CN1026956C - 沸石催化剂及其制备方法及应用 - Google Patents

沸石催化剂及其制备方法及应用 Download PDF

Info

Publication number
CN1026956C
CN1026956C CN89104260A CN89104260A CN1026956C CN 1026956 C CN1026956 C CN 1026956C CN 89104260 A CN89104260 A CN 89104260A CN 89104260 A CN89104260 A CN 89104260A CN 1026956 C CN1026956 C CN 1026956C
Authority
CN
China
Prior art keywords
zeolite
catalyst
silica
oxide
hydrogenation component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN89104260A
Other languages
English (en)
Other versions
CN1038594A (zh
Inventor
汤姆·怀兹格
阿林德·霍克
海尼·夏波
亨德里克·克拉兹格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10638994&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1026956(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1038594A publication Critical patent/CN1038594A/zh
Application granted granted Critical
Publication of CN1026956C publication Critical patent/CN1026956C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/106Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

沸石催化剂及其制备方法和应用,该催化剂包括用一种阳离子半径为0.6-1.0的多价金属溶液处理碱金属氧化物/氧化铝(摩尔比至多为0.13)的Y型沸石,和使未经煅烧步骤的离子交换的沸石与一种VIII族和/或VIb族金属的氢化组分混合。

Description

本发明涉及沸石催化剂的制备方法,由此制备的催化剂以及它们在加氢转化法、特别是在氢化裂解方法中的应用。
沸石用作催化剂和/或催化剂载体长久以来被公认,且在现有技术中已报导了多种改进沸石基材料的方法。在沸石研究和开发中,已经做了许多的努力试图以从物理方面改变沸石基材料的性能和可能的特性,例如通过煅烧,或在所谓的自蒸汽条件下煅烧、或湿法煅烧。也报导了在沸石制备步骤的各个阶段中用铵离子进行处理的方法。也已报导。可通过用一些金属盐溶液结合各种前或后处理步骤处理沸石的方法来改性沸石,以保证制备出最活性状态的沸石。在这方面,可参考US-A-4,415,519,它描述了沸石改性,其中钠型Y沸石与铵盐溶液交换,铵离子交换的沸石例如在自蒸汽条件下被煅烧,煅烧产物与一种酸性铝盐溶液反应。然后,铝交换的沸石再进行铵交换。
现已发现,用含低碱金属氧化物与某些金属盐进行离子交换,然后不进行煅烧处理,离子交换沸石与8族金属和/或6b族金属的氢化组分结合的方法,可制备具有令人感兴趣的特性的沸石催化剂。由此制备的催化剂作为氢化裂解催化剂具有重要的价值。
因此,本发明提供一种制备沸石催化剂的方法,该方法包括:用一种多价金属盐溶液(阳离子半径为0.6~1.0
Figure 891042601_IMG1
)处理Y型沸石(碱金属氧化物/氧化铝摩尔比至多为0.13),且使未经煅烧处理的离子交换的沸石与8族和/或6b族金属氢化组分混合。
通过在一步或若干步骤中用一种铵盐溶液处理以使碱金属的量减少到所期望的值的方法,可适宜地从高含量碱金属氧化物的Y-沸石得到Y型沸石(碱金属氧化物/氧化铝摩尔比至多0.13,特别是氧化钠含量至多2%(重量))。市售沸石(例如Na-Y)可适宜用作初始材料。通常,Na-Y沸石可含约13.5%(重量)以下的氧化钠。铵盐(例如氯化铵或硫酸铵)处理对于精通此项技术的人是众所周知的。
值得注意的是,根据本发明的方法提供一种用多价金属盐(阳离子半径为0.6~1.0 )溶液进行离子交换之后煅烧,直接从含低碱金属盐氧化物沸石Y制备沸石催化剂,而基本不降低沸石晶胞尺寸的方法。离子半径的数值可略微变化,这依赖于它们是如何测量的。本说明书所使用的值取自CRC物理化学手册(Cleveland ohio,56fhed,1975~1976,F-209~F-210页)。
存在于本发明所使用的盐的适宜的多价阳离子实例包括:Ag2+、Bi3+、Bi5+、Ca2+、Cd2+、Ce4+、Co2+、Co3+、Cr2+、Cr3+、Cu2+、Fe2+、Fe3+、Ga3+、In3+、Ir4+、Ma2+g、Mn2+、Mn3+、Mn4+、Mo4+、Ni2+、Pb4+、Pd2+、Pd4+、Pt2+、Pt4+、Re4+、Rh3+、Ru4+、Sn2+、Sn4+、Ta5+、Ti2+、Ti3+、Ti4+、TL3+、V3+、V4+、W4+、W6+和Zn2+。优选使用的金属盐阳离子半径为0.60~0.8
Figure 891042601_IMG3
,特别适宜的是镓盐、铁盐、铜盐、镁盐、钴盐和镍盐。使用镓盐和镍盐类可得到良好效果。可适宜使用的盐类包括无机盐类,例如硝酸盐类和硫酸盐类以及适当的卤化物类。最好使用硝酸盐类和氯化物类,特别是硝酸盐类,因其水溶性有利于有关材料的处理。也可使用(略微)可溶的有机酸类的盐类,例如甲酸盐类、乙酸盐类和丙酸盐类。如果需要的话,两种或多种盐类的混合物可用于本发明的方法。
金属盐类的用量可在很宽的范围内变化,这某种程序上取决于所使用的金属的性质。通常使用每升水中含0.005~2摩尔金属盐的溶液比较合适,优选浓度为每升0.01~1摩尔。
初始沸石Y材料含至多摩尔比为0.13的碱金属氧化物/氧化铝,优选的为0.10,最佳为0.05(这可通过离子交换处理含较高量的碱金属氧化物的沸石Y制得)。初始材料用一种含适当的金属盐(类)的溶液进行离子交换。离子交换可通过现有技术中已知的技术进行。如果需要的话,离子交换可重复许多次。
通常离子交换是在相当低的温度下进行,例如温度为10~95℃。在温度为20~95℃下进行离子交换已得到良好的结果。通常离子交换的时间为15分~24小时。优选的处理时间为30分~6小时。
在本发明的方法中,适宜使用的沸石的晶胞尺寸为24.19~24.65 。最好使用EP-A-0247678和EP-A-0247679中所描述的沸石。
在用适当金属离子盐溶液进行离子交换之后,由此处理的沸石通常在与氢化组分混合之前,要经过干燥。通常在室温~约200℃的温度下缓和加热有关材料达到干燥。干燥工序可在空气或惰性气体例如氮气中进行。也可以进行部分干燥。
相反,煅烧通常是在350~800℃、一般在500~750℃下且任意选择地在蒸汽存在下进行的。煅烧时间可在较宽范围内变化,从低于30分钟至高达24小时,这主要取决于所处理的沸石Y的性能。
用金属盐溶液离子交换和任意选择地经过干燥之后制备的沸石是不经上述煅烧处理。
除一种或多种沸石和氢化组分外,适当的加氢转化催化剂还包含一种粘合剂。使用粘合剂类诸如氧化硅、氧化铝、氧化硅-氧化铝、粘土、氧化锆、氧化硅-氧化锆、二氧化钛、氧化硅-氧化硼及其混合物比较合适。氧化铝是优选的粘合剂。使用10~95ut%粘合剂比较合适。最好使用15~75ut%的粘合剂。
离子交换的沸石与8族和/或16b族金属的氢化组分混合。可通过任何本技术中已知技术进行这种混合。最好通过浸渍、特别是共粉磨进行这种混合。在共粉磨中,离子交换的沸石与氢化组分和可任意选择的粘合剂在水存在下混合,以使得到一种可挤出糊。US-A-3,853,747中描述了共粉磨。
最好通过共粉磨离子交换的沸石、氢化组分和粘合剂的方法混合离子交换的沸石与氢化组分。
本发明的另一个优选实施方案是使离子交换的沸石与耐火氧化物的混合物相混合,具体地讲是与氧化硅-氧化铝和氧化铝混合物相混合。此时,所含的氧化硅-氧化铝将不仅作为粘合剂,而且作为加氢转化(氢化裂解)组分。沸石/氧化硅-氧化铝/氧化铝混合物中沸石的重量百分含量最好为5~80%,在这种混合物氧化硅-氧化铝的重量百分含量最好为5~80%,其余为氧化铝。
本发明还涉及由一种Y型沸石(碱金属氧化物/氧化铝至多为0.13在可离子交换的部位具有多价阳离子半径为0.6~1.0
Figure 891042601_IMG5
的多价阳离子)和至少一种由上述方法制备的8族金属和/或6族金属 的氢化组分构成的催化剂。适宜的是,本发明的催化剂组合物包含一种或多种镍和/或钴组分、一种或多种钼和/或钨组分、或者一种或多种铂和/或钯组分。
催化剂组合物中的氢化组分量的适宜范围:8族金属组分为0.05~110重量份数(pbw),6族金属组分为2~40pbw,以每100重量份总催化剂中的金属计。在催化剂组合物中氢化组分可呈氧化和/或硫化态。如果至少一种6族和8族金属组分混合物是以混合的)氧化物形式存在,它通常在氢化裂解中正常使用之前要经过硫化处理。
如上所述,催化剂最好还包括一种粘合剂。
如上所述,本发明还涉及催化剂在加氢转化工艺中具体地讲在氢化裂解工艺中的应用。
另外,本发明提供一种加氢转化法,其中烃进料在加氢转化条件下,在氢气存在下与沸石催化剂接触,其中沸石催化剂是如前所述的一种催化剂。
经过使用本发明催化剂进行加氢转化法适当处理的进料包括粗柴油、脱沥青油、焦化粗柴油、其它热裂解的粗柴油以及共原油类,可任意选择地选自焦油砂类、页岩油类、加浓工艺残留物或生物物质。也可使用各种进料的混合物。
在进料用于加氢转化法之前,部分或全部进料经过一步或多步(氢化)处理也是理想的。常常发现,进料经(部分)氢化处理是方便的。当要加工相当重的进料时,这样的进料经过(氢化)脱金属处理是十分有利的。
加氢转化法合适的工艺条件包括:温度范围为250~500℃,压力低于300巴,且空间流速为每升催化剂每小时0.1~10Kg进料(Kg/L·h)。使用气体/进料比为100~5000NL/Kg进料比较合适。加氢转化工艺最好在300~470℃温度下,压力25~200巴以下以及空间流速为每升催化剂每小时0.2~5Kg进料的条件下进行。最好采用250~2000NL/Kg的气体/进料比。
现将通过以下实施例说明本发明。
实施例1
用0.2M硝酸镓(Ga
Figure 891042601_IMG6
半径:0.62
Figure 891042601_IMG7
)的溶液(每克晶体硅铝酸盐10ml)对EP-A-0247,679描述的晶体沸石Y进行离子交换处理,此沸石Y典型的氧化铝含量为0.1wt%,氧化钠/氧化铝的摩尔比约为0.011,且晶胞大小为24.33 。在回流条件下,离子交换处理进行1小时。过滤之后,洗涤得到的产物并在120℃下经过16小时的干燥处理。干燥了的沸石与氢化的氧化铝(勃母石),一种硝酸镍(4.75克)和偏钨酸铵(按WO3计算为18.82克)的溶液混合。所得混合物共粉磨0.45小时,然后挤成压出物。这种压出物于120℃干燥2小时,最后于500℃煅烧2小时。经煅烧的压出物含有6.7wt%Ga、2.6wt%Ni和82wt%的W(按全部催化剂上的金属计算)。沸石Y与氧化铝粘合剂的重量比为4∶1。
实施例2
按实施例1进行类似的工序,使用的是同种类型的沸石Y,但硝酸镍溶液的用量为每克沸石10ml1M硝酸镍溶液(Ni2半径:0.69
Figure 891042601_IMG9
)。干燥离子交换的沸石之后,将含镍沸石(1.3wt%Ni)按实施例1中含Ga沸石所描述的同样方法进行处理,得到含3.7wt%Ni和8.2wt%W的煅烧产物(按总催化剂上的金属计算)。沸石Y与氧化铝粘合剂的重量比为4∶1。
比较实验
按照实施例1和2的类似工序进行试验,使用的是一种硝酸铝溶液,其用量为每克沸石10ml1M硝酸铝溶液。Al3+的阳离子半径为0.51
Figure 891042601_IMG10
。所得催化剂含有2.6wt%Ni和8.2wt%W。
实施例3
本实施例表明了本发明的沸石催化剂在加氢裂化方法中的优点。(实施例1和2的催化剂(分别是催化剂1和2)与比较实验的催化剂(催化剂3和EP-A-0247.679的催化剂,即用同种类型的沸石Y,但未经有关离子交换步骤制得的和通过浸渍沸石Y和氧化铝的煅烧组分制得的)。以总催化剂计,催化剂4含有2.6wt%Ni和8.2wt%W。沸石Y和氧化铝粘合剂的重量比为4∶1。
使用一种具有以下特性的烃进料,在氢化裂解试验中对催化剂进行测试:
C(%wt):86.2
H(%wt):13.8
d(70/4):0.826
粘度(100℃):4.87CS(ASTM-D-445)粘度(60℃):12.43CS(ASTM-D-445)
RCT(%wt):0.05(ASTM-D-542)
I.B.P.:205℃
10/20:332/370
30/40:392/410
50/60:428/448
70/80:467/492
90:525
F.B.P.:598
用0.2mmSiC颗粒以1∶体积比稀释催化剂。然后,预硫化催化剂。在以下作业条件进行后续氢化裂解:
WHSV:1.1Kg·L-1·h-1
H2S分压:1.4巴
总压力:130巴力
气体/进料比:1,000HLKg-1
以单循环进行试验。
催化剂的功效表示为达到70wt%转化率的300℃物质所要求的温度。结果示于表1:
表1
实验编号:1    2    3    4
催化剂编号:1    2    3    4
所要求的温度:
(70wt%转化率),℃
330    325    325    325
300℃产物的分布,wt%
C1-45.8 4.2 6.1 6.1
C5~130℃ 40.0 41.7 44.4 44.0
130℃~300℃    53.2    47.1    49.5    49.9
从结果可以看出,本发明的催化剂制备出比催化剂3和4要低的气态产物(C1-4),从而催化剂1得到了较高的中等馏出液产率,催化剂2得到了较高的挥发油产率。从催化剂3和4之间的比较可以看出,当用离子半径很小的Al3+离子进行离子交换时,与未经本离子交换步骤制得的催化剂相比,所得循环剂的功效几乎没有变化。
实施例4
按实施例2进行离子交换和干燥之后得到的含镍沸石Y与氧化硅-氧化铝(重量比:SiO2∶A2O3=3∶1)、氧化铝和硝酸镍溶液和三氧化钼进行混合。在共粉磨、挤出、干燥和煅烧之后,得到含12.9wt%Mo和8.2wt%Ni的催化剂,从而重量比沸石Y/氧化硅-氧化铝/氧化铝为30∶40∶30。
实施例5
催化剂5与按EP-A-0247,678制得的催化剂6进行比较,催化剂6的制备方法如下:使沸石Y与氧化硅-氧化铝(重量比SiO2∶A2O3=3∶1)混合,挤出混合物以得到压出物,干燥和煅烧该压出物并通过浸渍的方法将Ni和Mo沉积到压出物上。催化剂6含有7.8wt%Ni和12.9wt%Mo,重量比沸石Y/(氧化硅-氧化铝/氧化铝为30∶40∶30。
催化剂经过使用了下面的进料的氢化裂解工艺。
进料Ⅰ    进料Ⅱ
C(%wt)86.4    C(%wt)86.4
H(%wt)19.6    H(%wt)13.6
N(ppmv)4    N(ppmw)12
沸点特性,℃    沸点特性,℃
2/10    290/328    2/10    287/353
20/30    368/396    20/30    384/407
40/50    420/440    40/50    426/444
60/70    460/482    60/70    460/481
80/90    508/542    80/90    505/539
540+℃(%wt)10.5 540+℃(%wt)9.8
测定达到56wt%转化率所要求的温度及产物分布。在用进料Ⅰ进行125小时之后,更换进料并采用进料Ⅱ。也测定产物分布和用进料Ⅱ进行200小时之后得到56wt%转化率所要求的温度。工艺条件为:总压力125巴,H2S分压2.4巴,空间流速0.75Kg/1小时,且气体/进料比1500Nl/Kg。结果示于表Ⅱ。
表Ⅱ
实验编号    5    6
催化剂编号    5    6
进料Ⅰ
所要求的温度,℃    323    312
产物分布,wt%
C1-44 6
C5-130℃ 32 31
130~300℃    64    63
进料Ⅱ
所要求的温度,℃    325    326
产物分布,wt%
C1-44 4
C5-130℃ 27 32
130~300℃    69    64
从以上结果可以看出,在低氮含量的条件下,催化剂5对C1-4烃的选择性比先有技术的催化剂的要低。此外,氮的选择性(定义为在4和120ppmmN下达到56wt%转化率所要求的温差)对催化剂6来说是显著的,而催化剂5的N选择性很低。

Claims (11)

1、制备沸石催化剂的方法,该方法包括:
a)用摩尔浓度为0.005-2的一种或多种镓、铁、铜、镁、钴、镍盐的水溶液在温度为10-95℃间处理碱金属氧化物/氧化铝摩尔比至多为0.13的Y型沸石,
b)在可达200℃的温度下对离子交换沸石进行干燥原理,
c)将不经煅烧步骤离子交换沸石与选自镍、钴、钨、钼、铂、钯的氢化组分混合,
d)将步骤c)得到的混合物成型以制取催化剂颗粒,然后进行煅烧处理。
2、权利要求1的方法,其中起始Y型沸石是用铵化合物处理高氧化钠含量的Y型沸石得到的。
3、权利要求1或2的方法,其中使用的是镓或镍盐。
4、权利要求1-3任一项的方法,其中使用的是多价金属的硝酸盐或氯化物。
5、权利要求1或2的方法,其中使用的是摩尔浓度为0.01-1间的多价金属溶液。
6、权利要求1或2的方法,其中用浸渍方法将离子交换沸石和氢化组分混合。
7、权利要求1或2的方法,其中用共粉磨方法将离子交换沸石和氢化组分混合。
8、权利要求7的方法,其中离子交换沸石与氢化组分的混合是加一种粘合剂将共粉磨离子交换沸石和氢化组分共粉磨的,粘合剂选自包括二氧化硅、氧化铝、二氧化硅-氧化铝、粘土、氧化锆、氧化硅-氧化锆、氧化钛、氧化硅-氧化硼它们的混合物的耐熔氧化物。
9、一种催化剂,该催化剂含有一种碱金属氧化物/氧化铝摩尔比至多是为0.13的Y型沸石和在可离子交换部位上的一种或多种镓、铁、铜、镁、钴、钴、镍盐的阳离子,以及至少一种可由权利要求1或2的方法得到的选自镍、钴、钨、钼、铂和钯的氢化组分。
10、权利要求9的催化剂,该催化剂进一步包括选自包括二氧化硅、氧化铝、氧化硅-氧化铝、粘土、氧化锆、氧化硅-氧化锆、氧化钛、氧化硅-氧化硼和它们的混合物的耐熔氧化物的粘合剂。
11、用权利要求10或9的催化剂进行加氢转化。
CN89104260A 1988-06-20 1989-06-16 沸石催化剂及其制备方法及应用 Expired - Fee Related CN1026956C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB888814601A GB8814601D0 (en) 1988-06-20 1988-06-20 Process for preparation of zeolitic catalysts
GB8814601 1988-06-20

Publications (2)

Publication Number Publication Date
CN1038594A CN1038594A (zh) 1990-01-10
CN1026956C true CN1026956C (zh) 1994-12-14

Family

ID=10638994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89104260A Expired - Fee Related CN1026956C (zh) 1988-06-20 1989-06-16 沸石催化剂及其制备方法及应用

Country Status (20)

Country Link
US (1) US5006496A (zh)
EP (1) EP0348001B1 (zh)
JP (1) JPH0240238A (zh)
KR (1) KR910000525A (zh)
CN (1) CN1026956C (zh)
AT (1) ATE105507T1 (zh)
AU (1) AU615307B2 (zh)
BR (1) BR8902925A (zh)
CA (1) CA1335587C (zh)
CS (1) CS275782B6 (zh)
DD (1) DD283951A5 (zh)
DE (1) DE68915209T2 (zh)
ES (1) ES2052884T3 (zh)
GB (1) GB8814601D0 (zh)
HU (1) HU204730B (zh)
IN (1) IN173676B (zh)
NZ (1) NZ229598A (zh)
RU (1) RU1813012C (zh)
TR (1) TR24411A (zh)
ZA (1) ZA894591B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519573B1 (en) * 1991-06-21 1995-04-12 Shell Internationale Researchmaatschappij B.V. Hydrogenation catalyst and process
US5306683A (en) * 1992-05-01 1994-04-26 Arch Development Corporation Transition metal sulfide loaded catalyst
US5234876A (en) * 1992-10-20 1993-08-10 Corning Incorporated Thermally stable chromium-exchanged zeolites and method of making same
US5314853A (en) * 1992-12-16 1994-05-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High temperature sorbents for oxygen
KR950703403A (ko) * 1993-07-22 1995-09-20 어니스트 쥐. 포스너 금속이 다량 교환된 제올라이트 Y의 제조방법(Process for Preparing Highly Metal Exchanged Zeolite Y)
US5464467A (en) * 1994-02-14 1995-11-07 The Boc Group, Inc. Adsorptive separation of nitrogen from other gases
US5576256A (en) * 1994-05-23 1996-11-19 Intevep, S.A. Hydroprocessing scheme for production of premium isomerized light gasoline
GB2323094B (en) * 1994-05-23 1998-11-11 Intevep Sa A hydroconversion catalyst and process for making the same
US5770047A (en) * 1994-05-23 1998-06-23 Intevep, S.A. Process for producing reformulated gasoline by reducing sulfur, nitrogen and olefin
FR2795342B1 (fr) * 1999-06-25 2001-08-17 Inst Francais Du Petrole Catalyseur contenant une zeolithe chargee en element du groupe vb et son utilisation en hydroraffinage et hydrocraquage de coupes hydrocarbonees
FR2795341B1 (fr) 1999-06-25 2001-08-17 Inst Francais Du Petrole Catalyseur contenant une zeolithe chargee en element des groupes vib et/ou viii et son utilisation en hydroraffinage et hydrocraquage de coupes hydrocarbonees
US20030073566A1 (en) * 2001-10-11 2003-04-17 Marshall Christopher L. Novel catalyst for selective NOx reduction using hydrocarbons
KR100474965B1 (ko) * 2002-02-14 2005-03-08 주식회사 효성 금속 이온 교환법으로 제조된 합성 제올라이트, 그제조방법 및 그를 이용한 고순도 나이트로젠트리플루오라이드의 정제 방법
WO2008016971A2 (en) * 2006-08-03 2008-02-07 Shell Oil Company A catalyst containing molybdenum and a group viii metal and its use for hydrodesulfrization hydrogen distillate
US7820036B2 (en) * 2006-08-03 2010-10-26 Shell Oil Company Highly stable heavy hydrocarbon hydrodesulfurization catalyst and methods of making and use thereof
US9187390B2 (en) * 2011-06-17 2015-11-17 Biochemtex S.P.A. Lignin conversion process
US10603656B2 (en) 2013-10-17 2020-03-31 Shell Oil Company Ultra-stable heavy hydrocarbon hydroprocessing catalyst and methods of making and use thereof
KR102385590B1 (ko) 2014-07-17 2022-04-11 사빅 글로벌 테크놀러지스 비.브이. 수소열분해 공정에서 수소 도너 스트림을 사용한 수소 결핍 스트림의 업그레이드
DE102018128594A1 (de) 2017-11-15 2019-05-16 Steering Solutions Ip Holding Corporation Halbflexible, gefurchte leiterplattenanordnung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364135A (en) * 1962-12-17 1968-01-16 Union Oil Co Hydrocarbon conversion process and catalyst comprising a y type crystalline aluminosilicate promoted with a polyvalent metal
US3455842A (en) * 1964-02-20 1969-07-15 Air Prod & Chem Cracking catalyst comprising aluminum zeolite
US3376215A (en) * 1965-09-28 1968-04-02 Standard Oil Co Hydrocarbon conversion process and catalyst
US3853747A (en) * 1967-09-20 1974-12-10 Union Oil Co Hydrocracking process
US3706694A (en) * 1970-03-09 1972-12-19 Union Oil Co Catalytic hydrocracking
GB1361719A (en) * 1972-05-04 1974-07-30 Atlantic Richfield Co Process for disproportionating hydrocarbons to yield products containing isoparaffinic hydrocarbons
US4093671A (en) * 1976-11-22 1978-06-06 Phillips Petroleum Company Hydroalkylation using multi-metallic zeolite catalyst
NZ198555A (en) * 1980-10-11 1983-11-30 British Petroleum Co Catalytic production of aromatic hydrocarbons
US4415439A (en) * 1980-10-28 1983-11-15 W. R. Grace & Co. Catalytic cracking catalyst
GB8306532D0 (en) * 1983-03-09 1983-04-13 British Petroleum Co Plc Catalytic activity of aluminosilicate zeolites
EP0124120B1 (en) * 1983-05-02 1987-06-16 Union Carbide Corporation Hydrocracking catalyst and hydrocracking process
NZ212649A (en) * 1984-07-16 1988-06-30 Mobil Oil Corp Method for increasing zeolite catalytic activity
GB8613131D0 (en) * 1986-05-30 1986-07-02 Shell Int Research Hydrocarbon conversion
GB8613132D0 (en) * 1986-05-30 1986-07-02 Shell Int Research Hydrocarbon conversion catalysts
GB8708962D0 (en) * 1987-04-14 1987-05-20 Shell Int Research Preparation of modified zeolites

Also Published As

Publication number Publication date
AU3647689A (en) 1989-12-21
HUT52739A (en) 1990-08-28
KR910000525A (ko) 1991-01-29
DE68915209D1 (de) 1994-06-16
EP0348001A1 (en) 1989-12-27
ES2052884T3 (es) 1994-07-16
ATE105507T1 (de) 1994-05-15
IN173676B (zh) 1994-06-25
BR8902925A (pt) 1990-02-06
CN1038594A (zh) 1990-01-10
DD283951A5 (de) 1990-10-31
JPH0240238A (ja) 1990-02-09
US5006496A (en) 1991-04-09
TR24411A (tr) 1991-10-08
ZA894591B (en) 1990-02-28
GB8814601D0 (en) 1988-07-27
RU1813012C (ru) 1993-04-30
HU204730B (en) 1992-02-28
CA1335587C (en) 1995-05-16
DE68915209T2 (de) 1994-08-18
AU615307B2 (en) 1991-09-26
CS275782B6 (en) 1992-03-18
NZ229598A (en) 1990-10-26
EP0348001B1 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
CN1026956C (zh) 沸石催化剂及其制备方法及应用
CN1020625C (zh) 烃转化方法及催化剂
CN1021738C (zh) 烃转化催化剂
CN1317368C (zh) 一种润滑油基础油的制备方法
CN1723082A (zh) 非常均匀的非晶形氧化硅-氧化铝组合物的制备方法
CN1049512A (zh) 加氢裂化催化剂及加氢裂化方法
CN86103725A (zh) 催化裂化方法
CN1933905A (zh) 非常均匀的非晶形氧化硅-氧化铝催化剂组合物
CN105709789B (zh) 一种重油加氢裂化催化剂及其制备方法和应用
CN1020282C (zh) 重质馏份油加氢处理催化剂
JP3862029B2 (ja) 少なくとも1つの水素化金属成分および合成粘土を含有する触媒
CN1261542C (zh) 一种含氧化硅-氧化铝的加氢裂化催化剂
CN1165177A (zh) 混合沸石催化剂及烃类石油进料加氢转化方法
CN1164719C (zh) 一种贵金属加氢裂化催化剂及其制备方法
CN1100124C (zh) 轻烃芳构化催化剂及其制法
CN1175089C (zh) 一种含分子筛的重整催化剂
CN1214962A (zh) 使用以沸石im-5为主要成分的催化剂改善烷属烃物料流点的方法
JPH07116451B2 (ja) 炭化水素装入原料の品質改善方法
CN1261541C (zh) 一种重质馏分油加氢裂化催化剂
CN1177647C (zh) 含硅磷铝分子筛的催化剂及其制备方法
CN1261539C (zh) 一种烃油加氢转化催化剂
CN1248779C (zh) 一种多孔性氧化硅-氧化铝及其制备方法
CN1281310C (zh) 一种含氧化硅-氧化铝的加氢裂化催化剂
CN1417295A (zh) 含磷的烃类裂化催化剂及其制备
JPS6244974B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee