ATE229231T1 - Verfahren zur herstellung einer halbleiteranordnung mit einer leitfähigen schicht - Google Patents

Verfahren zur herstellung einer halbleiteranordnung mit einer leitfähigen schicht

Info

Publication number
ATE229231T1
ATE229231T1 AT90913222T AT90913222T ATE229231T1 AT E229231 T1 ATE229231 T1 AT E229231T1 AT 90913222 T AT90913222 T AT 90913222T AT 90913222 T AT90913222 T AT 90913222T AT E229231 T1 ATE229231 T1 AT E229231T1
Authority
AT
Austria
Prior art keywords
film
producing
conductive layer
semiconductor arrangement
material layer
Prior art date
Application number
AT90913222T
Other languages
English (en)
Inventor
Tadahiro Ohmi
Mamoru Miyawaki
Original Assignee
Tadahiro Ohmi
Canon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadahiro Ohmi, Canon Kk filed Critical Tadahiro Ohmi
Application granted granted Critical
Publication of ATE229231T1 publication Critical patent/ATE229231T1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02244Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31683Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of metallic layers, e.g. Al deposited on the body, e.g. formation of multi-layer insulating structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42304Base electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • H01L29/66287Silicon vertical transistors with a single crystalline emitter, collector or base including extrinsic, link or graft base formed on the silicon substrate, e.g. by epitaxy, recrystallisation, after insulating device isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7375Vertical transistors having an emitter comprising one or more non-monocrystalline elements of group IV, e.g. amorphous silicon, alloys comprising group IV elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7378Vertical transistors comprising lattice mismatched active layers, e.g. SiGe strained layer transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/10Lift-off masking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/926Dummy metallization
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/942Masking
    • Y10S438/948Radiation resist
    • Y10S438/951Lift-off
AT90913222T 1989-09-09 1990-09-07 Verfahren zur herstellung einer halbleiteranordnung mit einer leitfähigen schicht ATE229231T1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1233929A JP2746289B2 (ja) 1989-09-09 1989-09-09 素子の作製方法並びに半導体素子およびその作製方法
PCT/JP1990/001149 WO1991003841A1 (en) 1989-09-09 1990-09-07 Element, method of fabricating the same, semiconductor element and method of fabricating the same

Publications (1)

Publication Number Publication Date
ATE229231T1 true ATE229231T1 (de) 2002-12-15

Family

ID=16962820

Family Applications (1)

Application Number Title Priority Date Filing Date
AT90913222T ATE229231T1 (de) 1989-09-09 1990-09-07 Verfahren zur herstellung einer halbleiteranordnung mit einer leitfähigen schicht

Country Status (6)

Country Link
US (2) US5541444A (de)
EP (1) EP0463165B1 (de)
JP (1) JP2746289B2 (de)
AT (1) ATE229231T1 (de)
DE (1) DE69034023T2 (de)
WO (1) WO1991003841A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695606B2 (ja) * 1996-04-01 2005-09-14 忠弘 大見 半導体装置及びその製造方法
JPH1127116A (ja) 1997-07-02 1999-01-29 Tadahiro Omi 半導体集積回路、電圧コントロールディレイライン、ディレイロックドループ、自己同期パイプライン式デジタルシステム、電圧制御発振器、およびフェーズロックドループ
JPH1125200A (ja) * 1997-07-02 1999-01-29 Tadahiro Omi 半導体集積回路
JPH1125201A (ja) * 1997-07-02 1999-01-29 Tadahiro Omi 半導体集積回路
US6127857A (en) * 1997-07-02 2000-10-03 Canon Kabushiki Kaisha Output buffer or voltage hold for analog of multilevel processing
US6057171A (en) 1997-09-25 2000-05-02 Frequency Technology, Inc. Methods for determining on-chip interconnect process parameters
US6136678A (en) * 1998-03-02 2000-10-24 Motorola, Inc. Method of processing a conductive layer and forming a semiconductor device
US6087208A (en) * 1998-03-31 2000-07-11 Advanced Micro Devices, Inc. Method for increasing gate capacitance by using both high and low dielectric gate material
US6191011B1 (en) * 1998-09-28 2001-02-20 Ag Associates (Israel) Ltd. Selective hemispherical grain silicon deposition
EP1037284A3 (de) * 1999-03-15 2002-10-30 Matsushita Electric Industrial Co., Ltd. Heteroübergang-Bipolartransistor und Verfahren zur Herstellung
US7456113B2 (en) * 2000-06-26 2008-11-25 Applied Materials, Inc. Cleaning method and solution for cleaning a wafer in a single wafer process
US6927176B2 (en) * 2000-06-26 2005-08-09 Applied Materials, Inc. Cleaning method and solution for cleaning a wafer in a single wafer process
JP2003209186A (ja) * 2002-01-15 2003-07-25 Seiko Epson Corp 半導体装置
DE10231407B4 (de) * 2002-07-11 2007-01-11 Infineon Technologies Ag Bipolartransistor
JP3940063B2 (ja) * 2002-11-20 2007-07-04 松下電器産業株式会社 可変容量素子および可変容量素子内蔵集積回路
US6911681B1 (en) * 2004-04-14 2005-06-28 International Business Machines Corporation Method of base formation in a BiCMOS process
US7259111B2 (en) * 2005-01-19 2007-08-21 Applied Materials, Inc. Interface engineering to improve adhesion between low k stacks
US7445976B2 (en) * 2006-05-26 2008-11-04 Freescale Semiconductor, Inc. Method of forming a semiconductor device having an interlayer and structure therefor
US7375948B2 (en) * 2006-06-12 2008-05-20 Teledyne Licensing, Llc Variable charge packet integrated circuit capacitor
US7655550B2 (en) * 2006-06-30 2010-02-02 Freescale Semiconductor, Inc. Method of making metal gate transistors
US7297376B1 (en) 2006-07-07 2007-11-20 Applied Materials, Inc. Method to reduce gas-phase reactions in a PECVD process with silicon and organic precursors to deposit defect-free initial layers
US7579232B1 (en) * 2008-07-11 2009-08-25 Sandisk 3D Llc Method of making a nonvolatile memory device including forming a pillar shaped semiconductor device and a shadow mask
KR101578931B1 (ko) * 2008-12-05 2015-12-21 주식회사 동부하이텍 반도체 소자 및 반도체 소자의 제조 방법
US9059095B2 (en) 2013-04-22 2015-06-16 International Business Machines Corporation Self-aligned borderless contacts using a photo-patternable dielectric material as a replacement contact

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398335A (en) * 1965-03-31 1968-08-20 Ibm Transistor structure with an emitter region epitaxially grown over the base region
US3823349A (en) * 1970-01-22 1974-07-09 Ibm Interconnection metallurgy system for semiconductor devices
JPS4842680A (de) * 1971-09-29 1973-06-21
JPS52147063A (en) * 1976-06-02 1977-12-07 Toshiba Corp Semiconductor electrode forming method
JPS5335475A (en) * 1976-09-14 1978-04-01 Matsushita Electric Ind Co Ltd Production of semiconductor unit
JPS5491059A (en) * 1977-12-28 1979-07-19 Fujitsu Ltd Etching method for phosphorus glass by plasma etching
US4157269A (en) * 1978-06-06 1979-06-05 International Business Machines Corporation Utilizing polysilicon diffusion sources and special masking techniques
JPS5515230A (en) * 1978-07-19 1980-02-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and its manufacturing method
DE2964810D1 (en) * 1978-07-29 1983-03-24 Fujitsu Ltd A method of coating side walls of semiconductor devices
JPS55145347A (en) * 1979-04-27 1980-11-12 Mitsubishi Electric Corp Forming method of semiconductor protective film for semiconductor device
JPS588139B2 (ja) * 1979-05-31 1983-02-14 富士通株式会社 半導体装置の製造方法
JPS55163860A (en) * 1979-06-06 1980-12-20 Toshiba Corp Manufacture of semiconductor device
JPS56158482A (en) * 1980-05-12 1981-12-07 Mitsubishi Electric Corp Semiconductor device
IE52791B1 (en) * 1980-11-05 1988-03-02 Fujitsu Ltd Semiconductor devices
US4324038A (en) * 1980-11-24 1982-04-13 Bell Telephone Laboratories, Incorporated Method of fabricating MOS field effect transistors
JPS57207374A (en) * 1981-06-15 1982-12-20 Nec Corp Manufacture of semiconductor device
US4441247A (en) * 1981-06-29 1984-04-10 Intel Corporation Method of making MOS device by forming self-aligned polysilicon and tungsten composite gate
US4483726A (en) * 1981-06-30 1984-11-20 International Business Machines Corporation Double self-aligned fabrication process for making a bipolar transistor structure having a small polysilicon-to-extrinsic base contact area
JPS5825229A (ja) * 1981-08-08 1983-02-15 Matsushita Electronics Corp 半導体装置の製造方法
JPS5946105B2 (ja) * 1981-10-27 1984-11-10 日本電信電話株式会社 バイポ−ラ型トランジスタ装置及びその製法
US4419810A (en) * 1981-12-30 1983-12-13 International Business Machines Corporation Self-aligned field effect transistor process
US4495512A (en) * 1982-06-07 1985-01-22 International Business Machines Corporation Self-aligned bipolar transistor with inverted polycide base contact
JPS5955015A (ja) * 1982-09-22 1984-03-29 Fujitsu Ltd 半導体装置の製造方法
JPS60198863A (ja) * 1984-03-23 1985-10-08 Nec Corp Misトランジスタ及びその製造方法
US4532002A (en) * 1984-04-10 1985-07-30 Rca Corporation Multilayer planarizing structure for lift-off technique
JPS61202427A (ja) * 1985-03-05 1986-09-08 Nec Corp 半導体装置の電極形成方法
JPH0622238B2 (ja) * 1985-10-02 1994-03-23 沖電気工業株式会社 バイポ−ラ型半導体集積回路装置の製造方法
JPS6292327A (ja) * 1985-10-18 1987-04-27 Hitachi Ltd 半導体装置及びその製造方法
JPS6298770A (ja) * 1985-10-25 1987-05-08 Sony Corp 半導体装置の製造方法
US5198372A (en) * 1986-01-30 1993-03-30 Texas Instruments Incorporated Method for making a shallow junction bipolar transistor and transistor formed thereby
JPH063807B2 (ja) * 1986-03-11 1994-01-12 日本電信電話株式会社 半導体装置およびその製造方法
JPH0810696B2 (ja) * 1986-03-12 1996-01-31 富士通株式会社 半導体装置の製造方法
JPS62213140A (ja) * 1986-03-14 1987-09-19 Nec Corp 配線の製造方法
US5077227A (en) * 1986-06-03 1991-12-31 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
EP0263220B1 (de) * 1986-10-08 1992-09-09 International Business Machines Corporation Verfahren zur Herstellung einer Kontaktöffnung mit gewünschter Schräge in einer zusammengesetzten Schicht, die mit Photoresist maskiert ist
JPS63177523A (ja) * 1987-01-19 1988-07-21 Matsushita Electric Ind Co Ltd コンタクトホ−ル形成方法
US4789885A (en) * 1987-02-10 1988-12-06 Texas Instruments Incorporated Self-aligned silicide in a polysilicon self-aligned bipolar transistor
JPS63253664A (ja) * 1987-04-10 1988-10-20 Sony Corp バイポ−ラトランジスタ
JPS63257268A (ja) * 1987-04-14 1988-10-25 Nec Corp 半導体集積回路
JPS642362A (en) * 1987-06-24 1989-01-06 Fujitsu Ltd Manufacture of semiconductor device
DE3825701A1 (de) * 1987-07-29 1989-02-09 Toshiba Kawasaki Kk Verfahren zur herstellung eines bipolaren transistors
JPH01140761A (ja) * 1987-11-27 1989-06-01 Nec Corp 半導体装置
JPH01222477A (ja) * 1988-03-01 1989-09-05 Fujitsu Ltd 配線接続電極とその製造方法
US5096842A (en) * 1988-05-16 1992-03-17 Kabushiki Kaisha Toshiba Method of fabricating bipolar transistor using self-aligned polysilicon technology
US4882294A (en) * 1988-08-17 1989-11-21 Delco Electronics Corporation Process for forming an epitaxial layer having portions of different thicknesses
KR910005401B1 (ko) * 1988-09-07 1991-07-29 경상현 비결정 실리콘을 이용한 자기정렬 트랜지스터 제조방법
JP3207883B2 (ja) * 1990-09-18 2001-09-10 松下電器産業株式会社 バイポーラ半導体装置の製造方法

Also Published As

Publication number Publication date
DE69034023D1 (de) 2003-01-16
JP2746289B2 (ja) 1998-05-06
DE69034023T2 (de) 2003-04-30
US5854097A (en) 1998-12-29
EP0463165B1 (de) 2002-12-04
EP0463165A1 (de) 1992-01-02
JPH0397231A (ja) 1991-04-23
WO1991003841A1 (en) 1991-03-21
EP0463165A4 (en) 1992-03-11
US5541444A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
ATE229231T1 (de) Verfahren zur herstellung einer halbleiteranordnung mit einer leitfähigen schicht
DE69011203T2 (de) Verfahren zur Herstellung einer Halbleitervorrichtung durch Abdecken einer leitenden Schicht mit einer Nitridschicht.
DE3581919D1 (de) Verfahren zur herstellung von halbleiterbauelementen mit einer sauerstoff enthaltenden polykristallinen siliciumschicht.
JPS54589A (en) Burying method of insulator
DE3578618D1 (de) Verfahren zur herstellung von halbleiteranordnungen mit einer ueberlagerten schicht aus polykristallinem silizium.
ATE19325T1 (de) Zur verhinderung von stoerungen durch sekundaerelektronenemission dienende beschichtung und verfahren zum herstellen einer solchen beschichtung.
EP0227189A3 (de) Verfahren zur Herstellung eines dünnen Leiterelementes
AT361983B (de) Halbleiterbauelement mit elektrischen kontakten und verfahren zur herstellung solcher kontakte
DE69025939D1 (de) Apparat und verfahren zur herstellung einer speicherzelle mit schwebendem gate und doppelter dielektrikumschicht
JPS5224084A (en) Semiconductor manufacturing rpocess
JPS55110037A (en) Method for making semiconductor device
JPS5534478A (en) Forming pattern
JPS5630739A (en) Formation of polycrystalline silicon wiring layer
JPS5270762A (en) Electrode formation method of semiconductor element
JPS56140644A (en) Semiconductor device and manufacture thereof
JPS5678122A (en) Formation of pattern
JPS5741644A (en) Preparation of recording material
JPS56123879A (en) Thick film circuit substrate
JPS56126944A (en) Production of semiconductor device
DE68926012D1 (de) Verfahren zur Herstellung eines isolierenden Gebiets in einem Halbleitersubstrat.
JPS57120350A (en) Manufacture of semiconductor integrated circuit
JPS5643757A (en) Gallium arsenic type integrated circuit
JPS5690537A (en) Formation of wiring layer
JPS5512775A (en) Manufacturing method of semiconductor
JPS5269562A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
RER Ceased as to paragraph 5 lit. 3 law introducing patent treaties