TW480751B - Semiconductor light emitting diode based on off-cut substrate - Google Patents
Semiconductor light emitting diode based on off-cut substrate Download PDFInfo
- Publication number
- TW480751B TW480751B TW90108396A TW90108396A TW480751B TW 480751 B TW480751 B TW 480751B TW 90108396 A TW90108396 A TW 90108396A TW 90108396 A TW90108396 A TW 90108396A TW 480751 B TW480751 B TW 480751B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- light
- emitting diode
- patent application
- scope
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Abstract
Description
5 - 1發明領域: 明疋有關一種製造發光二 關-種可以取代傳統技藝 =方法,特別是有 料以製成發光二極胃,並“ ^ f的化合物半導體材 • 毛先—極體放射效率的方法 5 - 2發明背景: 以InGaAlP為基礎的合金對於波長介於紅光與綠光之 間的發光二極體的製程乃是一相當重要的半導體材料。 In^GanAlOuP合金與GaAs底材是晶格匹配的(lattice match),並有一 UeV到2·3Εν的直接轉換能隙,在此能 隙内Α1的分子組成大約在0<χ<0.7之間。當Μ的組成大約 在X〜0. 7時InG.5(Gai-xAlx)Q.5p有一間接能階。當Ai的組成χ 〜la夺In〇.5(Ga "Al X) 〇.5P有另一間接能階,約為2· 3eV。為 了得到有效率的發光,必須有強大的載子發光再結合( recombination)及高效率的發光二極體。以inGaAlp為基 礎的發光二極體中在較短波長,也就是紅光與黃—綠光的 可見光光谱之間有一直接轉換能隙以供高亮度的發光。 此外’ I η 〆G a i—χΑ 1 X) 〇· 有近乎完美的晶格對準( alignment)且在GaAs在V/III/V/III族介面半導體底材5-1 Field of the Invention: Ming Li is concerned with a method of manufacturing light-emitting diodes-a method that can replace traditional techniques = in particular, compound semiconductor materials that have materials to make light-emitting diode stomachs, and "^ f"-radiation efficiency of polar bodies Method 5-2 Background of the Invention: InGaAlP-based alloy is a very important semiconductor material for the process of light-emitting diodes with wavelengths between red and green. In ^ GanAlOuP alloy and GaAs substrate are Lattice match, and there is a direct conversion energy gap from UeV to 2 · 3Eν, in which the molecular composition of A1 is about 0 < x < 0.7. When the composition of M is about X ~ 0 At 7 o'clock, InG.5 (Gai-xAlx) Q.5p has an indirect energy level. When the composition of Ai χ ~ la wins In〇.5 (Ga " Al X) 0.5P has another indirect energy level, about 2 · 3eV. In order to obtain efficient light emission, it is necessary to have a strong carrier light recombination and high-efficiency light-emitting diode. InGaAlp-based light-emitting diodes have a short wavelength, that is, red There is a direct conversion energy gap between the visible spectrum of light and yellow-green light for highlighting In addition, ’I η 〆G a i—χΑ 1 X) 〇 · There is a nearly perfect lattice alignment and the semiconductor substrate of V / III / V / III interface in GaAs
第5頁 480751Page 5 480751
ΐ: JJH(charge baiance)的特性,這種特性表示 匕疋原子、.及F白層(atomic levei)磊晶成長(epi growth),像是準確控制多重量子井(MuUiple well, MQW)的厚度及組成的一良好候用元素,因此是一良 好的LED蠢晶製成材料,也因而造成InG 5(Ga! χΑι丄5P在可 見光發光二極體製程上具備很大的吸引力。 圖一顯示,一傳統式發光二極體結構,圖中結構至少 包含長在η形GaAs底材1〇1上面由inGaA 1P合金系統組成的 異質結構(double heterostructure, DH),DΗ由一個研) I η 〇. 5( G a 卜χΑ 1 X) 〇. 5Ρ較低層包覆層(cladding layer) 102、 未滲雜主動層 I n G. 5( Ga 丨—χΑ 1 x) G 5P 1 〇 3、一 p形 I n q 5( Ga bXA 1 x) 0 . 5 P較高層包覆層1 0 4、一 p形G a P電流擴散層1 〇 5、上層金 屬1 0 6及底層金屬1 0 7所組成。 圖一顯示,一發光二極體是一 p - n接合面,施以—順 向偏壓使電洞由Ρ形包覆層1 0 4及電子由η型包覆層1 〇 2注入 到主動區域1 0 3。主動區域1 〇 3由於電子與電動在本區域的 再結合而放射出可見光。電子與電動如同少數載子,被注 入且跨越主動區域(active region) 103,並可經由發光 性或非發光性而再結合(r ecomb i ne)。以I nGaA 1 P為基 礎的LED其發射波長可由調整主動區域(inQ 5(Gai_xAl χ) ^ 5p )1 0 3中A 1的組成而作改變,由一正確的能隙來對應—特 疋的發光波長。例如’在較短波長時’如黃光或黃-綠光ΐ: A characteristic of JJH (charge baiance). This characteristic represents epitaxial growth of dagger atoms, atomic levei, and F, such as accurately controlling the thickness of multiple quantum wells (MuUiple wells, MQWs). And the composition is a good candidate element, so it is a good LED stupid crystal material, which also makes InG 5 (Ga! ΧΑι 丄 5P very attractive in the visible light emitting diode system. Figure 1 shows A conventional light-emitting diode structure. The structure in the figure at least includes a heterostructure (double heterostructure, DH) composed of an inGaA 1P alloy system grown on an η-shaped GaAs substrate 101, and DΗ is made by one researcher. I η 〇 5 (G a BU χΑ 1 X) 〇 5P lower layer cladding layer 102, non-doped active layer I n G. 5 (Ga 丨 —χΑ 1 x) G 5P 1 〇3, a consisting of p-shaped I nq 5 (Ga bXA 1 x) 0.5 P higher cladding layer 104, a p-shaped G a P current diffusion layer 105, upper metal 1 106 and lower metal 1 07 . Figure 1 shows that a light-emitting diode is a p-n junction, and a forward bias is applied to cause holes to be injected from the P-shaped cladding layer 104 and electrons from the η-type cladding layer 102 to the active electrode. Area 1 0 3. Active area 103 emits visible light due to the recombination of electrons and motors in this area. Electrons and motors, like minority carriers, are injected into and across the active region 103 and can be recombined via luminescence or non-luminescence (r ecomb i ne). The emission wavelength of an LED based on I nGaA 1 P can be changed by adjusting the composition of A 1 in the active region (inQ 5 (Gai_xAl χ) ^ 5p) 1 0 3, which is corresponding by a correct energy gap. Luminous wavelength. E.g. "at shorter wavelengths" such as yellow or yellow-green
480751 五、發明說明(3) ' --- ,主動層Inu(Gai_xAlx)G.5P 103必需有較多的^組成以供 光線放射。主動層103的厚度也有其重要性,通常比入射 載子擴散長度(carrier diffusion lenghth)短,以便載 子再組合。較厚的主動層1 0 3的發光效率可以因為低密度 的載子而減少。主動層103的厚度大約在〇· 3到〇·5# m之 間。主動區域103是供載子注入(injecti〇n)與再結合( recombination)以產生光線的區域。主動區域ι〇3的材料 品質要求是很咼的,其目的是為了得到高效率的發光。因 此,主動區域1 0 3需要很低的背景本徵(丨n t r丨n s丨c )雜質, 這將會減少非發光性再結合中心(nonradiative recombination center)的密度。主動區域ι〇 3的高滲雜背 景主要是由主動區域1〇3中高密度的深度陷阱((^叩^叩3 )所引起’會導致在光線放射的過程中造成非發光性再結 合。一個乾淨與低雜質的反應腔(chamber),對於主動區 域的長成是必須的。通常,InQ 5(Gai xAlx)Q 5p主動層1〇3是 一非滲雜區’可以是P形或_,滲雜密度大約在5氺1 〇 15 到1氺1 0 17/cm乏間。在另一方面,主動區域i 〇3的背景滲 雜程度隨著A 1的組成增加而增加,這是由於主動區域丨〇 3 的A 辰度增加導致雜質濃度增加的因素。 對於較短波長的光線輻散而言,主動區域1 〇3中A 1的 組成增加’將伴隨發射光線的内量子效率(internal quantum efficiency)的減少。如上所述,主動區域的ι〇3 中較南的A 1組成’將伴隨深度位階(d e e p 1 e v e 1)的增加480751 V. Description of the invention (3) '---, the active layer Inu (Gai_xAlx) G.5P 103 must have more ^ components for light emission. The thickness of the active layer 103 also has its importance, which is usually shorter than the incident carrier diffusion lenghth so that the carriers can recombine. The luminous efficiency of the thicker active layer 103 can be reduced due to low-density carriers. The thickness of the active layer 103 is approximately between 0.3 and 0.5 # m. The active area 103 is an area for carrier injection and recombination to generate light. The material quality of the active area ι03 is very high, and its purpose is to get high-efficiency light emission. Therefore, the active region 103 needs very low background intrinsic (ntrrnsnc) impurities, which will reduce the density of the non-radiative recombination center. The highly doped background of the active area ι03 is mainly caused by a high-density depth trap ((^ 叩 ^ 叩 3) in the active area 103), which will cause non-luminous recombination during the process of light emission. A clean and low impurity reaction chamber is necessary for the growth of the active region. In general, the InQ 5 (Gai x Alx) Q 5p active layer 103 is a non-doped region, which can be P-shaped or _, The impurity density is between 5 氺 1 015 and 1 氺 1 0 17 / cm. On the other hand, the background impurity in the active area i 〇3 increases with the increase in the composition of A 1, which is due to the active Increasing the degree of A in the region 丨 〇3 leads to an increase in impurity concentration. For shorter-wavelength light divergence, the increase in the composition of A 1 in the active region 103 will be accompanied by the internal quantum efficiency of the emitted light. efficiency). As mentioned above, the southern A1 composition in ι03 in the active region will be accompanied by an increase in the depth level (deep 1 eve 1).
480751480751
發光的效 也就減少 五、發明說明(4) ,而深度位階會引發非發光性再結合 率〇 n 一型與P—型包覆層(1〇2及1〇4)為 考T戰子的办、 source),並且比主動區域1 〇3有較高的能肌 、J不源( 此I白,以PP庄,、 的載子及發出的光。這些包覆層需要良好的1 广制 >主入 的渗雜濃度以提供足夠的入射載子進入t心 電率與合適 到高效率的發光。包覆層InjGa^AlDup的产i〇3並達 ,以防止載子由主動區域1 〇 3回流到包覆展、,&要夠厚 厚到影響LED的發射效率。結果,大量的^射但又不致於The luminous effect is also reduced. 5. Description of the invention (4), and the depth level will cause a non-luminous recombination rate. On-type and P-type cladding layers (120 and 104) Source), and have higher energy muscles and J sources than the active area 103 (this I white, to PP Zhuang, and the carrier and emitted light. These coatings need a good 1 ≫ The main dopant concentration is provided to provide sufficient incident carriers to enter t ECG and suitable to high-efficiency luminescence. The cladding layer InjGa ^ AlDup produces iO3 and reaches to prevent carriers from the active area 1 〇3 reflow to the cladding, & must be thick enough to affect the LED's emission efficiency. As a result, a large amount of radiation but not so much
包覆層,漏電流因為溢流載子的非發光性載^子溢流到 通常,發光效率在傳統的LED雙異質結槿Γ 合,產生。In the cladding layer, the leakage current is caused by the non-luminous carriers of the overflow carriers. Generally, the light emitting efficiency is generated by the combination of the conventional LED double heterojunction.
丹 I d 〇 u b e I heterostructure,DΗ)會隨著波長的_」 degrade)。 文】、而衣減( 在P形包覆層1 0 4之上,有一電流擴勒 .;, ^欢稽1 〇 5以供光線 有效的散佈。電流擴散層105是一個Φ ^ ? t 、增)要能將主動層發 出之光線使其穿透出去的半導體,相當於θ ^ 田於是一窗戶戶,該 半導體對於光線由主動區域1 03所發射光 \Dan I d o u b e I heterostructure (DΗ) will degrade with wavelength _ ″. Text], and clothing minus (above the P-shaped cladding layer 104, there is a current extension.;, ^ Huanji 1 005 for the effective spread of light. The current diffusion layer 105 is a Φ ^? T, (Increase) A semiconductor that can penetrate the light emitted by the active layer to make it penetrate out is equivalent to θ ^ Tian Yu, a window user, and this semiconductor emits light from the active area 103
性的。此外,電流擴散窗戶層105必須有4=马可牙f 巧,效地將進入主動 區103與包覆層(102及104)的電流均句祕私日目 ^ 古沾為仙曲+ ,广也 J地散開,因此需要 同的滲雜濃度與厚度。 為克服上述的困難’ LED需要設計的使得光線由發光Sexual. In addition, the current diffusion window layer 105 must have 4 = Marco teeth, effectively the current entering the active area 103 and the cladding layer (102 and 104) are secretive. It also spreads out, so it needs the same doping concentration and thickness. In order to overcome the above-mentioned difficulties, the LED needs to be designed so that light is emitted from the light.
480751 五、發明說明(5) 二極體發射時具有更高效率,本發明中,以InGaA 1P為基 礎的LED數項請求項會提出來,以製作一有效率的發光二 極體。 5 - 3發明目的及概述 本發明的一目的是提供一種化合物半導體材料以製成 發光二極體的方法。 本發明的另一個目的是提供有關一種可以取代傳統技 藝中發光二極體的化合物半導體材料以製成發光二極體, 並提高發光二極體放射效率的方法。 根據以上目的,本發明提出一製造LED設計的新材質 製造方法,使得光線由發光二極體發射時具有更高效率, 本發明中,LED的InGa A 1P的數項異於傳統技藝的請求項會 提出來,以供製作一有效率的發光二極體。 5 - 4發明詳細說明: 本發明的較佳實施例將詳細討論如後。實施例乃是用 以描述使用本發明的一特定範例,並非用以限定本發明的480751 V. Description of the invention (5) Diodes have higher efficiency when emitting. In the present invention, several requests for LEDs based on InGaA 1P will be made to make an efficient light-emitting diode. 5-3 OBJECTS AND SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a light emitting diode by using a compound semiconductor material. Another object of the present invention is to provide a method for forming a light emitting diode by using a compound semiconductor material which can replace the light emitting diode in the conventional technology, and improve the radiation efficiency of the light emitting diode. According to the above purpose, the present invention proposes a new material manufacturing method for manufacturing LED design, so that light has higher efficiency when emitted by a light emitting diode. In the present invention, several items of the InGa A 1P of the LED are different from the traditional technology request items Will be proposed for making an efficient light-emitting diode. 5-4 Detailed Description of the Invention: Preferred embodiments of the present invention will be discussed in detail later. The embodiment is used to describe a specific example of using the present invention and is not intended to limit the present invention.
第9頁 480751 五、發明說明(6) 範圍。 以InGaA 1P為基礎的發光二極體,其發光顏色可由改 變主動層中In〇5(Ga 1 _χΑ 1 X) 〇 5P合金A 1的組成成分來達到一 對應特定發射波長之正確能隙,而改變主動區域的丨n。5( G a 丨-XA 1 X) 〇.5P同時導致能隙寬度(width of the band gap) 變小,其結構將傾向於較有次序(o r d e r )。為了達到相同 的發射光波長,主動區域的A 1成分需有較高的含量,但是 ,這樣卻會造成主動區域的高雜質密度,並造成低的放射 效率。排列有次序的結構,例如,半導體薄·膜内原子因有 次序或組成的改變可導因於原子的靜態位移(static displacement)產生在晶格四面體(tetragonal)形變中 的局部後:化’在I η 〇 5( G a 1—χΑ 1 X) 〇 5P合金糸統中,I n d i u m ( I η )具有比Ga或A 1原子較大的四面體(tetrahedral)共價半 徑(covalent radius) 9。因此,四面體(tetrahedral) 共價半徑的差異性會產生同類聚集 (clustering of like species)。結果相對地產生晶體結構的局部形變收縮與延 長(dilation)。由 spinodal decomposition熱力觀念來看 ’位於相位圖(phase diagram)之可溶性(miscibility) 能隙中的某一組成合金,在某一轉折溫度下會產生有次序 到無次序的轉折。實驗與熱力理論的差別在於動能與表面 結構次序形成上之考量。由我們的實驗,I n Q 5( Ga 丨-χΑ 1 x) Q 5 P薄膜遵循spinodal decomposition熱力學基本理論,在 成長溫度6 6 0 - 7 7 0度之間傾向有某種不同程度的次序結構Page 9 480751 V. Description of the invention (6) Scope. The light emitting diode based on InGaA 1P can change the composition of In〇5 (Ga 1 _χΑ 1 X) 〇5P alloy A 1 in the active layer to achieve a correct energy gap corresponding to a specific emission wavelength, and Change the n of the active area. 5 (G a 丨 -XA 1 X) 〇 0.5P also causes the width of the band gap to become smaller, and its structure will tend to be more ordered (or r de e r). In order to achieve the same emitted light wavelength, the A 1 component in the active region needs to have a higher content, but this will cause a high impurity density in the active region and a low radiation efficiency. Ordered structures, for example, the order or composition of atoms in a semiconductor thin film can be caused by the static displacement of the atoms in the local tetragonal deformation of the lattice: after the transformation In the I η 〇5 (G a 1-χΑ 1 X) 〇5P alloy system, I ndium (I η) has a tetrahedral covalent radius larger than Ga or A 1 atoms 9 . Therefore, the difference in tetrahedral covalent radii will produce a clustering of like species. As a result, local deformation shrinkage and dilation of the crystal structure are relatively generated. Judging from the thermal concept of spinodal decomposition, a composition alloy located in the miscibility energy gap of the phase diagram will produce orderly to orderless transitions at a certain transition temperature. The difference between experiment and thermal theory lies in the consideration of the formation of kinetic energy and surface structure order. From our experiments, the I n Q 5 (Ga 丨 -χΑ 1 x) Q 5 P thin film follows the basic theory of spinodal decomposition thermodynamics, and there is a tendency to have a certain degree of sequential structure between the growth temperature of 6 6-7 7 0 degrees.
第10頁 480751 五、發明說明(7) 。發光二極體在成長溫度大約高於7 〇 〇度磊晶成長,是本 發明的一請求項。另一方面,〈〇〇1〉GaAs的重新成長在 〈1 1 0〉方向的副表面層具有可變性壓縮與沿展的區域。 因為姻(I nd i um)有比Ga或A1更大的四面體(tetrahedral )共彳貝半徑’在其成長面(gr〇wing surface)上的可變性延 長與壓、、傾f生疋此ΐ適長結核位置(e n e r g y f a v 〇 r a b 1 e nucleation site),對於in、ai或Ga而言極適合它們的成 長。點暗示著’除了上述規則與非規則的轉折溫度以外 ’規則結構的形成與底材的表面結構有關。由我們的實驗 則的程度可以藉由使用不同的錯切角度之GaAs底材而 獲付改善。規則與非規則轉折溫度乃因為底材GaAs切割角 度$增加而下降。在錯切G a A s底材的表面,週期性延展與 收縮的表面重建區域,可以由底材GaAs錯切角度的增加而 獲得改善並減少。由以上結果,隨著。^底材之錯切角度 的增加,在I nGaA丨p内的原子次序規則程度會顯著的減少 〇 目Η士 ίΪ:成長溫度下,InG.5(GaHAlx)G.5P合金系統中規 、π〒現為降低量子效率的一因素,因此必須增加A工在 ϋ52&1_χΑΐ x)q j主動區域的成分,來獲得特定能階寬度 二因此,可以藉由In°.5(Gai爲)◦』磊晶成長在 9的底材上,而使得轉折溫度減至低於7 0 0。 C。 此外含A1之InQ.5(Gai-xAl X) ◦ 多重量子井中的量子Page 10 480751 V. Description of the Invention (7). The epitaxial growth of the light-emitting diode at a growth temperature above about 700 degrees is a claim of the present invention. On the other hand, the secondary surface layer of <〇〇1> GaAs re-grown in the direction of <1 10> has a region of variable compression and spreading. Because marriage (Ind i um) has a greater tetrahedral common radius than Ga or A1, the variability of its growth surface (growing surface) is prolonged and pressed. A suitable nodule location (energyfav 〇rab 1 e nucleation site) is very suitable for in, ai or Ga growth. The point implies that 'in addition to the above-mentioned regular and irregular turning temperatures', the formation of a regular structure is related to the surface structure of the substrate. The degree of our experiment can be improved by using GaAs substrates with different cut angles. The regular and irregular turning temperatures decrease because the substrate GaAs cutting angle $ increases. On the surface of the miscut G a A s substrate, the surface reconstruction area that is periodically extended and contracted can be improved and decreased by increasing the miscut angle of the substrate GaAs. From the results above. ^ Increasing the miscut angle of the substrate will significantly reduce the degree of atomic order regularity in I nGaAp. 〇 ΪΪ: At the growth temperature, InG.5 (GaHAlx) G.5P alloy system, 〒 is a factor that reduces the quantum efficiency, so it is necessary to increase the A component in the ϋ52 & 1_χΑΐ x) qj active region to obtain a specific energy level width II. Therefore, In ° .5 (Gai is) The crystals grow on the substrate of 9, and the turning temperature is reduced to less than 700. C. In addition, InQ.5 (Gai-xAl X) with A1 ◦ Quantum in multiple quantum wells
第11頁 480751 五、發明說明(8) 效率可由增加底材的錯切角度,而獲得改善。在g & A s底材 的斜切愈朝向〈111〉A表面,會暴露愈多的陽離子終端階 梯邊緣(cation terminated step edges)。吸附雜質的 一入是經由一階梯狀陷阱(step traps),並且和成長表 面上之吸附雜質和終端階梯間的鍵結形狀有關。陽離^終 止階梯邊緣有一單一鍵結並提供較弱的吸附位置。因此, 階梯似陷阱效應(step trapping efficiency)會隨著成 長表面沿著〈1 1 1〉A之斜切角度增加而減少其附著效應。 所以,主動區雜質的加入(例如矽或氧),將隨著 >角^的 增加而減少。這些不純物質可以作為光發射區域的深層及 非發光再結合的中心,並影響LED的發射效率。本發明胃中 ’以GaAs為底材且斜切角度沿者〈1 1 1〉a等於或大於丄〇度 被視為所發射的光具有較佳的效率。 此外,以InG a A 1P為基礎的LED之薄膜光滑度與品質可 由長在一斜切底材G a A s結構而獲得改善。過去用來改盖半 導體的表面光滑度所應用之磊晶技術如液相磊晶法(Page 11 480751 V. Description of the invention (8) The efficiency can be improved by increasing the angle of cut of the substrate. The more the bevel cut of the g & As substrate is directed to the <111> A surface, the more cation terminated step edges will be exposed. The entry of adsorbed impurities is through step traps, and is related to the shape of the bonding between the adsorbed impurities on the growth surface and the terminal step. There is a single bond at the edge of the positive step and provides a weaker adsorption site. Therefore, the step trapping efficiency will reduce the adhesion effect of the growing surface as the chamfering angle of the growing surface along <1 1 1> A increases. Therefore, the addition of impurities in the active region (such as silicon or oxygen) will decrease as the > angle increases. These impurities can be used as the deep layer of the light emission area and the center of non-luminous recombination, and affect the emission efficiency of the LED. In the stomach of the present invention, the use of GaAs as the substrate and the oblique cut along the angle <1 1 1> a is equal to or greater than 丄 0 degrees is considered to have better efficiency of the emitted light. In addition, the smoothness and quality of InG a A 1P-based LED films can be improved by growing a beveled substrate G a A s structure. In the past, epitaxial techniques, such as liquid phase epitaxy, were used to modify the surface smoothness of semiconductors.
Liquid Phase Epitaxy,LPE)或氣相磊晶法(chemicalLiquid Phase Epitaxy (LPE) or gas phase epitaxy (chemical
Vapor Deposition,CVD)以改善薄膜的光滑度。本發明中 ’則疋以I nGaA 1 P為基礎的發光二極體(LED)並應用有機 金屬氣相磊晶法(Organometalic Vapor Phase Epitaxy, OMVPE)長在斜切(0ff 一 cut)角度大於1〇妁角度長底材GaAs 上’來改善薄膜光滑度。由我們的研究,LED結構的光滑 度會隨著底材錯切角度的增加而增加,這種光滑度的改善Vapor Deposition (CVD) to improve the smoothness of the film. In the present invention, the light emitting diode (LED) based on InGaA 1 P and the organic metal vapor phase epitaxy method (OMVPE) is used to grow at an oblique cut (0ff-cut) angle greater than 1 〇 妁 angle on the long substrate GaAs to improve film smoothness. According to our research, the smoothness of the LED structure will increase with the increase of the substrate cut-off angle. This smoothness improvement
480751 五、發明說明(9)480751 V. Description of the invention (9)
對於3-5族非匹配(mismatch)異質結構如GaP、AlGaP與 I n G a A 1 P為基礎的蠢晶成長在GaA s底材上特別明顯。這些 蠢晶層如GaP、A 1 GaP與I nGaA 1 P合金與底材之間的晶袼不 匹配的私度大約為0 - 3 · 6 % ’並與合金的組成有關。在非匹 配底材上沉積過程中,薄膜初期成長傾向於在底材上長出 一些形狀如小島的結晶物,這些小島的大小隨著薄膜與底 材的非匹配度增加而增大。這將導致薄膜上形成高密度的 線狀差排(t h r e a d d i s 1 〇 c a t i ο η),且增加了沉積薄膜的 表面粗糙度。這些高密度的晶體缺陷與粗糙薄膜表面,可 以藉著增加表面結晶點數目及減少結核島面積及在非匹配 異質結構的晶格常數做一梯度(g r a d i e n t)變化而獲得改 善。薄膜結核點數目增加及島面積的減小,在本發明中是 睛求項的另一重點。可應用GaAs底材斜切一個大於1 〇。角 度,且以一個InGaAlP中間層插入到LED In。5(Gai_xAlx)Q 5p 蟲晶層與窗戶層之間當作梯度層來達到此一效果。在錯切 (of f-cut)底材上,底材階梯邊緣會隨著底材錯切角度增 加而增加。這些階梯邊緣提供一個低的能量位置給沉^ ^ 膜的結核點。因此’密度較高而面積較小的小島結核在錯 切底材上會導致薄膜品質的增加與達到較平滑的程度,^ 膜品質的改變會增加LED發光之輸出效率。此外,薄膜表 面之光滑度可以增加元件製程的範圍,例如發光二/極體^ 金屬接點製造與封裝、薄膜的品質、發光體之效率、元 製造時製程上的範圍(process window 〇f deviee fabrication)的改善都在本發明之請求項中,藉由成長For group 3-5 mismatch heterostructures such as GaP, AlGaP, and I n G a A 1 P-based stupid crystal growth is particularly evident on GaA s substrates. These stupid crystal layers such as GaP, A 1 GaP and InGaA 1 P alloys and substrates have mismatched privacy of about 0-3.6% and are related to the composition of the alloy. During the deposition process on non-matching substrates, the initial growth of the film tends to grow crystals on the substrate, such as small islands. The size of these islands increases as the mismatch between the film and the substrate increases. This will lead to the formation of high-density linear differential rows on the film (t h r e a d d i s 1 oc a t i ο η), and increase the surface roughness of the deposited film. These high-density crystal defects and rough film surfaces can be improved by increasing the number of crystal points on the surface, reducing the area of nodule islands, and making a gradient (g r a d i e n t) change in the lattice constant of the unmatched heterostructure. Increasing the number of thin film nodules and reducing the area of the island are another important point in the present invention. GaAs substrates can be applied with a bevel greater than 10. Angle and is inserted into the LED In with an InGaAlP interlayer. 5 (Gai_xAlx) Q 5p The gradient between the worm crystal layer and the window layer is used to achieve this effect. On a substrate of f-cut, the stepped edge of the substrate will increase as the angle of substrate miscut increases. These step edges provide a low energy location to the nodules of the Shen ^^ membrane. Therefore, small island nodules with higher density and smaller area will increase the film quality and reach a smoother level on the miscut substrate. ^ The change of film quality will increase the output efficiency of LED light emission. In addition, the smoothness of the film surface can increase the range of component manufacturing processes, such as light-emitting diodes / poles ^ metal contact manufacturing and packaging, the quality of the film, the efficiency of the light-emitting body, and the range of the process at the time of manufacturing (process window 〇f deviee Improvements in fabrication) are in the claims of the present invention.
480751 五、發明說明(ίο) LED中In〇.5(Ga卜XA 1 x) 〇.5P基礎結構在錯切角度1 〇戴以上的 GaAs底材上。 綜括上面的各項特性,本發明中第一個實施例,如圖 二顯示為一發光二極體的剖面圖,至少包含一光線反射層 與一個四元合金In〇.5(Ga卜XA1 X) G 5P長在η型傾斜底材GaAs 20 8上面,這裝置至少包含一個η型GaA s緩衝層2 0 9,一個η 型AlAs/Al xGa^xAs-或In〇.5(Ga卜XA1 x) G.5P為基礎之分散型布 拉格反射層(distributed Bragg reflector, DBR) 210 ,一 n型 I n 〇.5( G a hAIJuP較低層包覆層(cladding layer )21 1,一應變(strain)未滲雜 Iny(Ga卜XA1 x) LyP/In。·〆 G a 卜XA 1 x) 〇. 5P多重量子井(multiple quantum well, MQW) 2 1 2,一 p-型 I n G. 5( Ga i_xA 1 x) Q. 5P 較高層包覆層 213,一薄的 111{)5(631-/1?()〇.5?中間麥塞層214,一口-型〇3?或八1〇3八3電 流散佈層2 1 5,一頂層金屬接觸2 1 6,與一底層金屬接觸-217° 圖二發光二極體的剖面圖與圖一傳統式雙異質結構很 相似,除了在圖一 InGaA1P-主動區域1〇3是由圖二一形變 I n y( G a「ΧΑ 1 x) 1 -yP / I η 〇 5( G a 1 _XA 1X)05P多量子井 212 所取代。 一 η-型光線反射層 AlAs/AlxGabXAs-,AlAs/In〇.5(GabxAlx)〇· 5P或Irio /Gai-xAlx)。〗?_為基礎之分散型布拉格反射層( distributed Bragg reflector, DBR) 210擺在 In〇.5(Gahx A 1 x) g· 5P - L E D結構的底部以提供光線反射。此外,<一 I π 〇. 5(480751 V. Description of the invention (ίο) The basic structure of In0.5 (GaB XA 1) 0.5P in the LED is on a GaAs substrate with a cut angle of more than 10 °. Summarizing the above characteristics, the first embodiment of the present invention is shown in a cross-sectional view of a light emitting diode as shown in FIG. X) G 5P is grown on the η-type inclined substrate GaAs 20 8. This device includes at least one η-type GaA s buffer layer 2 0 9 and an η-type AlAs / Al xGa ^ xAs- or In0.5 (Gab XA1 x) G.5P-based distributed Bragg reflector (DBR) 210, an n-type I n 0.5 (G a hAIJuP lower cladding layer) 21 1, a strain ( strain) Undoped Iny (Gabu XA1 x) LyP / In. 〆G a Bu XA 1 x) 〇 5P multiple quantum well (MQW) 2 1 2, a p-type I n G. 5 (Ga i_xA 1 x) Q. 5P Higher layer cladding layer 213, a thin 111 {) 5 (631- / 1? () 0.5? Middle mesas layer 214, one-mouth-type 03 or eight 103 current distribution layer 2 15, a top metal contact 2 1 6 and a bottom metal contact -217 ° Fig. 2 A cross-sectional view of a light emitting diode is similar to Fig. 1 with a conventional double heterostructure, except that Figure 1 InGaA1P-active area 103 is shown in Figure 2 A deformation I ny (G a ″ × Α 1 x) 1 -yP / I η 〇5 (G a 1 _XA 1X) 05P multiple quantum well 212 replaced. A η-type light reflection layer AlAs / AlxGabXAs-, AlAs / In 〇.5 (GabxAlx). 5P or Irio / Gai-xAlx). _? Based on a distributed Bragg reflector (DBR) 210 placed in In0.5 (Gahx A 1 x) g · 5P-The bottom of the LED structure to provide light reflection. In addition, < -I π 0.5 (
第14頁 480751 五、發明說明(11)Page 14 480751 V. Description of the invention (11)
Gai_xAl x) 〇.5P電流壅塞層 214,擺在 p-型 Ino./GahAl x)。#包 覆層213與p-型GaP、AlGa或AlGaAs窗戶層215中間。Gai_xAl x) 0.5P current blocking layer 214, placed in p-type Ino./GahAl x). The cladding layer 213 is in the middle of the p-type GaP, AlGa or AlGaAs window layer 215.
圖二中L E D結構是長在有一層大約〇 · 2 - 〇 · 4 // m石夕滲雜 GaAs缓衝層20 9長在石夕滲雜傾斜底材2 0 8上。G a A s緩衝層 2 0 9是用來改善GaAs底材成長表面上的光滑性與均勻性。 成長GaAs緩衝層2 0 9對於LED多量子井21 2異質介面(heter〇 -interface s薄膜較佳的品質是必要的。接著g a A s緩衝層 209’ 一分散型布拉格反射層(distributed Bragg ref lector,DBR) 2 10長在GaAs緩衝層2 0 9上面以提供光線 反射。這層光線反射層的製成物質是選自於能階的禁止能 階帶高度(prohibited band height)與主動區域212非常The L E D structure in FIG. 2 is formed by a layer of approximately 0.2-0.04 / m Shixi doped GaAs buffer layer 209 is grown on Shixi doped slope substrate 208. The G a As buffer layer 209 is used to improve the smoothness and uniformity of the growing surface of the GaAs substrate. Growing the GaAs buffer layer 209 is necessary for the better quality of the LED multi-quantum well 21 2 hetero interface-hetero-interface s thin film. Then ga As buffer layer 209 'a distributed Bragg ref layer , DBR) 2 10 long on the GaAs buffer layer 2 0 9 to provide light reflection. The material of this light reflection layer is selected from the prohibited band height of the energy level and the active region 212.
近似的材質所組成。這層製成物質的選擇需考慮晶格匹配 (lattice matching)、能隙帶與反射係數的差別及個別 反射層的滲雜極限(doping limit of individual reflecting layer)。一般而言,一個十到二十的布拉袼 反射層(distributed Bragg reflector, DBR) 210的週期 能增加光線外部量子效率(external quantum efficiency of emitting 1 ight)的1· 5倍於一般的LED但未使用布拉袼 反射層(distributed Bragg reflector,DBR)的狀況下 。八1人3/^1/31_/3布拉格反射層210的反射波的波長;1由個 別反射層的厚度來決定,其函數關係如下為d /4n,n 疋布拉格反射層21 0各層的反射係數。布拉格反射層的目Composed of similar materials. The choice of materials for this layer requires consideration of lattice matching, differences in energy bands and reflection coefficients, and doping limit of individual reflecting layers. Generally speaking, a period of ten to twenty distributed Bragg reflector (DBR) 210 can increase the external quantum efficiency of emitting light by 1.5 times than that of ordinary LED but When a Bragg reflector (DBR) is not used. Eight people 3 / ^ 1 / 31_ / 3 The wavelength of the reflected wave of the Bragg reflection layer 210; 1 is determined by the thickness of the individual reflection layers, and its functional relationship is as follows: d / 4n, n 疋 reflection of each layer of the Bragg reflection layer 21 0 coefficient. The purpose of the Bragg reflector
第15頁 480751 五、發明說明(12) 的能隙必須大於主動區域21 2的能隙以防止任何光線的吸 收。 此外’在布拉格反射層2 1 〇各層的層與層反射係數的 差必須儘可能的加大以獲得布拉格反射層2丨〇較佳的再反 射效率。但是,布拉格反射層21〇也扮演著需要需要高密 度(2* 10 n/cm2)的傳導載子的電流注入傳遞層的功能。由 於在AlAs-底材的布拉格反射層中n_型滲雜濃度的本質限 ^ Hmitati〇n),布拉格反射層210的限制以 順向作業偏塵並同時得到布拉格反射層中反射 率大於或專於9 0-9 5%的效率。一般而言,以inGaAip_為基 礎的布拉格反射層(DBR)21〇的週期大約為十至二間: 另一個布拉格反射層21〇的候用元素為^ f :合金’它可以比A1As/A1GaAs_底材的布拉:反射。·二 板上&曰样達匹到配更/Λ導電度,但是’它卻被成長在GaAs基 板上日日格匹配的控制性給抵消了。 用來:::子層包覆層In°.5(GahA“)。』211是 約在。·7<χ<1之間,i與動—=2二"中A1的分子組^ 卜型包覆層21 1的厚度必,:二=的放射波長有關係。 避免載子由主動區域擴散到比:子的擴,長度來的厚,以 Αιχ)〇.5Ρ包覆層211大約在〇Ύ 般的η型In。5(Gai—x υ· υ· 8// m。在本發明中n—型包Page 15 480751 V. Explanation of the invention (12) The energy gap of the active region 21 must be greater than the energy gap of the active region 21 2 to prevent any light absorption. In addition, the difference between the layer and layer reflection coefficients of each layer in the Bragg reflective layer 2 10 must be as large as possible to obtain a better re-reflective efficiency of the Bragg reflective layer 2 1. However, the Bragg reflecting layer 21 also functions as a current injection transfer layer that requires a high-density (2 * 10 n / cm2) conductive carrier. Due to the intrinsic limit of n-type dopant concentration in the Bragg reflection layer of AlAs-substrate ^ Hmitati), the Bragg reflection layer 210 is restricted to work in a dusty direction and at the same time obtain a reflectance greater than or specifically At 9 0-9 5% efficiency. Generally speaking, the period of the Bragg reflection layer (DBR) 21 based on inGaAip_ is about ten to two: the candidate element of another Bragg reflection layer 21 is ^ f: alloy 'It can be better than A1As / A1GaAs _Bra of the substrate: reflection. · On the second board & said that the sample reaches the matching / Λ conductivity, but ‘it is offset by the controllability of the day-to-day grid matching grown on the GaAs substrate. Used to ::: Sublayer cladding layer In ° .5 (GahA "). 211 is about. · 7 < χ < 1, i and dynamic— = 2 two " The thickness of the type cladding layer 21 1 must be related to the emission wavelength of: two =. To prevent carriers from diffusing from the active area to the ratio of the ions, the length is thick, and the thickness of the coating layer 211 is about 〇Ύ like η-type In. 5 (Gai-x υ · υ · 8 / / m. In the present invention n-type package
第16頁 480751 五、發明說明(13) 覆層2 1 1滲雜深度的不同,有一梯度的變化或階段式的變 化,而載子密度約在5* 10 17/cm到1* 1 0 18/cm乏間。 在本發明中P-型包覆層2 1 3的滲雜隨著深度而呈現梯 度或階段變化,載子濃度大約為5* 10 17/cm到1* 10 18/cm 2 之間。LED的光輸出效率與η-型與p-型包覆層滲雜濃度與 剖面有很大關係,正確的I η 〇. 5( Ga卜/ 1 X) 〇. 5Ρ包覆層ρ - η型滲 雜剖面所產生的在主動區域内的ρ-η接面位置對於當電流 注入後在主動區域内有效率的電子與電洞發光性的再結合 是必須的。任何個別注入載子的溢流會因為ρ-η接面的位 置偏離與滲雜分子在主動區内的擴散而導致非發射再結合 (nonrad i a t i ve recombination)中心的產生,而造成放 射光的效率的減少。在本發明中p-型I η 〇.5( Ga i_xA 1 x) Q.5P-包 覆層2 1 4的低/高滲雜程度的厚度比率約為0 . 1到0 . 3之間, 以保證準確的載子再結合,且不會在包覆層產生太大的電 壓降或載子溢流現象。一個好的放射裝置需要離多重量子 井較遠的η-型與p-型包覆層的滲雜密度約在0. 75〜1* 1 0 18 / c m 2及較接近多重量子井的η -型與ρ -型較低的包覆層滲雜 密度大約在0 . 4到0.75氺1018/cm2。 緊接著11型111().5(〇81_,1}()().5?包覆層211,一層形變的 111/63卜/1乂)1—//1110.5(〇3卜}^1父)0.5?(3 1:^1116(1)多量子井212 擺入η型與ρ型包覆層中間當作主動層。在本發明中是以 InGaAlP為超晶格(superlattice)的多重量子井用來增加Page 16 480751 V. Description of the invention (13) The coating 2 1 1 has a different gradient or stepwise variation in the depth of doping, and the carrier density is about 5 * 10 17 / cm to 1 * 1 0 18 / cm lack of room. In the present invention, the doping of the P-type cladding layer 2 1 3 exhibits a gradient or a step change with depth, and the carrier concentration is approximately 5 * 10 17 / cm to 1 * 10 18 / cm 2. The light output efficiency of LED has a great relationship with the doped concentration of η-type and p-type cladding layers and the profile. The correct I η 0.5 (Gab / 1 X) 〇 5P coating ρ-η type The position of the ρ-η junction in the active region generated by the doping profile is necessary for the effective recombination of electrons and hole luminescence in the active region after current injection. The overflow of any individual injected carriers will cause the generation of non-radiated recombination centers due to the deviation of the position of the ρ-η junction and the diffusion of dopant molecules in the active region, resulting in the efficiency of the emitted light. Reduction. In the present invention, the thickness ratio of the p / type I η 0.5 (Ga i_xA 1 x) Q.5P-cladding layer 2 1 4 with a low / high degree of impurity is about 0.1 to 0.3, In order to ensure accurate carrier recombination, and not cause too much voltage drop or carrier overflow phenomenon in the cladding layer. A good radiation device needs the η-type and p-type cladding layers with a doping density of about 0.75 ~ 1 * 1 0 18 / cm 2 and η-which are closer to the multiple quantum wells, away from the multiple quantum wells. The cladding density of the lower cladding layers is about 0.4 to 0.75 氺 1018 / cm2. Next to 11 type 111 (). 5 (〇81_, 1) () (). 5? Cladding layer 211, a layer of deformed 111/63 Bu / 1 乂 1— / 1110.5 (〇3 卜) ^ 1 (Father) 0.5? (3 1: ^ 1116 (1) multiple quantum well 212 is placed between the η-type and ρ-type cladding layers as the active layer. In the present invention, multiple quantum with InGaAlP as a superlattice Well used to increase
第17頁 480751 五、發明說明(14)Page 17 480751 V. Description of the invention (14)
2動層的效率與減少量子井中鋁的含量。在lED中量子井 、’、口構會增加放射光的效率。量子井是由一窄能帶隙的π井lf 與較向能隙的壅塞(barrier with a higher band gap) 形成。結果,電子與電洞的能量被量化(侷限)且在電流 入射方向不能自由移動。但仍能在入射電流的垂直平面上 ,由,動且能再結合。在多量子井Iny(Gai xA1U/InG 5( a 1 x) G sp 2 1 2中,在傳導帶中推促導電帶能階向上,而 侷限在價帶的載子推促價帶能階向下。多量子井結構會移 動(sh i f t)放射光的有效波長到一個較短波長。因此,主 動區域2 1 2中铭的含量可以大量減少,因此對於一特定放 射光入源長,LED的多量子結構將增加非輻射重組的生命 期,且減少光線放射的被吸收。此外,多量子井! η Ga ! % 八1山-//111〇.5(68卜/1丄.疋212的總厚度約在5〇到15〇11111 ,在目4的應用上,比圖2中異質結構主動區域(goo-goo nm)的厚度小。這將導致主動區域注入載子密度的增加並 加快光再結合。多量子井結構降低了 A丨含量,輻射重組的 載子生命期也縮短了。因此,LED多量子井主動區域212量 子效率會大量增加。多量子井2 1 2中合金的鋁組成分子大 約在0到0 _ 3之間,相對應之波長介於紅光到綠-黃光之間 ,它隨者量子井21 2的厚度與量子井的數目而調整。在多 量子井中铭組成直接能隙的合金InG5(Gai_xAlx)G5P,多量 子井21 2的發射光波長與井的厚度有極大的關連性。當多 量子井的厚度減夕,其一電帶量子化載子將有效副能帶( sub-band)往上推,且共價帶量子化載子將有效副能帶往2 Efficiency of moving layer and reducing aluminum content in quantum well. In the 1ED, the quantum well, ', port structure will increase the efficiency of the emitted light. A quantum well is formed by a narrow band gap π well lf and a barrier with a higher band gap. As a result, the energies of electrons and holes are quantified (limited) and cannot move freely in the direction of current incidence. However, it can still move on the vertical plane of the incident current and can be recombined. In the multi-quantum well Iny (Gai xA1U / InG 5 (a 1 x) G sp 2 1 2, the conduction band energy level is promoted in the conduction band, and the carriers limited to the valence band promote the valence band energy level. The multi-quantum well structure will shift the effective wavelength of the emitted light to a shorter wavelength. Therefore, the content of the active region 2 1 2 can be greatly reduced. Therefore, for a specific source of emitted light, the Multi-quantum structure will increase the lifetime of non-radiative recombination, and reduce the absorption of light emission. In addition, multi-quantum wells! Η Ga!% Yaiyama-// 111〇.5 (68b / 1/1 丄. 疋 212 of The total thickness is about 50 to 15011111, which is smaller than the thickness of the active region (goo-goo nm) of the heterostructure in Figure 2 for the application of mesh 4. This will cause the active region to increase the carrier density and accelerate the light Recombination. The structure of the multi-quantum well reduces the content of A 丨, and the lifetime of the radiative recombination carrier is also shortened. Therefore, the quantum efficiency of the active region 212 of the multi-quantum LED will increase substantially. The aluminum composition of the alloy in the multi-quantum well 2 1 2 The molecule is between 0 and 0 _ 3, and the corresponding wavelength is between red and green-yellow It is adjusted according to the thickness of the quantum well 21 2 and the number of quantum wells. In the multiple quantum well, a direct energy gap alloy InG5 (Gai_xAlx) G5P is formed. The wavelength of the emitted light of the multiple quantum well 21 2 is greatly different from the thickness of the well. Relevance. When the thickness of a multi-quantum well decreases, one of its electric band quantized carriers will push up the effective sub-band, and the covalent band quantized carriers will bring the effective side energy to
480751 五、發明說明(15) ' 一"· 下推。多量子井212的量子化帶結構在井厚大約丨到i〇nm相 當敏感。結果’由於能階結構的量子化,電子盘電洞再结 合時波長會變短。InQ.5( Gai_xAlx)G.5P合金的一般總厚度大 約在1到1 Onm之間,最佳發光效率週期為丨〇到5〇。另一方 面,發光的内部量子效率也和井對壅塞(井/阻)厚度比率 有關。一般有效率的載子再結合時,井與壅塞的比值大約 在0 · 7 5到1 . 2 5之間。 晶格形變(lattice strain)也是LED多量子井21 2設計 的重要考量因子。多量子井結構的雙軸應變(biaxial s tra i η)在量化能帶結構内,可以將價帶能階分裂並退化 (quantized band structure)。這將會影響薄膜能帶結 構與薄膜物質的光學特性與電力特性。壓縮性與伸張性應 力兩者將會對LED的發光效率有正面貢獻。作用到多量子 井2 1 2的晶格不對稱應力,相當於能階結構與價帶能階分 裂。對於壓縮性的雙轴應力,重電洞(heavy ho 1 e)能階 變成一個基態(ground states),該基態有一個較低的有 效質量特性(lower effective mass character)在價帶 (valence band)的頂上。這個可壓縮的應力會加強入射 電流的垂直面之載子的運動及再結合,並造成量子井内的 内部量子效應的增加(internal quantum efficiency), 另一方面輕電洞(1 i ght ho 1 e)對於伸張性形變雙軸應力 ’是一基態(ground state),且具有較高的有效質量。 雖然受到伸張應力時,在量子井内有效質量較大,電子與480751 V. Description of invention (15) '一 " · Push down. The quantized band structure of the multi-quantum well 212 is relatively sensitive at well thicknesses ranging from about 1 to 100 nm. As a result, owing to the quantization of the energy level structure, the wavelength of the electron plate hole will be shorter when they are recombined. The general total thickness of InQ.5 (Gai_xAlx) G.5P alloy is about 1 to 1 Onm, and the optimal luminous efficiency period is from 0 to 50. On the other hand, the internal quantum efficiency of light emission is also related to the thickness ratio of well to plug (well / resistance). When the effective carrier recombination generally occurs, the ratio of well to congestion is approximately between 0.75 and 1.25. Lattice strain is also an important consideration in the design of LED multiple quantum wells 21 2. The biaxial strain of the multi-quantum well structure (biaxial s tra i η) can split and degrade the valence band energy level within the quantized band structure. This will affect the optical and electrical properties of the film's band structure and film material. Both compressive and tensile stresses will positively contribute to the luminous efficiency of LEDs. The lattice asymmetric stress acting on the multi-quantum well 2 1 2 is equivalent to the energy level structure and valence band energy level splitting. For compressive biaxial stress, the heavy ho 1 e energy level becomes a ground state, which has a lower effective mass character in the valence band. On top. This compressible stress will strengthen the movement and recombination of carriers on the vertical plane of the incident current, and cause internal quantum efficiency in the quantum well. On the other hand, light holes (1 i ght ho 1 e The biaxial stress' for stretch deformation is a ground state and has a higher effective mass. Although the effective mass in the quantum well is large when subjected to tensile stress, the electron and
第19頁 480751 五、發明說明(16) 電洞較少量的k空間分佈、a , M ^ _ 1V (P〇〇r k-space)減少自發性發射 係數,而迳樣可以增加内部量子效率。因此,在 2壓縮性與伸張性應力都會對量子井中光線發射ί率有所 貝獻。據我們的研究在與L E D中其他結構的不匹配度超 過、1%,,多量子井1ny( G^-xAl χ) yP-212會鬆解。LED生命Page 19 480751 V. Description of the invention (16) The k-space distribution with a small number of holes, a, M ^ _ 1V (P0r k-space) reduces the spontaneous emission coefficient, and the sample can increase the internal quantum efficiency . Therefore, both compressive and tensile stresses contribute to the rate of light emission in the quantum well. According to our research, when the mismatch with other structures in LED is over 1%, the multi-quantum well 1ny (G ^ -xAl χ) yP-212 will loosen. LED Life
期測試顯示,在大於1 %不叩 择f . , , X 、戸外、古θ 岭匹配度(mismatch),裝置會容易 ^ ,廷疋因為乍在異質結構上的内部不匹配度應力( misnt stress)在多量子井中是不適當錯位的 ^源。亚且在兀件的製造,操作時造成點缺陷。為改善在 篁子井中光輸出效率伸張或收縮應力被限制 的多量子井與GaAs底材間的曰株,沉献,n㈣使 u的日日格不匹配在〇 · 2 %到〇 6 %之間 。在本發明+,LED最佳輪出效率可#由延著成長方向的 大約〇. 3到〇. 6%的晶體不匹配度,而產生的壓縮性應變而 得到。 圖三顯示一 LED多量子井結構,圖中至少包含一 DBR, 一四元化合物In〇.5(Ga卜XA1 x) Q SP合金長在n-型傾斜底材 G a A s 3 1 8上’該裝置至少包含GaA s緩衝層319, AlAs/Al Ga 卜 xAs-、AlAs/In〇.5(Ga 卜 xA1x)〇.5P 或 In〇.5(Ga 卜 xA1x)0.5 分散型布拉格反射層(distributed Bragg reflector, DBR)320’ 一 n型 inG 5(Ga 卜XA1 x) 〇.5P較低層包覆層 321,一形 變 Iny(Ga bXA 1 x)卜/ / I n 〇.5(Ga 卜XA 1 χ) 〇_5P多量子井 3 2 2,一 I n y( 〇31_/1,)卜/-底材電子反射層3 2 3,一13型111()5(〇3卜/10().疋 較高層包覆層3 24,一較薄InQ·〆 Ga^xAl J G 5p電流蜜塞層Periodic tests show that if the f.,, X, outer, ancient θ ridge mismatch is not selected at greater than 1%, the device will be easy ^, because of the internal mismatch stress on heterostructures ) Is an inappropriately misplaced source in a multiple quantum well. In the manufacturing and operation of the element, it caused point defects. In order to improve the light output efficiency of the multi-quantum well with GaAs substrate with limited or reduced stress in the light output efficiency, Shen Xian, n㈣ makes the daily mismatch of u between 0.2% and 6%. between. In the present invention +, the optimal LED round-out efficiency can be obtained from the compressive strain of about 0.3 to 0.6% of the crystal mismatch extending along the growth direction. Figure 3 shows an LED multi-quantum well structure. The figure contains at least one DBR. A quaternary compound In0.5 (Gabu XA1 x) Q SP alloy is grown on the n-type inclined substrate G a A s 3 1 8 'The device includes at least a GaAs buffer layer 319, AlAs / Al Ga x As-, AlAs / In 0.5 (Ga x A1x) 0.5P or In 0.5 (Ga x A1x) 0.5 dispersed Bragg reflection layer ( distributed Bragg reflector (DBR) 320 '-n-type inG 5 (Ga and XA1 x) 〇.5P lower cladding layer 321 and a deformed Iny (Ga bXA 1 x) and / I n 〇.5 (Ga and XA 1 χ) 〇_5P multi-quantum well 3 2 2, a Iny (〇31_ / 1,) Bu /-substrate electron reflective layer 3 2 3, a 13 type 111 () 5 (〇3 Bu / 10 ( ). 疋 Higher cladding layer 3 24, a thinner InQ · 〆Ga ^ xAl JG 5p current honeycomb layer
第20頁 480751 五、發明說明(17) 一頂金屬接 3 2 5, 一 p-型GaP或p型—A1GaAs電流散布層326 觸3 2 7,一底金屬接觸3 2 8所組成。 圖三中,一薄的型變壅塞層32 5或多層電子反射層323 插入到p -形包覆層3 2 4上面以增加包覆層的阻障南度( barrier height)。電子反射層323也是以〇MVPE法來成長 ,需要非常準確的介面對比、層的厚度與組成的準確控制Page 20 480751 V. Description of the invention (17) A top metal contact 3 2 5, a p-type GaP or p-A1GaAs current spreading layer 326 contact 3 2 7 and a bottom metal contact 3 2 8. In FIG. 3, a thin deformable plug layer 325 or multiple electron reflection layers 323 is inserted on the p-shaped cladding layer 3 2 4 to increase the barrier height of the cladding layer. The electron reflection layer 323 is also grown by the MVPE method, which requires very accurate interface ratio, accurate control of layer thickness and composition
。細的形變壅塞層3 2 5有一能階等於或大於包覆層的能階 且擺置於接近主動層3 2 2的區域以防止載子溢流入包覆層 以改善發光效率。p—型IriG 5A1G 5p電子反射層3 2 3是形變的 (strained) ’其位置接近主動區域322,具有相當的厚度 與應力以防止由主動區32 2產生電子穿隧(1:11111^1丨1^)效 應二另一方面,電子反射層32 3的超晶體結構是設計來反 j:,其厚度大約在N/4 deBr〇gUe電子波長,其中N是 一 p可/In:射ρΓΓΐ最大反射率由P型超晶In°.5( Gai_xAlx 二中T 厚度、週期來調整。在電子反射層 井 Γ相=:n°.5(Gai-xA^^. The finely deformed plug layer 3 2 5 has an energy level equal to or greater than that of the cladding layer and is placed in a region close to the active layer 3 2 2 to prevent carriers from overflowing into the cladding layer to improve luminous efficiency. The p-type IriG 5A1G 5p electron reflective layer 3 2 3 is strained. Its position is close to the active region 322, and it has considerable thickness and stress to prevent electron tunneling from the active region 32 2 (1: 11111 ^ 1 丨1 ^) Effect II On the other hand, the supercrystal structure of the electron reflection layer 32 3 is designed to reflect j :, its thickness is about N / 4 deBr0gUe electron wavelength, where N is a p / In: The reflectivity is adjusted by the thickness and period of T in the P-type supercrystal In ° .5 (Gai_xAlx II. In the electron reflection layer well Γ phase =: n ° .5 (Gai-xA ^^
32°3°的\ f2之光射出效率也增加時。此乃因為於電子反射 =射//Λ力:之原因。但是,這種現象在,個別的電 L皆Ξι 的範圍内’有梯度性(“ — η 或…(step)厚度增加時特別明顯,複層的電子反射7When the light emission efficiency of 32 ° 3 ° \ f2 is also increased. This is due to the reason that electron reflection = shoot // Λ force :. However, this phenomenon has a gradient in the range of the individual electric currents ("-η or (step) is particularly noticeable when the thickness increases.
第21頁 48〇75l 五、發明說明(18) 323的1110.5(631-/1\)05?的厚度變化(忌厂3(^611*〇 ,表示由 主動區域不同入射高能量電子的反射能量,因此,載子侷 p艮在梯度或階梯似區域並獲得高的電子入射能量,電子反 身子層的多樣性(variety in electron reflector)可由層 的厚度的梯度性變化而獲得。 本發明中,電子反射3 2 3至少包含一形變壅塞I η 〇. 5A 1 〇. 5P接著有接近主動層 322的 Ino./GahAl x) Q 5P/InQ.5Al G.5P 超 曰曰、、、σ構層以反射由主動層來的溢流載子,形變麥塞層In〇5 八1〇_#厚度大約為20-4〇11111,111().5(〇&1_/1,)。.5?/111().5八1().5?超 晶結構週期約 1 〇一4〇,In。XGahAl x) G 5p/ln() 5A1 G.5P超晶結 構厚度大約為2 - 5 n m,在I n G. 5( G a卜XA 1 x) G 5p超晶結構層有一 固定的、階段的或梯度性的厚度剖面。Page 21 48〇75l V. Description of the invention (18) 323 1110.5 (631- / 1 \) 05? Thickness change (Don't plant 3 (^ 611 * 〇, which represents the reflected energy of different incident high energy electrons from the active area Therefore, if the carrier region p is in a gradient or step-like region and obtains a high electron incident energy, the diversity of the electron reflex sublayer (variety in electron reflector) can be obtained by a gradient change in the thickness of the layer. In the present invention, The electron reflection 3 2 3 contains at least one deformation congestion I η 0.5A 1 0.5P followed by Ino./GahAl x) Q 5P / InQ.5Al G.5P super layer, σ, σ structure layer close to the active layer 322 In order to reflect the overflow carriers from the active layer, the thickness of the Messer layer In〇5 八 1〇_ # is about 20-401111, 111 (). 5 (〇 & 1_ / 1,). 5 //111().5 and 8 (1.). 5? The supercrystalline structure period is about 10-40, In. XGahAl x) G 5p / ln () 5A1 G.5P supercrystalline structure thickness is about 2-5 nm There is a fixed, stepwise, or gradient thickness profile in the I n G. 5 (G abu XA 1 x) G 5p supercrystalline structure layer.
圖三中,接著多量子井32 2與電子反射323,是一 p-型 111。.5(^811八1\)〇.5?-較高層包覆層 324。口-型1!1().5(631_/1丄.5 P包覆層3 2 4的作用是將載子注入到主動區域3 2 2,並將載 子侷限留在主動區域3 2 2。111{).5(〇3141〇{).丨包覆層3 24的 A 1組成大約在〇. 7<X<1之間,與主動區域3 2 2發射光的波長 有關’在紅(6 2 5ηm)到黃-綠(5 7 0nm)之間。ρ-型包覆層324 的厚度必須大於注入載子的擴散長度,以防止主動區域 3 22的載子進入包覆層。此外,ρ型包覆層3 24必須比η型包 覆層3 2 1厚,此乃因為在乙E D成長過程中ρ型滲雜元素如 Ζη或Mg的擴散性的關係。一典型的ρ—型Μ。5(Gai xA1 υIn FIG. 3, the multi-quantum well 32 2 and the electron reflection 323 are a p-type 111. .5 (^ 811 八 1 \) 0.5? -Higher cladding layer 324. Mouth-type 1! 1 (). 5 (631_ / 1 丄 .5 P coating 3 2 4 is used to inject carriers into the active region 3 2 2 and confine the carriers to the active region 3 2 2 111 {). 5 (〇3141〇 {). 丨 The A 1 composition of the cladding layer 3 24 is approximately between 0.7 < X < 1, which is related to the wavelength of the light emitted from the active region 3 2 2 '在 红 ( 6 2 5ηm) to yellow-green (570 nm). The thickness of the p-type cladding layer 324 must be greater than the diffusion length of the injected carriers to prevent the carriers in the active region 322 from entering the cladding layer. In addition, the ρ-type cladding layer 3 24 must be thicker than the η-type cladding layer 3 2 1 because of the diffusivity of the ρ-type doped elements such as Zn or Mg during the growth of ED. A typical p-type M. 5 (Gai xA1 υ
第22頁 480751 五、發明說明(19) 低包覆層3 2 4厚度大約在〇 · 7到1. 5# m之間。有著梯度變化 或二階段式滲雜的p-型包覆層,在本發明中其渗雜濃度在 4氺1 0 17/cm到1氺1 0 18/cm之間。LED的光線外部效率與渗 雜程度與η-型及p-型包覆層的滲雜程度有關。in。5(Gai χ A 1 χ) 〇·- 3 2 4中π正確的’’ η -型及ρ型包覆層滲雜剖面與主動 區域3 22的ρ-ηπ正確的π接合位置對於有效的發光性再結合 是必要的。任何入射載子的溢流將因為ρ-η接合的不對準 與滲雜因子的擴散進入主動區域(i n t e r d i f f u s i ο η )非輻 射中心(nonradiative recombination center)造成的再 結合而減低光線的效率。在本發明中,有著梯度性滲雜包 覆層的I η 〇· 5( G a卜XA 1 x) 〇 5P 2 4 ’其南/低滲雜程度的厚度比 率約在0 · 1到0 · 3之間,以保障包覆層準確的載子再結合不 會產生大的電壓下降或載子溢流。 〆個好的發光二極體裝置需要遠離多量子井32 2的n-型與ρ犁包覆層有高的滲雜濃度(0· 75到1〇18/cm2)與接 近多量子井有一較低的n—型與P型包覆層低的滲雜濃度3 2 2 (〇 4到0 · 7 5氺 1 0 18/cm 之間。 换著ρ -型包覆層’是一層滲雜密度大於P_型包覆層 3 2 4薄的111。.5((^14]^)0.51)中間層3 2 5,用來確保注入載子 能平順穿過及散開,並為確保此中間層的高傳導性以利電 流在垂直於其注入方向之平面上的有效率散開,細中間層 325A1的組成(x約在〇 · 1到〇 · 5之間)比P型I n 5( G a卜χΑ 1 X)0·Page 22 480751 V. Description of the invention (19) The thickness of the low cladding layer 3 2 4 is about 0.7 to 1.5 # m. The p-type cladding layer with a gradient change or two-stage doping has a doping concentration in the present invention of between 4 氺 10 17 / cm and 1 氺 1 0 18 / cm. The external light efficiency and the degree of doping of LEDs are related to the degree of doping of the η-type and p-type cladding layers. in. 5 (Gai χ A 1 χ) 〇- 3 2 4 π correct '' η-type and ρ-type cladding layer impurity profile and active region 3 22 ρ-ηπ correct π junction position for effective light emission Sexual recombination is necessary. Any incident carrier overflow will reduce the light efficiency due to the recombination caused by the misalignment of the ρ-η junction and the diffusion factor into the active area (int e r d i f f u s i ο η) nonradiative recombination center. In the present invention, I η 〇 5 (G abu XA 1 x) 〇5P 2 4 ′ with a gradient doped coating layer has a thickness ratio of south / low penetration of about 0. 1 to 0. 3, to ensure that the accurate carrier recombination of the coating does not cause a large voltage drop or carrier overflow. A good light-emitting diode device needs to be far away from the multi-quantum well 32. The n-type and ρ-cladding coatings have a high doping concentration (0.75 to 1018 / cm2) compared with the approach to the multi-quantum well Low n-type and P-type coatings have a low impurity concentration of 3 2 2 (〇4 to 0 · 7 5 氺 1 0 18 / cm. In the case of ρ-type coatings, it is a layer of impurity density. 111..5 ((^ 14] ^) 0.51) intermediate layer 3 2 5 larger than P_-type cladding layer 3 2 4 is used to ensure that the injected carriers can pass through and spread smoothly, and to ensure this intermediate layer High conductivity to spread the current efficiently on a plane perpendicular to its injection direction. The composition of the thin intermediate layer 325A1 (x is between about 0.1 and 0.5) is better than that of P-type I n 5 (G a Bu χΑ 1 X) 0 ·
第23頁 480751 五、發明說明(20) 包覆層324還要小,並要和P型包覆層晶格匹配。厚度大約 在5 0 - 1 0 0 n m,而滲雜密度比ρ -型電導層高的中間電流散 佈層3 2 5是設計來產生注入電流垂直平面的低電阻通道。 此外,中間層111。.5(〇31_/1〇。.5?- 3 2 5有一比主動區域3 2 2大 的能隙,以防止由主動區域3 2 2發射的光線被吸附。因為 此一中間層3 2 5厚度很薄且有一比p_型包覆層3 24高卻又比 窗戶層3 2 6低的滲雜密度,可作為電流在成長方向的g塞 層及電流入射成長方向垂直平面的低阻抗通道。因為電流 散佈區域範圍很大,元件内注入電流密度會因為散布面板 的加大而密度會減少。這將導致LED光線發射效率之提昇 ,這種在P型包覆層3 2 4與主動區域3 2 2内的電流散佈效應 將由I η 〇.〆Ga ι-χΑ 1X) 〇. / ¾塞層的厚度、組成與換雜程度而 定,典型111〇.5(〇31_,1)^().5?的中間層之摻雜濃度大約是?型 包覆層324的2-4倍也就是1-3*1 018。而A 1的組成,在這層 大約在0 . 2 - 0 · 4之間。 θ 一種會令I n g·〆G a卜ΧΑ 1 X) g. 發光二極體產生最大功么匕 發揮的途徑是在ρ型I η 〇. 5( G a i_xA 1 X) 〇. 5Ρ層3 2 5頂上加—芦窗 戶層326。使用GaP、AlGaP或AlGaAs當作窗戶層,並^為 LED電流的散佈功能的觀念已在過去的文獻研究過,且在 已被發表過的專利個案中。G a P或G a A s P對於由l e D主私σ 土*動區 域3 2 2放射出來的光有一個相對的可透光能隙。本發明中 利用OMVPE法來成長在一斜切方向〈111〉角度的g^As;& 上LED結構包括P型GaP、AlGaP或AlGaAs窗戶層3 2 6。這&個Page 23 480751 V. Description of the invention (20) The cladding layer 324 should be small and match the lattice of the P-type cladding layer. The intermediate current spreading layer 3 2 5 with a thickness of about 50-100 nm and a higher impurity density than the p-type conductivity layer is a low-resistance channel designed to produce a vertical plane of injected current. Moreover, the intermediate layer 111. .5 (〇31_ / 1〇..5?-3 2 5 has a larger energy gap than the active area 3 2 2 to prevent the light emitted by the active area 3 2 2 from being absorbed. Because this intermediate layer 3 2 5 The thickness is very thin and has a higher impurity density than the p_-type cladding layer 3 24 but lower than the window layer 3 2 6. It can be used as a low-impedance channel for the current g-plug layer in the growth direction and the current incident on the vertical plane in the growth direction .Because the current spreading area has a wide range, the density of the injected current in the element will decrease due to the increase of the spreading panel. This will lead to the improvement of the LED light emission efficiency. This type of P-type cladding layer 3 2 4 and the active area The current spreading effect in 3 2 2 will be determined by the thickness, composition, and degree of impurity of the plug layer. I η 〇.〆Ga ι-χΑ 1X), typically 1110.5 (〇31_, 1) ^ ( ) .5? What is the doping concentration of the intermediate layer? 2-4 times of the type cladding layer 324 is 1-3 * 1 018. The composition of A 1 is about 0.2-0 · 4 in this layer. θ A way to make I ng · 〆G a 卜 × Α 1 X) g. The way in which the light-emitting diode produces the most work is to play at ρ-type I η 0.5 (G a i_xA 1 X) 0.5 P layer 3 2 5 on top plus-reed window layer 326. The concept of using GaP, AlGaP, or AlGaAs as the window layer and the function of dissipating the LED current has been studied in the past literature and has been published in patent cases. G a P or G a A s P has a relatively light-transmittable energy gap for the light emitted by the main and private σ soil * dynamic region 3 2 2 of l e D. In the present invention, the OMVPE method is used to grow the g ^ As; & on an oblique direction <111> angle. The LED structure includes a P-type GaP, AlGaP or AlGaAs window layer 3 2 6. This &
480751 五、發明說明(21) 觀念源自由1 9 7 6—篇文獻中,磊晶沈積AiGaAs、GaP或其 他的族半導體表面以LPE或CVD蠢晶成長方式以改善沉積薄 膜之平滑性。而在本發明中,皿-V族化合物如G a P、 A1 xGabXP(x<l )及 A1 yGa 卜yAs(0· 5<y )用 M0VPE法成長在 LED放 射波長在6 5 0 - 5 6 5 nm範圍内當做為窗戶層來分散注入電流 ’因為他們對於放射波長6 5 0 - 5 6 5 n m而言是透明的;此外 ,這三種 GaP,AlxGa 卜 χΡ(χ<0· 1)與 AlyGa卜 yAs(0· 5<y)的高 摻雜濃度(容量)也是選擇考量的因素之一,它們都可以 用重滲雜密度(> 2 * 1 0 18/ cm 2)來達到較廣的電流散佈。當 窗戶層的入射載子(滲雜程度)增加,LED的效率也增加。 這是因為隨著滲雜濃度的增加,窗戶層3 2 6中注入載子沿 著平行於各層表面方向的滲雜程度也會增加。典型的窗戶 層3 2 6滲雜濃度大約在3 -8*10 18/cm乏間。但是,窗戶層 3 2 6滲雜程度高於1 * 1 〇 iV cm啥有晶格缺陷產生,且會減低 LED的生命期。此外,發光效率也與窗戶層32 6的厚度有關 係。當窗戶層3 2 6厚度增加時因為較寬度的電流散開面積 以及由LED側面散出的光都會增加,LED的輸出也會增加。 重滲雜程度(>1*10 18/cm2) GaP,A 1 xGa 卜 XP (χ< 〇 · 1 )與 a 1 yGa " A s ( 0 · 7 <y )且厚度在1 0 - 1 5# m之間的窗戶層被沿用在本發 明中,6 3 0 n m波長,亮度達到60mcd的LED; 590nm波長,480751 V. Description of the invention (21) Freedom of idea 1 196-In the literature, epitaxial deposition of AiGaAs, GaP or other family semiconductor surfaces is performed by LPE or CVD stupid growth to improve the smoothness of the deposited film. In the present invention, the D-V compounds such as Ga P, A1 xGabXP (x < l) and A1 yGa and yAs (0.5 < y) are grown by the MOVPE method at the LED emission wavelength at 6 50-5 6 In the 5 nm range, they are used as window layers to disperse the injected currents, because they are transparent to the emission wavelength of 6 50-5 65 nm. In addition, the three GaP, AlxGa and χP (χ < 0 · 1) and AlyGa The high doping concentration (capacity) of yAs (0 · 5 < y) is also one of the considerations for selection. They can all be achieved with a heavy doping density (> 2 * 1 0 18 / cm 2). The current spreads. As the incident carrier (degree of penetration) of the window layer increases, the efficiency of the LED also increases. This is because as the doping concentration increases, the degree of doping of the injected carriers in the window layer 3 2 6 along the direction parallel to the surface of each layer also increases. Typical window layer 3 2 6 has an impurity concentration of approximately 3 -8 * 10 18 / cm. However, the window layer 3 2 6 has a degree of impurity higher than 1 * 1 0 iV cm, which causes lattice defects and reduces the life of the LED. In addition, the luminous efficiency is also related to the thickness of the window layer 326. When the thickness of the window layer 3 2 6 increases, the wider the current spreading area and the light emitted from the side of the LED will increase, the output of the LED will also increase. Degree of heavy impermeability (> 1 * 10 18 / cm2) GaP, A 1 xGa BU XP (χ < 〇 · 1) and a 1 yGa " A s (0 · 7 < y) and thickness between 1 0- The window layer between 1 # 5 m is used in the present invention, LEDs with a wavelength of 630 nm and a brightness of 60mcd; a wavelength of 590nm,
亮度達到lOOmcd的LED;572nm波長,亮度達到40mcd的LED 圖四是一以Iny(Ga 丨—χΑ 1 x)丨-yP為基礎且以梯度或階梯式LEDs with a brightness of 100mcd; LEDs with a wavelength of 572nm and a brightness of 40mcd. Figure 4 is based on Iny (Ga 丨 —χΑ 1 x) 丨 -yP as a gradient or stepped
第25頁 480751 五、發明說明(22) 變化之(0 〇 1)晶格常數的超晶格的LED元件結構發光二極 體,圖中至少包含一四元化合物InG 5(Gai_xAlx)G 5p合金的 分散型布拉格反射層(DBR) 431,長在η-型傾斜底材GaAs 4 2 9上。該元件至少包含一 η型Ga As緩衝層4 3 0,一分散型 布拉格反射層(DBR) 431,一 n型 lnG5(Gai_xAix)Q5Hg^& 覆層 432,一形變 iny(Gai_xAlx)1-yp/In() 5(Gai xAlx)Q sP多量子 井433,一1117((^卜』1山^底材電子反射434,一1)型111〇5( 較高層包覆層 43 5, 一薄的 In。5(Gai χΑ1χ)。^ 2 f塞,436,一具有梯度組成變化的P型Iny(Gai_xAl x) 1-yp :一超晶格結構437,一 p型GaP或p型AlGaP電流散佈層4Υ38 頂層金屬接觸4 3 9,一底屬金屬接觸4 4 0所組成。 ),=:二 ΐ —層光線萃取層(Hght extrac1:i〇n layer 成九綠卒取屏每μ , ^。 t 蜜塞層436、曰权曰/包含三層,由下而上分別是電流 主要功用是阻曰曰幹士度層437與窗戶層438,光線萃取層的 ’並使這些光^ 下面的P型1nGaA1P層所放射出來之光線 所示,有一 p型做更有效率的放射。圖四中整個架構如下 梯式變化的的超=y(Ga 1 U ( 00 D晶格常數梯度或階 P型窗戶層438^ Γ格為基礎4 3 7擺在中間電流壅塞層436與 變化的超晶格4 3 7 b ?型I n y( ι-χΑ 1 x) i—yP具有一梯度組成 GaP窗戶層438之疋用來將I η G. 5( Ga卜XA 1 x) 〇· 5P合金4 3 6與p型 ((^4^)。.#合/1/1為梯度層之用°(^1)窗戶層438與1〇0.5 之間,而G a P / I n遵基層& Μ的晶格常數相差大約在3 · 6% η 0·5( Ga Νχα 1 X) 〇 5ρ的異質結構的臨界厚度大Page 25 480751 V. Description of the invention (22) Super-lattice LED element structure light-emitting diode with (0 〇1) lattice constant, the figure contains at least one quaternary compound InG 5 (Gai_xAlx) G 5p alloy The dispersive Bragg reflector (DBR) 431 is grown on the η-type inclined substrate GaAs 4 2 9. The device includes at least an n-type Ga As buffer layer 4 3 0, a dispersive Bragg reflection layer (DBR) 431, an n-type lnG5 (Gai_xAix) Q5Hg ^ & cladding layer 432, and a deformation iny (Gai_xAlx) 1-yp / In () 5 (Gai xAlx) Q sP multi-quantum well 433, a 1117 ((^ 卜 『1 山 ^ substrate electron reflection 434, a 1) type 111〇5 (higher cladding layer 43 5, a thin In.5 (Gai χΑ1χ). ^ 2 f plug, 436, a P-type Iny (Gai_xAl x) 1-yp with a gradient composition change: a superlattice structure 437, a p-type GaP or p-type AlGaP current distribution The layer 4Υ38 is composed of a top metal contact 4 3 9 and a bottom metal contact 4 4 0.), =: two gadolinium—a layer of light extraction layer (Hght extrac1: i〇n layer). t The honeycomb layer 436, said right / contained three layers, from bottom to top, respectively, the current is mainly used to block the dry layer 437 and the window layer 438, the light extraction layer, and make these light ^ the P type below As shown by the light emitted from the 1nGaA1P layer, there is a p-type for more efficient radiation. The overall structure in Figure 4 is a stepwise change of super = y (Ga 1 U (00 D lattice constant gradient or order P-type window). Layer 438 ^ Γ Based on 4 3 7 placed in the middle of the current plugging layer 436 and the changed superlattice 4 3 7 b? Type I ny (ι-χΑ 1 x) i-yP has a gradient composition GaP window layer 438 of η G. 5 (Ga Bu XA 1 x) 〇 5P alloy 4 3 6 and p-type ((^ 4 ^) .. # 合 / 1/1 for the gradient layer ° (^ 1) window layers 438 and 1 〇0.5, and the lattice constants of the GaP / In conforming layer & M differ by about 3.6% η 0 · 5 (Ga Νχα 1 X). The critical thickness of the heterostructure is large.
480751 五、發明說明(23) 約在5 - 1 0 n m之間。如此一來G a P蠢晶層會在I η 〇. 5( G a丨_XA 1 x) 〇 5P中間電流壅塞層4 3 6上形成狀如小島的晶體。當這些磊 晶晶體小島結合後,由於這些磊晶小島的合併一高密度的 條紋錯位的晶體會產生在GaP窗戶層43 8上面,並造成表面 粗糙。這些缺陷會惡化薄膜的品質與LED元件的功能。在 窗戶層内高密度的晶體缺陷會造成光線吸收中心,並減少 光線的外部效率及減低其生命期。此外,這些晶格缺陷會 增加製程及包裝如打線、接觸點的困難。因此,在製造晶 格不匹配的異質結構G a P / I η 〇 5( G a 1 -XA 1 X) 〇 5P時’必須要花 點心思在這上面。一具有I η與A 1梯度變化的組成之p型I n y <^8卜/1}()卜/超晶體43 7是用來調節Ga和InGaAlP之間的晶 格常數的差異,同時也是本發明請求項的一部份,I η與A 1 組成(X與y)在I n y( Ga 〗_XA 1 x)丨-yP底材超晶結構4 3 7中是以 梯度變化,厚度則是0到1 0 0至3 0 0 nm之間,其成長速率大 約在0 . 0 5到0 . 2// m/小時之間.,且有一高的V / I I I族比率大 於100左右。11^(0&1_,1?()1_/底材梯度層43 7保持2到4倍大 於P型I η 〇. 5( Ga 丨—χΑ 1 x) 〇. 5P包覆層4 3 5的滲雜濃度。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。480751 V. Description of the invention (23) It is about 5-10 nm. In this way, the G a P stupid crystal layer will form an island-like crystal on the I η 0.5 (G a 丨 _XA 1 x) 〇 5P intermediate current plugging layer 4 3 6. When these epitaxial crystal islands are combined, a high-density streak-distorted crystal will be generated on the GaP window layer 43 8 due to the combination of these epitaxial islands, and cause the surface to be rough. These defects deteriorate the quality of the film and the function of the LED element. High-density crystal defects in the window layer can cause light absorption centers, reduce the external efficiency of light, and reduce its lifetime. In addition, these lattice defects will increase the difficulty of the process and packaging such as wire bonding and contact points. Therefore, when manufacturing a heterostructure G a P / I η 〇 5 (G a 1 -XA 1 X) 〇 5P, it is necessary to take care of this. A p-type I ny < ^ 8b / 1} () b / supercrystal 43 with a composition with gradient changes of I η and A 1 is used to adjust the difference in lattice constants between Ga and InGaAlP. As a part of the claim of the present invention, the composition of I η and A 1 (X and y) changes in gradient in I ny (Ga 〖_XA 1 x) 丨 -yP substrate supercrystalline structure 4 3 7, and the thickness is Between 0 and 100 and 300 nm, the growth rate is between about 0.05 and 0.2 m / hour, and there is a high V / III family ratio greater than about 100. 11 ^ (0 & 1_, 1? () 1_ / substrate gradient layer 43 7 remains 2 to 4 times larger than P-type I η 0.5 (Ga 丨 —χΑ 1 x) 〇5P coating layer 4 3 5 Impurity concentration. The above descriptions are merely preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention are It should be included in the scope of patent application described below.
480751 圖式簡單說明 圖一傳統之發光二極體截面示意圖; 圖二本發明第一實施例之發光二極體截面示意圖; 圖三本發明第二實施例之發光二極體截面示意圖; 圖四本發明第三實施例之發光二極體截面示意圖。 主要部分之代表符號: .101 η型G a A s底材 102 η型InGaAlP包覆層 103 主動層 104 p型InGaAlP包覆層 105 p型GaP電流擴散層 1 0 6 頂層金屬接觸 1 0 7 底層金屬接觸 2 0 8 η型G a A s斜切底材 2 0 9 η型G a A s緩衝層 2 10 η型分散型布拉格反射層 211 η型InGaAlP包覆層 212 多量子井 213 p型InGaAlP包覆層 214 p -型 I η ◦ 5( G a 1 -XA 1 X) ◦· 5P電流藥塞層 215 ρ-型GaP,AlGaP,或AlGaAs電流擴散層480751 The drawing briefly illustrates the cross-sectional schematic diagram of a conventional light-emitting diode of the first embodiment of the present invention; the cross-sectional schematic diagram of the light-emitting diode of the first embodiment of the present invention; the cross-sectional schematic diagram of the light-emitting diode of the second embodiment of the present invention; A schematic cross-sectional view of a light emitting diode according to a third embodiment of the present invention. Representative symbols of main parts: .101 η-type G a A s substrate 102 η-type InGaAlP cladding layer 103 active layer 104 p-type InGaAlP cladding layer 105 p-type GaP current diffusion layer 1 0 6 top metal contact 1 0 7 bottom layer Metal contact 2 0 8 η-type G a A s beveled substrate 2 0 9 η-type G a A s buffer layer 2 10 η-type dispersed Bragg reflector 211 η-type InGaAlP cladding layer 212 multiple quantum wells 213 p-type InGaAlP Cladding layer 214 p -type I η ◦ 5 (G a 1 -XA 1 X) ◦ 5P current drug plug layer 215 ρ-type GaP, AlGaP, or AlGaAs current diffusion layer
480751 圖式簡單說明 213 p型InGaAlP包覆層 214 P -型 I η 〇. 5( G a ι_χΑ 1 X) 〇. 5P電流壅塞層 215 p -型G a P,A 1 G a P,或A 1 G a A s電流擴散層 216 頂層金屬接觸 2 1 7 底層金屬接觸 318 η型G a A s斜切底材 319 η型G a A s緩衝層 3 2 0 η型分散型布拉格反射層 321 η型InGaAlP包覆層 3 2 2 多量子井 3 2 3 電子反射層 3 2 4 p型InGaAlP包覆層 3 2 5 p -型I η 〇. 5( G a卜XA 1 x) 〇 5P電流堕基層 3 2 6 p -型G a P,A 1 G a P,或A 1 G a A s電流擴散層 3 2 7頂層金屬接觸 3 2 8底層金屬接觸 4 2 9 η型G a A s斜切底材 4 3 0 η型G a A s緩衝層 4 31 η型分散型布拉格反射層 4 3 2 η型InGaAlP包覆層 4 3 3 多量子井 434 電子反射層 4 3 5 ρ型InGaAlP包覆層 4 3 6 ρ-型 Ino.JGahAl x) 〇.5P電流壅塞層480751 Schematic illustration of 213 p-type InGaAlP cladding layer 214 P -type I η 0.5 (G a _χΑ 1 X) 〇 5P current blocking layer 215 p -type G a P, A 1 G a P, or A 1 G a A s current diffusion layer 216 top metal contact 2 1 7 bottom metal contact 318 η-type G a A s beveled substrate 319 η-type G a A s buffer layer 3 2 0 η-type dispersed Bragg reflector 321 η Type InGaAlP cladding layer 3 2 2 Multi-quantum well 3 2 3 Electron reflection layer 3 2 4 p Type InGaAlP cladding layer 3 2 5 p -type I η 0.5 (Gab XA 1 x) 〇5P current drop to the base layer 3 2 6 p-type G a P, A 1 G a P, or A 1 G a A s current diffusion layer 3 2 7 top metal contact 3 2 8 bottom metal contact 4 2 9 η type G a A s beveled bottom 4 3 0 η-type G a A s buffer layer 4 31 η-type dispersed Bragg reflective layer 4 3 2 η-type InGaAlP cladding layer 4 3 3 multiple quantum wells 434 electron reflection layer 4 3 5 ρ-type InGaAlP cladding layer 4 3 6 ρ-type Ino.JGahAl x) 〇5P current blocking layer
第29頁 480751 圖式簡單說明 437 p—Iny(Ga卜XA 1 x)卜/晶格梯度層 438 p-型GaP,AlGaP,或AlGaAs電流擴散層 4 3 9 頂層金屬接觸 4 4 0 底層金屬接觸Page 29 480751 Brief description of the diagram 437 p—Iny (Gabu XA 1 x) Bu / lattice gradient layer 438 p-type GaP, AlGaP, or AlGaAs current diffusion layer 4 3 9 Top metal contact 4 4 0 Bottom metal contact
第30頁Page 30
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90108396A TW480751B (en) | 2001-04-09 | 2001-04-09 | Semiconductor light emitting diode based on off-cut substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90108396A TW480751B (en) | 2001-04-09 | 2001-04-09 | Semiconductor light emitting diode based on off-cut substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
TW480751B true TW480751B (en) | 2002-03-21 |
Family
ID=21677887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90108396A TW480751B (en) | 2001-04-09 | 2001-04-09 | Semiconductor light emitting diode based on off-cut substrate |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW480751B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI560963B (en) * | 2010-03-04 | 2016-12-01 | Univ California | Semi-polar iii-nitride optoelectronic devices on m-plane substrates with miscuts less than +/- 15 degrees in the c-direction |
TWI699008B (en) * | 2017-12-01 | 2020-07-11 | 大陸商泉州三安半導體科技有限公司 | Yellow-green light-emitting diode |
CN114864769A (en) * | 2022-04-26 | 2022-08-05 | 厦门士兰明镓化合物半导体有限公司 | LED epitaxial structure and preparation method thereof |
-
2001
- 2001-04-09 TW TW90108396A patent/TW480751B/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI560963B (en) * | 2010-03-04 | 2016-12-01 | Univ California | Semi-polar iii-nitride optoelectronic devices on m-plane substrates with miscuts less than +/- 15 degrees in the c-direction |
TWI699008B (en) * | 2017-12-01 | 2020-07-11 | 大陸商泉州三安半導體科技有限公司 | Yellow-green light-emitting diode |
CN114864769A (en) * | 2022-04-26 | 2022-08-05 | 厦门士兰明镓化合物半导体有限公司 | LED epitaxial structure and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6608328B2 (en) | Semiconductor light emitting diode on a misoriented substrate | |
JP3063756B1 (en) | Nitride semiconductor device | |
US6720570B2 (en) | Gallium nitride-based semiconductor light emitting device | |
US7737451B2 (en) | High efficiency LED with tunnel junction layer | |
US8314415B2 (en) | Radiation-emitting semiconductor body | |
US9978905B2 (en) | Semiconductor structures having active regions comprising InGaN and methods of forming such semiconductor structures | |
US9553232B2 (en) | Light emitter with a conductive transparent p-type layer structure | |
JP2002527890A (en) | Vertical indium gallium nitride LED | |
US9397258B2 (en) | Semiconductor structures having active regions comprising InGaN, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures | |
JP2009071277A (en) | Polarization doping in nitride based diode | |
US20140225059A1 (en) | LED with Improved Injection Efficiency | |
JP2000244013A (en) | Nitride semiconductor element | |
US9634182B2 (en) | Semiconductor structures having active regions including indium gallium nitride, methods of forming such semiconductor structures, and related light emitting devices | |
TW201027809A (en) | A light emitting diode structure and a method of forming a light emitting diode structure | |
CN105914273A (en) | Red and yellow light emitting diode epitaxial wafer and preparation method thereof | |
US20020104997A1 (en) | Semiconductor light emitting diode on a misoriented substrate | |
CN113193088A (en) | Infrared light-emitting diode epitaxial wafer and preparation method thereof | |
JP3567926B2 (en) | pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device | |
CN116598396A (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN101290963B (en) | Nitride semiconductor light-emitting device | |
TW480751B (en) | Semiconductor light emitting diode based on off-cut substrate | |
US6222205B1 (en) | Layered semiconductor structure for lateral current spreading, and light emitting diode including such a current spreading structure | |
US6774402B2 (en) | Pn-juction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode | |
US9768349B2 (en) | Superlattice structure | |
US11538960B2 (en) | Epitaxial light emitting structure and light emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |