988-10-25 1988-11-30 Shell Int Research Process for converting hydrocarbon oils & catalyst for use in such process
US5069890A (en) * 1989-06-19 1991-12-03 Texaco Inc. Zeolite treating process
US4925546A (en) * 1989-09-12 1990-05-15 Amoco Corporation Hydrocracking process
US4980328A (en) * 1989-09-12 1990-12-25 Amoco Corporation Hydrocracking catalyst
GB8925980D0 (en) * 1989-11-16 1990-01-04 Shell Int Research Process for converting hydrocarbon oils
FR2660578B1 (fr) * 1990-04-09 1994-09-23 Elf Aquitaine Catalyseur a base d'une faujasite de haut rapport si:al de synthese et son application aux reactions de catalyse acide realisees sur des charges hydrocarbonees.
US5350501A (en) * 1990-05-22 1994-09-27 Union Oil Company Of California Hydrocracking catalyst and process
US5112473A (en) * 1990-06-04 1992-05-12 Texaco Inc. Hydrotreating or cracking process employing an acidified dealuminated Y-zeolite
US5227352A (en) * 1990-06-29 1993-07-13 Petroleum Energy Center Catalyst composition for catalytic cracking of hydrocarbon oil and process for producing the same
US5141909A (en) * 1991-01-22 1992-08-25 Chevron Research And Technology Company Zeolitic catalyst having selectivity for jet fuel
GB9110012D0 (en) * 1991-05-09 1991-07-03 Shell Int Research Hydrodecyclization process
DE69322260T2 (de) * 1992-04-10 1999-04-22 Chevron Usa Inc Verfahren zur umwandlung von kohlenwasserstoffen
EP0569626B1 (en) * 1992-05-11 1996-09-18 Abb Lummus Global Inc. Novel zeolite and process for production thereof
KR950701674A (ko) * 1992-05-22 1995-04-28 그레고리 에프. 윌츠비키 중간 증류물을 생성시키기 위한 하이드로크랙킹법(hydrocracking procerss for producing kmiddle distillates)
JPH07509272A (ja) * 1992-07-28 1995-10-12 ユニオン、オイル、カンパニー、オブ、カリフォルニア 中間留分触媒を用いる水素化分解
EP0588440A1 (en) * 1992-09-17 1994-03-23 Shell Internationale Researchmaatschappij B.V. Hydrocarbon conversion catalysts
JPH06210178A (ja) * 1992-09-17 1994-08-02 Shell Internatl Res Maatschappij Bv 炭化水素変換触媒
US5601798A (en) * 1993-09-07 1997-02-11 Pq Corporation Process for preparing zeolite Y with increased mesopore volume
AU7953494A (en) * 1993-10-26 1995-05-22 Mobil Oil Corporation Catalyst and process for producing low-aromatics distillates
GB2323094B (en) * 1994-05-23 1998-11-11 Intevep Sa A hydroconversion catalyst and process for making the same
US5576256A (en) * 1994-05-23 1996-11-19 Intevep, S.A. Hydroprocessing scheme for production of premium isomerized light gasoline
AR000314A1 (es) * 1994-12-13 1997-06-18 Shell Int Research Procedimientos de conversión de hidrocarburos que incluyen el hidrocraqueo catalitico
EP0751205A3 (en) 1995-06-29 1997-04-09 Shell Int Research Process for converting residual hydrocarbon oils
US6133186A (en) * 1997-03-06 2000-10-17 Shell Oil Company Process for the preparation of a catalyst composition
JPH11140068A (ja) * 1997-11-07 1999-05-25 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
DE19751875C2 (de) * 1997-11-22 2001-07-05 Karlsruhe Forschzent Herzkatheter mit Messung der Anpreßkraft
US6444865B1 (en) 1997-12-01 2002-09-03 Shell Oil Company Process wherein a hydrocarbon feedstock is contacted with a catalyst
JP3772285B2 (ja) * 1998-04-15 2006-05-10 新日本石油株式会社 炭化水素油の水素化分解触媒および水素化分解方法
DE69921328T2 (de) 1998-08-03 2006-02-09 Shell Internationale Research Maatschappij B.V. Verfahren zur herstellung einer katalysatorzusammensetzung
JP4496633B2 (ja) * 2000-09-29 2010-07-07 東ソー株式会社 トリエチレンジアミン製造用成形体触媒とその製造法及びトリエチレンジアミンの製造方法
US6902664B2 (en) * 2002-11-08 2005-06-07 Chevron U.S.A. Inc. Extremely low acidity USY and homogeneous, amorphous silica-alumina hydrocracking catalyst and process
US6860986B2 (en) 2002-11-08 2005-03-01 Chevron U.S.A. Inc. Extremely low acidity ultrastable Y zeolite catalyst composition and process
BRPI0514960A (pt) * 2004-09-08 2008-07-01 Shell Int Research composição de catalisador, processos para a preparação da mesma e para converter uma carga de alimentação hidrocarbonácea em materiais com ponto de ebulição mais baixo, e, uso de uma composição de catalisador
EP1828350A1 (en) * 2004-12-17 2007-09-05 Haldor Topsoe A/S Hydrocracking process
FR2886637B1 (fr) * 2005-06-02 2007-08-03 Inst Francais Du Petrole Materiau mesostructure a forte teneur en aluminium
EP2227519A2 (en) * 2007-11-19 2010-09-15 Shell Internationale Research Maatschappij B.V. Method for the start-up of a catalytic process
MX2008006050A (es) * 2008-05-09 2009-11-09 Mexicano Inst Petrol Catalizador con acidez moderada para hidroprocesamiento de crudo pesado y residuo, y su procedimiento de sintesis.
WO2010006386A2 (en) 2008-07-15 2010-01-21 Universite Catholique De Louvain Catalytic co2 methanation process
JP5868314B2 (ja) 2009-04-29 2016-02-24 ピーキュー コーポレイション 変性ゼオライトy及びその製法並びにその用途
RU2540071C2 (ru) 2009-04-29 2015-01-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Катализатор гидрокрекинга
WO2010148308A2 (en) * 2009-06-19 2010-12-23 Innovative Energy Solutions, Inc. Thermo-catalytic cracking for conversion of higher hydrocarbons into lower hydrocarbons
US9187702B2 (en) * 2009-07-01 2015-11-17 Chevron U.S.A. Inc. Hydroprocessing catalyst and method of making the same
FR2969510B1 (fr) * 2010-12-23 2014-06-13 Total Raffinage Marketing Procede de preparation d'un catalyseur industriel d'hydroconversion, catalyseur ainsi obtenu et son utilisation dans un procede d'hydroconversion
CN103773467B (zh) * 2012-10-24 2015-12-02 中国石油化工股份有限公司 一种加氢异构脱蜡生产润滑油基础油的方法
EP3420050A1 (en) 2016-02-25 2019-01-02 SABIC Global Technologies B.V. Process for combined hydrodesulfurization and hydrocracking of heavy hydrocarbons
WO2017148735A1 (en) 2016-03-01 2017-09-08 Sabic Global Technologies B.V. Process for producing monoaromatic hydrocarbons from a hydrocarbon feed comprising polyaromatics
SG11202101470RA (en) 2018-08-30 2021-03-30 Shell Int Research Hazy-free at 0°c heavy base oil and a process for producing
US11148124B2 (en) * 2019-12-04 2021-10-19 Saudi Arabian Oil Company Hierarchical zeolite Y and nano-sized zeolite beta composite

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130007A (en) * 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
US3391075A (en) * 1966-04-08 1968-07-02 Mobil Oil Corp Catalytic conversion of hydrocarbons with the use of a steam treated y type of crystalline aluminosilicate
US3536605A (en) * 1968-09-27 1970-10-27 Chevron Res Hydrotreating catalyst comprising an ultra-stable crystalline zeolitic molecular sieve component,and methods for making and using said catalyst
US3875081A (en) * 1969-10-24 1975-04-01 Union Oil Co Hydrocarbon conversion catalyst
US3778365A (en) * 1970-07-27 1973-12-11 Exxon Research Engineering Co Hydrocracking and hydrodenitrogenation of shale oil
US3945943A (en) * 1971-10-20 1976-03-23 Union Oil Company Of California Zeolite containing compositions, catalysts and methods of making
US3929672A (en) * 1971-10-20 1975-12-30 Union Oil Co Ammonia-stable Y zeolite compositions
US3887630A (en) * 1974-02-04 1975-06-03 Union Oil Co Isomerization of alkyl aromatic hydrocarbons
US4062809A (en) * 1976-03-18 1977-12-13 Union Oil Company Of California Catalyst for production of middle distillate oils
US4148759A (en) * 1976-05-06 1979-04-10 Uop Inc. Hydrocarbon conversion catalytic composite
CA1131195A (en) * 1978-02-23 1982-09-07 David E. Earls Ultrahydrophobic zeolite y
EP0003818A1 (en) * 1978-02-23 1979-09-05 Union Carbide Corporation Treatment of exhaust gas streams
US4259212A (en) * 1978-06-07 1981-03-31 Exxon Research And Engineering Co. Octane improvement cracking catalyst
US4255251A (en) * 1979-07-30 1981-03-10 Texaco Inc. Hydrocracking process and catalyst
US4711770A (en) * 1979-08-14 1987-12-08 Union Carbide Corporation Silicon substituted Y zeolite composition LZ-210
US4277373A (en) * 1979-08-16 1981-07-07 Exxon Research & Engineering Co. Alumina-aluminum fluorophosphate-containing catalysts
US4576711A (en) * 1979-10-15 1986-03-18 Union Oil Company Of California Hydrocracking process and catalyst therefor
US4419271A (en) * 1979-10-15 1983-12-06 Union Oil Company Of California Hydrocarbon conversion catalyst
US4743355A (en) * 1979-10-15 1988-05-10 Union Oil Company Of California Process for producing a high quality lube oil stock
US4743354A (en) * 1979-10-15 1988-05-10 Union Oil Company Of California Process for producing a product hydrocarbon having a reduced content of normal paraffins
US4517073A (en) * 1982-08-09 1985-05-14 Union Oil Company Of California Hydrocracking process and catalyst therefor
US4610973A (en) * 1979-10-15 1986-09-09 Union Oil Company Of California Hydrocarbon conversion catalyst
US4664776A (en) * 1979-10-15 1987-05-12 Union Oil Company Of California Hydrocarbon zeolite catalyst employed in hydrocracking process
US4600498A (en) * 1979-10-15 1986-07-15 Union Oil Company Of California Mild hydrocracking with a zeolite catalyst containing silica-alumina
US4517074A (en) * 1979-10-15 1985-05-14 Union Oil Company Of California Hydrocarbon conversion process
CA1149307A (en) * 1979-11-13 1983-07-05 Union Carbide Corporation Midbarrel hydrocracking
JPS57207546A (en) * 1981-06-13 1982-12-20 Shokubai Kasei Kogyo Kk Hydrocracking catalyst composition and its production
US4415438A (en) * 1981-11-24 1983-11-15 Dean Robert R Method for catalytically converting residual oils
US4565621A (en) * 1981-12-04 1986-01-21 Union Oil Company Of California Hydrocracking with rare earth-containing Y zeolite compositions
US4429053A (en) * 1981-12-04 1984-01-31 Union Oil Company Of California Rare earth-containing Y zeolite compositions
CA1203191A (en) * 1982-02-11 1986-04-15 Susan Bradrick Middistillate production
JPS5926925A (ja) * 1982-08-02 1984-02-13 Shokubai Kasei Kogyo Kk 改質ゼオライト
US4563434A (en) * 1982-08-09 1986-01-07 Union Oil Company Of California Hydrocracking catalyst
FR2561946B1 (fr) * 1984-03-30 1986-10-03 Pro Catalyse Nouveau catalyseur d'hydrocraquage destine a la production de distillats moyens
US4762608A (en) * 1984-12-20 1988-08-09 Union Carbide Corporation Upgrading of pyrolysis tar
AU5422886A (en) * 1985-03-01 1986-09-04 Engelhard Corporation High octane, high gasoline selectivity catalyst
AU5423186A (en) * 1985-03-01 1986-09-04 Engelhard Corporation High octane, high gasoline selectivity catalyst
US4661239A (en) * 1985-07-02 1987-04-28 Uop Inc. Middle distillate producing hydrocracking process
JPS62199687A (ja) * 1986-04-28 1987-09-03 ユニオン・オイル・コンパニ−・オブ・カリフオルニア 細孔の大きい触媒を用いる水素化法
US4663025A (en) * 1986-08-14 1987-05-05 Phillips Petroleum Company Catalytic cracking processes
US4786403A (en) * 1986-10-28 1988-11-22 Shell Oil Company Process for hydrotreating hydro carbon feeds

Also Published As

Publication number Publication date
SG28092G (en) 1992-05-15
FI88264C (fi) 1993-04-26
TR22746A (tr) 1988-05-27
EP0247678B1 (en) 1990-02-07
ZA873826B (en) 1988-04-27
BR8702718A (pt) 1988-03-01
EP0247678A2 (en) 1987-12-02
NZ220461A (en) 1989-07-27
CA1295311C (en) 1992-02-04
CN87103828A (zh) 1988-02-24
NL193661C (nl) 2000-06-06
AU7345087A (en) 1987-12-03
FI872347A0 (fi) 1987-05-27
DD260937A5 (de) 1988-10-12
JPS62294443A (ja) 1987-12-21
CS274295B2 (en) 1991-04-11
KR950009000B1 (ko) 1995-08-10
IN170028B (zh) 1992-01-25
AU588691B2 (en) 1989-09-21
EP0247678A3 (en) 1988-02-03
CS384887A2 (en) 1990-09-12
GB8613131D0 (en) 1986-07-02
AR243586A1 (es) 1993-08-31
JP2562322B2 (ja) 1996-12-11
HUT48564A (en) 1989-06-28
US4925820A (en) 1990-05-15
ES2012799B3 (es) 1990-04-16
DE3761666D1 (de) 1990-03-15
SU1722232A3 (ru) 1992-03-23
FI872347A (fi) 1987-12-01
NL193661B (nl) 2000-02-01
KR870011227A (ko) 1987-12-21
NL8701244A (nl) 1987-12-16
HU206492B (en) 1992-11-30
US4857171A (en) 1989-08-15
FI88264B (fi) 1993-01-15

Similar Documents

Publication Publication Date Title
CN1020625C (zh) 烃转化方法及催化剂
CN1021738C (zh) 烃转化催化剂
CN1049512A (zh) 加氢裂化催化剂及加氢裂化方法
CN1723265A (zh) 极低酸度usy和均相非晶形氧化硅-氧化铝加氢裂化催化剂及方法
CN1086248A (zh) 基础润滑油的制备方法
CN1717277A (zh) 加氢裂化催化剂
CN1871065A (zh) 新型沸石组合物,其制备方法和其催化应用
CN1290974C (zh) 提高沸点在石脑油范围的烃的等级的催化剂组合物
CN1723264A (zh) 极低酸度超稳定y沸石催化剂组合物及方法
CN1839195A (zh) 碳氢化合物转化方法与催化剂
CN1026956C (zh) 沸石催化剂及其制备方法及应用
CN86103725A (zh) 催化裂化方法
CN1933905A (zh) 非常均匀的非晶形氧化硅-氧化铝催化剂组合物
CN1007991B (zh) 用含铝硅磷酸盐分子筛催化剂的加氢裂化法
CN1020282C (zh) 重质馏份油加氢处理催化剂
CN1230942A (zh) 选择性催化转化含有大量乙基取代的芳香成分的c9芳香原料成富含甲苯和/或二甲苯产物的方法
CA2948943A1 (en) Catalyst suitable for production of aviation kerosene from biomass fischer-tropsch synthesis oil and preparation method therefor
CN1609175A (zh) 一种加氢处理催化剂及其制备方法
JP2005531658A (ja) ゼオライトベータを含む触媒及びそれを炭化水素の転化法に使用する方法
CN1016319B (zh) 镍/氧化铝催化剂的制备
CN1033757A (zh) 含硅铝磷酸盐分子筛的脱蜡催化剂
CN1324115C (zh) 石脑油加氢转化的催化系统
CN1024561C (zh) 使用低酸度y型沸石选择性生产中间馏分的催化加氢裂化方法
CN1154539C (zh) 具有高柴油选择性的催化剂载体
CN1165599C (zh) 用于处理减压瓦斯油的联合蒸气转化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee