WO2020166590A1 - 摺動部品 - Google Patents
摺動部品 Download PDFInfo
- Publication number
- WO2020166590A1 WO2020166590A1 PCT/JP2020/005260 JP2020005260W WO2020166590A1 WO 2020166590 A1 WO2020166590 A1 WO 2020166590A1 JP 2020005260 W JP2020005260 W JP 2020005260W WO 2020166590 A1 WO2020166590 A1 WO 2020166590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dynamic pressure
- groove
- pressure generating
- inlet
- deep groove
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3404—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
- F16J15/3408—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
- F16J15/3412—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
- F16J15/342—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with means for feeding fluid directly to the face
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/026—Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/72—Sealings
- F16C33/74—Sealings of sliding-contact bearings
- F16C33/741—Sealings of sliding-contact bearings by means of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3404—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
- F16J15/3408—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
- F16J15/3412—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3404—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
- F16J15/3408—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
- F16J15/3412—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
- F16J15/3416—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with at least one continuous groove
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/72—Sealings
- F16C33/74—Sealings of sliding-contact bearings
Definitions
- the present invention relates to a sliding component that rotates relative to one another, for example, a sliding component used in a shaft sealing device that seals a rotating shaft of an automobile, a general industrial machine, or a rotary machine in another sealing field, or an automobile, a general industrial machine , Or other sliding components used for bearings of machines in other bearing fields.
- a shaft sealing device that seals a rotary shaft of a rotary machine such as a pump or a turbine to prevent leakage of a sealed fluid is configured to rotate relative to each other and to have planar end faces slide with each other.
- the mechanical seal includes a stationary sealing ring as a sliding component fixed to the housing and a rotary sealing ring as a sliding component fixed to the rotating shaft and rotating with the rotating shaft, and these sliding surfaces are relatively rotated.
- the gap between the housing and the rotary shaft is sealed.
- Patents aimed at reducing energy lost by sliding by reducing friction caused by sliding Sliding parts as in Reference 1 have been developed.
- one end forms an inlet, communicates with the sliding surface of the sliding component to the outer diameter side that is the high-pressure sealed liquid side, and the other end of the sliding surface
- a dynamic pressure generating groove forming a closed end is provided.
- the present invention has been made in view of such problems, and an object thereof is to provide a sliding component having excellent lubricity.
- the sliding component of the present invention An annular sliding component arranged at a relative rotating position of a rotating machine,
- the sliding surface of the sliding component is provided with a dynamic pressure generating groove that forms an inlet at one end that forms a closed end and the other end that communicates with either the sealed fluid side or the leak side in the radial direction.
- the sliding surface has a deep groove inlet deeper than the dynamic pressure generating groove on the side wall side opposite to the dynamic pressure generating wall forming one side of the both side walls forming the dynamic pressure generating groove. It is formed so as to communicate with the inlet of the dynamic pressure generating groove.
- the place where the lowest pressure is likely to be generated in the dynamic pressure generating groove during relative rotation of the sliding component is one side wall of the dynamic pressure generating groove at the inlet of the dynamic pressure generating groove. It is a side wall side opposite to the dynamic pressure generating wall in the circumferential direction.By communicating the inlet of the deep groove to this location, the fluid is sufficiently supplied from this deep groove to the dynamic pressure generating groove, and negative pressure is applied to the location. Unlikely to occur. Therefore, the fluid is continuously supplied to the dynamic pressure generating groove, the desired pressure can be generated from the closed end of the dynamic pressure generating groove, and the lubricity is excellent.
- the deep groove is communicated with the dynamic pressure generating groove along a side wall of the dynamic pressure generating groove which is circumferentially opposite to the dynamic pressure generating wall in the radial direction, and may be shorter in the radial direction than the side wall. .. According to this, it is possible to secure a large inflow area from the deep groove to the dynamic pressure generating groove, while the deep groove hardly affects the function of the dynamic pressure generating groove that generates the dynamic pressure.
- the deep groove may include a pair of wall portions that extend in parallel in the radial direction and face each other. According to this, since the internal space of the deep groove is sandwiched by the walls facing each other in the circumferential direction of the sliding surface, it is easy to hold the sealed fluid in the deep groove, and the sealed fluid is retained in the dynamic pressure generating groove. Can be stably supplied.
- the deep groove may be formed so that the width in the circumferential direction is shorter than the length in the radial direction. According to this, by shortening the circumferential direction of the deep groove, the dynamic pressure due to the relative rotation of the sliding component is less likely to be generated in the deep groove, and the sealed fluid can be easily held in the deep groove.
- the width of the inlet of the deep groove may be less than half the width of the inlet of the dynamic pressure generating groove. According to this, it is possible to surely achieve both the introduction of the sealed fluid into the dynamic pressure generation groove and the suppression of the generation of negative pressure near the inlet of the dynamic pressure generation groove during relative rotation of the sliding component.
- the depth of the deep groove may be 5 times or more the depth of the dynamic pressure generating groove. According to this, the volume of the deep groove is large, and a sufficient amount of the sealed fluid is supplied from the deep groove portion to the dynamic pressure generating groove when the sliding component relatively rotates.
- the expression extending in the radial direction according to the present invention may have a circumferential component as long as it extends at least in the radial component.
- FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2 showing the relationship between the dynamic pressure generation groove and the deep groove.
- FIG. 9 is an enlarged view of a main part of the stationary seal ring in Modification 1 viewed from the sliding surface side.
- FIG. 9 is a view of a stationary seal ring in Modification 2 as seen from a sliding surface side.
- FIG. 6 is an enlarged view of a main part of a stationary seal ring according to a second embodiment of the present invention as viewed from a sliding surface side.
- the sliding parts in this embodiment are, for example, a rotary seal ring 3 and a stationary seal ring 6 that form a mechanical seal that is a shaft seal device that seals the rotary shaft of a rotary machine in an automobile, a general industrial machine, or other rotary machines in the sealing field.
- a mechanical seal that is a shaft seal device that seals the rotary shaft of a rotary machine in an automobile, a general industrial machine, or other rotary machines in the sealing field.
- dots may be attached to grooves or the like formed on the sliding surface in the drawings.
- the mechanical seal of the present embodiment seals the sealed fluid that is about to leak from the sealed fluid side that is the outer peripheral side of the sliding surface toward the leak side that is the inner peripheral side.
- an annular rotary seal ring 3 provided on the rotary shaft 1 side through a sleeve 2 so as to be rotatable with the rotary shaft 1 and a housing 4 of a rotary machine.
- the stationary seal ring 6 provided in the non-rotatable and axially movable state on the sealed seal 5 is slid by the biasing means 7 for biasing the static seal ring 6 in the axial direction.
- the surfaces S are adapted to slide closely with each other.
- the sealed fluid F which is the high pressure fluid on the outer peripheral side of the sliding surface S, is the low pressure fluid of the atmosphere A. It is intended to prevent the leakage to the inner circumferential side, which is the existing leak side (see FIG. 2).
- the sealed fluid F is a liquid.
- the rotary seal ring 3 and the stationary seal ring 6 are typically formed of SiC (hard material) or a combination of SiC (hard material) and carbon (soft material). Those used as moving materials can be applied.
- SiC include materials including two or more types of phases having different components and compositions, such as a sintered body using boron, aluminum, carbon or the like as a sintering aid, for example, SiC in which graphite particles are dispersed, or SiC and Si.
- a metal material, a resin material, a surface modifying material (coating material), a composite material, or the like can be applied.
- the sliding surface S of the stationary seal ring 6 is formed with a plurality of dynamic pressure generating grooves 15 arranged along the circumferential direction and separated from each other in the circumferential direction.
- the dynamic pressure generating grooves 15 are formed side by side with the same spacing width in the circumferential direction.
- the dynamic pressure generating groove 15 can be formed by subjecting the mirror-finished sliding surface S to fine processing such as laser processing or sandblasting.
- a portion of the sliding surface S where the dynamic pressure generating groove 15 and the deep groove 16 described later are not formed is a land portion 20 that forms a flat surface.
- one end of the dynamic pressure generating groove 15 forms an inlet 15a communicating with the sealed fluid F side and the other end forms a closed end 15b. It is formed so as to be inclined in the rotational direction so that dynamic pressure is generated on the closed end 15b side when rotating relative to the ring 6. Further, the dynamic pressure generating grooves 15 are formed to have the same depth in the radial direction.
- the sealed fluid F in the dynamic pressure generation groove 15 is generated by the shearing force between the sliding surfaces S generated by the rotation.
- the left and right side walls 15c and 15d forming the dynamic pressure generating groove 15 flow toward one side wall 15d, and a high pressure, that is, a dynamic pressure is generated at the side wall 15d as the dynamic pressure generating wall.
- the deep groove 16 is located on the side opposite to the closed end 15b in the circumferential direction with respect to the dynamic pressure generating groove 15, and communicates with the dynamic pressure generating groove 15 in the circumferential direction. More specifically, the left and right side walls 16c of the deep groove 16 on the side of the dynamic pressure generating groove 15 are the side walls 15c and 15d of the dynamic pressure generating groove 15 which are opposite to the deep groove 16 and serve as the dynamic pressure generating wall 15d. Is located on the side wall 15c side opposite to the circumferential direction. That is, as shown in FIG. 2, the deep groove 16 is formed so as to partially overlap the dynamic pressure generating groove 15 in the circumferential direction in a plan view seen from the side orthogonal to the sliding surface S.
- the dynamic pressure generating groove 15 has a U-shaped cross section in which both side walls 15c and 15d are orthogonal to the bottom surface 15e, and the bottom surface 15e is parallel to the land portion 20. ..
- the deep groove 16 has a U-shaped cross section in which the side walls 16c and 16d are orthogonal to the bottom surface 16e, and the bottom surface 16e is parallel to the land portion 20.
- the bottom surfaces 15e and 16e may be inclined with respect to the land portion 20, and the cross-sectional shape thereof may be V-shaped other than U-shaped.
- the inlet 16a of the deep groove 16 communicating with the sealed fluid F side communicates with the inlet 15a of the dynamic pressure generating groove 15 in the circumferential direction.
- the closed end 15b of the dynamic pressure generating groove 15 faces the circumferential direction in the top view and extends in a direction orthogonal to the sliding surface S, and a side wall orthogonal to the sliding surface S. It is defined by 15c and 15d.
- the closed end 15b has a side wall 15d and a wall 15f intersecting each other, and a tip portion 15h is formed at an acute angle.
- FIGS. 2 and 5 indicate the relative rotation direction of the rotary seal ring 3, which is a sliding component of the other party.
- the sealed fluid F enters through the inlet 15a and the inlet 16a of the deep groove 16, and the dynamic pressure generation groove 15 and the deep groove 16 are filled with the sealed fluid F.
- the sealed fluid F in the dynamic pressure generation groove 15 is moved to the side wall by the shearing force generated between the sliding surfaces S due to the rotation. 15d and the closed end 15b, and a dynamic pressure is generated at the side wall 15d and the closed end 15b.
- the tip end portion in the moving direction of the sealed fluid F due to the shearing force between the sliding surfaces S, and the tip thereof is directed to the moving direction of the sealed fluid F at an acute angle.
- the sealed fluid F is drawn toward the closed end 15 b of the dynamic pressure generation groove 15 (the moving direction is shown by a black arrow), so that the dynamic pressure generation groove 15 A low pressure is easily generated on the side wall 15c side of the inlet 15a, which is opposite to the side wall 15d in the circumferential direction.
- the deep groove 16 formed deeper than the dynamic pressure generating groove 15 is arranged on the side wall 15c side in the circumferential direction at the inlet 15a of the dynamic pressure generating groove 15, the sealed fluid secured in the deep groove 16 is disposed.
- F is supplied in the vicinity of the inlet 15a of the dynamic pressure generation groove 15 (illustrated by a white arrow), and a negative pressure is unlikely to be generated at the location.
- the sealed fluid F is continuously supplied to the dynamic pressure generation groove 15, a high pressure can be generated from the closed end 15b of the dynamic pressure generation groove 15, and cavitation due to insufficient supply of the sealed fluid F occurs. Generation is suppressed, and it has excellent lubricity.
- the sealed fluid F is statically supplied from the outside through the inlet 16a to the deep groove 16 which is open to the sealed fluid F side, the deep groove 16 is provided in the vicinity of the inlet 15a of the dynamic pressure generation groove 15.
- the sealed fluid F can be continuously supplied.
- the deep groove 16 communicates with the dynamic pressure generating groove 15 which is a shallow groove at a diagonal of the tip portion 15h of the closed end 15b of the dynamic pressure generating groove 15. Therefore, the inlet 16a of the deep groove 16 located diagonally to the tip portion 15h of the closed end 15b where the highest pressure is generated is a place where the lowest pressure is likely to be generated, and the inlet 15a of the dynamic pressure generating groove 15 is generated. It is possible to most efficiently suppress the generation of a small pressure in and to suppress the occurrence of cavitation due to the insufficient supply amount of the sealed fluid F.
- the deep groove 16 communicates with the dynamic pressure generating groove 15 in the radial direction, the deep groove 16 is covered in a wide range in the radial direction with respect to the side opposite to the closed end 15b at the inlet 15a of the dynamic pressure generating groove 15 in the radial direction.
- the sealed fluid F can be supplied, and the generation of negative pressure can be effectively prevented.
- the deep groove 16 is formed to be shorter in the radial direction than the dynamic pressure generating groove 15, while ensuring a sufficient radial position in the dynamic pressure generating groove 15 to generate dynamic pressure necessary for lubricity, Even if the deep groove 16 is formed, the original function of the dynamic pressure generating groove 15 is unlikely to be affected.
- the deep groove 16 includes side walls 16c and 16d that extend in parallel in the radial direction and are opposed to each other, and the internal space thereof is sandwiched between the side walls 16c and 16d that are opposed to each other in the circumferential direction of the sliding surface S. Moreover, the sealed fluid F can be easily held, and the sealed fluid F can be stably supplied to the dynamic pressure generation groove 15.
- the width of the inlet 16a of the deep groove 16 is smaller than the width of the inlet 15a of the dynamic pressure generating groove 15.
- the width of the inlet 16a of the deep groove 16 is preferably half or less of the width of the inlet 15a of the dynamic pressure generating groove 15, and is about 1 ⁇ 5 in this embodiment.
- the depth of the deep groove 16 is 10 times or more the depth of the dynamic pressure generating groove 15. According to this, since the deep groove 16 is a deep groove having a small width, the rotary seal ring 3 and the stationary seal ring 6 are secured while ensuring the size of the internal space of the deep groove sufficient to hold the sealed fluid F. At the time of relative rotation with respect to, only the surface layer moves the sealed fluid F due to the shearing force between the sliding surfaces S, and the deep groove 16 as a whole has a high pressure due to the shearing force between the sliding surfaces S. Hard to occur.
- the deep groove 16 is formed so that the width in the circumferential direction is shorter than the length in the radial direction. According to this, since the circumferential direction of the deep groove 16 is shortened, dynamic pressure due to relative rotation of the rotary seal ring 3 and the stationary seal ring 6 is less likely to be generated in the deep groove 16, and the sealed fluid F is easily retained in the deep groove 16. ..
- the inlet 16a of the deep groove 16 and the inlet 15a of the dynamic pressure generating groove 15 communicate with each other. That is, while the sealed fluid F is stably supplied from the deep groove 16 to the dynamic pressure generation groove 15, the inlet 15a of the dynamic pressure generation groove 15 which is a shallow groove is opened to the sealed fluid F side. It is possible to form the dynamic pressure generating groove 15 with a length sufficient to efficiently generate a high pressure due to the shearing force between the sliding surfaces S.
- the dynamic pressure generating groove 15 and the deep groove 16 are described as being formed on the sliding surface S of the stationary seal ring 6, but not limited to this, the sliding surface S of the rotary seal ring 3 is not limited to this. May be formed in.
- the dynamic pressure generating groove 15 is not limited to a linear shape, but has, for example, a curved shape composed of a component extending in the circumferential direction and a component extending in the radial direction. Of these, the component extending in the circumferential direction is large, and the outer circumference of the stationary seal ring 6 is large. It may be formed to be convex toward the edge side.
- the dynamic pressure generating groove 15 may have a linear shape in the radial direction as long as the dynamic pressure does not easily rise at the closed end 15b when the rotary machine is driven.
- the fluids existing on the sealed fluid side and the leak side of the sliding surface S may have the same pressure.
- the deep groove 16 is communicated in parallel in the radial direction along the side wall 15c of the dynamic pressure generation groove 15, but the deep groove 16 is connected to the side wall 15d of the dynamic pressure generation groove 15 where the dynamic pressure is generated. Is not limited to the above configuration as long as it is located on the side wall 15c side opposite to the circumferential direction.
- the deep groove 26 has an inlet 26a at the inlet of the dynamic pressure generating groove 25 on the side wall 25c side in the circumferential direction opposite to the dynamic pressure generating wall 25d from the center thereof. It suffices that it be provided, and it may be arranged within the width direction of the dynamic pressure generation groove 25.
- Modification 2 shown in FIG. 7 it may be applied to an outside type which is a type in which a fluid that leaks from the inner peripheral side of the sliding surface S toward the outer peripheral side is sealed.
- the inlet 35a and the inlet 36a communicate with the inner peripheral side of the sliding surface S.
- the inlet 46 a of the deep groove 46 communicates with the inlet 45 a of the dynamic pressure generating groove 45. Further, the deep groove 46 extends in a direction different from the inclination direction of the dynamic pressure generating groove 45, and the closed end 46 b and the side wall 46 c thereof are formed apart from the side wall 45 c of the dynamic pressure generating groove 45.
- the deep groove 46 and the dynamic pressure generating groove 45 communicate with each other only in the inlet 46a and in the vicinity of the inlet 45a, when the rotary seal ring 3 and the stationary seal ring 6 rotate relative to each other, Since the movement of the sealed fluid F that occurs in step 4 has little influence on the deep groove 46, the sealed fluid F can be easily retained in the deep groove 46, and the sealed fluid F can be stably held in the dynamic pressure generation groove 45. Can be supplied.
- the sliding parts in the above embodiments have been described as an example of the case of forming a mechanical seal, the present invention is not limited to this, and can be used for a thrust bearing, for example.
- the deep groove is not limited to the structure in which the width is the same from the entrance to the closed end, and may be, for example, a structure in which the width gradually narrows from the entrance to the closed end.
- the deep groove is not limited to the structure formed with the same depth from the inlet to the closed end, and may have a structure in which the depth gradually decreases from the inlet to the closed end, for example.
- a plurality of deep grooves may be formed in the circumferential direction as long as the inlet communicates with the dynamic pressure generating groove.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Sealing (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
回転機械の相対回転する箇所に配置される環状の摺動部品であって、
前記摺動部品の摺動面には、一端が閉塞端を成し他端が径方向の被密封流体側と漏れ側のいずれか一方側に連通する入口をなす動圧発生溝が設けられ、
前記摺動面には、該動圧発生溝を構成する両側壁のうち一方側を構成する動圧生成壁とは周方向反対の側壁側において、前記動圧発生溝よりも深い深溝の入口が前記動圧発生溝の入口に連通して形成されている。
これによれば、摺動部品の相対回転時に動圧発生溝において最も低い圧力が生成されやすい箇所は、動圧発生溝の入口における、動圧発生溝を構成する両側壁のうち一方側を構成する動圧生成壁とは周方向反対の側壁側であり、この箇所に深溝の入口を連通させたことで、この深溝から動圧発生溝へ流体が十分に供給され、当該箇所に負圧が生じにくい。そのため、動圧発生溝に連続的に流体が供給され、動圧発生溝の閉塞端から所期の圧力を発生させることができ、潤滑性に優れる。
これによれば、深溝が動圧発生溝の動圧を発生させる機能に影響しにくくしながら、深溝から動圧発生溝への流入面積を広く確保できる。
これによれば、深溝の内部空間は摺動面の周方向において対向する壁部に挟まれていることから、深溝内に被密封流体を保持しやすく、動圧発生溝に対して被密封流体を安定して供給することができる。
これによれば、深溝の周方向を短くすることで深溝において摺動部品の相対回転による動圧が発生しにくく、深溝内に被密封流体を保持しやすい。
これによれば、摺動部品の相対回転時において動圧発生溝への被密封流体の導入と動圧発生溝の入口近傍への負圧の発生抑止とを確実に両立できる。
これによれば、深溝の容積が大きく、摺動部品の相対回転時に、深溝部から動圧発生溝に充分な量の被密封流体が供給される。
2 スリーブ
3 回転密封環(摺動部品)
4 ハウジング
5 シールカバー
6 静止密封環(摺動部品)
7 付勢手段
11 入口
15 動圧発生溝
15a 動圧発生溝入口
15b 閉塞端
15c 側壁
15d 側壁(動圧生成壁)
15e 底面
15f 壁
15h 先端部
16 深溝
16a 深溝入口
16b 閉塞端
16c 側壁
16d 側壁
16e 底面
20 ランド部
25 動圧発生溝
26 深溝
35 動圧発生溝
36 深溝
45 動圧発生溝
46 深溝
46b 閉塞端
S 摺動面
Claims (6)
- 回転機械の相対回転する箇所に配置される環状の摺動部品であって、
前記摺動部品の摺動面には、一端が閉塞端を成し他端が径方向の被密封流体側と漏れ側のいずれか一方側に連通する入口をなす動圧発生溝が設けられ、
前記摺動面には、該動圧発生溝を構成する両側壁のうち一方側を構成する動圧生成壁とは周方向反対の側壁側において、前記動圧発生溝よりも深い深溝の入口が前記動圧発生溝の入口に連通して形成されている摺動部品。 - 前記深溝は径方向において前記動圧発生溝の前記動圧生成壁とは周方向反対の側壁に沿って該動圧発生溝に連通されているとともに、該側壁よりも径方向に短い請求項1に記載の摺動部品。
- 前記深溝は径方向に延びて対向する壁部を備えている請求項1または2に記載の摺動部品。
- 前記深溝は周方向の幅が径方向の長さよりも短く形成されている請求項1ないし3のいずれかに記載の摺動部品。
- 前記深溝の入口の幅は前記動圧発生溝の入口の幅の半分以下である請求項1ないし4のいずれかに記載の摺動部品。
- 前記深溝の深さは前記動圧発生溝の深さの10倍以上である請求項1ないし5のいずれかに記載の摺動部品。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217028347A KR102639196B1 (ko) | 2019-02-14 | 2020-02-12 | 슬라이딩 부품 |
CN202080012994.2A CN113490796A (zh) | 2019-02-14 | 2020-02-12 | 滑动部件 |
US17/428,909 US11933405B2 (en) | 2019-02-14 | 2020-02-12 | Sliding component |
JP2020572263A JP7370681B2 (ja) | 2019-02-14 | 2020-02-12 | 摺動部品 |
EP20756664.7A EP3926186B1 (en) | 2019-02-14 | 2020-02-12 | Sliding component |
CN202310935058.4A CN117432709A (zh) | 2019-02-14 | 2020-02-12 | 滑动部件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-024901 | 2019-02-14 | ||
JP2019024901 | 2019-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020166590A1 true WO2020166590A1 (ja) | 2020-08-20 |
Family
ID=72045557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005260 WO2020166590A1 (ja) | 2019-02-14 | 2020-02-12 | 摺動部品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11933405B2 (ja) |
EP (1) | EP3926186B1 (ja) |
JP (1) | JP7370681B2 (ja) |
KR (1) | KR102639196B1 (ja) |
CN (2) | CN113490796A (ja) |
WO (1) | WO2020166590A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023182056A1 (ja) * | 2022-03-24 | 2023-09-28 | イーグル工業株式会社 | 摺動部品 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0144492B2 (ja) | 1980-07-21 | 1989-09-28 | Dainippon Printing Co Ltd | |
JPH02236067A (ja) * | 1989-03-03 | 1990-09-18 | Nippon Pillar Packing Co Ltd | 端面非接触形メカニカルシール |
JP2012002295A (ja) * | 2010-06-17 | 2012-01-05 | Canon Machinery Inc | 平面摺動機構 |
JP2016080090A (ja) * | 2014-10-17 | 2016-05-16 | イーグル工業株式会社 | メカニカルシール |
WO2018105505A1 (ja) * | 2016-12-07 | 2018-06-14 | イーグル工業株式会社 | しゅう動部品 |
Family Cites Families (175)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS366305B1 (ja) | 1960-03-31 | 1961-05-30 | ||
US3085808A (en) | 1960-05-17 | 1963-04-16 | Worthington Corp | Mechanical seal with controlled leakage |
US3232680A (en) | 1963-08-19 | 1966-02-01 | Whittaker Corp | Fluid bearing |
US3410565A (en) | 1966-07-27 | 1968-11-12 | Worthington Corp | Centrifugal and face contact seal |
FR1505487A (fr) | 1966-10-28 | 1967-12-15 | Guinard Pompes | Perfectionnement aux joints tournants à régulation de fuite |
US3466052A (en) | 1968-01-25 | 1969-09-09 | Nasa | Foil seal |
US3499653A (en) | 1968-06-05 | 1970-03-10 | Crane Packing Co | Rotary mechanical seal of the gap type |
US3656227A (en) | 1970-03-26 | 1972-04-18 | Gen Motors Corp | Method of making a mold for bidirectional hydrodynamic shaft seals |
US3675935A (en) | 1970-07-13 | 1972-07-11 | Nasa | Spiral groove seal |
US3782737A (en) | 1970-07-13 | 1974-01-01 | Nasa | Spiral groove seal |
US3804424A (en) | 1972-04-24 | 1974-04-16 | Crane Packing Co | Gap seal with thermal and pressure distortion compensation |
JPS4933614A (ja) | 1972-07-24 | 1974-03-28 | ||
NL7213192A (ja) | 1972-09-29 | 1974-04-02 | ||
US3855624A (en) | 1973-08-15 | 1974-12-17 | Philips Corp | Grooved air bearing head |
DE2504204C3 (de) | 1975-02-01 | 1981-11-12 | Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt | Selbstdruckerzeugendes Axialgleitlager |
JPS5271858U (ja) | 1975-11-25 | 1977-05-28 | ||
JPS5477305A (en) | 1977-12-02 | 1979-06-20 | Hitachi Constr Mach Co Ltd | Compound pump motor |
JPS57146955A (en) | 1981-03-06 | 1982-09-10 | Shinsaku Kaguchi | Sealing device for rotary member |
JPS58109771A (ja) | 1981-12-23 | 1983-06-30 | Eagle Ind Co Ltd | 非接触型メカニカルシ−ル |
US4486026A (en) | 1982-02-10 | 1984-12-04 | Nippon Seiko K.K. | Sealing and bearing means by use of ferrofluid |
JPS58137667A (ja) | 1982-02-10 | 1983-08-16 | Nippon Seiko Kk | 磁性流体シ−ル |
DE3223703C2 (de) | 1982-06-25 | 1984-05-30 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen | Gasgesperrte Wellendichtung mit radialem Dichtspalt |
JPS5958252A (ja) | 1982-09-29 | 1984-04-03 | Honda Motor Co Ltd | Vベルト伝動装置 |
US4406466A (en) | 1982-11-29 | 1983-09-27 | Elliott Turbomachinery Co., Inc. | Gas lift bearing and oil seal |
JPS60107461A (ja) | 1983-11-15 | 1985-06-12 | Jidosha Kiki Co Ltd | 動力舵取装置の制御方法 |
JPH06100642B2 (ja) | 1984-09-29 | 1994-12-12 | 株式会社東芝 | 光応用磁界センサ |
US4645414A (en) | 1985-06-07 | 1987-02-24 | General Motors Corporation | Combined vacuum pump, bearing and seal assembly |
JPS6237572A (ja) | 1985-08-12 | 1987-02-18 | Ebara Res Co Ltd | 軸封装置 |
DE3619489A1 (de) | 1986-06-10 | 1987-12-17 | Gutehoffnungshuette Man | Wellendichtung |
JPS6333027A (ja) | 1986-07-28 | 1988-02-12 | Nippon Hoso Kyokai <Nhk> | 音声デジタル信号伝送方式 |
CH677266A5 (ja) | 1986-10-28 | 1991-04-30 | Pacific Wietz Gmbh & Co Kg | |
US5246295A (en) | 1991-10-30 | 1993-09-21 | Ide Russell D | Non-contacting mechanical face seal of the gap-type |
JPH0620155Y2 (ja) | 1987-09-11 | 1994-05-25 | シチズン時計株式会社 | 時計の時刻修正機構 |
JPH01133572A (ja) | 1987-11-16 | 1989-05-25 | Sanyo Electric Co Ltd | 単相周波数変換回路 |
GB2231105B (en) | 1989-04-24 | 1993-04-14 | Sealol | Drained face seal |
JPH0314371A (ja) | 1989-06-13 | 1991-01-23 | Fuji Photo Film Co Ltd | ビデオカメラの映像動揺補正装置 |
JPH0335372A (ja) | 1989-06-30 | 1991-02-15 | Mita Ind Co Ltd | 画像判別装置 |
JP2554542B2 (ja) | 1989-07-06 | 1996-11-13 | 株式会社 藤井合金製作所 | ガスコックの製造方法 |
JPH0341267A (ja) | 1989-07-07 | 1991-02-21 | Mitsuwa Gas Kiki Kk | 鋳鉄製ガスコックの製造方法 |
JPH0660691B2 (ja) | 1990-04-17 | 1994-08-10 | イーグル工業株式会社 | 両回転式準接触メカニカルシール及びリング摺動面の溝加工方法 |
US5492341A (en) | 1990-07-17 | 1996-02-20 | John Crane Inc. | Non-contacting, gap-type seal having a ring with a patterned seal face |
JPH0496671A (ja) | 1990-08-11 | 1992-03-30 | Omron Corp | ハーモニックドライブ型静電モータ |
JPH04145267A (ja) | 1990-10-08 | 1992-05-19 | Ebara Corp | 非接触端面シール |
GB9103217D0 (en) | 1991-02-15 | 1991-04-03 | Crane John Uk Ltd | Mechanical face seals |
JPH0590048A (ja) | 1991-09-25 | 1993-04-09 | Nissin Electric Co Ltd | ガス絶縁開閉装置用電圧変成器 |
DE4303237A1 (de) | 1992-02-06 | 1993-10-21 | Eagle Ind Co Ltd | Gasdichtung |
US5201531A (en) | 1992-04-02 | 1993-04-13 | John Crane Inc. | Face seal with double spiral grooves |
JPH0769019B2 (ja) | 1992-05-18 | 1995-07-26 | 日本ピラー工業株式会社 | 非接触形メカニカルシール |
GB9214282D0 (en) | 1992-07-04 | 1992-08-19 | Crane John Uk Ltd | Seals |
US5501470A (en) | 1992-12-11 | 1996-03-26 | Nippon Pillar Packing Co., Ltd. | Non-contacting shaft sealing device with grooved face pattern |
US5441283A (en) | 1993-08-03 | 1995-08-15 | John Crane Inc. | Non-contacting mechanical face seal |
KR100320312B1 (ko) | 1993-09-01 | 2002-04-22 | 추후보정 | 경사, 환상 그로브를 가진 면실링체 |
US5498007A (en) | 1994-02-01 | 1996-03-12 | Durametallic Corporation | Double gas barrier seal |
DE4407453A1 (de) | 1994-03-05 | 1995-09-07 | Albrecht Dipl Ing Kayser | Gas- und öldichtes Spiralnuten-Axiallager |
JP2563081B2 (ja) | 1994-03-22 | 1996-12-11 | 日本ピラー工業株式会社 | 非接触形軸封装置 |
JP3387236B2 (ja) | 1994-09-22 | 2003-03-17 | 株式会社島津製作所 | 生体磁気計測装置 |
JPH09329247A (ja) | 1996-06-11 | 1997-12-22 | Ebara Corp | 非接触端面シール |
JP2999415B2 (ja) | 1996-07-24 | 2000-01-17 | 日本ピラー工業株式会社 | メカニカルシール |
JPH10281299A (ja) | 1997-04-11 | 1998-10-23 | Mitsubishi Heavy Ind Ltd | メカニカルシール装置 |
US5895051A (en) | 1997-07-16 | 1999-04-20 | Freudenberg-Nok General Partnership | Noise abating beads on a rack seal |
JPH1151043A (ja) | 1997-08-05 | 1999-02-23 | Seiko Instr Inc | 流体動圧軸受、この軸受を有するスピンドルモータ、及びこのモータを備えた回転体装置 |
US6142478A (en) | 1998-02-06 | 2000-11-07 | John Crane Inc. | Gas lubricated slow speed seal |
PL187630B1 (pl) | 1998-12-10 | 2004-08-31 | Anga Uszczelnienia Mechaniczne | Pierścień ślizgowy uszczelnienia mechanicznego czołowego bezstykowego |
JP4075170B2 (ja) | 1998-12-17 | 2008-04-16 | 松下電器産業株式会社 | 動圧軸受装置及びそれを使用したスピンドルモータ |
US6189896B1 (en) | 1999-04-08 | 2001-02-20 | Caterpillar Inc. | Controlled leakage rotating seal ring with elements for receiving and holding a lubricant on a face thereof |
JP2001295833A (ja) | 2000-04-18 | 2001-10-26 | Matsushita Electric Ind Co Ltd | スラスト動圧軸受 |
JP2001317638A (ja) | 2000-05-02 | 2001-11-16 | Mitsubishi Heavy Ind Ltd | シール構造体および圧縮機 |
US7044470B2 (en) | 2000-07-12 | 2006-05-16 | Perkinelmer, Inc. | Rotary face seal assembly |
US6446976B1 (en) | 2000-09-06 | 2002-09-10 | Flowserve Management Company | Hydrodynamic face seal with grooved sealing dam for zero-leakage |
CN2460801Y (zh) | 2001-01-18 | 2001-11-21 | 王玉明 | 可双向旋转的螺旋槽端面密封装置 |
CN1167890C (zh) | 2001-01-18 | 2004-09-22 | 王玉明 | 可双向旋转的螺旋槽端面密封装置 |
JP3984462B2 (ja) | 2001-11-26 | 2007-10-03 | 日本電産株式会社 | 動圧軸受装置 |
CN2534429Y (zh) | 2001-12-27 | 2003-02-05 | 中国石油天然气股份有限公司 | 双列同向流体动压槽上游泵送机械密封 |
US6902168B2 (en) | 2002-03-19 | 2005-06-07 | Eagle Industry Co., Ltd. | Sliding element |
JP4495402B2 (ja) | 2002-03-19 | 2010-07-07 | イーグル工業株式会社 | 摺動部品 |
JP4205910B2 (ja) | 2002-04-02 | 2009-01-07 | イーグル工業株式会社 | 摺動部品 |
ATE414176T1 (de) | 2002-07-18 | 2008-11-15 | Univ Washington | Schnelle, effiziente reinigung von hsv- spezifischen t-lymphozyten und damit identifizierte hsv-antigene |
CN100427816C (zh) | 2002-09-20 | 2008-10-22 | 徐万福 | 一种由角形微槽族组成的螺旋槽端面机械密封 |
JP4316956B2 (ja) | 2002-10-23 | 2009-08-19 | イーグル工業株式会社 | 摺動部品 |
US7540664B2 (en) | 2003-01-21 | 2009-06-02 | Seagate Technology Llc | Grooves on both the moving and the stationary mating fluid dynamic bearing surfaces for performance enhancement |
JP4188177B2 (ja) | 2003-08-08 | 2008-11-26 | 株式会社共立 | 携帯式刈払機 |
US7160031B2 (en) | 2003-11-20 | 2007-01-09 | Matsushita Electric Industrial Co., Ltd. | Thrust dynamic pressure bearing, spindle motor using the same, and information recording and reproducing apparatus using them |
JP4719414B2 (ja) | 2003-12-22 | 2011-07-06 | イーグル工業株式会社 | 摺動部品 |
JP2005188651A (ja) | 2003-12-25 | 2005-07-14 | Yamada Seisakusho Co Ltd | ウォーターポンプにおけるメカニカルシール |
JP3872500B2 (ja) | 2004-02-18 | 2007-01-24 | セイコーインスツル株式会社 | 流体動圧軸受、モータおよび記録媒体駆動装置 |
GB2413603A (en) | 2004-04-30 | 2005-11-02 | Corac Group Plc | A dry gas seal assembly |
JP4700394B2 (ja) | 2004-05-12 | 2011-06-15 | ミネベア株式会社 | 流体動圧軸受、該流体動圧軸受を備えたスピンドルモータ並びに記録ディスク駆動装置 |
JP2006009828A (ja) | 2004-06-22 | 2006-01-12 | Citizen Fine Tech Co Ltd | 動圧流体軸受装置 |
JP4322747B2 (ja) | 2004-07-06 | 2009-09-02 | イーグル工業株式会社 | シール装置 |
JP4262656B2 (ja) | 2004-09-10 | 2009-05-13 | 日本ピラー工業株式会社 | 非接触型シール装置 |
KR100630709B1 (ko) | 2004-11-03 | 2006-10-02 | 삼성전자주식회사 | 유체 동압 베어링 및 이를 채용한 하드 디스크 드라이브 |
US7744094B2 (en) | 2004-11-09 | 2010-06-29 | Eagle Industry Co., Ltd. | Mechanical seal device |
US7780399B1 (en) | 2006-01-12 | 2010-08-24 | Stein Seal Company | Reverse pressure double dam face seal |
US8162322B2 (en) | 2006-10-25 | 2012-04-24 | Rexnord Industries, Llc | Hydrodynamic seal with circumferentially varying lift force |
JP2008144864A (ja) | 2006-12-11 | 2008-06-26 | Nok Corp | スラスト軸受 |
US7770895B2 (en) | 2007-05-01 | 2010-08-10 | Eaton Corporation | Segmented seal portion and assembly |
EP2230425B1 (en) | 2008-01-11 | 2014-04-02 | Eagle Industry Co., Ltd. | Mechanical seal sliding member, and mechanical seal |
JP2009250378A (ja) | 2008-04-08 | 2009-10-29 | Eagle Ind Co Ltd | 液体用のメカニカルシール装置 |
US8205891B2 (en) | 2008-09-15 | 2012-06-26 | Stein Seal Company | Intershaft seal assembly |
JP2010133496A (ja) | 2008-12-04 | 2010-06-17 | Eagle Ind Co Ltd | 摺動部品 |
JP5367423B2 (ja) * | 2009-03-17 | 2013-12-11 | イーグル工業株式会社 | シール装置 |
CN201582390U (zh) | 2009-09-08 | 2010-09-15 | 江苏大学 | 一种径向螺旋槽内径端加开周向贯通槽的新型机械密封环 |
JP5271858B2 (ja) | 2009-09-29 | 2013-08-21 | アイシン精機株式会社 | メカニカルシール及び液体ポンプ |
CN101749431B (zh) | 2010-01-28 | 2013-07-31 | 浙江工业大学 | 珍珠链状的圆环槽环带端面机械密封结构 |
WO2011105513A1 (ja) * | 2010-02-26 | 2011-09-01 | Nok株式会社 | シールリング |
JP5518527B2 (ja) | 2010-03-04 | 2014-06-11 | イーグル工業株式会社 | 摺動部品 |
CN101776152B (zh) | 2010-03-05 | 2013-08-21 | 北京化工大学 | 外加压式动静压气体润滑密封装置 |
JP5583440B2 (ja) | 2010-03-18 | 2014-09-03 | イーグル工業株式会社 | メカニカルシールの摺動材及びメカニカルシール |
EP2626604B1 (en) | 2010-10-06 | 2019-06-12 | Eagle Industry Co., Ltd. | Sliding part |
US9039013B2 (en) * | 2011-05-04 | 2015-05-26 | United Technologies Corporation | Hydrodynamic non-contacting seal |
CN103635728B (zh) | 2011-07-01 | 2017-07-07 | 伊顿公司 | 勺形流体动力密封装置 |
JP5936079B2 (ja) | 2011-08-05 | 2016-06-15 | イーグル工業株式会社 | メカニカルシール |
EP2754930B1 (en) | 2011-09-10 | 2017-06-14 | Eagle Industry Co., Ltd. | Sliding component |
JP5886089B2 (ja) * | 2011-10-19 | 2016-03-16 | 能美防災株式会社 | 防災設備 |
JP6076985B2 (ja) * | 2012-08-04 | 2017-02-08 | イーグル工業株式会社 | 摺動部品 |
EP2902677B1 (en) | 2012-09-29 | 2018-08-22 | Eagle Industry Co., Ltd. | Sliding part |
EP2910823A4 (en) | 2012-10-19 | 2016-05-18 | Eagleburgmann Japan Co Ltd | bellows seal |
WO2014103631A1 (ja) | 2012-12-25 | 2014-07-03 | イーグル工業株式会社 | 摺動部品 |
US9151389B2 (en) | 2012-12-25 | 2015-10-06 | Eagle Industry Co., Ltd. | Sliding component |
JP6211009B2 (ja) | 2013-01-16 | 2017-10-11 | イーグル工業株式会社 | 摺動部品 |
US9574666B2 (en) | 2013-01-23 | 2017-02-21 | Flowserve Management Company | Mechanical face seal with a reverse trapezoidal face pattern |
CN104685273B (zh) | 2013-03-14 | 2016-07-06 | 日本伊格尔博格曼有限公司 | 机械密封装置 |
EP2977655B1 (en) | 2013-03-17 | 2018-07-18 | Eagle Industry Co., Ltd. | Sliding part |
CN104769340B (zh) | 2013-03-17 | 2016-08-24 | 伊格尔工业股份有限公司 | 滑动部件 |
JP6224087B2 (ja) | 2013-04-24 | 2017-11-01 | イーグル工業株式会社 | 摺動部品 |
CN103267132B (zh) | 2013-05-28 | 2015-08-05 | 南京林业大学 | 自泵送流体动压型机械密封 |
CN105683632B (zh) | 2013-11-22 | 2017-07-07 | 伊格尔工业股份有限公司 | 滑动部件 |
AU2014362550B2 (en) | 2013-12-09 | 2017-06-08 | Eagle Industry Co., Ltd. | Sliding component |
CN105793628B (zh) * | 2013-12-09 | 2018-02-02 | 伊格尔工业股份有限公司 | 滑动部件 |
EP3098486B1 (en) | 2014-01-24 | 2020-03-11 | NOK Corporation | Sealing ring |
CN103791097A (zh) | 2014-02-28 | 2014-05-14 | 江苏大学 | 一种自动排泄颗粒的组合流体动压槽机械密封 |
CN104019237B (zh) | 2014-05-29 | 2016-12-07 | 浙江工业大学 | 深槽环带动压型端面机械密封结构 |
US9353865B2 (en) | 2014-06-03 | 2016-05-31 | Thermo King Corporation | Mechanical face seal |
CN107687516A (zh) | 2014-06-10 | 2018-02-13 | Nok株式会社 | 密封装置 |
EP3163133B1 (en) | 2014-06-26 | 2020-02-12 | Eagle Industry Co., Ltd. | Sliding component |
EP2975306B1 (en) | 2014-07-18 | 2017-06-14 | LEONARDO S.p.A. | Sealing ring |
CN104165229A (zh) | 2014-07-30 | 2014-11-26 | 浙江工业大学 | 液体润滑圆环槽端面机械密封结构 |
EP3190317B1 (en) | 2014-09-04 | 2022-02-09 | Eagle Industry Co., Ltd. | Mechanical seal |
CN107110370B (zh) | 2014-11-08 | 2019-09-13 | 伊格尔工业股份有限公司 | 滑动部件 |
EP3252354A4 (en) | 2015-01-31 | 2018-10-17 | Eagle Industry Co., Ltd. | Sliding part |
JP6245406B2 (ja) | 2015-03-16 | 2017-12-13 | Nok株式会社 | シールリング |
CN107407417B (zh) | 2015-03-16 | 2019-11-01 | Nok株式会社 | 密封环 |
US10704417B2 (en) | 2015-04-15 | 2020-07-07 | Eagle Industry Co., Ltd. | Sliding component having fluid introduction groove and dynamic pressure generation groove |
EP3299685B1 (en) | 2015-05-19 | 2020-02-19 | Eagle Industry Co., Ltd. | Sliding component |
KR102049272B1 (ko) | 2015-05-20 | 2019-11-28 | 이구루코교 가부시기가이샤 | 슬라이딩 부품 |
US10337620B2 (en) | 2015-05-21 | 2019-07-02 | Eagle Industry Co., Ltd. | Sliding component |
CN107735604B (zh) * | 2015-06-15 | 2023-04-11 | 伊格尔工业股份有限公司 | 滑动部件 |
WO2017002691A1 (ja) | 2015-06-27 | 2017-01-05 | イーグル工業株式会社 | 摺動部品 |
EP3318784B1 (en) | 2015-06-30 | 2020-07-01 | Eagle Industry Co., Ltd. | Seal device |
WO2018034197A1 (ja) | 2016-08-15 | 2018-02-22 | イーグル工業株式会社 | 摺動部品 |
CN206017723U (zh) | 2016-09-14 | 2017-03-15 | 中国石油大学(华东) | 包络线型液体润滑端面机械密封结构 |
EP3514414B1 (en) | 2016-09-14 | 2021-11-03 | Eagle Industry Co., Ltd. | Mechanical seal |
US11009130B2 (en) | 2016-10-14 | 2021-05-18 | Eagle Industry Co., Ltd. | Sliding component |
CN106439037B (zh) * | 2016-11-18 | 2018-06-29 | 西华大学 | 具有组合槽端面的密封环及机械密封装置 |
JP7139067B2 (ja) | 2017-01-30 | 2022-09-20 | イーグル工業株式会社 | 摺動部品 |
US11009072B2 (en) | 2017-01-30 | 2021-05-18 | Eagle Industry Co., Ltd | Sliding component |
CN107166036B (zh) | 2017-06-21 | 2018-09-21 | 浙江工业大学 | 一种低泄漏螺旋槽液膜机械密封端面结构 |
JP7154692B2 (ja) | 2017-07-04 | 2022-10-18 | イーグル工業株式会社 | メカニカルシール |
JP2019013446A (ja) | 2017-07-06 | 2019-01-31 | シャープ株式会社 | 加熱調理器 |
CN111033066B (zh) | 2017-08-28 | 2021-07-06 | 伊格尔工业股份有限公司 | 滑动部件 |
WO2019049847A1 (ja) | 2017-09-05 | 2019-03-14 | イーグル工業株式会社 | 摺動部品 |
JP7179430B2 (ja) * | 2018-01-12 | 2022-11-29 | イーグル工業株式会社 | 摺動部品 |
CN108506494B (zh) | 2018-04-23 | 2020-03-17 | 西安交通大学 | 一种仿鱼骨型干气密封结构 |
JP7210566B2 (ja) | 2018-05-17 | 2023-01-23 | イーグル工業株式会社 | シールリング |
EP3816487B1 (en) | 2018-05-17 | 2024-08-21 | Eagle Industry Co., Ltd. | Seal ring |
CN112088268B (zh) | 2018-05-17 | 2023-06-23 | 伊格尔工业股份有限公司 | 密封环 |
EP3816490B1 (en) | 2018-05-17 | 2024-11-06 | Eagle Industry Co., Ltd. | Seal ring |
JP7292811B2 (ja) * | 2018-11-30 | 2023-06-19 | イーグル工業株式会社 | 摺動部品 |
US20220099189A1 (en) * | 2019-02-04 | 2022-03-31 | Eagle Industry Co., Ltd. | Sliding component |
EP3922871B1 (en) | 2019-02-04 | 2024-01-24 | Eagle Industry Co., Ltd. | Sliding component |
US11767916B2 (en) * | 2019-02-14 | 2023-09-26 | Eagle Industry Co., Ltd. | Sliding components |
WO2020166588A1 (ja) | 2019-02-15 | 2020-08-20 | イーグル工業株式会社 | 摺動部品 |
US20220145992A1 (en) | 2019-03-22 | 2022-05-12 | Eagle Industry Co., Ltd. | Sliding component |
EP4006368B1 (en) | 2019-07-26 | 2024-10-09 | Eagle Industry Co., Ltd. | Sliding component |
KR20230025880A (ko) | 2020-07-06 | 2023-02-23 | 이구루코교 가부시기가이샤 | 슬라이딩 부품 |
-
2020
- 2020-02-12 EP EP20756664.7A patent/EP3926186B1/en active Active
- 2020-02-12 WO PCT/JP2020/005260 patent/WO2020166590A1/ja unknown
- 2020-02-12 US US17/428,909 patent/US11933405B2/en active Active
- 2020-02-12 CN CN202080012994.2A patent/CN113490796A/zh active Pending
- 2020-02-12 JP JP2020572263A patent/JP7370681B2/ja active Active
- 2020-02-12 CN CN202310935058.4A patent/CN117432709A/zh active Pending
- 2020-02-12 KR KR1020217028347A patent/KR102639196B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0144492B2 (ja) | 1980-07-21 | 1989-09-28 | Dainippon Printing Co Ltd | |
JPH02236067A (ja) * | 1989-03-03 | 1990-09-18 | Nippon Pillar Packing Co Ltd | 端面非接触形メカニカルシール |
JP2012002295A (ja) * | 2010-06-17 | 2012-01-05 | Canon Machinery Inc | 平面摺動機構 |
JP2016080090A (ja) * | 2014-10-17 | 2016-05-16 | イーグル工業株式会社 | メカニカルシール |
WO2018105505A1 (ja) * | 2016-12-07 | 2018-06-14 | イーグル工業株式会社 | しゅう動部品 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023182056A1 (ja) * | 2022-03-24 | 2023-09-28 | イーグル工業株式会社 | 摺動部品 |
Also Published As
Publication number | Publication date |
---|---|
EP3926186C0 (en) | 2024-08-21 |
EP3926186B1 (en) | 2024-08-21 |
US20220128092A1 (en) | 2022-04-28 |
JP7370681B2 (ja) | 2023-10-30 |
EP3926186A4 (en) | 2022-11-16 |
JPWO2020166590A1 (ja) | 2021-12-09 |
KR20210114544A (ko) | 2021-09-23 |
KR102639196B1 (ko) | 2024-02-21 |
CN117432709A (zh) | 2024-01-23 |
CN113490796A (zh) | 2021-10-08 |
EP3926186A1 (en) | 2021-12-22 |
US11933405B2 (en) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7179430B2 (ja) | 摺動部品 | |
US11619308B2 (en) | Sliding components | |
WO2020196145A1 (ja) | 摺動部品 | |
KR102682943B1 (ko) | 슬라이딩 부품 | |
WO2020162025A1 (ja) | 摺動部品 | |
WO2020171102A1 (ja) | 摺動部品 | |
WO2020166590A1 (ja) | 摺動部品 | |
WO2020209258A1 (ja) | 摺動部品 | |
WO2023286590A1 (ja) | 摺動部品 | |
WO2023027102A1 (ja) | 摺動部品 | |
US20240209891A1 (en) | Sliding component | |
JP7350449B2 (ja) | メカニカルシール | |
WO2024004657A1 (ja) | 摺動部品 | |
WO2020218286A1 (ja) | 摺動部品 | |
WO2022190944A1 (ja) | 摺動部品 | |
JP2020153468A (ja) | 摺動部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20756664 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020572263 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217028347 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020756664 Country of ref document: EP Effective date: 20210914 |