CN102782966B - 在C‑方向错切小于+/‑15度的m‑平面基底上的半极性III‑氮化物光电子装置 - Google Patents

在C‑方向错切小于+/‑15度的m‑平面基底上的半极性III‑氮化物光电子装置 Download PDF

Info

Publication number
CN102782966B
CN102782966B CN201180012048.9A CN201180012048A CN102782966B CN 102782966 B CN102782966 B CN 102782966B CN 201180012048 A CN201180012048 A CN 201180012048A CN 102782966 B CN102782966 B CN 102782966B
Authority
CN
China
Prior art keywords
semi
polarity
gan
ingan
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180012048.9A
Other languages
English (en)
Other versions
CN102782966A (zh
Inventor
P·S·徐
K·M·科尔奈
R·M·法雷尔
D·A·海格尔
H·太田
A·泰亚吉
S·纳卡姆拉
S·P·德恩巴阿斯
J·S·斯派克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to CN201710215977.9A priority Critical patent/CN106972346B/zh
Publication of CN102782966A publication Critical patent/CN102782966A/zh
Application granted granted Critical
Publication of CN102782966B publication Critical patent/CN102782966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320275Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3054Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
    • H01S5/3063Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping using Mg
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • H01S5/3404Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation influencing the polarisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

在GaN的错切上生成的光电子装置,其中所述错切包括在GaN的c‑方向且与GaN的m‑平面错切x度的(GaN的)半极性GaN晶体平面,其中‑15<x<‑1和1<x<15度。

Description

在C-方向错切小于+/-15度的m-平面基底上的半极性III-氮 化物光电子装置
相关申请的交叉参考
本申请在35U.S.C.第119(e)章的规定下要求享有由Po Shan Hsu、KathrynM.Kelchner、Robert M.Farrell、Daniel Haeger、Hiroaki Ohta、Anurag Tyagi、ShujiNakamura、Steven P.DenBaars和James S.Speck在2010年3月4日提交的共同未决且共同转让的美国临时专利申请序号61/310,638的权益,其名称为“在C-方向错切小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置(SEMI-POLAR III-NITRIDE OPTOELECTRONICDEVICES ON M-PLANE SUBSTRATES WITH MISCUTS LESS THAN+/-15DEGREES IN THE C-DIRECTION)”,代理人案号30794.366-US-P1(2010-543-1);
在此将该申请引入作为参考。
本申请涉及下列共同未决且共同转让的美国专利申请:
由Daniel F.Feezell、Mathew C.Schmidt、Kwang Choong Kim、RobertM.Farrell、Daniel A.Cohen、James S.Speck、Steven P.DenBaars和Shuji Nakamura在2008年2月12日提交的美国实用新型专利申请序号12/030,117,其名称为“Al(x)Ga(1-x)N-CLADDING-FREE NON POLAR GAN-BASEDLASER DIODES AND LEDS”,代理人案号30794.222-US-U1(2007-424),该申请在35U.S.C.第119(e)章的规定下要求享有由Daniel F.Feezell、Mathew C.Schmidt、Kwang Choong Kim、Robert M.Farrell、Daniel A.Cohen、JamesS.Speck、Steven P.DenBaars和Shuji Nakamura在2007年2月12日提交的美国临时专利序号60/889,510的权益,其名称为“Al(x)Ga(1-x)N-CLADDING-FREE NONPOLAR GAN-BASEDLASER DIODES AND LEDS”,代理人案号30794.222-US-P1(2007-424-1);
由Arpan Chakraborty、You-Da Lin、Shuji Nakamura和Steven P.DenBaars在2010年6月7日提交的PCT国际专利申请序号US2010/37629,其名称为“ASYMMETRICALLYCLADDED LASER DIODE”,代理人案号30794.314-US-WO(2009-614-2),该申请在35U.S.C.第119(e)章的规定下要求享有由Arpan Chakraborty、You-Da Lin、ShuiNakamura和StevenP.DenBaars在2009年6月5日提交的美国临时申请序号61/184,668的权益,其名称为“ASYMMETRICALLY CLADDEDLASER DIODE”,代理人案号30794.314-US-P1(2009-614-1);和
由Arpan Chakraborty、You-Da Lin、Shuji Nakamura和Steven P.DenBaars在2010年6月7日提交的美国实用新型申请序号12/795,390,其名称为“LONGWAVELENGTHNONPOLAR AND SEMIPOLAR(Al,Ga,In)N BASEDLASER DIODES”,代理人案号30794.315-US-U1(2009-616-2),该申请在35U.S.C.第119(e)章的规定下要求享有共同未决且共同归属的由Arpan Chakraborty、You-Da Lin、ShuiNakamura和Steven P.DenBaars在2009年6月5日提交的美国临时申请序号61/184,729的权益,其名称为“LONG WAVELENGTH m-PLANE(Al,Ga,In)N BASED LASER DIODES”,代理人案号30794.315-US-P1(2009-616-1);
在此将这些申请引入作为参考。
发明背景
1.发明领域
本发明涉及半极性光电子装置及其制造方法,并具体涉及在c-方向错切(miscut)小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置。
2.相关领域描述
(注意:本申请参考多个不同的出版物,贯穿说明书用括号中一个或多个的参考文献编号表示,例如,[x]。按照这些参考文献编号排列的这些不同出版物的列表可在下文标题“参考文献”的章节找到。这些出版物每一篇均被引入本文作为参考。)
下一代显示技术如微型移动投影机和高清晰度飞点显示器的预期高商业需求已显著推动直接发射绿色激光二极管(LD)的发展。这种应用的技术标准需要LD具有高的效率、可靠性、紧凑性和调制响应能力[1]。虽然纤锌矿(AlGaIn)N基材料系统在很大程度上被认可作为绿色光电子装置的主要候选者,但却必须达成晶体平面最适于外延生成(外延生长,epitaxial growth)的普遍共识。
在常规的GaN的c-平面上生成(grown)的装置已证实LD在绿色光谱区的连续波(CW)运行[2-4]。然而,这些装置遭受寄生的内部电场,该寄生内部电场引起量子限制斯塔克效应(QCSE),其降低量子阱(QW)辐射复合率(radiative recombination rate),并造成发射波长随载体注入增加而蓝移(blue-shift)[5]。此外,QCSE对于长波长光电子装置更加显著,这是因为富In的InGaN QW与阻挡层(barrier)之间的晶格失配(lattice mismatch)增加[2]。
为避免极化效应,研究人员已证实在纤锌矿晶体的非极性m-平面定向上生成的LD的运行[6]。虽然是用于高功率蓝色LD的期望候选物,但由于活性区中形成堆垛层错(stacking fault),m-平面LD目前还限于500nm激光发射[7-11]。
不同半极性(semi-polar或semipolar)平面,如(10-11)和(11-22)也已被考察作为可选的生成平面[12-13]。近来,研究人员已报告绿色光谱区激光从在半极性(20-21)平面上生成的优质InGaN QW发射[14-15]。进一步的研究已经显示,在(20-21)上生成的绿色发射QW呈现高组成同质性,且局部化能量值低于c-平面的报告值[16]。但是,LD(20-21)需要四元AlInGaN包层以实现充分的模态限制,而不引起应变引起的失配位错(MD)[17]。虽然四元AlInGaN包层的应用呈现对于低临界厚度的半极性平面的解决方案,但从大规模生产的角度而言,具有高组成InGaN波导的简单无AlGaN包层结构更具吸引力[7,15,18]。
需要改进的光电子装置生成方法。本发明满足该需要。
发明概述
本发明公开了在GaN基底上生成的半极性(AlGaIn)N基光电子装置,所述GaN基底在c-方向与m-平面的错切为x度(在此-15<x<-1和1<x<15度)。
这种朝向c-方向错切x度(在此-15<x<-1和1<x<15度)的m-平面上的光电子装置,与朝向c-方向大于或等于+/-15度的错切相比,提供较低的QCSE引起的注入流依赖性蓝移,导致更高材料增益的增加的振子强度,等。
距m-平面较低的错切提供错切生成层较大的临界厚度。这与提供较低临界厚度的半极性平面生成层相比,可减少错切生成层中的失配(misfit)缺陷数。因此,层中的缺陷密度可取决于层所沉积的半极性平面。
例如,光电子装置可包含一个或多个半导体III-氮化物层,其生成在GaN的半极性(semi-polar或semipolar)平面或半极性晶体平面上,即{30-3-1}、{30-31}、{40-41}或{40-4-1}平面,其中GaN的半极性平面或半极性晶体平面例如是邻接的、错切的或离轴的独立(free standing)GaN基底的顶部表面。
半极性GaN平面可包含原子确定的平面(an atomically specific plane),从而实现平滑的外延生成。
本方法可包括选择半极性晶体平面以增加半极性晶体平面上生成的III-氮化物层的临界厚度。例如,光电子装置的III-氮化物层可包含一个或多个InGaN层,该InGaN层的厚度大于或等于Mathews-Blakeslee临界厚度,其中临界厚度是沉积在GaN的半极性晶体平面上的InGaN层的厚度,所述GaN的半极性晶体平面在GaN的c-方向且与GaN的m-平面15度或以上定向。InGaN层的铟组成可以为至少7%。
光电子装置可以是LD,并且一个或多个InGaN层可包含InGaN波导,其提供LD的模态限制,例如LD在至少460nm的波长具有激光发射峰。
光电子装置可进一步包括光发射InGaN活性层,所述光发射InGaN活性层包括一个或多个InGaN量子阱,一个或多个量子阱的铟组成为至少16%(并且厚度大于4纳米(nm))。
光电子装置可进一步包含一个或多个n型(Al,In,Ga)N层;一个或多个p型(Al,In,Ga)N层;和在n型(Al,In,Ga)N层与一个或多个p型(Al,In,Ga)N层之间、包含一个或多个InGaN量子阱层的InGaN活性层,其中n型(Al,In,Ga)N层、p型(Al,In,Ga)N层、InGaN量子阱层具有半极性GaN晶体平面的半极性定向,并且InGaN量子阱层在至少477nm的波长处具有光发射峰或光吸收峰。
光电子装置可以是这样的LD,其包括:在半极性晶体平面上或上方的n型GaN层;在n型GaN层上或上方的n型InGaN波导层,所述n型InGaN波导层的厚度为至少50nm,且铟组成为7%或以上;在n型InGaN波导层上或上方的InGaN活性层,其包括铟组成为至少7%且厚度大于4nm的一个或多个InGaN量子阱层;在InGaN活性层上或上方的p型InGaN波导层;和在p型InGaN波导层上或上方的p型GaN层,所述p型InGaN波导层的厚度为至少50nm,且铟组成为7%或以上,其中n型GaN层、n型InGaN波导层、InGaN活性层、p型GaN层和p型InGaN波导层具有半极性晶体平面的半极性定向。
半极性晶体平面和沉积条件可使一个或多个III-氮化物层的表面粗糙度为例如0.75nm或以下。
LD可包含定向在LD的c-投影方向的波导,用于更高的增益。
在半极性GaN晶体平面上生成的装置包括但不限于,例如LD、发光二极管(LED)、超发光二极管(SLD)、半导体放大器、光子晶体激光器、VCSEL激光器、太阳能电池或光检测器。
本发明进一步公开了制造光电子装置的方法,包括在半极性GaN晶体平面上外延沉积III-氮化物层,所述半极性GaN晶体平面在GaN的c-方向且与GaN的m-平面x度定向,其中-15<x<-1和1<x<15度。本方法可进一步包括选择半极性晶体平面,从而增加在半极性晶体平面上生成的III-氮化物层的临界厚度。
附图简述
先参考附图,贯穿其中相同的参考编号表示相应的部件:
图1(a)是纤锌矿GaN晶体结构的示意图,显示{10-10}、{30-31}、{20-21}和{0001}平面。
图1(b)是绘制利用Matthews-Blakeslee等式计算的独立半极性GaN基底上的半极性InGaN层的Matthews-Blakeslee临界厚度的图。
图2是示例本发明方法的流程图。
图3(a)示例了原型激光器装置结构的横截面。
图3(b)示例了装置结构另一实施方式的横截面。
图3(c)是具有蚀刻面的完成的激光器装置结构的横截面示意图。
图4(a)显示了在(30-31)半极性晶体平面上生成的图3(a)结构的透射电子显微镜(TEM)图像。
图4(b)和图4(c)显示在5X(图4(b))和10X(图4(c))下截取的Nomarski图像,显示(30-31)生成表面的形态。
图4(d)和图4(e)是利用N2环境(图4(d))和H2环境(图4(e))在(30-31)半极性晶体平面通过MOCVD生成的图3(a)结构中的层顶部表面的Nomarski图像。
图4(f)和图4(g)是利用N2环境(图4(f))和H2环境(图4(g))在(30-3-1)半极性晶体平面上通过MOCVD生成的图3(a)结构中的层顶部表面的Nomarski图像。
图5是(30-31)LD结构的不对称(20-25)衍射周围的倒易空间图(RSM)。
图6(a)显示了光-电流-电压(L-I-V)特征,图6(b)显示了{30-3-1}GaN基底上生成的蚀刻面激光器二极管的激光发射光谱。
图7(a)显示了L-I-V特征;图7(b)显示了{30-31}GaN基底上生成的蚀刻面10μmx1800μm LD的激光发射光谱,其中测量在20°C利用1μs脉冲和0.1%工作循环进行,以确保最低限度的装置自加热效应;图7(b)显示了444.7nm处清晰的激光发射峰。
图7(c)显示了图7(a)装置的低电流注入上至阈值的电致发光(EL)光谱,其中EL强度(任意单位,a.u)随电流注入(毫安,mA)增加而增加。
图7(d)显示了峰波长和半峰全宽(FHWM)对电流密度的依赖性,其中图7(a)装置的450nm c-平面LD的峰波长数据被包括在内,用于比较[22]。
图7(e)显示图7(a)装置的阈值电流密度和激光发射波长对阶段温度的依赖性。
发明详述
在下文对优选实施方式的描述中,参考构成本文部分的附图,其中作为示例显示了本发明可实践的具体实施方式。要理解的是,可以采用其他实施方式,并且可进行结构改变,而没有脱离本发明的范围。
概述
(Al,Ga,In)N光电子装置生成在极性{0001}、非极性{11-20}和{10-10}以及半极性{10-1-1}、{11-22}和{20-21}GaN晶体平面上。
极性和半极性平面上生成的激光器遭受量子阱中极化相关的电场,其使装置性能退化。
虽然非极性{10-10}和{11-20}装置无极化相关的效应,但高铟浓度掺入{10-10}和{11-20}装置的优质晶体生成已显示难以实现。
例如,由于在高铟组成下产生缺陷,m-平面上发射足够长波长的光电子装置难以实现。半极性平面如{20-21}在长波长处显示出更好的性能,这是因为半极性平面被认为更容易掺入铟。但是,错切大于或等于+/-15度的半极性平面具有低临界厚度,因此造成充分的激光器波导结构生成非常困难。{20-21}上的Sumitomo绿色激光器[14]采用晶格匹配的AlInGaN包层,其极难生成。
命名法
掺入铝和铟的GaN及其三元和四元化合物(AlGaN、InGaN、AlInGaN)通常用术语(Al,Ga,In)N,III-氮化物、第III族-氮化物,氮化物、Al(1-x-y)InyGaxN——其中0<x<1和0<y<1——或AlInGaN命名,如本文所用。所有这些术语均意为等同于和广泛解释为包括单独种类Al、Ga和In各自的氮化物以及该第III族金属种类的二元、三元和四元组成。因此,这些术语包括化合物AlN、GaN和InN;和三元化合物AlGaN、GaInN和AlInN;和四元化合物AlGaInN,如这种命名法包括的种类。当两个或更多个(Ga、Al、In)组分种类存在时,所有可能的组成,包括化学计量比和“非化学计量”比(相对于组成中存在的各(Ga,Al,In)组分种类存在的相对摩尔分数),均可被采用,而处于本发明广泛的范围内。因此,要理解的是,下文本发明主要参考GaN材料的讨论可用于多种其他(Al、Ga、In)N材料种类的形成。进一步,本发明范围内的(AlGaIn)N材料可进一步包括少量掺杂剂和/或其他杂质或内含物。硼(B)也可被包含在内。
术语“无AlxGa1-xN包层”指不存在含有任何摩尔分数Al的波导包层如AlxGa1-xN/GaN超晶格、大块AlxGa1-xN或AlN。其他不用于光导的层可含有一定量的Al(例如,小于10%的Al含量)。例如,可存在AlxGa1-xN电子阻挡层。
消除GaN或III-氮化物基光电子装置的自发和压电极化效应的一个途径是使III-氮化物装置在晶体的非极性平面上生成。这种平面含有等量的Ga(或第III族原子)和N原子,并且是电中性的。此外,随后的非极性层彼此等同,因此大块晶体将不会沿生成方向极化。GaN中这两类对称等同的非极性平面是{11-20}类——总称为a-平面;和{1-100}类——总称为m-平面。因此,非极性III-氮化物沿垂直于III-氮化物晶体(0001)c-轴的方向生成。
减少(Ga,Al,In,B)N装置的极化效应的另一途径是使装置在晶体的半极性平面上生成。术语“半极性平面(semi-polarplane)”(也被称为“半极性平面(semipolar plane)”)可用于指代不能归类为c-平面、a-平面或m-平面的任何平面。在晶体学术语中,半极性平面可包括具有至少两个非零h、i或k密勒指数和非零l密勒指数的任何平面。
技术描述
半极性GaN晶体平面上LD结构的设计是独特的,因为经由基础(0001)平面上预先存在的穿透位错(TDs)的滑动能够在异质界面(一个或多个)形成应力消除失配位错(MDs)[19]。这种TD滑动的驱动力源自基础平面上的分解剪切应力,其量级随半极性平面距基础(0001)平面的倾斜角增加而减少[20]。因此,半极性平面上倾斜角在80与90度之间(相对于c-平面)的应变的(AlGaIn)N层的异质外延生成应导致基础平面上的分解剪切应力急剧减少,随之外延层临界厚度增加。
如图1(a)所示,{30-31}GaN半极性平面以c-方向分别距半极性GaN{20-21}平面和非极性GaN{10-10}m-平面倾斜5和10度。图1(a)还显示{0001}平面、GaN[10-10]方向、GaN方向、GaN[11-20]方向、Ga原子和N原子。在(11-22)、(20-21)和(30-31)GaN半极性平面上外延生成的In0.06Ga0.94N的Matthews-Blakeslee平衡临界厚度hc[21]值(在假设各向同性弹性下计算得出)分别为17、46和74nm,如图1(b)所示。相对于其他之前考察的半极性平面,(30-31)上较大的临界厚度释放相当大的外延层LD波导设计空间。图1(b)中半极性(SP)独立的GaN基底上半极性(SP)InGaN层的临界厚度hc用hc的Matthew-Blakeslee等式计算[21]:
其中b是Burgers矢量,υ是Poisson比,λ是Burger矢量与位错线法线方向且位于界面平面内的方向之间的角,β是Burger矢量与位错线之间的角,r0和R分别为直位错核心周围圆柱环的内半径和外半径。
本发明公开了在c-方向错切小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置。例如,本发明证实了优越的激光器性能的可能性,这通过使激光器结构在c-方向错切x度(其中-15<x<-1和1<x<15度)的m-平面基底上生成实现。。
方法步骤
图2示例了制造装置的方法。方法可包括下列步骤。
方框200表示提供半极性GaN晶体平面,其在GaN的c-方向且与GaN的m-平面x度定向或错切,其中-15<x<-1和1<x<15度。GaN晶体平面可以在GaN基底(例如,独立基底)上。半极性GaN晶体平面可通过如下提供:错切、切割或锯切GaN基底或以其他方式得到错切或邻接的GaN基底,使得错切或邻接的表面可包括半极性GaN晶体平面。例如,可采用MitsubishiChemical Corporation提供的低缺陷密度独立GaN基底。步骤可进一步包括选择半极性晶体平面以增加半极性晶体平面上生成的III-氮化物层的临界厚度。
方框202表示在半极性GaN晶体平面上、在GaN或GaN基底的错切上或在GaN或GaN基底的邻接表面上(其中错切或邻接表面包括半极性GaN晶体平面)沉积或生成(例如,外延地)装置,如光电子装置,其包含一个或多个III-氮化物层。半极性GaN晶体平面可在c-方向且与GaN的m-平面x度错切或定向,其中
-15<x<-1和1<x<15度。
光电子装置可包含一个或多个III-氮化物或(Al,In,Ga)N(例如,InGaN)层,其厚度大于或等于Mathews-Blakeslee临界厚度,其中临界厚度是沉积在GaN的半极性晶体平面上、定向在距GaN的m-平面15度或以上和GaN的c-方向的InGaN层(一个或多个)(具有相同铟组成)的临界厚度。(Al,In,Ga)N层或InGaN层可具有至少7%的铟组成。(Al,In,Ga)N层可包括光电子装置的整个外延层厚度。InGaN层可包括波导层、活性层或二者。InGaN活性层可包括一个或多个光发射或吸收量子阱层(例如,多量子阱层),其中活性层的总厚度(例如,多量子阱的总厚度)具有大于定向在距GaN的m-平面15度或以上、c-方向的半极性平面的临界厚度的厚度。
光电子装置可包含LD,一个或多个InGaN层可包含InGaN波导,其提供LD的模态限制,LD在例如至少445nm、至少460nm或至少478nm的波长处具有激光发射峰。
III-氮化物层可进一步包括光发射InGaN活性层,其包括一个或多个InGaN量子阱,例如一个或多个量子阱的铟组成为至少7%、至少10%或至少16%,厚度大于4纳米(例如,5nm)、至少5nm或至少8nm。但是,量子阱厚度也可小于4nm,但其一般在2nm厚度以上。
沉积III-氮化物层可进一步包括在半极性GaN晶体平面上沉积一个或多个n型(Al,In,Ga)N层,在一个或多个n型(Al,In,Ga)N层上或上方沉积包含一个或多个InGaN量子阱层(在阻挡层之间)的InGaN活性层,和在InGaN量子阱层上沉积一个或多个p型(Al,In,Ga)N层,其中III-氮化物层(例如,n型(Al,In,Ga)N层、p型(Al,In,Ga)N层和InGaN量子阱层)具有半极性GaN晶体平面的半极性定向,InGaN量子阱层在至少477nm的波长处具有光发射峰或光吸收峰。但是,层可以相反顺序沉积,使得p型层位于半极性晶体平面上和活性层下,n型层位于活性层上。
光电子装置可以是通过如下制造的LD:在半极性GaN晶体平面上或上方沉积n型GaN层;在n型GaN层上或上方沉积n型InGaN波导层,n型InGaN波导层的厚度为至少50nm,铟组成为7%或以上;在n型InGaN波导层上或上方沉积InGaN活性层,该活性层包括阻挡层和一个或多个InGaN量子阱层,其铟组成为至少7%,厚度大于4nm(InGaN量子阱层在阻挡层之间);在InGaN量子阱上或上方沉积p型InGaN波导层;和在p型InGaN波导层上或上方沉积p型GaN层,p型InGaN波导层的厚度为至少50nm,铟组成为7%或以上,其中III-氮化物层(例如,n型GaN层、n型InGaN波导层、InGaN活性层、p型GaN层和p型InGaN波导层)具有半极性晶体平面的半极性定向。
在一个实施方式中,LD可以无AlGaN包层,换句话说,激光器二极管可不含有任何AlGaN包层,或其中装置的任何AlGaN层不限制装置的光学模式(例如,装置中的AlGaN层可具有小于或等于10%的Al含量)。
图3(a)示例了原型激光器装置结构300,其利用有机金属化学气相沉积(MOCVD),例如,大气压MOCVD(AP-MOCVD)在{30-31}GaN基底302(其中x=10度)或{30-3-1}GaN基底302(其中x=-10度)上外延生成。装置结构300在GaN基底302的顶部表面304上生成,其中顶部表面304相对于GaN基底300的m-平面306x度定向。例如,表面304可以是{30-31}平面或{30-3-1}平面。装置300无AlGaN包层,并且用于生成LD结构的(30-31)的MOCVD生成条件类似于一般用于c-平面、m-平面和(20-21)生成的条件。
结构300包括厚度低的GaN包层308(例如,在半极性GaN晶体平面304上或上方的n型GaN层)、掺Si的InGaN波导层310(例如,在n型GaN层308上或上方的50nm厚的n型InGaN波导层310)、在n型InGaN波导层310上或上方的活性层——该活性层包括三重无掺杂的InGaN量子阱(例如,5nm厚)312,该无掺杂的InGaN量子阱夹在GaN阻挡层314a、314b(例如,10nm厚)之间、AlGaN电子阻挡层(EBL)316、掺Mg的InGaN上波导层318(例如,在量子阱312上或上方的50nm厚的p型InGaN波导层)、掺Mg的上GaN包层320(例如,p型GaN层)和掺Mg的GaN p++接触层322[7]。n型GaN 308、n型InGaN 310、活性区312、314a、314b和p型InGaN318在N2环境下生成。p型GaN 320在H2环境下生成。完整装置在高V/III比(>150)下生成。结构和生成条件类似于[7]所述。
在一个或多个实例中,半极性晶体平面304和沉积条件可使一个或多个III-氮化物层308-322具有表面粗糙度0.75nm或以下。
图3(b)示例了装置结构324的另一实施方式,其在方框202期间于方框200的半极性平面304上生成,其中装置结构在一个或多个n型III-氮化物或(AlGaIn)N层328与一个或多个p型III-氮化物或(AlGaIn)N层330之间包含一个或多个III-氮化物或(AlGaIn)N活性层326(例如,一个或多个InGaN量子阱)。例如,n型III-氮化物层328可在半极性GaN晶体平面304上或上方,III-氮化物活性层326可在n型III-氮化物层328上或上方,p型III-氮化物层330可在III-氮化物活性层326上或上方。在一个实施方式中,n型328和p型330层的位置可颠倒。图3(a)和图3(b)还显示GaN基底302的c-方向。
半极性晶体平面304可以是例如{30-31}、{30-3-1}、{40-41}或{40-4-1}平面。方框200中提供的半极性GaN晶体平面304可以是例如邻接的、错切的或离轴独立的GaN基底302的顶部表面,半极性GaN平面304可包括原子确定的平面,从而实现III-氮化物层(例如,308-322、326、328、330)的平滑外延生成。例如,III-氮化物层308-322、326、328、330中的一个或多个可具有0.75nm或以下的表面粗糙度。本发明不限于III-氮化物层的具体厚度。III-氮化物层不限于装置层的具体类型,III-氮化物活性层326不限于量子阱或活性层的具体类型。例如,光电子装置的III-氮化物层可以是太阳能电池、光检测器等的的装置层,活性层326可以是太阳能电池、光检测器等的活性层。
方框204表示处理装置(例如,包括形成镜面)。利用常规的光刻、干蚀刻和剥离(lift-off)技术制造脊形波导激光器结构。例如,在一个实施方式中,方框202的激光器装置结构利用常规的光刻和干蚀刻技术通过1800μm脊形波导LD被处理为10μm。自对齐的干蚀刻和剥离处理用于限定脊形波导和氧化物绝缘体,然后50/1000nm Pd/Au金属化用于p-接触。镜面通过基于标准Cl2的反应性离子蚀刻与c-轴的平面内投影成直角形成。背侧Al/Aun-接触直接沉积在大块基底上。
方框206表示方法的最终结果,装置或光电子装置如激光器二极管或LED,其在半极性平面304或半极性GaN晶体平面304(例如,在错切GaN基底302)上生成,其中半极性平面304或半极性GaN晶体平面304在GaN的c-方向且与GaN的m-平面306x度错切或定向,其中-15<x<-1和1<x<15度。例如,光电子装置可在GaN的错切上生成,其中错切包括在GaN的c-方向且与GaN的m-平面306错切x度的半极性GaN晶体平面304,其中-15<x<-1和1<x<15度。
图3(c)是方框206的完成的激光器装置结构332的横截面示意图,其具有蚀刻面334(例如,蚀刻面镜)、脊形绝缘体336和p-接触垫338。LD可位于例如{30-31}上。光电子装置可以是无AlGaN包层的LD,其包含厚度足以提供模态限制的InGaN波导。
实验结果
形态和结构质量
LD结构的形态和结构质量通过对单独(30-31)GaN基底重复相同的生成条件进行表征。通过光致发光测量,单独MOCVD生成之间的区别显示为最小。
图4(a)显示在(30-31)半极性晶体平面304上生成的图3(a)结构的TEM图像,显示出无明显缺陷的优质界面。图4(a)显示n型GaN层308(n-GaN)、n型InGaN层310(n-InGaN)、具有GaN阻挡层314a、314b的InGaN量子阱312(InGaN/GaN)、p型AlGaN EBL(p-AlGaN)、p型InGaN层318(p-InGaN)和p型层320(p-GaN)。
图4(b)和图4(c)显示图3(a)装置结构中的n型GaN层308的(30-31)顶部表面340(相对或平行于表面304)的Nomarski图像,具有沿[11-22]方向明显的条纹,其被本发明归因于未优化的生成条件。
图4(d)-图4(g)显示如何可通过生成条件优化表面形态。图4(d)和图4(e)是图3(a)装置结构中n型GaN层308的顶部表面340的Nomarski图像,其采用N2环境(图4(d))和H2环境(图4(e))通过MOCVD在(30-31)半极性晶体平面304上生成。
图4(f)和图4(g)是图3(a)中的n型GaN层308的顶部表面340的Nomarski图像,其采用N2环境(图4(f))和H2环境(图4(g))通过MOCVD在(30-3-1)半极性晶体平面304上生成。
(30-3-1)平面304上50nm厚的InGaN层(例如,层310)具有顶部(30-3-1)平面表面342,其中顶部表面342的均方根(RMS)粗糙度为0.75nm。但是,RMS粗糙度可更高或更低。50nm厚的InGaN层310在N2环境下于GaN 308上生成,GaN 308在N2环境、高温(例如,约900℃)下生成。
图5显示(30-31)平面的不对称(20-25)衍射周围的图3(a)的LD结构300的X射线倒易空间映射(RSM)。如RSM所示,LD结构中所有层的布拉格(Bragg)峰关于Qx轴垂直对齐,表明LD结构是一致应变的。
输出特征
对具有未覆盖镜面的装置进行所有电测量和发光测量。
图6(a)显示蚀刻面LD的L-I-V特征,图6(b)显示蚀刻面LD的激光发射光谱,该蚀刻面LD具有图3(a)结构,在{30-3-1}GaN基底上生成(并根据图2处理),显示FWHM为0.4nm,且激光发射峰位于477.5nm。
图7(a)-7(e)是对图3(a)蚀刻面无AlGaN包层的InGaN/GaN LD的测量,其在半极性(30-31)GaN基底上生成,并根据图2步骤进行处理。
图7(a)显示蚀刻面无AlGaN包层的InGaN/GaN LD的L-I-V特征,图7(b)显示蚀刻面无AlGaN包层的InGaN/GaN LD的激光发射光谱。所有测量均在20℃下利用1μs脉冲和0.1%的工作循环进行,以确保最低限度的装置自加热效应。图7(b)的激光发射光谱显示在444.7nm处清晰的激光发射峰。估定的阈值电流(Ith)为1022mA,其相应于Jth为5.6kA/cm2。本发明将相对较高的阈值电压9.9V归因于未优化的p-接触和掺杂性。
图7(c)显示一系列EL光谱,测量作为电流的函数。
图7(d)显示峰EL波长从0.03kA/cm2处约448nm移至444nm——刚好在6.0kA/cm2处的阈值以上。该EL蓝移值相当于相似波长处发射的m-平面LD,并明显低于c-平面LD(显示c-平面数据以进行比较)[22,8]。图7(d)还显示谱宽或激光器峰FWHM对电流密度的依赖性,其从0.03kA/cm2处的16.3nm缩窄至2.5nm——刚好在阈值以上。
图7(e)显示作为阶段温度函数的Jth和峰波长(在输出功率为~35mW时)。通过将阈值电流的固有log相对于温度作图和计算斜率的倒数估定特征温度(To)值为~135K。该值相对于在相同波长范围下发射的c-平面装置的报告值是比较好的[23-24]。峰波长对温度的依赖性经计算为~0.06nm/K,其相对于m-平面、c-平面和(20-21)平面上生成的LD的报告值也是比较好的[9,2,25,15]。
本发明估定了图3(a)的LD结构的限制因子(confnement factor)为~4.9%。但是,限制因子较低的激光发射是可能的,图3(a)的LD结构也可具有较高的限制因子。
本发明能够提高激光器性能。配有高理论临界厚度和低量子限制斯塔克效应(QCSE)的这种原始LD性能表明半极性(30-31)平面对于长波长LD应用具有很大的潜力。在半极性GaN基底上外延生成的应变(Al,Ga,In)N合金层较高的临界厚度使本发明能够提高对于粘附的激光器二极管波导层的模态限制。较厚的量子阱有助于减少量子阱中的有效载体密度(减少Auger型损失),并可促进低透明度载体密度。
可能的改变
改变包括各种可能的外延生成技术、激光器装置结构、不同的干蚀刻技术,包括电感耦合等离子体(ICP)、反应性离子蚀刻(RIE)、聚焦离子束(FIB)、CMP、化学辅助离子束蚀刻(CAIBE)、通过切割形成面镜(facet mirror)、通过激光器烧蚀形成面镜、波导结构的改变、通过两种类型的蚀刻技术或不同的角制成的面(超发光二极管(SLD))和用相同/两种不同类型的电介质涂布的面镜,等。
例如:
·错切包括但不限于,{30-31}、{30-3-1}、{40-41}和{40-4-1}平面等。多个具有其他密勒指数的半极性平面是可能的。(30-31)、(30-3-1)、(40-41)和(40-4-1)只被列举作为实例。利用原子确定的平面,可以得到平滑的外延生成。
·在这种错切上的LD装置可具有蚀刻面镜或激光器烧蚀面镜——只要切割面镜不可用。
·在这种错切上的LD装置可具有切割面镜,该切割面镜具有斜面(例如,相对于LD的生成平面304倾斜的面)或垂直于生成平面304的面。例如,上述{30-31}激光器可具有切割面。
·在这种错切上的LD装置可具有定向在c-投影方向的波导,用于更高的增益。
·在这种错切上的LD装置可利用来自腔镜和/或面和/或分布式布拉格反射器(DBR)和/或光栅等的光反馈。
·在这种错切上的LD装置可利用光增益(例如,SLD或半导体光学放大器)。
·在这种错切上的LD装置可利用不同的光导结构。
·在这种错切上的LD装置可具有一个或两个成角面或粗糙面(通过湿化学蚀刻形成),以抑制反馈(SLD)。
·在这种错切上的LD装置可具有被动腔或可饱和的吸收剂。
·装置可包括连续波运行的激光器和激光发射和自发波长增加的装置。
装置可在除GaN外的其他III-氮化物基底上生成。半极性晶体平面304可以是半极性GaN晶体平面或半极性III-氮化物晶体平面。或者,半极性晶体平面可以是GaN(例如,GaN基底)或III-氮化物(例如,III-氮化物基底)的半极性平面304。然后,半极性平面304可在III-氮化物的c-方向且与III-氮化物的m-平面x度定向或错切,其中-15<x<-1和1<x<15度。半极性平面304可以是平面的。III-氮化物层308-322中的一个或多个可以是平面层。例如,III-氮化物层308-322、326、328、330中的一个或多个可具有平面顶部表面(例如340、342)。III-氮化物层308-322、326、328、330中的一个或多个可具有平面界面(与其他III-氮化物层的界面)。
·装置可利用除MOCVD外的生成方法生成,包括但不限于,例如分子束外延(MBE)和氢化物气相外延(HVPE)。
改变还包括在c-方向错切x度(其中-15<x<-1和1<x<15度)的m-平面基底上生成的其他光电子装置(LED、光子晶体激光器、太阳能电池、光检测器等),。例如,在这种错切上的装置可包括激光器二极管、SLD、半导体放大器和VCSEL激光器。
优势和改进
现有的(Al,Ga,In)N激光器一般在极性{0001}、非极性{10-10}和{11-20}或半极性{11-22}和{20-21}平面上生成。在极性和半极性平面上生成的激光器遭受量子阱中极化相关的电场,其使装置性能退化。虽然非极性{10-10}和{11-20}装置无极化相关的效应,但高铟浓度掺入{10-10}和{11-20}装置的优质晶体生成显示出难以实现。
在c-方向与m-平面错切x度(其中-15<x<-1和1<x<15度)的半极性平面上生成的装置,与常规的半极性平面(即,{11-22}、{20-21}等)相比,量子阱中具有最低限度的极化相关电场。在这种GaN错切m-平面基底上的应变外延(Al,Ga,In)N合金层的临界厚度也可大于在c-方向与m-平面错切大于+/-15度的其他半极性(即,{11-22}、{10-1-1}和{20-21})晶体平面。这能够提高波导层的厚度和组成——因此提高模态增益。本发明研究的{30-31}和{30-3-1}平面上的原型激光器装置证实了装置在这种m-平面错切基底上的可能性。
本发明装置的应用包括但不限于光电子装置(激光器、LED等),用于显示、照明、生物医学成像、发光应用等。
参考文献
本文引入下列参考文献作为参考。
[1]U.Steegmueller et al.:Proc.ofSPIE 7198,719807(2009)
[2]D.Queren et al.:Appl.Phys.Lett.94(2009)081119.
[3]A.Avramescu et al.:Appl.Phys.Lett.95(2009)071103.
[4]T.Miyoshi et al.:Appl.Phys.Express 2(2009)062201.
[5]J.S.Speck and S.F.Chichibu:MRS Bull.34(2009)No.5,304.
[6]M.Schmidtet al.:Jpn.J.Appl.Phys.46(2007)L190.
[7]K.Kelchner et al.:Appl.Phys.Express 2(2009)071003.
[8]M.Kubota et al.:Appl.Phys.Express 1(2008)011102.
[9]K.Okamoto et al.:Appl.Phys.Lett.94(2009)071105.
[10]Y.Lin et al.:appl.Phys.Express 2(2009)082102.
[11]A.M.Fischer et al.:Appl.Phys.Express 2(2009)041002.
[12]A.Tyagi et al.:Jpn.J.Appl.Phys.46(2007)L444.
[13]H.Asamizu et al.:Appl.Phys.Express 1(2008)091102.
[14]Y.Enya et al.:Appl.Phys.Express 2(2009)082101.
[15]A.Tygai et al.:Appl.Phys.Express 3(2010)011002.
[16]M.Funato et al.:Appl.Phys.Express.3(2010)021002.
[17]Y.Yoshizumi et al.:Appl.Phys.Express 2(2009)092101.
[18]D.Feezell et al.:Jpn.J.Appl.Phys.46(2007)L284.
[19]A.Tyagi et al.:Appl.Phys.Lett.97(2009)251905.
[20]E.Young et al.:Appl.Phys.Express 3(2010)011004.
[21]J.W.Matthews and A.E.Blakeslee:J.Cryst.生成th 27(1974)118.
[22]J.Muller et al.:Appl.Phys.Lett.95(2009)051104.
[23]H.Y.Ryu et al.:Photonics Tech.Lett.19(2007)1717.
[24]T.Kozaki et al.:Proc.of SPIE,6133(2006)613306-1.
[25]S.Bruninghoffet al.:Proc.SPIE 7216(2009)72161C.
[26]Anurag Tyagi et al.,Applied Physics Letters,95,251905(2009).
[27]Po Shan Hsu,Kathryn M.Kelchner,Anurag Tyagi,Robert M.Farrell,Daniel A.Haeger,Kenji Fujito,Hiroaki Ohta,Steven P.DenBaars,James S.Speck,andShuji Nakamura,entitled“InGaN/GaN Blue Laser Diode Grown on Semipolar(30-31)Free-Standing GaN Substrates,”Applied Physics Express 3(2010)052702.
[28]Powerpoint slides by Po Shan Hsu,entitled“”InGaN/GaN Laser DiodesGrown on(30-31)and(30-3-1)Free Standing GaN substrates”Solid State Lightingand Energy Center Annual Review,University of California,Santa Barbara,November 5,2010.
结论
这总结了对本发明优选实施方式的描述。上文对本发明一个或多个实施方式的描述呈现的目的是示例和描述。其不意为是详尽的或将本发明限于确切的公开形式。通过上文指导,可以进行多种修正和改变。其意为本发明的范围不受限于详细描述,而由所附权利要求限定。

Claims (29)

1.光电子装置,所述光电子装置包括:
一个或多个半极性III-氮化物层,所述一个或多个半极性III-氮化物层在GaN的半极性晶体平面上外延生成,其中:所述半极性晶体平面在GaN的c-方向且与GaN的m-平面x度定向,其中-15<x<-1和1<x<15度;和所述半极性晶体平面是{30-31}、{30-3-1}、{40-41}或{40-4-1}平面。
2.权利要求1所述的装置,其中所述半极性晶体平面是邻接的、错切的或离轴独立的GaN基底的顶部表面。
3.权利要求1所述的装置,其中所述III-氮化物层包含一个或多个InGaN层,所述InGaN层的厚度大于或等于Mathews-Blakeslee临界厚度,其中所述临界厚度是沉积于在GaN的c-方向且与GaN的m-平面15度或以上定向的GaN的半极性晶体平面上的InGaN层的厚度。
4.光电子装置,所述光电子装置包括:
一个或多个半极性III-氮化物层,其具有一个或多个III-氮化物组成,所述一个或多个半极性III-氮化物层在GaN的半极性晶体平面上外延生成,其中:
所述半极性晶体平面在GaN的c-方向且与GaN的m-平面x度定向,其中-15<x<-1和1<x<15度;
所述半极性III-氮化物层的一个或多个具有一个或多个厚度;所述厚度的一个或多个与沉积在GaN的{11-22}半极性晶体平面上、具有所述一个或多个III-氮化物组成的一个或多个半极性III-氮化物层的一个或多个临界厚度相比更大;
所述光电子装置是激光器二极管,其中所述III-氮化物层包含一个或多个InGaN层,并且所述一个或多个InGaN层包含InGaN波导,所述InGaN波导提供对于所述激光器二极管的模态限制,所述激光器二极管以每平方厘米14kiloamps的电流密度发射激光并且发射在至少445纳米的波长处具有峰值强度的光;和
所述激光器二极管包含对于在X射线倒易空间映射的Qx轴上垂直对齐的所述III-氮化物层的每一个通过布拉格峰测量的一致应变的结构。
5.权利要求4所述的装置,其中所述半极性III-氮化物层进一步包括光发射InGaN活性层,所述光发射InGaN活性层包括一个或多个InGaN量子阱,一个或多个所述量子阱的铟组成为至少16%,厚度大于4纳米。
6.权利要求3所述的装置,其中所述InGaN层的铟组成为至少7%。
7.权利要求1所述的装置,其中所述光电子装置在GaN基底的错切或邻接的表面上生成,所述错切或邻接的表面包括所述半极性晶体平面,所述半极性III-氮化物层进一步包括:
一个或多个n型(Al,In,Ga)N层;
一个或多个p型(Al,In,Ga)N层;和
在所述一个或多个n型(Al,In,Ga)N层与所述一个或多个p型(Al,In,Ga)N层之间、包含一个或多个InGaN量子阱层的InGaN活性层,其中所述n型(Al,In,Ga)N层、所述p型(Al,In,Ga)N层和所述InGaN量子阱层具有所述半极性晶体平面的半极性定向,并且所述InGaN量子阱层在至少478nm的波长处具有光发射峰或光吸收峰。
8.权利要求1所述的装置,其中所述光电子装置是激光器二极管,并且所述半极性III-氮化物层包括:
在半极性晶体平面上或上方的n型GaN层;
在所述n型GaN层上或上方的n型InGaN波导层,所述n型InGaN波导层的厚度为至少50nm,铟组成为7%或以上;
在所述n型InGaN波导层上或上方的InGaN活性层,其包括铟组成为至少7%且厚度大于4nm的一个或多个InGaN量子阱层;
在所述InGaN活性层上或上方的p型InGaN波导层;和
在所述p型InGaN波导层上或上方的p型GaN层,所述p型InGaN波导层的厚度为至少50nm,铟组成为7%或以上,其中所述半极性III-氮化物层具有所述半极性晶体平面的半极性定向。
9.光电子装置,所述光电子装置包括:
一个或多个半极性III-氮化物层,所述一个或多个半极性III-氮化物层在GaN的半极性晶体平面上外延生成,其中:
所述半极性晶体平面在GaN的c-方向且与GaN的m-平面x度定向,其中-15<x<-1和1<x<15度,
所述半极性III-氮化物层的一个或多个具有一个或多个厚度、一个或多个III-氮化物组成、和铟掺入,和
所述半极性晶体平面包含原子确定的平面,从而实现所述III-氮化物层的平滑外延生成,
所述光电子装置发射在至少445纳米的波长处具有峰值强度的光,和
所述厚度的一个或多个与沉积在GaN的{11-22}半极性晶体平面上、具有所述一个或多个III-氮化物组成的一个或多个半极性III-氮化物层的一个或多个临界厚度相比更大。
10.权利要求1所述的装置,其中在所述半极性晶体平面上生成的所述装置包括激光器二极管、发光二极管、超发光二极管、半导体放大器、光子晶体激光器、太阳能电池或光检测器。
11.权利要求10所述的装置,其中所述激光器二极管为VCSEL激光器。
12.权利要求1所述的装置,其中所述装置是在所述半极性晶体平面上生成的激光器二极管,所述激光器二极管包含波导,所述波导定向在所述激光器二极管的c-投影方向,用于更高的增益。
13.制造光电子装置的方法,包括:
在GaN的半极性晶体平面上外延沉积一个或多个半极性III-氮化物层,其中:
所述半极性晶体平面在GaN的c-方向且与GaN的m-平面x度定向,其中-15<x<-1和1<x<15度,和
所述半极性晶体平面是{30-31}、{30-3-1}、{40-41}或{40-4-1}平面。
14.权利要求13所述的方法,其中所述半极性晶体平面是邻接的、错切的或离轴独立的GaN基底的顶部表面。
15.权利要求13所述的方法,其中所述沉积一个或多个半极性III-氮化物层包括沉积一个或多个InGaN层,其厚度大于或等于Mathews-Blakeslee临界厚度,其中所述临界厚度是沉积于在所述GaN的c-方向且与所述GaN的m-平面15度或以上定向的GaN的半极性晶体平面上的InGaN层的厚度。
16.权利要求15所述的方法,其中所述光电子装置是激光器二极管,并且一个或多个所述InGaN层包含InGaN波导,所述InGaN波导提供对于所述激光器二极管的模态限制,所述激光器二极管在至少460nm的波长处具有激光发射峰。
17.权利要求16所述的方法,其中所述沉积一个或多个半极性III-氮化物层进一步包括沉积光发射InGaN活性层,所述光发射InGaN活性层包括一个或多个InGaN量子阱,一个或多个所述量子阱的铟组成为至少16%,厚度大于4纳米。
18.权利要求16所述的方法,其中所述InGaN层的铟组成为至少7%。
19.权利要求13所述的方法,其中:
所述光电子装置沉积在GaN基底的错切或邻接的表面上,所述错切或邻接的表面包括所述半极性晶体平面,和
所述沉积一个或多个半极性III-氮化物层进一步包括:
在所述半极性晶体平面上沉积一个或多个n型(Al,In,Ga)N层,
在所述一个或多个n型(Al,In,Ga)N层上或上方沉积InGaN活性层,所述InGaN活性层包含一个或多个InGaN量子阱层,和
在所述InGaN量子阱层上沉积一个或多个p型(Al,In,Ga)N层,其中所述n型(Al,In,Ga)N层、所述p型(Al,In,Ga)N层和所述InGaN量子阱层具有所述半极性晶体平面的半极性定向,并且所述InGaN量子阱层在至少477nm的波长处具有光发射峰或光吸收峰。
20.权利要求13所述的方法,其中所述光电子装置是激光器二极管,所述沉积一个或多个半极性III-氮化物层进一步包括:
在所述半极性晶体平面上或上方沉积n型GaN层;
在所述n型GaN层上或上方沉积n型InGaN波导层,所述n型InGaN波导层的厚度为至少50nm,铟组成为7%或以上;
在所述n型InGaN波导层上或上方沉积InGaN活性层,其包括铟组成为至少7%且厚度大于4nm的一个或多个InGaN量子阱层;
在所述InGaN量子阱层上或上方沉积p型InGaN波导层;和
在所述p型InGaN波导层上或上方沉积p型GaN层,所述p型InGaN波导层的厚度为至少50nm,铟组成为7%或以上,其中所述III-氮化物层具有所述半极性晶体平面的半极性定向。
21.制造光电子装置的方法,包括:
在GaN的半极性晶体平面上外延沉积一个或多个半极性III-氮化物层,其中:
所述半极性晶体平面在GaN的c-方向且与GaN的m-平面x度定向,其中-15<x<-1和1<x<15度;
所述半极性III-氮化物层的一个或多个具有一个或多个厚度、一个或多个III-氮化物组成、和铟掺入;所述半极性晶体平面包括原子确定的平面,从而实现所述III-氮化物层的平滑外延生成;
所述光电子装置发射在至少445纳米的波长处具有峰值强度的光;和
所述厚度的一个或多个与沉积在GaN的{11-22}半极性晶体平面上、具有所述一个或多个III-氮化物组成的一个或多个半极性III-氮化物层的一个或多个临界厚度相比更大。
22.权利要求13所述的方法,其中沉积在所述半极性晶体平面上的所述光电子装置包括激光器二极管、发光二极管、超发光二极管、半导体放大器、光子晶体激光器、太阳能电池或光检测器。
23.权利要求22所述的方法,其中所述激光器二极管为VCSEL激光器。
24.权利要求13所述的方法,其中所述光电子装置是在所述半极性晶体平面上生成的激光器二极管,并且所述激光器二极管包含波导,所述波导定向在所述激光器二极管的c-投影方向,用于更高的增益。
25.权利要求13所述的方法,进一步包括:
选择所述半极性晶体平面,从而增加在所述半极性晶体平面上生成的所述III-氮化物层的临界厚度,和在氮环境中生成所述III-氮化物层。
26.权利要求13所述的方法,其中所述III-氮化物层包含这样的III-氮化物层,所述III-氮化物层的厚度大于或等于沉积于在所述GaN的c-方向且与所述GaN的m-平面15度或以上定向的GaN的半极性晶体平面的此类层的临界厚度。
27.权利要求13所述的方法,其中所述半极性晶体平面和沉积条件使得所述III-氮化物层的一个或多个具有0.75nm或更小的表面粗糙度。
28.权利要求1所述的装置,其中所述III-氮化物层的一个或多个具有0.75nm或更小的表面粗糙度。
29.权利要求1所述的装置,其中所述III-氮化物层包含这样的III-氮化物层,所述III-氮化物层的厚度大于或等于沉积于在所述GaN的c-方向且与所述GaN的m-平面15度或以上定向的GaN的半极性晶体平面的此类层的临界厚度。
CN201180012048.9A 2010-03-04 2011-03-04 在C‑方向错切小于+/‑15度的m‑平面基底上的半极性III‑氮化物光电子装置 Active CN102782966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710215977.9A CN106972346B (zh) 2010-03-04 2011-03-04 在C-方向错切小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31063810P 2010-03-04 2010-03-04
US61/310,638 2010-03-04
PCT/US2011/027267 WO2011109754A1 (en) 2010-03-04 2011-03-04 Semi-polar iii-nitride optoelectronic devices on m-plane substrates with miscuts less than +/-15 degrees in the c-direction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710215977.9A Division CN106972346B (zh) 2010-03-04 2011-03-04 在C-方向错切小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置

Publications (2)

Publication Number Publication Date
CN102782966A CN102782966A (zh) 2012-11-14
CN102782966B true CN102782966B (zh) 2017-04-26

Family

ID=44531316

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180012048.9A Active CN102782966B (zh) 2010-03-04 2011-03-04 在C‑方向错切小于+/‑15度的m‑平面基底上的半极性III‑氮化物光电子装置
CN201710215977.9A Active CN106972346B (zh) 2010-03-04 2011-03-04 在C-方向错切小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710215977.9A Active CN106972346B (zh) 2010-03-04 2011-03-04 在C-方向错切小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置

Country Status (7)

Country Link
US (3) US9077151B2 (zh)
EP (1) EP2543119B1 (zh)
JP (3) JP5972798B2 (zh)
KR (1) KR101854419B1 (zh)
CN (2) CN102782966B (zh)
TW (1) TWI560963B (zh)
WO (1) WO2011109754A1 (zh)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
US8143148B1 (en) 2008-07-14 2012-03-27 Soraa, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
WO2010017148A1 (en) 2008-08-04 2010-02-11 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8422525B1 (en) 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9531164B2 (en) 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8791499B1 (en) 2009-05-27 2014-07-29 Soraa, Inc. GaN containing optical devices and method with ESD stability
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US7933303B2 (en) 2009-06-17 2011-04-26 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
JP5206699B2 (ja) 2010-01-18 2013-06-12 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5234022B2 (ja) * 2009-07-15 2013-07-10 住友電気工業株式会社 窒化物系半導体発光素子
US9000466B1 (en) 2010-08-23 2015-04-07 Soraa, Inc. Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
JP5972798B2 (ja) * 2010-03-04 2016-08-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US8189639B2 (en) * 2010-05-28 2012-05-29 Corning Incorporated GaN-based laser diodes with misfit dislocations displaced from the active region
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9236530B2 (en) * 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
EP2823515A4 (en) 2012-03-06 2015-08-19 Soraa Inc LIGHT-EMITTING DIODES WITH MATERIAL LAYERS WITH LOW BREAKING INDEX TO REDUCE LIGHT PIPE EFFECTS
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
EP2832901A4 (en) 2012-03-30 2015-07-08 Mitsubishi Chem Corp GROUP 13 METAL NITRIDE CRYSTALS OF THE PERIODIC TABLE OF ELEMENTS AND PROCESS FOR THE MANUFACTURE OF GROUP 13 METAL NITRIDE CRYSTALS OF THE PERIODIC TABLE OF ELEMENTS
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US20130322481A1 (en) * 2012-05-31 2013-12-05 Rajaram Bhat Laser diodes including substrates having semipolar surface plane orientations and nonpolar cleaved facets
US9099843B1 (en) 2012-07-19 2015-08-04 Soraa Laser Diode, Inc. High operating temperature laser diodes
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US20140126599A1 (en) * 2012-11-06 2014-05-08 The Regents Of The University Of California (Al,In,B,Ga)N BASED SEMIPOLAR AND NONPOLAR LASER DIODES WITH POLISHED FACETS
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
WO2015057771A1 (en) * 2013-10-15 2015-04-23 The Penn State Research Foundation Light emitting diodes and photodetectors
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
US9368582B2 (en) * 2013-11-04 2016-06-14 Avogy, Inc. High power gallium nitride electronics using miscut substrates
WO2015089379A1 (en) * 2013-12-13 2015-06-18 The Regents Of The University Of California High power semipolar {30-3-1} light-emitting diodes with low current droop and low thermal droop
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9564736B1 (en) 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
CN108779580B (zh) * 2016-03-15 2021-11-16 三菱化学株式会社 GaN结晶的制造方法
KR102330929B1 (ko) 2016-06-29 2021-11-24 스미토모 오사카 세멘토 가부시키가이샤 산화 타이타늄 입자와, 그것을 이용한 산화 타이타늄 입자 분산액 및 화장료
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
CN108389942A (zh) * 2018-02-07 2018-08-10 赛富乐斯股份有限公司 发光装置及其制造方法
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11402672B2 (en) * 2018-05-03 2022-08-02 X Development Llc Quantum confined nanostructures with improved homogeneity and methods for making the same
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
GB2580956B (en) * 2019-01-31 2023-01-25 Exalos Ag Amplified Spontaneous Emission Semiconductor Source
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US11195973B1 (en) * 2019-05-17 2021-12-07 Facebook Technologies, Llc III-nitride micro-LEDs on semi-polar oriented GaN
US11175447B1 (en) 2019-08-13 2021-11-16 Facebook Technologies, Llc Waveguide in-coupling using polarized light emitting diodes
EP4083670A1 (en) 2021-04-30 2022-11-02 Nokia Solutions and Networks Oy Optical waveguide circuits having laterally tilted waveguide cores

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652832A (zh) * 2007-01-26 2010-02-17 晶体公司 厚的赝晶氮化物外延层

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011708A (en) 1956-10-19 1961-12-05 Howard A Reed Reset unit for voting machines
US6849472B2 (en) * 1997-09-30 2005-02-01 Lumileds Lighting U.S., Llc Nitride semiconductor device with reduced polarization fields
US6163557A (en) * 1998-05-21 2000-12-19 Xerox Corporation Fabrication of group III-V nitrides on mesas
TW480751B (en) * 2001-04-09 2002-03-21 Uni Light Technology Inc Semiconductor light emitting diode based on off-cut substrate
US6833564B2 (en) * 2001-11-02 2004-12-21 Lumileds Lighting U.S., Llc Indium gallium nitride separate confinement heterostructure light emitting devices
US6683327B2 (en) * 2001-11-13 2004-01-27 Lumileds Lighting U.S., Llc Nucleation layer for improved light extraction from light emitting devices
JP3951013B2 (ja) * 2002-05-07 2007-08-01 独立行政法人産業技術総合研究所 固体ターゲットパルスレーザ蒸着法によるGaN結晶性薄膜の作製方法及び同法で作製した薄膜
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7118813B2 (en) 2003-11-14 2006-10-10 Cree, Inc. Vicinal gallium nitride substrate for high quality homoepitaxy
JP3816942B2 (ja) 2004-10-27 2006-08-30 三菱電機株式会社 半導体素子の製造方法
JP2006332370A (ja) 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd 窒化物半導体発光素子
US8148713B2 (en) * 2008-04-04 2012-04-03 The Regents Of The University Of California Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes
JP5048236B2 (ja) * 2005-11-10 2012-10-17 住友電気工業株式会社 半導体発光素子、および半導体発光素子を作製する方法
KR101510461B1 (ko) * 2006-01-20 2015-04-08 더 리전츠 오브 더 유니버시티 오브 캘리포니아 반극성 (Al,In,Ga,B)N의 개선된 성장 방법
CN101009346A (zh) * 2006-01-27 2007-08-01 中国科学院物理研究所 硅衬底上生长的非极性a面氮化物薄膜及其制法和用途
KR100837404B1 (ko) 2006-10-18 2008-06-12 삼성전자주식회사 반도체 광전 소자
JP5332168B2 (ja) * 2006-11-17 2013-11-06 住友電気工業株式会社 Iii族窒化物結晶の製造方法
WO2008073384A1 (en) * 2006-12-11 2008-06-19 The Regents Of University Of California Non-polar and semi-polar light emitting devices
JP2008285364A (ja) 2007-05-17 2008-11-27 Sumitomo Electric Ind Ltd GaN基板、それを用いたエピタキシャル基板及び半導体発光素子
TWI604512B (zh) * 2007-06-15 2017-11-01 美國加利福尼亞大學董事會 非極性三族氮化物膜、使用其製造之裝置及生長其之方法
EP2176878A4 (en) * 2007-08-08 2010-11-17 Univ California PLANAR NON-POLAR PLAN M GROUP III NITRIDE FILMS THAT ARE GROWN ON CUTTING ANGLE SUBSTRATES
US8080469B2 (en) * 2007-09-19 2011-12-20 The Regents Of The University Of California Method for increasing the area of non-polar and semi-polar nitride substrates
TW201442280A (zh) * 2007-11-30 2014-11-01 Univ California 利用表面粗糙之高度光取出效率之氮化物基發光二極體
JP2009152276A (ja) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp 窒化物半導体レーザの製造方法
JP2011511462A (ja) * 2008-02-01 2011-04-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ウエハの軸外カットによる窒化物発光ダイオードの偏光の向上
JP2011511463A (ja) * 2008-02-01 2011-04-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア インジウム混和の増加による、窒化物発光ダイオードの偏光の向上
JP2009252861A (ja) * 2008-04-03 2009-10-29 Rohm Co Ltd 半導体レーザ素子
TW200950162A (en) * 2008-04-04 2009-12-01 Univ California Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes
TWI460322B (zh) * 2008-06-04 2014-11-11 Sixpoint Materials Inc 藉由氨熱生長法自初始第iii族氮化物種產生具改良結晶度之第iii族氮化物晶體之方法
JP5295871B2 (ja) * 2008-07-03 2013-09-18 古河機械金属株式会社 Iii族窒化物半導体基板の製造方法
JP4572963B2 (ja) 2008-07-09 2010-11-04 住友電気工業株式会社 Iii族窒化物系半導体発光素子、及びエピタキシャルウエハ
JP4475358B1 (ja) 2008-08-04 2010-06-09 住友電気工業株式会社 GaN系半導体光素子、GaN系半導体光素子を作製する方法、及びエピタキシャルウエハ
US8284810B1 (en) * 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
JP5077303B2 (ja) * 2008-10-07 2012-11-21 住友電気工業株式会社 窒化ガリウム系半導体発光素子、窒化ガリウム系半導体発光素子を作製する方法、窒化ガリウム系発光ダイオード、エピタキシャルウエハ、及び窒化ガリウム系発光ダイオードを作製する方法
JP2010123920A (ja) * 2008-10-20 2010-06-03 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子を作製する方法、及びエピタキシャルウエハを作製する方法
JP4775455B2 (ja) * 2009-02-17 2011-09-21 住友電気工業株式会社 Iii族窒化物半導体レーザ、及びiii族窒化物半導体レーザを作製する方法
TW201044444A (en) * 2009-03-02 2010-12-16 Univ California Method of improving surface morphology of (Ga,Al,In,B)N thin films and devices grown on nonpolar or semipolar (Ga,Al,In,B)N substrates
US9531164B2 (en) * 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
JP5195613B2 (ja) * 2009-04-23 2013-05-08 日立電線株式会社 窒化物半導体自立基板の製造方法
US8247887B1 (en) * 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8749030B2 (en) * 2009-05-29 2014-06-10 Soraa, Inc. Surface morphology of non-polar gallium nitride containing substrates
WO2010141943A1 (en) * 2009-06-05 2010-12-09 The Regents Of The University Of California LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES
US8355418B2 (en) * 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
JP5515575B2 (ja) * 2009-09-30 2014-06-11 住友電気工業株式会社 Iii族窒化物半導体光素子、エピタキシャル基板、及びiii族窒化物半導体光素子を作製する方法
WO2011070760A1 (ja) 2009-12-09 2011-06-16 パナソニック株式会社 半導体素子の製造方法
JP5972798B2 (ja) 2010-03-04 2016-08-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス
JP2011187579A (ja) * 2010-03-05 2011-09-22 Sony Corp モードロック半導体レーザ素子及びその駆動方法
CN101847578B (zh) * 2010-04-23 2011-09-21 西安电子科技大学 基于m面Al2O3衬底上半极性GaN的生长方法
US20120100650A1 (en) * 2010-10-26 2012-04-26 The Regents Of The University Of California Vicinal semipolar iii-nitride substrates to compensate tilt of relaxed hetero-epitaxial layers
TW201222872A (en) * 2010-10-26 2012-06-01 Univ California Limiting strain relaxation in III-nitride heterostructures by substrate and epitaxial layer patterning
US20120104360A1 (en) * 2010-10-29 2012-05-03 The Regents Of The University Of California Strain compensated short-period superlattices on semipolar or nonpolar gan for defect reduction and stress engineering
US20120273796A1 (en) * 2011-04-29 2012-11-01 The Regents Of The University Of California High indium uptake and high polarization ratio for group-iii nitride optoelectronic devices fabricated on a semipolar (20-2-1) plane of a gallium nitride substrate
KR20140025507A (ko) * 2011-05-13 2014-03-04 더 리전츠 오브 더 유니버시티 오브 캘리포니아 비-C-면 (Al,Ga,In)N 상의 실리콘 도핑에 의한 임계 두께의 증가 및 경사진 결함 형성의 억제
CN102420277B (zh) * 2011-11-15 2013-06-05 南京大学 一种制备高密度氮化镓量子点有源层结构的方法
FR3003397B1 (fr) * 2013-03-15 2016-07-22 Soitec Silicon On Insulator Structures semi-conductrices dotées de régions actives comprenant de l'INGAN
CN106159671B (zh) * 2015-04-10 2018-11-09 中国科学院苏州纳米技术与纳米仿生研究所 Ⅲ族氮化物HEMT与GaN激光器的集成单片及其制作方法
CN106711764B (zh) * 2015-11-16 2019-07-05 中国科学院苏州纳米技术与纳米仿生研究所 GaN基激光器和超辐射发光二极管及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652832A (zh) * 2007-01-26 2010-02-17 晶体公司 厚的赝晶氮化物外延层

Also Published As

Publication number Publication date
US9917422B2 (en) 2018-03-13
JP2017216484A (ja) 2017-12-07
US9077151B2 (en) 2015-07-07
US20150255959A1 (en) 2015-09-10
CN106972346B (zh) 2019-12-10
US20110216795A1 (en) 2011-09-08
JP6804413B2 (ja) 2020-12-23
JP5972798B2 (ja) 2016-08-17
JP2016129266A (ja) 2016-07-14
CN106972346A (zh) 2017-07-21
EP2543119B1 (en) 2020-02-12
US20180152004A1 (en) 2018-05-31
TW201136080A (en) 2011-10-16
EP2543119A4 (en) 2015-08-12
KR20130005281A (ko) 2013-01-15
KR101854419B1 (ko) 2018-05-03
TWI560963B (en) 2016-12-01
WO2011109754A1 (en) 2011-09-09
CN102782966A (zh) 2012-11-14
US11552452B2 (en) 2023-01-10
EP2543119A1 (en) 2013-01-09
JP2013521665A (ja) 2013-06-10

Similar Documents

Publication Publication Date Title
CN102782966B (zh) 在C‑方向错切小于+/‑15度的m‑平面基底上的半极性III‑氮化物光电子装置
US8866126B2 (en) Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations
US20100309943A1 (en) LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES
US20110243172A1 (en) Aluminum gallium nitride barriers and separate confinement heterostructure (sch) layers for semipolar plane iii-nitride semiconductor-based light emitting diodes and laser diodes
Hsu et al. InGaN/GaN blue laser diode grown on semipolar (3031) free-standing GaN substrates
Wu et al. Misfit dislocation formation at heterointerfaces in (Al, In) GaN heteroepitaxial layers grown on semipolar free-standing GaN substrates
KR20120075463A (ko) 불합치 전위들을 가지는 부분적으로 또는 완전히 완화된 알루미늄 인듐 갈륨 질화물층들에 의한 반극성 질화물 양자 우물들 내의 이방성 변형 제어
US11411137B2 (en) III-nitride light emitting diodes with tunnel junctions wafer bonded to a conductive oxide and having optically pumped layers
US20120273796A1 (en) High indium uptake and high polarization ratio for group-iii nitride optoelectronic devices fabricated on a semipolar (20-2-1) plane of a gallium nitride substrate
Shan Hsu et al. Blue and aquamarine stress-relaxed semipolar (112¯ 2) laser diodes
US10186835B2 (en) Monolithic integration of optically pumped III-nitride devices
JP5344676B2 (ja) 発光素子用基板および発光素子
Kneissl et al. Optical and structural properties of InGaN light-emitters on nonpolar and semipolar GaN
Becerra High Power High Efficiency Semipolar InGaN Light Emitting Devices for Solid State Lighting
Abare Growth and fabrication of nitride-based distributed feedback laser diodes
Kelchner et al. Progress in Nonpolar and Semipolar GaN Materials and Devices
JP2008305969A (ja) 光学素子及び発光装置
Kowsz Electrically Injected and Optically Pumped III-Nitride Devices for Polarized White Light Emission
Hansen Improved characteristics of indium gallium nitride-based laser diodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant