CN101652832A - 厚的赝晶氮化物外延层 - Google Patents

厚的赝晶氮化物外延层 Download PDF

Info

Publication number
CN101652832A
CN101652832A CN200880003002A CN200880003002A CN101652832A CN 101652832 A CN101652832 A CN 101652832A CN 200880003002 A CN200880003002 A CN 200880003002A CN 200880003002 A CN200880003002 A CN 200880003002A CN 101652832 A CN101652832 A CN 101652832A
Authority
CN
China
Prior art keywords
layer
strained layer
strained
thickness
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880003002A
Other languages
English (en)
Other versions
CN101652832B (zh
Inventor
L·J·肖沃尔特
J·A·斯马特
J·R·格兰达斯基
刘仕文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal IS Inc
Original Assignee
Crystal IS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39473776&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101652832(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Crystal IS Inc filed Critical Crystal IS Inc
Publication of CN101652832A publication Critical patent/CN101652832A/zh
Application granted granted Critical
Publication of CN101652832B publication Critical patent/CN101652832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

将半导体结构制备成包括超过其预期临界厚度的应变外延层。

Description

厚的赝晶氮化物外延层
相关申请
[0001]本申请要求2007年1月26日提交的美国临时专利申请No.60/897,572的权益和优先权,通过引用将其全部公开内容并入本文。
技术领域
[0002]本文所公开的技术总体涉及晶格失配的半导体异质结构,更具体涉及其厚度大于所预期的临界厚度的赝晶层。
背景技术
[0003]对于实际商用的氮化物基的半导体器件的制备而言,在整个半导体有源器件层中获得低缺陷密度是重要的。如美国专利申请No.11/503,660(“‘660申请”)中所述,能够形成大直径、低缺陷密度的AlN衬底,通过引用将其全部公开内容并入本文。但是,许多所需的器件应用优选包括在AlN衬底上生长的基于AlN、GaN和InN合金的器件层。随着GaN和InN浓度的增加,相对于AlN衬底的晶格失配也在增大。例如GaN的c-面晶格参数比AlN的大约2.4%。当在衬底上外延生长晶格失配层时,初始层典型地赝晶生长,即,如果衬底的本征晶格参数小于外延层的本征晶格参数,则外延层将在衬底表面的平面内被压缩(经受压缩应变)。当外延层的本征晶格参数小于衬底的本征晶格参数时,则外延层将被伸展(stretch)或受到拉伸应变。然而,随着外延层的厚度增加,外延层中的应变能将提高,且该层将典型以某种方式减小应变能。这可因塑性流动而发生,该塑性流动是通过位错运动,通过产生允许应变松弛的表面形态特征,或者特别是当应变为拉伸时通过膜的开裂。
[0004]赝晶层至少因两个原因而引人注意。第一个原因是,当在低位错衬底上生长外延层时,赝晶外延层也可以在具有非常低的位错密度的情况下生长,常常具有与衬底相同的位错密度。第二个优势则产生于通过所产生的大双轴应变来调整能带结构的能力。例如可以利用应变来破坏重载流子能带和轻载流子能带之间的简并度,从而获得更高的载流子迁移率。
发明内容
[0005]本发明提供了在高品质AlN衬底上生长非常厚的AlN、GaN和InN合金的赝晶膜的技术。赝晶膜是这样的膜,其中平行于界面的应变大致等于使膜内的晶格畸变以与衬底的晶格相匹配所需的应变。因而,赝晶膜中的平行应变将接近或大致等于平行于界面的无应变衬底和平行于界面的无应变外延层之间的晶格参数的差值。本文中所用的“非常厚”意指外延层的厚度显著超过(对于基本不含In的层为至少5倍,或对于含In的层为至少10倍)基于厚度的标准计算(或能量平衡计算)得到的外延膜的预期临界厚度,其中通过螺型位错的成核和/或运动开始发生应变松弛。预期临界厚度可以按照例如Matthews andBlakeslee,J.Crystal Growth 27,118(1974)和/或美国专利No.US4088515中所描述的方法进行计算,通过引用将这两篇文献全部公开内容分别并入本文。
[0006]在一个方面,本发明的实施方案的特征在于半导体异质结构,该半导体异质结构包括氮化铝单晶衬底和在其上外延生长的至少一层应变层。所述应变层包含AlN、GaN、InN或者其任何两元或三元合金的组合中的至少一种。所述应变层的厚度超过与之相关的预期临界厚度至少5倍,或者甚至至少10倍。所述应变层可以基本不含In和/或具有小于约1mm-2的宏观缺陷密度。在一个实施方案中,宏观缺陷密度为约0mm-2
[0007]本发明的实施方案可以包括如下所述的一个或多个。平行于应变层的应变大于与应变层组成相同的无应变合金和位于应变层下方的松弛基台(platform)之间平行晶格参数差值的80%。平行于应变层的应变甚至可以为该差值的约95%-100%。松弛基台可以为衬底或者形成于衬底和应变层之间的松弛半导体层。应变层可以包括AlxGa1-xN,具有大于约200nm的厚度,且具有的A1含量x小于约0.65。所述应变层的厚度可以大于约1μm,且所述应变层的平均螺型位错密度可小于约10,000cm-2。可以采用Matthews-Blakeslee理论计算预期临界厚度。
[0008]在另一方面,本发明的实施方案的特征是形成半导体结构的方法,该方法包括提供氮化铝单晶衬底以及在其上外延沉积应变层。应变层包含AlN、GaN、InN或者其任何两元或三元合金的组合中的至少一种。应变层的厚度超过与之相关的预期临界厚度的至少5倍,或者甚至至少10倍。所述应变层可以基本不含In和/或具有小于约1mm-2的宏观缺陷密度。在一个实施方案中,宏观缺陷密度为约0mm-2
[0009]本发明的实施方案可以包括以下的一个或多个。在沉积应变层之前可以在衬底上方形成缓冲层,且可以在缓冲层和应变层之间形成渐变层。应变层可包括AlGaN,且沉积应变层可以包括向反应器中引入三甲基铝和三甲基镓。在沉积应变层期间三甲基镓的初始流动速率可低于最终的三甲基镓流动速率。可以采用Matthews-Blakeslee理论计算预期临界厚度。氮化铝单晶衬底对于10μm×10μm面积可具有小于约0.5nm的RMS表面粗糙度,约0.3°-4°的表面错向和小于约104cm-2的螺型位错密度。应变层的螺型位错密度可近似等于氮化铝单晶衬底的螺型位错密度。
[0010]在另一方面,本发明的实施方案特征在于选自场效应晶体管、发光二极管和激光二极管中的器件,所述器件包括至少一部分上述应变异质结构。所述器件可以为具有至少一个叉指型接触的发光二极管。
[0011]在另一方面,本发明的实施方案的特征是选自场效应晶体管、发光二极管和激光二极管中的器件,所述器件包括至少一部分应变异质结构。所述应变异质结构包括氮化铝单晶衬底和在其上外延生长的多个应变层。所述多个应变层的每一个包括AlN、GaN、InN或者其任何两元或三元合金的组合中的至少一种。所述多个应变层的总厚度超过与之相关的预期临界厚度的至少5倍,或者甚至至少10倍。所述多个应变层中每一个的平行于氮化铝单晶衬底表面的晶格参数与所述氮化铝单晶衬底的晶格参数的差值可小于0.2%。所述多个应变层(包括所有的层)中的一个或多个可不含In。
附图说明
[0012]在附图中,在所有的不同视图中,相同的附图标记通常指代相同的部件。此外,附图并不一定按照比例,而通常着重于说明本发明的原理。在接下来的描述中,通过参考以下附图对本发明的多个实施方案进行说明,其中:
图1为形成于AlN衬底上的具有不同Al含量x的AlxGa1-xN层的预期临界厚度和赝晶应变的坐标图;
图2为形成于衬底上的赝晶应变层的示意图;
图3为基于赝晶应变层的器件结构的示意图;及
图4A和图4B为利用图3中的层结构的已加工器件的示意图。
具体实施方式
制备技术
[0013]图1中显示出根据Matthews-Blakeslee理论计算出的预期临界厚度与生长于c-面AlN衬底上的AlxGa1-xN层中Al浓度的函数关系。还显示了在不存在松弛的情况下所得AlxGa1-xN层的赝晶应变。出乎预料地发现,能够生长出厚度显著大于预期临界厚度的赝晶层。例如,x=0.6的AlxGa1-xN层的临界厚度为约40纳米(nm),如图1所示。能够将具有该Al浓度的层生长至厚度超过1微米(μm),并且仍然获得具有非常高品质且镜面平滑的赝晶应变层。本文中所用的术语“高品质”意指外延层具有约106cm-2或更小的螺型位错密度。在某些实施方案中,高品质层具有的螺型位错密度为约104cm-2或更小,或者甚至为约102cm-2或更小。在本文中使用术语“赝晶”来表示经受应变到至少为下方衬底晶格参数的约80%(即,低于约20%松弛到其固有晶格参数)的外延层。在一些实施方案中,赝晶层可以接近完全地应变至下方衬底的晶格参数。术语“镜面平滑”意指在5μm×5μm面积内的层均方根(“RMS”)表面粗糙度小于约5nm(由原子力显微镜测量)。在优选实施方案中,在5μm×5μm面积内的RMS表面粗糙度小于约1nm。
[0014]图2示出了根据本文方法制备的厚的赝晶半导体层。提供半导体衬底200。在实施方案中,半导体衬底200包括AlN或基本由AlN组成。可以在半导体衬底200的顶表面210上沉积一个或多个外延层之前,通过平坦化(如通过化学机械抛光)或清洁中至少一者来调制半导体衬底200的顶表面210以用于外延生长。然后,在半导体衬底200上沉积应变外延层220(例如通过有机金属气相外延)至超过其预期临界厚度的厚度。从图1中可以看出,在由AlN组成的半导体衬底200上生长的由AlxGa1-xN组成的示例性外延层220的预期临界厚度依赖于Al含量x。在实施方案中,外延层220的厚度超过其预期临界厚度的至少5倍,或者甚至至少10倍,而且外延层220保持为赝晶。外延层220的厚度甚至可超过其预期临界厚度的20倍或更高。
[0015]在某些实施方案中,外延层220实际上可由多个独立的层构成,每一层赝晶应变至半导体衬底200的晶格参数。所述多个层可包括具有渐变组成的层,例如包括AlN、InN、和/或GaN的层,其中一种或多种III族原子的浓度随着厚度变化。这样的层在组成上可以按不连续阶跃渐变或线性渐变。
[0016]应变外延层220还可以沉积在形成于半导体衬底200上方的任选的松弛半导体层(未显示)上。在此情形下,外延层220中的应变和其预期临界厚度将是松弛半导体层的晶格参数的函数,而不是半导体衬底200的晶格参数的函数。外延层220保持为赝晶,且外延层220的厚度超过该预期临界厚度的至少5倍。在某些实施方案中,外延层220的厚度超过该预期临界厚度的至少10倍或者甚至至少20倍。因而,半导体衬底200或者任选的松弛半导体层可以充当使外延层220应变的松弛“基台”。
[0017]据发现,在具有低螺型位错密度(“TDD”)的衬底如某些AlN衬底上生长高应变的III族-氮化物合金的能力依赖于:(i)衬底的晶体品质;(ii)表面调制;(iii)衬底表面的晶向;(iv)合金浓度;(v)生长条件,包括衬底温度和在生长期间的V-III族比率,和/或(vi)合金浓度的渐变率。通过在外延生长期间保持低的表面粗糙度可以使外延层220的松弛最小化或消除。层表面的粗糙化或岛状物的形成可导致层的有害松弛。在半导体衬底200表面处的缺陷还可导致外延层220的粗糙化,所述缺陷可归因于扩展至表面的衬底内缺陷或不当的表面清洁。一旦发生粗糙化,在梯台(terrace)侧壁和外延表面上的岛状物处产生应变松弛。当这些梯台和岛状物结合时,在结合边界处可不利地形成高密度的螺型位错。
[0018]在外延沉积期间,维持台阶流动(step-flow)生长有助于抑制松弛,并且台阶流动生长的合适条件依赖于半导体衬底200的衬底取向。当衬底非常接近于轴上(即衬底的表面法线非常接近地对齐主晶轴)取向时,跨衬底表面的台阶密度是低的。因此,进入的Al、Ga、或In原子必须相对大距离地扩散,以在台阶边缘处结合到生长中的外延层内,即保持台阶流动生长。因而,可以通过以下保持台阶流动生长:(i)增强生长物类的进入原子的长程扩散和/或(ii)减小到达台阶边缘的扩散距离(即提高表面上的台阶密度)。可以通过在较高温度下(即高达约1100℃)实施外延生长来增强这样的长程扩散,或者在不含In、高Al含量(如高于约50%的Al含量)的情况下,通过将生长温度提高至大于约1100℃至约1300℃的范围内。在一些实施方案中,例如当Al浓度大于50%时,可以通过降低外延反应器中氮物类(即V族物类)相比于III族物类的比率来增强长程扩散。在实施方案中,有益于增强生长物类的长程扩散的V-III比率为低于约1000,且甚至可低于约10。半导体衬底200上的台阶边缘的密度也可以通过提高主晶轴和衬底的表面法线之间的错向得以提高(因而降低到达台阶所需的扩散距离)。在一个实施方案中,半导体衬底200的错向为约1°。
[0019]应变松弛的动力学势垒还可以有利地用于产生厚的赝晶外延层。由于AlN、GaN和InN的任何合金(其中GaN或InN的含量不为零)将比下方的AlN衬底具有更大的松弛晶格参数,这些外延膜将典型地都不能通过开裂而松弛。可以通过形成错配位错产生松弛,该错配位错平行于AlN衬底和外延合金层之间的界面。从半导体衬底200中扩展至外延层220中的已有螺型位错,或者从由表面或由衬底200表面上的一些宏观缺陷形成的新位错环,可导致这些错配位错。因而,消除半导体衬底200中的缺陷源产生了对松弛的动力势垒,有利于制备厚的赝晶外延层220。在实施方案中,半导体衬底200具有小于约106cm-2的螺型位错密度。在其它实施方案中,半导体衬底200具有小于约104cm-2或甚至小于约102cm-2的螺型位错密度。半导体衬底200还可以具有低于约100cm-2的粒状表面缺陷密度。使用这样的优化半导体衬底使在表面缺陷处归因于松弛机制的已有位错的滑动和位错的成核最小化或消除。其余的松弛机制(即位错环的表面成核)仅发生于应变能足够高的情况下以利于制备厚的赝晶外延层。因此,有利于制备厚度大于其预期临界厚度至少约5倍的厚应变外延层220。此外,由于In可具有阻止位错运动和随之产生的松弛的附加效果,包含In的应变外延层220可获得比其预期临界厚度大至少约10倍的赝晶厚度。
[0020]另外,在高应变合金的厚外延层的制备中,半导体衬底200的某些晶向可能是特别有利的。特别地,Liu等人指出,GaN及其合金的纤维锌矿(wurzite)晶体结构的主滑移系为<11.2>{00.2}(参见R.Liu,J.Mei,S.Srinivasan,H.Omiya,F.A.Ponce,D.Cherns,Y.Narukawa and T.Mukai,”Misfit Dislocation Generation in InGaN Epilayers on Free-Standing GaN,”Jap.J.Appl.Physics 45,L549(2006),通过引用将其全部公开内容并入本文)。在良好取向的c-面衬底(即衬底的表面法线与晶体的c-轴对齐)中该滑移系将不起作用(active),这是因为晶格失配应变不会导致任何已分解的应力使位错沿着该平面移动。该现象可能限制c-面衬底的合格斜切,以使能够在其上形成非常大的应变和/或厚的赝晶外延层。但如上所述,有限的表面错向有利于台阶流动生长。因而在实施方案中,半导体衬底200的错向大于0°但小于约4°。
[0021]在一个工序中,如′660申请中所述,调制了具有低位错密度(约5×103cm-2)的大的c-面AlN衬底。该衬底的斜切为约1°。将c-面AlN衬底的Al极性表面(即(0001)面)如美国专利No.7037838(“′838专利”)中所述方式进行调制,通过引用将其全部公开内容并入本文。在将衬底引入Aixtron型200/4RF-S有机金属气相外延(“OMVPE”)反应器中后,在流动的氢气和氨气的混合物下将衬底加热至~1100℃。然后引入三甲基铝(“TMA”),并在衬底上以约0.6μm/hr的生长速率生长0.3μm厚的AlN缓冲层。然后,通过如下方式生长渐变层AlxGa1-xN:在15分钟的时间间隔内,接入三甲基镓(“TMG”)并且逐渐增加TMG而逐渐减小TMA气体流量以达到目标Al%,以便生长出约0.1μm的线性渐变合金。在该过渡层后,TMA和TMG的流量保持恒定,并且以约1.0μm/hr的生长速率生长出铝浓度为~63%且厚度约0.6μm的最终层。在生长期间,将腔室压力保持在~25至100毫巴。在生长工序期间将V-III比率保持为500-2000。平行应变(即在衬底平面内的应变)经测量为稍大于0.8%,且表明为赝晶生长,尽管该层以多于一个数量级的幅度超过预期临界厚度。AlxGa1-xN层的(00.2)和(10.2)反射的双晶ω摇摆曲线宽度(通过PhilipX′Pert系统测量)分别为50弧秒和60弧秒。平行于界面的应变经测量为接近1%,并且外延层相对下方的AlN衬底为赝晶。使用熔融KOH刻蚀来测量蚀坑密度以确定AlxGa1-xN外延层中螺型位错的密度。所测得的密度在0.8-3×105cm-2范围内。
[0022]可以使用相似的工序生长0.6μm厚的Al浓度为50%的AlxGa1-xN合金外延层。在此情况下,平行于界面的应变保持在~1%,这占全部赝晶应变的约80%。
[0023]在另一个工序中,如′660申请中所述,对位错密度为约5×103cm-2的大的c-面AlN衬底进行调制。如′838专利中所述,将c-面AlN衬底的Al极性表面(约1.5°的偏离)进行调制。在将衬底引入Veeco D180 OMVPE反应器之后,在流动的氢气和氨气的混合物下将衬底加热至约1100℃。然后引入TMA,并在衬底上以约0.4μm/hr的生长速率生长0.4μm厚的AlN缓冲层。然后,通过如下方式生长渐变层AlxGa1-xN:在6分钟的时间间隔内,接入TMG并且逐渐增加TMG同时保持TMA气体流量以达到目标A1%,以便生长出约0.05μm的线性渐变合金。在该过渡层后,保持TMA和TMG的流量恒定,并且以约0.8μm/hr的生长速率生长出铝浓度为~58%且厚度约0.5μm的最终层。在生长期间,将腔室压力保持在约20托。在生长工序期间,将V-III族比率保持为900-3200。平行应变经测量为稍大于1.0%,并表明为赝晶生长,尽管该层超过了预期临界厚度高于一个数量级的幅度。
[0024]尽管不理想的表面调制可提高位错密度,但这可以通过改善表面调制来弥补。对于低缺陷的AlN衬底,′838专利和美国专利申请No.2006/0288929A1中描述了合适的表面调制技术,通过引用将其全部公开内容并入本文。
[0025]由于(一个或多个)赝晶外延层220经受很少或不经受晶格松弛,因此其中的螺型位错密度可近似等于半导体衬底200的螺型位错密度。例如由通过660申请中所述技术生长的AlN晶锭制备的衬底可具有非常低的位错密度,低于10,000cm-2,典型为约1000cm-2,且在某些实施方案中,低于500cm-2,且甚至低于100cm-2,所述位错密度被生长于其上的赝晶外延层所“继承”。在其它实施方案中,外延层200的螺型位错密度可为半导体衬底200的螺型位错密度的不超过约10倍。如此低的螺型位错密度使得能够制备高效率的紫外发光二极管(“UV LED”)和激光二极管(“LD”),以及电子器件例如高频(例如>2GHz)高功率工作的晶体管。
[0026]在实施方案中,应变外延层220基本不含有由例如宏观缺陷(例如岛状物和针孔)的形成所致的局部弹性应变松弛(下面将进一步描述)。此外,外延层220中的应变可近似完全为对衬底200晶格失配所产生的结果。例如由于与衬底200的热膨胀失配,因此外延层220将近似无应变。
[0027]对于器件应用,外延层220中的极化效应可影响器件的性能。对于在非极性的顶表面210(例如由AlN组成的衬底200的a-面或m-面)上制备的外延层220,在该层中的极化效应被最小化。这使得后续形成的器件对与表面相关的极化效应固有地不敏感,并且使在极性表面例如c-面上所生长的传统器件中所观察到的直流-射频漂移(dispersion)得到消除或者最小化。另一方面,沿[0001]方向生长于c-面上的赝晶结构可具有强的极化效应,该极化效应影响器件中的电荷分布。优选地,仔细地增加在沟道/势垒界面处的极化电荷以抵消从AlN缓冲结构过渡的AlN/GaN异质界面相关的背面耗尽效应。
器件应用
[0028]限制深紫外LED性能的关键问题是有源器件区域中的高位错密度,该高位错密度减小了器件的电气效率、内部量子效率(“IQE”)和寿命。简言之,如Solid State Lighting Report(能源部,2007)中所述,电气效率ηv(定义为光子能量除以所施加的电压和电子电荷的乘积,即hλ/eV),表示转化为光子能量的电能的量,通过引用将其全部公开内容并入本文。对于给定的输入功率,所施加的正向电压由二极管的特性决定,并且应尽可能低以得到最大电流(因而使能够转化为光子的电子数目最大)。IQE为半导体芯片的有源区中所产生的光子与注入到LED中电子数目的比值。
[0029]参见图3,形成了赝晶紫外发光二极管(“PUVLED”)结构300。提供半导体衬底305,其包括一种或多种半导体材料或基本由一种或多种半导体材料组成。在实施方案中,半导体衬底305包括III族-氮化物半导体材料例如AlN或基本由III族-氮化物半导体材料例如AlN组成。可以将半导体衬底305斜切以使其c-轴和其表面法线之间的夹角为0.3°-4°。在优选实施方案中,半导体衬底305表面的错向为约1°。半导体衬底305的表面可以具有Al极性或者N极性,并且可以例如通过化学机械抛光进行平坦化。在实施方案中,将半导体衬底305的表面按照′838专利所公开的方式进行调制。对于10μm×10μm的面积,半导体衬底的RMS表面粗糙度优选小于约0.5nm。在一些实施方案中,在用原子力显微镜进行探测时能在表面上探测到原子级的台阶。可以利用在例如在450℃下经历5分钟的KOH-NaOH共晶刻蚀后的蚀坑密度测量来测量半导体衬底305的螺型位错密度。优选地,螺型位错密度小于约2×103cm-2。在一些实施方案中,衬底305具有甚至更低的螺型位错密度,如上文关于半导体衬底200所述。半导体衬底305上可以上覆(top)有同质外延层(未显示),该同质外延层包括存在于半导体衬底300中的相同半导体材料如AlN,或者基本由存在于半导体衬底300中的相同半导体材料如AlN组成。
[0030]在实施方案中,在半导体衬底305上形成渐变缓冲层310。渐变缓冲层310可包括一种或多种半导体材料如AlxGa1-xN或基本由一种或多种半导体材料如AlxGa1-xN组成。在优选实施方案中,渐变缓冲层310与半导体衬底305的组成在其界面处大致相同,以促进二维生长并避免有害的岛状物形成(这样的岛状物形成可导致在渐变缓冲层310和后续生长的层中产生不期望的弹性应变释放)。通常将渐变缓冲层310在与后续生长层(下文所述)的界面处的组成选定为接近于器件的期望有源区的组成(例如将导致从PUVLED发射出所需波长的AlxGa1-xN浓度)。在实施方案中,渐变缓冲层310包括从约100%的Al浓度x渐变至约60%的Al浓度x的AlxGa1-xN。
[0031]随后,在渐变层310上方形成底接触层320,且该底接触层320可包括掺杂有至少一种杂质例如Si的AlxGa1-xN,或基本由掺杂有至少一种杂质例如Si的AlxGa1-xN组成。在实施方案中,底接触层320中的Al浓度约等于渐变层310中的最终Al浓度x。底接触层320可具有足够的厚度,以防止在器件制备后(如下所述)产生电流拥挤和/或在刻蚀时停止以制备接触。例如底接触层320的厚度可小于约200nm。当利用具有这样的厚度的底接触层320时,最终的PUVLED可以制备成带背面接触,如下文参照图4B所述。在许多实施方案中,即使底接触层320具有小的厚度,由于当该层为赝晶时保持低缺陷密度,因此该底接触层320也将有高的导电性。
[0032]在底接触层320上方制备多量子阱(“MQW”)层330。MQW层330对应于PUVLED结构300的“有源区”,并且其包括多个量子阱,其中每一个可包括AlGaN或基本由AlGaN组成。在实施方案中,MQW层330的每个周期包括AlxGa1-xN量子阱和AlyGa1-yN量子阱,其中x与y不同。在优选实施方案中,x与y的差值足够大以在有源区中获得对电子和空穴的良好限制,因而使得辐射复合对非辐射复合具有高比率。在实施方案中,x和y的差值为约0.05;例如x为约0.35且y为约0.4。但是,如果x与y之间的差值过大,例如大于约0.3,则在MQW层330的形成期间将产生有害的岛状物形成。MQW层330可包括多个这样的周期,并且可具有小于约50nm的总厚度。在MQW层330上方可形成任选的薄的电子阻挡(或者当n型接触位于器件顶部时为空穴阻挡)层340,其包括例如可掺杂有一种或多种杂质如Mg的AlxGa1-xN,或基本由例如可掺杂有一种或多种杂质如Mg的AlxGa1-xN组成。电子阻挡层340可具有例如为约20nm的厚度。顶接触层350形成于电子阻挡层340上方,并且包括一种或多种半导体材料例如掺杂有至少一种杂质如Mg的AlxGa1-xN,或基本由一种或多种半导体材料例如掺杂有至少一种杂质如Mg的AlxGa1-xN组成。将顶接触层350掺杂为n型或者p型,但具有与底接触层310相反的导电性。顶接触层350的厚度为例如约50nm-约100nm。顶接触层350上覆盖有覆盖层360,其包括经掺杂具有与顶接触层350相同导电性的一种或多种半导体材料,或基本由经掺杂具有与顶接触层350相同导电性的一种或多种半导体材料组成。在一个实施方案中,覆盖层360包括掺杂有Mg的GaN,且具有约10nm-约200nm的厚度,优选约50nm。在一些实施方案中,可在顶接触层350上直接形成高品质的欧姆接触,且省略覆盖层360。尽管优选层310-350都为赝晶的,但覆盖层360可为松弛的从而不向下方的有源层中引入有害缺陷,所述有害缺陷会不利地影响PUVLED结构300的性能。如下文参照图4A和图4B所述,刻蚀和最终接触的形成完成了PUVLED结构300的形成。层310-350中的每一层都是赝晶的,且每一层可独立地具有大于其预期临界厚度的厚度,如上文所述。此外,包括层310-350的集合层结构具有的总厚度可大于共同考虑各层的预期临界厚度(即,对于多层结构,即使当孤立考虑每一个单独层将小于其预期临界厚度时,整个结构仍具有预期临界厚度)。
[0033]在优选实施方案中,形成PUVLED结构300(和/或上述的应变外延层220),其基本不含有(即,具有小于约1mm-2,或甚至为约0mm-2)宏观缺陷例如针孔、堆跺(mound)、或者“V型坑”。在具有高位错密度的GaN衬底上生长例如应变InGaN层中经常观察到这样的缺陷(参见T.L.Song,J.Appl.Phys.98,084906(2005),通过引用将其全部内容并入本文)。宏观缺陷可导致(一个或多个)赝晶层中的局部应变松弛,这因量子阱结构的破坏(disruption)和/或p型接触和n型接触的短路而不利地影响由外延层所制备的器件,或者增加了层的表面粗糙度。在尺寸大于约0.1mm×约0.1mm的PUVLED的制备中,可以有利地利用无宏观缺陷的PUVLED结构300。
[0034]PUVLED结构300具有约210nm-约320nm的发射波长,例如约280nm。由于PUVLED结构300中的至少大部分的层是赝晶的,因此这些层中的螺型位错密度小于约105cm-2,且可约等于衬底305中的螺型位错密度。在实施方案中,PUVLED结构300具有大于约10%(或者在一些实施方案中甚至大于约20%)的电光转换效率(即,总的光输出功率除以总的电输入功率)和/或大于约10000小时的寿命。
[0035]激光二极管(LD)结构也可从赝晶结构获益。优选的激光二极管结构将与PUVLED结构300相似,增加了适当地约束光子以产生谐振腔的层。在边缘发射LD中,将谐振腔再定向为垂直于生长方向,并且通过解理或刻蚀半导体层结构产生镜面(mirror)。在此情况下,MQW层330下方的层320和MQW上方的层340和350将需要进行改变以充当有效包覆层以便确保发射出的光子垂直于层生长方向有效地传播,而无显著的吸收。例如可以增加图3中标记为320、340和350的层的数目。作为替代,在垂直腔面发射激光器(“VCSEL”)中,可将层320、340和350替换为将充当镜面(如布拉格反射器)的多层结构,以产生将使光子定向为半导体层生长方向的光子腔。这样,用氮化物半导体制备的半导体LD可具有短于约300nm的发射波长,且在一些实施方案中短于约280nm。
[0036]参见图4A和图4B,可以利用不同的接触方案与PUVLED结构300相结合。通过刻蚀例如等离子体刻蚀,穿过PUVLED结构300中的层序列并且停止于底接触层310之上或之内,来形成PUVLED 400。接触410、420分别形成于底接触层310上和覆盖层360上。接触410和420由导电材料例如金属形成,该金属例如Ni/Au合金(典型用于p型接触)或Ti/Al/Ti/Au叠层(典型用于n型接触),并且可以通过例如溅射或蒸发形成。接触410、420可以包括相同或不同的导电材料或者基本由相同或不同的导电材料组成(使得对于掺杂类型相反的底接触层310和覆盖层360形成最佳接触)。接触420也可以包括紫外(“UV”)反射器。设计紫外反射器以便通过将朝向接触420(在此处它们不能从半导体层结构中逃逸)发射的光子进行再定向,并且将它们再定向为朝向所需的发射表面,例如PUVLED的底表面400、450,从而改善在器件的有源区中产生的光子的提取效率。
[0037]在PUVLED 450中,接触420也形成于覆盖层360上方。但是,接触410(其可为多个分离的接触)形成于PUVLED有源层结构的背面。在此情况下,任选地通过例如机械研磨或抛光将衬底305减薄至150μm左右。由例如Ni形成的掩模层(未显示)形成于衬底305的背面上并通过标准光刻进行图案化。通过例如等离子体刻蚀或湿法刻蚀来刻蚀衬底305的暴露区域,并且该刻蚀停止于底接触层310之上或之内。通过检测等离子体刻蚀器中的Ga而有利于使刻蚀停止于底接触层310上,这是由于衬底305在多个实施方案中将为纯AlN。然后在底接触层310的暴露区域上形成接触410。可以叉指状形成接触410以使PUVLED 450的光输出最大化。重要的是,在衬底305的背面上产生的渐缩结构将有助于从源自层340中的MQW结构的显著更大的发射角收集光子,并使它们离开图4B中所示的衬底305刻蚀背面上显示的渐缩要件尖端附近的发射表面。这将显著地改善PUVLED的光子提取效率,这是因为如果没有该渐缩结构,由于这些半导体材料的大折射系数,则仅有一小部分的定向为朝向平坦发射表面(如同图4A所示)的光子会落入到发射的临界接收锥形体中。对于AlN,接收锥形体仅为约25°,这就意味着定向为朝向平坦发射表面光子的约90%(假定将进入半球的各向同性的辐射的发射定向为朝向平坦表面)将会经历完全内部反射且不能从器件逸出,从而不能被实现为有效发射。
[0038]本文中所使用的术语和表达方式仅仅是用于说明而非限制,并且在这样的术语和表达方式的使用中并不意图排除所显示和描述的特征的等同物或其部分,但应认识到,多种修改仍可能落入本发明的范围内。
[0039]权利要求如下:

Claims (25)

1.半导体异质结构,包含:
氮化铝单晶衬底;及
外延生长于之上的至少一个应变层,所述层包含AlN、GaN、InN或者其任何两元或三元合金的组合中的至少一种,
其中所述应变层的厚度超过与之相关的预期临界厚度的至少5倍。
2.权利要求1的半导体异质结构,其中所述至少一个应变层的厚度超过所述预期临界厚度的至少10倍。
3.权利要求1的半导体异质结构,其中所述至少一个应变层基本不含In。
4.权利要求1的半导体异质结构,其中所述至少一个应变层具有小于约1mm-2的宏观缺陷密度。
5.权利要求1的半导体异质结构,其中平行于所述至少一个应变层的应变大于与所述至少一个应变层组成相同的无应变合金和位于所述至少一个应变层下方的松弛基台之间平行晶格参数差值的80%。
6.权利要求5的半导体异质结构,其中所述至少一个应变层包含AlxGa1-xN,所述至少一个应变层的厚度大于约200nm,且x小于约0.65。
7.权利要求1的半导体异质结构,其中所述至少一个应变层的厚度大于约1μm。
8.权利要求1的半导体异质结构,其中所述至少一个应变层具有小于约10000cm-2的平均螺型位错密度。
9.权利要求1的半导体异质结构,其中用Matthews-Blakeslee理论计算所述预期临界厚度。
10.形成半导体异质结构的方法,该方法包括:
提供氮化铝单晶衬底;及
在所述衬底上外延沉积应变层,所述应变层包含AlN、GaN、InN或者其任何两元或三元合金的组合中的至少一种,
其中所述应变层的厚度超过与之相关的预期临界厚度的至少5倍。
11.权利要求10的方法,还包括在沉积所述应变层之前在所述衬底上方形成缓冲层。
12.权利要求11的方法,还包括在所述缓冲层和所述应变层之间形成渐变层。
13.权利要求10的方法,其中所述应变层的厚度超过所述预期临界厚度的至少10倍。
14.权利要求10的方法,其中所述应变层基本不含In。
15.权利要求10的方法,其中所述应变层具有小于约1mm-2的宏观缺陷密度。
16.权利要求10的方法,其中所述应变层包含AlGaN,并且外延沉积所述应变层包括向反应器内引入三甲基铝和三甲基镓。
17.权利要求16的方法,其中在所述应变层的沉积期间,三甲基镓的初始流动速率低于三甲基镓的最终流动速率。
18.权利要求10的方法,其中用Matthews-Blakeslee理论计算所述预期临界厚度。
19.权利要求10的方法,其中所述氮化铝单晶衬底对于10μm×10μm的面积具有小于约0.5nm的RMS表面粗糙度,表面错向为约0.3°-4°,且螺型位错密度小于约104cm-2
20.权利要求10的方法,其中所述应变层的螺型位错密度约等于所述氮化铝单晶衬底的螺型位错密度。
21.选自场效应晶体管、发光二极管和激光二极管中的器件,所述器件包含至少一部分应变异质结构,该应变异质结构包括:
氮化铝单晶衬底;及
外延生长于之上的至少一个应变层,所述层包含AlN、GaN、InN或者其任何两元或三元合金的组合中的至少一种,
其中所述应变层的厚度超过与之相关的预期临界厚度的至少10倍。
22.权利要求21的器件,其中用Matthews-Blakeslee理论计算所述预期临界厚度。
23.权利要求21的器件,其中所述器件为包含至少一个叉指型接触的发光二极管。
24.选自场效应晶体管、发光二极管和激光二极管中的器件,所述器件包含至少一部分应变异质结构,该应变异质结构包括:
氮化铝单晶衬底;及
多个外延生长于之上的应变层,所述多个应变层中的每一个包含AlN、GaN、InN或者其任何两元或三元合金的组合中的至少一种,
其中所述多个应变层的总厚度超过与之相关的预期临界厚度的至少10倍。
25.权利要求24的器件,其中所述多个应变层中每一个的平行于氮化铝单晶衬底表面的晶格参数与所述氮化铝单晶衬底的晶格参数的差异小于0.2%。
CN2008800030029A 2007-01-26 2008-01-25 厚的赝晶氮化物外延层 Active CN101652832B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US89757207P 2007-01-26 2007-01-26
US60/897,572 2007-01-26
PCT/US2008/001003 WO2008094464A2 (en) 2007-01-26 2008-01-25 Thick pseudomorphic nitride epitaxial layers

Publications (2)

Publication Number Publication Date
CN101652832A true CN101652832A (zh) 2010-02-17
CN101652832B CN101652832B (zh) 2011-06-22

Family

ID=39473776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800030029A Active CN101652832B (zh) 2007-01-26 2008-01-25 厚的赝晶氮化物外延层

Country Status (4)

Country Link
US (1) US9437430B2 (zh)
JP (2) JP5730484B2 (zh)
CN (1) CN101652832B (zh)
WO (1) WO2008094464A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140680A (zh) * 2011-05-10 2011-08-03 青岛铝镓光电半导体有限公司 氮化镓单晶的制备方法
CN102782966A (zh) * 2010-03-04 2012-11-14 加利福尼亚大学董事会 在C-方向错切小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置
CN109087978A (zh) * 2017-06-14 2018-12-25 日本奥兰若株式会社 光半导体元件、光组件及光模块
TWI689611B (zh) * 2015-03-06 2020-04-01 日商斯坦雷電氣股份有限公司 Iii族氮化物積層體及具有該積層體之發光元件

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060005763A1 (en) 2001-12-24 2006-01-12 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US7638346B2 (en) 2001-12-24 2009-12-29 Crystal Is, Inc. Nitride semiconductor heterostructures and related methods
EP1885918B1 (en) * 2005-05-11 2017-01-25 North Carolina State University Methods of preparing controlled polarity group iii-nitride films
CN101331249B (zh) 2005-12-02 2012-12-19 晶体公司 掺杂的氮化铝晶体及其制造方法
US9034103B2 (en) 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
JP5479888B2 (ja) 2006-03-30 2014-04-23 クリスタル アイエス インコーポレイテッド 窒化アルミニウムバルク結晶を制御可能にドーピングする方法
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
WO2008088838A1 (en) 2007-01-17 2008-07-24 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
JP5730484B2 (ja) 2007-01-26 2015-06-10 クリスタル アイエス インコーポレイテッド 厚みのある擬似格子整合型の窒化物エピタキシャル層
US8080833B2 (en) 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
US20080277686A1 (en) * 2007-05-08 2008-11-13 Huga Optotech Inc. Light emitting device and method for making the same
US8088220B2 (en) 2007-05-24 2012-01-03 Crystal Is, Inc. Deep-eutectic melt growth of nitride crystals
US20090250626A1 (en) * 2008-04-04 2009-10-08 Hexatech, Inc. Liquid sanitization device
US7915178B2 (en) 2008-07-30 2011-03-29 North Carolina State University Passivation of aluminum nitride substrates
JP2011071356A (ja) * 2009-09-26 2011-04-07 Sanken Electric Co Ltd 半導体装置
US10472229B2 (en) 2010-03-05 2019-11-12 Cornell University—Cornell Center for Technology Monocrystalline epitaxially aligned nanostructures and related methods
TWI442455B (zh) * 2010-03-29 2014-06-21 Soitec Silicon On Insulator Iii-v族半導體結構及其形成方法
CN103038400B (zh) 2010-06-30 2016-06-22 晶体公司 使用热梯度控制的大块氮化铝单晶的生长
JP5319628B2 (ja) * 2010-08-26 2013-10-16 シャープ株式会社 窒化物半導体素子および半導体光学装置
US8962359B2 (en) 2011-07-19 2015-02-24 Crystal Is, Inc. Photon extraction from nitride ultraviolet light-emitting devices
US8379684B1 (en) * 2011-08-16 2013-02-19 Corning Incorporated Hole blocking layers in non-polar and semi-polar green light emitting devices
US9064980B2 (en) * 2011-08-25 2015-06-23 Palo Alto Research Center Incorporated Devices having removed aluminum nitride sections
US9252329B2 (en) * 2011-10-04 2016-02-02 Palo Alto Research Center Incorporated Ultraviolet light emitting devices having compressively strained light emitting layer for enhanced light extraction
JP2013128103A (ja) * 2011-11-17 2013-06-27 Sanken Electric Co Ltd 窒化物半導体装置及び窒化物半導体装置の製造方法
JP6042545B2 (ja) 2012-08-23 2016-12-14 国立大学法人東京農工大学 高透明性窒化アルミニウム単結晶層、及びこれからなる素子
CA2884169C (en) * 2012-09-11 2020-08-11 Tokuyama Corporation Aluminum nitride substrate and group-iii nitride laminate
EP2951869A1 (en) 2013-01-29 2015-12-09 Hexatech Inc. Optoelectronic devices incorporating single crystalline aluminum nitride substrate
CN103117209B (zh) * 2013-02-01 2015-05-13 中山大学 一种渐变AlGaN层的制备方法及采用该方法得到的器件
US20160005919A1 (en) * 2013-02-05 2016-01-07 Tokuyama Corporation Nitride semiconductor light emitting device
US9385198B2 (en) * 2013-03-12 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Heterostructures for semiconductor devices and methods of forming the same
EP2973719B1 (en) * 2013-03-14 2021-04-21 Hexatech Inc. Power semiconductor devices incorporating single crystalline aluminum nitride substrate
EP2973664B1 (en) * 2013-03-15 2020-10-14 Crystal Is, Inc. Ultraviolet light-emitting device and method of forming a contact to an ultraviolet light-emitting device
JP6318474B2 (ja) * 2013-06-07 2018-05-09 住友電気工業株式会社 半導体装置の製造方法
US9412911B2 (en) 2013-07-09 2016-08-09 The Silanna Group Pty Ltd Optical tuning of light emitting semiconductor junctions
WO2015108089A1 (ja) * 2014-01-16 2015-07-23 株式会社トクヤマ 紫外発光ダイオードおよび紫外線光源
WO2015181656A1 (en) 2014-05-27 2015-12-03 The Silanna Group Pty Limited Electronic devices comprising n-type and p-type superlattices
KR102318317B1 (ko) 2014-05-27 2021-10-28 실라나 유브이 테크놀로지스 피티이 리미티드 반도체 구조물과 초격자를 사용하는 진보된 전자 디바이스 구조
US11322643B2 (en) 2014-05-27 2022-05-03 Silanna UV Technologies Pte Ltd Optoelectronic device
JP6817072B2 (ja) 2014-05-27 2021-01-20 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd 光電子デバイス
US9444224B2 (en) * 2014-12-08 2016-09-13 Palo Alto Research Center Incorporated Nitride laser diode with engineered non-uniform alloy composition in the n-cladding layer
CN108140695B (zh) 2015-09-17 2021-02-09 晶体公司 包含二维空穴气体的紫外发光器件
WO2017145026A1 (en) 2016-02-23 2017-08-31 Silanna UV Technologies Pte Ltd Resonant optical cavity light emitting device
US10418517B2 (en) 2016-02-23 2019-09-17 Silanna UV Technologies Pte Ltd Resonant optical cavity light emitting device
JP7117243B2 (ja) 2016-09-14 2022-08-12 スタンレー電気株式会社 Iii族窒化物積層体、及び該積層体を有する半導体デバイス
JP6648685B2 (ja) * 2016-12-26 2020-02-14 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法
WO2018232080A1 (en) * 2017-06-16 2018-12-20 Crystal Is. Inc. Two-stage seeded growth of large aluminum nitride single crystals
WO2019094742A1 (en) 2017-11-10 2019-05-16 Crystal Is, Inc. Large, uv-transparent aluminum nitride single crystals and methods of forming them
US11031522B2 (en) 2017-12-15 2021-06-08 Stanley Electric Co., Ltd. Optical semiconductor element comprising n-type algan graded layer
WO2019246027A1 (en) 2018-06-19 2019-12-26 Crystal Is, Inc. Deep-uv-transparent aluminum nitride crystals and methods of forming them
US10622514B1 (en) 2018-10-15 2020-04-14 Silanna UV Technologies Pte Ltd Resonant optical cavity light emitting device
US20210047749A1 (en) 2019-08-15 2021-02-18 Robert T. Bondokov Diameter expansion of aluminum nitride crystals during growth by physical vapor transport
WO2024201307A1 (en) 2023-03-29 2024-10-03 Hexatech, Inc. Single crystalline aluminum nitride substrate and optoelectronic devices made therefrom

Family Cites Families (198)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6615059A (zh) 1966-10-25 1968-04-26
US3600701A (en) 1968-03-14 1971-08-17 Gen Electric Signal generator for producing a set of signals at baseband frequency and with adjustable phase slope
US3531245A (en) 1968-04-01 1970-09-29 Du Pont Magnesium-aluminum nitrides
US3607014A (en) 1968-12-09 1971-09-21 Dow Chemical Co Method for preparing aluminum nitride and metal fluoride single crystals
US3603414A (en) 1970-01-30 1971-09-07 Frank E Stebley Insert for drilling unit
US3768983A (en) 1971-11-03 1973-10-30 North American Rockwell Single crystal beryllium oxide growth from calcium oxide-beryllium oxide melts
US3903357A (en) 1971-12-06 1975-09-02 Westinghouse Electric Corp Adaptive gate video gray level measurement and tracker
FR2225207B1 (zh) 1973-04-16 1978-04-21 Ibm
US3933573A (en) 1973-11-27 1976-01-20 The United States Of America As Represented By The Secretary Of The Air Force Aluminum nitride single crystal growth from a molten mixture with calcium nitride
US4008851A (en) 1976-01-16 1977-02-22 Curt G. Joa, Inc. Adhesive tape bag closure
DE2750607A1 (de) 1977-11-11 1979-05-17 Max Planck Gesellschaft Luftbestaendiges kristallines lithiumnitrid, verfahren zu seiner herstellung und seine verwendung
FR2538953B1 (fr) * 1982-12-30 1986-02-28 Thomson Csf Structure epitaxiale a effet piezoelectrique exalte et dispositif electronique a ondes acoustiques de surface comportant une telle structure
US4547471A (en) 1983-11-18 1985-10-15 General Electric Company High thermal conductivity aluminum nitride ceramic body
JPS61236686A (ja) 1985-04-13 1986-10-21 Tohoku Metal Ind Ltd 単結晶育成法
JP2745408B2 (ja) 1988-07-07 1998-04-28 東芝セラミックス株式会社 半導体単結晶引上げ装置
US5258218A (en) 1988-09-13 1993-11-02 Kabushiki Kaisha Toshiba Aluminum nitride substrate and method for producing same
JPH02263445A (ja) 1988-12-23 1990-10-26 Toshiba Corp 窒化アルミニウム基板およびそれを用いた半導体装置
US5087949A (en) 1989-06-27 1992-02-11 Hewlett-Packard Company Light-emitting diode with diagonal faces
JPH03285075A (ja) 1990-03-30 1991-12-16 Nisshin Steel Co Ltd タングステンルツボの製造方法
JPH04355920A (ja) 1991-01-31 1992-12-09 Shin Etsu Handotai Co Ltd 半導体素子形成用基板およびその製造方法
US5292487A (en) 1991-04-16 1994-03-08 Sumitomo Electric Industries, Ltd. Czochralski method using a member for intercepting radiation from raw material molten solution and apparatus therefor
EP0544329A3 (en) 1991-11-28 1993-09-01 Kabushiki Kaisha Toshiba Semiconductor package
US5578839A (en) 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
JP2989975B2 (ja) 1992-11-30 1999-12-13 京セラ株式会社 窒化アルミニウム質基板の製造方法
JP2875726B2 (ja) 1993-10-28 1999-03-31 新日本無線株式会社 化合物半導体の熱処理方法
US6083812A (en) 1993-02-02 2000-07-04 Texas Instruments Incorporated Heteroepitaxy by large surface steps
US5520785A (en) 1994-01-04 1996-05-28 Motorola, Inc. Method for enhancing aluminum nitride
US5571603A (en) 1994-02-25 1996-11-05 Sumitomo Electric Industries, Ltd. Aluminum nitride film substrate and process for producing same
US5525320A (en) 1994-07-11 1996-06-11 University Of Cincinnati Process for aluminum nitride powder production
JPH0859386A (ja) 1994-08-22 1996-03-05 Mitsubishi Materials Corp 半導体単結晶育成装置
US5670798A (en) 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
DE69610673T2 (de) 1995-08-03 2001-05-10 Ngk Insulators, Ltd. Gesinterte Aluminiumnitridkörper und ihr Herstellungsverfahren
JP3604205B2 (ja) * 1995-09-18 2004-12-22 日亜化学工業株式会社 窒化物半導体の成長方法
US5981980A (en) 1996-04-22 1999-11-09 Sony Corporation Semiconductor laminating structure
JP3876473B2 (ja) 1996-06-04 2007-01-31 住友電気工業株式会社 窒化物単結晶及びその製造方法
JP3644191B2 (ja) 1996-06-25 2005-04-27 住友電気工業株式会社 半導体素子
US5954874A (en) 1996-10-17 1999-09-21 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride from a melt
US5858086A (en) 1996-10-17 1999-01-12 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride
US5868837A (en) 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
JP3239787B2 (ja) 1997-01-30 2001-12-17 安藤電気株式会社 Icソケット
US6229160B1 (en) 1997-06-03 2001-05-08 Lumileds Lighting, U.S., Llc Light extraction from a semiconductor light-emitting device via chip shaping
US6270569B1 (en) 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
JP3776565B2 (ja) 1997-06-12 2006-05-17 株式会社コトブキ 伸縮式階段状観覧席
US6006620A (en) 1997-12-01 1999-12-28 Chrysler Corporation Automated manual transmission controller
WO1999034037A1 (fr) 1997-12-25 1999-07-08 Japan Energy Corporation Procede de preparation de monocristaux de composes semi-conducteurs, equipement pour ce procede et monocristaux de composes semi-conducteurs
US6091085A (en) 1998-02-19 2000-07-18 Agilent Technologies, Inc. GaN LEDs with improved output coupling efficiency
JP4214585B2 (ja) * 1998-04-24 2009-01-28 富士ゼロックス株式会社 半導体デバイス、半導体デバイスの製造方法及び製造装置
US6045612A (en) 1998-07-07 2000-04-04 Cree, Inc. Growth of bulk single crystals of aluminum nitride
KR100277968B1 (ko) 1998-09-23 2001-03-02 구자홍 질화갈륨 기판 제조방법
US6086672A (en) 1998-10-09 2000-07-11 Cree, Inc. Growth of bulk single crystals of aluminum nitride: silicon carbide alloys
US6048813A (en) 1998-10-09 2000-04-11 Cree, Inc. Simulated diamond gemstones formed of aluminum nitride and aluminum nitride: silicon carbide alloys
US6063185A (en) 1998-10-09 2000-05-16 Cree, Inc. Production of bulk single crystals of aluminum nitride, silicon carbide and aluminum nitride: silicon carbide alloy
US6404125B1 (en) 1998-10-21 2002-06-11 Sarnoff Corporation Method and apparatus for performing wavelength-conversion using phosphors with light emitting diodes
US6218293B1 (en) 1998-11-13 2001-04-17 Micron Technology, Inc. Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride
JP3015887B1 (ja) 1998-11-19 2000-03-06 科学技術庁金属材料技術研究所長 バルク単結晶育成方法
US6307218B1 (en) * 1998-11-20 2001-10-23 Lumileds Lighting, U.S., Llc Electrode structures for light emitting devices
US6187089B1 (en) 1999-02-05 2001-02-13 Memc Electronic Materials, Inc. Tungsten doped crucible and method for preparing same
US6592663B1 (en) 1999-06-09 2003-07-15 Ricoh Company Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
US6829273B2 (en) 1999-07-16 2004-12-07 Agilent Technologies, Inc. Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
RU2158789C1 (ru) 1999-08-04 2000-11-10 Водаков Юрий Александрович Способ эпитаксиального выращивания монокристаллического нитрида алюминия и ростовая камера для осуществления способа
JP4145437B2 (ja) 1999-09-28 2008-09-03 住友電気工業株式会社 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板
US6398867B1 (en) 1999-10-06 2002-06-04 General Electric Company Crystalline gallium nitride and method for forming crystalline gallium nitride
US6350393B2 (en) 1999-11-04 2002-02-26 Cabot Microelectronics Corporation Use of CsOH in a dielectric CMP slurry
JP2001192647A (ja) 2000-01-14 2001-07-17 Seimi Chem Co Ltd 酸化セリウム含有研磨用組成物及び研磨方法
US6879615B2 (en) 2000-01-19 2005-04-12 Joseph Reid Henrichs FCSEL that frequency doubles its output emissions using sum-frequency generation
US6698647B1 (en) 2000-03-10 2004-03-02 Honeywell International Inc. Aluminum-comprising target/backing plate structures
US6447604B1 (en) 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
US6627974B2 (en) 2000-06-19 2003-09-30 Nichia Corporation Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
US6777717B1 (en) 2000-09-21 2004-08-17 Gelcore, Llc LED reflector for improved light extraction
AU2002246489A1 (en) * 2000-10-06 2002-07-30 Science And Technology Corporation @ Unm Quantum dot lasers
US7053413B2 (en) 2000-10-23 2006-05-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
JP2002222771A (ja) 2000-11-21 2002-08-09 Ngk Insulators Ltd Iii族窒化物膜の製造方法、iii族窒化物膜の製造用下地膜、及びその下地膜の製造方法
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
JP2005167275A (ja) * 2000-12-07 2005-06-23 Ngk Insulators Ltd 半導体素子
JP2002274996A (ja) * 2001-01-15 2002-09-25 Ngk Insulators Ltd エピタキシャル下地基板及びエピタキシャル基板
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US7233028B2 (en) 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6488767B1 (en) 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
US7501023B2 (en) 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US6936357B2 (en) 2001-07-06 2005-08-30 Technologies And Devices International, Inc. Bulk GaN and ALGaN single crystals
US7067849B2 (en) 2001-07-17 2006-06-27 Lg Electronics Inc. Diode having high brightness and method thereof
TW567619B (en) 2001-08-09 2003-12-21 Matsushita Electric Ind Co Ltd LED lighting apparatus and card-type LED light source
JP3785970B2 (ja) * 2001-09-03 2006-06-14 日本電気株式会社 Iii族窒化物半導体素子の製造方法
EP1436844B1 (en) 2001-09-05 2016-03-23 Rensselaer Polytechnic Institute Passivated nanoparticles, method of fabrication thereof, and devices incorporating nanoparticles
JP2003086904A (ja) * 2001-09-10 2003-03-20 Mitsubishi Cable Ind Ltd GaN系半導体レーザ
US7175281B1 (en) * 2003-05-13 2007-02-13 Lightmaster Systems, Inc. Method and apparatus to increase the contrast ratio of the image produced by a LCoS based light engine
US7105865B2 (en) 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
US7211146B2 (en) 2001-09-21 2007-05-01 Crystal Is, Inc. Powder metallurgy crucible for aluminum nitride crystal growth
TW573086B (en) 2001-09-21 2004-01-21 Crystal Is Inc Powder metallurgy tungsten crucible for aluminum nitride crystal growth
ATE418420T1 (de) * 2001-11-20 2009-01-15 Rensselaer Polytech Inst Verfahren zum polieren der oberfläche eines substrats
US6515308B1 (en) 2001-12-21 2003-02-04 Xerox Corporation Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
US20060005763A1 (en) 2001-12-24 2006-01-12 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US7638346B2 (en) 2001-12-24 2009-12-29 Crystal Is, Inc. Nitride semiconductor heterostructures and related methods
US6770135B2 (en) 2001-12-24 2004-08-03 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
JP3782357B2 (ja) 2002-01-18 2006-06-07 株式会社東芝 半導体発光素子の製造方法
US7063741B2 (en) 2002-03-27 2006-06-20 General Electric Company High pressure high temperature growth of crystalline group III metal nitrides
US6841001B2 (en) * 2002-07-19 2005-01-11 Cree, Inc. Strain compensated semiconductor structures and methods of fabricating strain compensated semiconductor structures
KR100891403B1 (ko) 2002-08-01 2009-04-02 니치아 카가쿠 고교 가부시키가이샤 반도체 발광 소자 및 그 제조 방법과 그것을 이용한 발광장치
DE10248964B4 (de) 2002-10-14 2011-12-01 Crystal-N Gmbh Verfahren zur Sublimationszüchtung von Aluminiumnitrid-Einkristallen
DE10255849B4 (de) 2002-11-29 2006-06-14 Advanced Micro Devices, Inc., Sunnyvale Verbesserte Drain/Source-Erweiterungsstruktur eines Feldeffekttransistors mit dotierten Seitenwandabstandselementen mit hoher Permittivität und Verfahren zu deren Herstellung
EP1576210B1 (en) 2002-12-11 2010-02-10 AMMONO Sp. z o.o. A substrate for epitaxy and a method of preparing the same
US7186302B2 (en) 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
JP4373086B2 (ja) 2002-12-27 2009-11-25 株式会社半導体エネルギー研究所 発光装置
JP2004253788A (ja) * 2003-01-30 2004-09-09 Toyoda Gosei Co Ltd 端面発光型の半導体レーザ
US7116691B2 (en) * 2003-01-30 2006-10-03 Toyoda Gosei Co., Ltd. Edge-emitting type semiconductor laser
JP4377600B2 (ja) * 2003-03-24 2009-12-02 株式会社東芝 3族窒化物半導体の積層構造、その製造方法、及び3族窒化物半導体装置
FR2852974A1 (fr) 2003-03-31 2004-10-01 Soitec Silicon On Insulator Procede de fabrication de cristaux monocristallins
US6831302B2 (en) 2003-04-15 2004-12-14 Luminus Devices, Inc. Light emitting devices with improved extraction efficiency
US7211831B2 (en) 2003-04-15 2007-05-01 Luminus Devices, Inc. Light emitting device with patterned surfaces
US7521854B2 (en) 2003-04-15 2009-04-21 Luminus Devices, Inc. Patterned light emitting devices and extraction efficiencies related to the same
US7274043B2 (en) 2003-04-15 2007-09-25 Luminus Devices, Inc. Light emitting diode systems
US7098589B2 (en) 2003-04-15 2006-08-29 Luminus Devices, Inc. Light emitting devices with high light collimation
US7306748B2 (en) 2003-04-25 2007-12-11 Saint-Gobain Ceramics & Plastics, Inc. Methods for machining ceramics
US7192849B2 (en) 2003-05-07 2007-03-20 Sensor Electronic Technology, Inc. Methods of growing nitride-based film using varying pulses
JP4112449B2 (ja) 2003-07-28 2008-07-02 株式会社東芝 放電電極及び放電灯
DE10335538A1 (de) 2003-07-31 2005-02-24 Sicrystal Ag Verfahren und Vorrichtung zur AIN-Einkristall-Herstellung mit gasdurchlässiger Tiegelwand
JP4249184B2 (ja) 2003-08-12 2009-04-02 日本電信電話株式会社 窒化物半導体成長用基板
EP1658642B1 (en) 2003-08-28 2014-02-26 Panasonic Corporation Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device
US7288152B2 (en) 2003-08-29 2007-10-30 Matsushita Electric Industrial Co., Ltd. Method of manufacturing GaN crystals and GaN crystal substrate, GaN crystals and GaN crystal substrate obtained by the method, and semiconductor device including the same
US6995402B2 (en) 2003-10-03 2006-02-07 Lumileds Lighting, U.S., Llc Integrated reflector cup for a light emitting device mount
JP4396816B2 (ja) 2003-10-17 2010-01-13 日立電線株式会社 Iii族窒化物半導体基板およびその製造方法
CN100397574C (zh) * 2003-10-30 2008-06-25 台湾积体电路制造股份有限公司 具有应变的多层结构及具有应变层的场效应晶体管的制法
US7276779B2 (en) 2003-11-04 2007-10-02 Hitachi Cable, Ltd. III-V group nitride system semiconductor substrate
US7323256B2 (en) 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
US7087112B1 (en) 2003-12-02 2006-08-08 Crystal Is, Inc. Nitride ceramics to mount aluminum nitride seed for sublimation growth
US7518158B2 (en) 2003-12-09 2009-04-14 Cree, Inc. Semiconductor light emitting devices and submounts
KR101156146B1 (ko) 2003-12-09 2012-06-18 재팬 사이언스 앤드 테크놀로지 에이젼시 질소면의 표면상의 구조물 제조를 통한 고효율 3족 질화물계 발광다이오드
JP2005210084A (ja) * 2003-12-22 2005-08-04 Ngk Insulators Ltd エピタキシャル基板、半導体積層構造、転位低減方法およびエピタキシャル形成用基板
JP2005197573A (ja) * 2004-01-09 2005-07-21 Sharp Corp Iii族窒化物半導体発光素子
US7056383B2 (en) 2004-02-13 2006-06-06 The Fox Group, Inc. Tantalum based crucible
US7569863B2 (en) 2004-02-19 2009-08-04 Panasonic Corporation Semiconductor light emitting device
JP4805831B2 (ja) 2004-03-18 2011-11-02 パナソニック株式会社 半導体発光装置、照明モジュール、照明装置、表面実装部品、および表示装置
KR101088924B1 (ko) 2004-05-19 2011-12-01 유스케 모리 Iii족 질화물 반도체 결정과 그 제조 방법 및 iii족질화물 반도체 디바이스
US7994527B2 (en) 2005-11-04 2011-08-09 The Regents Of The University Of California High light extraction efficiency light emitting diode (LED)
US20050269577A1 (en) 2004-06-08 2005-12-08 Matsushita Electric Industrial Co., Ltd. Surface treatment method and surface treatment device
US7294199B2 (en) 2004-06-10 2007-11-13 Sumitomo Electric Industries, Ltd. Nitride single crystal and producing method thereof
US7339205B2 (en) 2004-06-28 2008-03-04 Nitronex Corporation Gallium nitride materials and methods associated with the same
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US7476910B2 (en) 2004-09-10 2009-01-13 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
TWI374553B (en) 2004-12-22 2012-10-11 Panasonic Corp Semiconductor light emitting device, illumination module, illumination apparatus, method for manufacturing semiconductor light emitting device, and method for manufacturing semiconductor light emitting element
US7186580B2 (en) 2005-01-11 2007-03-06 Semileds Corporation Light emitting diodes (LEDs) with improved light extraction by roughening
US7335920B2 (en) 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
US7125734B2 (en) 2005-03-09 2006-10-24 Gelcore, Llc Increased light extraction from a nitride LED
JP2006310721A (ja) 2005-03-28 2006-11-09 Yokohama National Univ 自発光デバイス
JP4563230B2 (ja) 2005-03-28 2010-10-13 昭和電工株式会社 AlGaN基板の製造方法
WO2006110512A1 (en) 2005-04-07 2006-10-19 North Carolina State University Seeded growth process for preparing aluminum nitride single crystals
WO2006116030A2 (en) 2005-04-21 2006-11-02 Aonex Technologies, Inc. Bonded intermediate substrate and method of making same
US7544963B2 (en) 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
JP5236148B2 (ja) * 2005-05-12 2013-07-17 日本碍子株式会社 エピタキシャル基板、半導体素子、エピタキシャル基板の製造方法、半導体素子の製造方法、およびiii族窒化物結晶における転位偏在化方法
KR20060127743A (ko) 2005-06-06 2006-12-13 스미토모덴키고교가부시키가이샤 질화물 반도체 기판과 그 제조 방법
KR100616686B1 (ko) 2005-06-10 2006-08-28 삼성전기주식회사 질화물계 반도체 장치의 제조 방법
US20060288929A1 (en) 2005-06-10 2006-12-28 Crystal Is, Inc. Polar surface preparation of nitride substrates
WO2006137711A1 (en) 2005-06-22 2006-12-28 Seoul Opto-Device Co., Ltd. Light emitting device and method of manufacturing the same
TWI422044B (zh) 2005-06-30 2014-01-01 Cree Inc 封裝發光裝置之晶片尺度方法及經晶片尺度封裝之發光裝置
US20070018182A1 (en) 2005-07-20 2007-01-25 Goldeneye, Inc. Light emitting diodes with improved light extraction and reflectivity
JP4778745B2 (ja) 2005-07-27 2011-09-21 パナソニック株式会社 半導体発光装置及びその製造方法
JP2007073761A (ja) 2005-09-07 2007-03-22 Sumitomo Electric Ind Ltd 窒化物半導体基板及び窒化物半導体基板の加工方法
JP2009517329A (ja) 2005-11-28 2009-04-30 クリスタル・イズ,インコーポレイテッド 低欠陥の大きな窒化アルミニウム結晶及びそれを製造する方法
CN101331249B (zh) 2005-12-02 2012-12-19 晶体公司 掺杂的氮化铝晶体及其制造方法
US7915619B2 (en) 2005-12-22 2011-03-29 Showa Denko K.K. Light-emitting diode and method for fabrication thereof
JP4963839B2 (ja) 2006-02-06 2012-06-27 昭和電工株式会社 発光装置
CA2643439C (en) 2006-03-10 2015-09-08 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
JP5479888B2 (ja) 2006-03-30 2014-04-23 クリスタル アイエス インコーポレイテッド 窒化アルミニウムバルク結晶を制御可能にドーピングする方法
US9034103B2 (en) 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
US7524376B2 (en) 2006-05-04 2009-04-28 Fairfield Crystal Technology, Llc Method and apparatus for aluminum nitride monocrystal boule growth
WO2008011377A2 (en) 2006-07-17 2008-01-24 3M Innovative Properties Company Led package with converging extractor
US7755103B2 (en) 2006-08-03 2010-07-13 Sumitomo Electric Industries, Ltd. Nitride gallium semiconductor substrate and nitride semiconductor epitaxial substrate
US7842960B2 (en) 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
US7714340B2 (en) 2006-09-06 2010-05-11 Palo Alto Research Center Incorporated Nitride light-emitting device
US7631986B2 (en) 2006-10-31 2009-12-15 Koninklijke Philips Electronics, N.V. Lighting device package
US20090121250A1 (en) 2006-11-15 2009-05-14 Denbaars Steven P High light extraction efficiency light emitting diode (led) using glass packaging
US9318327B2 (en) 2006-11-28 2016-04-19 Cree, Inc. Semiconductor devices having low threading dislocations and improved light extraction and methods of making the same
US8110838B2 (en) 2006-12-08 2012-02-07 Luminus Devices, Inc. Spatial localization of light-generating portions in LEDs
US7687823B2 (en) 2006-12-26 2010-03-30 Nichia Corporation Light-emitting apparatus and method of producing the same
WO2008081758A1 (ja) 2006-12-28 2008-07-10 Tokuyama Corporation 窒化アルミニウムメタライズド基板の製造方法
WO2008088838A1 (en) 2007-01-17 2008-07-24 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US8080833B2 (en) 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
JP5730484B2 (ja) 2007-01-26 2015-06-10 クリスタル アイエス インコーポレイテッド 厚みのある擬似格子整合型の窒化物エピタキシャル層
US9061450B2 (en) 2007-02-12 2015-06-23 Cree, Inc. Methods of forming packaged semiconductor light emitting devices having front contacts by compression molding
JP5121268B2 (ja) 2007-03-27 2013-01-16 日本碍子株式会社 窒化アルミニウム焼結体及び半導体製造装置用部材
US20080258165A1 (en) 2007-04-23 2008-10-23 Goldeneye, Inc. Light emitting diode chip
US8088220B2 (en) 2007-05-24 2012-01-03 Crystal Is, Inc. Deep-eutectic melt growth of nitride crystals
JP2009049395A (ja) 2007-07-24 2009-03-05 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
US8866185B2 (en) 2007-09-06 2014-10-21 SemiLEDs Optoelectronics Co., Ltd. White light LED with multiple encapsulation layers
TW200931690A (en) 2007-11-30 2009-07-16 Univ California Light output enhanced gallium nitride based thin light emitting diode
US20090140279A1 (en) 2007-12-03 2009-06-04 Goldeneye, Inc. Substrate-free light emitting diode chip
US7713769B2 (en) 2007-12-21 2010-05-11 Tekcore Co., Ltd. Method for fabricating light emitting diode structure having irregular serrations
US8049237B2 (en) 2007-12-28 2011-11-01 Nichia Corporation Light emitting device
US20090173958A1 (en) 2008-01-04 2009-07-09 Cree, Inc. Light emitting devices with high efficiency phospor structures
US7859000B2 (en) 2008-04-10 2010-12-28 Cree, Inc. LEDs using single crystalline phosphor and methods of fabricating same
KR101092079B1 (ko) 2008-04-24 2011-12-12 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR20100003321A (ko) 2008-06-24 2010-01-08 삼성전자주식회사 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및발광 장치의 제조 방법
US20090321758A1 (en) 2008-06-25 2009-12-31 Wen-Huang Liu Led with improved external light extraction efficiency
JP5305758B2 (ja) 2008-06-30 2013-10-02 株式会社東芝 半導体発光装置
US8384115B2 (en) 2008-08-01 2013-02-26 Cree, Inc. Bond pad design for enhancing light extraction from LED chips
US20100314551A1 (en) 2009-06-11 2010-12-16 Bettles Timothy J In-line Fluid Treatment by UV Radiation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077151B2 (en) 2007-02-12 2015-07-07 The Regents Of The University Of California Semi-polar III-nitride optoelectronic devices on M-plane substrates with miscuts less than +/-15 degrees in the C-direction
US9917422B2 (en) 2007-02-12 2018-03-13 The Regents Of The University Of California Semi-polar III-nitride optoelectronic devices on M-plane substrates with miscuts less than +/− 15 degrees in the C-direction
CN102782966A (zh) * 2010-03-04 2012-11-14 加利福尼亚大学董事会 在C-方向错切小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置
TWI560963B (en) * 2010-03-04 2016-12-01 Univ California Semi-polar iii-nitride optoelectronic devices on m-plane substrates with miscuts less than +/- 15 degrees in the c-direction
CN102782966B (zh) * 2010-03-04 2017-04-26 加利福尼亚大学董事会 在C‑方向错切小于+/‑15度的m‑平面基底上的半极性III‑氮化物光电子装置
US11552452B2 (en) 2010-03-04 2023-01-10 The Regents Of The University Of California Semi-polar III-nitride optoelectronic devices on m-plane substrates with miscuts less than +/− 15 degrees in the c-direction
CN102140680A (zh) * 2011-05-10 2011-08-03 青岛铝镓光电半导体有限公司 氮化镓单晶的制备方法
TWI689611B (zh) * 2015-03-06 2020-04-01 日商斯坦雷電氣股份有限公司 Iii族氮化物積層體及具有該積層體之發光元件
CN109087978A (zh) * 2017-06-14 2018-12-25 日本奥兰若株式会社 光半导体元件、光组件及光模块

Also Published As

Publication number Publication date
US20080187016A1 (en) 2008-08-07
CN101652832B (zh) 2011-06-22
US9437430B2 (en) 2016-09-06
JP2015167231A (ja) 2015-09-24
JP5730484B2 (ja) 2015-06-10
WO2008094464A2 (en) 2008-08-07
JP2010517298A (ja) 2010-05-20
WO2008094464A3 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
CN101652832B (zh) 厚的赝晶氮化物外延层
US20200058491A1 (en) Thick pseudomorphic nitride epitaxial layers
US11251330B2 (en) Pseudomorphic electronic and optoelectronic devices having planar contacts
US9876140B2 (en) Semiconductor structure with stress-reducing buffer structure
Kinoshita et al. Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy
US7777241B2 (en) Optical devices featuring textured semiconductor layers
US6441403B1 (en) Semiconductor device with roughened surface increasing external quantum efficiency
US8803189B2 (en) III-V compound semiconductor epitaxy using lateral overgrowth
US20160268476A1 (en) Method and system for epitaxy processes on miscut bulk substrates
EP2105974B1 (en) Method for manufacturing a nitride semiconductor light emitting diode
Novikov et al. Molecular beam epitaxy as a growth technique for achieving free-standing zinc-blende GaN and wurtzite AlxGa1-xN
KR102520154B1 (ko) 산화갈륨 나노 박막성장을 이용한 나노로드 구조체 및 그 제조 방법
KR101274211B1 (ko) 반도체 기판, 이를 이용한 발광소자 및 그 제조방법
KR102055758B1 (ko) Iii-질화물 구조체들에서의 나노파이프 결함들의 감소 또는 제거
CN107004724B (zh) 半导体装置及其制造方法
CN110459652A (zh) AlGaN基紫外LED器件及其制备方法与应用
Jing et al. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate
CN112530791A (zh) 一种生长高密度铟镓氮量子点的方法
US9472716B1 (en) Lattice-constant formatted epitaxial template for light emitting devices and a method for making the same
Ringel et al. Iii-v/si device integration via metamorphic sige substrates
JPH08330627A (ja) 半導体発光素子およびその作製方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant