CN101331249B - 掺杂的氮化铝晶体及其制造方法 - Google Patents

掺杂的氮化铝晶体及其制造方法 Download PDF

Info

Publication number
CN101331249B
CN101331249B CN2006800451531A CN200680045153A CN101331249B CN 101331249 B CN101331249 B CN 101331249B CN 2006800451531 A CN2006800451531 A CN 2006800451531A CN 200680045153 A CN200680045153 A CN 200680045153A CN 101331249 B CN101331249 B CN 101331249B
Authority
CN
China
Prior art keywords
crystal
aln
electricity
doped
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800451531A
Other languages
English (en)
Other versions
CN101331249A (zh
Inventor
L·J·斯库瓦特
G·A·斯莱克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal IS Inc
Original Assignee
Crystal IS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystal IS Inc filed Critical Crystal IS Inc
Publication of CN101331249A publication Critical patent/CN101331249A/zh
Application granted granted Critical
Publication of CN101331249B publication Critical patent/CN101331249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2258Diffusion into or out of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials

Abstract

具有高电导率和迁移率的掺杂AlN晶体和/或AlGaN外延层,通过如下步骤进行制造:例如形成包含多种杂质物类的混合晶体,和电激活该晶体的至少一部分。

Description

掺杂的氮化铝晶体及其制造方法
相关申请的交叉引用
本申请要求于2005年12月2日提交的美国临时申请60/741,701的权利和优先权,这里通过引用将其全部内容并入本文。
政府支持
本发明是借助美国政府支持在国家标准技术研究所(NIST)授予的70NANB4H3051下做出的。美国政府对本发明享有某些权利。
背景技术
半导体材料在宽范围内表现出可控的光和电性能,例如电导率。通过使用掺杂剂实现这样的控制,所述掺杂剂是引入半导体材料的晶格充当电子(负电荷)或空穴(正电荷)源的杂质。可控掺杂使制造各种各样的半导体器件成为可能,例如发光二极管(LED)、激光器、和晶体管。
诸如氮化镓(GaN)和氮化铝(AlN)的氮化物基半导体在技术上受到极大关注,部分是由于它们的宽带隙。这些材料的可控和可复制的掺杂使得制造以短波长(即蓝光、紫光和甚至紫外光波长)发光的发光器件例如LED和激光器成为可能。此外,n型和p型氮化物可以用于制造适合于高功率和/或高温应用的晶体管。在n型半导体中,电子浓度比空穴浓度高得多;因此,电子是多数载流子并支配电导率。相反,在p型半导体中,空穴支配电导率。
通常可能难以制造p型氮化物半导体材料,并且获得具有高Al含量的AlxGa1-xN合金或p型氮化铝(AlN)的导电晶体或外延层已经构成特殊的挑战。向AlN添加碳和氧导致其变成蓝色,这意味着其吸收红光(与不添加杂质的情况下生长的更典型的AlN不同,其由于N空位而倾向于吸收蓝光)。一些导电性测量已表明该蓝色晶体是p型,而其它工作已经令人非常怀疑制造p型AlN的可能性。来自AlN中的大多数替代式掺杂剂的受主能级将趋向于在能带隙中非常深,使得难以实现合理的电导率水平,除非使用高的掺杂剂浓度。遗憾的是,单一p型杂质原子的溶解度往往相当低,并且晶体形成电荷补偿空位缺陷的趋势高。
在任何情况下,迄今为止制造的唯一p型AlN材料涉及在实验室中生长的尺寸只有几毫米(mm)的小晶体。氮化物材料的n型掺杂也存在困难。因此,成功制造大的导电晶体已被证明是另人困惑的。
发明描述
发明简述
本发明有利于形成大尺度(例如,在某些实施方案中,直径为至少1cm)的掺杂AlN晶体。掺杂剂可以是n型和/或p型,并且在电激活之后,该晶体将表现出足够的电导率和/或迁移率特性用以支持商用器件的形成。
依照本发明,通过引入比铝(Al)或氮(N)少一个电子的替代式杂质在完美的化学计量AlN或AlGaN晶格内产生受主能级。诸如N阴离子位置上的空位(表示为VN)或具有额外电子的杂质的电荷补偿缺陷得以理想地避免,但更普遍地其密度减小或者活性较低。为了使用直径几乎与Al或N相同的原子并避免局部应变,优选从元素周期表的上部选择掺杂剂。Al位置的选择包括铍(Be)、镁(Mg)和锌(Zn),而碳(C)是N位置的一个选择。比Al少两个电子的掺杂剂例如锂(Li)也可用来制造p型AlN和AlGaN。
可以通过将例如Be、Mg、Zn、Li或C的单一替代式杂质引入AlN晶格实现AlN和AlGaN的p型掺杂。这种常见的方法被称为单掺杂。其后通常继之以晶体的处理以便电激活杂质物类(species)。
因此,在第一方面中,本发明的特征在于一种形成掺杂AlN晶体的方法,该方法包括:形成包含AlN和多种杂质物类的混合晶体,和电激活至少一部分混合晶体中的至少一种杂质物类。在一个实施方案中,在电激活步骤之前将混合晶体切成多个晶片。电激活步骤之后,掺杂AlN晶体可以在室温下具有大于约10-5Ω-1cm-1、或甚至大于约3×10-3Ω-1cm-1的电导率和/或大于约25cm2V-1s-1的迁移率。
本发明的实施方案可以包括一个或多个以下特征。在电激活之前,混合晶体在室温下的电导率可以小于约10-2Ω-1cm-1,且电激活之后,掺杂AlN晶体可以是n型或p型。所述多种杂质物类可以包括替代式掺杂剂,例如C、O、Be、Mg、Zn或Si。所述多种杂质物类可以包括填隙式掺杂剂,例如Li,并且电激活步骤可以包括下面的至少一种:退火、浸入熔融金属或者向至少一部分混合晶体施加电压。这样的步骤可以导致从至少一部分混合晶体中提取出填隙式掺杂剂。
所述多种杂质物类可以包括至少一种施主和至少一种受主。在一个实施方案中,所述至少一种施主和所述至少一种受主占据阳离子格点。所述至少一种施主包括Si,而所述至少一种受主包括Be、Mg或Zn。在另一实施方案中,所述至少一种施主和所述至少一种受主占据阴离子格点。所述至少一种施主包括O且所述至少一种受主包括C。在各个实施方案中,电激活步骤包括退火。
在另一方面中,本发明的特征在于一种形成p型AlN晶体的方法,该方法包括:形成包含AlN和替代式杂质源的混合晶体,和电激活至少一些替代式杂质。
本发明的实施方案可以包括一个或多个以下特征。所述替代式杂质源可以包括Be3N2。电激活至少一部分替代式杂质的步骤可以包括将Be3N2转变为Be3N3,以及可以包括使混合晶体在氮环境中经受小于约2300℃的温度和小于约100MPa的压力。作为替换或者另外,替代式杂质源可以包括Mg3N2、Zn3N2、Li3N、BeO、BeSiN2、LiBeN、Be2C、BeSiN2、MgSiN2、LiSi2N3、LiMgN或LiZnN中的至少一种。
在又一方面中,本发明的特征在于掺杂的AlN晶体,该掺杂的AlN晶体的厚度为至少约0.1mm,直径为至少约1cm,并且在室温下电导率大于约10-5Ω-1cm-1。在室温下电导率可以大于约3×10-3Ω-1cm-1。所述AlN晶体的迁移率在室温下可以大于约25cm2V-1s-1。直径可以为至少约2cm。所述AlN晶体可以包括选自C、O、Be、Mg、Zn和Si中的至少两种替代式掺杂剂。
在再一方面中,本发明的特征在于一种掺杂的p型AlN晶体,该AlN晶体在室温下的迁移率大于约25cm2V-1s-1。所述AlN晶体可以包括选自C、O、Be、Mg、Zn和Si中的至少两种替代式掺杂剂。
本发明另一方面的特征在于一种掺杂的n型单晶AlN结构,其厚度为至少约0.1mm且直径为至少约1cm。所述AlN结构的迁移率在室温下可以大于约25cm2V-1s-1。所述AlN晶体可以包括选自C、O、Be、Mg、Zn和Si中的至少两种替代式掺杂剂。
在另一方面中,本发明的特征在于一种掺杂的单晶AlN结构,其尺寸为至少2mm×2mm×1mm且在室温下电导率大于约10-5Ω-1cm-1。所述AlN晶体可以包括选自C、O、Be、Mg、Zn和Si中的至少两种替代式掺杂剂。
在另一方面中,本发明的特征在于一种掺杂的p型AlGaN外延层,其具有大于约50%的Al浓度且电导率在室温下大于约10-5Ω-1cm-1。所述电导率在室温下可以大于约3×10-3Ω-1cm-1。所述外延层的迁移率在室温下可以大于约25cm2V-1s-1。在一个实施方案中,所述外延层包括选自C、O、Be、Mg、Zn和Si中的至少两种替代式掺杂剂。
附图简述
在附图中,相同的附图标记在不同视图中通常指代相同的部件。此外,附图并不一定按比例,相反通常着重于说明本发明的原理。在下面的说明书中,参照以下附图描述本发明的各个实施方案,其中:
图1示意绘出了用于单晶AlN生长的晶体生长腔室;
图2是依照本发明的多个实施方案形成掺杂AlN的工艺流程图;和
图3是依照本发明的其它实施方案形成掺杂AlN的工艺流程图。
优选实施方案详述
参照图1,可以通过如美国专利6,770,135所述的升华-再凝结方法形成AlN晶体,通过引用将该专利的全部内容并入本文。晶体生长腔室100包含蒸气混合物110、AlN晶体120和多晶源130,并且被加热炉140包围。在一个实施方案中,晶体生长腔室100包含钨。在替代实施方案中,晶体成长腔室100包含铼钨合金、铼、碳、碳化钽、氮化钽、碳氮化钽、氮化铪、钨与钽的混合物、或其组合,如美国专利申请10/822,336所述,通过引用将该专利申请的全部内容并入本文。
蒸气混合物110由加热晶体成长腔室100一端处的多晶源130产生,并聚结到另一较冷端处的AlN晶体120中。AlN晶体120可以包含有限浓度的填隙式或替代式杂质。在进一步处理时,可以电激活杂质以便掺杂AlN晶体120并向其提供需要的电学性质。在此处描述的所有实施方案中,AlN晶体120还可以包含镓(Ga),使其成为AlGaN晶体。例如,可以将Ga添加到多晶源130使得晶体聚结为AlGaN。在这种情况下,晶体的Al浓度可以大于约50%。AlN晶体120可以具有大于约0.1mm的厚度和大于约1cm的直径。所述直径甚至可以大于约2cm。
图2图解了用于形成p型AlN晶体的工艺200。在步骤220中,在约2000℃至约2300℃的温度下通过升华-再凝结形成AlN晶体120,该晶体是包含AlN和替代式或填隙式杂质源(即至少一种掺杂剂物类)的混合晶体。所述多种替代式杂质的源是Be3N2、Mg3N2、Zn3N2、Li3N、BeO、BeSiN2、LiBeN、Be2C、BeSiN2、MgSiN2、LiSi2N3、LiMgN、LiZnN或其它适宜的材料。相应的替代式杂质包括Be、Mg、Zn、O或其它。化合物Be3N2在约2200℃熔化并在约2250℃下在1巴的N2中分解成液体Be+N2。金属Be在2970℃沸腾。化合物Mg3N2在800-900℃的温度下在1巴的N2中分解。Mg在649℃熔化并在1090℃沸腾。在步骤230中,电激活AlN晶体120内的所述多种替代式或填隙式杂质中的至少一部分。在一个实施方案中,在氮环境中通过高压处理将Be3N2转变为Be3N3,由此电激活Be掺杂剂。可能需要在高达2300℃温度下的高达100MPa的N2压力和高达几个星期的时间。然而,在商业应用中必须考虑到Be的人体毒性。在步骤240中,通过使用线锯或金刚石圆锯将AlN晶体120切成晶片以便直接使用或用于随后在其上的半导体层外延生长和/或器件集成。
还可以通过在生长过程中或生长之后将两种或更多种不同元素引入晶体来实现AlN的掺杂。此处将使用两种元素称为双掺杂;对于三种元素,称为三掺杂。双掺杂方法可以分成两类。
第一类是“非对称双掺杂”(ABD),其中两种杂质代表施主元素和受主元素,并以近似相等的浓度引入。但是,在高浓度下,施主间的相互作用不同于受主之间的相互作用。除孤立的单原子杂质激活能之外,在诸如杂质能带和杂质复合体的多体状态形成中的这种差异是非对称性的来源。施主-受主对优选地具有特殊性质。充当所述多种杂质的源的适宜化合物包括MgSiN2和BeSiN2。在MgSiN2或BeSiN2中,Mg或Be受主占据Al阳离子格点,如同补偿的Si受主那样。因此,它们在晶格中形成最近的相邻对,和净掺杂(以及因此的高电导率)的结果。
在MgSiN2的情形中,施主和受主在高的生长温度下不成对。在高于1018cm-3的掺杂水平下,Mg、Be或Si物类开始形成杂质能带,在该杂质能带中Mg或Be上的空穴可以从一个杂质原子移动到最近的相同杂质原子形成p型次能带(sub-band)。当杂质物类中的一种是Si原子时,Si波函数交叠能形成n型次能带。根据当掺杂剂浓度提高时首先形成哪个次能带,产生的掺杂AlN晶体可以是n型或者p型。优选地,引入浓度大于约1018cm-3的杂质物类,甚至更优选地引入高达2×1022cm-3的浓度。一种适宜的杂质物类源BeSiN2在固态AlN中无限可溶。(参见G.Schneider,L.J.Gauckler,和G.Petzow,J.Am.Ceram.Soc.,Vol.63,P32(1980),通过引用将其全部内容并入本文)。同样,MgSiN2在AlN中具有高的溶解度。由于Si在AlN中是浅施主而Mg是较深的受主,因此用MgSiN2掺杂的AlN通常为n型。
制造p型AlN的ABD方法的另一个例子是将两种不同杂质置于AlN中的N阴离子格点上。这能够通过制造AlN与Al2OC的混合晶体来实现。Al2OC在AlN中的固溶度对于氧和碳都高达3×1022cm-3。参见C.Qui和R.Metselaar,J.Am.Ceram.Soc.,Vol.80,P2013(1997)(“Qui参考文献”),通过引用将其全部内容并入本文。在这种情况下,点缺陷源是Al2O3和Al4C3。气体环境可以包括CO、Al2O、AlCN或这三种气体的各种混合物,且替代式杂质可以包括C和O。
碳由于其低毒性可以优选作为AlN的p型掺杂剂。化合物Al4C3以黄色晶体存在。在惰性的石墨坩埚中,它在2156℃的温度下转熔(peritectically)分解。在高于1500℃的100kPa的N2中,其不存在:Al4C3与N2反应形成AlN和C。可以在碳(石墨)坩埚中在2000℃至2300℃下在100kPa的N2中通过升华-再凝结方法生长AlN晶体。它们生长良好,颜色为黄色,每立方厘米包含几百个小的黑色石墨片,这些石墨片分布在整个晶体中。主要的碳输送蒸气分子是AlCN。当晶体在高温下退火时过量的碳从溶体中脱出。该温度下的生长时间约为150小时。可能因为作为替代式杂质引入N格点的相对少量的C被N空位补偿,因此这些晶体在室温下不导电。
可以通过使用化合物Al2OC非常有效地引入碳作为氮位置上的替代式杂质。化合物Al2OC存在并具有与AlN几乎相同的晶体结构。它在高温下以固态与AlN混溶,Al2OC为0至约40摩尔%。N2和CO分子都包含14个电子。Al2OC的晶体本身不导电。氧杂质作为深施主进入(在氮位置上),并且似乎补偿了较浅的碳受主。成功生长掺有Al2OC的晶体的一个重要因素是在生长过程中或之后对其进行适当的热处理以便得到均匀的体电导率。ABD的这个例子依赖于如下事实:C受主能级显著浅于O施主能级,因此Al2OC化合物在高掺杂浓度下将有效地充当p型掺杂剂。
在一种杂质为替代式而另一种为填隙式的意义上,双掺杂的第二种类型也是非对称的。用于双掺杂AlN的一些有用化合物是LiBeN、LiMgN和LiZnN。元素Be、Mg和Zn将趋向于作为替代式杂质进入AlN晶体,而Li将趋向于成为填隙式杂质。作为填隙式杂质,Li原子在AlN晶格中相对易迁移。因此,可以通过提取出Li离子并将Be留在适当位置来电激活掺杂有LiBeN的AlN晶体,产生p型的导电半导体。可以通过下述进行提取:在真空下加热掺杂的AlN晶体以便蒸发Li、将晶体或晶体切片浸入液态镓(Ga)或铟(In)的熔融金属浴中、或者在外加的直流(DC)电场中使Li漂移到表面。Be受主(或Mg或Zn)要么是孤立的未补偿受主,要么在较高浓度下形成p型次能带。这种制造导电AlN的方法被称为提取-激活双掺杂(EABD)。此外,双掺杂允许将AlN掺杂至非常高的杂质含量水平,这对于独自使用Be、Mg或Zn的单掺杂常常是不可能的。
制造p型AlN的EABD法的另一种应用涉及制造具有化合物LiSi2N3的AlN混合晶体。然后,如上文所述提取出Li(在这种情形中Li为Al阳离子格点上的替代式杂质)以便留下掺杂有VAlSi2N3(即对于每个Al空位,Al位置上有两个Si原子)的AlN晶体。这使晶体成为净P型半导体。但是,应该注意在这个工艺期间避免退火除去过多的铝空位(VAl)(例如进行至过高的温度),因为掺杂有VAlSi3N4(即每个VAl三个Si原子)的晶体将被完全补偿并且在低掺杂浓度下不导电。
图3图解了用于形成掺杂AlN晶体的替代工艺300。在步骤320中,在约2000℃至约2300℃的温度下通过升华-再凝结形成AlN晶体120——包含AlN和多种杂质物类(即不同类型的掺杂剂原子)的混合晶体。所述杂质物类可以包括诸如C、O、Be、Mg、Zn和Si的替代式掺杂剂和/或诸如Li的填隙式掺杂剂。可以通过如下方式引入所述杂质物类:利用例如MgSiN2、BeSiN2、Al2OC、LiBeN、LiMgN、LiZnN或LiSi2N3的化合物(即一种或多种杂质物类的源)作为多晶源130的一部分,或者将其气态前体引入蒸气混合物110中使得AlN晶体120包含目标化合物和/或杂质物类。这时,在电激活之前,AlN晶体120可以具有低的电导率,例如在室温下小于约10-2Ω-1cm-1,因为所述多种杂质物类可以相互补偿。AlN晶体120的电导率甚至可以小于约10-5Ω-1cm-1
为了在AlN中的N阴离子位置上获得非常高的C浓度,可以用0.1-50摩尔%的Al2OC和99.9-50摩尔%的AlN制造混合多晶材料。然后使用所述混合多晶材料作为用于生长掺杂AlN晶体的多晶源130。可以通过将适当比例的AlN和Al2OC粉末混合并烧结来形成所述混合多晶源材料。但是,纯净的Al2OC结构相当不稳定,并且通过制造其与AlN的混合晶体使其最佳稳定。这可以在利用Al4C3、AlN和Al2O3的热力学性质的仔细控制的条件下进行。
制造AlN-Al2OC多晶材料的一种此类方法是将Al2O3粉末添加到Al-N-C混合物(具体地说,要么(i)AlN+C粉末,要么(ii)AlN、C和Al粉末,要么(iii)AlN和Al4C3粉末)并将其加热以便将相对高浓度的Al2OC并入AlN。该反应优选在1700℃-2000℃的温度范围内进行,这时Al2OC是热力学稳定的(参见例如Qui参考文献和Y.Larrere等人的Rev.Int.Hautes Temp.Refract.Fr.,Vol.21,P3(1984),通过引用将其全部内容并入本文)。我们可以计算出在2000℃稳定的最高压力约为1巴。可以将Al2O3加Al-N-C粉末冷压,然后在最高达1990℃的温度下在顶部带螺纹的石墨圆筒中烧结。然而,烧结将产生略微多孔的样品,因此更好在约1900℃的温度下在紧密密封的石墨模中热压粉末持续2-3小时。所述密封防止气体从压模中泄漏出从而改变化学组成。反应热压的使用利用了Al2O3与Al4C3的反应中5%的体积收缩来形成Al2OC。理想地在压力下冷却混合物以防止逆反应。热压产生>98.5%理论密度的样品,如S.Y.Kuo和A.V.Virkar的J.Am.Ceram.Soc.,Vol.73,P2640(1990)中所示,通过引用将其全部内容并入本文。
具有掺杂多晶材料的AlN晶体生长的理想进行应注意晶体生长腔室100的类型。例如,使用AlN-Al2OC多晶起始材料时,可以优选使用由TaC或石墨(C)制成的晶体生长腔室100。
在一个实施方案中,所述多种杂质物类包括至少一种施主和至少一种受主。此外,这样的杂质物类对可以占据AlN晶格中的阳离子或阴离子格点。例如,化合物Al2OC可以充当施主物类O和受主物类C的源,它们两者都占据阴离子(N)格点。相反,诸如BeSiN2、MgSiN2和ZnSiN2的化合物可以充当施主物类Si和受主物类Be、Mg和Zn的源,它们全部占据阳离子(Al)格点。
继续参照图3,在步骤320中还可以引入填隙式和替代式杂质物类的组合。例如,诸如LiBeN、LiMgN或LiZnN的化合物可以提供Li作为填隙式杂质以及诸如Be、Mg、Zn或Si的物类作为替代式杂质。在这种情况下,存在填隙式杂质和替代式杂质两者可以使AlN晶体120基本为本征性直到在随后的步骤340中提取出填隙式杂质(如下所述)。另一个例子是LiSi2N3掺杂,其中Li和Si两者都将是Al阳离子位置上的替代式杂质。因此,AlN晶体120可以具有低的电导率,例如在室温下小于约10-2Ω-1cm-1,直到在随后的步骤340中提取出更加易于迁移的替代式Li杂质(如下所述)。在这个阶段,AlN晶体120的电导率甚至可以小于约10-5Ω-1cm-1
在一个实施方案中,O杂质的源是Al2O3,它向AlN晶体120提供Al空位和替代式O形式的点缺陷。该Al2O3点缺陷源提供Al空位,因为Al2O3实际是以Al2VAlO3溶解,其中VAl表示一个Al空位。在2300℃的生长温度和低的Al2O3浓度下,O原子将随机分布在N位置上,而Al空位随机分布在Al位置上。在缓慢冷却过程中,O原子可以趋向于簇集在Al空位周围,因为它们的直径比N原子略大,导致应力消除的簇集。可以通过在30分钟或更少的时间内将晶体从生长温度快速冷却来预防这种簇集。快速冷却将导致在N阴离子格点和Al空位上具有未簇集的O点缺陷的AlN晶体。
在可选步骤330中,将此刻包含至少一种杂质物类的AlN晶体120切成晶片。在可选步骤335中,在AlN晶体120的至少一个晶片上沉积外延层。所述外延层可以包括AlN、GaN、InN或其合金或混合物。所述外延层的Al浓度可以大于50%。(因此,对于AlxGa1-xN外延层,x可以大于0.5)。在步骤335期间,所述外延层可以掺杂有至少一种杂质物类,例如O。所述外延层的厚度可以为约0.5微米(μm)至200μm。在步骤340中,电激活至少一部分AlN晶体120(该晶体此刻可选为晶片形式)中(和/或沉积在其上的外延层中)的至少一种杂质物类,以便形成掺杂晶体。在电激活之后,所述晶体(和/或沉积在其上的外延层)可以具有净的n型或p型掺杂水平。可以通过例如在约2000℃至约2300℃的温度范围内对AlN晶体120进行退火来实现电激活。
在步骤320中已经引入填隙式杂质物类时,步骤340可以包括方法:提取出填隙式杂质物类,同时将一种或多种激活的替代式杂质物类留在AlN晶体120中。在这样的实施方案中,步骤340可以包括:在高于300℃但低于1600℃的温度下(以避免过度损伤AlN基质晶体)在真空中对AlN晶体120进行退火以蒸发填隙式杂质物类,将AlN晶体120或其晶片浸入液态镓(Ga)或铟(In)熔融金属浴中,或向AlN晶体120施加电压以便使填隙式杂质物类漂移到表面。
步骤340可以包括在可以向AlN晶体120提供至少一种附加杂质物类的环境中退火。在一个实施方案中,AlN晶体120在约2000℃至约2300℃的温度范围内退火。在O杂质的情形中,选择温度以便防止簇集或使O-VAl簇再溶解。所述环境是例如30巴下的90%N2+10%CO的气氛,退火时间为例如24小时,且越厚的晶片需要越长的时间。一些CO扩散到晶体中,而一些氮和氧扩散出。因此,退火步骤将C(一种附加的杂质物类)并入AlN晶体120。类似地,如果AlN晶体120的晶片上存在外延层,这样的退火可以向外延层提供附加的杂质物类。因此,所述外延层可以包含多种杂质物类,其中至少一种被电激活。
一旦步骤340完成,AlN晶体120和/或沉积在其上的外延层就可以具有理想的电特性。这些电特性包括例如电导率在室温下大于约10-5Ω-1cm-1,或者在室温下甚至大于约3×10-3Ω-1cm-1。电导率在室温下甚至可以大于约0.1Ω-1cm-1。AlN晶体120和/或沉积在其上的外延层的迁移率在室温下可以大于约25cm2V-1s-1
结果是四元晶体,该四元晶体主要为AlN但在N格点上具有高浓度的O和C。由于过量的O,其还将具有一定浓度的Al空位(VAl)。在缓慢冷却过程中,一些过量O可能再次簇集在Al空位周围,但迁移性比O原子差的C原子不会。在溶体中C位于并停留在N位置上,并且C浓度与O浓度相当或者大于O浓度。现在AlN晶体120是良好的p型导体(室温下电导率σ>3×10-3Ω-1cm-1)。在优选实施方案中,AlN晶体120在室温下的迁移率大于25cm2V-1s-1,因为高浓度的C产生非定域的受主能带,而由O产生的较深施主能级保持为定域性。优选的AlN晶体的尺寸超过2mm×2mm×1mm,并且室温下的电导率大于10-5Ω-1cm-1
该p型掺杂剂的激活能将取决于其浓度,但是由于Al2OC和Al2VAlO3两者在AlN中的高溶解度,因而有可能制造退化掺杂的p型AlN以及轻掺杂的材料。希望C浓度超过约1×1018cm-3以便实现实用的p型导电性。使用这种技术能够获得非常高的C浓度(最高达约2×1022cm-3),并且这样的浓度有助于获得高的p型掺杂水平(和较高的导电性)。
Al2O3和CO掺杂以及退火处理对于控制p型掺杂存在通常重要。在优选实施方案中,O与C的原子比约为一比一(1∶1),且大部分C被激活。如果存在比此更多的O,则将有较少的C中心被激活,而较低的O浓度可以导致C析出并且为非电活性。
可以看到,本文描述的方法为包括AlN和AlGaN的掺杂晶体和外延层的制备提供了基础。此处使用的术语和措辞用作描述而非限定性的术语,在这些术语和措辞的使用中并不意图排除所示和所述特征的任何等效物或其部分。相反,认为在本发明权利要求范围内可以做各种修改。
权利要求如下:

Claims (24)

1.形成掺杂AlN晶体的方法,该方法包括以下步骤:
a.形成包含AlN和多种杂质物类的混合晶体,所述多种杂质物类由源化合物提供;和
b.优先电激活至少一部分混合晶体中的一种杂质物类以便形成掺杂AlN晶体。
2.如权利要求1所述的方法,该方法还包括在电激活步骤之前将混合晶体切成多个晶片的步骤。
3.如权利要求1所述的方法,其中在电激活步骤之后,该掺杂AlN晶体在室温下具有大于10-5Ω-1cm-1的电导率。
4.如权利要求3所述的方法,其中在电激活步骤之后,该掺杂AlN晶体在室温下具有大于3×10-3Ω-1cm-1的电导率。
5.如权利要求1所述的方法,其中在电激活步骤之后,该掺杂AlN晶体在室温下具有大于25cm2V-1s-1的迁移率。
6.如权利要求1所述的方法,其中在电激活步骤之前,该混合晶体在室温下具有小于10-2Ω-1cm-1的电导率。
7.如权利要求1所述的方法,其中在电激活步骤之后,该掺杂AlN晶体为n型。
8.如权利要求1所述的方法,其中在电激活步骤之后,该掺杂AlN晶体为p型。
9.如权利要求1所述的方法,其中所述多种杂质物类包括替代式掺杂剂。
10.如权利要求9所述的方法,其中该替代式掺杂剂选自C、O、Be、Mg、Zn和Si。
11.如权利要求1所述的方法,其中所述多种杂质物类包括填隙式掺杂剂。
12.如权利要求11所述的方法,其中该填隙式掺杂剂包括Li。
13.如权利要求11所述的方法,其中电激活步骤包括下述中的至少一种:退火、浸入熔融金属和向混合晶体的至少一部分施加电压。
14.如权利要求13所述的方法,其中该电激活步骤从至少一部分混合晶体中提取出填隙式掺杂剂。
15.如权利要求1所述的方法,其中所述多种杂质物类包括至少一种施主和至少一种受主。
16.如权利要求15所述的方法,其中所述至少一种施主和所述至少一种受主占据阳离子格点。
17.如权利要求16所述的方法,其中所述至少一种施主包括Si,且所述至少一种受主包括Be、Mg或Zn。
18.如权利要求15所述的方法,其中所述至少一种施主和所述至少一种受主占据阴离子格点。
19.如权利要求18所述的方法,其中所述至少一种施主包括O,且所述至少一种受主包括C。
20.如权利要求1所述的方法,其中所述电激活步骤包括退火。
21.如权利要求20所述的方法,其中在包含附加杂质物类的环境中进行退火。
22.形成p型AlN晶体的方法,该方法包括以下步骤:
a.形成包含AlN和替代式杂质源的混合晶体;和
b.电激活至少一些替代式杂质以便形成p型AlN晶体;
其中所述替代式杂质源包括Be3N2、Mg3N2、Zn3N2、Li3N、BeO、BeSiN2、LiBeN、Be2C、BeSiN2、MgSiN2、LiSi2N3、LiMgN或LiZnN中的至少一种。
23.如权利要求22所述的方法,其中所述替代式杂质源包括Be3N2,并且所述电激活步骤包括将Be3N2转化为Be3N3
24.如权利要求22所述的方法,其中所述电激活步骤包括在氮环境中使混合晶体经受小于100MPa的压力和小于2300℃的温度。
CN2006800451531A 2005-12-02 2006-12-04 掺杂的氮化铝晶体及其制造方法 Active CN101331249B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US74170105P 2005-12-02 2005-12-02
US60/741,701 2005-12-02
PCT/US2006/046300 WO2007065018A2 (en) 2005-12-02 2006-12-04 Doped aluminum nitride crystals and methods of making them

Publications (2)

Publication Number Publication Date
CN101331249A CN101331249A (zh) 2008-12-24
CN101331249B true CN101331249B (zh) 2012-12-19

Family

ID=38011100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800451531A Active CN101331249B (zh) 2005-12-02 2006-12-04 掺杂的氮化铝晶体及其制造方法

Country Status (5)

Country Link
US (6) US7641735B2 (zh)
EP (1) EP1954857B1 (zh)
JP (3) JP5281408B2 (zh)
CN (1) CN101331249B (zh)
WO (1) WO2007065018A2 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US7638346B2 (en) * 2001-12-24 2009-12-29 Crystal Is, Inc. Nitride semiconductor heterostructures and related methods
US20060005763A1 (en) * 2001-12-24 2006-01-12 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US8349077B2 (en) 2005-11-28 2013-01-08 Crystal Is, Inc. Large aluminum nitride crystals with reduced defects and methods of making them
WO2007065018A2 (en) * 2005-12-02 2007-06-07 Crystal Is, Inc. Doped aluminum nitride crystals and methods of making them
CN101454487B (zh) * 2006-03-30 2013-01-23 晶体公司 氮化铝块状晶体的可控掺杂方法
US9034103B2 (en) 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US8323406B2 (en) * 2007-01-17 2012-12-04 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
WO2008094464A2 (en) 2007-01-26 2008-08-07 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
US8080833B2 (en) * 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
US8088220B2 (en) * 2007-05-24 2012-01-03 Crystal Is, Inc. Deep-eutectic melt growth of nitride crystals
JP5303941B2 (ja) * 2008-01-31 2013-10-02 住友電気工業株式会社 AlxGa1−xN単結晶の成長方法
US20090250626A1 (en) * 2008-04-04 2009-10-08 Hexatech, Inc. Liquid sanitization device
US8394711B2 (en) * 2009-02-12 2013-03-12 The Curators Of The University Of Missouri Systems and methods for co-doping wide band gap materials
US20100314551A1 (en) * 2009-06-11 2010-12-16 Bettles Timothy J In-line Fluid Treatment by UV Radiation
WO2011016219A1 (ja) * 2009-08-04 2011-02-10 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP5806734B2 (ja) 2010-06-30 2015-11-10 クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. 熱勾配制御による窒化アルミニウム大単結晶成長
WO2012012384A1 (en) 2010-07-20 2012-01-26 Hexatech, Inc. Polycrystalline aluminum nitride material and method of production thereof
US8654807B2 (en) 2010-11-18 2014-02-18 The Board Of Trustees Of The Leland Stanford Junior University Electrical devices formed using ternary semiconducting compounds
KR20140017515A (ko) 2010-12-14 2014-02-11 헥사테크, 인크. 다결정 알루미늄 질화물 소결체들을 위한 열팽창 엔지니어링 및 반도체들의 제조에의 응용
US8399367B2 (en) * 2011-06-28 2013-03-19 Nitride Solutions, Inc. Process for high-pressure nitrogen annealing of metal nitrides
US8962359B2 (en) 2011-07-19 2015-02-24 Crystal Is, Inc. Photon extraction from nitride ultraviolet light-emitting devices
CN103361729B (zh) * 2012-04-10 2016-08-03 深圳大学 一种制备p型氮化铝晶体的方法
US9840790B2 (en) 2012-08-23 2017-12-12 Hexatech, Inc. Highly transparent aluminum nitride single crystalline layers and devices made therefrom
JP6190582B2 (ja) * 2012-10-26 2017-08-30 古河電気工業株式会社 窒化物半導体装置の製造方法
US9299883B2 (en) 2013-01-29 2016-03-29 Hexatech, Inc. Optoelectronic devices incorporating single crystalline aluminum nitride substrate
US9748409B2 (en) 2013-03-14 2017-08-29 Hexatech, Inc. Power semiconductor devices incorporating single crystalline aluminum nitride substrate
CN108511567A (zh) 2013-03-15 2018-09-07 晶体公司 与赝配电子和光电器件的平面接触
DE112015003542B4 (de) * 2014-08-01 2022-09-15 Tokuyama Corporation n-Aluminiumnitrid-Einkristallsubstrat und dessen Verwendung für vertikale Nitrid-Halbleiterbauelemente
WO2018232080A1 (en) * 2017-06-16 2018-12-20 Crystal Is. Inc. Two-stage seeded growth of large aluminum nitride single crystals
US10839195B2 (en) * 2017-08-08 2020-11-17 Uchicago Argonne, Llc Machine learning technique to identify grains in polycrystalline materials samples
US10505514B2 (en) * 2018-04-11 2019-12-10 Qualcomm Incorporated Piezoelectric thin film and bulk acoustic wave filter
CN110137321A (zh) * 2019-04-19 2019-08-16 西安电子科技大学 基于体氮化铝衬底的垂直结构紫外发光二极管及制备方法
US11663494B2 (en) 2019-12-05 2023-05-30 Uchicago Argonne, Llc Systems and methods for hierarchical multi-objective optimization
US11651839B2 (en) 2020-03-02 2023-05-16 Uchicago Argonne, Llc Systems and methods for generating phase diagrams for metastable material states
US11710038B2 (en) 2020-04-13 2023-07-25 Uchicago Argonne, Llc Systems and methods for active learning from sparse training data
CN111681958A (zh) * 2020-05-29 2020-09-18 华南理工大学 一种新型异质结构镁扩散制备常关型hemt器件的方法
CN114574956B (zh) * 2022-03-09 2024-02-09 北京世纪金光半导体有限公司 一种掺杂氮化铝晶体的生长方法及生长装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296956B1 (en) * 1996-10-17 2001-10-02 Cree, Inc. Bulk single crystals of aluminum nitride
CN2492947Y (zh) * 2001-07-18 2002-05-22 赵汝杰 非晶系氮化铝铟镓发光二极管装置
CN1425189A (zh) * 2000-04-21 2003-06-18 丰田合成株式会社 生产ⅲ族氮化物半导体装置的方法
CN1554121A (zh) * 2001-07-12 2004-12-08 克里公司 在基于氮化镓的盖帽区段上有栅接触区的氮化铝镓/氮化镓高电子迁移率晶体管及其制造方法
CN1569742A (zh) * 2004-04-23 2005-01-26 中国科学院上海硅酸盐研究所 以氮化硅镁作为生长助剂燃烧合成制备β-氮化硅棒晶

Family Cites Families (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6615059A (zh) 1966-10-25 1968-04-26
US3600701A (en) 1968-03-14 1971-08-17 Gen Electric Signal generator for producing a set of signals at baseband frequency and with adjustable phase slope
US3531245A (en) 1968-04-01 1970-09-29 Du Pont Magnesium-aluminum nitrides
US3607014A (en) 1968-12-09 1971-09-21 Dow Chemical Co Method for preparing aluminum nitride and metal fluoride single crystals
US3603414A (en) 1970-01-30 1971-09-07 Frank E Stebley Insert for drilling unit
US3768983A (en) 1971-11-03 1973-10-30 North American Rockwell Single crystal beryllium oxide growth from calcium oxide-beryllium oxide melts
US3903357A (en) 1971-12-06 1975-09-02 Westinghouse Electric Corp Adaptive gate video gray level measurement and tracker
FR2225207B1 (zh) 1973-04-16 1978-04-21 Ibm
US3933573A (en) 1973-11-27 1976-01-20 The United States Of America As Represented By The Secretary Of The Air Force Aluminum nitride single crystal growth from a molten mixture with calcium nitride
US4008851A (en) 1976-01-16 1977-02-22 Curt G. Joa, Inc. Adhesive tape bag closure
DE2750607A1 (de) 1977-11-11 1979-05-17 Max Planck Gesellschaft Luftbestaendiges kristallines lithiumnitrid, verfahren zu seiner herstellung und seine verwendung
US4547471A (en) 1983-11-18 1985-10-15 General Electric Company High thermal conductivity aluminum nitride ceramic body
JPS6114256U (ja) 1984-06-30 1986-01-27 スズキ株式会社 電動式変速装置
JPS61236686A (ja) 1985-04-13 1986-10-21 Tohoku Metal Ind Ltd 単結晶育成法
JP2745408B2 (ja) 1988-07-07 1998-04-28 東芝セラミックス株式会社 半導体単結晶引上げ装置
US5258218A (en) * 1988-09-13 1993-11-02 Kabushiki Kaisha Toshiba Aluminum nitride substrate and method for producing same
US5057287A (en) 1988-11-01 1991-10-15 Sfa, Inc. Liquid encapsulated zone melting crystal growth method and apparatus
US5070393A (en) 1988-12-23 1991-12-03 Kabushiki Kaisha Toshiba Aluminum nitride substrate for formation of thin-film conductor layer and semiconductor device using the substrate
US5087949A (en) * 1989-06-27 1992-02-11 Hewlett-Packard Company Light-emitting diode with diagonal faces
JPH03285075A (ja) 1990-03-30 1991-12-16 Nisshin Steel Co Ltd タングステンルツボの製造方法
JPH04355920A (ja) 1991-01-31 1992-12-09 Shin Etsu Handotai Co Ltd 半導体素子形成用基板およびその製造方法
EP0509312B1 (en) 1991-04-16 1995-08-23 Sumitomo Electric Industries, Limited Czochralski method using a member for intercepting radiation from raw material molten solution and apparatus therefor
EP0544329A3 (en) 1991-11-28 1993-09-01 Kabushiki Kaisha Toshiba Semiconductor package
JPH06152072A (ja) * 1992-11-16 1994-05-31 Asahi Chem Ind Co Ltd 半導体レーザ
US5578839A (en) 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
JP2989975B2 (ja) 1992-11-30 1999-12-13 京セラ株式会社 窒化アルミニウム質基板の製造方法
JP2875726B2 (ja) 1993-10-28 1999-03-31 新日本無線株式会社 化合物半導体の熱処理方法
US6083812A (en) * 1993-02-02 2000-07-04 Texas Instruments Incorporated Heteroepitaxy by large surface steps
JPH06335608A (ja) 1993-05-28 1994-12-06 Kawasaki Steel Corp 固液混合物からの固形分の分離方法およびその装置
US5520785A (en) 1994-01-04 1996-05-28 Motorola, Inc. Method for enhancing aluminum nitride
US5571603A (en) 1994-02-25 1996-11-05 Sumitomo Electric Industries, Ltd. Aluminum nitride film substrate and process for producing same
US5525320A (en) * 1994-07-11 1996-06-11 University Of Cincinnati Process for aluminum nitride powder production
JPH0859386A (ja) 1994-08-22 1996-03-05 Mitsubishi Materials Corp 半導体単結晶育成装置
US5670798A (en) 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
US5679965A (en) 1995-03-29 1997-10-21 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
EP0757023B1 (en) * 1995-08-03 2000-10-18 Ngk Insulators, Ltd. Aluminum nitride sintered bodies and their production method
JP3604205B2 (ja) 1995-09-18 2004-12-22 日亜化学工業株式会社 窒化物半導体の成長方法
US5981980A (en) 1996-04-22 1999-11-09 Sony Corporation Semiconductor laminating structure
JP3876473B2 (ja) 1996-06-04 2007-01-31 住友電気工業株式会社 窒化物単結晶及びその製造方法
JP3644191B2 (ja) 1996-06-25 2005-04-27 住友電気工業株式会社 半導体素子
US5954874A (en) 1996-10-17 1999-09-21 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride from a melt
US6533874B1 (en) 1996-12-03 2003-03-18 Advanced Technology Materials, Inc. GaN-based devices using thick (Ga, Al, In)N base layers
US5868837A (en) 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
JP3239787B2 (ja) 1997-01-30 2001-12-17 安藤電気株式会社 Icソケット
US6583444B2 (en) 1997-02-18 2003-06-24 Tessera, Inc. Semiconductor packages having light-sensitive chips
US6229160B1 (en) * 1997-06-03 2001-05-08 Lumileds Lighting, U.S., Llc Light extraction from a semiconductor light-emitting device via chip shaping
US6270569B1 (en) 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
JP3776565B2 (ja) 1997-06-12 2006-05-17 株式会社コトブキ 伸縮式階段状観覧席
US6006620A (en) 1997-12-01 1999-12-28 Chrysler Corporation Automated manual transmission controller
EP0979883A4 (en) 1997-12-25 2003-10-15 Japan Energy Corp METHOD AND DEVICE FOR PRODUCING SINGLE CRYSTALS OF COMPOSITE SEMICONDUCTORS AND SINGLE CRYSTALS OF COMPOSITE SEMICONDUCTORS
US6091085A (en) * 1998-02-19 2000-07-18 Agilent Technologies, Inc. GaN LEDs with improved output coupling efficiency
JP4214585B2 (ja) 1998-04-24 2009-01-28 富士ゼロックス株式会社 半導体デバイス、半導体デバイスの製造方法及び製造装置
US6218207B1 (en) 1998-05-29 2001-04-17 Mitsushita Electronics Corporation Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same
JP3439994B2 (ja) * 1998-07-07 2003-08-25 科学技術振興事業団 低抵抗n型および低抵抗p型単結晶AlN薄膜の合成法
US6045612A (en) 1998-07-07 2000-04-04 Cree, Inc. Growth of bulk single crystals of aluminum nitride
KR100277968B1 (ko) 1998-09-23 2001-03-02 구자홍 질화갈륨 기판 제조방법
US6048813A (en) 1998-10-09 2000-04-11 Cree, Inc. Simulated diamond gemstones formed of aluminum nitride and aluminum nitride: silicon carbide alloys
US6086672A (en) 1998-10-09 2000-07-11 Cree, Inc. Growth of bulk single crystals of aluminum nitride: silicon carbide alloys
US6063185A (en) 1998-10-09 2000-05-16 Cree, Inc. Production of bulk single crystals of aluminum nitride, silicon carbide and aluminum nitride: silicon carbide alloy
US6404125B1 (en) 1998-10-21 2002-06-11 Sarnoff Corporation Method and apparatus for performing wavelength-conversion using phosphors with light emitting diodes
US6218293B1 (en) * 1998-11-13 2001-04-17 Micron Technology, Inc. Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride
JP3015887B1 (ja) 1998-11-19 2000-03-06 科学技術庁金属材料技術研究所長 バルク単結晶育成方法
US6187089B1 (en) 1999-02-05 2001-02-13 Memc Electronic Materials, Inc. Tungsten doped crucible and method for preparing same
US6592663B1 (en) 1999-06-09 2003-07-15 Ricoh Company Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
US6829273B2 (en) 1999-07-16 2004-12-07 Agilent Technologies, Inc. Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
RU2158789C1 (ru) 1999-08-04 2000-11-10 Водаков Юрий Александрович Способ эпитаксиального выращивания монокристаллического нитрида алюминия и ростовая камера для осуществления способа
JP4145437B2 (ja) 1999-09-28 2008-09-03 住友電気工業株式会社 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板
US6398867B1 (en) 1999-10-06 2002-06-04 General Electric Company Crystalline gallium nitride and method for forming crystalline gallium nitride
US6350393B2 (en) 1999-11-04 2002-02-26 Cabot Microelectronics Corporation Use of CsOH in a dielectric CMP slurry
JP2001192647A (ja) 2000-01-14 2001-07-17 Seimi Chem Co Ltd 酸化セリウム含有研磨用組成物及び研磨方法
US6879615B2 (en) 2000-01-19 2005-04-12 Joseph Reid Henrichs FCSEL that frequency doubles its output emissions using sum-frequency generation
US6698647B1 (en) * 2000-03-10 2004-03-02 Honeywell International Inc. Aluminum-comprising target/backing plate structures
US6447604B1 (en) 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
US6596079B1 (en) 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
US6627974B2 (en) * 2000-06-19 2003-09-30 Nichia Corporation Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
US7064355B2 (en) 2000-09-12 2006-06-20 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
JP2002141556A (ja) 2000-09-12 2002-05-17 Lumileds Lighting Us Llc 改良された光抽出効果を有する発光ダイオード
US6777717B1 (en) 2000-09-21 2004-08-17 Gelcore, Llc LED reflector for improved light extraction
US7053413B2 (en) 2000-10-23 2006-05-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
JP2002222771A (ja) 2000-11-21 2002-08-09 Ngk Insulators Ltd Iii族窒化物膜の製造方法、iii族窒化物膜の製造用下地膜、及びその下地膜の製造方法
JP2005167275A (ja) 2000-12-07 2005-06-23 Ngk Insulators Ltd 半導体素子
JP2002274996A (ja) 2001-01-15 2002-09-25 Ngk Insulators Ltd エピタキシャル下地基板及びエピタキシャル基板
US6800876B2 (en) 2001-01-16 2004-10-05 Cree, Inc. Group III nitride LED with undoped cladding layer (5000.137)
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
JP2002237457A (ja) * 2001-02-07 2002-08-23 Japan Science & Technology Corp 低抵抗性AlN薄膜の製造方法
US7233028B2 (en) 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6940075B2 (en) 2001-03-15 2005-09-06 Christopher R. Schulz Ultraviolet-light-based disinfection reactor
JP3876649B2 (ja) 2001-06-05 2007-02-07 ソニー株式会社 窒化物半導体レーザ及びその製造方法
US6488767B1 (en) 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
US6936357B2 (en) 2001-07-06 2005-08-30 Technologies And Devices International, Inc. Bulk GaN and ALGaN single crystals
US7501023B2 (en) 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US7067849B2 (en) * 2001-07-17 2006-06-27 Lg Electronics Inc. Diode having high brightness and method thereof
TW567619B (en) 2001-08-09 2003-12-21 Matsushita Electric Ind Co Ltd LED lighting apparatus and card-type LED light source
JP3785970B2 (ja) 2001-09-03 2006-06-14 日本電気株式会社 Iii族窒化物半導体素子の製造方法
US6906339B2 (en) 2001-09-05 2005-06-14 Rensselaer Polytechnic Institute Passivated nanoparticles, method of fabrication thereof, and devices incorporating nanoparticles
US7105865B2 (en) 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
TW573086B (en) 2001-09-21 2004-01-21 Crystal Is Inc Powder metallurgy tungsten crucible for aluminum nitride crystal growth
US7211146B2 (en) 2001-09-21 2007-05-01 Crystal Is, Inc. Powder metallurgy crucible for aluminum nitride crystal growth
WO2003036771A1 (fr) 2001-10-26 2003-05-01 Ammono Sp.Zo.O. Laser a semi-conducteurs a base de nitrure et procede de production de ce laser
WO2003043780A2 (en) 2001-11-20 2003-05-30 Rensselaer Polytechnic Institute Method for polishing a substrate surface
US6515308B1 (en) 2001-12-21 2003-02-04 Xerox Corporation Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
US6770135B2 (en) 2001-12-24 2004-08-03 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US7638346B2 (en) * 2001-12-24 2009-12-29 Crystal Is, Inc. Nitride semiconductor heterostructures and related methods
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US20060005763A1 (en) * 2001-12-24 2006-01-12 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
JP4331906B2 (ja) 2001-12-26 2009-09-16 日本碍子株式会社 Iii族窒化物膜の製造方法
JP3782357B2 (ja) * 2002-01-18 2006-06-07 株式会社東芝 半導体発光素子の製造方法
JP4229624B2 (ja) * 2002-03-19 2009-02-25 三菱化学株式会社 窒化物単結晶の製造方法
US7063741B2 (en) 2002-03-27 2006-06-20 General Electric Company High pressure high temperature growth of crystalline group III metal nitrides
US6841001B2 (en) 2002-07-19 2005-01-11 Cree, Inc. Strain compensated semiconductor structures and methods of fabricating strain compensated semiconductor structures
WO2004013916A1 (ja) 2002-08-01 2004-02-12 Nichia Corporation 半導体発光素子及びその製造方法並びにそれを用いた発光装置
US7775685B2 (en) 2003-05-27 2010-08-17 Cree, Inc. Power surface mount light emitting die package
DE10248964B4 (de) 2002-10-14 2011-12-01 Crystal-N Gmbh Verfahren zur Sublimationszüchtung von Aluminiumnitrid-Einkristallen
DE10255849B4 (de) * 2002-11-29 2006-06-14 Advanced Micro Devices, Inc., Sunnyvale Verbesserte Drain/Source-Erweiterungsstruktur eines Feldeffekttransistors mit dotierten Seitenwandabstandselementen mit hoher Permittivität und Verfahren zu deren Herstellung
PL224991B1 (pl) 2002-12-11 2017-02-28 Ammono Spółka Z Ograniczoną Odpowiedzialnością Podłoże do stosowania dla urządzeń opto-elektrycznych lub elektrycznych oraz sposób jego wytwarzania
US7186302B2 (en) 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
JP4373086B2 (ja) * 2002-12-27 2009-11-25 株式会社半導体エネルギー研究所 発光装置
US20070082019A1 (en) 2003-02-21 2007-04-12 Ciphergen Biosystems Inc. Photocrosslinked hydrogel surface coatings
FR2852974A1 (fr) 2003-03-31 2004-10-01 Soitec Silicon On Insulator Procede de fabrication de cristaux monocristallins
US7274043B2 (en) 2003-04-15 2007-09-25 Luminus Devices, Inc. Light emitting diode systems
US7211831B2 (en) * 2003-04-15 2007-05-01 Luminus Devices, Inc. Light emitting device with patterned surfaces
US7521854B2 (en) * 2003-04-15 2009-04-21 Luminus Devices, Inc. Patterned light emitting devices and extraction efficiencies related to the same
US6831302B2 (en) 2003-04-15 2004-12-14 Luminus Devices, Inc. Light emitting devices with improved extraction efficiency
US7098589B2 (en) 2003-04-15 2006-08-29 Luminus Devices, Inc. Light emitting devices with high light collimation
US7306748B2 (en) 2003-04-25 2007-12-11 Saint-Gobain Ceramics & Plastics, Inc. Methods for machining ceramics
US7192849B2 (en) 2003-05-07 2007-03-20 Sensor Electronic Technology, Inc. Methods of growing nitride-based film using varying pulses
US6921929B2 (en) 2003-06-27 2005-07-26 Lockheed Martin Corporation Light-emitting diode (LED) with amorphous fluoropolymer encapsulant and lens
JP4112449B2 (ja) * 2003-07-28 2008-07-02 株式会社東芝 放電電極及び放電灯
DE10335538A1 (de) 2003-07-31 2005-02-24 Sicrystal Ag Verfahren und Vorrichtung zur AIN-Einkristall-Herstellung mit gasdurchlässiger Tiegelwand
KR100690413B1 (ko) 2003-08-12 2007-03-12 니폰덴신뎅와 가부시키가이샤 질화물 반도체 성장용 기판
US7675075B2 (en) * 2003-08-28 2010-03-09 Panasonic Corporation Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device
US7288152B2 (en) 2003-08-29 2007-10-30 Matsushita Electric Industrial Co., Ltd. Method of manufacturing GaN crystals and GaN crystal substrate, GaN crystals and GaN crystal substrate obtained by the method, and semiconductor device including the same
US6995402B2 (en) * 2003-10-03 2006-02-07 Lumileds Lighting, U.S., Llc Integrated reflector cup for a light emitting device mount
JP4396816B2 (ja) * 2003-10-17 2010-01-13 日立電線株式会社 Iii族窒化物半導体基板およびその製造方法
US7276779B2 (en) 2003-11-04 2007-10-02 Hitachi Cable, Ltd. III-V group nitride system semiconductor substrate
US7323256B2 (en) * 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
US7087112B1 (en) 2003-12-02 2006-08-08 Crystal Is, Inc. Nitride ceramics to mount aluminum nitride seed for sublimation growth
US7518158B2 (en) * 2003-12-09 2009-04-14 Cree, Inc. Semiconductor light emitting devices and submounts
WO2005064666A1 (en) * 2003-12-09 2005-07-14 The Regents Of The University Of California Highly efficient gallium nitride based light emitting diodes via surface roughening
US7087465B2 (en) 2003-12-15 2006-08-08 Philips Lumileds Lighting Company, Llc Method of packaging a semiconductor light emitting device
US7341628B2 (en) * 2003-12-19 2008-03-11 Melas Andreas A Method to reduce crystal defects particularly in group III-nitride layers and substrates
JP2005210084A (ja) 2003-12-22 2005-08-04 Ngk Insulators Ltd エピタキシャル基板、半導体積層構造、転位低減方法およびエピタキシャル形成用基板
US7056383B2 (en) 2004-02-13 2006-06-06 The Fox Group, Inc. Tantalum based crucible
US7569863B2 (en) 2004-02-19 2009-08-04 Panasonic Corporation Semiconductor light emitting device
EP1733439B1 (en) 2004-03-18 2013-05-15 Panasonic Corporation Nitride based led with a p-type injection region
JP4154731B2 (ja) 2004-04-27 2008-09-24 信越半導体株式会社 発光素子の製造方法及び発光素子
CN1957117A (zh) 2004-05-19 2007-05-02 住友电气工业株式会社 Ⅲ族氮化物半导体晶体和其制造方法以及ⅲ族氮化物半导体器件
US7994527B2 (en) * 2005-11-04 2011-08-09 The Regents Of The University Of California High light extraction efficiency light emitting diode (LED)
US20050269577A1 (en) 2004-06-08 2005-12-08 Matsushita Electric Industrial Co., Ltd. Surface treatment method and surface treatment device
US7294199B2 (en) 2004-06-10 2007-11-13 Sumitomo Electric Industries, Ltd. Nitride single crystal and producing method thereof
US7339205B2 (en) 2004-06-28 2008-03-04 Nitronex Corporation Gallium nitride materials and methods associated with the same
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US7476910B2 (en) * 2004-09-10 2009-01-13 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
US7462502B2 (en) 2004-11-12 2008-12-09 Philips Lumileds Lighting Company, Llc Color control by alteration of wavelength converting element
US7326963B2 (en) 2004-12-06 2008-02-05 Sensor Electronic Technology, Inc. Nitride-based light emitting heterostructure
US7906788B2 (en) * 2004-12-22 2011-03-15 Panasonic Corporation Semiconductor light emitting device, illumination module, illumination apparatus, method for manufacturing semiconductor light emitting device, and method for manufacturing semiconductor light emitting element
US7186580B2 (en) * 2005-01-11 2007-03-06 Semileds Corporation Light emitting diodes (LEDs) with improved light extraction by roughening
JP2006193348A (ja) * 2005-01-11 2006-07-27 Sumitomo Electric Ind Ltd Iii族窒化物半導体基板およびその製造方法
US7335920B2 (en) * 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
US20060181695A1 (en) 2005-02-11 2006-08-17 Sage Burton H Jr Compensating liquid delivery system and method
US7125734B2 (en) 2005-03-09 2006-10-24 Gelcore, Llc Increased light extraction from a nitride LED
JP4563230B2 (ja) 2005-03-28 2010-10-13 昭和電工株式会社 AlGaN基板の製造方法
JP2006310721A (ja) 2005-03-28 2006-11-09 Yokohama National Univ 自発光デバイス
US7678195B2 (en) 2005-04-07 2010-03-16 North Carolina State University Seeded growth process for preparing aluminum nitride single crystals
US8101498B2 (en) 2005-04-21 2012-01-24 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
US7544963B2 (en) 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
JP5236148B2 (ja) 2005-05-12 2013-07-17 日本碍子株式会社 エピタキシャル基板、半導体素子、エピタキシャル基板の製造方法、半導体素子の製造方法、およびiii族窒化物結晶における転位偏在化方法
KR20060127743A (ko) * 2005-06-06 2006-12-13 스미토모덴키고교가부시키가이샤 질화물 반도체 기판과 그 제조 방법
KR100616686B1 (ko) 2005-06-10 2006-08-28 삼성전기주식회사 질화물계 반도체 장치의 제조 방법
US20060288929A1 (en) 2005-06-10 2006-12-28 Crystal Is, Inc. Polar surface preparation of nitride substrates
US8476648B2 (en) 2005-06-22 2013-07-02 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
TWI422044B (zh) * 2005-06-30 2014-01-01 Cree Inc 封裝發光裝置之晶片尺度方法及經晶片尺度封裝之發光裝置
US20070018182A1 (en) * 2005-07-20 2007-01-25 Goldeneye, Inc. Light emitting diodes with improved light extraction and reflectivity
JP4778745B2 (ja) 2005-07-27 2011-09-21 パナソニック株式会社 半導体発光装置及びその製造方法
JP2007073761A (ja) * 2005-09-07 2007-03-22 Sumitomo Electric Ind Ltd 窒化物半導体基板及び窒化物半導体基板の加工方法
WO2007034575A1 (ja) * 2005-09-20 2007-03-29 Matsushita Electric Works, Ltd. 発光装置
US8349077B2 (en) 2005-11-28 2013-01-08 Crystal Is, Inc. Large aluminum nitride crystals with reduced defects and methods of making them
WO2007065018A2 (en) 2005-12-02 2007-06-07 Crystal Is, Inc. Doped aluminum nitride crystals and methods of making them
WO2007073001A1 (en) 2005-12-22 2007-06-28 Showa Denko K.K. Light-emitting diode and method for fabricant thereof
US20070151905A1 (en) 2005-12-29 2007-07-05 Metertek Technology Inc. Water purifier
JP4963839B2 (ja) * 2006-02-06 2012-06-27 昭和電工株式会社 発光装置
MY149865A (en) * 2006-03-10 2013-10-31 Stc Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
CN101454487B (zh) 2006-03-30 2013-01-23 晶体公司 氮化铝块状晶体的可控掺杂方法
US9034103B2 (en) * 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
GB0606604D0 (en) 2006-04-01 2006-05-10 P W Circuts Ltd Treatment apparatus
US7524376B2 (en) 2006-05-04 2009-04-28 Fairfield Crystal Technology, Llc Method and apparatus for aluminum nitride monocrystal boule growth
US20080012034A1 (en) * 2006-07-17 2008-01-17 3M Innovative Properties Company Led package with converging extractor
US7943952B2 (en) * 2006-07-31 2011-05-17 Cree, Inc. Method of uniform phosphor chip coating and LED package fabricated using method
US7755103B2 (en) 2006-08-03 2010-07-13 Sumitomo Electric Industries, Ltd. Nitride gallium semiconductor substrate and nitride semiconductor epitaxial substrate
US7872272B2 (en) 2006-09-06 2011-01-18 Palo Alto Research Center Incorporated Nitride semiconductor ultraviolet LEDs with tunnel junctions and reflective contact
US7714340B2 (en) * 2006-09-06 2010-05-11 Palo Alto Research Center Incorporated Nitride light-emitting device
US7842960B2 (en) * 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
BRPI0718086A2 (pt) 2006-10-31 2013-11-05 Tir Technology Lp Acondicionamento de dispositivo de iluminação
US20090121250A1 (en) * 2006-11-15 2009-05-14 Denbaars Steven P High light extraction efficiency light emitting diode (led) using glass packaging
US9318327B2 (en) * 2006-11-28 2016-04-19 Cree, Inc. Semiconductor devices having low threading dislocations and improved light extraction and methods of making the same
US8110838B2 (en) * 2006-12-08 2012-02-07 Luminus Devices, Inc. Spatial localization of light-generating portions in LEDs
US7687823B2 (en) * 2006-12-26 2010-03-30 Nichia Corporation Light-emitting apparatus and method of producing the same
WO2008081758A1 (ja) 2006-12-28 2008-07-10 Tokuyama Corporation 窒化アルミニウムメタライズド基板の製造方法
US8323406B2 (en) 2007-01-17 2012-12-04 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
WO2008094464A2 (en) 2007-01-26 2008-08-07 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
US8080833B2 (en) 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
US9061450B2 (en) 2007-02-12 2015-06-23 Cree, Inc. Methods of forming packaged semiconductor light emitting devices having front contacts by compression molding
JP5121268B2 (ja) 2007-03-27 2013-01-16 日本碍子株式会社 窒化アルミニウム焼結体及び半導体製造装置用部材
TWI331816B (en) 2007-04-03 2010-10-11 Advanced Optoelectronic Tech Semiconductor light-emitting device
US20080258165A1 (en) 2007-04-23 2008-10-23 Goldeneye, Inc. Light emitting diode chip
US8088220B2 (en) * 2007-05-24 2012-01-03 Crystal Is, Inc. Deep-eutectic melt growth of nitride crystals
US20090039373A1 (en) * 2007-07-24 2009-02-12 Toyoda Gosei Co., Ltd. Group III nitride-based compound semiconductor light emitting device
US8866185B2 (en) * 2007-09-06 2014-10-21 SemiLEDs Optoelectronics Co., Ltd. White light LED with multiple encapsulation layers
US20090065792A1 (en) * 2007-09-07 2009-03-12 3M Innovative Properties Company Method of making an led device having a dome lens
US20090141502A1 (en) * 2007-11-30 2009-06-04 The Regents Of The University Of California Light output enhanced gallium nitride based thin light emitting diode
US20090140279A1 (en) * 2007-12-03 2009-06-04 Goldeneye, Inc. Substrate-free light emitting diode chip
US7713769B2 (en) * 2007-12-21 2010-05-11 Tekcore Co., Ltd. Method for fabricating light emitting diode structure having irregular serrations
US8049237B2 (en) 2007-12-28 2011-11-01 Nichia Corporation Light emitting device
US20090173958A1 (en) 2008-01-04 2009-07-09 Cree, Inc. Light emitting devices with high efficiency phospor structures
US7781780B2 (en) 2008-03-31 2010-08-24 Bridgelux, Inc. Light emitting diodes with smooth surface for reflective electrode
US7859000B2 (en) 2008-04-10 2010-12-28 Cree, Inc. LEDs using single crystalline phosphor and methods of fabricating same
KR101092079B1 (ko) 2008-04-24 2011-12-12 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP5271601B2 (ja) 2008-05-16 2013-08-21 株式会社ブリヂストン 単結晶の製造装置及び製造方法
KR20100003321A (ko) 2008-06-24 2010-01-08 삼성전자주식회사 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및발광 장치의 제조 방법
US20090321758A1 (en) 2008-06-25 2009-12-31 Wen-Huang Liu Led with improved external light extraction efficiency
JP5305758B2 (ja) 2008-06-30 2013-10-02 株式会社東芝 半導体発光装置
US8384115B2 (en) * 2008-08-01 2013-02-26 Cree, Inc. Bond pad design for enhancing light extraction from LED chips
CN201274297Y (zh) 2008-09-23 2009-07-15 王海军 可提高亮度的大功率led封装结构
US20100314551A1 (en) 2009-06-11 2010-12-16 Bettles Timothy J In-line Fluid Treatment by UV Radiation
DE102009034359A1 (de) 2009-07-17 2011-02-17 Forschungsverbund Berlin E.V. P-Kontakt und Leuchtdiode für den ultravioletten Spektralbereich
JP5317898B2 (ja) 2009-09-10 2013-10-16 株式会社アルバック 発光ダイオード素子の製造方法
CN103003961B (zh) 2010-04-30 2015-11-25 波士顿大学理事会 具有能带结构电位波动的高效紫外发光二极管
JP5806734B2 (ja) 2010-06-30 2015-11-10 クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. 熱勾配制御による窒化アルミニウム大単結晶成長
WO2012012384A1 (en) * 2010-07-20 2012-01-26 Hexatech, Inc. Polycrystalline aluminum nitride material and method of production thereof
US8748919B2 (en) 2011-04-28 2014-06-10 Palo Alto Research Center Incorporated Ultraviolet light emitting device incorporating optically absorbing layers
US8860059B2 (en) 2011-06-20 2014-10-14 Xiamen Sanan Optoelectronics Technology Co., Ltd. Light emitting devices, systems, and methods of manufacturing
US8962359B2 (en) 2011-07-19 2015-02-24 Crystal Is, Inc. Photon extraction from nitride ultraviolet light-emitting devices
US9252329B2 (en) 2011-10-04 2016-02-02 Palo Alto Research Center Incorporated Ultraviolet light emitting devices having compressively strained light emitting layer for enhanced light extraction
CN108511567A (zh) 2013-03-15 2018-09-07 晶体公司 与赝配电子和光电器件的平面接触

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296956B1 (en) * 1996-10-17 2001-10-02 Cree, Inc. Bulk single crystals of aluminum nitride
CN1425189A (zh) * 2000-04-21 2003-06-18 丰田合成株式会社 生产ⅲ族氮化物半导体装置的方法
CN1554121A (zh) * 2001-07-12 2004-12-08 克里公司 在基于氮化镓的盖帽区段上有栅接触区的氮化铝镓/氮化镓高电子迁移率晶体管及其制造方法
CN2492947Y (zh) * 2001-07-18 2002-05-22 赵汝杰 非晶系氮化铝铟镓发光二极管装置
CN1569742A (zh) * 2004-04-23 2005-01-26 中国科学院上海硅酸盐研究所 以氮化硅镁作为生长助剂燃烧合成制备β-氮化硅棒晶

Also Published As

Publication number Publication date
CN101331249A (zh) 2008-12-24
JP5312664B2 (ja) 2013-10-09
US10692980B2 (en) 2020-06-23
US20070131160A1 (en) 2007-06-14
JP5281408B2 (ja) 2013-09-04
WO2007065018A3 (en) 2007-08-02
US20170084702A1 (en) 2017-03-23
US10068973B2 (en) 2018-09-04
US20190035898A1 (en) 2019-01-31
JP2013032287A (ja) 2013-02-14
JP2013155112A (ja) 2013-08-15
US20100187541A1 (en) 2010-07-29
WO2007065018A2 (en) 2007-06-07
US11183567B2 (en) 2021-11-23
US20200350411A1 (en) 2020-11-05
JP2009518263A (ja) 2009-05-07
EP1954857A2 (en) 2008-08-13
US8747552B2 (en) 2014-06-10
JP5436710B2 (ja) 2014-03-05
US9525032B2 (en) 2016-12-20
EP1954857B1 (en) 2018-09-26
US20140231725A1 (en) 2014-08-21
US7641735B2 (en) 2010-01-05

Similar Documents

Publication Publication Date Title
CN101331249B (zh) 掺杂的氮化铝晶体及其制造方法
US10316428B2 (en) Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
US8012257B2 (en) Methods for controllable doping of aluminum nitride bulk crystals
US6329215B1 (en) Method of fabrication of semiconducting compounds of nitrides A3B5 of P-and N-type electric conductivity
WO2018078962A1 (ja) 半絶縁性結晶、n型半導体結晶およびp型半導体結晶
JP2007254174A (ja) 酸化ガリウム単結晶及びその製造方法、並びに窒化物半導体用基板及びその製造方法
JP3741283B2 (ja) 熱処理装置及びそれを用いた熱処理方法
JP2007290924A5 (zh)
JP2006052123A (ja) n型AlN結晶、n型AlGaN固溶体及びそれらの製造方法
Zajac et al. p-type conductivity in GaN: Zn monocrystals grown by ammonothermal method
JP4418879B2 (ja) 熱処理装置及び熱処理方法
Rao Ultra-fast microwave heating for large bandgap semiconductor processing
JP4345437B2 (ja) n型半導体ダイヤモンドの製造方法及びn型半導体ダイヤモンド
Tanaka et al. Study on N and B doping by closed sublimation growth using separated Ta crucible
JP2006041544A5 (zh)
KR20070095603A (ko) 질화물계 반도체 기판의 아연 이온주입방법
Giapis et al. Effects of the Selenium Precursor on the Growth of ZnSe by Metalorganic Chemical Vapor Deposition
To et al. Doping of GaN by Mg diffusion
JP2020019699A (ja) GaN結晶
JP2020019663A (ja) GaN結晶

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant