CN100531874C - 多组分复合膜及其制备方法 - Google Patents

多组分复合膜及其制备方法 Download PDF

Info

Publication number
CN100531874C
CN100531874C CNB018017517A CN01801751A CN100531874C CN 100531874 C CN100531874 C CN 100531874C CN B018017517 A CNB018017517 A CN B018017517A CN 01801751 A CN01801751 A CN 01801751A CN 100531874 C CN100531874 C CN 100531874C
Authority
CN
China
Prior art keywords
active layer
membrane
precursor film
component
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB018017517A
Other languages
English (en)
Other versions
CN1383390A (zh
Inventor
李相英
安秉寅
朴谆龙
庆有真
宋宪植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN1383390A publication Critical patent/CN1383390A/zh
Application granted granted Critical
Publication of CN100531874C publication Critical patent/CN100531874C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • B29C55/026Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets of preformed plates or sheets coated with a solution, a dispersion or a melt of thermoplastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/24998Composite has more than two layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cell Separators (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Secondary Cells (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • External Artificial Organs (AREA)

Abstract

本发明涉及多组分复合分离膜和制备该膜的方法,本发明提供了包括活性层和载体层的复合膜,其中载体层位于膜的内侧,而活性层位于膜的外侧。

Description

多组分复合膜及其制备方法
相关申请的交叉参考
本申请以在2000年6月23日在韩国工业知识产权局提出的申请No.2000-34948为基础,它的内容在这里引入供参考。
本发明的背景
(a)本发明的领域
本发明涉及多组分复合膜和制备该膜的方法,尤其涉及包括载体层和具有与普通活性层一样致密的结构的活性层的多组分复合膜以及制备该膜的方法,所述活性层根据工艺条件可以在其上形成孔并且由于孔的尺寸可控而具有改进的渗透性,该复合膜具有活性层的特性并具有通过离子束辐射增强的载体层和活性层之间的界面粘合强度,
(b)相关领域的叙述
目前正在使用许多种膜,如微量过滤膜(microfiltration membrane),超滤膜,气体分离膜,渗透蒸发膜和反渗透膜。
本发明涉及微量过滤膜,尤其是用于再充电锂离子电池的包括聚烯烃如聚乙烯和聚丙烯的隔板。
作为聚烯烃的一种,当高结晶聚丙烯(HCPP)用于本发明的隔板时,预期隔板的渗透性将会增加。普通聚丙烯的结晶度低于50%,但HCPP的结晶度高于50%,并且它是高度全同立构的,所以密度、熔点、熔化热和结晶温度高,并且特性如刚性、耐热性、抗冲强度和耐划性和尺寸稳定性优异。
复合膜一般通过界面聚合、膜的改性和浸涂来制备。广泛使用浸涂,以便通过使用微孔膜如微量过滤膜或超滤膜作为载体层,用作为活性层的材料的溶液涂敷多孔膜,以及干燥经涂敷的膜,来制备复合膜。通过浸涂制备的复合膜具有包括规则尺寸孔的载体层,和具有孔数很少的致密结构的活性层。该复合膜在应用上受到限制,因为活性层的孔的尺寸很少类似于微量过滤膜和超滤膜的那些孔,并且由于在载体层和活性层之间的界面粘合强度弱,因此容易发生层离。
如在U.S.专利Nos.3,249,109,4,388,189和5,102,552中公开的那样,通过在多孔膜上涂敷聚合物可以制备复合膜。另外,亲水单体,如丙烯酸,和聚合物如聚环氧乙烷用电晕处理接枝,使得该膜具有改性表面,尤其使得它具有如在U.S.专利Nos.4,346,142,5,085,775和5,294,346中公开的亲水性。然而,虽然膜具有改性表面和亲水性,也不应用接枝聚合方法,因为该方法是复杂的并且膜的渗透性不令人满意。
如在U.S.专利No.5,716,421和欧洲专利No.0933824A2中公开的那样,用于普通电池的具有规则尺寸的孔的隔板用聚合物电解质溶液涂敷,然后将它用作再充电锂离子电池的隔板。然而,当隔板通过上述方法制备时,膜具有致密结构,即,在膜的表面没有形成孔,以及渗透性(例如透气性)降低,在载体层和活性层之间的界面粘合强度变得不充分。
本发明的概述
本发明的目的是提供多组分复合膜,它包括载体层和具有与普通活性层一样致密的结构的活性层以及制备该膜的方法,所述活性层根据工艺条件可以在其上形成孔并且由于孔的尺寸可控而具有改进的渗透性,该复合膜具有活性层的特性和具有通过离子束辐射增强的载体层和活性层之间的界面粘合强度。
为了实现该目的,本发明提供了如下方面。
1、包括具有孔的活性层和具有孔的载体层的多组分复合膜,其中
所述载体层位于所述活性层之间;
所述载体层的孔径为0.001-10μm;
所述活性层的孔径等于或小于10μm;
所述载体层和所述活性层的孔径及分布彼此不同;
所述复合膜的浸湿速度等于或低于30秒;并且
所述复合膜的透气性等于或小于7,000sec/100cc。
2、根据方面1的多组分复合膜,其中载体层的组分是选自高密度聚乙烯,低密度聚乙烯,线性低密度聚乙烯,聚丙烯,高结晶聚丙烯,聚乙烯-丙烯共聚物,聚乙烯-丁烯共聚物,聚乙烯-己烯共聚物,聚乙烯-辛烯共聚物,聚苯乙烯-丁烯-苯乙烯共聚物,聚苯乙烯-乙烯-丁烯-苯乙烯共聚物,聚苯乙烯,聚苯醚,聚砜,聚碳酸酯,聚酯,聚酰胺,聚氨酯,聚丙烯酸酯,聚偏二氯乙烯,聚偏二氟乙烯,聚硅氧烷,聚甲基戊烯,和氢化低聚环戊二烯,以及它们的衍生物的至少一种聚合物。
3、根据方面2的多组分复合膜,其中高结晶聚丙烯具有如下的物理性能:0.905-0.91g/cc的密度,164-166.5℃的熔点,125-134.5℃的结晶温度,50-57%的结晶度,96-98%的全同立构规整度,和2-5%的无规立构部分。
4、根据方面1的多组分复合膜,其中载体层的孔尺寸是0.001-10μm。
5、根据方面1的多组分复合膜,其中载体层的厚度是1—50μm。
6、根据方面1的多组分复合膜,其中活性层的组分是选自聚乙烯,聚丙烯,聚偏二氟乙烯,聚偏二氟乙烯-六氟丙烯共聚物,聚环氧乙烷,聚环氧丙烷,聚环氧丁烷,聚氨酯,聚丙烯腈,聚丙烯酸酯,聚丙烯酸,聚酰胺,聚丙烯酰胺,聚乙酸乙烯酯,聚乙烯基吡咯烷酮,聚二丙烯酸四甘醇酯,聚砜,聚苯醚,聚碳酸酯,聚酯,聚偏二氯乙烯,聚硅氧烷的一种或多种聚合物。
7、根据方面6的多组分复合膜,其中用于活性层组分的溶剂是选自1-甲基-2-吡咯烷酮,丙酮,乙醇,正丙醇,正丁醇,正己烷,环己醇,乙酸,乙酸乙酯,二乙醚,二甲基甲酰胺,二甲基乙酰胺,二噁烷,四氢呋喃,二甲亚砜,环己烷,苯,甲苯,二甲苯,和水,以及它们的混合物的一种或多种溶剂。
8、根据方面1的多组分复合膜,其中活性层的孔尺寸等于或低于10μm。
9、根据方面1的多组分复合膜,其中活性层的厚度是0.01—20μm。
10、根据方面1的多组分复合膜,其中复合膜的浸湿速度等于或低于30秒。
11、根据方面1的多组分复合膜,其中复合膜包括两层或更多层活性层和一层或更多层载体层,并且复合膜具有三层或更多层的结构。
12、根据方面2的多组分复合膜,其中载体层的组分中的两种或更多种为共混或层压形式。
13、根据方面1的多组分复合膜,其中复合膜用于水处理、血液透析、酶纯化、给药用的贴片、气体分离、渗透蒸发、反向渗透或电解分离。
14、一种电池用隔板,它包括方面1的多组分复合膜。
15、包括方面1的多组分复合膜作为隔板的可充电锂离子电池或可充电锂离子聚合物电池。
16、多组分复合膜的制备方法,包括以下步骤:
a)通过将用于载体层的聚合物注入到挤出机中制备前体膜;
b)在低于聚合物熔点的温度下使前体膜进行退火处理;
c)用供活性层用的聚合物溶液涂敷前体膜的两个表面;
d)干燥涂敷过的前体膜;
e)在低于室温的温度下低温拉伸干燥过的前体膜;
d)在低于聚合物熔点的温度下高温拉伸该低温拉伸过的前体膜;和
g)在低于聚合物熔点的温度下用张力热定形该高温拉伸过的前体膜。
17、根据方面16的制备方法,其中步骤c)的聚合物溶液通过浸涂涂敷在前体膜的两面。
18、根据方面16的制备方法,其中步骤c)的聚合物溶液的浓度等于或高于0.01wt%。
19、根据方面16的制备方法,其中步骤d)的干燥在1—100%的相对湿度下进行。
20、根据方面16的制备方法,其中步骤d)的干燥在低于溶剂的饱和蒸汽压的饱和蒸汽压力下进行。
21、根据方面16的制备方法,其中步骤d)的干燥在选自氮气、氧气、二氧化碳和空气的气体氛围下进行。
22、根据方面16的制备方法,其中厚度为0.1—20μm的活性层通过步骤c)和d)的涂敷和干燥来形成。
23、根据方面16的制备方法,其在步骤b)和步骤c)之间还包括在反应性气体的气氛下将离子束辐射在经退火的前体膜的一个或两个表面上的步骤,其中所述离子束辐射在10-1—10-6托的真空下进行。
24、根据方面23的制备方法,其中所述离子束的辐射通过激活电子和选自氢,氦,氧,氮,二氧化碳,空气,氟,氖,氩,氪和N2O,以及它们的混合物的气体进行,使得被激活的离子具有0.01—106keV的能量;使离子束辐射在前体膜的表面上。
25、根据方面24的制备方法,其中离子束辐射量在105—1020个离子/cm2的范围内。
26、根据方面24的制备方法,其中所述离子束辐射是在选自氦、氢、氮、氨、一氧化碳、二氧化碳、含氯氟甲烷,甲烷,和N2O气氛的反应性气体,以及它们的混合物的气体氛围下进行的。
27、根据方面26的制备方法,其中反应性气体的流速是0.5—20ml/min。
附图简述
结合考虑附图,参照以下详细描述可以更好地理解本发明,从而更彻底地了解本发明以及它所附带的许多优点。其中:
图1是扫描电子显微镜(SEM)照片,显示了根据本发明实施例1的复合膜的表面;和
图2是SEM照片,显示了根据对比实施例1的普通复合膜的表面。
本发明的详细描述
在以下详细描述中,简单地通过说明发明人实施本发明所设想的最佳方式,仅仅披露和描述了本发明的优选实施方案。如所认识到的那样,本发明在各种明显的方面能够进行修改,这些都不会偏离本发明。因此,附图和叙述性质上应被认为是示例性的,而不是限制性的。
以下详细描述本发明。
本发明提供了复合膜和该膜的制备方法,该方法包括用活性材料涂敷没有孔的普通膜,而不象普通方法中那样用活性材料涂敷微孔膜。
本发明的复合膜通过联合使用其中孔通过拉伸形成的普通干燥方法和使用溶液的相转化来制备。另外,当在制备步骤中加入离子束辐射步骤以制备本发明的膜时,在载体层和活性层之间的界面结合得到改进。
使用普通干燥方法的制备方法是这样一种方法,其中孔是通过在使聚合物结晶区域以某个方向取向之后用冷拉伸使相对弱的无定形区域破裂来形成的,并且结晶区域的取向均匀度对于膜的特性来说是关键的。
使用相转化的方法是这样一种方法,其中孔是通过在控制的温度下聚合物和溶剂从溶液中相分离,或者在制备聚合物溶液之后使用非溶剂来形成的。
为了改性表面,使用离子束辐射方法,其中气体如氩气、氢气、氧气、氮气和二氧化碳被离子化并辐射到在与离子进行反应的反应气体氛围下的表面上和当离子化气体碰撞膜表面时的表面上。
在本发明中,为了制备用作载体层的材料,在干燥法的一个步骤中制备前体膜,所述前体膜使用被用于活性层的聚合物溶液涂敷,在适合的条件下从聚合物溶液中相分离出来,再拉伸,从而制备了膜并在膜上形成了孔。在膜制备过程中,为了增加载体层和活性层之间的界面粘合强度,在涂敷方法之前进行离子束辐射过程,以使膜表面被改性。本发明的复合膜包括具有孔的材料,分别用于载体层和活性层。载体层和活性层的孔尺寸和分布彼此不相同,其中载体层的孔是在前体膜的制备过程中使聚合物结晶区域以某个方向取向之后用拉伸方法形成的。另一方面,活性层的孔是在经相转化形成致密结构聚合物膜之后用拉伸方法形成的。在膜被拉伸之前,根据相转化条件能够形成聚合物膜的微裂缝和微孔,所以,根据所述相转化条件,孔形成的程度是可控的。
本发明的载体层具有与从普通干燥方法制备的膜相同的特性,并且活性层根据工艺条件具有各种尺寸的孔。另外,在载体层和活性层的聚合物链中的互扩散通过高温拉伸和热定形得到改进,并且在载体层和活性层之间的表面粘结得到增强。当离子束辐射到各层时,表面粘结可以进一步增强。
用于本发明的载体层的材料不限于某些材料,它一般包括选自高密度聚乙烯,低密度聚乙烯,线性低密度聚乙烯,聚丙烯,高结晶聚丙烯,聚乙烯-丙烯共聚物,聚乙烯-丁烯共聚物,聚乙烯-己烯共聚物,聚乙烯-辛烯共聚物,聚苯乙烯-乙烯-丁烯-苯乙烯共聚物,聚苯乙烯,聚苯醚,聚砜,聚碳酸酯,聚酯,聚酰胺,聚氨酯,聚丙烯酸酯,聚偏二氯乙烯,聚偏二氟乙烯,聚硅氧烷,聚烯烃,离聚物,聚甲基戊烯,和氢化低聚环戊二烯(HOCP),以及它们的混合物中的一种或多种材料,优选仅仅使用选自上述的单一材料,共混材料,或层压材料。
用于活性层的聚合物溶液的聚合物根据复合膜的终用途选择,它优选包括选自以下的至少一种材料:聚乙烯,聚丙烯,聚偏二氟乙烯,聚偏二氟乙烯-六氟丙烯共聚物,聚环氧乙烷,聚环氧丙烷,聚环氧丁烷,聚氨酯,聚丙烯腈,聚丙烯酸酯,聚丙烯酸,聚酰胺,聚丙烯酰胺,聚乙酸乙烯酯,聚乙烯基吡咯烷酮,聚二丙烯酸四甘醇酯(polytetraethyleneglycol diacrylate),聚砜,聚苯醚,聚碳酸酯,聚酯,聚偏二氯乙烯,聚硅氧烷和聚烯烃离聚物,以及它们的衍生物。
聚合物溶液的溶剂根据所使用的聚合物来选择,它优选包括选自以下的至少一种溶剂:1-甲基-2-吡咯烷酮(NMP),丙酮,乙醇,正丙醇,正丁醇,正己烷,环己醇,乙酸,乙酸乙酯,乙醚,二甲基甲酰胺(DMF),二甲基乙酰胺(DMAc),二噁烷,四氢呋喃(THF),二甲亚砜(DMSO),环己烷,苯,甲苯,二甲苯,和水,以及它们的混合物。
聚合物溶液优选在以下条件下使用。在聚合物溶液的涂敷方法中,将没有孔的普通膜在聚合物溶液中浸涂,其中聚合物溶液的浓度优选为0.01wt%或更高。另外,优选的是,被涂敷聚合物的干燥是在1—100%的相对湿度,选自氮气、氧气、二氧化碳和空气的气体氛围以及在低于溶剂的饱和蒸汽压力下的饱和蒸汽压力下进行的。在涂敷和干燥之后的活性层的厚度优选在0.1—20μm的范围内。
离子束辐射是在10-1—106托的真空下用激活的电子,氢,氦,氧,氮,二氧化碳,空气,氟,氖,氩,氪和N2O,以及它们的混合物进行,上述离子颗粒具有0.01—106keV的能量。优选的是,离子颗粒的量是在105—1020个离子/cm2的范围内。反应性气体优选包括氦、氢、氧、氮、氨、一氧化碳、二氧化碳、含氯氟烃,甲烷,和N2O,以及它们的混合物,反应性气体的流速优选为0.5—20ml/min。
根据本发明的复合膜的制备方法包括以下步骤:
a)载体层的前体膜的制备:前体膜通过用装有T形模或管形模头的挤出机挤出用于载体层的聚合物来制备。
b)退火:前体膜在低于聚合物熔点的温度下在干燥烘箱中退火,使得前体膜具有增加的结晶度和弹性回复率。
c)借助反应性气体辐射离子束:把前体膜放置在真空室中以及将离子化气体注入离子枪使得该气体具有能量之后,将具有能量的离子颗粒辐射在前体膜的一面或两面(取决于不同的电流)。控制电源,以使离子的能量是在0.01—106keV的范围。在辐射离子束的同时,将流速为0.5—20ml/min的反应性气体注入到真空室中,以便改性前体膜的表面。根据多组分复合膜的所需物理性能,前体膜表面的改性可以在退火之前或之后进行。
d)使用被用于活性层的聚合物溶液涂敷前体膜:通过将用于活性层的聚合物溶解在所需溶剂中,来制备聚合物溶液,之后,前体膜用聚合物溶液涂敷。前体膜可以在退火前或退火后使用。另外,在涂敷前,可以进行借助反应性气体的离子束的辐射,这取决于多组分复合膜的物理性能。浓度和涂敷条件可以根据所用材料和复合膜的最终用途来变化。
e)通过相转换形成聚合物膜:在涂敷后,在适合的条件下蒸发溶剂。活性层的聚合物膜的结构取决于干燥条件。
f)低温拉伸:在低于室温的温度下,使用辊或其它不同拉伸机,单轴拉伸退火后的膜来形成微裂纹。
g)高温拉伸:在低于载体和活性层的聚合物熔点的温度下,使用辊或其它机器,通过离子束辐射和单轴或双轴拉伸该低温拉伸过的膜,来形成具有所需尺寸的微孔和提供膜以机械性能。
h)热定形:在高温拉伸之后,膜在低于载体和活性层的聚合物的熔点的温度和张力下进行热定形一定时间。
多组分复合膜的制备步骤描述了制备具有最佳物理性能的膜的总体方法,其中膜不仅能够根据物理性能通过省略一些步骤或者添加工艺来制备,而且还可通过改变各步骤的次序来制备。
以下实施例和对比实施例更详细地说明本发明,但本发明不受这些实施例的限制。
通过以下实施例和对比实施例制备的微孔膜根据以下特性来进行评价:
a)厚度;
b)透气性:JIS P8117;
c)孔尺寸:扫描电子显微镜(SEM),透射电子显微镜(TEM);
d)界面粘合强度:JIS Z0237;和
e)电解质的浸湿速度(所使用的电解质:碳酸乙二醇酯(EC):碳酸二甲酯(DC)=4:6)
实施例1:由高结晶聚丙烯和Kynar 461制备复合膜
高结晶聚丙烯用于载体层和聚偏二氟乙烯(PVDF)用于活性层,以便制备前体膜,该前体膜再通过干燥法拉伸以便制备复合膜。
(前体膜的制备)
高结晶聚丙烯用于载体层的组分。它具有0.50g/min的熔融指数,0.91g/cc的密度,166.5℃的熔点(根据动态扫描量热法(DSC)测定),134.5℃的结晶温度,57%的结晶度,98%的全同立构规整度(用C13核磁共振(NMR)测定)和大约2%的无规立构部分(溶解在二甲苯中之后测定),前体膜用装有T形模和导出设备的单螺杆挤出机从高结晶聚丙烯制备。挤出温度和冷却辊温度分别是220℃和80℃,引出速度是20m/min,牵伸比是60。
(退火)
所制备的前体膜在150℃的干燥烘箱中退火1小时。
(涂敷)
在退火后,通过将具有低结晶度的Kynar 461(Elf Atochem NorthAmerica Co.的产品)溶解在丙酮中制备的溶液浸涂在所制备的前体膜的两面。涂敷在空气下进行,同时保持60%的相对湿度,在60%相对湿度的相同条件下蒸发丙酮。涂敷的Kynar 461的厚度大约为3μm。
(低温拉伸)
在涂敷后,涂敷膜进行单轴低温拉伸至50%的拉伸比(基于膜在室温下的初始长度)。
(高温拉伸)
在低温拉伸之后,低温拉伸过的膜在140℃下进行单轴高温拉伸至100%的拉伸比(基于膜的初始长度)。
(热定形)
在高温拉伸之后,膜在140℃和张力下热定形10分钟,通过冷却热定形膜制备复合膜。
复合膜的性能表示在表1中。
表1显示,在根据实施例1的活性层及载体层上形成了微孔,以及根据实施例1的膜的透气性得到改进,与之相比的是,当如在普通制备方法中那样将Kynar 461涂敷在隔板上时,在用于活性层的Kynar 461上没有形成微孔(参见图1和图2)。另外,在载体层和活性层之间的界面粘合强度增加。由于形态的改变和粘合强度的增加,因此可以推算电解质的浸湿率增加。
实施例2:用离子束辐射从高结晶度聚丙烯和Kynar 461制备复合膜
用实施例1的相同方法制备复合膜,只是在用Kynar 461溶液涂敷之前将离子束辐射在前体膜上。在保持压力为10-5—10-6托的同时将以实施例1的相同方式制备的前体膜放入真空室中之后,用离子枪将氩阳离子辐射到前体膜的两面,同时将用作反应性气体的氧以4ml/mim的量注入到该室中,以便处理前体膜的表面。离子束的能量是0.5keV,离子的辐射量是1016个离子/cm2。在辐射离子束之后,用与实施例1相同的方式制备复合膜。
在表1中,显示在载体层和活性层上都形成了孔(如实施例1那样),尤其是,在载体层和活性层之间的界面粘合强度和电解质的浸湿速度得到明显改进。
实施例3:从高密度聚乙烯/Kynar 461制备膜
按照与实施例1相同的方式制备复合膜,只是使用高密度聚乙烯用于载体层,而不是高结晶聚丙烯。高密度聚乙烯具有0.3g/10min的熔融指数和0.964g/cc的密度。按照与实施例1相同的方式制备前体膜。导出设备的挤出温度和冷却辊温度分别是200℃和80℃,膜的引出速度是30m/min,以及所制备的前体膜的牵伸比是80。所制备的前体膜在125℃的干燥烘箱中退火1小时。经退火的前体膜的两面按实施例1的相同方式用Kynar 461进行涂敷。涂敷的前体膜在室温下单轴拉伸至50%的拉伸比(基于膜的初始长度),然后立即在120℃下单轴高温拉伸至50%的拉伸比(基于膜的初始长度)。高温拉伸膜在120℃和张力下热定形10分钟,然后通过冷却热定形膜来制备复合膜。表1表示了所制备的复合膜的性能。
在表1中,发现如实施例1那样在载体层和活性层上都形成了孔,并且界面粘合强度和电解质的浸湿速度得到改进。
对比实施例1:从Celgard 2400和Kynar 461制备的复合膜
通过普通方法在微孔膜上涂敷活性层。
仅由聚丙烯制备的Celgard 2400(Celanese Co.生产)用于作为载体层的多孔膜,Kynar 461如实施例1、2和3那样用作活性层,以及将Kynar 461溶液涂敷在具有孔的Celgard 2400上,从而制备了复合膜。
图1和2显示,对比实施例1的复合膜没有孔,不象根据本发明的实施例的复合膜那样,在活性层上形成了孔。
表1显示了所制备的复合膜的性能。显示了由Celgard 2400和Kynar461制备的复合膜的透气性差得不能测量到,并且界面粘合强度和电解质的浸湿速度也较低劣。
表1
Figure C01801751D00151
用普通方法制备的复合膜具有低得不能测量到的渗透性,但本发明的复合膜具有560—620sec/100cc的改进的透气性,因为活性层和载体层都具有在适合的制备条件下制备的可控尺寸的孔的致密结构。另外,位于复合膜外侧的活性层具有良好的性能。也就是说,本发明的载体层具有与通过普通干燥方法制备的膜的相同性能,而活性层具有根据工艺条件的各种尺寸的孔。
另外,虽然由普通方法制备的复合膜具有85gf的界面粘合强度,但本发明的复合膜具有在180—250gf范围内的改进界面粘合强度。改进的界面粘合强度来源于高温拉伸和热定形,即,界面粘合强度的增强是因为在载体和活性层的聚合物链之间的相互结合得到增强。界面粘合强度通过辐射离子束得到进一步改进。
此外,浸湿速度显著改善,可以推测,浸湿速度的改善归因于形态的改变和界面粘合强度的增加。
虽然参考优选实施方案详细地描述了本发明,但本领域的那些熟练人员将会理解,如在所附权利要求书中阐述的那样,在不偏离本发明精神和范围的情况下,能够做出各种修改和替换。

Claims (18)

1、包括具有孔的活性层和具有孔的载体层的多组分复合膜,其中
所述载体层位于所述活性层之间;
所述载体层的孔径为0.001-10μm;
所述活性层的孔径等于或小于10μm;
所述载体层的孔是在前体膜的制备过程中使聚合物结晶区域以某个方向取向之后用拉伸方法形成的,并且所述活性层的孔是在经相转化形成致密结构聚合物膜之后用拉伸方法形成的,所述载体层和所述活性层的孔径及分布彼此不同;
所述复合膜的浸湿速度等于或低于30秒;并且
所述复合膜的透气性等于或小于7,000sec/100cc。
2、根据权利要求1的多组分复合膜,其中载体层的组分是选自高密度聚乙烯,线性低密度聚乙烯,高结晶聚丙烯,聚乙烯-丙烯共聚物,聚乙烯-丁烯共聚物,聚乙烯-己烯共聚物,聚乙烯-辛烯共聚物,聚苯乙烯-丁烯-苯乙烯共聚物,聚苯乙烯-乙烯-丁烯-苯乙烯共聚物,聚苯乙烯,聚苯醚,聚砜,聚碳酸酯,聚酰胺,聚氨酯,聚丙烯酸酯,聚偏二氯乙烯,聚偏二氟乙烯,聚硅氧烷,聚甲基戊烯,和氢化低聚环戊二烯的至少一种聚合物。
3、根据权利要求2的多组分复合膜,其中高结晶聚丙烯具有如下的物理性能:0.905-0.91g/cc的密度,164-166.5℃的熔点,125-134.5℃的结晶温度,50-57%的结晶度,96-98%的全同立构规整度,和2-5%的无规立构部分。
4、根据权利要求1的多组分复合膜,其中载体层的厚度是1—50μm。
5、根据权利要求1的多组分复合膜,其中活性层的组分是选自聚乙烯,聚丙烯,聚偏二氟乙烯,聚偏二氟乙烯-六氟丙烯共聚物,聚环氧乙烷,聚环氧丙烷,聚环氧丁烷,聚氨酯,聚丙烯腈,聚丙烯酸酯,聚丙烯酸,聚丙烯酰胺,聚乙酸乙烯酯,聚乙烯基吡咯烷酮,聚二丙烯酸四甘醇酯,聚砜,聚苯醚,聚碳酸酯,聚偏二氯乙烯,聚硅氧烷的一种或多种聚合物。
6、根据权利要求5的多组分复合膜,其中用于活性层组分的溶剂是选自1-甲基-2-吡咯烷酮,丙酮,乙醇,正丙醇,正丁醇,正己烷,环己醇,乙酸,乙酸乙酯,二乙醚,二甲基甲酰胺,二甲基乙酰胺,二噁烷,四氢呋喃,二甲亚砜,环己烷,苯,甲苯,二甲苯,和水中的一种或多种溶剂。
7、根据权利要求1的多组分复合膜,其中活性层的厚度是0.01—20μm。
8、根据权利要求2的多组分复合膜,其中载体层的组分中的两种或更多种为共混或层压形式。
9、根据权利要求1的多组分复合膜,其中复合膜用于水处理、血液透析、酶纯化、给药用的贴片、气体分离、渗透蒸发、反向渗透或电解分离。
10、一种电池用隔板,它包括权利要求1的多组分复合膜。
11、包括权利要求1的多组分复合膜作为隔板的可充电锂离子电池。
12、制备根据权利要求1的多组分复合膜的方法,包括以下步骤:
a)通过将用于载体层的聚合物注入到挤出机中制备前体膜;
b)在低于聚合物熔点的温度下使前体膜进行退火处理;
c)激活电子和选自氢,氦,氧,氮,二氧化碳,空气,氟,氖,氩,氪和N2O,以及它们的混合物中的气体,使得被激活的离子具有在0.01—106keV范围内的能量,并且在10-1—106托的真空下,在反应性气体氛围中,在退火的前体膜的两个表面上辐照离子束,
其中离子束的辐照量在105—1020个离子/cm2的范围内,所述反应性气体选自:氦、氢、氮、氨、一氧化碳、二氧化碳、含氯氟甲烷,甲烷,和N2O气氛,以及它们的混合物,并且所述反应性气体的流速在0.5—20mL/min范围内;
d)供活性层用的聚合物溶液涂敷于经辐照的前体膜的两个表面;
e)干燥涂敷过的前体膜;
f)在低于室温的温度下低温拉伸干燥过的前体膜;
g)在低于聚合物熔点的温度下高温拉伸该低温拉伸过的前体膜;和
h)在低于聚合物熔点的温度下用张力热定形该高温拉伸过的前体膜。
13、根据权利要求12的制备方法,其中步骤d)的聚合物溶液通过浸涂涂敷在前体膜的两面。
14、根据权利要求12的制备方法,其中步骤d)的聚合物溶液的浓度等于或高于0.01wt%。
15、根据权利要求12的制备方法,其中步骤e)的干燥在1—100%的相对湿度下进行。
16、根据权利要求12的制备方法,其中步骤e)的干燥在低于溶剂的饱和蒸汽压的蒸汽压力下进行。
17、根据权利要求12的制备方法,其中步骤e)的干燥在选自氮气、氧气、二氧化碳和空气的气体氛围下进行。
18、根据权利要求12的制备方法,其中通过步骤d)和e)的涂敷和干燥来形成厚度为0.1—20μm的活性层。
CNB018017517A 2000-06-23 2001-06-22 多组分复合膜及其制备方法 Expired - Lifetime CN100531874C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2000-0034948A KR100409017B1 (ko) 2000-06-23 2000-06-23 다성분계 복합 분리막 및 그의 제조방법
KR2000/34948 2000-06-23

Publications (2)

Publication Number Publication Date
CN1383390A CN1383390A (zh) 2002-12-04
CN100531874C true CN100531874C (zh) 2009-08-26

Family

ID=19673589

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018017517A Expired - Lifetime CN100531874C (zh) 2000-06-23 2001-06-22 多组分复合膜及其制备方法

Country Status (7)

Country Link
US (1) US7087269B2 (zh)
EP (1) EP1324817B1 (zh)
JP (2) JP4209669B2 (zh)
KR (1) KR100409017B1 (zh)
CN (1) CN100531874C (zh)
TW (1) TW572775B (zh)
WO (1) WO2001097957A1 (zh)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
CN1258234C (zh) * 2000-08-12 2006-05-31 Lg化学株式会社 多组分复合膜及其制备方法
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
JP2003062422A (ja) * 2001-08-27 2003-03-04 Inst Of Physical & Chemical Res 気体分離膜及びその製造方法
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
KR100472503B1 (ko) * 2002-06-07 2005-03-10 삼성에스디아이 주식회사 세퍼레이터 및 이를 채용한 리튬전지
KR100573358B1 (ko) 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
KR100511634B1 (ko) * 2003-05-20 2005-09-01 주식회사 화인폴 고성능 리튬폴리머 2차 전지용 분리막, 그 제조방법 및리튬폴리머 2차 전지
JP4610213B2 (ja) * 2003-06-19 2011-01-12 三洋電機株式会社 リチウム二次電池及びその製造方法
JP2005019156A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
EP1648298A4 (en) 2003-07-25 2010-01-13 Dexcom Inc OXYGEN-IMPROVED MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES
US7276561B2 (en) * 2003-08-28 2007-10-02 Japan Atomic Energy Research Institute Processes for producing nano-space controlled polymer ion-exchange membranes
US20050202163A1 (en) * 2004-03-09 2005-09-15 Celgard Inc. Method of making a composite microporous membrane
KR20050093018A (ko) 2004-03-18 2005-09-23 한국과학기술연구원 고효율 3차원 나노 구조 분리막
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
KR100511618B1 (ko) * 2005-01-17 2005-08-31 이경범 약물방출 조절형 다층 코팅 스텐트 및 이의 제조방법
US20090098341A1 (en) * 2005-03-31 2009-04-16 Tonen Chemical Corporation Microporous polyolefin membrane and method for producing the same
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
WO2007026781A1 (ja) * 2005-08-31 2007-03-08 Sumitomo Chemical Company, Limited トランジスタ及びその製造方法、並びに、このトランジスタを有する半導体装置
CA2625452A1 (en) * 2005-10-19 2007-04-26 Tonen Chemical Corporation Method for producing multi-layer, microporous polyolefin membrane
CN101448563B (zh) 2006-05-18 2013-01-23 玛里琳·雷纳 制造膜的方法及用于乳化的膜
US7811359B2 (en) * 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide
JP4939648B2 (ja) * 2007-05-24 2012-05-30 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ オキシエチレン基を含む膜
KR20100019532A (ko) * 2007-05-24 2010-02-18 후지필름 매뉴팩츄어링 유럽 비.브이. 멤브레인 및 그의 제조방법과 용도
CN101754797A (zh) * 2007-05-24 2010-06-23 富士胶片制造欧洲有限公司 包含氧乙烯基的膜
US8715849B2 (en) * 2007-10-05 2014-05-06 Toray Battery Separator Film Co., Ltd. Microporous polymer membrane
US8206493B2 (en) * 2007-10-26 2012-06-26 Asahi Kasei Chemicals Corporation Gas separation membrane
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
EP2260523B1 (en) * 2008-04-08 2014-02-26 SK Innovation Co. Ltd. Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
EP2326944B1 (en) 2008-09-19 2020-08-19 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
DE102008054187B4 (de) * 2008-10-20 2014-08-21 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co.Kg Lithiumionen-Akku und Verfahren zur Herstellung eines Lithiumionen-Akkus
KR100911753B1 (ko) 2009-02-04 2009-08-10 (주)씨에스텍 경피투여형 패치제 및 이의 제조방법
US8118910B2 (en) * 2009-03-23 2012-02-21 General Electric Company Layered filtration membrane and methods of making same
WO2010144057A1 (en) * 2009-06-10 2010-12-16 National University Of Singapore Double selective-layer membranes
KR20110032679A (ko) * 2009-09-23 2011-03-30 현대자동차주식회사 광택특성이 향상된 플라스틱 및 플라스틱 표면의 광택 처리 방법
KR101134480B1 (ko) * 2009-09-28 2012-04-13 현대자동차주식회사 나노 엠보 패턴 표면을 갖는 플라스틱 및 이의 제조 방법
JP2012015073A (ja) * 2010-07-05 2012-01-19 Asahi Kasei E-Materials Corp 微多孔性フィルム、その製造方法及び電池用セパレータ
CN102151492B (zh) * 2011-03-28 2013-01-16 昊辰(无锡)塑业有限公司 用于污水处理的分离膜及其制备方法
US20140212940A1 (en) * 2011-05-25 2014-07-31 Bp P.L.C. Membranes
CN102820444B (zh) * 2011-06-10 2015-09-30 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN103703366B (zh) * 2011-07-12 2015-08-05 塔斯马尼亚大学 多孔聚合物材料用于存储生物样品的用途
KR101440971B1 (ko) * 2012-01-05 2014-09-17 주식회사 엘지화학 내오염성이 우수한 역삼투막 및 그 제조방법
EP2857088B1 (en) 2012-05-24 2020-02-26 LG Chem, Ltd. Method for manufacturing a reverse osmosis membrane
KR20140052412A (ko) 2012-10-24 2014-05-07 삼성에스디아이 주식회사 리튬 이차 전지 및 이의 제조방법
US9211507B2 (en) 2012-11-21 2015-12-15 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same
KR101583117B1 (ko) * 2012-11-21 2016-01-06 주식회사 엘지화학 내염소성이 우수한 고유량 수처리 분리막 및 그 제조방법
US10177359B2 (en) 2013-03-20 2019-01-08 Lg Chem, Ltd. Separator for electrochemical device and method for manufacturing the same
WO2016023765A1 (en) * 2014-08-12 2016-02-18 Basf Se Process for making membranes
EP3051609A1 (en) * 2015-01-29 2016-08-03 Innovia Films Limited Plasma-treated separator
WO2016120580A1 (en) * 2015-01-29 2016-08-04 Innovia Films Limited Separator
CN104888625A (zh) * 2015-05-20 2015-09-09 苏州市贝克生物科技有限公司 一种聚丙烯腈血液透析膜及其制备方法
KR102013914B1 (ko) * 2015-11-12 2019-08-23 주식회사 엘지화학 겔 폴리머 전해질의 제조를 위한 경화용 다이 및 이를 사용한 겔 폴리머 전지셀의 제조방법
KR102034459B1 (ko) * 2015-12-30 2019-11-18 주식회사 엘지화학 분리막
JP6759511B2 (ja) * 2016-03-16 2020-09-23 住友電工ファインポリマー株式会社 積層体
CN108452689A (zh) * 2017-03-06 2018-08-28 青岛致用新材料科技有限公司 一种高选择性全脂环族聚酰胺纳滤膜及其制备方法
CN107065042B (zh) * 2017-05-05 2020-02-14 湖北松诺电子有限公司 一种薄膜透镜及其制备工艺
US10896804B2 (en) * 2017-07-27 2021-01-19 Lawrence Livermore National Security, Llc Planarization, densification, and exfoliation of porous materials by high-energy ion beams
KR102107903B1 (ko) * 2017-08-17 2020-05-07 주식회사 엘지화학 고분자 전해질막의 후처리 방법
JP2019063727A (ja) * 2017-09-29 2019-04-25 三菱製紙株式会社 半透膜支持体
WO2019070507A1 (en) 2017-10-05 2019-04-11 Fresenius Medical Care Holdings, Inc. POLYSULFONE-URETHANE COPOLYMER, MEMBRANES AND INCORPORATING PRODUCTS, AND METHODS OF MAKING AND USING THE SAME
JP7015159B2 (ja) * 2017-12-08 2022-02-02 旭化成株式会社 多層セパレータ、並びにその捲回体及び製造方法
JP7495266B2 (ja) 2019-04-18 2024-06-04 住友化学株式会社 電池用セパレータの製造システムおよび製造方法
CN110170255B (zh) * 2019-06-03 2021-12-28 哈尔滨工业大学(威海) 一种基于聚丙烯腈超亲水膜的制备方法
CN110548421B (zh) * 2019-08-27 2022-03-08 武汉艾科滤膜技术有限公司 一种强吸附型超滤膜的制备方法及应用
CN110479102A (zh) * 2019-09-03 2019-11-22 盐城海普润膜科技有限公司 渗透蒸发脱盐非对称膜及其制备方法
CN112973458B (zh) * 2021-02-08 2022-12-27 中国科学院近代物理研究所 离子径迹多孔膜及其物理制备方法与应用
CN114204142B (zh) * 2021-12-02 2023-08-11 厦门大学 一种全固态电池界面缓冲层、制备方法及其电池
CN114243222B (zh) * 2021-12-23 2022-09-20 中材锂膜有限公司 截面结构一致性高的隔膜及其制备方法
WO2024070574A1 (ja) * 2022-09-26 2024-04-04 日東電工株式会社 浸透気化膜

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249109A (en) 1963-11-01 1966-05-03 Maeth Harry Topical dressing
DE2724131C2 (de) * 1977-05-27 1982-06-09 C. Conradty Nürnberg GmbH & Co KG, 8505 Röthenbach Plattenförmiger Kohlenstoffkörper und Verfahren zu seiner Herstellung
JPS54102292A (en) 1978-01-30 1979-08-11 Mitsubishi Rayon Co Ltd Composite hollow yarn and gas selective permeating method used above yarn
JPS55105968A (en) * 1979-02-05 1980-08-14 Japan Atom Energy Res Inst Manufacturing method of separator for cell
US4294893A (en) * 1979-05-21 1981-10-13 Centro Ricerche Fiat S.P.A. Graphite-resin composite electrode structure, and a process for its manufacture
US4346142A (en) 1979-09-04 1982-08-24 Celanese Corporation Hydrophilic monomer treated microporous films and process
JPS5695304A (en) 1979-12-28 1981-08-01 Teijin Ltd Perm selective composite membrane and its production
US4438185A (en) * 1980-07-31 1984-03-20 Celanese Corporation Hydrophilic polymer coated microporous membranes capable of use as a battery separator
JPS57212232A (en) * 1981-06-24 1982-12-27 Asahi Chem Ind Co Ltd Composite hydrophilic membrane and its preparation
JPS5820421A (ja) * 1981-07-30 1983-02-05 Toray Ind Inc 多孔質ポリプロピレンフイルムの製造方法
DE3280189D1 (de) 1981-12-18 1990-07-19 Cuno Inc Verstaerkte mikroporoese membran.
US4603109A (en) * 1984-06-01 1986-07-29 Norton Company Method and apparatus for contacting reactants in chemical and biological reactions
JPS62117811A (ja) * 1985-11-13 1987-05-29 Mitsubishi Rayon Co Ltd 複合中空繊維状膜の製造法
US4814082A (en) 1986-10-20 1989-03-21 Memtec North America Corporation Ultrafiltration thin film membranes
US4863604A (en) * 1987-02-05 1989-09-05 Parker-Hannifin Corporation Microporous asymmetric polyfluorocarbon membranes
US5102552A (en) 1987-12-16 1992-04-07 Hoechst Celanese Corporation Membranes from UV-curable resins
US4919856A (en) * 1988-02-23 1990-04-24 Dainippon Ink And Chemicals, Inc. Process for producing membranes for use in gas separation
CA2029879A1 (en) * 1989-04-18 1990-10-19 Naoki Nakashima Process for preparing modified porous membrane
ATE129430T1 (de) * 1989-07-14 1995-11-15 Dow Chemical Co Isotrope oder anisotrope mikroporöse membranen aus syndiotaktischem polystyrol und herstellungsverfahren.
JPH0365229A (ja) 1989-07-31 1991-03-20 Toray Ind Inc 浸透気化用複合膜
US5085775A (en) 1990-12-05 1992-02-04 Allied-Signal Inc. Thin film composite ultrafiltration membrane
US5677360A (en) * 1991-02-13 1997-10-14 Mitsubishi Rayon Co., Ltd. Hydrophilic polymer alloy, fiber and porous membrane comprising this polymer alloy, and methods for preparing them
US5281491A (en) * 1991-12-20 1994-01-25 W. R. Grace & Co. Battery separator
US5294342A (en) 1992-10-01 1994-03-15 Hoechst Celanese Corporation Composite porous membranes
JPH06142468A (ja) * 1992-11-11 1994-05-24 Dainippon Ink & Chem Inc 細孔を有する表面親水性膜の製造方法
US5514461A (en) * 1993-10-05 1996-05-07 Kureha Chemical Industry Co., Ltd. Vinylidene fluoride porous membrane and method of preparing the same
NL9401260A (nl) * 1993-11-12 1995-06-01 Cornelis Johannes Maria Van Ri Membraan voor microfiltratie, ultrafiltratie, gasscheiding en katalyse, werkwijze ter vervaardiging van een dergelijk membraan, mal ter vervaardiging van een dergelijk membraan, alsmede diverse scheidingssystemen omvattende een dergelijk membraan.
KR0123279B1 (ko) * 1994-05-31 1997-11-11 하기주 염제거능이 우수한 복합반투막 및 그 제조방법
CN1038562C (zh) 1994-06-20 1998-06-03 中国科学院化学研究所 聚丙烯微孔膜为基膜的离子交换膜及其制法
JP3250644B2 (ja) * 1995-04-12 2002-01-28 東洋紡績株式会社 複合中空糸膜およびその製造方法
US5783079A (en) 1994-08-29 1998-07-21 Toyo Boseki Kabushiki Kaisha Composite hollow fiber membrane and process for its production
TW297171B (zh) * 1994-12-20 1997-02-01 Hoechst Celanese Corp
US5620807A (en) * 1995-08-31 1997-04-15 The Dow Chemical Company Flow field assembly for electrochemical fuel cells
JPH09213295A (ja) * 1996-02-02 1997-08-15 Nitto Denko Corp 電池用セパレータ
JP3939778B2 (ja) * 1996-02-09 2007-07-04 日東電工株式会社 電池用セパレータ
DE19629154C2 (de) 1996-07-19 2000-07-06 Dornier Gmbh Bipolare Elektroden-Elektrolyt-Einheit
JP3645051B2 (ja) * 1996-11-22 2005-05-11 三菱樹脂株式会社 多孔質複層プラスチックフィルタおよびその製造方法
US5716421A (en) 1997-04-14 1998-02-10 Motorola, Inc. Multilayered gel electrolyte bonded rechargeable electrochemical cell and method of making same
JPH1149882A (ja) 1997-08-05 1999-02-23 Nitto Denko Corp 多孔質膜およびそれを用いた電池用セパレータ
KR19990040319A (ko) * 1997-11-17 1999-06-05 성재갑 고분자 표면의 이온 입자 조사에 의한 미세 기공 막의 제조
DE19751297A1 (de) * 1997-11-19 1999-05-20 Siemens Ag Gasdiffusionselektrode und deren Herstellung
US6322923B1 (en) * 1998-01-30 2001-11-27 Celgard Inc. Separator for gel electrolyte battery
EP0973223A1 (en) * 1998-02-05 2000-01-19 Mitsubishi Denki Kabushiki Kaisha Lithium battery and method for manufacturing the same
JPH11300180A (ja) * 1998-02-20 1999-11-02 Mitsubishi Chemical Corp 多孔質樹脂膜
JPH11297297A (ja) 1998-04-10 1999-10-29 Ube Ind Ltd 多孔質フイルムの製造方法および多孔質フイルム
US6753114B2 (en) * 1998-04-20 2004-06-22 Electrovaya Inc. Composite electrolyte for a rechargeable lithium battery
KR100271926B1 (ko) * 1998-08-27 2000-12-01 장용균 미다공성 폴리올레핀 필름의 제조방법
JP2000093768A (ja) * 1998-09-21 2000-04-04 Nok Corp 複合多孔質中空糸膜
DE69939253D1 (de) 1998-12-02 2008-09-18 Lg Chemical Ltd Verfahren zur veränderung von polymeroberflächen zur besseren benetzbarkeit
JP2000317280A (ja) * 1999-05-06 2000-11-21 Teijin Ltd 超高分子量ポリエチレン多孔膜を濾過媒体とするフィルター
US6451864B1 (en) * 1999-08-17 2002-09-17 Battelle Memorial Institute Catalyst structure and method of Fischer-Tropsch synthesis
CN1239226C (zh) * 2000-01-10 2006-02-01 Lg化学株式会社 高结晶聚丙烯微孔薄膜,多组分微孔薄膜及其制备方法
CN1258234C (zh) * 2000-08-12 2006-05-31 Lg化学株式会社 多组分复合膜及其制备方法
US6579342B2 (en) * 2001-02-07 2003-06-17 Pall Corporation Oleophobic membrane materials by oligomer polymerization for filter venting applications

Also Published As

Publication number Publication date
EP1324817A1 (en) 2003-07-09
KR100409017B1 (ko) 2003-12-06
WO2001097957A1 (en) 2001-12-27
US20040213985A1 (en) 2004-10-28
EP1324817A4 (en) 2006-08-23
TW572775B (en) 2004-01-21
JP4209669B2 (ja) 2009-01-14
KR20020001035A (ko) 2002-01-09
JP4988656B2 (ja) 2012-08-01
JP2003535683A (ja) 2003-12-02
JP2008302359A (ja) 2008-12-18
EP1324817B1 (en) 2013-09-11
CN1383390A (zh) 2002-12-04
US7087269B2 (en) 2006-08-08

Similar Documents

Publication Publication Date Title
CN100531874C (zh) 多组分复合膜及其制备方法
US6540953B1 (en) Microporous membrane and method for providing the same
JP5451839B2 (ja) 多層微多孔膜及びその製造方法、並びに電池用セパレータ及び電池
JP5548290B2 (ja) 多層微多孔膜、電池用セパレータ及び電池
JP3885100B2 (ja) 多成分系複合フィルム及びその製造方法
JP3639535B2 (ja) ポリオレフィンブレンドで製造された通気性フィルムとその製造方法及びこの方法で製造された2次電池の隔離膜
KR20210029294A (ko) 리튬 이온 이차 전지용 다층 하이브리드 전지 분리기 및 이의 제조방법
JP2003297330A (ja) 多層電池セパレーター
WO2012029699A1 (ja) 複合多孔質膜及びその製造方法
KR100373204B1 (ko) 고분자 전해질용 다성분계 복합 분리막 및 그의 제조방법
JP6311585B2 (ja) 多孔体及びその製造方法
KR100378022B1 (ko) 두께방향으로기공크기차이를갖는미세기공막의제조
TW201819198A (zh) 積層聚烯烴微多孔膜、電池用隔膜及其製造方法以及積層聚烯烴微多孔膜捲繞體之製造方法
JP2004051648A (ja) 微多孔膜の製造方法
JP2024049359A (ja) ポリオレフィン微多孔膜、電池用セパレータおよび二次電池

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151210

Address after: Seoul, Korea

Patentee after: LG Chemical Co., Ltd.

Patentee after: TORAY BATTERY SEPARATOR FILM CO., LTD.

Address before: Seoul, Korea

Patentee before: LG Chemical Co., Ltd.

CP01 Change in the name or title of a patent holder

Address after: Seoul, Korea

Co-patentee after: TORAY INDUSTRIES, Inc.

Patentee after: LG Chemical Co., Ltd.

Address before: Seoul, Korea

Co-patentee before: TORAY BATTERY SEPARATOR FILM CO., LTD.

Patentee before: LG Chemical Co., Ltd.

CP01 Change in the name or title of a patent holder
CX01 Expiry of patent term

Granted publication date: 20090826

CX01 Expiry of patent term