TW480751B - Semiconductor light emitting diode based on off-cut substrate - Google Patents

Semiconductor light emitting diode based on off-cut substrate Download PDF

Info

Publication number
TW480751B
TW480751B TW90108396A TW90108396A TW480751B TW 480751 B TW480751 B TW 480751B TW 90108396 A TW90108396 A TW 90108396A TW 90108396 A TW90108396 A TW 90108396A TW 480751 B TW480751 B TW 480751B
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting diode
patent application
scope
Prior art date
Application number
TW90108396A
Other languages
Chinese (zh)
Inventor
Li-Shin Guo
Chin-Hao Hsu
Bor-Jen Wu
Wen-Shr Shiu
Original Assignee
Uni Light Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uni Light Technology Inc filed Critical Uni Light Technology Inc
Priority to TW90108396A priority Critical patent/TW480751B/en
Application granted granted Critical
Publication of TW480751B publication Critical patent/TW480751B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

The present invention relates to the fabrication of a light emitting diode, especially a light emitting diode made of compound semiconductor material. Light is emitted from an active region containing multiple quantum well structure. The active region is sandwiched by the upper and lower InGaAlP layers and upper cladding layer. Light emitting efficiency of the active region is improved by adding light and electron reflection layers. InGaAlP epitaxy layer is grown on a GaAs substrate in an inclined angle 111 A by organometallic vapor phase epitaxy (OMVPE) to improve the quality of the epitaxial layer and the surface planarity of the epitaxy and the light emitting efficiency. An off-cut substrate has the same electrical conductivity as the lower layers that are cladding layers close to the substrate. A light transmitting layer with a second kind of conductivity is on top of the higher cladding layer, which is also served as the current spreading layer to spread current and disperse the emitted light. The light transmitting layer consists of a barrier layer, a lattice gradient layer and a window layer whose energy state is transparent with respect to the incidence light.

Description

5 - 1發明領域: 明疋有關一種製造發光二 關-種可以取代傳統技藝 =方法,特別是有 料以製成發光二極胃,並“ ^ f的化合物半導體材 • 毛先—極體放射效率的方法 5 - 2發明背景: 以InGaAlP為基礎的合金對於波長介於紅光與綠光之 間的發光二極體的製程乃是一相當重要的半導體材料。 In^GanAlOuP合金與GaAs底材是晶格匹配的(lattice match),並有一 UeV到2·3Εν的直接轉換能隙,在此能 隙内Α1的分子組成大約在0<χ<0.7之間。當Μ的組成大約 在X〜0. 7時InG.5(Gai-xAlx)Q.5p有一間接能階。當Ai的組成χ 〜la夺In〇.5(Ga "Al X) 〇.5P有另一間接能階,約為2· 3eV。為 了得到有效率的發光,必須有強大的載子發光再結合( recombination)及高效率的發光二極體。以inGaAlp為基 礎的發光二極體中在較短波長,也就是紅光與黃—綠光的 可見光光谱之間有一直接轉換能隙以供高亮度的發光。 此外’ I η 〆G a i—χΑ 1 X) 〇· 有近乎完美的晶格對準( alignment)且在GaAs在V/III/V/III族介面半導體底材5-1 Field of the Invention: Ming Li is concerned with a method of manufacturing light-emitting diodes-a method that can replace traditional techniques = in particular, compound semiconductor materials that have materials to make light-emitting diode stomachs, and "^ f"-radiation efficiency of polar bodies Method 5-2 Background of the Invention: InGaAlP-based alloy is a very important semiconductor material for the process of light-emitting diodes with wavelengths between red and green. In ^ GanAlOuP alloy and GaAs substrate are Lattice match, and there is a direct conversion energy gap from UeV to 2 · 3Eν, in which the molecular composition of A1 is about 0 < x < 0.7. When the composition of M is about X ~ 0 At 7 o'clock, InG.5 (Gai-xAlx) Q.5p has an indirect energy level. When the composition of Ai χ ~ la wins In〇.5 (Ga " Al X) 0.5P has another indirect energy level, about 2 · 3eV. In order to obtain efficient light emission, it is necessary to have a strong carrier light recombination and high-efficiency light-emitting diode. InGaAlp-based light-emitting diodes have a short wavelength, that is, red There is a direct conversion energy gap between the visible spectrum of light and yellow-green light for highlighting In addition, ’I η 〆G a i—χΑ 1 X) 〇 · There is a nearly perfect lattice alignment and the semiconductor substrate of V / III / V / III interface in GaAs

第5頁 480751Page 5 480751

ΐ: JJH(charge baiance)的特性,這種特性表示 匕疋原子、.及F白層(atomic levei)磊晶成長(epi growth),像是準確控制多重量子井(MuUiple well, MQW)的厚度及組成的一良好候用元素,因此是一良 好的LED蠢晶製成材料,也因而造成InG 5(Ga! χΑι丄5P在可 見光發光二極體製程上具備很大的吸引力。 圖一顯示,一傳統式發光二極體結構,圖中結構至少 包含長在η形GaAs底材1〇1上面由inGaA 1P合金系統組成的 異質結構(double heterostructure, DH),DΗ由一個研) I η 〇. 5( G a 卜χΑ 1 X) 〇. 5Ρ較低層包覆層(cladding layer) 102、 未滲雜主動層 I n G. 5( Ga 丨—χΑ 1 x) G 5P 1 〇 3、一 p形 I n q 5( Ga bXA 1 x) 0 . 5 P較高層包覆層1 0 4、一 p形G a P電流擴散層1 〇 5、上層金 屬1 0 6及底層金屬1 0 7所組成。 圖一顯示,一發光二極體是一 p - n接合面,施以—順 向偏壓使電洞由Ρ形包覆層1 0 4及電子由η型包覆層1 〇 2注入 到主動區域1 0 3。主動區域1 〇 3由於電子與電動在本區域的 再結合而放射出可見光。電子與電動如同少數載子,被注 入且跨越主動區域(active region) 103,並可經由發光 性或非發光性而再結合(r ecomb i ne)。以I nGaA 1 P為基 礎的LED其發射波長可由調整主動區域(inQ 5(Gai_xAl χ) ^ 5p )1 0 3中A 1的組成而作改變,由一正確的能隙來對應—特 疋的發光波長。例如’在較短波長時’如黃光或黃-綠光ΐ: A characteristic of JJH (charge baiance). This characteristic represents epitaxial growth of dagger atoms, atomic levei, and F, such as accurately controlling the thickness of multiple quantum wells (MuUiple wells, MQWs). And the composition is a good candidate element, so it is a good LED stupid crystal material, which also makes InG 5 (Ga! ΧΑι 丄 5P very attractive in the visible light emitting diode system. Figure 1 shows A conventional light-emitting diode structure. The structure in the figure at least includes a heterostructure (double heterostructure, DH) composed of an inGaA 1P alloy system grown on an η-shaped GaAs substrate 101, and DΗ is made by one researcher. I η 〇 5 (G a BU χΑ 1 X) 〇 5P lower layer cladding layer 102, non-doped active layer I n G. 5 (Ga 丨 —χΑ 1 x) G 5P 1 〇3, a consisting of p-shaped I nq 5 (Ga bXA 1 x) 0.5 P higher cladding layer 104, a p-shaped G a P current diffusion layer 105, upper metal 1 106 and lower metal 1 07 . Figure 1 shows that a light-emitting diode is a p-n junction, and a forward bias is applied to cause holes to be injected from the P-shaped cladding layer 104 and electrons from the η-type cladding layer 102 to the active electrode. Area 1 0 3. Active area 103 emits visible light due to the recombination of electrons and motors in this area. Electrons and motors, like minority carriers, are injected into and across the active region 103 and can be recombined via luminescence or non-luminescence (r ecomb i ne). The emission wavelength of an LED based on I nGaA 1 P can be changed by adjusting the composition of A 1 in the active region (inQ 5 (Gai_xAl χ) ^ 5p) 1 0 3, which is corresponding by a correct energy gap. Luminous wavelength. E.g. "at shorter wavelengths" such as yellow or yellow-green

480751 五、發明說明(3) ' --- ,主動層Inu(Gai_xAlx)G.5P 103必需有較多的^組成以供 光線放射。主動層103的厚度也有其重要性,通常比入射 載子擴散長度(carrier diffusion lenghth)短,以便載 子再組合。較厚的主動層1 0 3的發光效率可以因為低密度 的載子而減少。主動層103的厚度大約在〇· 3到〇·5# m之 間。主動區域103是供載子注入(injecti〇n)與再結合( recombination)以產生光線的區域。主動區域ι〇3的材料 品質要求是很咼的,其目的是為了得到高效率的發光。因 此,主動區域1 0 3需要很低的背景本徵(丨n t r丨n s丨c )雜質, 這將會減少非發光性再結合中心(nonradiative recombination center)的密度。主動區域ι〇 3的高滲雜背 景主要是由主動區域1〇3中高密度的深度陷阱((^叩^叩3 )所引起’會導致在光線放射的過程中造成非發光性再結 合。一個乾淨與低雜質的反應腔(chamber),對於主動區 域的長成是必須的。通常,InQ 5(Gai xAlx)Q 5p主動層1〇3是 一非滲雜區’可以是P形或_,滲雜密度大約在5氺1 〇 15 到1氺1 0 17/cm乏間。在另一方面,主動區域i 〇3的背景滲 雜程度隨著A 1的組成增加而增加,這是由於主動區域丨〇 3 的A 辰度增加導致雜質濃度增加的因素。 對於較短波長的光線輻散而言,主動區域1 〇3中A 1的 組成增加’將伴隨發射光線的内量子效率(internal quantum efficiency)的減少。如上所述,主動區域的ι〇3 中較南的A 1組成’將伴隨深度位階(d e e p 1 e v e 1)的增加480751 V. Description of the invention (3) '---, the active layer Inu (Gai_xAlx) G.5P 103 must have more ^ components for light emission. The thickness of the active layer 103 also has its importance, which is usually shorter than the incident carrier diffusion lenghth so that the carriers can recombine. The luminous efficiency of the thicker active layer 103 can be reduced due to low-density carriers. The thickness of the active layer 103 is approximately between 0.3 and 0.5 # m. The active area 103 is an area for carrier injection and recombination to generate light. The material quality of the active area ι03 is very high, and its purpose is to get high-efficiency light emission. Therefore, the active region 103 needs very low background intrinsic (ntrrnsnc) impurities, which will reduce the density of the non-radiative recombination center. The highly doped background of the active area ι03 is mainly caused by a high-density depth trap ((^ 叩 ^ 叩 3) in the active area 103), which will cause non-luminous recombination during the process of light emission. A clean and low impurity reaction chamber is necessary for the growth of the active region. In general, the InQ 5 (Gai x Alx) Q 5p active layer 103 is a non-doped region, which can be P-shaped or _, The impurity density is between 5 氺 1 015 and 1 氺 1 0 17 / cm. On the other hand, the background impurity in the active area i 〇3 increases with the increase in the composition of A 1, which is due to the active Increasing the degree of A in the region 丨 〇3 leads to an increase in impurity concentration. For shorter-wavelength light divergence, the increase in the composition of A 1 in the active region 103 will be accompanied by the internal quantum efficiency of the emitted light. efficiency). As mentioned above, the southern A1 composition in ι03 in the active region will be accompanied by an increase in the depth level (deep 1 eve 1).

480751480751

發光的效 也就減少 五、發明說明(4) ,而深度位階會引發非發光性再結合 率〇 n 一型與P—型包覆層(1〇2及1〇4)為 考T戰子的办、 source),並且比主動區域1 〇3有較高的能肌 、J不源( 此I白,以PP庄,、 的載子及發出的光。這些包覆層需要良好的1 广制 >主入 的渗雜濃度以提供足夠的入射載子進入t心 電率與合適 到高效率的發光。包覆層InjGa^AlDup的产i〇3並達 ,以防止載子由主動區域1 〇 3回流到包覆展、,&要夠厚 厚到影響LED的發射效率。結果,大量的^射但又不致於The luminous effect is also reduced. 5. Description of the invention (4), and the depth level will cause a non-luminous recombination rate. On-type and P-type cladding layers (120 and 104) Source), and have higher energy muscles and J sources than the active area 103 (this I white, to PP Zhuang, and the carrier and emitted light. These coatings need a good 1 ≫ The main dopant concentration is provided to provide sufficient incident carriers to enter t ECG and suitable to high-efficiency luminescence. The cladding layer InjGa ^ AlDup produces iO3 and reaches to prevent carriers from the active area 1 〇3 reflow to the cladding, & must be thick enough to affect the LED's emission efficiency. As a result, a large amount of radiation but not so much

包覆層,漏電流因為溢流載子的非發光性載^子溢流到 通常,發光效率在傳統的LED雙異質結槿Γ 合,產生。In the cladding layer, the leakage current is caused by the non-luminous carriers of the overflow carriers. Generally, the light emitting efficiency is generated by the combination of the conventional LED double heterojunction.

丹 I d 〇 u b e I heterostructure,DΗ)會隨著波長的_」 degrade)。 文】、而衣減( 在P形包覆層1 0 4之上,有一電流擴勒 .;, ^欢稽1 〇 5以供光線 有效的散佈。電流擴散層105是一個Φ ^ ? t 、增)要能將主動層發 出之光線使其穿透出去的半導體,相當於θ ^ 田於是一窗戶戶,該 半導體對於光線由主動區域1 03所發射光 \Dan I d o u b e I heterostructure (DΗ) will degrade with wavelength _ ″. Text], and clothing minus (above the P-shaped cladding layer 104, there is a current extension.;, ^ Huanji 1 005 for the effective spread of light. The current diffusion layer 105 is a Φ ^? T, (Increase) A semiconductor that can penetrate the light emitted by the active layer to make it penetrate out is equivalent to θ ^ Tian Yu, a window user, and this semiconductor emits light from the active area 103

性的。此外,電流擴散窗戶層105必須有4=马可牙f 巧,效地將進入主動 區103與包覆層(102及104)的電流均句祕私日目 ^ 古沾為仙曲+ ,广也 J地散開,因此需要 同的滲雜濃度與厚度。 為克服上述的困難’ LED需要設計的使得光線由發光Sexual. In addition, the current diffusion window layer 105 must have 4 = Marco teeth, effectively the current entering the active area 103 and the cladding layer (102 and 104) are secretive. It also spreads out, so it needs the same doping concentration and thickness. In order to overcome the above-mentioned difficulties, the LED needs to be designed so that light is emitted from the light.

480751 五、發明說明(5) 二極體發射時具有更高效率,本發明中,以InGaA 1P為基 礎的LED數項請求項會提出來,以製作一有效率的發光二 極體。 5 - 3發明目的及概述 本發明的一目的是提供一種化合物半導體材料以製成 發光二極體的方法。 本發明的另一個目的是提供有關一種可以取代傳統技 藝中發光二極體的化合物半導體材料以製成發光二極體, 並提高發光二極體放射效率的方法。 根據以上目的,本發明提出一製造LED設計的新材質 製造方法,使得光線由發光二極體發射時具有更高效率, 本發明中,LED的InGa A 1P的數項異於傳統技藝的請求項會 提出來,以供製作一有效率的發光二極體。 5 - 4發明詳細說明: 本發明的較佳實施例將詳細討論如後。實施例乃是用 以描述使用本發明的一特定範例,並非用以限定本發明的480751 V. Description of the invention (5) Diodes have higher efficiency when emitting. In the present invention, several requests for LEDs based on InGaA 1P will be made to make an efficient light-emitting diode. 5-3 OBJECTS AND SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a light emitting diode by using a compound semiconductor material. Another object of the present invention is to provide a method for forming a light emitting diode by using a compound semiconductor material which can replace the light emitting diode in the conventional technology, and improve the radiation efficiency of the light emitting diode. According to the above purpose, the present invention proposes a new material manufacturing method for manufacturing LED design, so that light has higher efficiency when emitted by a light emitting diode. In the present invention, several items of the InGa A 1P of the LED are different from the traditional technology request items Will be proposed for making an efficient light-emitting diode. 5-4 Detailed Description of the Invention: Preferred embodiments of the present invention will be discussed in detail later. The embodiment is used to describe a specific example of using the present invention and is not intended to limit the present invention.

第9頁 480751 五、發明說明(6) 範圍。 以InGaA 1P為基礎的發光二極體,其發光顏色可由改 變主動層中In〇5(Ga 1 _χΑ 1 X) 〇 5P合金A 1的組成成分來達到一 對應特定發射波長之正確能隙,而改變主動區域的丨n。5( G a 丨-XA 1 X) 〇.5P同時導致能隙寬度(width of the band gap) 變小,其結構將傾向於較有次序(o r d e r )。為了達到相同 的發射光波長,主動區域的A 1成分需有較高的含量,但是 ,這樣卻會造成主動區域的高雜質密度,並造成低的放射 效率。排列有次序的結構,例如,半導體薄·膜内原子因有 次序或組成的改變可導因於原子的靜態位移(static displacement)產生在晶格四面體(tetragonal)形變中 的局部後:化’在I η 〇 5( G a 1—χΑ 1 X) 〇 5P合金糸統中,I n d i u m ( I η )具有比Ga或A 1原子較大的四面體(tetrahedral)共價半 徑(covalent radius) 9。因此,四面體(tetrahedral) 共價半徑的差異性會產生同類聚集 (clustering of like species)。結果相對地產生晶體結構的局部形變收縮與延 長(dilation)。由 spinodal decomposition熱力觀念來看 ’位於相位圖(phase diagram)之可溶性(miscibility) 能隙中的某一組成合金,在某一轉折溫度下會產生有次序 到無次序的轉折。實驗與熱力理論的差別在於動能與表面 結構次序形成上之考量。由我們的實驗,I n Q 5( Ga 丨-χΑ 1 x) Q 5 P薄膜遵循spinodal decomposition熱力學基本理論,在 成長溫度6 6 0 - 7 7 0度之間傾向有某種不同程度的次序結構Page 9 480751 V. Description of the invention (6) Scope. The light emitting diode based on InGaA 1P can change the composition of In〇5 (Ga 1 _χΑ 1 X) 〇5P alloy A 1 in the active layer to achieve a correct energy gap corresponding to a specific emission wavelength, and Change the n of the active area. 5 (G a 丨 -XA 1 X) 〇 0.5P also causes the width of the band gap to become smaller, and its structure will tend to be more ordered (or r de e r). In order to achieve the same emitted light wavelength, the A 1 component in the active region needs to have a higher content, but this will cause a high impurity density in the active region and a low radiation efficiency. Ordered structures, for example, the order or composition of atoms in a semiconductor thin film can be caused by the static displacement of the atoms in the local tetragonal deformation of the lattice: after the transformation In the I η 〇5 (G a 1-χΑ 1 X) 〇5P alloy system, I ndium (I η) has a tetrahedral covalent radius larger than Ga or A 1 atoms 9 . Therefore, the difference in tetrahedral covalent radii will produce a clustering of like species. As a result, local deformation shrinkage and dilation of the crystal structure are relatively generated. Judging from the thermal concept of spinodal decomposition, a composition alloy located in the miscibility energy gap of the phase diagram will produce orderly to orderless transitions at a certain transition temperature. The difference between experiment and thermal theory lies in the consideration of the formation of kinetic energy and surface structure order. From our experiments, the I n Q 5 (Ga 丨 -χΑ 1 x) Q 5 P thin film follows the basic theory of spinodal decomposition thermodynamics, and there is a tendency to have a certain degree of sequential structure between the growth temperature of 6 6-7 7 0 degrees.

第10頁 480751 五、發明說明(7) 。發光二極體在成長溫度大約高於7 〇 〇度磊晶成長,是本 發明的一請求項。另一方面,〈〇〇1〉GaAs的重新成長在 〈1 1 0〉方向的副表面層具有可變性壓縮與沿展的區域。 因為姻(I nd i um)有比Ga或A1更大的四面體(tetrahedral )共彳貝半徑’在其成長面(gr〇wing surface)上的可變性延 長與壓、、傾f生疋此ΐ適長結核位置(e n e r g y f a v 〇 r a b 1 e nucleation site),對於in、ai或Ga而言極適合它們的成 長。點暗示著’除了上述規則與非規則的轉折溫度以外 ’規則結構的形成與底材的表面結構有關。由我們的實驗 則的程度可以藉由使用不同的錯切角度之GaAs底材而 獲付改善。規則與非規則轉折溫度乃因為底材GaAs切割角 度$增加而下降。在錯切G a A s底材的表面,週期性延展與 收縮的表面重建區域,可以由底材GaAs錯切角度的增加而 獲得改善並減少。由以上結果,隨著。^底材之錯切角度 的增加,在I nGaA丨p内的原子次序規則程度會顯著的減少 〇 目Η士 ίΪ:成長溫度下,InG.5(GaHAlx)G.5P合金系統中規 、π〒現為降低量子效率的一因素,因此必須增加A工在 ϋ52&amp;1_χΑΐ x)q j主動區域的成分,來獲得特定能階寬度 二因此,可以藉由In°.5(Gai爲)◦』磊晶成長在 9的底材上,而使得轉折溫度減至低於7 0 0。 C。 此外含A1之InQ.5(Gai-xAl X) ◦ 多重量子井中的量子Page 10 480751 V. Description of the Invention (7). The epitaxial growth of the light-emitting diode at a growth temperature above about 700 degrees is a claim of the present invention. On the other hand, the secondary surface layer of <〇〇1> GaAs re-grown in the direction of <1 10> has a region of variable compression and spreading. Because marriage (Ind i um) has a greater tetrahedral common radius than Ga or A1, the variability of its growth surface (growing surface) is prolonged and pressed. A suitable nodule location (energyfav 〇rab 1 e nucleation site) is very suitable for in, ai or Ga growth. The point implies that 'in addition to the above-mentioned regular and irregular turning temperatures', the formation of a regular structure is related to the surface structure of the substrate. The degree of our experiment can be improved by using GaAs substrates with different cut angles. The regular and irregular turning temperatures decrease because the substrate GaAs cutting angle $ increases. On the surface of the miscut G a A s substrate, the surface reconstruction area that is periodically extended and contracted can be improved and decreased by increasing the miscut angle of the substrate GaAs. From the results above. ^ Increasing the miscut angle of the substrate will significantly reduce the degree of atomic order regularity in I nGaAp. 〇 ΪΪ: At the growth temperature, InG.5 (GaHAlx) G.5P alloy system, 〒 is a factor that reduces the quantum efficiency, so it is necessary to increase the A component in the ϋ52 &amp; 1_χΑΐ x) qj active region to obtain a specific energy level width II. Therefore, In ° .5 (Gai is) The crystals grow on the substrate of 9, and the turning temperature is reduced to less than 700. C. In addition, InQ.5 (Gai-xAl X) with A1 ◦ Quantum in multiple quantum wells

第11頁 480751 五、發明說明(8) 效率可由增加底材的錯切角度,而獲得改善。在g &amp; A s底材 的斜切愈朝向〈111〉A表面,會暴露愈多的陽離子終端階 梯邊緣(cation terminated step edges)。吸附雜質的 一入是經由一階梯狀陷阱(step traps),並且和成長表 面上之吸附雜質和終端階梯間的鍵結形狀有關。陽離^終 止階梯邊緣有一單一鍵結並提供較弱的吸附位置。因此, 階梯似陷阱效應(step trapping efficiency)會隨著成 長表面沿著〈1 1 1〉A之斜切角度增加而減少其附著效應。 所以,主動區雜質的加入(例如矽或氧),將隨著 &gt;角^的 增加而減少。這些不純物質可以作為光發射區域的深層及 非發光再結合的中心,並影響LED的發射效率。本發明胃中 ’以GaAs為底材且斜切角度沿者〈1 1 1〉a等於或大於丄〇度 被視為所發射的光具有較佳的效率。 此外,以InG a A 1P為基礎的LED之薄膜光滑度與品質可 由長在一斜切底材G a A s結構而獲得改善。過去用來改盖半 導體的表面光滑度所應用之磊晶技術如液相磊晶法(Page 11 480751 V. Description of the invention (8) The efficiency can be improved by increasing the angle of cut of the substrate. The more the bevel cut of the g &amp; As substrate is directed to the <111> A surface, the more cation terminated step edges will be exposed. The entry of adsorbed impurities is through step traps, and is related to the shape of the bonding between the adsorbed impurities on the growth surface and the terminal step. There is a single bond at the edge of the positive step and provides a weaker adsorption site. Therefore, the step trapping efficiency will reduce the adhesion effect of the growing surface as the chamfering angle of the growing surface along <1 1 1> A increases. Therefore, the addition of impurities in the active region (such as silicon or oxygen) will decrease as the &gt; angle increases. These impurities can be used as the deep layer of the light emission area and the center of non-luminous recombination, and affect the emission efficiency of the LED. In the stomach of the present invention, the use of GaAs as the substrate and the oblique cut along the angle <1 1 1> a is equal to or greater than 丄 0 degrees is considered to have better efficiency of the emitted light. In addition, the smoothness and quality of InG a A 1P-based LED films can be improved by growing a beveled substrate G a A s structure. In the past, epitaxial techniques, such as liquid phase epitaxy, were used to modify the surface smoothness of semiconductors.

Liquid Phase Epitaxy,LPE)或氣相磊晶法(chemicalLiquid Phase Epitaxy (LPE) or gas phase epitaxy (chemical

Vapor Deposition,CVD)以改善薄膜的光滑度。本發明中 ’則疋以I nGaA 1 P為基礎的發光二極體(LED)並應用有機 金屬氣相磊晶法(Organometalic Vapor Phase Epitaxy, OMVPE)長在斜切(0ff 一 cut)角度大於1〇妁角度長底材GaAs 上’來改善薄膜光滑度。由我們的研究,LED結構的光滑 度會隨著底材錯切角度的增加而增加,這種光滑度的改善Vapor Deposition (CVD) to improve the smoothness of the film. In the present invention, the light emitting diode (LED) based on InGaA 1 P and the organic metal vapor phase epitaxy method (OMVPE) is used to grow at an oblique cut (0ff-cut) angle greater than 1 〇 妁 angle on the long substrate GaAs to improve film smoothness. According to our research, the smoothness of the LED structure will increase with the increase of the substrate cut-off angle. This smoothness improvement

480751 五、發明說明(9)480751 V. Description of the invention (9)

對於3-5族非匹配(mismatch)異質結構如GaP、AlGaP與 I n G a A 1 P為基礎的蠢晶成長在GaA s底材上特別明顯。這些 蠢晶層如GaP、A 1 GaP與I nGaA 1 P合金與底材之間的晶袼不 匹配的私度大約為0 - 3 · 6 % ’並與合金的組成有關。在非匹 配底材上沉積過程中,薄膜初期成長傾向於在底材上長出 一些形狀如小島的結晶物,這些小島的大小隨著薄膜與底 材的非匹配度增加而增大。這將導致薄膜上形成高密度的 線狀差排(t h r e a d d i s 1 〇 c a t i ο η),且增加了沉積薄膜的 表面粗糙度。這些高密度的晶體缺陷與粗糙薄膜表面,可 以藉著增加表面結晶點數目及減少結核島面積及在非匹配 異質結構的晶格常數做一梯度(g r a d i e n t)變化而獲得改 善。薄膜結核點數目增加及島面積的減小,在本發明中是 睛求項的另一重點。可應用GaAs底材斜切一個大於1 〇。角 度,且以一個InGaAlP中間層插入到LED In。5(Gai_xAlx)Q 5p 蟲晶層與窗戶層之間當作梯度層來達到此一效果。在錯切 (of f-cut)底材上,底材階梯邊緣會隨著底材錯切角度增 加而增加。這些階梯邊緣提供一個低的能量位置給沉^ ^ 膜的結核點。因此’密度較高而面積較小的小島結核在錯 切底材上會導致薄膜品質的增加與達到較平滑的程度,^ 膜品質的改變會增加LED發光之輸出效率。此外,薄膜表 面之光滑度可以增加元件製程的範圍,例如發光二/極體^ 金屬接點製造與封裝、薄膜的品質、發光體之效率、元 製造時製程上的範圍(process window 〇f deviee fabrication)的改善都在本發明之請求項中,藉由成長For group 3-5 mismatch heterostructures such as GaP, AlGaP, and I n G a A 1 P-based stupid crystal growth is particularly evident on GaA s substrates. These stupid crystal layers such as GaP, A 1 GaP and InGaA 1 P alloys and substrates have mismatched privacy of about 0-3.6% and are related to the composition of the alloy. During the deposition process on non-matching substrates, the initial growth of the film tends to grow crystals on the substrate, such as small islands. The size of these islands increases as the mismatch between the film and the substrate increases. This will lead to the formation of high-density linear differential rows on the film (t h r e a d d i s 1 oc a t i ο η), and increase the surface roughness of the deposited film. These high-density crystal defects and rough film surfaces can be improved by increasing the number of crystal points on the surface, reducing the area of nodule islands, and making a gradient (g r a d i e n t) change in the lattice constant of the unmatched heterostructure. Increasing the number of thin film nodules and reducing the area of the island are another important point in the present invention. GaAs substrates can be applied with a bevel greater than 10. Angle and is inserted into the LED In with an InGaAlP interlayer. 5 (Gai_xAlx) Q 5p The gradient between the worm crystal layer and the window layer is used to achieve this effect. On a substrate of f-cut, the stepped edge of the substrate will increase as the angle of substrate miscut increases. These step edges provide a low energy location to the nodules of the Shen ^^ membrane. Therefore, small island nodules with higher density and smaller area will increase the film quality and reach a smoother level on the miscut substrate. ^ The change of film quality will increase the output efficiency of LED light emission. In addition, the smoothness of the film surface can increase the range of component manufacturing processes, such as light-emitting diodes / poles ^ metal contact manufacturing and packaging, the quality of the film, the efficiency of the light-emitting body, and the range of the process at the time of manufacturing (process window 〇f deviee Improvements in fabrication) are in the claims of the present invention.

480751 五、發明說明(ίο) LED中In〇.5(Ga卜XA 1 x) 〇.5P基礎結構在錯切角度1 〇戴以上的 GaAs底材上。 綜括上面的各項特性,本發明中第一個實施例,如圖 二顯示為一發光二極體的剖面圖,至少包含一光線反射層 與一個四元合金In〇.5(Ga卜XA1 X) G 5P長在η型傾斜底材GaAs 20 8上面,這裝置至少包含一個η型GaA s緩衝層2 0 9,一個η 型AlAs/Al xGa^xAs-或In〇.5(Ga卜XA1 x) G.5P為基礎之分散型布 拉格反射層(distributed Bragg reflector, DBR) 210 ,一 n型 I n 〇.5( G a hAIJuP較低層包覆層(cladding layer )21 1,一應變(strain)未滲雜 Iny(Ga卜XA1 x) LyP/In。·〆 G a 卜XA 1 x) 〇. 5P多重量子井(multiple quantum well, MQW) 2 1 2,一 p-型 I n G. 5( Ga i_xA 1 x) Q. 5P 較高層包覆層 213,一薄的 111{)5(631-/1?()〇.5?中間麥塞層214,一口-型〇3?或八1〇3八3電 流散佈層2 1 5,一頂層金屬接觸2 1 6,與一底層金屬接觸-217° 圖二發光二極體的剖面圖與圖一傳統式雙異質結構很 相似,除了在圖一 InGaA1P-主動區域1〇3是由圖二一形變 I n y( G a「ΧΑ 1 x) 1 -yP / I η 〇 5( G a 1 _XA 1X)05P多量子井 212 所取代。 一 η-型光線反射層 AlAs/AlxGabXAs-,AlAs/In〇.5(GabxAlx)〇· 5P或Irio /Gai-xAlx)。〗?_為基礎之分散型布拉格反射層( distributed Bragg reflector, DBR) 210擺在 In〇.5(Gahx A 1 x) g· 5P - L E D結構的底部以提供光線反射。此外,&lt;一 I π 〇. 5(480751 V. Description of the invention (ίο) The basic structure of In0.5 (GaB XA 1) 0.5P in the LED is on a GaAs substrate with a cut angle of more than 10 °. Summarizing the above characteristics, the first embodiment of the present invention is shown in a cross-sectional view of a light emitting diode as shown in FIG. X) G 5P is grown on the η-type inclined substrate GaAs 20 8. This device includes at least one η-type GaA s buffer layer 2 0 9 and an η-type AlAs / Al xGa ^ xAs- or In0.5 (Gab XA1 x) G.5P-based distributed Bragg reflector (DBR) 210, an n-type I n 0.5 (G a hAIJuP lower cladding layer) 21 1, a strain ( strain) Undoped Iny (Gabu XA1 x) LyP / In. 〆G a Bu XA 1 x) 〇 5P multiple quantum well (MQW) 2 1 2, a p-type I n G. 5 (Ga i_xA 1 x) Q. 5P Higher layer cladding layer 213, a thin 111 {) 5 (631- / 1? () 0.5? Middle mesas layer 214, one-mouth-type 03 or eight 103 current distribution layer 2 15, a top metal contact 2 1 6 and a bottom metal contact -217 ° Fig. 2 A cross-sectional view of a light emitting diode is similar to Fig. 1 with a conventional double heterostructure, except that Figure 1 InGaA1P-active area 103 is shown in Figure 2 A deformation I ny (G a ″ × Α 1 x) 1 -yP / I η 〇5 (G a 1 _XA 1X) 05P multiple quantum well 212 replaced. A η-type light reflection layer AlAs / AlxGabXAs-, AlAs / In 〇.5 (GabxAlx). 5P or Irio / Gai-xAlx). _? Based on a distributed Bragg reflector (DBR) 210 placed in In0.5 (Gahx A 1 x) g · 5P-The bottom of the LED structure to provide light reflection. In addition, &lt; -I π 0.5 (

第14頁 480751 五、發明說明(11)Page 14 480751 V. Description of the invention (11)

Gai_xAl x) 〇.5P電流壅塞層 214,擺在 p-型 Ino./GahAl x)。#包 覆層213與p-型GaP、AlGa或AlGaAs窗戶層215中間。Gai_xAl x) 0.5P current blocking layer 214, placed in p-type Ino./GahAl x). The cladding layer 213 is in the middle of the p-type GaP, AlGa or AlGaAs window layer 215.

圖二中L E D結構是長在有一層大約〇 · 2 - 〇 · 4 // m石夕滲雜 GaAs缓衝層20 9長在石夕滲雜傾斜底材2 0 8上。G a A s緩衝層 2 0 9是用來改善GaAs底材成長表面上的光滑性與均勻性。 成長GaAs緩衝層2 0 9對於LED多量子井21 2異質介面(heter〇 -interface s薄膜較佳的品質是必要的。接著g a A s緩衝層 209’ 一分散型布拉格反射層(distributed Bragg ref lector,DBR) 2 10長在GaAs緩衝層2 0 9上面以提供光線 反射。這層光線反射層的製成物質是選自於能階的禁止能 階帶高度(prohibited band height)與主動區域212非常The L E D structure in FIG. 2 is formed by a layer of approximately 0.2-0.04 / m Shixi doped GaAs buffer layer 209 is grown on Shixi doped slope substrate 208. The G a As buffer layer 209 is used to improve the smoothness and uniformity of the growing surface of the GaAs substrate. Growing the GaAs buffer layer 209 is necessary for the better quality of the LED multi-quantum well 21 2 hetero interface-hetero-interface s thin film. Then ga As buffer layer 209 'a distributed Bragg ref layer , DBR) 2 10 long on the GaAs buffer layer 2 0 9 to provide light reflection. The material of this light reflection layer is selected from the prohibited band height of the energy level and the active region 212.

近似的材質所組成。這層製成物質的選擇需考慮晶格匹配 (lattice matching)、能隙帶與反射係數的差別及個別 反射層的滲雜極限(doping limit of individual reflecting layer)。一般而言,一個十到二十的布拉袼 反射層(distributed Bragg reflector, DBR) 210的週期 能增加光線外部量子效率(external quantum efficiency of emitting 1 ight)的1· 5倍於一般的LED但未使用布拉袼 反射層(distributed Bragg reflector,DBR)的狀況下 。八1人3/^1/31_/3布拉格反射層210的反射波的波長;1由個 別反射層的厚度來決定,其函數關係如下為d /4n,n 疋布拉格反射層21 0各層的反射係數。布拉格反射層的目Composed of similar materials. The choice of materials for this layer requires consideration of lattice matching, differences in energy bands and reflection coefficients, and doping limit of individual reflecting layers. Generally speaking, a period of ten to twenty distributed Bragg reflector (DBR) 210 can increase the external quantum efficiency of emitting light by 1.5 times than that of ordinary LED but When a Bragg reflector (DBR) is not used. Eight people 3 / ^ 1 / 31_ / 3 The wavelength of the reflected wave of the Bragg reflection layer 210; 1 is determined by the thickness of the individual reflection layers, and its functional relationship is as follows: d / 4n, n 疋 reflection of each layer of the Bragg reflection layer 21 0 coefficient. The purpose of the Bragg reflector

第15頁 480751 五、發明說明(12) 的能隙必須大於主動區域21 2的能隙以防止任何光線的吸 收。 此外’在布拉格反射層2 1 〇各層的層與層反射係數的 差必須儘可能的加大以獲得布拉格反射層2丨〇較佳的再反 射效率。但是,布拉格反射層21〇也扮演著需要需要高密 度(2* 10 n/cm2)的傳導載子的電流注入傳遞層的功能。由 於在AlAs-底材的布拉格反射層中n_型滲雜濃度的本質限 ^ Hmitati〇n),布拉格反射層210的限制以 順向作業偏塵並同時得到布拉格反射層中反射 率大於或專於9 0-9 5%的效率。一般而言,以inGaAip_為基 礎的布拉格反射層(DBR)21〇的週期大約為十至二間: 另一個布拉格反射層21〇的候用元素為^ f :合金’它可以比A1As/A1GaAs_底材的布拉:反射。·二 板上&amp;曰样達匹到配更/Λ導電度,但是’它卻被成長在GaAs基 板上日日格匹配的控制性給抵消了。 用來:::子層包覆層In°.5(GahA“)。』211是 約在。·7&lt;χ&lt;1之間,i與動—=2二&quot;中A1的分子組^ 卜型包覆層21 1的厚度必,:二=的放射波長有關係。 避免載子由主動區域擴散到比:子的擴,長度來的厚,以 Αιχ)〇.5Ρ包覆層211大約在〇Ύ 般的η型In。5(Gai—x υ· υ· 8// m。在本發明中n—型包Page 15 480751 V. Explanation of the invention (12) The energy gap of the active region 21 must be greater than the energy gap of the active region 21 2 to prevent any light absorption. In addition, the difference between the layer and layer reflection coefficients of each layer in the Bragg reflective layer 2 10 must be as large as possible to obtain a better re-reflective efficiency of the Bragg reflective layer 2 1. However, the Bragg reflecting layer 21 also functions as a current injection transfer layer that requires a high-density (2 * 10 n / cm2) conductive carrier. Due to the intrinsic limit of n-type dopant concentration in the Bragg reflection layer of AlAs-substrate ^ Hmitati), the Bragg reflection layer 210 is restricted to work in a dusty direction and at the same time obtain a reflectance greater than or specifically At 9 0-9 5% efficiency. Generally speaking, the period of the Bragg reflection layer (DBR) 21 based on inGaAip_ is about ten to two: the candidate element of another Bragg reflection layer 21 is ^ f: alloy 'It can be better than A1As / A1GaAs _Bra of the substrate: reflection. · On the second board & said that the sample reaches the matching / Λ conductivity, but ‘it is offset by the controllability of the day-to-day grid matching grown on the GaAs substrate. Used to ::: Sublayer cladding layer In ° .5 (GahA "). 211 is about. · 7 &lt; χ &lt; 1, i and dynamic— = 2 two &quot; The thickness of the type cladding layer 21 1 must be related to the emission wavelength of: two =. To prevent carriers from diffusing from the active area to the ratio of the ions, the length is thick, and the thickness of the coating layer 211 is about 〇Ύ like η-type In. 5 (Gai-x υ · υ · 8 / / m. In the present invention n-type package

第16頁 480751 五、發明說明(13) 覆層2 1 1滲雜深度的不同,有一梯度的變化或階段式的變 化,而載子密度約在5* 10 17/cm到1* 1 0 18/cm乏間。 在本發明中P-型包覆層2 1 3的滲雜隨著深度而呈現梯 度或階段變化,載子濃度大約為5* 10 17/cm到1* 10 18/cm 2 之間。LED的光輸出效率與η-型與p-型包覆層滲雜濃度與 剖面有很大關係,正確的I η 〇. 5( Ga卜/ 1 X) 〇. 5Ρ包覆層ρ - η型滲 雜剖面所產生的在主動區域内的ρ-η接面位置對於當電流 注入後在主動區域内有效率的電子與電洞發光性的再結合 是必須的。任何個別注入載子的溢流會因為ρ-η接面的位 置偏離與滲雜分子在主動區内的擴散而導致非發射再結合 (nonrad i a t i ve recombination)中心的產生,而造成放 射光的效率的減少。在本發明中p-型I η 〇.5( Ga i_xA 1 x) Q.5P-包 覆層2 1 4的低/高滲雜程度的厚度比率約為0 . 1到0 . 3之間, 以保證準確的載子再結合,且不會在包覆層產生太大的電 壓降或載子溢流現象。一個好的放射裝置需要離多重量子 井較遠的η-型與p-型包覆層的滲雜密度約在0. 75〜1* 1 0 18 / c m 2及較接近多重量子井的η -型與ρ -型較低的包覆層滲雜 密度大約在0 . 4到0.75氺1018/cm2。 緊接著11型111().5(〇81_,1}()().5?包覆層211,一層形變的 111/63卜/1乂)1—//1110.5(〇3卜}^1父)0.5?(3 1:^1116(1)多量子井212 擺入η型與ρ型包覆層中間當作主動層。在本發明中是以 InGaAlP為超晶格(superlattice)的多重量子井用來增加Page 16 480751 V. Description of the invention (13) The coating 2 1 1 has a different gradient or stepwise variation in the depth of doping, and the carrier density is about 5 * 10 17 / cm to 1 * 1 0 18 / cm lack of room. In the present invention, the doping of the P-type cladding layer 2 1 3 exhibits a gradient or a step change with depth, and the carrier concentration is approximately 5 * 10 17 / cm to 1 * 10 18 / cm 2. The light output efficiency of LED has a great relationship with the doped concentration of η-type and p-type cladding layers and the profile. The correct I η 0.5 (Gab / 1 X) 〇 5P coating ρ-η type The position of the ρ-η junction in the active region generated by the doping profile is necessary for the effective recombination of electrons and hole luminescence in the active region after current injection. The overflow of any individual injected carriers will cause the generation of non-radiated recombination centers due to the deviation of the position of the ρ-η junction and the diffusion of dopant molecules in the active region, resulting in the efficiency of the emitted light. Reduction. In the present invention, the thickness ratio of the p / type I η 0.5 (Ga i_xA 1 x) Q.5P-cladding layer 2 1 4 with a low / high degree of impurity is about 0.1 to 0.3, In order to ensure accurate carrier recombination, and not cause too much voltage drop or carrier overflow phenomenon in the cladding layer. A good radiation device needs the η-type and p-type cladding layers with a doping density of about 0.75 ~ 1 * 1 0 18 / cm 2 and η-which are closer to the multiple quantum wells, away from the multiple quantum wells. The cladding density of the lower cladding layers is about 0.4 to 0.75 氺 1018 / cm2. Next to 11 type 111 (). 5 (〇81_, 1) () (). 5? Cladding layer 211, a layer of deformed 111/63 Bu / 1 乂 1— / 1110.5 (〇3 卜) ^ 1 (Father) 0.5? (3 1: ^ 1116 (1) multiple quantum well 212 is placed between the η-type and ρ-type cladding layers as the active layer. In the present invention, multiple quantum with InGaAlP as a superlattice Well used to increase

第17頁 480751 五、發明說明(14)Page 17 480751 V. Description of the invention (14)

2動層的效率與減少量子井中鋁的含量。在lED中量子井 、’、口構會增加放射光的效率。量子井是由一窄能帶隙的π井lf 與較向能隙的壅塞(barrier with a higher band gap) 形成。結果,電子與電洞的能量被量化(侷限)且在電流 入射方向不能自由移動。但仍能在入射電流的垂直平面上 ,由,動且能再結合。在多量子井Iny(Gai xA1U/InG 5( a 1 x) G sp 2 1 2中,在傳導帶中推促導電帶能階向上,而 侷限在價帶的載子推促價帶能階向下。多量子井結構會移 動(sh i f t)放射光的有效波長到一個較短波長。因此,主 動區域2 1 2中铭的含量可以大量減少,因此對於一特定放 射光入源長,LED的多量子結構將增加非輻射重組的生命 期,且減少光線放射的被吸收。此外,多量子井! η Ga ! % 八1山-//111〇.5(68卜/1丄.疋212的總厚度約在5〇到15〇11111 ,在目4的應用上,比圖2中異質結構主動區域(goo-goo nm)的厚度小。這將導致主動區域注入載子密度的增加並 加快光再結合。多量子井結構降低了 A丨含量,輻射重組的 載子生命期也縮短了。因此,LED多量子井主動區域212量 子效率會大量增加。多量子井2 1 2中合金的鋁組成分子大 約在0到0 _ 3之間,相對應之波長介於紅光到綠-黃光之間 ,它隨者量子井21 2的厚度與量子井的數目而調整。在多 量子井中铭組成直接能隙的合金InG5(Gai_xAlx)G5P,多量 子井21 2的發射光波長與井的厚度有極大的關連性。當多 量子井的厚度減夕,其一電帶量子化載子將有效副能帶( sub-band)往上推,且共價帶量子化載子將有效副能帶往2 Efficiency of moving layer and reducing aluminum content in quantum well. In the 1ED, the quantum well, ', port structure will increase the efficiency of the emitted light. A quantum well is formed by a narrow band gap π well lf and a barrier with a higher band gap. As a result, the energies of electrons and holes are quantified (limited) and cannot move freely in the direction of current incidence. However, it can still move on the vertical plane of the incident current and can be recombined. In the multi-quantum well Iny (Gai xA1U / InG 5 (a 1 x) G sp 2 1 2, the conduction band energy level is promoted in the conduction band, and the carriers limited to the valence band promote the valence band energy level. The multi-quantum well structure will shift the effective wavelength of the emitted light to a shorter wavelength. Therefore, the content of the active region 2 1 2 can be greatly reduced. Therefore, for a specific source of emitted light, the Multi-quantum structure will increase the lifetime of non-radiative recombination, and reduce the absorption of light emission. In addition, multi-quantum wells! Η Ga!% Yaiyama-// 111〇.5 (68b / 1/1 丄. 疋 212 of The total thickness is about 50 to 15011111, which is smaller than the thickness of the active region (goo-goo nm) of the heterostructure in Figure 2 for the application of mesh 4. This will cause the active region to increase the carrier density and accelerate the light Recombination. The structure of the multi-quantum well reduces the content of A 丨, and the lifetime of the radiative recombination carrier is also shortened. Therefore, the quantum efficiency of the active region 212 of the multi-quantum LED will increase substantially. The aluminum composition of the alloy in the multi-quantum well 2 1 2 The molecule is between 0 and 0 _ 3, and the corresponding wavelength is between red and green-yellow It is adjusted according to the thickness of the quantum well 21 2 and the number of quantum wells. In the multiple quantum well, a direct energy gap alloy InG5 (Gai_xAlx) G5P is formed. The wavelength of the emitted light of the multiple quantum well 21 2 is greatly different from the thickness of the well. Relevance. When the thickness of a multi-quantum well decreases, one of its electric band quantized carriers will push up the effective sub-band, and the covalent band quantized carriers will bring the effective side energy to

480751 五、發明說明(15) ' 一&quot;· 下推。多量子井212的量子化帶結構在井厚大約丨到i〇nm相 當敏感。結果’由於能階結構的量子化,電子盘電洞再结 合時波長會變短。InQ.5( Gai_xAlx)G.5P合金的一般總厚度大 約在1到1 Onm之間,最佳發光效率週期為丨〇到5〇。另一方 面,發光的内部量子效率也和井對壅塞(井/阻)厚度比率 有關。一般有效率的載子再結合時,井與壅塞的比值大約 在0 · 7 5到1 . 2 5之間。 晶格形變(lattice strain)也是LED多量子井21 2設計 的重要考量因子。多量子井結構的雙軸應變(biaxial s tra i η)在量化能帶結構内,可以將價帶能階分裂並退化 (quantized band structure)。這將會影響薄膜能帶結 構與薄膜物質的光學特性與電力特性。壓縮性與伸張性應 力兩者將會對LED的發光效率有正面貢獻。作用到多量子 井2 1 2的晶格不對稱應力,相當於能階結構與價帶能階分 裂。對於壓縮性的雙轴應力,重電洞(heavy ho 1 e)能階 變成一個基態(ground states),該基態有一個較低的有 效質量特性(lower effective mass character)在價帶 (valence band)的頂上。這個可壓縮的應力會加強入射 電流的垂直面之載子的運動及再結合,並造成量子井内的 内部量子效應的增加(internal quantum efficiency), 另一方面輕電洞(1 i ght ho 1 e)對於伸張性形變雙軸應力 ’是一基態(ground state),且具有較高的有效質量。 雖然受到伸張應力時,在量子井内有效質量較大,電子與480751 V. Description of invention (15) '一 &quot; · Push down. The quantized band structure of the multi-quantum well 212 is relatively sensitive at well thicknesses ranging from about 1 to 100 nm. As a result, owing to the quantization of the energy level structure, the wavelength of the electron plate hole will be shorter when they are recombined. The general total thickness of InQ.5 (Gai_xAlx) G.5P alloy is about 1 to 1 Onm, and the optimal luminous efficiency period is from 0 to 50. On the other hand, the internal quantum efficiency of light emission is also related to the thickness ratio of well to plug (well / resistance). When the effective carrier recombination generally occurs, the ratio of well to congestion is approximately between 0.75 and 1.25. Lattice strain is also an important consideration in the design of LED multiple quantum wells 21 2. The biaxial strain of the multi-quantum well structure (biaxial s tra i η) can split and degrade the valence band energy level within the quantized band structure. This will affect the optical and electrical properties of the film's band structure and film material. Both compressive and tensile stresses will positively contribute to the luminous efficiency of LEDs. The lattice asymmetric stress acting on the multi-quantum well 2 1 2 is equivalent to the energy level structure and valence band energy level splitting. For compressive biaxial stress, the heavy ho 1 e energy level becomes a ground state, which has a lower effective mass character in the valence band. On top. This compressible stress will strengthen the movement and recombination of carriers on the vertical plane of the incident current, and cause internal quantum efficiency in the quantum well. On the other hand, light holes (1 i ght ho 1 e The biaxial stress' for stretch deformation is a ground state and has a higher effective mass. Although the effective mass in the quantum well is large when subjected to tensile stress, the electron and

第19頁 480751 五、發明說明(16) 電洞較少量的k空間分佈、a , M ^ _ 1V (P〇〇r k-space)減少自發性發射 係數,而迳樣可以增加内部量子效率。因此,在 2壓縮性與伸張性應力都會對量子井中光線發射ί率有所 貝獻。據我們的研究在與L E D中其他結構的不匹配度超 過、1%,,多量子井1ny( G^-xAl χ) yP-212會鬆解。LED生命Page 19 480751 V. Description of the invention (16) The k-space distribution with a small number of holes, a, M ^ _ 1V (P0r k-space) reduces the spontaneous emission coefficient, and the sample can increase the internal quantum efficiency . Therefore, both compressive and tensile stresses contribute to the rate of light emission in the quantum well. According to our research, when the mismatch with other structures in LED is over 1%, the multi-quantum well 1ny (G ^ -xAl χ) yP-212 will loosen. LED Life

期測試顯示,在大於1 %不叩 择f . , , X 、戸外、古θ 岭匹配度(mismatch),裝置會容易 ^ ,廷疋因為乍在異質結構上的内部不匹配度應力( misnt stress)在多量子井中是不適當錯位的 ^源。亚且在兀件的製造,操作時造成點缺陷。為改善在 篁子井中光輸出效率伸張或收縮應力被限制 的多量子井與GaAs底材間的曰株,沉献,n㈣使 u的日日格不匹配在〇 · 2 %到〇 6 %之間 。在本發明+,LED最佳輪出效率可#由延著成長方向的 大約〇. 3到〇. 6%的晶體不匹配度,而產生的壓縮性應變而 得到。 圖三顯示一 LED多量子井結構,圖中至少包含一 DBR, 一四元化合物In〇.5(Ga卜XA1 x) Q SP合金長在n-型傾斜底材 G a A s 3 1 8上’該裝置至少包含GaA s緩衝層319, AlAs/Al Ga 卜 xAs-、AlAs/In〇.5(Ga 卜 xA1x)〇.5P 或 In〇.5(Ga 卜 xA1x)0.5 分散型布拉格反射層(distributed Bragg reflector, DBR)320’ 一 n型 inG 5(Ga 卜XA1 x) 〇.5P較低層包覆層 321,一形 變 Iny(Ga bXA 1 x)卜/ / I n 〇.5(Ga 卜XA 1 χ) 〇_5P多量子井 3 2 2,一 I n y( 〇31_/1,)卜/-底材電子反射層3 2 3,一13型111()5(〇3卜/10().疋 較高層包覆層3 24,一較薄InQ·〆 Ga^xAl J G 5p電流蜜塞層Periodic tests show that if the f.,, X, outer, ancient θ ridge mismatch is not selected at greater than 1%, the device will be easy ^, because of the internal mismatch stress on heterostructures ) Is an inappropriately misplaced source in a multiple quantum well. In the manufacturing and operation of the element, it caused point defects. In order to improve the light output efficiency of the multi-quantum well with GaAs substrate with limited or reduced stress in the light output efficiency, Shen Xian, n㈣ makes the daily mismatch of u between 0.2% and 6%. between. In the present invention +, the optimal LED round-out efficiency can be obtained from the compressive strain of about 0.3 to 0.6% of the crystal mismatch extending along the growth direction. Figure 3 shows an LED multi-quantum well structure. The figure contains at least one DBR. A quaternary compound In0.5 (Gabu XA1 x) Q SP alloy is grown on the n-type inclined substrate G a A s 3 1 8 'The device includes at least a GaAs buffer layer 319, AlAs / Al Ga x As-, AlAs / In 0.5 (Ga x A1x) 0.5P or In 0.5 (Ga x A1x) 0.5 dispersed Bragg reflection layer ( distributed Bragg reflector (DBR) 320 '-n-type inG 5 (Ga and XA1 x) 〇.5P lower cladding layer 321 and a deformed Iny (Ga bXA 1 x) and / I n 〇.5 (Ga and XA 1 χ) 〇_5P multi-quantum well 3 2 2, a Iny (〇31_ / 1,) Bu /-substrate electron reflective layer 3 2 3, a 13 type 111 () 5 (〇3 Bu / 10 ( ). 疋 Higher cladding layer 3 24, a thinner InQ · 〆Ga ^ xAl JG 5p current honeycomb layer

第20頁 480751 五、發明說明(17) 一頂金屬接 3 2 5, 一 p-型GaP或p型—A1GaAs電流散布層326 觸3 2 7,一底金屬接觸3 2 8所組成。 圖三中,一薄的型變壅塞層32 5或多層電子反射層323 插入到p -形包覆層3 2 4上面以增加包覆層的阻障南度( barrier height)。電子反射層323也是以〇MVPE法來成長 ,需要非常準確的介面對比、層的厚度與組成的準確控制Page 20 480751 V. Description of the invention (17) A top metal contact 3 2 5, a p-type GaP or p-A1GaAs current spreading layer 326 contact 3 2 7 and a bottom metal contact 3 2 8. In FIG. 3, a thin deformable plug layer 325 or multiple electron reflection layers 323 is inserted on the p-shaped cladding layer 3 2 4 to increase the barrier height of the cladding layer. The electron reflection layer 323 is also grown by the MVPE method, which requires very accurate interface ratio, accurate control of layer thickness and composition

。細的形變壅塞層3 2 5有一能階等於或大於包覆層的能階 且擺置於接近主動層3 2 2的區域以防止載子溢流入包覆層 以改善發光效率。p—型IriG 5A1G 5p電子反射層3 2 3是形變的 (strained) ’其位置接近主動區域322,具有相當的厚度 與應力以防止由主動區32 2產生電子穿隧(1:11111^1丨1^)效 應二另一方面,電子反射層32 3的超晶體結構是設計來反 j:,其厚度大約在N/4 deBr〇gUe電子波長,其中N是 一 p可/In:射ρΓΓΐ最大反射率由P型超晶In°.5( Gai_xAlx 二中T 厚度、週期來調整。在電子反射層 井 Γ相=:n°.5(Gai-xA^^. The finely deformed plug layer 3 2 5 has an energy level equal to or greater than that of the cladding layer and is placed in a region close to the active layer 3 2 2 to prevent carriers from overflowing into the cladding layer to improve luminous efficiency. The p-type IriG 5A1G 5p electron reflective layer 3 2 3 is strained. Its position is close to the active region 322, and it has considerable thickness and stress to prevent electron tunneling from the active region 32 2 (1: 11111 ^ 1 丨1 ^) Effect II On the other hand, the supercrystal structure of the electron reflection layer 32 3 is designed to reflect j :, its thickness is about N / 4 deBr0gUe electron wavelength, where N is a p / In: The reflectivity is adjusted by the thickness and period of T in the P-type supercrystal In ° .5 (Gai_xAlx II. In the electron reflection layer well Γ phase =: n ° .5 (Gai-xA ^^

32°3°的\ f2之光射出效率也增加時。此乃因為於電子反射 =射//Λ力:之原因。但是,這種現象在,個別的電 L皆Ξι 的範圍内’有梯度性(“ — η 或…(step)厚度增加時特別明顯,複層的電子反射7When the light emission efficiency of 32 ° 3 ° \ f2 is also increased. This is due to the reason that electron reflection = shoot // Λ force :. However, this phenomenon has a gradient in the range of the individual electric currents ("-η or (step) is particularly noticeable when the thickness increases.

第21頁 48〇75l 五、發明說明(18) 323的1110.5(631-/1\)05?的厚度變化(忌厂3(^611*〇 ,表示由 主動區域不同入射高能量電子的反射能量,因此,載子侷 p艮在梯度或階梯似區域並獲得高的電子入射能量,電子反 身子層的多樣性(variety in electron reflector)可由層 的厚度的梯度性變化而獲得。 本發明中,電子反射3 2 3至少包含一形變壅塞I η 〇. 5A 1 〇. 5P接著有接近主動層 322的 Ino./GahAl x) Q 5P/InQ.5Al G.5P 超 曰曰、、、σ構層以反射由主動層來的溢流載子,形變麥塞層In〇5 八1〇_#厚度大約為20-4〇11111,111().5(〇&amp;1_/1,)。.5?/111().5八1().5?超 晶結構週期約 1 〇一4〇,In。XGahAl x) G 5p/ln() 5A1 G.5P超晶結 構厚度大約為2 - 5 n m,在I n G. 5( G a卜XA 1 x) G 5p超晶結構層有一 固定的、階段的或梯度性的厚度剖面。Page 21 48〇75l V. Description of the invention (18) 323 1110.5 (631- / 1 \) 05? Thickness change (Don't plant 3 (^ 611 * 〇, which represents the reflected energy of different incident high energy electrons from the active area Therefore, if the carrier region p is in a gradient or step-like region and obtains a high electron incident energy, the diversity of the electron reflex sublayer (variety in electron reflector) can be obtained by a gradient change in the thickness of the layer. In the present invention, The electron reflection 3 2 3 contains at least one deformation congestion I η 0.5A 1 0.5P followed by Ino./GahAl x) Q 5P / InQ.5Al G.5P super layer, σ, σ structure layer close to the active layer 322 In order to reflect the overflow carriers from the active layer, the thickness of the Messer layer In〇5 八 1〇_ # is about 20-401111, 111 (). 5 (〇 &amp; 1_ / 1,). 5 //111().5 and 8 (1.). 5? The supercrystalline structure period is about 10-40, In. XGahAl x) G 5p / ln () 5A1 G.5P supercrystalline structure thickness is about 2-5 nm There is a fixed, stepwise, or gradient thickness profile in the I n G. 5 (G abu XA 1 x) G 5p supercrystalline structure layer.

圖三中,接著多量子井32 2與電子反射323,是一 p-型 111。.5(^811八1\)〇.5?-較高層包覆層 324。口-型1!1().5(631_/1丄.5 P包覆層3 2 4的作用是將載子注入到主動區域3 2 2,並將載 子侷限留在主動區域3 2 2。111{).5(〇3141〇{).丨包覆層3 24的 A 1組成大約在〇. 7&lt;X&lt;1之間,與主動區域3 2 2發射光的波長 有關’在紅(6 2 5ηm)到黃-綠(5 7 0nm)之間。ρ-型包覆層324 的厚度必須大於注入載子的擴散長度,以防止主動區域 3 22的載子進入包覆層。此外,ρ型包覆層3 24必須比η型包 覆層3 2 1厚,此乃因為在乙E D成長過程中ρ型滲雜元素如 Ζη或Mg的擴散性的關係。一典型的ρ—型Μ。5(Gai xA1 υIn FIG. 3, the multi-quantum well 32 2 and the electron reflection 323 are a p-type 111. .5 (^ 811 八 1 \) 0.5? -Higher cladding layer 324. Mouth-type 1! 1 (). 5 (631_ / 1 丄 .5 P coating 3 2 4 is used to inject carriers into the active region 3 2 2 and confine the carriers to the active region 3 2 2 111 {). 5 (〇3141〇 {). 丨 The A 1 composition of the cladding layer 3 24 is approximately between 0.7 &lt; X &lt; 1, which is related to the wavelength of the light emitted from the active region 3 2 2 '在 红 ( 6 2 5ηm) to yellow-green (570 nm). The thickness of the p-type cladding layer 324 must be greater than the diffusion length of the injected carriers to prevent the carriers in the active region 322 from entering the cladding layer. In addition, the ρ-type cladding layer 3 24 must be thicker than the η-type cladding layer 3 2 1 because of the diffusivity of the ρ-type doped elements such as Zn or Mg during the growth of ED. A typical p-type M. 5 (Gai xA1 υ

第22頁 480751 五、發明說明(19) 低包覆層3 2 4厚度大約在〇 · 7到1. 5# m之間。有著梯度變化 或二階段式滲雜的p-型包覆層,在本發明中其渗雜濃度在 4氺1 0 17/cm到1氺1 0 18/cm之間。LED的光線外部效率與渗 雜程度與η-型及p-型包覆層的滲雜程度有關。in。5(Gai χ A 1 χ) 〇·- 3 2 4中π正確的’’ η -型及ρ型包覆層滲雜剖面與主動 區域3 22的ρ-ηπ正確的π接合位置對於有效的發光性再結合 是必要的。任何入射載子的溢流將因為ρ-η接合的不對準 與滲雜因子的擴散進入主動區域(i n t e r d i f f u s i ο η )非輻 射中心(nonradiative recombination center)造成的再 結合而減低光線的效率。在本發明中,有著梯度性滲雜包 覆層的I η 〇· 5( G a卜XA 1 x) 〇 5P 2 4 ’其南/低滲雜程度的厚度比 率約在0 · 1到0 · 3之間,以保障包覆層準確的載子再結合不 會產生大的電壓下降或載子溢流。 〆個好的發光二極體裝置需要遠離多量子井32 2的n-型與ρ犁包覆層有高的滲雜濃度(0· 75到1〇18/cm2)與接 近多量子井有一較低的n—型與P型包覆層低的滲雜濃度3 2 2 (〇 4到0 · 7 5氺 1 0 18/cm 之間。 换著ρ -型包覆層’是一層滲雜密度大於P_型包覆層 3 2 4薄的111。.5((^14]^)0.51)中間層3 2 5,用來確保注入載子 能平順穿過及散開,並為確保此中間層的高傳導性以利電 流在垂直於其注入方向之平面上的有效率散開,細中間層 325A1的組成(x約在〇 · 1到〇 · 5之間)比P型I n 5( G a卜χΑ 1 X)0·Page 22 480751 V. Description of the invention (19) The thickness of the low cladding layer 3 2 4 is about 0.7 to 1.5 # m. The p-type cladding layer with a gradient change or two-stage doping has a doping concentration in the present invention of between 4 氺 10 17 / cm and 1 氺 1 0 18 / cm. The external light efficiency and the degree of doping of LEDs are related to the degree of doping of the η-type and p-type cladding layers. in. 5 (Gai χ A 1 χ) 〇- 3 2 4 π correct '' η-type and ρ-type cladding layer impurity profile and active region 3 22 ρ-ηπ correct π junction position for effective light emission Sexual recombination is necessary. Any incident carrier overflow will reduce the light efficiency due to the recombination caused by the misalignment of the ρ-η junction and the diffusion factor into the active area (int e r d i f f u s i ο η) nonradiative recombination center. In the present invention, I η 〇 5 (G abu XA 1 x) 〇5P 2 4 ′ with a gradient doped coating layer has a thickness ratio of south / low penetration of about 0. 1 to 0. 3, to ensure that the accurate carrier recombination of the coating does not cause a large voltage drop or carrier overflow. A good light-emitting diode device needs to be far away from the multi-quantum well 32. The n-type and ρ-cladding coatings have a high doping concentration (0.75 to 1018 / cm2) compared with the approach to the multi-quantum well Low n-type and P-type coatings have a low impurity concentration of 3 2 2 (〇4 to 0 · 7 5 氺 1 0 18 / cm. In the case of ρ-type coatings, it is a layer of impurity density. 111..5 ((^ 14] ^) 0.51) intermediate layer 3 2 5 larger than P_-type cladding layer 3 2 4 is used to ensure that the injected carriers can pass through and spread smoothly, and to ensure this intermediate layer High conductivity to spread the current efficiently on a plane perpendicular to its injection direction. The composition of the thin intermediate layer 325A1 (x is between about 0.1 and 0.5) is better than that of P-type I n 5 (G a Bu χΑ 1 X) 0 ·

第23頁 480751 五、發明說明(20) 包覆層324還要小,並要和P型包覆層晶格匹配。厚度大約 在5 0 - 1 0 0 n m,而滲雜密度比ρ -型電導層高的中間電流散 佈層3 2 5是設計來產生注入電流垂直平面的低電阻通道。 此外,中間層111。.5(〇31_/1〇。.5?- 3 2 5有一比主動區域3 2 2大 的能隙,以防止由主動區域3 2 2發射的光線被吸附。因為 此一中間層3 2 5厚度很薄且有一比p_型包覆層3 24高卻又比 窗戶層3 2 6低的滲雜密度,可作為電流在成長方向的g塞 層及電流入射成長方向垂直平面的低阻抗通道。因為電流 散佈區域範圍很大,元件内注入電流密度會因為散布面板 的加大而密度會減少。這將導致LED光線發射效率之提昇 ,這種在P型包覆層3 2 4與主動區域3 2 2内的電流散佈效應 將由I η 〇.〆Ga ι-χΑ 1X) 〇. / ¾塞層的厚度、組成與換雜程度而 定,典型111〇.5(〇31_,1)^().5?的中間層之摻雜濃度大約是?型 包覆層324的2-4倍也就是1-3*1 018。而A 1的組成,在這層 大約在0 . 2 - 0 · 4之間。 θ 一種會令I n g·〆G a卜ΧΑ 1 X) g. 發光二極體產生最大功么匕 發揮的途徑是在ρ型I η 〇. 5( G a i_xA 1 X) 〇. 5Ρ層3 2 5頂上加—芦窗 戶層326。使用GaP、AlGaP或AlGaAs當作窗戶層,並^為 LED電流的散佈功能的觀念已在過去的文獻研究過,且在 已被發表過的專利個案中。G a P或G a A s P對於由l e D主私σ 土*動區 域3 2 2放射出來的光有一個相對的可透光能隙。本發明中 利用OMVPE法來成長在一斜切方向〈111〉角度的g^As;&amp; 上LED結構包括P型GaP、AlGaP或AlGaAs窗戶層3 2 6。這&amp;個Page 23 480751 V. Description of the invention (20) The cladding layer 324 should be small and match the lattice of the P-type cladding layer. The intermediate current spreading layer 3 2 5 with a thickness of about 50-100 nm and a higher impurity density than the p-type conductivity layer is a low-resistance channel designed to produce a vertical plane of injected current. Moreover, the intermediate layer 111. .5 (〇31_ / 1〇..5?-3 2 5 has a larger energy gap than the active area 3 2 2 to prevent the light emitted by the active area 3 2 2 from being absorbed. Because this intermediate layer 3 2 5 The thickness is very thin and has a higher impurity density than the p_-type cladding layer 3 24 but lower than the window layer 3 2 6. It can be used as a low-impedance channel for the current g-plug layer in the growth direction and the current incident on the vertical plane in the growth direction .Because the current spreading area has a wide range, the density of the injected current in the element will decrease due to the increase of the spreading panel. This will lead to the improvement of the LED light emission efficiency. This type of P-type cladding layer 3 2 4 and the active area The current spreading effect in 3 2 2 will be determined by the thickness, composition, and degree of impurity of the plug layer. I η 〇.〆Ga ι-χΑ 1X), typically 1110.5 (〇31_, 1) ^ ( ) .5? What is the doping concentration of the intermediate layer? 2-4 times of the type cladding layer 324 is 1-3 * 1 018. The composition of A 1 is about 0.2-0 · 4 in this layer. θ A way to make I ng · 〆G a 卜 × Α 1 X) g. The way in which the light-emitting diode produces the most work is to play at ρ-type I η 0.5 (G a i_xA 1 X) 0.5 P layer 3 2 5 on top plus-reed window layer 326. The concept of using GaP, AlGaP, or AlGaAs as the window layer and the function of dissipating the LED current has been studied in the past literature and has been published in patent cases. G a P or G a A s P has a relatively light-transmittable energy gap for the light emitted by the main and private σ soil * dynamic region 3 2 2 of l e D. In the present invention, the OMVPE method is used to grow the g ^ As; &amp; on an oblique direction <111> angle. The LED structure includes a P-type GaP, AlGaP or AlGaAs window layer 3 2 6. This &amp;

480751 五、發明說明(21) 觀念源自由1 9 7 6—篇文獻中,磊晶沈積AiGaAs、GaP或其 他的族半導體表面以LPE或CVD蠢晶成長方式以改善沉積薄 膜之平滑性。而在本發明中,皿-V族化合物如G a P、 A1 xGabXP(x&lt;l )及 A1 yGa 卜yAs(0· 5&lt;y )用 M0VPE法成長在 LED放 射波長在6 5 0 - 5 6 5 nm範圍内當做為窗戶層來分散注入電流 ’因為他們對於放射波長6 5 0 - 5 6 5 n m而言是透明的;此外 ,這三種 GaP,AlxGa 卜 χΡ(χ&lt;0· 1)與 AlyGa卜 yAs(0· 5&lt;y)的高 摻雜濃度(容量)也是選擇考量的因素之一,它們都可以 用重滲雜密度(&gt; 2 * 1 0 18/ cm 2)來達到較廣的電流散佈。當 窗戶層的入射載子(滲雜程度)增加,LED的效率也增加。 這是因為隨著滲雜濃度的增加,窗戶層3 2 6中注入載子沿 著平行於各層表面方向的滲雜程度也會增加。典型的窗戶 層3 2 6滲雜濃度大約在3 -8*10 18/cm乏間。但是,窗戶層 3 2 6滲雜程度高於1 * 1 〇 iV cm啥有晶格缺陷產生,且會減低 LED的生命期。此外,發光效率也與窗戶層32 6的厚度有關 係。當窗戶層3 2 6厚度增加時因為較寬度的電流散開面積 以及由LED側面散出的光都會增加,LED的輸出也會增加。 重滲雜程度(&gt;1*10 18/cm2) GaP,A 1 xGa 卜 XP (χ&lt; 〇 · 1 )與 a 1 yGa &quot; A s ( 0 · 7 &lt;y )且厚度在1 0 - 1 5# m之間的窗戶層被沿用在本發 明中,6 3 0 n m波長,亮度達到60mcd的LED; 590nm波長,480751 V. Description of the invention (21) Freedom of idea 1 196-In the literature, epitaxial deposition of AiGaAs, GaP or other family semiconductor surfaces is performed by LPE or CVD stupid growth to improve the smoothness of the deposited film. In the present invention, the D-V compounds such as Ga P, A1 xGabXP (x &lt; l) and A1 yGa and yAs (0.5 &lt; y) are grown by the MOVPE method at the LED emission wavelength at 6 50-5 6 In the 5 nm range, they are used as window layers to disperse the injected currents, because they are transparent to the emission wavelength of 6 50-5 65 nm. In addition, the three GaP, AlxGa and χP (χ &lt; 0 · 1) and AlyGa The high doping concentration (capacity) of yAs (0 · 5 &lt; y) is also one of the considerations for selection. They can all be achieved with a heavy doping density (&gt; 2 * 1 0 18 / cm 2). The current spreads. As the incident carrier (degree of penetration) of the window layer increases, the efficiency of the LED also increases. This is because as the doping concentration increases, the degree of doping of the injected carriers in the window layer 3 2 6 along the direction parallel to the surface of each layer also increases. Typical window layer 3 2 6 has an impurity concentration of approximately 3 -8 * 10 18 / cm. However, the window layer 3 2 6 has a degree of impurity higher than 1 * 1 0 iV cm, which causes lattice defects and reduces the life of the LED. In addition, the luminous efficiency is also related to the thickness of the window layer 326. When the thickness of the window layer 3 2 6 increases, the wider the current spreading area and the light emitted from the side of the LED will increase, the output of the LED will also increase. Degree of heavy impermeability (&gt; 1 * 10 18 / cm2) GaP, A 1 xGa BU XP (χ &lt; 〇 · 1) and a 1 yGa &quot; A s (0 · 7 &lt; y) and thickness between 1 0- The window layer between 1 # 5 m is used in the present invention, LEDs with a wavelength of 630 nm and a brightness of 60mcd; a wavelength of 590nm,

亮度達到lOOmcd的LED;572nm波長,亮度達到40mcd的LED 圖四是一以Iny(Ga 丨—χΑ 1 x)丨-yP為基礎且以梯度或階梯式LEDs with a brightness of 100mcd; LEDs with a wavelength of 572nm and a brightness of 40mcd. Figure 4 is based on Iny (Ga 丨 —χΑ 1 x) 丨 -yP as a gradient or stepped

第25頁 480751 五、發明說明(22) 變化之(0 〇 1)晶格常數的超晶格的LED元件結構發光二極 體,圖中至少包含一四元化合物InG 5(Gai_xAlx)G 5p合金的 分散型布拉格反射層(DBR) 431,長在η-型傾斜底材GaAs 4 2 9上。該元件至少包含一 η型Ga As緩衝層4 3 0,一分散型 布拉格反射層(DBR) 431,一 n型 lnG5(Gai_xAix)Q5Hg^&amp; 覆層 432,一形變 iny(Gai_xAlx)1-yp/In() 5(Gai xAlx)Q sP多量子 井433,一1117((^卜』1山^底材電子反射434,一1)型111〇5( 較高層包覆層 43 5, 一薄的 In。5(Gai χΑ1χ)。^ 2 f塞,436,一具有梯度組成變化的P型Iny(Gai_xAl x) 1-yp :一超晶格結構437,一 p型GaP或p型AlGaP電流散佈層4Υ38 頂層金屬接觸4 3 9,一底屬金屬接觸4 4 0所組成。 ),=:二 ΐ —層光線萃取層(Hght extrac1:i〇n layer 成九綠卒取屏每μ , ^。 t 蜜塞層436、曰权曰/包含三層,由下而上分別是電流 主要功用是阻曰曰幹士度層437與窗戶層438,光線萃取層的 ’並使這些光^ 下面的P型1nGaA1P層所放射出來之光線 所示,有一 p型做更有效率的放射。圖四中整個架構如下 梯式變化的的超=y(Ga 1 U ( 00 D晶格常數梯度或階 P型窗戶層438^ Γ格為基礎4 3 7擺在中間電流壅塞層436與 變化的超晶格4 3 7 b ?型I n y( ι-χΑ 1 x) i—yP具有一梯度組成 GaP窗戶層438之疋用來將I η G. 5( Ga卜XA 1 x) 〇· 5P合金4 3 6與p型 ((^4^)。.#合/1/1為梯度層之用°(^1)窗戶層438與1〇0.5 之間,而G a P / I n遵基層&amp; Μ的晶格常數相差大約在3 · 6% η 0·5( Ga Νχα 1 X) 〇 5ρ的異質結構的臨界厚度大Page 25 480751 V. Description of the invention (22) Super-lattice LED element structure light-emitting diode with (0 〇1) lattice constant, the figure contains at least one quaternary compound InG 5 (Gai_xAlx) G 5p alloy The dispersive Bragg reflector (DBR) 431 is grown on the η-type inclined substrate GaAs 4 2 9. The device includes at least an n-type Ga As buffer layer 4 3 0, a dispersive Bragg reflection layer (DBR) 431, an n-type lnG5 (Gai_xAix) Q5Hg ^ &amp; cladding layer 432, and a deformation iny (Gai_xAlx) 1-yp / In () 5 (Gai xAlx) Q sP multi-quantum well 433, a 1117 ((^ 卜 『1 山 ^ substrate electron reflection 434, a 1) type 111〇5 (higher cladding layer 43 5, a thin In.5 (Gai χΑ1χ). ^ 2 f plug, 436, a P-type Iny (Gai_xAl x) 1-yp with a gradient composition change: a superlattice structure 437, a p-type GaP or p-type AlGaP current distribution The layer 4Υ38 is composed of a top metal contact 4 3 9 and a bottom metal contact 4 4 0.), =: two gadolinium—a layer of light extraction layer (Hght extrac1: i〇n layer). t The honeycomb layer 436, said right / contained three layers, from bottom to top, respectively, the current is mainly used to block the dry layer 437 and the window layer 438, the light extraction layer, and make these light ^ the P type below As shown by the light emitted from the 1nGaA1P layer, there is a p-type for more efficient radiation. The overall structure in Figure 4 is a stepwise change of super = y (Ga 1 U (00 D lattice constant gradient or order P-type window). Layer 438 ^ Γ Based on 4 3 7 placed in the middle of the current plugging layer 436 and the changed superlattice 4 3 7 b? Type I ny (ι-χΑ 1 x) i-yP has a gradient composition GaP window layer 438 of η G. 5 (Ga Bu XA 1 x) 〇 5P alloy 4 3 6 and p-type ((^ 4 ^) .. # 合 / 1/1 for the gradient layer ° (^ 1) window layers 438 and 1 〇0.5, and the lattice constants of the GaP / In conforming layer &amp; M differ by about 3.6% η 0 · 5 (Ga Νχα 1 X). The critical thickness of the heterostructure is large.

480751 五、發明說明(23) 約在5 - 1 0 n m之間。如此一來G a P蠢晶層會在I η 〇. 5( G a丨_XA 1 x) 〇 5P中間電流壅塞層4 3 6上形成狀如小島的晶體。當這些磊 晶晶體小島結合後,由於這些磊晶小島的合併一高密度的 條紋錯位的晶體會產生在GaP窗戶層43 8上面,並造成表面 粗糙。這些缺陷會惡化薄膜的品質與LED元件的功能。在 窗戶層内高密度的晶體缺陷會造成光線吸收中心,並減少 光線的外部效率及減低其生命期。此外,這些晶格缺陷會 增加製程及包裝如打線、接觸點的困難。因此,在製造晶 格不匹配的異質結構G a P / I η 〇 5( G a 1 -XA 1 X) 〇 5P時’必須要花 點心思在這上面。一具有I η與A 1梯度變化的組成之p型I n y &lt;^8卜/1}()卜/超晶體43 7是用來調節Ga和InGaAlP之間的晶 格常數的差異,同時也是本發明請求項的一部份,I η與A 1 組成(X與y)在I n y( Ga 〗_XA 1 x)丨-yP底材超晶結構4 3 7中是以 梯度變化,厚度則是0到1 0 0至3 0 0 nm之間,其成長速率大 約在0 . 0 5到0 . 2// m/小時之間.,且有一高的V / I I I族比率大 於100左右。11^(0&amp;1_,1?()1_/底材梯度層43 7保持2到4倍大 於P型I η 〇. 5( Ga 丨—χΑ 1 x) 〇. 5P包覆層4 3 5的滲雜濃度。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。480751 V. Description of the invention (23) It is about 5-10 nm. In this way, the G a P stupid crystal layer will form an island-like crystal on the I η 0.5 (G a 丨 _XA 1 x) 〇 5P intermediate current plugging layer 4 3 6. When these epitaxial crystal islands are combined, a high-density streak-distorted crystal will be generated on the GaP window layer 43 8 due to the combination of these epitaxial islands, and cause the surface to be rough. These defects deteriorate the quality of the film and the function of the LED element. High-density crystal defects in the window layer can cause light absorption centers, reduce the external efficiency of light, and reduce its lifetime. In addition, these lattice defects will increase the difficulty of the process and packaging such as wire bonding and contact points. Therefore, when manufacturing a heterostructure G a P / I η 〇 5 (G a 1 -XA 1 X) 〇 5P, it is necessary to take care of this. A p-type I ny &lt; ^ 8b / 1} () b / supercrystal 43 with a composition with gradient changes of I η and A 1 is used to adjust the difference in lattice constants between Ga and InGaAlP. As a part of the claim of the present invention, the composition of I η and A 1 (X and y) changes in gradient in I ny (Ga 〖_XA 1 x) 丨 -yP substrate supercrystalline structure 4 3 7, and the thickness is Between 0 and 100 and 300 nm, the growth rate is between about 0.05 and 0.2 m / hour, and there is a high V / III family ratio greater than about 100. 11 ^ (0 &amp; 1_, 1? () 1_ / substrate gradient layer 43 7 remains 2 to 4 times larger than P-type I η 0.5 (Ga 丨 —χΑ 1 x) 〇5P coating layer 4 3 5 Impurity concentration. The above descriptions are merely preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention are It should be included in the scope of patent application described below.

480751 圖式簡單說明 圖一傳統之發光二極體截面示意圖; 圖二本發明第一實施例之發光二極體截面示意圖; 圖三本發明第二實施例之發光二極體截面示意圖; 圖四本發明第三實施例之發光二極體截面示意圖。 主要部分之代表符號: .101 η型G a A s底材 102 η型InGaAlP包覆層 103 主動層 104 p型InGaAlP包覆層 105 p型GaP電流擴散層 1 0 6 頂層金屬接觸 1 0 7 底層金屬接觸 2 0 8 η型G a A s斜切底材 2 0 9 η型G a A s緩衝層 2 10 η型分散型布拉格反射層 211 η型InGaAlP包覆層 212 多量子井 213 p型InGaAlP包覆層 214 p -型 I η ◦ 5( G a 1 -XA 1 X) ◦· 5P電流藥塞層 215 ρ-型GaP,AlGaP,或AlGaAs電流擴散層480751 The drawing briefly illustrates the cross-sectional schematic diagram of a conventional light-emitting diode of the first embodiment of the present invention; the cross-sectional schematic diagram of the light-emitting diode of the first embodiment of the present invention; the cross-sectional schematic diagram of the light-emitting diode of the second embodiment of the present invention; A schematic cross-sectional view of a light emitting diode according to a third embodiment of the present invention. Representative symbols of main parts: .101 η-type G a A s substrate 102 η-type InGaAlP cladding layer 103 active layer 104 p-type InGaAlP cladding layer 105 p-type GaP current diffusion layer 1 0 6 top metal contact 1 0 7 bottom layer Metal contact 2 0 8 η-type G a A s beveled substrate 2 0 9 η-type G a A s buffer layer 2 10 η-type dispersed Bragg reflector 211 η-type InGaAlP cladding layer 212 multiple quantum wells 213 p-type InGaAlP Cladding layer 214 p -type I η ◦ 5 (G a 1 -XA 1 X) ◦ 5P current drug plug layer 215 ρ-type GaP, AlGaP, or AlGaAs current diffusion layer

480751 圖式簡單說明 213 p型InGaAlP包覆層 214 P -型 I η 〇. 5( G a ι_χΑ 1 X) 〇. 5P電流壅塞層 215 p -型G a P,A 1 G a P,或A 1 G a A s電流擴散層 216 頂層金屬接觸 2 1 7 底層金屬接觸 318 η型G a A s斜切底材 319 η型G a A s緩衝層 3 2 0 η型分散型布拉格反射層 321 η型InGaAlP包覆層 3 2 2 多量子井 3 2 3 電子反射層 3 2 4 p型InGaAlP包覆層 3 2 5 p -型I η 〇. 5( G a卜XA 1 x) 〇 5P電流堕基層 3 2 6 p -型G a P,A 1 G a P,或A 1 G a A s電流擴散層 3 2 7頂層金屬接觸 3 2 8底層金屬接觸 4 2 9 η型G a A s斜切底材 4 3 0 η型G a A s緩衝層 4 31 η型分散型布拉格反射層 4 3 2 η型InGaAlP包覆層 4 3 3 多量子井 434 電子反射層 4 3 5 ρ型InGaAlP包覆層 4 3 6 ρ-型 Ino.JGahAl x) 〇.5P電流壅塞層480751 Schematic illustration of 213 p-type InGaAlP cladding layer 214 P -type I η 0.5 (G a _χΑ 1 X) 〇 5P current blocking layer 215 p -type G a P, A 1 G a P, or A 1 G a A s current diffusion layer 216 top metal contact 2 1 7 bottom metal contact 318 η-type G a A s beveled substrate 319 η-type G a A s buffer layer 3 2 0 η-type dispersed Bragg reflector 321 η Type InGaAlP cladding layer 3 2 2 Multi-quantum well 3 2 3 Electron reflection layer 3 2 4 p Type InGaAlP cladding layer 3 2 5 p -type I η 0.5 (Gab XA 1 x) 〇5P current drop to the base layer 3 2 6 p-type G a P, A 1 G a P, or A 1 G a A s current diffusion layer 3 2 7 top metal contact 3 2 8 bottom metal contact 4 2 9 η type G a A s beveled bottom 4 3 0 η-type G a A s buffer layer 4 31 η-type dispersed Bragg reflective layer 4 3 2 η-type InGaAlP cladding layer 4 3 3 multiple quantum wells 434 electron reflection layer 4 3 5 ρ-type InGaAlP cladding layer 4 3 6 ρ-type Ino.JGahAl x) 〇5P current blocking layer

第29頁 480751 圖式簡單說明 437 p—Iny(Ga卜XA 1 x)卜/晶格梯度層 438 p-型GaP,AlGaP,或AlGaAs電流擴散層 4 3 9 頂層金屬接觸 4 4 0 底層金屬接觸Page 29 480751 Brief description of the diagram 437 p—Iny (Gabu XA 1 x) Bu / lattice gradient layer 438 p-type GaP, AlGaP, or AlGaAs current diffusion layer 4 3 9 Top metal contact 4 4 0 Bottom metal contact

第30頁Page 30

Claims (1)

480751 六、申請專利範圍 1. 一種發光二極體至少包含: 一金屬接觸底座; 一第一導電型GaAs底材在該金屬接觸底座上面,該底 材沿&lt; 1 1 1 &gt; A角度斜切,該斜切角度大於1 0。; 一該第一導電型I n G a A 1 P層位於該底材上面; 一主動層位於該第一導電型InGaAl P層上面,該主動 層無原子次序; 一第二導電型InGaAl P層位於該主動層上面,其電性 與該第一導電型InGaAl P層相反; 一窗戶層位於該第二導電型InGaAl P層上面;以及 一金屬接觸頂座位於該窗戶層上面。 2. 如申請專利範圍第1項之發光二極體,更包含一 GaAs緩 衝層介於該底材與該第一導電型InGaA1P層之間。 3. 如申請專利範圍第2項之發光二極體,該緩衝層之厚度 在0 . 2到0 . 5// m之間。 4. 如申請專利範圍第1項之發光二極體,更包含一光反射 層位於該底材上,該光反射層的滲雜濃度大於2 * 1 0 17/ cm 2 5.如申請專利範圍第4項之發光二極體,該光反射層有一 反射波長α接近該主動區域的波長冷(α -5nm或α480751 VI. Application patent scope 1. A light emitting diode includes at least: a metal contact base; a first conductive GaAs substrate on the metal contact base, the substrate is inclined along &lt; 1 1 1 &gt; A angle Cut, the chamfered angle is greater than 10. ; A first conductivity type I n G a A 1 P layer is located on the substrate; an active layer is located above the first conductivity type InGaAl P layer, the active layer has no atomic order; a second conductivity type InGaAl P layer Located on the active layer, its electrical property is opposite to that of the first conductive InGaAl P layer; a window layer is located on the second conductive InGaAl P layer; and a metal contact top seat is located on the window layer. 2. For example, the light-emitting diode of item 1 of the patent application scope further includes a GaAs buffer layer between the substrate and the first conductive InGaA1P layer. 3. If the light-emitting diode of item 2 of the patent application scope, the thickness of the buffer layer is between 0.2 and 0.5 // m. 4. If the light-emitting diode of item 1 of the patent application scope further includes a light reflecting layer on the substrate, the impurity concentration of the light reflecting layer is greater than 2 * 1 0 17 / cm 2 5. The light-emitting diode of item 4, the light reflection layer has a reflection wavelength α close to the wavelength of the active region (α -5nm or α 第31頁 480751 六、申請專利範圍 + 5 n m)且載子電性與該底材相同。 6. 如申請專利範圍第4項之發光二極體,該光反射層係選 自於由 AlAs/AlxlGa bXlA s -底材(xl— 0.5), I η 〇. 5( Ga !_x2A 1 x2) 〇.5P-底材(x2g 0.1)與八1八3/111().5(〇3卜)^1以)().5?-之族群底 材的超晶格結構所組成。 7. 如申請專利範圍第6項之發光二極體,該鋁的組成X 1與 x2在發射光波長大於6 3 0nm,xl小於0. 6且x2大於0. 1 ;在發 射光波長大於590nm,x 1小於0 . 7且x2大於0 . 2 ;在發射光波 長大於570nm,x 1小於0 . 8且X 2大於0 . 3。 8. 如申請專利範圍第6項之發光二極體,該光反射層係選 自於由 A 1 As / A 1 xGa 丨-χΑs-底材 I η 〇. 5( Ga 卜/ 1 X) 〇. 5P-底材,與 AlAs/In〇 5(Gai-XA 1 x) 〇 5P_之族群超晶結構所組成’該超晶 結構每一層與層間的反射係數差值不會小於〇. 1 5。 9. 如申請專利範圍第4項之發光二極體,該光線反射層與 該底材的晶格不匹配度小於0 . 3 %。 1 0 .如申請專利範圍第1項之發光二極體,該第一導電型 I n G a A 1 P層滲雜濃度在 0 · 4 * 1 0 18/ c m 到 1 * 1 0 18/ c m 之間。 1 1.如申請專利範圍第1 0項之發光二極體,該滲雜剖面至Page 31 480751 VI. Patent application scope + 5 n m) and the carrier electrical properties are the same as this substrate. 6. If the light-emitting diode of item 4 of the patent application scope, the light reflecting layer is selected from the group consisting of AlAs / AlxlGa bXlA s-substrate (xl-0.5), I η 0.5 (Ga! _X2A 1 x2) 〇.5P-substrate (x2g 0.1) and the super-lattice structure of the substrate of the tribal group substrate. 7. If the light-emitting diode of item 6 of the patent application, the composition of the aluminum X1 and x2 at the wavelength of the emitted light is greater than 630 nm, xl is less than 0.6 and x2 is greater than 0.1; at the wavelength of the emitted light is greater than 590nm X1 is less than 0.7 and x2 is greater than 0.2; at the wavelength of the emitted light is greater than 570nm, x1 is less than 0.8 and X2 is greater than 0.3. 8. If the light-emitting diode of item 6 of the patent application scope, the light reflecting layer is selected from the group consisting of A 1 As / A 1 xGa 丨 -χΑs-substrate I η 0.5 (Ga B / 1 X) 〇 5P-substrate, and AlAs / In〇5 (Gai-XA 1 x) 〇5P_ group of supercrystalline structure composed of 'the supercrystalline structure of each layer and the difference between the reflection coefficient will not be less than 0. 1 5 . 9. If the light-emitting diode of item 4 of the patent application scope, the lattice mismatch between the light reflecting layer and the substrate is less than 0.3%. 1. If the light-emitting diode of the first range of the patent application, the first conductivity type I n G a A 1 P layer has a doping concentration of 0 · 4 * 1 0 18 / cm to 1 * 1 0 18 / cm between. 1 1. If the light-emitting diode of item 10 in the scope of patent application, the doped profile to 第32頁 480751 六、申請專利範圍 少包含一低/高滲雜濃度比率由0. 1到0. 5之間。 1 2.如申請專利範圍第1項之發光二極體,該主動層至少包 含一應變的 I ny ( Ga bXlA 1 xl) hP / I η 〇.5( Ga bdA 1 x2) Q.5P多重量子 井結構,該多重量子井結構具有一 Iny(Gai_xlAl xl) !_/&lt;00 1&gt; 晶格常數比該斜切底材GaAs &lt;001〉的晶格常數大0. 2%到0. 6 %之間。 1 3 .如申請專利範圍第1 2項之發光二極體,該應變多重量 子井層與層之間厚度比在〇 . 7 5 - 1. 2 5之間。 1 4.如申請專利範圍第1項之發光二極體,更包含一電子反 射層中,有一 I η 〇. 5A 1 〇. 5P壅塞層在該主動層上,該壅塞層 厚度在2 0 - 4 0 n m之間。 1 5 .如申請專利範圍第1 4項之發光二極體,該電子反射層 至少包含In〇5(Ga卜XA 1 x) 〇 5P / I η 〇. 5A 1 〇. 5P超晶結構插在该主動 區域與該第二InGaAlP層之間。 1 6 .如申請專利範圍第1 4項之發光二極體,該電子反射層 係選自於由固定、階段及梯度變化的成長層所組合而成, 各層厚度約2-5nm。 17.如申請專利範圍第4項之發光二極體,該第一 InGaAlPPage 32 480751 Six, the scope of the patent application contains a low / high impurity concentration ratio from 0.1 to 0.5 between. 1 2. As the light-emitting diode of item 1 of the patent application scope, the active layer contains at least a strained I ny (Ga bXlA 1 xl) hP / I η 0.5 (Ga bdA 1 x 2) Q.5P multiple quantum 2% 至 0. 6 Well structure, the multiple quantum well structure has an Iny (Gai_xlAl xl)! _ / &Lt; 00 1 &gt; The lattice constant is larger than the lattice constant of the chamfered substrate GaAs &lt; 001〉 0.2% to 0.6 %between. 13. According to the light-emitting diode of item 12 in the scope of the patent application, the thickness ratio between the strained multi-layer sub-well layer and the layer is between 0.75 and 1.2.5. 1 4. The light-emitting diode according to item 1 of the scope of patent application, further comprising an electron reflection layer, which has an I η 0.5A 1 〇5P plug layer on the active layer, the thickness of the plug layer is 20- Between 40 nm. 1 5. According to the light-emitting diode of item 14 in the scope of patent application, the electron reflection layer includes at least In〇5 (Ga 卜 XA 1 x) 〇5P / I η 〇 0.5A 1 〇. 5P supercrystalline structure is inserted in Between the active region and the second InGaAlP layer. 16. If the light-emitting diode according to item 14 of the scope of patent application, the electron reflection layer is selected from a combination of fixed, stepped and gradient-growing layers, and each layer has a thickness of about 2-5 nm. 17. If the light-emitting diode of item 4 of the patent application, the first InGaAlP 480751 六、申請專利範圍 層有一梯度性變化,該梯度性變化剖面由0 . 4 * 1 0 18/ cm到1 *1018/cm 乏間。 1 8.如申請專利範圍第1 7項之發光二極體,該梯度性變化 剖面更包含一低/高滲雜濃度比率介於0. 1到0. 5之間。 1 9 .如申請專利範圍第1 8項之發光二極體,該主動區至少 包含一應變(s t r a i η) I n y( Ga bXlA 1 xl) byP/ I η 〇. 5( Ga H2A 1 x2) 〇.5P多重量子井,該Iny(GaLXlAl xl)丨—yP井具有一 &lt;001〉晶格 常數大於該斜切GaAs底材的晶格常數約在0. 2%到0. 6%之 間。 2 0 .如申請專利範圍第1 9項之發光二極體,該應變( s t r a i n e d)多重量子井層與層之間的厚度比約為0 . 7 5到1. 2 5之間。 2 1.如申請專利範圍第1 9項之發光二極體,更包含一電子 反射層,該電子反射層有一 I η 〇. 5A 1 〇. 5P壅塞層在該主動層 上面,該壅塞層厚度約為20到40nm之間。 2 2 .如申請專利範圍第2 1項之發光二極體,該電子反射層 至少包含I η 〇.5( Ga卜/ 1 x) G.5P / I η 〇.5A 1 G.5P超晶結構插在該主動 層與第二InGaAlP層之間。480751 6. Scope of patent application There is a gradient change in the layer, and the gradient change profile ranges from 0.4 * 1018 / cm to 1 * 1018 / cm. 1 至 0. 5 之间。 1 8. As claimed in the scope of patent claims No. 17 of the light-emitting diodes, the gradient profile also includes a low / high impurity concentration ratio between 0.1 to 0.5. 19. If the light-emitting diode of item 18 of the scope of patent application, the active region contains at least one strain (strai η) I ny (Ga bXlA 1 xl) by P / I η 0.5 (Ga H2A 1 x2) 〇 .5P multiple quantum wells, the Iny (GaLXlAl xl) 丨 —yP well has a &lt; 001> lattice constant greater than the lattice constant of the chamfered GaAs substrate is about 0.2% to 0.6% between. 20. If the light-emitting diode of item 19 in the scope of the patent application, the thickness ratio between the strained (s tr ain d) multiple quantum well layer and the layer is between about 0.75 and 1.25. 2 1. The light-emitting diode according to item 19 of the scope of patent application, further comprising an electron reflection layer, the electron reflection layer has an I η 0.5A 1 0.5P layer on the active layer, and the thickness of the plug layer About 20 to 40nm. 2 2. If the light-emitting diode according to item 21 of the patent application scope, the electron reflection layer contains at least I η 0.5 (Gab / 1 x) G.5P / I η 0.5A 1 G.5P supercrystal The structure is interposed between the active layer and the second InGaAlP layer. 第34頁 480751 六、申請專利範圍 2 3 .如申請專利範圍第2 1項之發光二極體,該電子反射層 係選自於由固定、階段及梯度變化的成長層所組合而成, 各層厚度約2-5nm之間。 2 4.如申請專利範圍第2 1項之發光二極體,該發光二極體 是利用有機金屬氣相蟲晶法在一反應腔中以溫度小於7 5 0 攝氏溫度下成長。 2 5 . —種發光二極體至少包含: 一金屬接觸底座; 一第一導電型GaAs底材在該金屬接觸底座上面’該底 材沿&lt; 1 1 1 &gt; A角度斜切,該斜切角度大於1 0。; 一光線反射層位於該底材上’該光線反射層的渗雜濃 度大於 2*1017/cm2; 一該第一導電型InGa A IP層位於該光線反射層上面, 該第一導電型InGaAlP層有一滲雜濃度介於0.4*10 18/cm2 到 1*10 18/cm乏間; 一主動層位於該第一導電型InGa A 1P層上面,該主動 層至少包含一應變 I η γ( Ga i_xlA 1 xl) i-yP / I η ◦. 5( Ga 卜x2A 1 x2) 〇. 5 重量子井,該In^Ga^Al xl)卜/井具有一 &lt;001〉晶格常數大 於該斜切GaAs底材的晶格常數約在0. 2%到0· 6%之間; 一電子反射層有一 I η 〇. 5A 1 〇.疋壅塞層在該主動層上, 該麥塞層厚度約為2 0到4 0 II in之間; 一第二導電型InGaA1P層位於該電子反射層上面,其Page 34 480751 VI. Application scope of patent 23. For the light-emitting diode of the scope of application patent No. 21, the electron reflection layer is selected from the group consisting of fixed, step and gradient growth layers, each layer The thickness is between about 2-5nm. 24. As the light-emitting diode of item 21 of the scope of application for patent, the light-emitting diode is grown in a reaction chamber at a temperature of less than 750 ° C using an organometallic vapor phase worm crystal method. 2 5. A light-emitting diode includes at least: a metal contact base; a first conductive GaAs substrate on the metal contact base 'the substrate is obliquely cut along the &lt; 1 1 1 &gt; A angle, the oblique The cutting angle is greater than 10. A light reflecting layer is located on the substrate; the doped concentration of the light reflecting layer is greater than 2 * 1017 / cm2; a first conductivity type InGa A IP layer is located above the light reflection layer, and the first conductivity type InGaAlP layer There is a doping concentration between 0.4 * 10 18 / cm2 and 1 * 10 18 / cm; an active layer is located above the first conductive InGa A 1P layer, and the active layer contains at least a strain I η γ (Ga i_xlA 1 xl) i-yP / I η ◦ 5 (Ga x 2A 1 x2) 0.5 weight sub-well, the In ^ Ga ^ Al xl) x / well has a &lt; 001> lattice constant greater than the oblique cut The lattice constant of the GaAs substrate is between 0.2% and 0.6%; an electron reflection layer has an I η 0.5A 1 〇. Plug layer on the active layer, and the thickness of the Messer layer is about Between 20 and 40 II in; a second conductivity type InGaA1P layer is located on the electron reflection layer, and 第35頁 480751 六、申請專利範圍 電性與該第一導電型InGaAlP層相反; 一窗戶層位於該第二導電型InGaAlP層上面;以及 一金屬接觸頂座位於該窗戶層上面。 2 6.如申請專利範圍第25項之發光二極體,更包含一 GaAs 緩衝層在該底材與該第一 I n G a A 1 P層上面。 2 7 .如申請專利範圍第2 6項之發光二極體,該緩衝層的厚 度在0. 2到0. 5// m之間。 2 8 .如申請專利範圍第2 5項之發光二極體,該光線反射層 有一反射波長α接近於該主動層波長/5使得(a =/3 -5nm 或a =/3 +5nm),其載子的導電性與該主動層具同一電性。 2 9 .如申請專利範圍第2 5項之發光二極體,該光反射層係 選自於由 AlAs/AlxlGa 卜 xlAs-底材(xlg 0.5),In〇.5(Ga 卜 x2A 1 x2 )〇· 5P -底材(x 2- 0 · 1 ),及 A 1 A s / I η 〇· 5( G a 卜x2A 1 x2) G. 5P -之族群底 材的超晶結構所構成。 3 0 .如申請專利範圍第2 9項之發光二極體,該鋁分子成分 組成xl與x2,當波長大於630nm,X1小於0.6且x2大於0_1 ;當波長大於590nm,xl小於0· 7且X 2大於0.2;當波長大於 5 7 0 nm,X 1小於 0 · 8且 X 2大於 0 . 3。Page 35 480751 6. Scope of patent application Electrical properties are opposite to the first conductivity type InGaAlP layer; a window layer is located above the second conductivity type InGaAlP layer; and a metal contact top seat is located above the window layer. 2 6. The light-emitting diode according to item 25 of the patent application scope, further comprising a GaAs buffer layer on the substrate and the first I n G a A 1 P layer. 27. If the light emitting diode of item 26 of the patent application scope, the thickness of the buffer layer is between 0.2 and 0.5 // m. 28. If the light-emitting diode of item 25 of the patent application scope, the light reflection layer has a reflection wavelength α close to the wavelength of the active layer / 5 such that (a = / 3 -5nm or a = / 3 + 5nm), Its carrier has the same electrical conductivity as the active layer. 29. If the light-emitting diode of item 25 of the patent application scope, the light reflecting layer is selected from the group consisting of AlAs / AlxlGa xlAs-substrate (xlg 0.5), In 0.5 (Ga x2A 1 x2) 〇 · 5P-Substrate (x 2-0 · 1), and A 1 A s / I η 0.5 (G a bu x2A 1 x2) G. 5P-group of superstructure of the substrate. 30. If the light-emitting diode of item 29 of the patent application scope, the aluminum molecular composition xl and x2, when the wavelength is greater than 630nm, X1 is less than 0.6 and x2 is greater than 0_1; when the wavelength is greater than 590nm, xl is less than 0.7 and X 2 is larger than 0.2; when the wavelength is larger than 570 nm, X 1 is smaller than 0.8 and X 2 is larger than 0.3. 480751 六、申請專利範圍 3 1如申請專利範圍第2 9項之發光二極體,該光線反射層 係選自於由 AlAs/Al/ahAs-base d底材,I η 〇. 5( G a 卜XA 1 X ) ο.5P-底材,及AlAs/In〇 5(Gai-xAl x) Q 5P_之族群底材的超晶結 構所構成,各層的反射係數差不小於0. 1 5。 3 2 .如申請專利範圍第2 5項之發光二極體,該光線反射層 與該底材的晶格不匹配度小於0. 3 %。 3 3 .如申請專利範圍第2 5項之發光二極體,該滲雜剖面更 包含一低/高滲雜濃度之厚度比率介於0. 1到0. 5之間。 3 4 .如申請專利範圍第2 5項之發光二極體,該應變( strained)多量子井(strained multi-quantum well)厚 度比約在0 . 7 5到1 . 2 5之間。 3 5 .如申請專利範圍第2 5項之發光二極體,該電子反射層 至少包含1]1。5(631-^1\)。.5?/111。5八1。.5?超晶結構插在该主動 層與該第二InGaAlP層中間。 3 6 .如申請專利範圍第2 5項之發光二極體,該電子反射層 至少包含由固定、階梯及梯度變化厚度所組成,每一層厚 度大約2到5 nm。 3 7 .如申請專利範圍第2 5項之發光二極體,該發光二極體480751 VI. Scope of patent application 31. The light-emitting diode according to item 29 of the scope of patent application, the light reflecting layer is selected from the substrate consisting of AlAs / Al / ahAs-base d, I η 0.5 (G a Bu XA 1 X) ο. 5P-substrate, and AlAs / In〇5 (Gai-xAl x) Q 5P_ group of substrates composed of the supercrystalline structure, the reflection coefficient difference of each layer is not less than 0.1 5. 3 2。 As claimed in the scope of application of the light-emitting diodes 25, the light reflecting layer and the substrate lattice mismatch degree is less than 0.3%. 3 至 3. If the light-emitting diode of the 25th item of the scope of patent application, the doped profile further includes a thickness ratio of low / high doped concentration between 0.1 to 0.5. 34. If the light emitting diode of item 25 of the patent application scope, the strained multi-quantum well thickness ratio is between about 0.75 and 1.25. 35. If the light-emitting diode of item 25 of the patent application scope, the electron reflection layer contains at least 1] 1.5 (631- ^ 1 \). .5? / 111. 5 August 1. .5? A supercrystalline structure is interposed between the active layer and the second InGaAlP layer. 36. If the light-emitting diode of item 25 of the patent application scope, the electron reflection layer at least comprises a fixed, stepped and gradient-varying thickness, and each layer has a thickness of about 2 to 5 nm. 37. If the light-emitting diode of item 25 of the patent application scope, the light-emitting diode 第37頁 480751 六、申請專利範圍 疋在一反應腔(chamber)中以低於75 0度攝氏溫度下,應 用有機金屬氣相磊晶法在該底材上成長。 ~ 3 8 · —種發光二極體至少包含: #一金屬接觸底座; 一第一導電型GaAs底材在該金屬接觸底座上面; 一緩衝層位於該第一導電型GaAs底材上面; 一該第一導電型InGaAlP層位於該底材上面; 一主動層位於該第一導電型InGaAlp層上面; 一第二導電型InGaAlP層位於該主動層上面,其電性 與該第一導電型InGaAlP層相反; 一光線卒取層(extraction layer)位於該第二導電 型InGaAlP層上面,該光線萃取層用來阻擋並散布由第二 導電型InGaAlP層所發散出來之光線;以及 一金屬接觸頂座位於該窗戶層上面。 39·如申請專利範圍第38項之發光二極體,該底材沿&lt;m 〉A角度斜切’该斜切角度大於1〇。。 4 0 ·如申請專利範圍第3 8項之發光二極體,該光線萃取層 (extraction layer)至少包含: 一電壅基層在δ亥第二I n g a a 1 p層上面,該電流壅塞 層至少包含一與第二導電型同性的In。5(Gai χΑΐχ)。5p層, 該電流壅塞層的厚度為l0%1Q()nm;Page 37 480751 VI. Scope of patent application 疋 In a reaction chamber (under 70 ° C), an organic metal vapor phase epitaxy method should be used to grow on the substrate. ~ 3 8 · A light-emitting diode includes at least: a metal contact base; a first conductive GaAs substrate on the metal contact base; a buffer layer on the first conductive GaAs substrate; A first conductivity type InGaAlP layer is located on the substrate; an active layer is located above the first conductivity type InGaAlp layer; a second conductivity type InGaAlP layer is located above the active layer, and its electrical property is opposite to that of the first conductivity type InGaAlP layer A light extraction layer is located on the second conductive type InGaAlP layer, the light extraction layer is used to block and spread the light emitted by the second conductive type InGaAlP layer; and a metal contact top seat is located on the second conductive type InGaAlP layer; Above the window level. 39. If the light-emitting diode of item 38 of the patent application scope, the substrate is chamfered along &lt; m> A angle &apos; The chamfered angle is greater than 10. . 40. If the light-emitting diode of item 38 of the scope of the patent application, the light extraction layer includes at least: an electrical base layer on the second I ngaa 1 p layer, and the current blocking layer at least One is the same conductivity as the second conductivity type. 5 (Gai χΑΐχ). 5p layer, the thickness of the current congestion layer is 10% 1Q () nm; 第38頁 480751 六、申請專利範圍 一梯度層位於該電流壅塞層上面,以緩和該電流壅塞 層與接著上面一層的晶格常數之差異性;以及 一窗戶層位於該梯度層上面以作為電流散佈的功用。 4 1. 一種發光二極體至少包含: 一金屬接觸底座; 一第一導電型GaAs底材在該金屬接觸底座上面,該底 材沿&lt; 1 1 1 &gt; A角度斜切,該斜切角度大於1 0。; 一該第一導電型InGaAl P層位於該底材上面; 一主動層位於該第一導電型InGaAl P層上面; 一第二導電型InGaAl P層位於該主動層上面,其電性 與該第一導電型InGaAl P層相反; 一光線萃取層(extraction layer)位於該第二導電 型InGaAl P層上面,該光線萃取層用來阻塞成長方向電流 並散佈光線之用;以及 一金屬接觸頂座位於該光線萃取層上面。 4 2 .如申請專利範圍第4 1項之發光二極體,該光線萃取層 至少包含: 一電流壅塞層在該第二InG a A 1P層上面,該電流壅塞 層至少包含一與第二導電型同性的Ino./Ga^Al x) G.5P層, 該電流壅塞層的厚度為1 0 - 1 0 0 nm ; 一梯度層位於該電流壅塞層上面,以緩和該電流壅塞 層與接著上面一層的晶格常數之差異性;Page 38 480751 VI. Patent application scope A gradient layer is located on the current blocking layer to alleviate the difference in lattice constant between the current blocking layer and the layer above it; and a window layer is positioned on the gradient layer as a current distribution Function. 4 1. A light-emitting diode includes at least: a metal contact base; a first conductive GaAs substrate on the metal contact base, the substrate is beveled along an angle &lt; 1 1 1 &gt; A, the bevel cut The angle is greater than 10. A first conductivity type InGaAl P layer is located on the substrate; an active layer is located above the first conductivity type InGaAl P layer; a second conductivity type InGaAl P layer is located above the active layer; A conductive InGaAl P layer is opposite; a light extraction layer is located on the second conductive InGaAl P layer, the light extraction layer is used to block the current in the growth direction and spread light; and a metal contact top seat is located The light extraction layer is above. 4 2. According to the light emitting diode of item 41 in the patent application scope, the light extraction layer includes at least: a current blocking layer on the second InG a A 1P layer, the current blocking layer includes at least one and a second conductive layer Ino./Ga^Al x) G.5P layer of the same type, the thickness of the current blocking layer is 10-100 nm; a gradient layer is located on the current blocking layer to relax the current blocking layer and then Difference in lattice constants of a layer; ii — &gt;f ρτι--_ νϋί—ΙΗ-— &Gt; f ρτι --_ νϋί—ΙΗ- 480751 六、申請專利範圍 一窗戶層位於該梯度層上面以作為電流散佈的功用。 4 3 .如申請專利範圍第4 2項之發光二極體,該電流壅塞層 至少包含一第二導電性的111().5(〇31_,1〇().丨-層,該第二導 電性的I n G.5( Ga hA 1 x) G.5P-層的滲雜密度大約高於該第一 I n G a A 1 P層的滲雜密度2 - 4倍。 4 4.如申請專利範圍第42項之發光二極體,該第二導電型 電流壅塞層的I η 〇. 5( Ga i_xA 1 x) 〇. 5P紹分子成分組成X是介於0 . 1到0. 5之間。 4 5 .如申請專利範圍第4 2項之發光二極體,該光線萃取層 (包括三層)的能階高於該主動區域的能階。 4 6 .如申請專利範圍第4 2項之發光二極體,該梯度層有一 滲雜濃度介於該窗戶層與第二導電性壅塞層之間。 4 7 .如申請專利範圍第4 2項之發光二極體,該窗戶層的滲 雜濃度有一階段式或梯度式變化介於2*1 0 18/cm到 8*10 18/cm 乏間。 4 8 .如申請專利範圍第4 7項之發光二極體,該窗戶層在接 近窗戶層/包覆層介面的該滲雜濃度比遠離窗戶層/包覆層 介面的該滲雜濃度來的低。480751 VI. Scope of patent application A window layer is located above the gradient layer for the function of current distribution. 4 3. If the light-emitting diode of item 42 of the patent application scope, the current blocking layer includes at least a second conductive 111 (). 5 (〇31_, 1〇 (). 丨 -layer, the second The doped density of the conductive I n G.5 (Ga hA 1 x) G.5P-layer is approximately 2 to 4 times higher than the doped density of the first I n G a A 1 P layer. 4 4. 如The light emitting diode of the scope of application for a patent No. 42, I η 0.5 (Ga i_xA 1 x) 〇5P This molecular conductivity composition of the second conductivity type current plugging layer is between 0.1 to 0.5 4 5. If the light emitting diode of item 42 of the patent application scope, the energy level of the light extraction layer (including the three layers) is higher than that of the active region. 4 6. In the light emitting diode of item 2, the gradient layer has a doping concentration between the window layer and the second conductive congestion layer. 4 7. For the light emitting diode of item 4 in the patent application scope, the window layer There is a stepwise or gradient change in the impurity concentration between 2 * 1 0 18 / cm to 8 * 10 18 / cm. 4 8. If the light-emitting diode of the scope of patent application No. 47 is applied, the window layer Near the window / cladding interface The concentration of impurity doping concentration than away from the window layer / cladding layer interface to low. 480751 六、申請專利範圍 4 9 .如申請專利範圍第4 2項之發光二極體,該發光二極體 是利用有機金屬氣相磊晶法在一反應腔中以溫度小於攝氏 溫度7 5 0度條件下成長。 5 0 . —種發光二極體至少包含: 一金屬接觸底座; 一第一導電型GaAs底材在該金屬接觸底座上面,該底 材沿&lt;1 1 1&gt;A角度斜切,該斜切角度大於1 0。; 一光線反射層在該底材上面; 一該第一導電型InGaAl P層位於該光線反射層上面; 一主動層位於該第一導電型InGaAl P層上面,該主動 層至少包含一應變 Iny(Ga 卜 χιΑ 1 χι)卜 yP / I η 〇. 5( G a ηζΑ 1 X2) 〇. 5 重量子井,該In/Ga^Al xl)卜/井具有一 &lt;001〉晶格常數大 於該斜切GaAs底材的晶格常數約在0. 2%到0. 6%之間; 一 I η γ( G a !_xlA 1 xl)卜yP電子反射層在該主動層上面,該 電子反射層有一 I n Q. 5A 1 Q. 5P壅塞層,該壅塞層厚度約為2 0 到4 0nm之間; 一第二導電型InGaAl P層位於該電子反射層上面,其 電性與該第一導電型InGaAl P層相反; 一光線萃取層(extraction layer)位於該第二導電 型InGaAl P層上面,該光線萃取層用來阻塞成長方向之電 流並散佈光線之用;以及 一金屬接觸頂座位於該光線萃取層上面。480751 VI. Application scope of patent 4 9. For example, the light-emitting diode of item 42 of the scope of patent application, the light-emitting diode is an organic metal vapor phase epitaxy method in a reaction chamber at a temperature lower than the Celsius temperature 7 5 0 Growth. 5 0. A light-emitting diode includes at least: a metal contact base; a first conductive GaAs substrate on the metal contact base, the substrate is obliquely cut along an angle of &lt; 1 1 1 &gt; A, the oblique cut The angle is greater than 10. A light reflecting layer on the substrate; a first conductive InGaAl P layer on the light reflecting layer; an active layer on the first conductive InGaAl P layer, the active layer including at least a strain Iny ( Ga BU χιΑ 1 χι) Bu yP / I η 0.5 (G a ηζΑ 1 X2) 0.5 weight sub-well, the In / Ga ^ Al xl) Bu / well has a &lt; 001> lattice constant greater than the The lattice constant of the beveled GaAs substrate is between 0.2% and 0.6%; an I η γ (G a! _XlA 1 xl) yP electron reflection layer is on the active layer, and the electron reflection layer There is an I n Q. 5A 1 Q. 5P congestion layer, the thickness of the congestion layer is between 20 and 40 nm; a second conductivity type InGaAl P layer is located on the electron reflection layer, and its electrical conductivity is the same as the first conductivity. The InGaAl P layer is opposite; a light extraction layer is located on the second conductive InGaAl P layer, the light extraction layer is used to block the current in the growth direction and spread the light; and a metal contact top seat is located on the Light extraction layer above. 第41頁 480751 六、申請專利範圍 5 1 .如申請專利範圍第5 0項之發光二極體,該發光二極體 是利用有機金屬氣相蠢晶法在一反應腔中以溫度小於7 5 0 攝氏溫度下成長。 5 2 .如申請專利範圍第5 0項之發光二極體,該光線萃取層 (extraction layer)至少包含: 一電流t塞層在該第二I n G a A 1 P層上面,該電流壅塞 層包含一與第二導電型同性的111().5(〇81_,1丄.5?層,該電 流壅塞層的厚度為10-100nm; 一梯度層位於該電流壅塞層上面;以及 一窗戶層位於該梯度層上面。 5 3 .如申請專利範圍第5 0項之發光二極體,更包含一光線 反射層位於該底材上,該光線反射層的滲雜濃度大於2 * 1 0 17/ cm 2〇 5 4 .如申請專利範圍第5 0項之發光二極體,該光線反射層 有一反射波長α接近該主動區域的波長/3 (α -5 nm或 a =/3 +5 nm)且其電性與該底材相同。 5 5 .如申請專利範圍第5 0項之發光二極體,該光反射層係 選自於由 AlAs/AlxlGa bXlA s -底材(X 12 0 · 5 ),I η 〇. 5( Ga 卜x2A 1 x2) 〇.5?-底材&lt;^2-0.1)與人1人3/111().5(〇31_^1:(2)0.5?-之族群底Page 41 480751 VI. Application for patent scope 51. For example, the light-emitting diode 50 for the scope of patent application, the light-emitting diode is an organic metal vapor phase stupid method in a reaction chamber at a temperature of less than 7 5 0 Grow at Celsius. 5 2. According to the light emitting diode of claim 50 in the scope of patent application, the light extraction layer includes at least: a current t plug layer on the second I n G a A 1 P layer, and the current pinch The layer includes a 111 (). 5 (〇81_, 1 丄 .5? Layer having the same conductivity as the second conductivity type, and the thickness of the current blocking layer is 10-100 nm; a gradient layer is located above the current blocking layer; and a window The layer is located on the gradient layer. 5 3. As the light-emitting diode of the 50th scope of the patent application, it further includes a light reflecting layer on the substrate, and the impurity concentration of the light reflecting layer is greater than 2 * 1 0 17 / cm 2 05. If the light-emitting diode of the 50th patent application scope, the light reflecting layer has a reflection wavelength α close to the wavelength of the active region / 3 (α -5 nm or a = / 3 +5 nm ) And its electrical property is the same as that of the substrate. 5 5. As the light-emitting diode of the 50th scope of the patent application, the light reflecting layer is selected from the group consisting of AlAs / AlxlGa bXlA s-substrate (X 12 0 · 5), I η 0.5 (Ga x 2A 1 x 2) 0.5? -Substrate &lt; ^ 2-0.1) and one person 3/111 (). 5 (〇31_ ^ 1: (2) 0.5 ? -The bottom of the ethnic group 480751 六、申請專利範圍 材的超晶格結構所組成。 5 6 .如申請專利範圍第5 5項之發光二極體,該鋁分子成分 組成xl與x2,當波長大於630 nm,X 1小於0 . 6且X 2大於0 . 1;當波長大於590 nm,X 1小於0.7且X 2大於0.2;當波長大 於570 nm,xl小於0. 8且X 2大於0 . 3。 5 7 .如申請專利範圍第5 0項之發光二極體,該光線反射層 係選自於由 A 1 A s / A 1 xGa bXA s -bas ed底材,I η 〇. 5( Ga 卜XA 1 x) 〇.5P-底材,及A 1 As / I n G.5( Ga i_xA 1 x) o.5P-之族群底材的超晶結 構所構成,各層的反射係數差不小於0. 1 5。 5 8 .如申請專利範圍第5 0項之發光二極體,該光線反射層 與該底材的晶格不匹配度小於0 . 3 %。 5 9 .如申請專利範圍第5 0項之發光二極體,該第一 I nGaA 1 P層有一梯度性變化的滲雜過程,該梯度性變化剖 面由 0. 4*1 0 18/cm^4 l*1018/cm?^ 間。 6 0 .如申請專利範圍第5 0項之發光二極體,該光線萃取層 (extraction layer)至少包含: 一電流麥塞層在該第二InGaAl P層上面,該電流麥塞 層包含一與第二導電型同性的111().5(〇31_,1》{).5?層,該電 流壅塞層的厚度為10-100nm;480751 VI. Scope of patent application Composed of superlattice structure of materials. 56. According to the light-emitting diode of claim 55, the aluminum molecular composition xl and x2, when the wavelength is greater than 630 nm, X 1 is less than 0.6 and X 2 is greater than 0.1; when the wavelength is greater than 590 nm, X 1 is less than 0.7 and X 2 is greater than 0.2; when the wavelength is greater than 570 nm, xl is less than 0.8 and X 2 is greater than 0.3. 57. If the light-emitting diode of item 50 of the scope of patent application, the light reflecting layer is selected from a substrate consisting of A 1 A s / A 1 xGa bXA s -bas ed, I η 0.5 (Ga XA 1 x) 〇5P-substrate and A 1 As / I n G.5 (Ga i_xA 1 x) o.5P- group substrate structure, the reflection coefficient difference of each layer is not less than 0 . 1 5. 58. If the light emitting diode of item 50 in the scope of patent application, the degree of lattice mismatch between the light reflecting layer and the substrate is less than 0.3%. 5 9. If the light-emitting diode of the 50th item of the scope of the patent application, the first InGaA 1 P layer has a gradient change in the doping process, the gradient change profile from 0.4 * 1 0 18 / cm ^ 4 l * 1018 / cm? ^. 60. If the light emitting diode of item 50 in the patent application scope, the light extraction layer includes at least: a current Messer layer on the second InGaAl P layer, the current Messer layer includes a and 111 (). 5 (〇31_, 1》 {). 5? Layer of the second conductivity type, the thickness of the current blocking layer is 10-100nm; 第43頁 480751 六、申請專利範圍 一梯度層位於該電流壅塞層上面,以緩和該電流壅塞 層與接著上面一層的晶格常數之差異性;以及 一窗戶層位於該梯度層上面以作為電流散佈的功用。 6 1.如申請專利範圍第6 0項之發光二極體,該電流壅塞層 至少包含一第二導電性的111{).5(〇81_/1〇().5?-層,該第二導 電性的Ino./Ga^Al x) G.5P-層的滲雜密度大約高於第一 I n G a A 1 P層 2 - 4倍。 6 2 .如申請專利範圍第6 0項之發光二極體,該第二導電型 電流壅塞層的I η 〇. 5( Ga i_xA 1 x) 〇. 5P紹分子成分組成X是介於0 · 1到0. 5之間。 6 3 .如申請專利範圍第6 0項之發光二極體,該電流壅塞層 的能階高於該主動區域的能階。 6 4 .如申請專利範圍第6 0項之發光二極體,該梯度層有一 滲雜濃度介於該窗戶層與第二導電性壅塞層之間。 6 5 .如申請專利範圍第6 0項之發光二極體,該窗戶層有一 階段式或梯度式變化介於2*10 18/cm到8*10 18/cm乏間。 6 6 .如申請專利範圍第6 0項之發光二極體,該窗戶層在接 近窗戶層/包覆層介面的該滲雜濃度比遠離窗戶層/包覆層Page 43 480751 6. Application scope: a gradient layer is located on the current blocking layer to alleviate the difference in lattice constant between the current blocking layer and the next layer; and a window layer is positioned on the gradient layer as a current distribution. Function. 6 1. If the light-emitting diode of item 60 of the scope of patent application, the current blocking layer includes at least a second conductive 111 {). 5 (〇81_ / 1〇 (). 5? -Layer, the first The doped density of the two-conducting Ino./Ga^Al x) G.5P-layer is approximately 2-4 times higher than that of the first I n G a A 1 P layer. 62. If the light-emitting diode of item 60 of the scope of patent application, the second conductive type current blocking layer has I η 0.5 (Ga i_xA 1 x) 0.5 P. The molecular composition X is between 0 · Between 1 and 0.5. 63. The energy level of the current blocking layer is higher than the energy level of the active region, such as the light emitting diode of item 60 in the scope of patent application. 64. If the light-emitting diode of item 60 of the patent application scope, the gradient layer has a doping concentration between the window layer and the second conductive plug layer. 65. If the light emitting diode of item 60 of the scope of patent application, the window layer has a stepwise or gradient change between 2 * 10 18 / cm to 8 * 10 18 / cm. 6 6. If the light emitting diode of item 60 of the scope of the patent application, the window layer is closer to the window layer / coating layer interface than the impurity concentration ratio of the window layer to the window layer / coating layer. 480751 六、申請專利範圍 介面的該滲雜濃度來的低 liii 第45頁480751 VI. The scope of patent application The impurity concentration at the interface is low liii page 45
TW90108396A 2001-04-09 2001-04-09 Semiconductor light emitting diode based on off-cut substrate TW480751B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90108396A TW480751B (en) 2001-04-09 2001-04-09 Semiconductor light emitting diode based on off-cut substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90108396A TW480751B (en) 2001-04-09 2001-04-09 Semiconductor light emitting diode based on off-cut substrate

Publications (1)

Publication Number Publication Date
TW480751B true TW480751B (en) 2002-03-21

Family

ID=21677887

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90108396A TW480751B (en) 2001-04-09 2001-04-09 Semiconductor light emitting diode based on off-cut substrate

Country Status (1)

Country Link
TW (1) TW480751B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560963B (en) * 2010-03-04 2016-12-01 Univ California Semi-polar iii-nitride optoelectronic devices on m-plane substrates with miscuts less than +/- 15 degrees in the c-direction
TWI699008B (en) * 2017-12-01 2020-07-11 大陸商泉州三安半導體科技有限公司 Yellow-green light-emitting diode
CN114864769A (en) * 2022-04-26 2022-08-05 厦门士兰明镓化合物半导体有限公司 LED epitaxial structure and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560963B (en) * 2010-03-04 2016-12-01 Univ California Semi-polar iii-nitride optoelectronic devices on m-plane substrates with miscuts less than +/- 15 degrees in the c-direction
TWI699008B (en) * 2017-12-01 2020-07-11 大陸商泉州三安半導體科技有限公司 Yellow-green light-emitting diode
CN114864769A (en) * 2022-04-26 2022-08-05 厦门士兰明镓化合物半导体有限公司 LED epitaxial structure and preparation method thereof

Similar Documents

Publication Publication Date Title
US6608328B2 (en) Semiconductor light emitting diode on a misoriented substrate
JP3063756B1 (en) Nitride semiconductor device
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
US7737451B2 (en) High efficiency LED with tunnel junction layer
US8314415B2 (en) Radiation-emitting semiconductor body
US9978905B2 (en) Semiconductor structures having active regions comprising InGaN and methods of forming such semiconductor structures
US9553232B2 (en) Light emitter with a conductive transparent p-type layer structure
JP2002527890A (en) Vertical indium gallium nitride LED
US9397258B2 (en) Semiconductor structures having active regions comprising InGaN, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures
JP2009071277A (en) Polarization doping in nitride based diode
US20140225059A1 (en) LED with Improved Injection Efficiency
JP2000244013A (en) Nitride semiconductor element
US9634182B2 (en) Semiconductor structures having active regions including indium gallium nitride, methods of forming such semiconductor structures, and related light emitting devices
TW201027809A (en) A light emitting diode structure and a method of forming a light emitting diode structure
CN105914273A (en) Red and yellow light emitting diode epitaxial wafer and preparation method thereof
US20020104997A1 (en) Semiconductor light emitting diode on a misoriented substrate
CN113193088A (en) Infrared light-emitting diode epitaxial wafer and preparation method thereof
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
CN116598396A (en) LED epitaxial wafer, preparation method thereof and LED
CN101290963B (en) Nitride semiconductor light-emitting device
TW480751B (en) Semiconductor light emitting diode based on off-cut substrate
US6222205B1 (en) Layered semiconductor structure for lateral current spreading, and light emitting diode including such a current spreading structure
US6774402B2 (en) Pn-juction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode
US9768349B2 (en) Superlattice structure
US11538960B2 (en) Epitaxial light emitting structure and light emitting diode

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees