WO2019124361A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019124361A1
WO2019124361A1 PCT/JP2018/046532 JP2018046532W WO2019124361A1 WO 2019124361 A1 WO2019124361 A1 WO 2019124361A1 JP 2018046532 W JP2018046532 W JP 2018046532W WO 2019124361 A1 WO2019124361 A1 WO 2019124361A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
hfo
coordinates
line segment
refrigerant
Prior art date
Application number
PCT/JP2018/046532
Other languages
English (en)
French (fr)
Inventor
板野 充司
大輔 加留部
佑樹 四元
一博 高橋
雄三 小松
瞬 大久保
達哉 高桑
哲志 津田
裕一 柳
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/037483 external-priority patent/WO2019123782A1/ja
Priority claimed from PCT/JP2018/038746 external-priority patent/WO2019123804A1/ja
Priority claimed from PCT/JP2018/038748 external-priority patent/WO2019123806A1/ja
Priority claimed from PCT/JP2018/038747 external-priority patent/WO2019123805A1/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880081129.6A priority Critical patent/CN111479897A/zh
Priority to JP2019561108A priority patent/JPWO2019124361A1/ja
Priority to EP18891707.4A priority patent/EP3730576A4/en
Priority to US16/955,207 priority patent/US20200340714A1/en
Publication of WO2019124361A1 publication Critical patent/WO2019124361A1/ja
Priority to US16/913,500 priority patent/US20200363106A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/34Protection means thereof, e.g. covers for refrigerant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • F24F3/052Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0018Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/43Type R22
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/14Metal deactivation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-256358
  • a refrigeration cycle apparatus provided with a heat exchanger.
  • a copper pipe is used for a heat transfer tube.
  • the heat exchanger as described in Patent Document 1 is expensive because a copper pipe is used for the heat transfer tube.
  • the refrigeration cycle apparatus equipped with the heat exchanger has a problem of reducing the material cost.
  • a refrigeration cycle apparatus includes a flammable refrigerant containing at least 1,2-difluoroethylene, an evaporator for evaporating the refrigerant, and a condenser for condensing the refrigerant, the evaporator and the condenser comprising At least one of them has a plurality of fins made of aluminum or aluminum alloy and a plurality of heat transfer tubes made of aluminum or aluminum alloy, and exchanges heat between the refrigerant flowing inside the heat transfer tube and the fluid flowing along the fins
  • the refrigerant is configured to be circulated between the evaporator and the condenser to repeat the refrigeration cycle.
  • this refrigeration cycle apparatus has a plurality of fins made of aluminum or aluminum alloy and a plurality of heat transfer tubes made of aluminum or aluminum alloy, for example, as compared with the case where a copper pipe is used for the heat transfer tube, The material cost of the heat exchanger can be reduced.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein each of the plurality of fins has a plurality of holes, and the plurality of heat transfer pipes penetrates the plurality of holes of the plurality of fins The outer peripheries of the plurality of heat transfer tubes are in close contact with the inner peripheries of the plurality of holes.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein the plurality of heat transfer tubes are a plurality of flat tubes, and the flat portions of the flat tubes adjacent to each other are arranged to face each other ing.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the third aspect, wherein each of the plurality of fins is bent in a wave shape and disposed between flat portions of adjacent flat tubes, and the flat portion is It is connected to transmit heat.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the third aspect, wherein each of the plurality of fins has a plurality of notches, and the plurality of flat tubes is a plurality of notches of the plurality of fins. It is plugged in and connected to transmit heat to multiple fins.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro It contains ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • HFO-1132 E
  • trifluoro It contains ethylene
  • R1234yf 2,3,3,3-tetrafluoro-1-propene
  • GWP is sufficiently small and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equal to R410A and a coefficient of performance (Coefficient of Performance (COP)). It is possible to reduce the material cost of the heat exchanger using a combination of performance refrigerants.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the sixth aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0), Point C (32.9, 67.1, 0.0) and point O (100.0, 0.0, 0.0) Within the range of the figure enclosed by the line segment AA ′, A′B, BD, DC ′, C′C, CO and OA connecting the seven points of Except for the points on OA), The line segment AA ′
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the sixth aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point G (72.0, 28.0, 0.0), Point I (72.0, 0.0, 28.0), Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0) Within the range of the figure enclosed by the line segments GI, IA, AA ′, A′B, BD, DC ′, C′C and CG connecting
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the sixth aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point N (68.6, 16.3, 15.1), Point K (61.3, 5.4, 33.3), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0) Within the range of the figure bounded by the JP, PN, NK, KA ', A'B
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the sixth aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0) Within the range of the figure bounded by the JP, PL, LM, MA ', A'
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the sixth aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3) Within the range of the figure bounded by the line segments PL, LM, MA ', A' B, BF, FT and TP connecting the 7 points of , The line segment PL is Coordinates (x, x ⁇
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the sixth aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point Q (62.8, 29.6, 7.6) and Point R (49.8, 42.3, 7.9) Within the range of the figure bounded by the line segments PL, LQ, QR and RP connecting the four points of The line segment PL is Coordinates (x, -0.1135x 2 + 12.112x- 280.43, 0.1135x 2 -13.112x + 380.43) Represented by The line segment RP is The coordinates (x, -0.1135x 2 + 1
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the sixth aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point S (62.6, 28.3, 9.1), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3) Within the range of the figure enclosed by the line segment SM, MA ′, A ′ B, BF, FT, and TS connecting the six points of The line segment MA 'is The coordinates (x, 0.0016x 2 -0.9473x + 57
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)) and trifluoro 99.5% by mass or more of the total of ethylene (HFO-1123) with respect to the total of the refrigerant, and the refrigerant contains 62.0% by mass to 72.0% by mass of the HFO-1132 (E) with respect to the total of the refrigerant Including.
  • HFO-1132 (E) trans-1,2-difluoroethylene
  • HFO-1123 trifluoro 99.5% by mass or more of the total of ethylene
  • HFO-1123 total of ethylene
  • the refrigerant contains 62.0% by mass to 72.0% by mass of the HFO-1132 (E) with respect to the total of the refrigerant Including.
  • the GWP is sufficiently small, and has a coefficient of performance (coefficient of performance (COP)) equal to that of R410A, and a refrigeration capacity (RefrigerationCapacity (sometimes referred to as Cooling Capacity, Capacity)), It is possible to reduce the material cost of the heat exchanger by using a refrigerant having the performance of being slightly flammable (2 L class) according to the standards of the American Society of Heating, Refrigerating and Air Conditioning (ASHRAE).
  • COP coefficient of performance
  • RefrigerationCapacity sometimes referred to as Cooling Capacity, Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, wherein the refrigerant is a mixture of HFO-1132 (E) and HFO-1123 in its entirety. On the other hand, it contains 99.5% by mass or more, and the refrigerant contains 45.1% by mass to 47.1% by mass of HFO-1132 (E) based on the whole of the refrigerant.
  • the refrigerant is a mixture of HFO-1132 (E) and HFO-1123 in its entirety. On the other hand, it contains 99.5% by mass or more, and the refrigerant contains 45.1% by mass to 47.1% by mass of HFO-1132 (E) based on the whole of the refrigerant.
  • the GWP is sufficiently small, and has a coefficient of performance (coefficient of performance (COP)) equal to that of R410A, and a refrigeration capacity (RefrigerationCapacity (sometimes referred to as Cooling Capacity, Capacity)), It is possible to reduce the material cost of the heat exchanger by using a refrigerant having the performance of being slightly flammable (2 L class) according to the standards of the American Society of Heating, Refrigerating and Air Conditioning (ASHRAE).
  • COP coefficient of performance
  • RefrigerationCapacity sometimes referred to as Cooling Capacity, Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (E), HFO-1123 and R1234yf and R32 based on the total of these is x, y and z and a, respectively, in the refrigerant.
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-11
  • Point A (0.0107a 2 -1.9142a + 68.305, 0.0, -0.0107a 2 + 0.9142a + 31.695)
  • Point B (0.0, 0.009a 2 -1.6045a + 59.318, -0.009a 2 + 0.6045a + 40.682)
  • the point W (0.0, 100.0-a, 0.0)
  • GI, IA, AB, BW and WG respectively connecting the five points of the above, or on the straight lines GI and AB (however, points G, I, except)
  • Point G (0.0111a 2 -1.3152a + 68.986,-0.0111a 2 + 0.3152a + 31.014, 0.0)
  • Point I (0.0111a 2 -1.3152a + 68.986, 0.0,-0.0111a 2 + 0.3152a + 31.014)
  • Point A (0.0103a 2 -1.9225a + 68.793, 0.0, -0.0103a
  • GWP is sufficiently small and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equal to R410A and a coefficient of performance (Coefficient of Performance (COP)). It is possible to reduce the material cost of the heat exchanger using a combination of performance refrigerants.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (E), HFO-1123 and R1234yf and R32 based on the total of these is x, y and z and a, respectively, in the refrigerant.
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-11
  • GWP is sufficiently small and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equal to R410A and a coefficient of performance (Coefficient of Performance (COP)). It is possible to reduce the material cost of the heat exchanger using a combination of performance refrigerants.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect through the fifth aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), difluoromethane (R32) and 2,3,3,3-tetrafluoro-1-propene (R1234yf), and the content of HFO-1132 (E), R32 and R1234yf based on the total of these in the refrigerant is
  • the three-component composition diagram in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass when x, y and z are respectively, coordinates (x, y, z) are Point I (72.0, 0.0, 28.0), Point J (48.5, 18.3, 33.2), Point N (27.7, 18.2, 54.1) and point E (58.3, 0.0, 41.7)
  • the line segments IJ, JN, NE, and EI connecting the four points of the
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to reduce the material cost of the heat exchanger by using a refrigerant having the performance of being slightly incombustible (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, wherein the refrigerant includes HFO-1132 (E), R32 and R1234yf, wherein the refrigerant is HFO- A three-component composition in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of 1132 (E), R32 and R1234yf based on the total of these
  • the coordinates (x, y, z) are Point M (52.6, 0.0, 47.4), Point M '(39.2, 5.0, 55.8), Point N (27.7, 18.2, 54.1), Point V (11.0, 18.1, 70.9) and Point G (39.6, 0.0, 60.4)
  • the line segments MM ', M'N, NV, VG, and GM connecting the five points of the above, or on the line segment (except for the points on
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to reduce the material cost of the heat exchanger by using a refrigerant having the performance of being slightly incombustible (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through fifth aspects, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, wherein A three-component composition in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of 1132 (E), R32 and R1234yf based on the total of these
  • the coordinates (x, y, z) are Point O (22.6, 36.8, 40.6), Point N (27.7, 18.2, 54.1) and point U (3.9, 36.7, 59.4)
  • Within the range of the figure bounded by the line segments ON, NU and UO respectively connecting the three points of The line segment ON is Coordinates (0.0072y 2 -0.6701y + 37.512, y , -0.0072y 2 -0.3299y + 62.488) Represented by The line segment NU is
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to reduce the material cost of the heat exchanger by using a refrigerant having the performance of being slightly incombustible (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, wherein the refrigerant comprises HFO- A three-component composition in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of 1132 (E), R32 and R1234yf based on the total of these
  • the coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • the line segments QR, RT, TL, LK and KQ connecting the five points of The line segment QR is Coordinates (0.0099 y 2 -1.
  • the line segment RT is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment LK is Coordinates (0.0049y 2 -0.8842y + 61.488, y, -0.0049y 2 -0.1158y + 38.512)
  • the line segment KQ is Coordinates (0.0095y 2 -1.2222y + 67.676, y, -0.0095y 2 + 0.2222y + 32.324)
  • the line segment TL is a straight line.
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to reduce the material cost of the heat exchanger by using a refrigerant having the performance of being slightly incombustible (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through fifth aspects, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, wherein the refrigerant comprises HFO- A three-component composition in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of 1132 (E), R32 and R1234yf based on the total of these
  • the coordinates (x, y, z) are Point P (20.5, 51.7, 27.8), Point S (21.9, 39.7, 38.4) and point T (8.6, 51.6, 39.8)
  • Within the range of the figure bounded by the line segments PS, ST, and TP connecting the three points of The line segment PS is Coordinates (0.0064y 2 -0.7103y + 40.1, y, -0.0064y 2 -0.2897y + 59.9) Represented by The line
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to reduce the material cost of the heat exchanger by using a refrigerant having the performance of being slightly incombustible (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through fifth aspects, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Containing ethylene (HFO-1123) and difluoromethane (R32), HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Containing ethylene (HFO-1123) and difluoromethane (R32), HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point K (48.4, 33.2, 18.4) Point B '(0.0, 81.6, 18.4) Point H (0.0, 84.2, 15.8) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IK is Coordinates (0.025z 2 -1.7429z + 72.00, -0.025z 2 + 0.7429z + 28.0, z) Represented by
  • the line segment HR is Coordinates (-0.3123z 2 + 4.234z + 11.06, 0.3123z 2 -5.234z + 88.94, z) Represented by
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 3
  • the material cost of the heat exchanger can be reduced by using a refrigerant having a sufficiently small GWP and a coefficient of performance (COP) equal to that of R410A. It is possible.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through fifth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point J (57.7, 32.8, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IJ is Coordinates (0.025z 2 -1.7429z + 72.0, -0.025z 2 + 0.7429z + 28.0, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5, z) Represented by The line segments JR and GI are straight lines.
  • the material cost of the heat exchanger can be reduced by using a refrigerant having a sufficiently small GWP and a coefficient of performance (COP) equal to that of R410A. It is possible.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through fifth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point P (31.8, 49.8, 18.4) Point B '(0.0, 81.6, 18.4) Point H (0.0, 84.2, 15.8) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment MP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z) Represented by
  • the line segment HR is Coordinates (-0.3123z 2 + 4.234z + 11.06, 0.3123z 2 -5.234z + 88.94, z) Represented by
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.
  • the material cost of the heat exchanger can be reduced by using a refrigerant having a sufficiently small GWP and a coefficient of performance (COP) equal to that of R410A. It is possible.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through fifth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point N (38.5, 52.1, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment MN is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5, z) Represented by The line segments JR and GI are straight lines.
  • the material cost of the heat exchanger can be reduced by using a refrigerant having a sufficiently small GWP and a coefficient of performance (COP) equal to that of R410A. It is possible.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through fifth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point P (31.8, 49.8, 18.4) Point S (25.4, 56.2, 18.4) and Point T (34.8, 51.0, 14.2)
  • Point P 31.8, 49.8, 18.4
  • Point S (25.4, 56.2, 18.4)
  • Point T 34.8, 51.0, 14.2
  • the line segment ST is Coordinates (-0.0982z 2 + 0.9622z + 40.931, 0.0982z 2 -1.9622z + 59.069, z)
  • the line segment TP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z) Represented by
  • the line segment PS is a straight line.
  • the material cost of the heat exchanger can be reduced by using a refrigerant having a sufficiently small GWP and a coefficient of performance (COP) equal to that of R410A. It is possible.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through fifth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point Q (28.6, 34.4, 37.0) Point B '' (0.0, 63.0, 37.0) Point D (0.0, 67.0, 33.0) and point U (28.7, 41.2, 30.1)
  • the line segment DU is The coordinates ( ⁇ 3.4962z 2 + 210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z + 3246.1, z) are represented, and the line segment UQ is Coordinates (0.0135z 2 -0.9181z + 44.133, -0.0135z 2 -0.0819z + 55.867, z) Represented by The line segments QB ′ ′ and B′′D are straight lines.
  • the material cost of the heat exchanger can be reduced by using a refrigerant having a sufficiently small GWP and a coefficient of performance (COP) equal to that of R410A. It is possible.
  • FIG. 3 is a diagram showing points A to T and line segments connecting them in a ternary composition diagram in which the total sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass.
  • the sum of HFO-1132 (E), HFO-1123 and R1234yf is (100 ⁇ a) mass%, points A to C, D ′, G, I, J and K ′ and their respective It is the figure which showed the line segment to connect.
  • the three-component composition diagram in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass is a diagram showing points A to C, E, G, and I to W and line segments connecting them.
  • FIG. 3 is a diagram showing points A to U and line segments connecting them in a ternary composition diagram in which the total sum of HFO-1132 (E), HFO-1123 and R32 is 100% by mass.
  • It is a schematic block diagram of the freezing apparatus of 1st Embodiment. It is a front view of the outdoor heat exchanger or indoor heat exchanger of 1st Embodiment. It is sectional drawing of the flat tube of the heat exchanger of 1st Embodiment.
  • FIG. 22 is a cross-sectional view of the internally grooved tube shown in FIG.
  • FIG. 23 is a partially enlarged view showing a part of the internally grooved tube shown in FIG. 22 in an enlarged manner.
  • refrigerant includes at least a compound having a refrigerant number (ASHRAE number) defined by ISO 817 (International Organization for Standardization) and representing a type of refrigerant. Furthermore, even if the refrigerant number is not yet assigned, those having the same characteristics as the refrigerant are included.
  • refrigerants are roughly classified into “fluorocarbon compounds” and “nonfluorocarbon compounds” in terms of the structure of the compounds.
  • the "fluorocarbon compounds” include chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Examples of the "non-fluorocarbon compound” include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717) and the like.
  • composition containing a refrigerant further includes (1) the refrigerant itself (including a mixture of refrigerants) and (2) other components, and at least a refrigerator by mixing with a refrigerator oil. At least a composition that can be used to obtain a working fluid, and (3) a working fluid for a refrigerator containing a refrigerator oil.
  • the composition of (2) is referred to as “refrigerant composition” to distinguish it from the refrigerant itself (including a mixture of refrigerants).
  • the thing of the working fluid for refrigerators for (3) is distinguished from a "refrigerant composition", and is described as a "refrigerant oil containing working fluid.”
  • the term "alternate” is used in the context of "substituting" a first refrigerant with a second refrigerant, to operate using the first refrigerant as a first type
  • the second refrigerant is used only by changing and adjusting the number of parts (at least one of refrigerator oil, gasket, packing, expansion valve, dryer and other parts) as needed. Mean that they can be operated under optimum conditions. That is, this type refers to operating the same device with "substituting" the refrigerant.
  • this type of “alternate” “drop in alternative”, “nearly drop in” There may be nealy drop in 'and' retrofit '.
  • the term "refrigerator” refers to any device that maintains a temperature lower than ambient air and maintains this low temperature by removing heat from objects or space.
  • the refrigerator in order to transfer heat from the low temperature side to the high temperature side, the refrigerator refers to a conversion device that obtains energy from the outside, performs work and converts energy.
  • the refrigerant being "WCF slight burn” means that the burning rate is 10 cm / s or less in the most flammable composition (WCF) according to the US ANSI / ASHRAE 34-2013 standard.
  • that the refrigerant is "ASHRAE slight burn” means that the burning rate of WCF is 10 cm / s or less, and storage, transport, and use based on ANSI / ASHRAE 34-2013 using WCF.
  • the most flammable fraction composition (Worst case of fractionation for flammability; WCFF) specified by conducting the leakage test has a burning rate of 10 cm / s or less and the flammability classification of US ANSI / ASHRAE 34-2013 is “ It means that it will be judged as "2L class”.
  • RCL refrigerant concentration limit
  • Temperature Glide refers to the absolute value of the difference between the onset temperature and the end temperature of the phase change process of the composition comprising the refrigerant of the present disclosure in the heat exchanger of the refrigerant system.
  • Refrigerant (2-1) Refrigerant Component Although the details will be described later, any one of the refrigerants A, B, C, D, and E can be used as the refrigerant.
  • the refrigerant of the present disclosure can be preferably used as a working fluid in a refrigerator.
  • compositions of the present disclosure are suitable for use as substitutes for HFC refrigerants such as R410A, R407C and R404A, and HCFC refrigerants such as R22.
  • the refrigerant composition of the present disclosure contains at least the refrigerant of the present disclosure and can be used for the same application as the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure can be used to obtain a working fluid for a refrigerator by further mixing with at least a refrigerator oil.
  • the refrigerant composition of the present disclosure further contains at least one other component in addition to the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure may optionally contain at least one of the following other components.
  • the refrigerant compositions of the present disclosure are preferably substantially free of refrigeration oil.
  • the refrigerant composition of the present disclosure preferably has a refrigerator oil content of 0 to 1% by mass, more preferably 0 to 0.1% by mass, based on the entire refrigerant composition.
  • the refrigerant composition of the present disclosure may contain a trace amount of water.
  • the water content of the refrigerant composition is preferably 0.1% by mass or less based on the entire refrigerant.
  • the intramolecular double bond of the unsaturated fluorocarbon compound which may be contained in the refrigerant is stabilized, and oxidation of the unsaturated fluorocarbon compound is also less likely to occur.
  • the stability of the refrigerant composition is improved.
  • the tracer is added to the refrigerant composition of the present disclosure at a detectable concentration so that when the refrigerant composition of the present disclosure is diluted, contaminated, or any other change can be traced. .
  • the refrigerant composition of the present disclosure may contain one type alone or two or more types as a tracer.
  • the tracer is not particularly limited, and can be appropriately selected from generally used tracers.
  • a compound that can not be an impurity that is inevitably mixed in the refrigerant of the present disclosure is selected as a tracer.
  • tracers examples include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, fluoroethers, brominated compounds, iodinated compounds, alcohols, Aldehydes, ketones, nitrous oxide (N2O) and the like can be mentioned.
  • hydrofluorocarbons As a tracer, hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons and fluoroethers are particularly preferred.
  • the following compounds are preferable.
  • FC-14 Tetrafluoromethane, CF 4 ) HCC-40 (chloromethane, CH 3 Cl) HFC-23 (trifluoromethane, CHF 3 ) HFC-41 (fluoromethane, CH 3 Cl) HFC-125 (pentafluoroethane, CF 3 CHF 2 ) HFC-134a (1,1,1,2-tetrafluoroethane, CF 3 CH 2 F) HFC-134 (1,1,2,2-tetrafluoroethane, CHF 2 CHF 2 ) HFC-143a (1,1,1-trifluoroethane, CF 3 CH 3 ) HFC-143 (1,1,2-trifluoroethane, CHF 2 CH 2 F) HFC-152a (1,1-difluoroethane, CHF 2 CH 3 ) HFC-152 (1,2-difluoroethane, CH 2 FCH 2 F) HFC-161 (Fluoroethane, CH 3 CH 2 F
  • the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 50 ppm to about 300 ppm.
  • the refrigerant composition of the present disclosure may contain one kind alone or two or more kinds as an ultraviolet fluorescent dye.
  • the ultraviolet fluorescent dye is not particularly limited, and can be appropriately selected from ultraviolet fluorescent dyes generally used.
  • UV fluorescent dyes include, for example, naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene and fluorescein, and derivatives thereof.
  • the ultraviolet fluorescent dye either or both of naphthalimide and coumarin are particularly preferable.
  • the refrigerant composition of the present disclosure may contain one kind alone, or two or more kinds as a stabilizer.
  • the stabilizer is not particularly limited, and can be appropriately selected from generally used stabilizers.
  • a stabilizer As a stabilizer, a nitro compound, ethers, amines etc. are mentioned, for example.
  • nitro compound examples include aliphatic nitro compounds such as nitromethane and nitroethane, and aromatic nitro compounds such as nitrobenzene and nitrostyrene.
  • ethers examples include 1,4-dioxane and the like.
  • amines examples include 2,2,3,3,3-pentafluoropropylamine, diphenylamine and the like.
  • the content ratio of the stabilizer is not particularly limited, and usually 0.01 to 5% by mass is preferable, and 0.05 to 2% by mass is more preferable with respect to the whole refrigerant.
  • the refrigerant composition of the present disclosure may contain one kind alone, or may contain two or more kinds.
  • the polymerization inhibitor is not particularly limited, and can be appropriately selected from commonly used polymerization inhibitors.
  • polymerization inhibitor examples include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, benzotriazole and the like.
  • the content ratio of the polymerization inhibitor is not particularly limited, and is usually preferably 0.01 to 5% by mass, and more preferably 0.05 to 2% by mass, with respect to the entire refrigerant.
  • the refrigerator oil-containing working fluid of the present disclosure at least includes the refrigerant or the refrigerant composition of the present disclosure and a refrigerator oil, and is used as a working fluid in a refrigerator.
  • the refrigerator oil-containing working fluid of the present disclosure is obtained by mixing the refrigerator oil used in the compressor of the refrigerator and the refrigerant or the refrigerant composition with each other.
  • the refrigeration oil-containing working fluid generally contains 10 to 50% by mass of refrigeration oil.
  • the refrigerator oil is not particularly limited, and can be appropriately selected from commonly used refrigerator oils. At that time, if necessary, a refrigerator oil more excellent in the miscibility with the mixture, the effect of improving the stability of the mixture, and the like can be appropriately selected.
  • a base oil of refrigeration oil for example, at least one selected from the group consisting of polyalkylene glycol (PAG), polyol ester (POE) and polyvinyl ether (PVE) is preferable.
  • PAG polyalkylene glycol
  • POE polyol ester
  • PVE polyvinyl ether
  • the refrigerator oil may further contain an additive in addition to the base oil.
  • the additive may be at least one selected from the group consisting of an antioxidant, an extreme pressure agent, an acid scavenger, an oxygen scavenger, a copper deactivator, a rust inhibitor, an oil agent and an antifoamer. .
  • the refrigerator oil one having a kinematic viscosity at 40 ° C. of 5 to 400 cSt is preferable in terms of lubrication.
  • the refrigerator oil-containing working fluid of the present disclosure may further contain at least one additive, as needed.
  • the additive include the following compatibilizers and the like.
  • the refrigeration oil-containing working fluid of the present disclosure may contain one kind alone or two or more kinds as a compatibilizing agent.
  • the compatibilizer is not particularly limited, and can be appropriately selected from commonly used compatibilizers.
  • compatibilizer examples include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers and 1,1,1-trifluoroalkanes.
  • polyoxyalkylene glycol ether is particularly preferred.
  • the following descriptions of the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E are independent of one another, and alphabets indicating points and line segments, numbers of examples, and numbers of comparative examples are all
  • the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E are independent of each other.
  • the first embodiment of the refrigerant A and the first embodiment of the refrigerant B show different embodiments.
  • Refrigerant A of the present disclosure includes trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf). Is a mixed refrigerant containing
  • the refrigerant A of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having the same refrigeration capacity and coefficient of performance as the R410A, and the GWP is sufficiently small.
  • the refrigerant A of the present disclosure may be a composition containing HFO-1132 (E) and R1234yf, and optionally HFO-1123, and may further satisfy the following requirements.
  • This refrigerant also has desirable characteristics as an R410A alternative refrigerant, having the same refrigeration capacity and coefficient of performance as R410A, and having a sufficiently small GWP.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point G (72.0, 28.0, 0.0), Point I (72.0, 0.0, 28.0), Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0)
  • the line segment AA ′ is The line segment AA ′ is The
  • the refrigerant of the present disclosure not only has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, it is further specified by ASHRAE. It shows WCF slight flammability (burn rate of WCF composition is 10 cm / s or less).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-1123, where x, y and z are mass% of HFO-1132 (E) HFO-1123 and R1234yf based on the total of these.
  • the coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point N (68.6, 16.3, 15.1), Point K (61.3, 5.4, 33.3), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0)
  • the refrigerant of the present disclosure not only has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, it is further specified by ASHRAE. It shows slight flammability (2 L class (burning rate of WCF composition and WCFF composition is 10 cm / s or less)).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0)
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, the RCL is 40 g / m 3 or more.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3)
  • the line segment PL is Coordinates (x, -0.1135x 2 + 12.112x- 280.43
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied, and further, the RCL is 40 g / l. m 3 or more.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point Q (62.8, 29.6, 7.6) and Point R (49.8, 42.3, 7.9)
  • coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point Q (62.8, 29.6, 7.6) and Point R (49.8, 42.3, 7.9)
  • the line segment PL is Coordinates (x, -0.1135x 2 + 12.112x- 280.43, 0.1135x 2 -13.112x + 380.43)
  • Represented by The line segment RP is The coordinates (x, 0.0067x 2 -0.7607x
  • the refrigerant of the present disclosure has a COP ratio of 95% or more based on R410A when the above requirements are satisfied, and not only an RCL of 40 g / m 3 or more but also a condensation temperature glide of 1 ° C. or less .
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point S (62.6, 28.3, 9.1), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3)
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A, a COP ratio based on R410A of 95% or more, and RCL of 40 g / m 3 or more when the above requirements are satisfied. Not only that, the discharge pressure ratio based on R410A is 105% or less.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point d (87.6, 0.0, 12.4), Point g (18.2, 55.1, 26.7), Point h (56.7, 43.3, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment dg is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point l (72.5, 10.2, 17.3), Point g (18.2, 55.1, 26.7), Point h (56.7, 43.3, 0.0) and point i (72.5, 27.5, 0.0)
  • the line segment lg is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment gh is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment gh is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 92.5% or more based on R410A and a COP ratio based on R410A of 92.5% or more when the above requirements are satisfied, and further, it is further specified by ASHRAE. Indicates slight flammability (2 L class).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point d (87.6, 0.0, 12.4), Point e (31.1, 42.9, 26.0), Point f (65.5, 34.5, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment de is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment ef is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment ef is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 +
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point l (72.5, 10.2, 17.3), Point e (31.1, 42.9, 26.0), Point f (65.5, 34.5, 0.0) and point i (72.5, 27.5, 0.0)
  • the line segment LE is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment ef
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 93.5% or more based on R410A and a COP ratio based on R410A of 93.5% or more when the above requirements are satisfied, and further, it is further specified in ASHRAE standard. Indicates slight flammability (2 L class).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point a (93.4, 0.0, 6.6), Point b (55.6, 26.6, 17.8), Point c (77.6, 22.4, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment ab is Coordinates (0.0052y 2 -1.5588y + 93.385, y,-0.0052y 2 + 0.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point k (72.5, 14.1, 13.4), Point b (55.6, 26.6, 17.8) and point j (72.5, 23.2, 4.3)
  • coordinates (x, y, z) are Point k (72.5, 14.1, 13.4), Point b (55.6, 26.6, 17.8) and point j (72.5, 23.2, 4.3)
  • coordinates (x, y, z) are Point k (72.5, 14.1, 13.4), Point b (55.6, 26.6, 17.8) and point j (72.5, 23.2, 4.3)
  • Within the range of the figure bounded by the line segments kb, bj and jk connecting the three points of The line segment kb is Coordinates (0.0052y 2
  • the line segment bj is Coordinates (-0.0032z 2 -1.1791z + 77.593, 0.0032z 2 + 0.1791z + 22.407, z) It is preferable that the line segment jk is a straight line.
  • the refrigerant of the present disclosure not only has a refrigeration capacity ratio of 95% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied, and further, it is further specified by ASHRAE. Indicates slight flammability (2 L class).
  • the refrigerant A of the present disclosure may further contain other additional refrigerants in addition to HFO-1132 (E), HFO-1123 and R1234yf, as long as the above-described properties and effects are not impaired.
  • the refrigerant of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), HFO-1123 and R1234yf with respect to the entire refrigerant. It is more preferable to contain 99.9 mass% or more.
  • the refrigerant A of the present disclosure may contain 99.5 mass% or more, 99.75 mass% or more, of the total of HFO-1132 (E), HFO-1123 and R1234yf with respect to the entire refrigerant. And may further contain 99.9% by mass or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant A Below, the Example of the refrigerant
  • the GWP of a composition containing a mixture of R1234yf and R410A was evaluated based on the value of the Intergovernmental Panel on Climate Change (IPCC) Fourth Report.
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E), HFO-1123, R1234yf is determined using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0). It calculated
  • HFO-1132 (E), HFO-1123 and HFO-1123 and HFO-1123 and HFO-1123 and HFO-1123 and H1234b, respectively, are represented by x, y and z, respectively.
  • coordinates (x, y, z) are Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0), Point C (32.9, 67.1, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment AA ′ is The coordinates (x, 0.0016x 2 -0.9473x + 57.497 ,
  • the point on the line segment AA ′ was determined by finding an approximate curve connecting three points of the point A, the example 1, and the point A ′ by the least square method.
  • the point on the line segment A′B was determined by finding an approximate curve connecting the three points of the point A ′, the example 3 and the point B by the least square method.
  • the point on the line segment DC ′ was determined by finding an approximate curve connecting the three points of the point D, the example 6, and the point C ′ by the least square method.
  • the point on line segment C'C was determined by calculating
  • the coordinates (x, y, z) are Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2), Point T (35.8, 44.9, 19.3), Point E (58.0, 42.0, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment AA ′ is The coordinates (x, 0.0016x 2 -0.9473x + 57.497 , -0.0016x 2 -0.0527x + 42.503) Represented by The line segment A'B is Coordinates (x, 0.0029x 2 -1.0268x + 58.7 , -0.0029x 2 + 0.0268x + 41.3) Represented by The line segment FT is
  • the points on the line segment FT were determined by finding an approximate curve connecting the three points T, E 'and F by the least squares method.
  • the points on the line segment TE were determined by finding an approximate curve connecting the three points E, R and T by the least square method.
  • R1234yf contributes to the reduction of flammability and the suppression of deterioration such as polymerization, and it is preferable to include this.
  • the burning rate was measured according to the ANSI / ASHRA 34-2013 standard, with the mixed composition as the WCF concentration.
  • the one with a burning rate of 10 cm / s or less is considered as "2 L class (slight flammability)".
  • the burning rate test was done as follows using the apparatus shown in FIG. In FIG. 1, 901 indicates a sample cell, 902 indicates a high-speed camera, 903 indicates a xenon lamp, 904 indicates a collimating lens, 905 indicates a collimating lens, and 906 indicates a ring filter.
  • the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge.
  • the burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • the WCFF concentration was determined by performing leakage simulation according to NIST Standard Reference Data Base Refleak Version 4.0 with the WCF concentration as the initial concentration.
  • the line segment PN is Coordinates (x, -0.1135x 2 + 12.112x- 280.43, 0.1135x 2 -13.112x + 380.43) Represented by
  • the line segment NK is Coordinates (x, 0.2421x 2 -29.955x + 931.91, -0.2421x 2 + 28.955x-831.91) It is represented by.
  • the point on the line segment PN was determined by finding an approximate curve connecting the three points P, L, and N by the least squares method.
  • the point on the line segment NK was determined by finding an approximate curve connecting the three points of the point N, the point N 'and the point K by the least square method.
  • the refrigerant B of the present disclosure is 99.5 mass% or more of the total of trans-1,2-difluoroethylene (HFO-1132 (E)) and trifluoroethylene (HFO-1123) with respect to the whole of the refrigerant, and the refrigerant is HFO- Or a mixed refrigerant containing 62.0% by mass to 72.0% by mass or 45.1% by mass to 47.1% by mass of 1132 (E) based on the whole of the refrigerant, or
  • the total of HFO-1132 (E) and HFO-1123 is 99.5 mass% or more with respect to the whole of the refrigerant, and the refrigerant contains 40.1 mass% of HFO-1132 (E) with respect to the whole of the refrigerant It is a mixed refrigerant containing ⁇ 47.1% by mass.
  • the refrigerant B of the present disclosure has (1) a coefficient of performance equivalent to R410A, (2) refrigeration capacity equivalent to R410A, (3) sufficiently small GWP, and (4) ASHRAE standard. It has desirable characteristics as a R410A alternative refrigerant, that is, it is slightly flammable (2 L class).
  • the refrigerant B of the present disclosure is a WCF slight-combustible if it is a mixed refrigerant containing 72.0% by mass or less of HFO-1132 (E).
  • the refrigerant B of the present disclosure is a composition containing HFO-1132 (E) at 47.1% or less, and is a “2 L class” which is a slightly flammable refrigerant according to ASHRAE standards with WCF slight combustion and WCFF slight combustion, and handling is easier It becomes.
  • the refrigerant B of the present disclosure contains 62.0% by mass or more of HFO-1132 (E)
  • the coefficient of performance coefficient based on R410A is more excellent at 95% or more, and HFO-1132 (E) and / or Or, the polymerization reaction of HFO-1123 is further suppressed, and the stability becomes more excellent.
  • the refrigerant B of the present disclosure contains 45.1% by mass or more of HFO-1132 (E)
  • the coefficient of performance coefficient based on R410A is more excellent at 93% or more, and HFO-1132 (E) and / or Or, the polymerization reaction of HFO-1123 is further suppressed, and the stability becomes more excellent.
  • the refrigerant B of the present disclosure may further contain other additional refrigerants in addition to HFO-1132 (E) and HFO-1123 as long as the above-described properties and effects are not impaired.
  • the refrigerant B of the present disclosure more preferably contains the total of HFO-1132 (E) and HFO-1123 at 99.75 mass% or more, further preferably 99.9 mass% or more with respect to the entire refrigerant.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant B Below, the Example of the refrigerant
  • a mixed refrigerant was prepared by mixing HFO-1132 (E) and HFO-1123 in mass% (mass%) shown in Table 37 and Table 38, respectively, based on the total of them.
  • IPCC Intergovernmental Panel on Climate Change
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E) and HFO-1123 is as follows using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) It calculated
  • composition of each mixture is WCF, and NIST Standard Reference Data Base Version under the condition of Equipment, Storage, Shipping, Leak, and Recharge according to ASHRAE 34-2013 standard.
  • a leak simulation was performed according to 4.0, and the most flammable fraction was WCFF.
  • GWP, COP and refrigeration capacity calculated based on these results are shown in Tables 1 and 2.
  • the ratio COP and the specific refrigeration capacity are shown relative to R410A.
  • COP (refrigeration capacity or heating capacity) / power consumption
  • the flammability was measured according to the ANSI / ASHRAE 34-2013 standard. If the burning rate is 10 cm / s or less for both WCF and WCFF, it is considered as "2 L class (slight flammability)".
  • the burning rate test was conducted as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • Refrigerant C of the present disclosure includes trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf). And difluoromethane (R32), which further satisfy the following requirements.
  • the refrigerant C of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having a refrigeration capacity and a coefficient of performance equivalent to that of R410A, and having a sufficiently small GWP.
  • the refrigerant C of the present disclosure is HFO-1132, where the mass% of HFO-1132 (E), HFO-1123 and R1234yf, and R32 based on the total of these is x, y and z, and a, respectively.
  • Point A (0.0107a 2 -1.9142a + 68.305, 0.0, -0.0107a 2 + 0.9142a + 31.695)
  • Point B (0.0, 0.009a 2 -1.6045a + 59.318, -0.009a 2 + 0.6045a + 40.682)
  • the point W (0.0, 100.0-a, 0.0)
  • GI, IA, AB, BW and WG respectively connecting the five points of the above, or on the straight lines GI and AB (however, points G, I, except)
  • Point G (0.0111a 2 -1.3152a + 68.986,-0.0111a 2 + 0.3152a + 31.014, 0.0)
  • Point I (0.0111a 2 -1.3152a + 68.986, 0.0,-0.0111a 2 + 0.3152a + 31.014)
  • Point A (0.0103a 2 -1.9225a + 68.793, 0.0, -0.0103a
  • the refrigerant C of the present disclosure is HFO-1132 (E), HFO- when the mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are When 0 ⁇ a ⁇ 11.1
  • Point J (0.0049a 2 -0.9645a + 47.1, -0.0049a 2 -0.0355a + 52.9, 0.0)
  • Point B (0.0, 0.0144a 2 -1.6377a + 58.7,-0.0144a 2 + 0.6377a + 41.3)
  • Point D (0.0, 0.0224a 2 + 0.968a
  • the refrigerant of the present disclosure not only achieves a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, WCF slight combustion and WCFF slight burn and ASHRAE standards indicate "2L class", a slightly burnt refrigerant.
  • the refrigerant C of the present disclosure further includes R32 in addition to HFO-1132 (E), HFO-1123 and R1234yf, the sum of HFO-1132 (E), HFO-1123 and R1234yf, and R32 is used as a standard.
  • R410A is a point It is an intersection point of an approximate straight line connecting points where the COP ratio is 95% and a straight line ab.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied.
  • the refrigerant C of the present disclosure may further contain other additional refrigerant in addition to HFO-1132 (E), HFO-1123 and R1234yf, and R32, as long as the above-described properties and effects are not impaired. Good.
  • the refrigerant of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), HFO-1123 and R1234yf, and R32 with respect to the entire refrigerant. Preferably, 99.9% by mass or more is included.
  • the refrigerant C of the present disclosure may contain 99.5% by mass or more and 99.75% by mass or more of the total of HFO-1132 (E), HFO-1123 and R1234yf, and R32 with respect to the entire refrigerant. And may contain 99.9% by mass or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant C Below, the Example of the refrigerant
  • a mixed refrigerant was prepared by mixing HFO-1132 (E), HFO-1123 and R1234yf, and R32 in the mass% shown in Tables 39 to 96, respectively, based on the total of these.
  • IPCC Intergovernmental Panel on Climate Change
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E) and HFO-1123 is as follows using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) It calculated
  • the COP ratio and the refrigeration capacity ratio were determined with reference to R410.
  • the calculation conditions were as follows.
  • COP (refrigeration capacity or heating capacity) / power consumption
  • HFO-1132 (E: HFO-1132 (E), HFO-1123 and R1234yf, and R32, based on the sum of these, mass% is x, y and z, and a, respectively).
  • HFO-1123 and R1234yf the bottom line is a straight line connecting point (0.0, 100.0-a, 0.0) and point (0.0, 0.0, 100, 0-a) where the mass becomes (100-a) mass%
  • the coordinates (x, y, z) are When 0 ⁇ a ⁇ 11.1 Point A (0.0134a 2 -1.9681a + 68.6, 0.0, -0.0134a 2 + 0.9681a + 31.4) and point B (0.0, 0.0144a 2 -1.6377a + 58.7, -0.0144a 2 + 0.6377a + 41.3) and A straight line AB connecting the When 11.1
  • a point at which the actual refrigeration capacity ratio is 85% is a curve that extends to the 1234yf side connecting the point A and the point B shown in FIG. Therefore, when it is on the straight line AB or on the left side, the refrigeration capacity ratio based on R410A is 85% or more.
  • the coordinates (x, y, z) are When 0 ⁇ a ⁇ 11.1 Point D '(0.0, 0.0224a 2 + 0.968a + 75.4, -0.0224a 2 -1.968a + 24.6) and point C (-0.2304a 2 -0.4062a + 32.9, 0.2304a 2 -0.5938a + 67.1, 0.0) And the straight line D′ C connecting the When 11.1 ⁇ a ⁇ 46.7 It can be seen that the COP ratio based on R410A is 92.5% or more when in all the regions.
  • FIG. 3 it is the curve CD that the COP ratio is 92.5% or more, but in FIG. 3, when the R1234yf concentration is 5% by mass and 10% by mass, the COP ratio is 92.5% (26.6, 68.4, 5), (19.5, 70.5, 10), and an approximate straight line connecting three points C (32.9, 67.1, 0.0), and the intersection point D ′ (0, 0, 0) with the HFO-1132 (E) concentration of 0.0 mass% A straight line connecting 75.4, 24.6) and the point C is a line segment D'C. Also, in FIG. 4, D ′ (D) is similarly derived from an approximate curve connecting point C (18.4, 74.5, 0), point (13.9, 76.5, 2.5), and point (8.7, 79. Find 0, 83.4, 9.5), and let D'C be a straight line connecting point C.
  • composition of each mixture is WCF, and NIST Standard Reference Data Base Version under the condition of Equipment, Storage, Shipping, Leak, and Recharge according to ASHRAE 34-2013 standard.
  • a leak simulation was performed according to 4.0, and the most flammable fraction was WCFF.
  • the flammability was measured according to the ANSI / ASHRAE 34-2013 standard. If the burning rate is 10 cm / s or less for both WCF and WCFF, it is considered as "2 L class (slight flammability)".
  • the burning rate test was done as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • the point of the actual WCFF slight combustion becomes a curve which spreads to the HFO-1132 (E) side connecting the point J and the point K '(on the straight line AB) shown in FIG. Therefore, when it is on the line of straight line JK 'or below, it becomes WCFF slight flame retardance.
  • the R32 content ratio a (mass%) is 0 mass%, 7.1 mass%, 11.1 mass%, 14.5 mass%, 18.2 mass%, 21.9 mass%, 26.7 mass%, respectively.
  • the compositions are shown for 29.3% by weight, 36.7% by weight, 44.1% by weight and 47.8% by weight.
  • Point A is a point where the HFO-1123 content is 0% by mass and the refrigeration capacity ratio based on R410A is 85%. With respect to the point A, three points were obtained for each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
  • Point B is a point at which the HFO-1132 (E) content rate is 0% by mass and the refrigeration capacity ratio based on R410A is 85%.
  • E HFO-1132
  • the point D ' is a point at which the HFO-1132 (E) content rate is 0% by mass and the COP ratio based on R410A is 95.5%.
  • the following three points were obtained by calculation and their approximate expressions were obtained (Table 111).
  • Point C is a point where the R1234yf content rate is 0% by mass and the COP ratio based on R410A is 95.5%.
  • point C the following three points were obtained by calculation, and their approximate expressions were obtained (Table 112).
  • the refrigerant D of the present disclosure is a mixture containing trans-1,2-difluoroethylene (HFO-1132 (E)), difluoromethane (R32) and 2,3,3,3-tetrafluoro-1-propene (R1234yf). It is a refrigerant.
  • the refrigerant D of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having a cooling capacity equivalent to that of R410A, a sufficiently small GWP, and a slight flammability (2 L class) according to the ASHRAE standard.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point I (72.0, 0.0, 28.0), Point J (48.5, 18.3, 33.2), Point N (27.7, 18.2, 54.1) and point E (58.3, 0.0, 41.7)
  • the line segment IJ is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.7616y +28.0) Represented by
  • the line segment NE is Coordinates (0.012y 2 -1.9003y + 58.3, y, -0.012y 2 + 0.9003y + 41.7) It is preferable that the line segments JN and EI be straight lines.
  • the refrigerant of the present disclosure has a refrigeration capacity
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point M (52.6, 0.0, 47.4), Point M '(39.2, 5.0, 55.8), Point N (27.7, 18.2, 54.1), Point V (11.0, 18.1, 70.9) and Point G (39.6, 0.0, 60.4)
  • the line segment MM ' is Coordinates (x, 0.132x 2 -3.34x + 52.6, -0.132x 2 + 2.34x + 47.4)
  • the line segment M'N is Coordinates (x, 0.0313x 2 -1.4551x + 43.824, -0.0313x 2 + 0.4551x + 56.
  • the line segment VG is Coordinates (0.0123y 2 -1.8033y + 39.6, y, -0.0123y 2 + 0.8033y + 60.4) It is preferable that the line segments NV and GM be straight.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 70% or more based on R410A, a GWP of 125 or less, and ASHRAE slight burn.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point O (22.6, 36.8, 40.6), Point N (27.7, 18.2, 54.1) and point U (3.9, 36.7, 59.4)
  • the line segments ON, NU and UO respectively connecting the three points of The line segment ON is Coordinates (0.0072y 2 -0.6701y + 37.512, y , -0.0072y 2 -0.3299y + 62.488)
  • the line segment NU is Coordinates (0.0083y 2 -1.7403y +56.635, y, -0.0083y 2 + 0.7403y +43.365)
  • the line segment UO be a straight line.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 80% or more based on R410A, a GWP of 250 or less, and ASHRAE slight burn.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • Point Q 44.6, 23.0, 32.4
  • Point R (25.5, 36.8, 37.7)
  • Point T (8.6, 51.6, 39.8)
  • Point L 28.9, 51.7, 19.4
  • Point K (35.6, 36.8, 27.6)
  • the line segments QR, RT, TL, LK and KQ connecting the five points of The line segment QR is Coordinates (0.0099 y 2 -1. 975 y + 84.
  • the line segment RT is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment LK is Coordinates (0.0049y 2 -0.8842y + 61.488, y, -0.0049y 2 -0.1158y + 38.512)
  • the line segment KQ is Coordinates (0.0095y 2 -1.2222y + 67.676, y, -0.0095y 2 + 0.2222y + 32.324) It is preferable that the line segment TL be a straight line.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 92.5% or more based on R410A, a GWP of 350 or less, and WCF slight combustion.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point P (20.5, 51.7, 27.8), Point S (21.9, 39.7, 38.4) and point T (8.6, 51.6, 39.8)
  • the line segment PS is Coordinates (0.0064y 2 -0.7103y + 40.1, y, -0.0064y 2 -0.2897y + 59.9)
  • the line segment ST is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment TP is a straight line.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 92.5% or more based on R410A, a GWP of 350 or less, and ASHRAE incombustible when the above requirements are satisfied.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point a (71.1, 0.0, 28.9), Point c (36.5, 18.2, 45.3), Point f (47.6, 18.3, 34.1) and point d (72.0, 0.0, 28.0)
  • the line segment ac is Coordinates (0.0181y 2 -2.2288y + 71.096, y, -0.0181y 2 + 1.2288y +28.904)
  • the line segment fd is Coordinates (0.02y 2 -1.7y + 72, y , -0.02y 2 + 0.7y + 28)
  • the line segments cf and da are straight.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A, a GWP of 125 or less, and a slight flame retardancy (2 L class) according to the ASHRAE standard.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point a (71.1, 0.0, 28.9), Point b (42.6, 14.5, 42.9), Point e (51.4, 14.6, 34.0) and point d (72.0, 0.0, 28.0)
  • the line segment ab is Coordinates (0.0181y 2 -2.2288y + 71.096, y, -0.0181y 2 + 1.2288y +28.904)
  • the line segment ed is Coordinates (0.02y 2 -1.7y + 72, y , -0.02y 2 + 0.7y + 28)
  • the line segments be and da are straight lines.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A, a GWP of 100 or less, and a slight flame retardancy (2 L class) according to the ASHRAE standard.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point g (77.5, 6.9, 15.6), Point iI (55.1, 18.3, 26.6) and point j (77.5.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A, a GWP of 100 or less, and is resistant to changes such as polymerization or decomposition, and is excellent in stability. .
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point g (77.5, 6.9, 15.6), Point h (61.8, 14.6, 23.6) and point k (77.5, 14.6, 7.9)
  • the line segments gh, hk and kg connecting the three points of The line segment gh is Coordinates (0.02y 2 -2.4583y + 93.396, y , -0.02y 2 + 1.4583y + 6.604)
  • the line segments hk and kg are straight.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A, a GWP of 100 or less, and is resistant to changes such as polymerization or decomposition, and is excellent in stability. .
  • the refrigerant D of the present disclosure may further contain other additional refrigerant in addition to HFO-1132 (E), R32 and R1234yf, as long as the above-mentioned properties and effects are not impaired.
  • the refrigerant D of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), R32 and R1234yf with respect to the entire refrigerant. It is more preferable to contain mass% or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant D Below, the Example of the refrigerant
  • each mixed refrigerant of HFO-1132 (E), R32 and R1234yf is WCF, and according to the ASHRAE 34-2013 standard, equipment (Storage), Storage (Storage), Transportation (Shipping), Leakage (Leak) and Recharge (Recharge) Leakage simulation was performed according to NIST Standard Reference Data Base Refleak Version 4.0 under the following conditions, and the most flammable fraction was WCFF.
  • the burning rate test was done as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC. The results are shown in Tables 113-115.
  • the coordinates (x, y, z) indicate line segments connecting point M, point M ′, point W, point J, point N, and point P, respectively.
  • a mixed refrigerant was prepared by mixing HFO-1132 (E), R32 and R1234yf in the% by mass shown in Tables 116 to 144, respectively, based on their total sum.
  • the coefficient of performance (coefficient of performance (COP)) ratio based on R410 and the refrigeration capacity ratio were determined. The calculation conditions were as follows.
  • the refrigerant D of the present disclosure is HFO-1132 (E), where x, y and z represent mass% of HFO-1132 (E), R32 and R1234yf based on their total sum, respectively.
  • the coordinates (x, y, z) are Point I (72.0, 0.0, 28.0), Point J (48.5, 18.3, 33.2), Point N (27.7, 18.2, 54.1) and point E (58.3, 0.0, 41.7)
  • the line segment IJ is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.7616y +28.0) Represented by The line segment NE is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.7616y +28.0) Represented by The line segment NE is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.76
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32 when the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point M (52.6, 0.0, 47.4), Point M '(39.2, 5.0, 55.8), Point N (27.7, 18.2, 54.1), Point V (11.0, 18.1, 70.9) and Point G (39.6, 0.0, 60.4)
  • the line segment VG is Coordinates (0.0123y 2 -1.8033y + 39.6, y, -0.0123y 2 + 0.8033y + 60.4) It can be seen that when the line segments NV and GM are straight, the refrigeration capacity ratio based on R410A is 70% or more, the GWP is 125 or less, and ASHRAE slight burn is achieved.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32, where the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32 when the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • the line segments QR, RT, TL, LK and KQ connecting the five points of The line segment QR is Coordinates (0.0099 y 2 -1.
  • the line segment RT is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment LK is Coordinates (0.0049y 2 -0.8842y + 61.488, y, -0.0049y 2 -0.1158y + 38.512)
  • the line segment KQ is Coordinates (0.0095y 2 -1.2222y + 67.676, y, -0.0095y 2 + 0.2222y + 32.324)
  • the refrigerating capacity ratio based on R410A is 92.5% or more
  • the GWP is 350 or less
  • the WCF is slightly combustible.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32, where the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • the refrigerant E of the present disclosure is a mixed refrigerant containing trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123) and difluoromethane (R32).
  • the refrigerant E of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having a coefficient of performance equivalent to that of R410A, and a sufficiently small GWP.
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point K (48.4, 33.2, 18.4) Point B '(0.0, 81.6, 18.4) Point H (0.0, 84.2, 15.8) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IK is Coordinates (0.025z 2 -1.7429z + 72.00, -0.025z 2 + 0.7429z + 28.0, z) Represented by The line segment HR is Coordinates (-
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point J (57.7, 32.8, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IJ is Coordinates (0.025z 2 -1.7429z + 72.0, -0.025z 2 + 0.7429z + 28.0, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5,
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point P (31.8, 49.8, 18.4)
  • Point G (38.5, 61.5, 0.0)
  • the line segment MP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z)
  • the line segment HR is Coordinates (-0.3123z
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point N (38.5, 52.1, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment MN is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point P (31.8, 49.8, 18.4) Point S (25.4, 56.2, 18.4) and Point T (34.8, 51.0, 14.2)
  • the line segment ST is Coordinates (-0.0982z 2 + 0.9622z + 40.931, 0.0982z 2 -1.9622z + 59.069, z)
  • the line segment TP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z) Represented by It is preferable that the line segment PS be a
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point Q (28.6, 34.4, 37.0) Point B '' (0.0, 63.0, 37.0) Point D (0.0, 67.0, 33.0) and point U (28.7, 41.2, 30.1)
  • the line segment DU is The coordinates ( ⁇ 3.4962z 2 + 210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z + 3246.1, z) are represented, and the line segment UQ is Represented by
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c '(56.7, 43.3, 0.0), Point d '(52.2, 38.3, 9.5), Point e '(41.8, 39.8, 18.4) and point a' (81.6, 0.0, 18.4)
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c (77.7, 22.3, 0.0), Point d (76.3, 14.2, 9.5), Point e (72.2, 9.4, 18.4) and point a '(81.6, 0.0, 18.4)
  • the line segment cde is It is preferable that the coordinates ( ⁇ 0.017z 2 + 0.0148z + 77.684,
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c '(56.7, 43.3, 0.0), Point d '(52.2, 38.3, 9.5) and point a (90.5, 0.0, 9.5)
  • the line segment c'd ' is It is preferable if it is represented by the coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z + 56.7
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c (77.7, 22.3, 0.0), Point d (76.3, 14.2, 9.5), Point a (90.5, 0.0, 9.5)
  • the line segment CD is It is preferable if it is represented by coordinates ( ⁇ 0.017z 2 + 0.0148z + 77.684, 0.017z 2 + 0.9852z + 22.316, z), and the line segments Oc, da and aO are straight lines.
  • the refrigerant E of the present disclosure may further contain other additional refrigerants in addition to HFO-1132 (E), HFO-1123, and R32, as long as the above-described properties and effects are not impaired.
  • the refrigerant E of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), HFO-1123 and R32 with respect to the entire refrigerant. It is more preferable to contain 99.9 mass% or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant E Below, the Example of the refrigerant
  • a mixed refrigerant was prepared by mixing HFO-1132 (E), HFO-1123 and R32 in the mass% shown in Table 145 and Table 146, respectively, based on the total of these.
  • the composition of each mixture is WCF, and in accordance with the ASHRAE 34-2013 standard, the condition (Equipment), (Storage), (Shipping), (Shipping), (Leak) and Recharge the National Institute of Science and Technology (NIST) Leakage simulation was performed according to Standard Reference Data Base Refleak Version 4.0, and the most flammable fraction was WCFF.
  • the burning rate was measured in accordance with the ANSI / ASHRA 34-2013 standard.
  • the WCF composition and the WCFF composition having a burning rate of 10 cm / s or less correspond to the “2 L class (slight flammability)” in the flammability classification of ASHRAE.
  • the burning rate test was done as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • the points on the line segment KL are approximated curves by the least squares method from three points of K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7) and L (35.5, 27.5, 37.0). Determined, determined the coordinates.
  • the line segment MP is represented by coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z), and the line segment PQ is represented by coordinates (0.0135z 2 -0.9181z). +44.133, -0.0135z 2 -0.0819z + 55.867, z).
  • the point on the line segment MP obtains an approximate curve from the three points M, N, and P by the least squares method
  • the point on the line segment PQ approximates the curve from the three points P, U, and Q by the least squares method
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E) and HFO-1123 is as follows using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) It calculated
  • a COP ratio based on R410 and a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] ratio were respectively determined.
  • the calculation conditions were as follows.
  • the coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point A '' (63.0, 0.0, 37.0), Point B '' (0.0, 63.0, 37.0) and Point (0.0, 100.0, 0.0)
  • GWP becomes 250 or less.
  • the coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point A '(81.6, 0.0, 18.4), Point B '(0.0, 81.6, 18.4) and point (0.0, 100.0, 0.0)
  • Point O (100.0, 0.0, 0.0)
  • Point A '(81.6, 0.0, 18.4) Point B '(0.0, 81.6, 18.4)
  • point (0.0, 100.0, 0.0) When it exists in the range of the figure enclosed by the line segment which respectively connects 4 points of, or on the said line segment, it turns out that GWP becomes 125 or less.
  • the coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point A (90.5, 0.0, 9.5), Point B (0.0, 90.5, 9.5) and Point (0.0, 100.0, 0.0)
  • Point O 100.0, 0.0, 0.0
  • Point A 90.5, 0.0, 9.5
  • Point B 0.0, 90.5, 9.5
  • Point 0.0, 100.0, 0.0
  • the coordinates (x, y, z) are Point C (50.0, 31.6, 18.4), Point U (28.7, 41.2, 30.1) and Point D (52.2, 38.3, 9.5)
  • the COP ratio based on R410A is 96% or more when it is on the left side of the line segment connecting the three points of or on the line segment.
  • the line segment CU has coordinates ( ⁇ 0.0538z 2 + 0.7888z + 53.701, 0.0538z 2 ⁇ 1.7888z + 46.299, z)
  • the line segment UD has coordinates ( ⁇ 3.4962z 2 + 210.71z ⁇ 3146.1, 3.4962 z 2 -211.71 z + 3246.1, z).
  • the point on the line segment CU is obtained from the three points of the point C, the comparative example 10, and the point U by the least square method.
  • the point on the line segment UD is obtained by the least square method from the three points of the point U, the second embodiment, and the D.
  • the coordinates (x, y, z) are Point E (55.2, 44.8, 0.0), Point T (34.8, 51.0, 14.2)
  • Point E (55.2, 44.8, 0.0)
  • Point T (34.8, 51.0, 14.2)
  • the COP ratio based on R410A is 94.5% or more.
  • the line segment ET the coordinates (-0.0547z 2 -0.5327z + 53.4, 0.0547z 2 -0.4673z + 46.6, z)
  • the segment TF is coordinates (-0.0982z 2 + 0.9622z + 40.931, 0.0982 z 2 ⁇ 1.9622 z + 59.069, z).
  • the point on the line segment ET is obtained by the least square method from the three points of the point E, Example 2, and T.
  • the point on the line segment TG is obtained by the least square method from the three points T, S, and F.
  • the coordinates (x, y, z) are Point G (0.0, 76.7, 23.3), Point R (21.0, 69.5, 9.5) and point H (0.0, 85.9, 14.1)
  • point G 0.0, 76.7, 23.3
  • Point R (21.0, 69.5, 9.5)
  • point H 0.0, 85.9, 14.1
  • the line segment GR is represented by coordinates ( ⁇ 0.0491 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5, z)
  • the line segment RH is represented by coordinates ( ⁇ 0.3123z 2 + 4.234z + 11.06, 0.3123z 2 -5.234z + 88.94, represented by z).
  • the point on the line segment GR is obtained from the three points of the point G, the fifth embodiment, and the point R by the least square method.
  • the point on the line segment RH is obtained from the three points of the point R, the example 7, and the point H by the least square method.
  • an air conditioner 10 which is an example of a refrigeration cycle apparatus will be described.
  • the refrigeration cycle apparatus is all apparatuses operated by the refrigeration cycle, and includes an air conditioner, a dehumidifier, a heat pump type water heater, a refrigerator, a refrigeration system for refrigeration, a cooling system for manufacturing process, and the like.
  • the air conditioner 10 is a separate type air conditioner including an outdoor unit (not shown) and an indoor unit (not shown), and is configured to be able to switch between cooling operation and heating operation.
  • the air conditioner 10 includes a refrigerant circuit 20 that performs a vapor compression refrigeration cycle.
  • the refrigerant circuit 20 includes an outdoor circuit 20a mounted on the outdoor unit and an indoor circuit 20b mounted on the indoor unit.
  • the compressor 21, the outdoor heat exchanger 23, the outdoor expansion valve 24, the four-way valve 22, the bridge circuit 31, and the gas-liquid separator 25 are connected to the outdoor circuit 20a.
  • the outdoor heat exchanger 23 constitutes a heat source side heat exchanger.
  • the indoor heat exchanger 27 and the indoor expansion valve 26 are connected to the indoor circuit 20b.
  • the indoor heat exchanger 27 constitutes a use side heat exchanger.
  • the discharge pipe 45 of the compressor 21 is connected to the first port P1 of the four-way valve 22.
  • the suction pipe 46 of the compressor 21 is connected to the second port P 2 of the four-way valve 22.
  • An inlet pipe 36, an outlet pipe 37 and an injection pipe 38 are connected to the gas-liquid separator 25.
  • the inflow pipe 36 opens at the top of the internal space of the gas-liquid separator 25.
  • the outflow pipe 37 opens at the lower part of the internal space of the gas-liquid separator 25.
  • the injection pipe 38 opens at the top of the internal space of the gas-liquid separator 25.
  • the refrigerant flowing from the inflow pipe 36 is separated into the saturated liquid and the saturated gas, the saturated liquid flows out from the outflow pipe 37, and the saturated gas flows out from the injection pipe 38.
  • the inflow pipe 36 and the outflow pipe 37 are connected to the bridge circuit 31 respectively.
  • the injection pipe 38 is connected to the intermediate connection pipe 47 of the compressor 21.
  • the refrigerant in the saturated gas state that has flowed out of the injection pipe 38 is injected into the compression chamber at the intermediate pressure of the compression mechanism 32 through the intermediate port.
  • the inflow pipe 36, the outflow pipe 37, the injection pipe 38, and the gas-liquid separator 25 flow out of the outdoor heat exchanger 23 during the cooling operation and among the refrigerants that have been depressurized to the intermediate pressure of the refrigeration cycle.
  • the refrigerant in the saturated liquid state is supplied to the indoor heat exchanger 27, and the injection circuit 15 for supplying the refrigerant in the saturated gas state to the compressor 21 is configured.
  • the bridge circuit 31 is a circuit in which a first check valve CV1, a second check valve CV2, a third check valve CV3, and a fourth check valve CV4 are connected in a bridge shape.
  • the connection end located on the inflow side of the first check valve CV1 and the inflow side of the second check valve CV2 is connected to the outflow pipe 37.
  • the connection ends of the outflow side of the second check valve CV2 and the inflow side of the third check valve CV3 are connected to the indoor heat exchanger 27.
  • a refrigerant pipe that connects the connection end to the indoor heat exchanger 27 is provided with an indoor expansion valve 26 with a variable opening degree.
  • connection ends of the outflow side of the third check valve CV3 and the outflow side of the fourth check valve CV4 are connected to the inflow pipe.
  • connection ends of the outflow side of the first check valve CV1 and the inflow side of the fourth check valve CV4 are connected to the outdoor heat exchanger 23.
  • the four-way valve 22 is set to a state in which the first port P1 and the third port P3 communicate with each other and the second port P2 and the fourth port P4 communicate with each other (state shown by solid lines in FIG. 16). . Then, when the compressor 21 is operated in this state, in the refrigerant circuit 20, the outdoor heat exchanger 23 operates as a condenser, and a cooling operation is performed in which the indoor heat exchanger 27 operates as an evaporator.
  • the four-way valve 22 is set to a state in which the first port P1 and the fourth port P4 communicate with each other and the second port P2 and the third port P3 communicate with each other (state shown by a broken line in FIG. 16).
  • the compressor 21 is operated in this state, in the refrigerant circuit 20, the outdoor heat exchanger 23 operates as an evaporator, and the indoor heat exchanger 27 operates as a condenser to perform a heating operation.
  • the outdoor heat exchanger 23 is configured by a microchannel heat exchanger (also referred to as a micro heat exchanger) in which a microchannel 13 which is a flow path of a refrigerant is formed.
  • the microchannel 13 is a fine flow path (flow path with a very small flow area) processed using a micro-fabrication technique or the like.
  • a heat exchanger having microchannels 13 of a flow passage of several millimeters or less in which the effect of surface tension appears is called a microchannel heat exchanger.
  • the outdoor heat exchanger 23 includes a plurality of flat tubes 16 and a pair of headers 17 and 18.
  • the pair of headers 17 and 18 is formed of a cylindrical sealed container.
  • a plurality of microchannels 13 are formed in each flat tube 16.
  • the plurality of microchannels 13 are formed at a predetermined pitch in the width direction of the flat tube 16.
  • Each flat tube 16 is fixed to a pair of headers 17 and 18 such that one end of the microchannel 13 opens in one header 17 and the other end of the microchannel 13 opens in the other header 18 .
  • a corrugated metal plate 19 is provided between the flat tubes 16.
  • An outdoor fan 28 is provided in the vicinity of the outdoor heat exchanger 23.
  • outdoor air supplied by the outdoor fan 28 flows in the gap formed by the flat tube 16 and the metal plate 19.
  • the outdoor air flows in the width direction of the flat tube 16.
  • one header 17 is connected to the third port P ⁇ b> 3 of the four-way valve 22, and the other header 18 is connected to the bridge circuit 31.
  • the refrigerant flowing into one of the headers 17 and 18 is distributed to the plurality of microchannels 13, and the refrigerant passing through each of the microchannels 13 merges at the other headers 17 and 18.
  • Each microchannel 13 is a refrigerant flow path through which the refrigerant flows.
  • the refrigerant flowing through each of the microchannels 13 exchanges heat with outdoor air.
  • the indoor heat exchanger 27 is constituted by a microchannel heat exchanger. Since the indoor heat exchanger 27 has the same structure as the outdoor heat exchanger 23, the description of the structure of the indoor heat exchanger 27 is omitted.
  • an indoor fan 29 is provided in the vicinity of the indoor heat exchanger 27, an indoor fan 29 is provided.
  • the refrigerant flowing through each of the microchannels 13 exchanges heat with the indoor air supplied by the indoor fan 29.
  • one header 17 is connected to the fourth port P4 of the four-way valve 22, and the other header 18 is connected to the bridge circuit 31.
  • the outdoor heat exchanger 23 and the indoor heat exchanger 27 are configured by microchannel heat exchangers.
  • the volume in the microchannel heat exchanger is small compared to other structural heat exchangers of comparable performance (e.g., cross fin fin and tube heat exchangers). Therefore, it is possible to reduce the total volume in the refrigerant circuit 20 as compared with a refrigeration cycle apparatus using heat exchangers of other construction types.
  • the refrigerant circuit 20 is filled with a refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant is a mixed refrigerant containing 1,2-difluoroethylene, and any of the refrigerants A to E described above can be used.
  • the outdoor heat exchanger 125 has a heat exchange unit 195 and header collecting pipes 191 and 192.
  • the heat exchange portion 195 has a plurality of flat porous tubes 193 and a plurality of insertion fins 194.
  • the flat porous pipe 193 is an example of a flat pipe.
  • the outdoor heat exchanger 125 is included in the refrigerant circuit of the refrigeration cycle apparatus.
  • the refrigerant circuit of the refrigeration cycle apparatus includes a compressor, an evaporator, a condenser, and an expansion valve.
  • the outdoor heat exchanger 125 functions as an evaporator in the refrigerant circuit of the refrigeration cycle apparatus.
  • the outdoor heat exchanger 125 functions as a condenser in the refrigerant circuit of the refrigeration cycle apparatus.
  • FIG. 20 is a partially enlarged view of the heat exchange portion 195 when the flat porous pipe 193 and the insertion fin 194 are cut in the vertical direction.
  • the flat porous pipe 193 functions as a heat transfer pipe, and transfers the heat moving between the insertion fin 194 and the outdoor air to the refrigerant flowing inside.
  • the flat porous pipe 193 has a side surface portion to be a heat transfer surface, and a plurality of internal flow paths 193 a through which the refrigerant flows.
  • the flat porous tubes 193 are arranged in a plurality of stages with intervals in a state where the adjacent flat porous tubes 193 and the side portions are vertically opposed to each other.
  • the insertion fins 194 are a plurality of fins having the shape shown in FIG. 20 and are connected to the flat porous tube 193.
  • the insertion fin 194 has a plurality of notches 194 a extending horizontally in an elongated manner so that the insertion fins 194 can be inserted into the multistage flat porous pipes 193 arranged between the two header collecting pipes 191 and 192. It is formed.
  • the shapes of the notches 194a of these insertion fins 194 substantially match the outer shape of the cross section of the flat porous tube 193, as shown in FIG.
  • the communicating portion 194 b is a portion which is linearly connected without the notch 194 a in the insertion fin 194.
  • the communication portion 194b of the insertion fin 194 may be disposed upwind.
  • the flat porous pipe 193 is subjected to wind after being dehumidified first by the insertion fins 194.
  • the heat exchanger shown in FIG. 19 may be used for the indoor heat exchanger.
  • the communication portion of the insertion fins can be disposed downwind.
  • the indoor heat exchanger when the communicating portion of the insertion fin is disposed downwind, it is possible to prevent water splashing.
  • the refrigerant circuit including the outdoor heat exchanger 125 is filled with a refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant is a mixed refrigerant containing 1,2-difluoroethylene, and any of the refrigerants A to E described above can be used.
  • the internally grooved tube 201 is inserted into the through holes 211 a of the plurality of parallelly arranged plate fins 211 shown in FIG.
  • the expansion tool (not shown) is pressed into the inner grooved tube 201.
  • the expansion tool is removed from the inner grooved tube 201.
  • a heat exchanger in which the internally grooved tube 201 and the plate fins 211 are joined without a gap is manufactured.
  • the internally grooved tube 201 is used for a plate fin tube type heat exchanger of a refrigeration cycle apparatus such as an air conditioner and a refrigeration air conditioner.
  • the plate fin tube type heat exchanger is included in the refrigerant circuit of the refrigeration cycle apparatus.
  • the refrigerant circuit of the refrigeration cycle apparatus includes a compressor, an evaporator, a condenser, and an expansion valve.
  • the plate finned tube heat exchanger functions as an evaporator in the refrigerant circuit of the refrigeration cycle apparatus.
  • the plate fin tube type heat exchanger functions as a condenser in the refrigerant circuit of the refrigeration cycle apparatus.
  • the inner grooved tube 201 has a tube outer diameter D201 of 4 mm or more and 10 mm or less. Moreover, as a material of the element pipe of the internally grooved pipe 201, aluminum or an aluminum alloy is used. In addition, although the formation method of the inner surface groove shape of the internally grooved tube 201 includes a rolling method, a rolling method, etc., it is not particularly limited.
  • the inner grooved tube 201 is formed between the grooves 202 with a large number of grooves 202 formed on the inner surface in a direction inclined in the direction of the tube axis.
  • the groove has a groove number of 30 or more and 100 or less, a groove lead angle ⁇ 201 formed by the groove 202 and the pipe axis is 10 or more and 50 degrees or less, and the pipe axis orthogonal to the grooved tube 201 is provided.
  • the bottom thickness T201 of the internally grooved tube 201 in the cross section (cut along the line I--I) is 0.2 mm or more and 1.0 mm or less, and the fin height h201 of the fin inside the tube is 0.1 mm or more.
  • the apex angle ⁇ 201 of the fin is not less than 5 degrees and not more than 45 degrees, and the root radius r201 of the fin is not less than 20% and not more than 50% of the fin height h201.
  • Number of grooves 30 or more and 100 or less
  • the number of grooves is appropriately determined in consideration of heat transfer performance, single weight, etc. in combination with each item of inner groove shape described later. 30 or more and 100 or less are preferable. If the number of grooves is less than 30, groove formability tends to deteriorate, and if the number of grooves exceeds 100, breakage of the grooved tool (grooved plug) tends to occur. In any case, the mass productivity of the internally grooved tube 201 tends to be reduced.
  • the internally grooved tube 201 when used for an outdoor heat exchanger and an indoor heat exchanger included in the refrigerant circuit of the refrigeration cycle apparatus, the number of grooves of the internally grooved tube 201 of the outdoor heat exchanger> the inner surface of the indoor heat exchanger It is preferable to set it as the number of grooves of the grooved tube 201. By doing so, the pressure loss in the inner grooved tube 201 can be reduced and the heat transfer performance can be improved.
  • groove lead angle ⁇ 201 10 degrees or more and 50 degrees or less
  • the groove lead angle ⁇ 201 is preferably 10 degrees or more and 50 degrees or less. If the groove lead angle ⁇ 201 is less than 10 degrees, the heat transfer performance of the internally grooved tube 201 (heat exchanger) is likely to be degraded. If the groove lead angle ⁇ 201 exceeds 50 degrees, it is difficult to ensure the mass productivity of the internally grooved tube 201 and to suppress the deformation of the in-pipe fin 203 due to the expansion.
  • the groove lead angle of the internally grooved tube 201 of the outdoor heat exchanger ⁇ indoor heat exchanger It is preferable to set the number of grooves of the internally grooved tube 201. By doing so, the pressure loss in the inner grooved tube 201 can be reduced and the heat transfer performance can be improved.
  • Bottom thickness T201 0.2 mm or more and 1.0 mm or less
  • the bottom thickness T201 is preferably 0.2 mm or more and 1.0 mm or less.
  • the strength of the internally grooved tube 201 is likely to be reduced, and the retention of pressure resistance strength tends to be difficult.
  • Fin height h201 0.1 mm or more (bottom thickness T201 ⁇ 1.2) mm or less Fin height h201 is preferably 0.1 mm or more (bottom thickness T201 ⁇ 1.2) mm or less .
  • the heat transfer performance of the internally grooved tube 201 heat exchanger
  • the fin height h201 exceeds (bottom thickness T201 ⁇ 1.2) mm, it is difficult to ensure mass productivity of the internally grooved tube 201 and to suppress extreme deformation of the in-pipe fin 203 due to the expansion.
  • the fin height h201 of the internally grooved tube 201 of the outdoor heat exchanger > indoor heat exchanger It is preferable to set it as fin height h201 of the inner surface grooved tube 201. By doing so, the pressure loss in the inner grooved tube 201 can be reduced, and the heat transfer performance of the outdoor heat exchanger can be further improved.
  • Peak angle ⁇ 201 5 degrees or more and 45 degrees or less
  • the peak angle ⁇ 201 is preferably 5 degrees or more and 45 degrees or less.
  • the peak angle ⁇ 201 is less than 5 degrees, it is difficult to ensure the mass productivity of the internally grooved tube 201 and to suppress the deformation of the inner fin 203 due to the expansion.
  • the peak angle ⁇ 201 exceeds 45 °, the heat transfer performance of the internally grooved tube 201 (heat exchanger) is maintained, and the single weight of the internally grooved tube 201 tends to be excessive.
  • Fin root radius r201 20% or more and 50% or less of fin height h201
  • the fin root radius r201 is preferably 20% or more and 50% or less of the fin height h201. If the fin root radius r201 is less than 20% of the fin height h201, the fin inclination due to pipe expansion tends to be excessive, and mass productivity tends to be reduced. In addition, when the root radius r201 of the fin exceeds 50% of the fin height h201, the effective heat transfer area at the refrigerant gas-liquid interface tends to decrease and the heat transfer performance of the internally grooved tube 201 (heat exchanger) tends to decrease. .
  • the refrigerant circuit including the plate fin tube type heat exchanger in which the internally grooved tube 201 is used is filled with a refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant is a mixed refrigerant containing 1,2-difluoroethylene, and any of the refrigerants A to E described above can be used.
  • the air conditioner 10 which is the refrigeration cycle apparatus of the first embodiment, the refrigeration cycle apparatus of the second embodiment and the refrigeration cycle apparatus of the third embodiment are flammable including at least 1,2-difluoroethylene A refrigerant, an evaporator for evaporating the refrigerant, and a condenser for condensing the refrigerant are provided.
  • these refrigeration cycle apparatuses are configured such that the refrigerant circulates the evaporator and the condenser to repeat the refrigeration cycle.
  • the outdoor heat exchanger 23 is one of an evaporator and a condenser
  • the indoor heat exchanger 27 is the other of the evaporator and a condenser, and made of aluminum or aluminum alloy. It has a metal plate 19 which is a plurality of fins made of metal and a flat tube 16 which is a plurality of heat transfer tubes made of aluminum or aluminum alloy.
  • the outdoor heat exchanger 23 and the indoor heat exchanger 27 are heat exchangers that exchange heat between the refrigerant flowing inside the flat tube 16 and the air that is the fluid flowing along the metal plate 19.
  • the flat tube 16 has a flat portion 16a shown in FIG.
  • the flat portions 16a of the flat tubes 16 adjacent to each other are arranged to face each other.
  • Each of the plurality of metal plates 19 is bent into a corrugated shape and disposed between the flat portions 16 a of the flat tubes 16 adjacent to each other.
  • Each metal plate 19 is connected to the flat portion 16a so as to transfer heat to the flat portion 16a.
  • the outdoor heat exchanger 125 is one of an evaporator and a condenser, and includes a plurality of insertion fins 194 made of aluminum or aluminum alloy, and a plurality of aluminum or aluminum alloys. It has a flat porous pipe 193 which is a heat transfer pipe.
  • the outdoor heat exchanger 125 is a heat exchanger that exchanges heat between the refrigerant flowing inside the flat porous pipe 193 and air that is a fluid flowing along the insertion fins 194.
  • the flat porous pipe 193 has a flat portion 193b shown in FIG. In the outdoor heat exchanger 125, the flat portions 193b of the flat porous tubes 193 adjacent to each other are arranged to face each other.
  • Each of the plurality of plug-in fins 194 has a plurality of notches 194 a.
  • a plurality of flat porous pipes 193 are inserted into the plurality of notches 194 a of the plurality of insertion fins 194 and connected so as to transfer heat to the plurality of insertion fins 194.
  • the heat exchanger includes a plurality of plate fins 211 made of aluminum or aluminum alloy and an inner grooved tube 201 which is a plurality of heat transfer tubes made of aluminum or aluminum alloy. And one of the condenser.
  • This heat exchanger is a heat exchanger which exchanges heat between the refrigerant flowing inside the internally grooved tube 201 and air which is a fluid flowing along the plate fins 211.
  • Each of the plurality of plate fins 211 has a plurality of through holes 211 a.
  • the plurality of internally grooved tubes 201 pass through the plurality of through holes 211 a of the plurality of plate fins 211.
  • the outer peripheries of the plurality of inner grooved tubes 201 are in close contact with the inner peripheries of the plurality of through holes 211 a.
  • the above-described refrigeration cycle apparatus includes, in a heat exchanger, metal plates 19 which are a plurality of fins made of aluminum or aluminum alloy, insertion fins 194 or plate fins 211, and a plurality of heat transfer tubes made of aluminum or aluminum alloy.
  • the flat tube 16, the flat porous tube 193 or the internally grooved tube 201 is Since the refrigeration cycle apparatus has such a configuration, the material cost of the heat exchanger can be reduced, for example, as compared to the case of using a copper pipe for the heat transfer pipe.
  • Air conditioning equipment (example of refrigeration cycle equipment) 16 Flat tube (example of heat transfer tube) 16a, 193b flat portion 19 metal plate (example of fin) 23,125 Outdoor heat exchanger (example of evaporator and example of condenser) 27 Indoor heat exchanger (example of evaporator and example of condenser) 193 Flat porous tube (example of heat transfer tube, flat tube) 194 Insertion fin 194a Notch 201 Inner grooved tube (example of heat transfer tube) 211 plate fins 211a through holes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Lubricants (AREA)
  • Liquid Crystal Substances (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

熱交換器を備える冷凍サイクル装置は、材料費を削減することができる。冷凍サイクル装置である空気調和装置(10)は、少なくとも1,2-ジフルオロエチレンを含む可燃性の冷媒と、室外熱交換器(23)と、室内熱交換器(27)とを備えている。室外熱交換器(23)と室内熱交換器(27)のうちの一方が、冷媒を蒸発させる蒸発器であり、他方が、冷媒を凝縮させる凝縮器である。室外熱交換器(23)と室内熱交換器(27)が、アルミニウム製またはアルミニウム合金製の複数のフィンである金属板(19)及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管である扁平管(16)を有し、扁平管(16)の内部を流れる冷媒と金属板(19)に沿って流れる空気に熱交換させる熱交換器である。冷媒が、室外熱交換器(23)と室内熱交換器(27)とを循環して冷凍サイクルを繰り返すように構成されている。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関する。
 従来から、例えば、特許文献1(特開平11-256358号公報)に記載されているように、熱交換器を備える冷凍サイクル装置がある。特許文献1に記載されている冷凍サイクル装置の熱交換器のように、伝熱管に銅パイプが用いられているものがある。
 特許文献1に記載されているような熱交換器は、伝熱管に銅パイプが用いられているため、高価である。
 このように、熱交換器を備える冷凍サイクル装置には、材料費を削減するという課題がある。
 第1観点に係る冷凍サイクル装置は、少なくとも1,2-ジフルオロエチレンを含む可燃性の冷媒と、冷媒を蒸発させる蒸発器と、冷媒を凝縮させる凝縮器と、を備え、蒸発器と凝縮器のうちの少なくとも一方が、アルミニウム製またはアルミニウム合金製の複数のフィン及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管を有し、伝熱管の内部を流れる冷媒とフィンに沿って流れる流体に熱交換させる熱交換器であり、冷媒が、蒸発器と凝縮器とを循環して冷凍サイクルを繰り返すように構成されている。
 この冷凍サイクル装置では、アルミニウム製またはアルミニウム合金製の複数のフィン及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管を有していることから、例えば伝熱管に銅パイプを使う場合に比べて、熱交換器の材料費を削減することができる。
 第2観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、複数のフィンの各々が、複数の穴を有し、複数の伝熱管が、複数のフィンの複数の穴を貫通し、複数の伝熱管の外周が、複数の穴の内周に密着している。
 第3観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、複数の伝熱管が、複数の扁平管であり、互いに隣り合う扁平管の平面部が、互いに向かい合うように配置されている。
 第4観点に係る冷凍サイクル装置は、第3観点の冷凍サイクル装置であって、複数のフィンの各々が、波形に折り曲げられて互いに隣り合う扁平管の平面部の間に配置され、平面部に熱を伝えられるように接続されている。
 第5観点に係る冷凍サイクル装置は、第3観点の冷凍サイクル装置であって、複数のフィンの各々が、複数の切り欠きを有し、複数の扁平管が、複数のフィンの複数の切り欠きに差し込まれて複数のフィンに熱を伝えらるように接続されている。
 第6観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒は、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含んでいる。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第7観点に係る冷凍サイクル装置は、第6観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点A(68.6, 0.0, 31.4)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0)、
  点C(32.9, 67.1, 0.0)及び
  点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD、CO及びOA上の点は除く)、
前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分BD、CO及びOAが直線である。
 第8観点に係る冷凍サイクル装置は、第6観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点G(72.0, 28.0, 0.0)、
  点I(72.0, 0.0, 28.0)、
  点A(68.6, 0.0, 31.4)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0) 及び
  点C(32.9, 67.1, 0.0)
の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分IA、BD及びCG上の点は除く)、
前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分GI、IA、BD及びCGが直線である。
 第9観点に係る冷凍サイクル装置は、第6観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点J(47.1, 52.9, 0.0)、
  点P(55.8, 42.0, 2.2)、
  点N(68.6, 16.3, 15.1)、
  点K(61.3, 5.4, 33.3)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0) 及び
  点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
前記線分PNは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分NKは、
  座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされ、
前記線分KA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、BD及びCGが直線である。
 第10観点に係る冷凍サイクル装置は、第6観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点J(47.1, 52.9, 0.0)、
  点P(55.8, 42.0, 2.2)、
  点L(63.1, 31.9, 5.0)、
  点M(60.3, 6.2, 33.5)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0) 及び
  点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、LM、BD及びCGが直線である。
 第11観点に係る冷凍サイクル装置は、第6観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点P(55.8, 42.0, 2.2)、
  点L(63.1, 31.9, 5.0)、
  点M(60.3, 6.2, 33.5)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点F(0.0, 61.8, 38.2)及び
  点T(35.8, 44.9, 19.3)
の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LM及びBFが直線である。
 第12観点に係る冷凍サイクル装置は、第6観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点P(55.8, 42.0, 2.2)、
  点L(63.1, 31.9, 5.0)、
  点Q(62.8, 29.6, 7.6) 及び
  点R(49.8, 42.3, 7.9)
の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分RPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LQ及びQRが直線である。
 第13観点に係る冷凍サイクル装置は、第6観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点S(62.6, 28.3, 9.1)、
  点M(60.3, 6.2, 33.5)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点F(0.0, 61.8, 38.2)及び
  点T(35.8, 44.9, 19.3)
の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TSは、
  座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
で表わされ、かつ
前記線分SM及びBFが直線である。
 第14観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%含む。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]と冷凍能力[RefrigerationCapacity(Cooling Capacity、Capacityと表記されることもある)]とを有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第15観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]と冷凍能力[RefrigerationCapacity(Cooling Capacity、Capacityと表記されることもある)]とを有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第16観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
  0<a≦11.1のとき、
   点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
   点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
   点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
  11.1<a≦18.2のとき、
   点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
   点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
   点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
  18.2<a≦26.7のとき、
   点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
   点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
   点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
  26.7<a≦36.7のとき、
   点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
   点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
  36.7<a≦46.7のとき、
   点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)、
   点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第17観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
  0<a≦11.1のとき、
   点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
   点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
  11.1<a≦18.2のとき、
   点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
   点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
  18.2<a≦26.7のとき、
   点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
   点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
  26.7<a≦36.7のとき、
   点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
   点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
  36.7<a≦46.7のとき、
   点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
   点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第18観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 0.0, 28.0)、
   点J(48.5, 18.3, 33.2)、
   点N(27.7, 18.2, 54.1)及び
   点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
 前記線分IJは、
  座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
 前記線分NEは、
  座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
 前記線分JN及びEIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第19観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(52.6, 0.0, 47.4)、
   点M’(39.2, 5.0, 55.8)、
   点N(27.7, 18.2, 54.1)、
   点V(11.0, 18.1, 70.9)及び
   点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
 前記線分MM’は、
  座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
 前記線分M’Nは、
  座標(0.0313y2-1.4551y+43.824, y, -0.0313y2+0.4551y+56.176)
で表わされ、
 前記線分VGは、
  座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
 前記線分NV及びGMが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第20観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(22.6, 36.8, 40.6)、
   点N(27.7, 18.2, 54.1)及び
   点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ONは、
  座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
 前記線分NUは、
  座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
 前記線分UOが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第21観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(44.6, 23.0, 32.4)、
   点R(25.5, 36.8, 37.7)、
   点T(8.6, 51.6, 39.8)、
   点L(28.9, 51.7, 19.4)及び
   点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分QRは、
  座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
 前記線分RTは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
 前記線分LKは、
  座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
 前記線分KQは、
  座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
 前記線分TLが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第22観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(20.5, 51.7, 27.8)、
   点S(21.9, 39.7, 38.4)及び
   点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PSは、
  座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
 前記線分STは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
 前記線分TPが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第23観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点K(48.4, 33.2, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
 前記線分IKは、
  座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分KB’及びGIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第24観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点J(57.7, 32.8, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
 前記線分IJは、
  座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第25観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点P(31.8, 49.8, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
 前記線分MPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分PB’及びGMが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第26観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点N(38.5, 52.1, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
 前記線分MNは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第27観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(31.8, 49.8, 18.4)
   点S(25.4, 56.2, 18.4)及び
   点T(34.8, 51.0, 14.2)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分STは、
  座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
で表わされ、かつ
 前記線分TPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分PSが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
 第28観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(28.6, 34.4, 37.0)
   点B’’(0.0, 63.0, 37.0)
   点D(0.0, 67.0, 33.0)及び
   点U(28.7, 41.2, 30.1)
の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
 前記線分DUは、
  座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
 前記線分UQは、
  座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)
で表わされ、
 前記線分QB’’及びB’’Dが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて、熱交換器の材料費を削減することが可能である。
燃焼性試験に用いた装置の模式図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図に、点A~T並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図に、点A~C、D’、G、I、J及びK’並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が92.9質量%(R32含有割合が7.1質量%)となる3成分組成図に、点A~C、D’、G、I、J及びK’並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が88.9質量%(R32含有割合が11.1質量%)となる3成分組成図に、点A~C、D’、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が85.5質量%(R32含有割合が14.5質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が81.8質量%(R32含有割合が18.2質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が78.1質量%(R32含有割合が21.9質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が73.3質量%(R32含有割合が26.7質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が70.7質量%(R32含有割合が29.3質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が63.3質量%(R32含有割合が36.7質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が55.9質量%(R32含有割合が44.1質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が52.2質量%(R32含有割合が47.8質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図に、点A~C、E、G、及びI~W並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図に、点A~U並びにそれらを互いに結ぶ線分を示した図である。 第1実施形態の冷凍装置の概略構成図である。 第1実施形態の室外熱交換器又は室内熱交換器の正面図である。 第1実施形態の熱交換器の扁平チューブの断面図である。 第2実施形態に係る室外熱交換器の概略斜視図である。 室外熱交換器の熱交管部を鉛直方向に切断したときの部分拡大図である。 第3実施形態に係る内面溝付管の構成を示す管軸方向の断面図である。 図21に示された内面溝付管のI-I線断面図である。 図22に示された内面溝付管の一部を拡大して示す部分拡大図である。 プレートフィンの構成を示す平面図である。
 (1)用語の定義
 本明細書において用語「冷媒」には、ISO817(国際標準化機構)で定められた、冷媒の種類を表すRで始まる冷媒番号(ASHRAE番号)が付された化合物が少なくとも含まれ、さらに冷媒番号が未だ付されていないとしても、それらと同等の冷媒としての特性を有するものが含まれる。冷媒は、化合物の構造の面で、「フルオロカーボン系化合物」と「非フルオロカーボン系化合物」とに大別される。「フルオロカーボン系化合物」には、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)が含まれる。「非フルオロカーボン系化合物」としては、プロパン(R290)、プロピレン(R1270)、ブタン(R600)、イソブタン(R600a)、二酸化炭素(R744)及びアンモニア(R717)等が挙げられる。
 本明細書において、用語「冷媒を含む組成物」には、(1)冷媒そのもの(冷媒の混合物を含む)と、(2)その他の成分をさらに含み、少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることのできる組成物と、(3)冷凍機油を含有する冷凍機用作動流体とが少なくとも含まれる。本明細書においては、これら三態様のうち、(2)の組成物のことを、冷媒そのもの(冷媒の混合物を含む)と区別して「冷媒組成物」と表記する。また、(3)の冷凍機用作動流体のことを「冷媒組成物」と区別して「冷凍機油含有作動流体」と表記する。
 本明細書において、用語「代替」は、第一の冷媒を第二の冷媒で「代替」するという文脈で用いられる場合、第一の類型として、第一の冷媒を使用して運転するために設計された機器において、必要に応じてわずかな部品(冷凍機油、ガスケット、パッキン、膨張弁、ドライヤその他の部品のうち少なくとも一種)の変更及び機器調整のみを経るだけで、第二の冷媒を使用して、最適条件下で運転することができることを意味する。すなわち、この類型は、同一の機器を、冷媒を「代替」して運転することを指す。この類型の「代替」の態様としては、第二の冷媒への置き換えの際に必要とされる変更乃至調整の度合いが小さい順に、「ドロップイン(drop in)代替」、「ニアリー・ドロップイン(nealy drop in)代替」及び「レトロフィット(retrofit)」があり得る。
 第二の類型として、第二の冷媒を用いて運転するために設計された機器を、第一の冷媒の既存用途と同一の用途のために、第二の冷媒を搭載して用いることも、用語「代替」に含まれる。この類型は、同一の用途を、冷媒を「代替」して提供することを指す。
 本明細書において用語「冷凍機(refrigerator)」とは、物あるいは空間の熱を奪い去ることにより、周囲の外気よりも低い温度にし、かつこの低温を維持する装置全般のことをいう。言い換えれば、冷凍機は温度の低い方から高い方へ熱を移動させるために、外部からエネルギーを得て仕事を行いエネルギー変換する変換装置のことをいう。
 本明細書において冷媒が「WCF微燃」であるとは、米国ANSI/ASHRAE34-2013規格に従い最も燃えやすい組成(Worst case of formulation for flammability; WCF)が、燃焼速度が10cm/s以下であることを意味する。また、本明細書において冷媒が「ASHRAE微燃」であるとは、WCFの燃焼速度が10cm/s以下で、かつ、WCFを用いてANSI/ASHRAE34-2013に基づいた貯蔵、輸送、使用時の漏洩試験を行うことで特定される最も燃えやすい分画組成(Worst case of fractionation for flammability; WCFF)が、燃焼速度が10cm/s以下であり、米国ANSI/ASHRAE34-2013規格の燃焼性区分が「2Lクラス」と判断されることを意味する。
 本明細書において冷媒について「RCLがx%以上」というときは、かかる冷媒についての、米国ANSI/ASHRAE34-2013規格に従い算出される冷媒濃度限界(Refrigerant Concentration Limit; RCL)がx%以上であることを意味する。RCLとは、安全係数を考慮した空気中における濃度限界であり、人間が存在する密閉空間において、急性毒性、窒息及び可燃性の危険度を低減することを目的とした指標である。RCLは上記規格に従って決定される。具体的には、上記規格7.1.1、7.1.2及び7.1.3に従いそれぞれ算出される、急性毒性曝露限界(Acute-Toxicity Exposure Limit; ATEL)、酸欠濃度限界(Oxygen Deprivation Limit; ODL)及び可燃濃度限界(Flammable Concentration Limit; FCL)のうち、最も低い濃度がRCLとなる。
 本明細書において温度グライド(Temperature Glide)とは、冷媒システムの熱交換器内における本開示の冷媒を含む組成物の相変化過程の開始温度と終了温度の差の絶対値を意味する。
 (2)冷媒
 (2-1)冷媒成分
 詳細は後述するが、冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの各種冷媒のいずれか1種を冷媒として用いることができる。
 (2-2)冷媒の用途
 本開示の冷媒は、冷凍機における作動流体として好ましく使用することができる。
 本開示の組成物は、R410A、R407CおよびR404A等のHFC冷媒、並びにR22等のHCFC冷媒の代替冷媒としての使用に適している。
 (3)冷媒組成物
 本開示の冷媒組成物は、本開示の冷媒を少なくとも含み、本開示の冷媒と同じ用途のために使用することができる。また、本開示の冷媒組成物は、さらに少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることができる。
 本開示の冷媒組成物は、本開示の冷媒に加え、さらに少なくとも一種のその他の成分を含有する。本開示の冷媒組成物は、必要に応じて、以下のその他の成分のうち少なくとも一種を含有していてもよい。上述の通り、本開示の冷媒組成物を、冷凍機における作動流体として使用するに際しては、通常、少なくとも冷凍機油と混合して用いられる。したがって、本開示の冷媒組成物は、好ましくは冷凍機油を実質的に含まない。具体的には、本開示の冷媒組成物は、冷媒組成物全体に対する冷凍機油の含有量が好ましくは0~1質量%であり、より好ましくは0~0.1質量%である。
 (3-1)水
 本開示の冷媒組成物は微量の水を含んでもよい。冷媒組成物における含水割合は、冷媒全体に対して、0.1質量%以下とすることが好ましい。冷媒組成物が微量の水分を含むことにより、冷媒中に含まれ得る不飽和のフルオロカーボン系化合物の分子内二重結合が安定化され、また、不飽和のフルオロカーボン系化合物の酸化も起こりにくくなるため、冷媒組成物の安定性が向上する。
 (3-2)トレーサー
 トレーサーは、本開示の冷媒組成物が希釈、汚染、その他何らかの変更があった場合、その変更を追跡できるように検出可能な濃度で本開示の冷媒組成物に添加される。
 本開示の冷媒組成物は、トレーサーとして、一種を単独で含有してもよいし、二種以上を含有してもよい。
 トレーサーとしては、特に限定されず、一般に用いられるトレーサーの中から適宜選択することができる。好ましくは、本開示の冷媒に不可避的に混入する不純物とはなり得ない化合物をトレーサーとして選択する。
 トレーサーとしては、例えば、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン、重水素化炭化水素、重水素化ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、臭素化化合物、ヨウ素化化合物、アルコール、アルデヒド、ケトン、亜酸化窒素(N2O)等が挙げられる。
 トレーサーとしては、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン及びフルオロエーテルが特に好ましい。
 上記トレーサーとしては、具体的には、以下の化合物が好ましい。
 FC-14(テトラフルオロメタン、CF4
 HCC-40(クロロメタン、CHCl)
 HFC-23(トリフルオロメタン、CHF
 HFC-41(フルオロメタン、CHCl)
 HFC-125(ペンタフルオロエタン、CFCHF
 HFC-134a(1,1,1,2-テトラフルオロエタン、CFCHF)
 HFC-134(1,1,2,2-テトラフルオロエタン、CHFCHF
 HFC-143a(1,1,1-トリフルオロエタン、CFCH
 HFC-143(1,1,2-トリフルオロエタン、CHFCHF)
 HFC-152a(1,1-ジフルオロエタン、CHFCH
 HFC-152(1,2-ジフルオロエタン、CHFCHF)
 HFC-161(フルオロエタン、CHCHF)
 HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン、CFCHCHF
 HFC-236fa(1,1,1,3,3,3-ヘキサフルオロプロパン、CFCHCF
 HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン、CFCHFCHF
 HFC-227ea(1,1,1,2,3,3,3-ヘプタフルオロプロパン、CFCHFCF)
 HCFC-22(クロロジフルオロメタン、CHClF
 HCFC-31(クロロフルオロメタン、CHClF)
 CFC-1113(クロロトリフルオロエチレン、CF=CClF)
 HFE-125(トリフルオロメチル-ジフルオロメチルエーテル、CFOCHF
 HFE-134a(トリフルオロメチル-フルオロメチルエーテル、CFOCHF)
 HFE-143a(トリフルオロメチル-メチルエーテル、CFOCH
 HFE-227ea(トリフルオロメチル-テトラフルオロエチルエーテル、CFOCHFCF
 HFE-236fa(トリフルオロメチル-トリフルオロエチルエーテル、CFOCHCF
 トレーサー化合物は、約10重量百万分率(ppm)~約1000ppmの合計濃度で冷媒組成物中に存在し得る。好ましくは、トレーサー化合物は約30ppm~約500ppmの合計濃度で冷媒組成物中に存在し、最も好ましくは、トレーサー化合物は約50ppm~約300ppmの合計濃度で冷媒組成物中に存在する。
 (3-3)紫外線蛍光染料
 本開示の冷媒組成物は、紫外線蛍光染料として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 紫外線蛍光染料としては、特に限定されず、一般に用いられる紫外線蛍光染料の中から適宜選択することができる。
 紫外線蛍光染料としては、例えば、ナフタルイミド、クマリン、アントラセン、フェナントレン、キサンテン、チオキサンテン、ナフトキサンテン及びフルオレセイン、並びにこれらの誘導体が挙げられる。紫外線蛍光染料としては、ナフタルイミド及びクマリンのいずれか又は両方が特に好ましい。
 (3-4)安定剤
 本開示の冷媒組成物は、安定剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 安定剤としては、特に限定されず、一般に用いられる安定剤の中から適宜選択することができる。
 安定剤としては、例えば、ニトロ化合物、エーテル類及びアミン類等が挙げられる。
 ニトロ化合物としては、例えば、ニトロメタン及びニトロエタン等の脂肪族ニトロ化合物、並びにニトロベンゼン及びニトロスチレン等の芳香族ニトロ化合物等が挙げられる。
 エーテル類としては、例えば、1,4-ジオキサン等が挙げられる。
 アミン類としては、例えば、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等が挙げられる。
 その他にも、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。
 安定剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
 (3-5)重合禁止剤
 本開示の冷媒組成物は、重合禁止剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 重合禁止剤としては、特に限定されず、一般に用いられる重合禁止剤の中から適宜選択することができる。
 重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
 重合禁止剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
 (4)冷凍機油含有作動流体
 本開示の冷凍機油含有作動流体は、本開示の冷媒又は冷媒組成物と、冷凍機油とを少なくとも含み、冷凍機における作動流体として用いられる。具体的には、本開示の冷凍機油含有作動流体は、冷凍機の圧縮機において使用される冷凍機油と、冷媒又は冷媒組成物とが互いに混じり合うことにより得られる。冷凍機油含有作動流体には冷凍機油は一般に10~50質量%含まれる。
 (4-1)冷凍機油
 冷凍機油としては、特に限定されず、一般に用いられる冷凍機油の中から適宜選択することができる。その際には、必要に応じて、前記混合物との相溶性(miscibility)及び前記混合物の安定性等を向上する作用等の点でより優れている冷凍機油を適宜選択することができる。
 冷凍機油の基油としては、例えば、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも一種が好ましい。
 冷凍機油は、基油に加えて、さらに添加剤を含んでいてもよい。添加剤は、酸化防止剤、極圧剤、酸捕捉剤、酸素捕捉剤、銅不活性化剤、防錆剤、油性剤及び消泡剤からなる群より選択される少なくとも一種であってもよい。
 冷凍機油として、40℃における動粘度が5~400 cStであるものが、潤滑の点で好ましい。
 本開示の冷凍機油含有作動流体は、必要に応じて、さらに少なくとも一種の添加剤を含んでもよい。添加剤としては例えば以下の相溶化剤等が挙げられる。
 (4-2)相溶化剤
 本開示の冷凍機油含有作動流体は、相溶化剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができる。
 相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテルおよび1,1,1-トリフルオロアルカン等が挙げられる。相溶化剤としては、ポリオキシアルキレングリコールエーテルが特に好ましい。
 (5)各種冷媒
 以下、本実施形態において用いられる冷媒である冷媒A~冷媒Eについて、詳細に説明する。
 なお、以下の冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの各記載は、それぞれ独立しており、点や線分を示すアルファベット、実施例の番号および比較例の番号は、いずれも冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの間でそれぞれ独立であるものとする。例えば、冷媒Aの実施例1と冷媒Bの実施例1とは、互いに異なる実施例を示している。
 (5-1)冷媒A
 本開示の冷媒Aは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
 本開示の冷媒Aは、R410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Aは、HFO-1132(E)及びR1234yf、並びに必要に応じてHFO-1123を含む組成物であって、さらに以下の要件を満たすものであってもよい。この冷媒もR410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 要件:
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)、
   点C(32.9, 67.1, 0.0)及び
   点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CO上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
 で表わされ、かつ
 前記線分BD、CO及びOAが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点G(72.0, 28.0, 0.0)、
   点I(72.0, 0.0, 28.0)、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)及び
   点C(32.9, 67.1, 0.0)
の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CG上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分GI、IA、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格でWCF微燃性(WCF組成の燃焼速度が10cm/s以下)を示す。
 本開示の冷媒Aは、HFO-1132(E) HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点J(47.1, 52.9, 0.0)、
   点P(55.8, 42.0, 2.2)、
   点N(68.6, 16.3, 15.1)、
   点K(61.3, 5.4, 33.3)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0) 及び
   点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CJ上の点は除く)、
 前記線分PNは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分NKは、
  座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされ、
 前記線分KA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分JP、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス(WCF組成及びWCFF組成の燃焼速度が10cm/s以下))を示す。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点J(47.1, 52.9, 0.0)、
   点P(55.8, 42.0, 2.2)、
   点L(63.1, 31.9, 5.0)、
   点M(60.3, 6.2, 33.5)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)及び
   点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CJ上の点は除く)、
 前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分JP、LM、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにRCLが40g/m3以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(55.8, 42.0, 2.2)、
   点L(63.1, 31.9, 5.0)、
   点M(60.3, 6.2, 33.5)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点F(0.0, 61.8, 38.2)及び
   点T(35.8, 44.9, 19.3)
の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
 前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
 前記線分TPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
 前記線分LM及びBFが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が95%以上となるだけでなく、さらにRCLが40g/m3以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(55.8, 42.0, 2.2)、
   点L(63.1, 31.9, 5.0)、
   点Q(62.8, 29.6, 7.6) 及び
   点R(49.8, 42.3, 7.9)
の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分RPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
 前記線分LQ及びQRが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつRCLが40g/m3以上となるだけでなく、さらに凝縮温度グライドが1℃以下となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点S(62.6, 28.3, 9.1)、
   点M(60.3, 6.2, 33.5)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点F(0.0, 61.8, 38.2)及び
   点T(35.8, 44.9, 19.3)
の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
 前記線分TSは、
  座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
で表わされ、かつ
 前記線分SM及びBFが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、R410Aを基準とするCOP比が95%以上となり、かつRCLが40g/m3以上となるだけでなく、さらにR410Aを基準とする吐出圧力比が105%以下となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点d(87.6, 0.0, 12.4)、
   点g(18.2, 55.1, 26.7)、
   点h(56.7, 43.3, 0.0)及び
   点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Od、dg、gh及びhOで囲まれる図形の範囲内又は前記線分Od、dg及びgh上にあり(ただし、点O及びhは除く)、
 前記線分dgは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分ghは、
  座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
 前記線分hO及びOdが直線であれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点l(72.5, 10.2, 17.3)、
   点g(18.2, 55.1, 26.7)、
   点h(56.7, 43.3, 0.0)及び
   点i(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分lg、gh、hi及びilで囲まれる図形の範囲内又は前記線分lg、gh及びil上にあり(ただし、点h及び点iは除く)、
 前記線分lgは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分ghは、
  座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
 前記線分hi及びilが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点d(87.6, 0.0, 12.4)、
   点e(31.1, 42.9, 26.0)、
   点f(65.5, 34.5, 0.0)及び
   点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Od、de、ef及びfOで囲まれる図形の範囲内又は前記線分Od、de及びef上にあり(ただし、点O及び点fは除く)、
 前記線分deは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分efは、
  座標(-0.0064z2-1.1565z+65.501, 0.0064z2+0.1565z+34.499, z)
で表わされ、かつ
 前記線分fO及びOdが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点l(72.5, 10.2, 17.3)、
   点e(31.1, 42.9, 26.0)、
   点f(65.5, 34.5, 0.0)及び
   点i(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分le、ef、fi及びilで囲まれる図形の範囲内又は前記線分le、ef及びil上にあり(ただし、点f及び点iは除く)、
 前記線分LEは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分efは、
  座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
 前記線分fi及びilが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点a(93.4, 0.0, 6.6)、
   点b(55.6, 26.6, 17.8)、
   点c(77.6, 22.4, 0.0)及び
   点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Oa、ab、bc及びcOで囲まれる図形の範囲内又は前記線分Oa、ab及びbc上にあり(ただし、点O及び点cは除く)、
 前記線分abは、
  座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
 前記線分bcは、
  座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
 前記線分cO及びOaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点k(72.5, 14.1, 13.4)、
   点b(55.6, 26.6, 17.8)及び
   点j(72.5, 23.2, 4.3)
の3点をそれぞれ結ぶ線分kb、bj及びjkで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分kbは、
  座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
 前記線分bjは、
  座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
 前記線分jkが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
 本開示の冷媒Aは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒が、HFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 また、本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Aの実施例)
 以下に、冷媒Aの実施例を挙げてさらに詳細に説明する。ただし、冷媒Aは、これらの実施例に限定されるものではない。
 R1234yf、及び、R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,国際公開第2015/141678号に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)、HFO-1123、R1234yfとの混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 また、混合物のRCLは、HFO-1132(E)のLFL=4.7vol%、HFO-1123のLFL=10vol%、R1234yfのLFL=6.2vol%として、ASHRAE34-2013に基づいて求めた。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度:5K
 圧縮機効率:70%
 これらの値を、各混合冷媒についてのGWPと合わせて表1~34に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 これらの結果から、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)、
   点C(32.9, 67.1, 0.0)及び
   点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CO上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分BD、CO及びOAが直線である場合に、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となることが判る。
 線分AA’上の点は、点A、実施例1、及び点A’の3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分A’B上の点は、点A’、実施例3、及び点Bの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分DC’上の点は、点D、実施例6、及び点C’の3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分C’C上の点は、点C’、実施例4、及び点Cの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 また、同様に、座標(x,y,z)が、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点F(0.0, 61.8, 38.2)、
   点T(35.8, 44.9, 19.3)、
   点E(58.0, 42.0, 0.0)及び
   点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BF、FT、TE、EO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EO上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
 前記線分TEは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
 前記線分BF、FO及びOAが直線である場合に、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が95%以上となることが判る。
 線分FT上の点は、点T、E’、Fの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分TE上の点は、点E,R,Tの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0,0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点L(63.1, 31.9, 5.0)及び
   点M(60.3, 6.2, 33.5)
を結ぶ線分LMの上、又は当該線分の下側にある場合にRCLが40g/m3以上となることが明らかとなった。
 また、表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点Q(62.8, 29.6, 7.6) 及び
   点R(49.8, 42.3, 7.9)
を結ぶ線分QRの上、又は当該線分の左側にある場合に温度グライドが1℃以下となることが明らかとなった。
 また、表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点S(62.6, 28.3, 9.1)及び
   点T(35.8, 44.9, 19.3)
を結ぶ線分STの上、又は当該線分の右側にある場合にR410Aを基準とする吐出圧力比が105%以下となることが明らかとなった。
 なお、これらの組成物において、R1234yfは燃焼性の低下や重合等の変質抑制に寄与しており、これを含むことが好ましい。
 さらに、これらの各混合冷媒について、混合組成をWCF濃度としてANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度が10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。なお、図1において、901は試料セルを、902は高速カメラを、903はキセノンランプを、904はコリメートレンズを、905はコリメートレンズを、906はリングフィルターをそれぞれ示す。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 また、WCFF濃度は、WCF濃度を初期濃度としてNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行うことで求めた。
 結果を表35及び表36に示す。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 表35の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和を基準として、HFO-1132(E)を72.0質量%以下含む場合に、WCF微燃性と判断できることが明らかとなった。
 表36の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0,0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とする3成分組成図において、座標(x,y,z)が、
   点J(47.1, 52.9, 0.0)、
   点P(55.8, 42.0, 2.2)、
   点L(63.1,31.9,5.0)
   点N(68.6, 16.3, 15.1)
   点N’(65.0,7.7,27.3)及び
   点K(61.3, 5.4, 33.3)
の6点をそれぞれ結ぶ線分JP、PN及びNKの上、又は当該線分の下側にある場合に、WCF微燃、及びWCFF微燃性と判断できることが明らかとなった。
 ただし、前記線分PNは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分NKは、
  座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされる。
 線分PN上の点は、点P、点L、点Nの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分NK上の点は、点N、点N’、点Kの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 (5-2)冷媒B
 本開示の冷媒Bは、
 トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ、該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%又は45.1質量%~47.1質量%含む、混合冷媒であるか、または、
 HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む、混合冷媒である。
 本開示の冷媒Bは、(1)R410Aと同等の成績係数を有すること、(2)R410Aと同等の冷凍能力を有すること、(3)GWPが十分に小さいこと、及び(4)ASHRAEの規格で微燃性(2Lクラス)であること、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Bは、HFO-1132(E)を72.0質量%以下含む混合冷媒であればWCF微燃となる。本開示の冷媒Bは、HFO-1132(E)を47.1%以下含む組成物であればWCF微燃及びWCFF微燃でASHRAE規格では微燃性冷媒である「2Lクラス」となり、取り扱いがさらに容易となる。
 本開示の冷媒Bは、HFO-1132(E)を、62.0質量%以上含む場合、R410Aを基準とする成績係数比が95%以上でより優れたものとなり、かつHFO-1132(E)及び/又はHFO-1123の重合反応がより抑制され、安定性がより優れたものとなる。本開示の冷媒Bは、HFO-1132(E)を、45.1質量%以上含む場合、R410Aを基準とする成績係数比が93%以上でより優れたものとなり、かつHFO-1132(E)及び/又はHFO-1123の重合反応がより抑制され、安定性がより優れたものとなる。
 本開示の冷媒Bは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)及びHFO-1123に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Bが、HFO-1132(E)及びHFO-1123の合計を、冷媒全体に対して99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Bの実施例)
 以下に、冷媒Bの実施例を挙げてさらに詳細に説明する。ただし、冷媒Bは、これらの実施例に限定されるものではない。
 HFO-1132(E)及びHFO-1123を、これらの総和を基準として表37及び表38にそれぞれ示した質量%(mass%)で混合した混合冷媒を調製した。
 R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,国際公開第2015/141678号に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 蒸発温度5℃
 凝縮温度45℃
 過熱温度5K
 過冷却温度5K
 圧縮機効率70%
 また、各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
 また、これらの結果をもとに算出したGWP、COP及び冷凍能力を表1、表2に示す。なお、比COP及び比冷凍能力については、R410Aに対する割合を示す。
 成績係数(COP)は、次式により求めた。
 COP =(冷凍能力又は暖房能力)/消費電力量
 また、燃焼性はANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度がWCF及びWCFFともに10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
 燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 組成物が、HFO-1132(E)を、該組成物の全体に対して62.0質量%~72.0質量%含む場合に、GWP=1という低いGWPを持ちつつも安定で、かつ、WCF微燃を確保し、更に驚くべきことにR410Aと同等の性能を確保することができる。また、組成物が、HFO-1132(E)を、該組成物の全体に対して45.1質量%~47.1質量%含む場合に、GWP=1という低いGWPを持ちつつも安定で、かつ、WCFF微燃を確保し、更に驚くべきことにR410Aと同等の性能を確保することができる。
 (5-3)冷媒C
 本開示の冷媒Cは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)、並びにジフルオロメタン(R32)を含む組成物であって、さらに以下の要件を満たす。本開示の冷媒Cは、R410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 要件:
 本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
   点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
   点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
 11.1<a≦18.2のとき、
   点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
   点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
   点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
 18.2<a≦26.7のとき、
   点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
   点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
   点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
 26.7<a≦36.7のとき、
   点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
   点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
 36.7<a≦46.7のとき、
   点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098, 0.0)、
   点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2+0.0082a+36.098)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)ものが含まれる。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となり、さらにWCF微燃性となる。
 本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
   点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
 11.1<a≦18.2のとき、
   点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
   点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
 18.2<a≦26.7のとき、
   点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
   点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
 26.7<a≦36.7のとき、
   点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
   点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
 36.7<a≦46.7のとき、
   点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
   点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)ものが含まれる。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにWCF微燃及びWCFF微燃でASHRAE規格では微燃性冷媒である「2Lクラス」を示す。
 本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらにR32を含む場合、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
 0<a≦10.0のとき、
   点a(0.02a2-2.46a+93.4, 0, -0.02a2+2.46a+6.6)、
   点b’(-0.008a2-1.38a+56, 0.018a2-0.53a+26.3, -0.01a2+1.91a+17.7)、
   点c(-0.016a2+1.02a+77.6, 0.016a2-1.02a+22.4, 0)及び
   点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあり(ただし、点o及び点cは除く)、
 10.0<a≦16.5のとき、
   点a(0.0244a2-2.5695a+94.056, 0, -0.0244a2+2.5695a+5.944)、
   点b’(0.1161a2-1.9959a+59.749, 0.014a2-0.3399a+24.8, -0.1301a2+2.3358a+15.451)、
   点c(-0.0161a2+1.02a+77.6, 0.0161a2-1.02a+22.4, 0)及び
   点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあり(ただし、点o及び点cは除く)、又は
 16.5<a≦21.8のとき、
   点a(0.0161a2-2.3535a+92.742, 0, -0.0161a2+2.3535a+7.258)、
   点b’(-0.0435a2-0.0435a+50.406, -0.0304a2+1.8991a-0.0661, 0.0739a2-1.8556a+49.6601)、
   点c(-0.0161a2+0.9959a+77.851, 0.0161a2-0.9959a+22.149, 0)及び
   点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあるものとすることができる(ただし、点o及び点cは除く)。なお、点b’は、前記3成分組成図において、R410Aを基準とする冷凍能力比が95%となり、かつR410Aを基準とするCOP比が95%となる点を点bとすると、R410Aを基準とするCOP比が95%となる点を結ぶ近似直線と、直線abとの交点である。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
 本開示の冷媒Cは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yf並びにR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒が、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 また、本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Cの実施例)
 以下に、冷媒Cの実施例を挙げてさらに詳細に説明する。ただし、冷媒Cは、これらの実施例に限定されるものではない。
 HFO-1132(E)、HFO-1123及びR1234yf、並びにR32を、これらの総和を基準として、表39~96にそれぞれ示した質量%で混合した混合冷媒を調製した。
 R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,国際公開第2015/141678号に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度;5K
 圧縮機効率70%
 これらの値を、各混合冷媒についてのGWPと合わせて表39~96に示す。なお、比COP及び比冷凍能力については、R410Aに対する割合を示す。
 成績係数(COP)は、次式により求めた。
 COP =(冷凍能力又は暖房能力)/消費電力量
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
 これらの結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0, 100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とし、かつ点(0.0, 100.0-a, 0.0)が左側となる3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)と
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)と
を結ぶ直線ABの線上又は左側、
 11.1<a≦18.2のとき、
   点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)と
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)と
を結ぶ直線ABの線上又は左側、
 18.2<a≦26.7のとき、
   点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)と
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)と
を結ぶ直線ABの線上又は左側、
 26.7<a≦36.7のとき、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)と
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)と
を結ぶ直線ABの線上又は左側、並びに
 36.7<a≦46.7のとき、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)と
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)と
を結ぶ直線ABの線上又は左側にある場合に、R410Aを基準とする冷凍能力比が85%以上となることが判る。なお、実際の冷凍能力比85%の点は、図3に示す点A、点Bを結ぶ1234yf側に広がった曲線となる。従って、直線ABの線上又は左側にある場合に、R410Aを基準とする冷凍能力比が85%以上となる。
 同様に、上記3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)と
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)と
を結ぶ直線D’Cの線上又は右側にある場合に、また、
 11.1<a≦46.7のとき、
全ての領域内にある場合に、R410Aを基準とするCOP比が92.5%以上となることが判る。
 なお、図3においてCOP比が92.5%以上となるのは曲線CDであるが、図3ではR1234yf濃度が5質量%、10質量%のときにCOP比が92.5%となる点(26.6, 68.4,5),(19.5, 70.5, 10)、及び点C(32.9, 67.1, 0.0)の3点を結ぶ近似直線を求め、HFO-1132(E)濃度が0.0質量%との交点D’(0, 75.4, 24.6)と点Cを結ぶ直線を線分D’Cとした。また、図4では、COP比が92.5%となる点C(18.4, 74.5,0)、点(13.9, 76.5, 2.5)、点(8.7, 79.2, 5)を結ぶ近似曲線から同様にD’(0, 83.4, 9.5)を求め、点Cと結ぶ直線をD’Cとした。
 また、各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。また、燃焼性はANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度がWCF及びWCFFともに10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 結果を表97~104に示す。
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
 表97~100の結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の混合冷媒においては、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0,100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とする3成分組成図において、
 0<a≦11.1のとき、
   点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)と
   点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)と
を結ぶ直線GIの線上又は下、
 11.1<a≦18.2のとき、
   点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)と
   点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)と
を結ぶ直線GIの線上又は下、
 18.2<a≦26.7のとき、
   点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)と
   点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)と
を結ぶ直線GIの線上又は下、
 26.7<a≦36.7のとき、
   点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)と
   点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)と
を結ぶ直線GIの線上又は下、及び
 36.7<a≦46.7のとき、
   点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)と
   点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)と
を結ぶ直線GIの線上又は下にある場合に、WCF微燃性と判断できることが明らかとなった。なお、点G(表105)及びI(表106)は、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
 表101~104の結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の混合冷媒においては、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0,100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とする3成分組成図において、
 0<a≦11.1のとき、
   点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)と
   点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)と
を結ぶ直線JK’の線上又は下、
 11.1<a≦18.2のとき、
   点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)と
   点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)と
を結ぶ直線JK’の線上又は下、
 18.2<a≦26.7のとき、
   点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)と
   点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)とを結ぶ直線JK’の線上又は下、
 26.7<a≦36.7のとき、
   点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)と
   点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)と
を結ぶ直線JK’の線上又は下、及び
 36.7<a≦46.7のとき、
   点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)と
   点K’(-1.892a+29.443, 0.0, 0.892a+70.557)と
を結ぶ直線JK’の線上又は下にある場合に、WCFF微燃性と判断でき、ASHRAE規格の燃焼性分類で「2L(微燃性)」になることが明らかとなった。
 なお、実際のWCFF微燃の点は、図3に示す点J、点K’(直線AB上)を結ぶHFO-1132(E)側に広がった曲線となる。従って、直線JK’の線上又は下側にある場合にはWCFF微燃性となる。
 なお、点J(表107)及びK’(表108)は、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
 なお、図3~13は、それぞれ、順に、R32含有割合a(質量%)が、0質量%、7.1質量%、11.1質量%、14.5質量%、18.2質量%、21.9質量%、26.7質量%、29.3質量%、36.7質量%、44.1質量%及び47.8質量%の場合の組成を表わしている。
 点A、B、C、D’は、近似計算によりそれぞれ以下のようにして求めた。
 点Aは、HFO-1123含有割合が0質量%であり、かつR410Aを基準とする冷凍能力比が85%となる点である。点Aについて、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた(表109)。
Figure JPOXMLDOC01-appb-T000109
 点Bは、HFO-1132(E)含有割合が0質量%であり、かつR410Aを基準とする冷凍能力比が85%となる点である。点Bについて、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた(表110)。
Figure JPOXMLDOC01-appb-T000110
 点D’は、HFO-1132(E)含有割合が0質量%であり、かつR410Aを基準とするCOP比が95.5%となる点である。点D’について、計算により以下の三点ずつを求め、これらの近似式を求めた(表111)。
Figure JPOXMLDOC01-appb-T000111
 点Cは、R1234yf含有割合が0質量%であり、かつR410Aを基準とするCOP比が95.5%となる点である。点Cについて、計算により以下の三点ずつを求め、これらの近似式を求めた(表112)。
Figure JPOXMLDOC01-appb-T000112
 (5-4)冷媒D
 本開示の冷媒Dは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
 本開示の冷媒Dは、R410Aと同等の冷却能力を有し、GWPが十分に小さく、かつASHRAEの規格で微燃性(2Lクラス)である、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 0.0, 28.0)、
   点J(48.5, 18.3, 33.2)、
   点N(27.7, 18.2, 54.1)及び
   点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
 前記線分IJは、
  座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
 前記線分NEは、
  座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
 前記線分JN及びEIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつWCF微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(52.6, 0.0, 47.4)、
   点M’(39.2, 5.0, 55.8)、
   点N(27.7, 18.2, 54.1)、
   点V(11.0, 18.1, 70.9)及び
   点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
 前記線分MM’は、
  座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
 前記線分M’Nは、
  座標(x, 0.0313x2-1.4551x+43.824, -0.0313x2+0.4551x+56.176)
で表わされ、
 前記線分VGは、
  座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
 前記線分NV及びGMが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が70%以上となり、GWPが125以下となり、かつASHRAE微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(22.6, 36.8, 40.6)、
   点N(27.7, 18.2, 54.1)及び
   点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ONは、
  座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
 前記線分NUは、
  座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
 前記線分UOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつASHRAE微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(44.6, 23.0, 32.4)、
   点R(25.5, 36.8, 37.7)、
   点T(8.6, 51.6, 39.8)、
   点L(28.9, 51.7, 19.4)及び
   点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分QRは、
  座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
 前記線分RTは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
 前記線分LKは、
  座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
 前記線分KQは、
  座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
 前記線分TLが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつWCF微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準と
する質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの
総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(20.5, 51.7, 27.8)、
   点S(21.9, 39.7, 38.4)及び
   点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PSは、
  座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
 前記線分STは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
 前記線分TPが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつASHRAE微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点a(71.1, 0.0, 28.9)、
   点c(36.5, 18.2, 45.3)、
   点f(47.6, 18.3, 34.1)及び
   点d(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分ac、cf、fd、及びdaで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分acは、
  座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
 前記線分fdは、
  座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
 前記線分cf及びdaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが125以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点a(71.1, 0.0, 28.9)、
   点b(42.6, 14.5, 42.9)、
   点e(51.4, 14.6, 34.0)及び
   点d(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分ab、be、ed、及びdaで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分abは、
  座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
 前記線分edは、
  座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
 前記線分be及びdaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが100以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点g(77.5, 6.9, 15.6)、
   点iI(55.1, 18.3, 26.6)及び
   点j(77.5. 18.4, 4.1)
の3点をそれぞれ結ぶ線分gi、ij及びjkで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分giは、
  座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
 前記線分ij及びjkが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点g(77.5, 6.9, 15.6)、
   点h(61.8, 14.6, 23.6)及び
   点k(77.5, 14.6, 7.9)
の3点をそれぞれ結ぶ線分gh、hk及びkgで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ghは、
  座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
 前記線分hk及びkgが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
 本開示の冷媒Dは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、R32及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Dが、HFO-1132(E)、R32及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Dの実施例)
 以下に、冷媒Dの実施例を挙げてさらに詳細に説明する。ただし、冷媒Dは、これらの実施例に限定されるものではない。
 HFO-1132(E)、R32及びR1234yfの各混合冷媒の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。結果を表113~115に示す。
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
 これらの結果から、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる図14の3成分組成図において、座標(x,y,z)が、点I、点J、点K及び点Lをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、WCF微燃となることが判る。
 また、これらの結果から、図14の3成分組成図において、上記座標(x,y,z)が、点M、点M’、点W、点J、点N及び点Pをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、ASHRAE微燃となることが判る。
 HFO-1132(E)、R32及びR1234yfを、これらの総和を基準として、表116~144にそれぞれ示した質量%で混合した混合冷媒を調製した。表116~144の各混合冷媒について、R410を基準とする成績係数[Coefficient of Performance(COP)]比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度;5K
 圧縮機効率70%
 これらの値を、各混合冷媒についてのGWPと合わせて表116~144に示す。
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000141
Figure JPOXMLDOC01-appb-T000142
Figure JPOXMLDOC01-appb-T000143
Figure JPOXMLDOC01-appb-T000144
 これらの結果から、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 0.0, 28.0)、
   点J(48.5, 18.3, 33.2)、
   点N(27.7, 18.2, 54.1)及び
   点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
 前記線分IJは、
  座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
 前記線分NEは、
  座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
 前記線分JN及びEIが直線である場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつWCF微燃となることが判る。
 また、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(52.6, 0.0, 47.4)、
   点M’(39.2, 5.0, 55.8)、
   点N(27.7, 18.2, 54.1)、
   点V(11.0, 18.1, 70.9)及び
   点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
 前記線分MM’は、
  座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
 前記線分M’Nは、
  座標(x, 0.0313x2-1.4551x+43.824, -0.0313x2+0.4551x+56.176)
で表わされ、
 前記線分VGは、
   座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
 前記線分NV及びGMが直線である場合、R410Aを基準とする冷凍能力比が70%以上となり、GWPが125以下となり、かつASHRAE微燃となることが判る。
 さらに、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(22.6, 36.8, 40.6)、
   点N(27.7, 18.2, 54.1)及び
   点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ONは、
  座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
 前記線分NUは、
  座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
 前記線分UOが直線である場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつASHRAE微燃となることが判る。
 また、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(44.6, 23.0, 32.4)、
   点R(25.5, 36.8, 37.7)、
   点T(8.6, 51.6, 39.8)、
   点L(28.9, 51.7, 19.4)及び
   点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分QRは、
  座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
 前記線分RTは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
 前記線分LKは、
  座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
 前記線分KQは、
  座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
 前記線分TLが直線である場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつWCF微燃となることが判る。
 さらに、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(20.5, 51.7, 27.8)、
   点S(21.9, 39.7, 38.4)及び
   点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PSは、
  座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
 前記線分STは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
 前記線分TPが直線である場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつASHRAE微燃となることが判る。
 (5-5)冷媒E
 本開示の冷媒Eは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含む混合冷媒である。
 本開示の冷媒Eは、R410Aと同等の成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点K(48.4, 33.2, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
 前記線分IKは、
  座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分KB’及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、WCF微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点J(57.7, 32.8, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
 前記線分IJは、
   座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、WCF微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点P(31.8, 49.8, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
 前記線分MPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分PB’及びGMが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点N(38.5, 52.1, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
 前記線分MNは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが65以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(31.8, 49.8, 18.4)
   点S(25.4, 56.2, 18.4)及び
   点T(34.8, 51.0, 14.2)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分STは、
  座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
で表わされ、かつ
 前記線分TPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分PSが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が94.5%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(28.6, 34.4, 37.0)
   点B’’(0.0, 63.0, 37.0)
   点D(0.0, 67.0, 33.0)及び
   点U(28.7, 41.2, 30.1)
の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
 前記線分DUは、
  座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
 前記線分UQは、
  座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)で表わされ、
 前記線分QB’’及びB’’Dが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が96%以上となり、かつGWPが250以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c’(56.7, 43.3, 0.0)、
   点d’(52.2, 38.3, 9.5)、
   点e’(41.8, 39.8, 18.4)及び
   点a’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分Oc’、c’d’、d’e’、e’a’及びa’Oで囲まれる図形の範囲内又は前記線分c’d’、d’e’及びe’a’上にあり(ただし、点c’及びa’を除く)、
 前記線分c’d’は、
  座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)
で表わされ、
 前記線分d’e’は、
  座標(-0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z)で表わされ、かつ
 前記線分Oc’、e’a’及びa’Oが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が92.5%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c(77.7, 22.3, 0.0)、
   点d(76.3, 14.2, 9.5)、
   点e(72.2, 9.4, 18.4)及び
   点a’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分Oc、cd、de、ea’及びa’Oで囲まれる図形の範囲内又は前記線分cd、de及びea’上にあり(ただし、点c及びa’を除く)、
 前記線分cdeは、
  座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)で表わされ、かつ
 前記線分Oc、ea’及びa’Oが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c’(56.7, 43.3, 0.0)、
   点d’(52.2, 38.3, 9.5)及び
   点a(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分Oc’、c’d’、d’a及びaOで囲まれる図形の範囲内又は前記線分c’d’及びd’a上にあり(ただし、点c’及びaを除く)、
 前記線分c’d’は、
  座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)で表わされ、かつ
 前記線分Oc’、d’a及びaOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が93.5%以上となり、かつGWPが65以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c(77.7, 22.3, 0.0)、
   点d(76.3, 14.2, 9.5)、
   点a(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分Oc、cd、da及びaOで囲まれる図形の範囲内又は前記線分cd及びda上にあり(ただし、点c及びaを除く)、
 前記線分CDは、
  座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)で表わされ、かつ
 前記線分Oc、da及びaOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが65以下となる。
 本開示の冷媒Eは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Eが、HFO-1132(E)、HFO-1123及びR32の合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Eの実施例)
 以下に、冷媒Eの実施例を挙げてさらに詳細に説明する。ただし、冷媒Eは、これらの実施例に限定されるものではない。
 HFO-1132(E)、HFO-1123及びR32を、これらの総和を基準として、表145及び表146にそれぞれ示した質量%で混合した混合冷媒を調製した。各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNational Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
 これらの各混合冷媒について、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。WCF組成、及びWCFF組成の燃焼速度が10 cm/s以下となるものはASHRAEの燃焼性分類で「2Lクラス(微燃性)」に相当する。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 結果を表145及び表146に示す。
Figure JPOXMLDOC01-appb-T000145
Figure JPOXMLDOC01-appb-T000146
 表145の結果から、HFO-1132(E)、HFO-1123及びR32の混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点K(48.4, 33.2, 18.4)及び
   点L(35.5, 27.5, 37.0)
の3点をそれぞれ結ぶ線分IK及びKLの上、又は当該線分の下側にあり、
 前記線分IKは、
  座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.00, z)で表わされ、かつ
 前記線分KLは、
  座標(0.0098z2-1.238z+67.852, -0.0098z2+0.238z+32.148, z)で表わされる場合にWCF微燃と判断できることが明らかとなった。
 線分IK上の点は、I(72.0, 28,0, 0.0)、J(57.7, 32.8, 9.5)、K(48.4, 33.2, 18.4)の3点から最小二乗法により近似曲線x=0.025z2-1.7429z+72.00を求め、座標(x=0.025z2-1.7429z+72.00, y=100-z-x=-0.00922z2+0.2114z+32.443, z)を求めた。
 以下同様に線分KL上の点は、K(48.4, 33.2, 18.4)、実施例10(41.1, 31.2, 27.7)、L(35.5, 27.5, 37.0)の3点から最小二乗法により近似曲線を求め、座標を定めた。
 表146の結果から、HFO-1132(E)、HFO-1123及びR32の混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)、
   点P(31.8, 49.8, 18.4)及び
   点Q(28.6, 34.4, 37.0)
の3点をそれぞれ結ぶ線分MP及びPQの上、又は当該線分の下側にある場合にASHRAE微燃と判断できることが明らかとなった。ただし、前記線分MPは、座標(0.0083z2-0.984z+47.1, -0.0083z2-0.016z+52.9,z)で表わされ、前記線分PQは、座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867,z)で表わされる。
 線分MP上の点は、点M,N,Pの3点から最小二乗法により近似曲線を求め、線分PQ上の点は点P,U,Qの3点から最小二乗法により近似曲線を求め、座標を定めた。
 また、R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,国際公開第2015/141678号に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]比をそれぞれ求めた。計算条件は以下の通りとした。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度;5K
 圧縮機効率70%
 これらの値を、各混合冷媒についてのGWPと合わせて表147~166に示す。
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000148
Figure JPOXMLDOC01-appb-T000149
Figure JPOXMLDOC01-appb-T000150
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000156
Figure JPOXMLDOC01-appb-T000157
Figure JPOXMLDOC01-appb-T000158
Figure JPOXMLDOC01-appb-T000159
Figure JPOXMLDOC01-appb-T000160
Figure JPOXMLDOC01-appb-T000161
Figure JPOXMLDOC01-appb-T000162
Figure JPOXMLDOC01-appb-T000163
Figure JPOXMLDOC01-appb-T000164
Figure JPOXMLDOC01-appb-T000165
Figure JPOXMLDOC01-appb-T000166
 これらの結果から、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となり、点(0.0, 100.0, 0.0)と点(0.0, 0.0, 100.0)とを結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側とする3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点A’’(63.0, 0.0, 37.0)、
   点B’’(0.0, 63.0, 37.0)及び
   点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが250以下となることが判る。
 また、同様に、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点A’(81.6, 0.0, 18.4)、
   点B’(0.0, 81.6, 18.4)及び
   点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが125以下となることが判る。
 また、同様に、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点A(90.5, 0.0, 9.5)、
   点B(0.0, 90.5, 9.5)及び
   点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが65以下となることが判る。
 また、同様に、座標(x,y,z)が、
   点C(50.0, 31.6, 18.4)、
   点U(28.7, 41.2, 30.1)及び
   点D(52.2, 38.3, 9.5)
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が96%以上となることが判る。ただし、前記線分CUは、座標(-0.0538z2+0.7888z+53.701, 0.0538z2-1.7888z+46.299, z)前記線分UDは、座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされる。
 線分CU上の点は、点C,比較例10,点Uの3点から最小二乗法にて求められる。
 線分UD上の点は、点U,実施例2, Dの3点から最小二乗法にて求められる。
 また、同様に、座標(x,y,z)が、
   点E(55.2, 44.8, 0.0)と、
   点T(34.8, 51.0, 14.2)
   点F(0.0, 76.7, 23.3)と
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が94.5%以上となることが判る。ただし、前記線分ETは、座標(-0.0547z2-0.5327z+53.4, 0.0547z2-0.4673z+46.6, z)前記線分TFは、座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)で表わされる。線分ET上の点は、点E,実施例2,Tの3点から最小二乗法にて求められる。
 線分TG上の点は、点T,S,Fの3点から最小二乗法にて求められる。
 また、同様に、座標(x,y,z)が、
   点G(0.0, 76.7, 23.3)、
   点R(21.0, 69.5, 9.5)及び
   点H(0.0, 85.9, 14.1)
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が93%以上となることが判る。ただし、前記線分GRは、座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)で表わされ、かつ前記線分RHは、座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)で表わされる。
 線分GR上の点は、点G,実施例5、点Rの3点から最小二乗法にて求められる。
 線分RH上の点は、点R,実施例7,点Hの3点から最小二乗法にて求められる。
 一方、比較例8、9、13、15、17及び18等に示されるようにR32を含まない場合、二重結合を持つHFO-1132(E)及びHFO-1123の濃度が相対的に高くなり、冷媒化合物において分解等の変質や重合を招くため、好ましくない。
 (6)第1実施形態
 第1実施形態では、冷凍サイクル装置の一例である空気調和装置10について説明する。冷凍サイクル装置とは、冷凍サイクルで運転される全ての装置をいい、空気調和機、除湿機、ヒートポンプ式の給湯装置、冷蔵庫、冷凍用の冷凍装置、製造プロセス用冷却装置などを包含する。
この空気調和装置10は、室外機(図示省略)と室内機(図示省略)とを備えたセパレートタイプの空気調和装置であり、冷房運転と暖房運転を切り換え可能に構成されている。
 この空気調和装置10は、図16に示すように、蒸気圧縮式冷凍サイクルを行う冷媒回路20を備えている。冷媒回路20は、室外機に搭載された室外回路20aと、室内機に搭載された室内回路20bとを備えている。室外回路20aには、圧縮機21と室外熱交換器23と室外膨張弁24と四方弁22とブリッジ回路31と気液分離器25とが接続されている。室外熱交換器23は熱源側熱交換器を構成している。一方、室内回路20bには、室内熱交換器27と室内膨張弁26とが接続されている。室内熱交換器27は利用側熱交換器を構成している。圧縮機21の吐出管45は、四方弁22の第1ポートP1に接続されている。圧縮機21の吸入管46は、四方弁22の第2ポートP2に接続されている。
 気液分離器25には、流入管36と流出管37とインジェクション管38とが接続されている。流入管36は、気液分離器25の内部空間の上部に開口している。流出管37は、気液分離器25の内部空間の下部に開口している。インジェクション管38は、気液分離器25の内部空間の上部に開口している。気液分離器25では、流入管36から流入した冷媒が飽和液と飽和ガスとに分離され、飽和液が流出管37から流出し、飽和ガスがインジェクション管38から流出する。流入管36及び流出管37は、ブリッジ回路31にそれぞれ接続されている。インジェクション管38は、圧縮機21の中間接続管47に接続されている。
 一方、インジェクション管38から流出した飽和ガス状態の冷媒は、中間ポートを通じて圧縮機構32の中間圧の圧縮室に注入される。本実施形態では、流入管36と流出管37とインジェクション管38と気液分離器25とが、冷却動作中に室外熱交換器23から流出して冷凍サイクルの中間圧に減圧された冷媒のうち、飽和液状態の冷媒を室内熱交換器27へ供給して、飽和ガス状態の冷媒を圧縮機21へ供給するためのインジェクション回路15を構成する。
 ブリッジ回路31は、第1逆止弁CV1、第2逆止弁CV2、第3逆止弁CV3及び第4逆止弁CV4をブリッジ状に接続した回路である。ブリッジ回路31では、第1逆止弁CV1の流入側及び第2逆止弁CV2の流入側に位置する接続端が、流出管37に接続されている。第2逆止弁CV2の流出側及び第3逆止弁CV3の流入側に位置する接続端が、室内熱交換器27に接続されている。この接続端と室内熱交換器27とを繋ぐ冷媒配管には、開度可変の室内膨張弁26が設けられている。第3逆止弁CV3の流出側及び第4逆止弁CV4の流出側に位置する接続端が、流入管36に接続されている。第1逆止弁CV1の流出側及び第4逆止弁CV4の流入側に位置する接続端が、室外熱交換器23に接続されている。
 冷房運転では、四方弁22が、第1ポートP1と第3ポートP3が互いに連通して第2ポートP2と第4ポートP4が互いに連通する状態(図16に実線で示す状態)に設定される。そして、この状態で圧縮機21の運転が行われると、冷媒回路20では室外熱交換器23が凝縮器として動作して室内熱交換器27が蒸発器として動作する冷却動作が行われる。
 暖房運転では、四方弁22が第1ポートP1と第4ポートP4が互いに連通して第2ポートP2と第3ポートP3が互いに連通する状態(図16に破線で示す状態)に設定される。そして、この状態で圧縮機21の運転が行われると、冷媒回路20では室外熱交換器23が蒸発器として動作して室内熱交換器27が凝縮器として動作する加熱動作が行われる。
 室外熱交換器23は、冷媒の流路となるマイクロチャネル13が形成されたマイクロチャネル熱交換器(マイクロ熱交換器とも言う。)により構成されている。マイクロチャネル13とは、微細加工技術などを使って加工した微細な流路(流路面積が極めて小さい流路)である。一般に、表面張力の影響が現れる数ミリ径以下の流路のマイクロチャネル13を有する熱交換器が、マイクロチャネル熱交換器と呼ばれる。
 具体的に、室外熱交換器23は、図17に示すように、複数の扁平管16と、一対のヘッダ17,18とを備えている。一対のヘッダ17,18は、筒状の密閉容器により構成されている。各扁平管16には、図18に示すように、複数のマイクロチャネル13が形成されている。複数のマイクロチャネル13は、扁平管16の幅方向に所定のピッチで形成されている。各扁平管16は、マイクロチャネル13の一端が一方のヘッダ17内に開口し、マイクロチャネル13の他端が他方のヘッダ18内に開口するように、一対のヘッダ17,18に固定されている。また、扁平管16の間には、波状の金属板19が設けられている。
 室外熱交換器23の近傍には、室外ファン28が設けられている。室外熱交換器23では、室外ファン28により供給された室外空気が、扁平管16と金属板19により形成される隙間を流れる。室外空気は、扁平管16の幅方向に流れる。
 室外熱交換器23では、一方のヘッダ17が四方弁22の第3ポートP3に接続され、他方のヘッダ18がブリッジ回路31に接続されている。室外熱交換器23では、一方のヘッダ17,18に流入した冷媒が複数のマイクロチャネル13に分配され、各マイクロチャネル13を通過した冷媒が他方のヘッダ17,18で合流する。各マイクロチャネル13は、冷媒が流れる冷媒流路となる。室外熱交換器23では、各マイクロチャネル13を流れる冷媒が室外空気と熱交換を行う。
 室内熱交換器27は、マイクロチャネル熱交換器により構成されている。室内熱交換器27は室外熱交換器23と同じ構造であるため、室内熱交換器27の構造の説明は省略する。室内熱交換器27の近傍には、室内ファン29が設けられている。室内熱交換器27では、各マイクロチャネル13を流れる冷媒が、室内ファン29により供給された室内空気と熱交換を行う。室内熱交換器27では、一方のヘッダ17が四方弁22の第4ポートP4に接続され、他方のヘッダ18がブリッジ回路31に接続されている。
 本実施形態では、室外熱交換器23及び室内熱交換器27が、マイクロチャネル熱交換器により構成されている。マイクロチャネル熱交換器内の容積は、同等の性能の他の構造型式の熱交換器(例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器)に比べて小さくなる。このため、他の構造型式の熱交換器を使用した冷凍サイクル装置に比べて、冷媒回路20内の総容積を小さくすることが可能である。
 耐圧性、耐腐食性を鑑みて「0.9mm≦扁平管厚み(図18に示されている扁平管16の縦高さh16)≦4.0mm」、熱交換能力を鑑みて「8.0mm≦扁平管厚み(図18に示されている扁平管16の横幅W16)≦25.0mm」、とすることが好ましい。
 本実施形態では、冷媒回路20には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、1,2-ジフルオロエチレンを含む混合冷媒であり、上述した冷媒A~Eのいずれかを用いることができる。
 (7)第2実施形態
 図19に示されているように、 室外熱交換器125は、熱交換部195とヘッダ集合管191,192とを有する。熱交換部195は、複数の扁平多孔管193および複数の差込フィン194を有する。扁平多孔管193は、扁平管の一例である。室外熱交換器125は、冷凍サイクル装置の冷媒回路に含まれる。冷凍サイクル装置の冷媒回路は、圧縮機と、蒸発器と、凝縮器と、膨張弁とを備える。暖房運転では、冷凍サイクル装置の冷媒回路において、室外熱交換器125が蒸発器として機能する。冷房運転では、冷凍サイクル装置の冷媒回路において、室外熱交換器125が凝縮器として機能する。
 図20は、扁平多孔管193および差込フィン194を鉛直方向に切断したときの熱交換部195の部分拡大図である。扁平多孔管193は伝熱管として機能し、差込フィン194と室外空気との間で移動する熱を、内部を流れる冷媒に伝達する。
 扁平多孔管193は、伝熱面となる側面部と、冷媒が流れる複数の内部流路193aとを有している。扁平多孔管193は、隣り合う扁平多孔管193と側面部を上下に対向させた状態で、間隔をあけて複数段配列される。差込フィン194は、図20に示す形状の複数のフィンであり、扁平多孔管193に接続している。両ヘッダ集合管191,192の間に配列された複数段の扁平多孔管193に対して差込フィン194を差し込めるように、差込フィン194には、水平に細長く延びる複数の切り欠き194aが形成されている。これらの差込フィン194の切り欠き194aの形状は、図20に示すように、扁平多孔管193の断面の外形にほぼ一致している。
 ここでは、差込フィン194の連通部分194bが風下に配置される場合について説明した。ここで連通部分194bは、差込フィン194の中で、切り欠き194aがなく、直線的に繋がっている部分である。しかし、室外熱交換器125において、差込フィン194の連通部分194bが風上に配置されてもよい。連通部分194bが風上に配置されている場合には、差込フィン194で先に除湿された後に、扁平多孔管193に風が当たる。
 ここでは、室外熱交換器125に、図19に示されている熱交換器を用いる場合について説明したが、図19に示されている熱交換器を室内熱交換器に用いてもよい。差込フィンが室内熱交換器に用いられる場合において、差込フィンの連通部分を風下に配置することができる。このように、室内熱交換器において、差込フィンの連通部分が風下に配置されている場合には、水飛びを防止することができる。
 耐圧性、耐腐食性を鑑みて「0.9mm≦扁平管厚み(図20に示されている扁平多孔管193の縦高さh193)≦4.0mm」、熱交換能力を鑑みて「8.0mm≦扁平管厚み(図20に示されている扁平多孔管193の横幅W193)≦25.0mm」、とすることが好ましい。
 本実施形態では、室外熱交換器125を含む冷媒回路には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、1,2-ジフルオロエチレンを含む混合冷媒であり、上述した冷媒A~Eのいずれかを用いることができる。
 (8)第3実施形態
 図24に示されている複数の平行に配置されたプレートフィン211の貫通穴211aに内面溝付管201を挿入する。次に、この拡管用工具(図示せず)を内面溝付管201内に圧入する。これによって、内面溝付管201が拡管して、内面溝付管201とプレートフィン211との間のクリアランスがなくなり、内面溝付管201とプレートフィン211との密着性が高まる。次に、拡管用工具を内面溝付管201から取り出す。これによって、内面溝付管201とプレートフィン211とが隙間なく接合した熱交換器が製造される。
 内面溝付管201は、空気調和機および冷凍空調機器などの冷凍サイクル装置のプレートフィンチューブ型熱交換器に使用される。プレートフィンチューブ型熱交換器は、冷凍サイクル装置の冷媒回路に含まれる。冷凍サイクル装置の冷媒回路は、圧縮機と、蒸発器と、凝縮器と、膨張弁とを備える。暖房運転では、冷凍サイクル装置の冷媒回路において、プレートフィンチューブ型熱交換器が蒸発器として機能する。冷房運転では、冷凍サイクル装置の冷媒回路において、プレートフィンチューブ型熱交換器が凝縮器として機能する。
 内面溝付管201は、管の管外径D201は、4mm以上10mm以下のものが使用される。また、内面溝付管201の素管の材質としては、アルミニウムまたはアルミニウム合金が使用される。なお、内面溝付管201の内面溝形状の形成方法は、転造加工法、圧延法などがあるが、特に限定されるものではない。
 そして、内面溝付管201は、図21、図22及び図23に示すように、その内面に管軸方向に傾斜する方向に形成された多数の溝202と、この溝202間に形成された管内ひれ203とを有する構成を備え、溝202の溝数は30以上100以下、溝202と管軸とがなす溝リード角θ201は10度以上50度以下、内面溝付管201の管軸直交断面(I-I線で切断)における内面溝付管201の底肉厚T201は0.2mm以上1.0mm以下、前記管内ひれのひれ高さh201は0.1mm以上であって底肉厚T201の1.2倍以下、ひれ山頂角δ201は5度以上45度以下、ひれ根元半径r201はひれ高さh201の20%以上50%以下である。
 次に、内面溝付管201の前記内面溝形状における数値限定について説明する。
 (8-1)溝数:30以上100以下
 溝数は、後記する内面溝形状の各諸元と組み合わせて、伝熱性能および単重等を考慮して、適宜決定されるものであるが、30以上100以下が好ましい。溝数が30未満であると溝成形性が悪くなりやすく、また、溝数が100を超えると溝付工具(溝付プラグ)の欠損が生じやすい。いずれも、内面溝付管201の量産性が低下しやすくなる。
 さらに、内面溝付管201を冷凍サイクル装置の冷媒回路に含まれる室外熱交換器及び室内熱交換器に用いる場合、室外熱交換器の内面溝付管201の溝数>室内熱交換器の内面溝付管201の溝数、とすることが好ましい。そうすることで、内面溝付管201の管内圧力損失を低減させかつ伝熱性能を向上させることができる。
 (8-2)溝リード角θ201:10度以上50度以下
 溝リード角θ201は、10度以上50度以下が好ましい。溝リード角θ201が10度未満であると、内面溝付管201(熱交換器)の伝熱性能が低下しやすい。また、溝リード角θ201が50度を超えると、内面溝付管201の量産性の確保および拡管による管内ひれ203の変形を抑制しにくくなる。
 さらに、内面溝付管201を冷凍サイクル装置の冷媒回路に含まれる室外熱交換器及び室内熱交換器に用いる場合、室外熱交換器の内面溝付管201の溝リード角<室内熱交換器の内面溝付管201の溝数、とすることが好ましい。そうすることで、内面溝付管201の管内圧力損失を低減させかつ伝熱性能を向上させることができる。
 (8-3)底肉厚T201:0.2mm以上1.0mm以下
 底肉厚T201は0.2mm以上1.0mm以下が好ましい。底肉厚T201が前記範囲外であると、内面溝付管201の製造がしにくくなる。また、底肉厚T201が0.2mm未満であると、内面溝付管201の強度が低下しやすく、耐圧力強度の保持が困難になりやすい。
 (8-4)ひれ高さh201:0.1mm以上(底肉厚T201×1.2)mm以下
 ひれ高さh201は、0.1mm以上(底肉厚T201×1.2)mm以下が好ましい。ひれ高さh201が0.1mm未満であると、内面溝付管201(熱交換器)の伝熱性能が低下しやすい。また、ひれ高さh201が(底肉厚T201×1.2)mmを超えると、内面溝付管201の量産性の確保および拡管による管内ひれ203の極度の変形を抑制しにくくなる。
 さらに、内面溝付管201を冷凍サイクル装置の冷媒回路に含まれる室外熱交換器及び室内熱交換器に用いる場合、室外熱交換器の内面溝付管201のひれ高さh201>室内熱交換器の内面溝付管201のひれ高さh201、とすることが好ましい。そうすることで、内面溝付管201の管内圧力損失を低減させかつ、室外熱交換器の伝熱性能をより向上させることができる。
 (8-5)山頂角δ201:5度以上45度以下
 山頂角δ201は、5度以上45度以下が好ましい。山頂角δ201が5度未満であると、内面溝付管201の量産性の確保および拡管による管内ひれ203の変形を抑制しにくくなる。また、山頂角δ201が45度を超えると、内面溝付管201(熱交換器)の伝熱性能の維持および内面溝付管201の単重が過大となりやすい。
 (8-6)ひれ根元半径r201:ひれ高さh201の20%以上50%以下
 ひれ根元半径r201は、ひれ高さh201の20%以上50%以下が好ましい。ひれ根元半径r201がひれ高さh201の20%未満であると、拡管によるひれ傾きが過大となりやすく、かつ、量産性が低下しやすい。また、ひれ根元半径r201がひれ高さh201の50%を超えると、冷媒気液界面の有効伝熱面積が減少しやすく、内面溝付管201(熱交換器)の伝熱性能が低下しやすい。
 本実施形態では、内面溝付管201が使用されるプレートフィンチューブ型熱交換器を含む冷媒回路には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、1,2-ジフルオロエチレンを含む混合冷媒であり、上述した冷媒A~Eのいずれかを用いることができる。
 (9)特徴
 第1実施形態の冷凍サイクル装置である空気調和装置10、第2実施形態の冷凍サイクル装置及び第3実施形態の冷凍サイクル装置は、少なくとも1,2-ジフルオロエチレンを含む可燃性の冷媒と、冷媒を蒸発させる蒸発器と、冷媒を凝縮させる凝縮器とを備えている。これら冷凍サイクル装置では、冷媒が蒸発器と凝縮器とを循環して冷凍サイクルを繰り返すように、これら冷凍サイクル装置は構成されている。
 第1実施形態では、室外熱交換器23が、蒸発器と凝縮器のうちの一方であり、室内熱交換器27が、蒸発器と凝縮器のうちの他方であって、アルミニウム製またはアルミニウム合金製の複数のフィンである金属板19及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管である扁平管16を有している。室外熱交換器23と室内熱交換器27は、扁平管16の内部を流れる冷媒と金属板19に沿って流れる流体である空気に熱交換させる熱交換器である。扁平管16は、図18に示されている平面部16aを有している。室外熱交換器23及び室内熱交換器27では、互いに隣り合う扁平管16の平面部16aが、互いに向かい合うように配置されている。複数の金属板19の各々が、波形に折り曲げられて、互いに隣り合う扁平管16の平面部16aの間に配置されている。各金属板19は、平面部16aに熱を伝えられるように、平面部16aに接続されている。
 第2実施形態では、室外熱交換器125が、蒸発器と凝縮器のうちの一方であって、アルミニウム製またはアルミニウム合金製の複数の差込フィン194及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管である扁平多孔管193を有している。室外熱交換器125は、扁平多孔管193の内部を流れる冷媒と差込フィン194に沿って流れる流体である空気に熱交換させる熱交換器である。扁平多孔管193は、図20に示されている平面部193bを有している。室外熱交換器125では、互いに隣り合う扁平多孔管193の平面部193bが、互いに向かい合うように配置されている。複数の差込フィン194の各々が、複数の切り欠き194aを有している。複数の扁平多孔管193が、複数の差込フィン194の複数の切り欠き194aに差し込まれて複数の差込フィン194に熱を伝えらるように接続されている。
 第3実施形態では、アルミニウム製またはアルミニウム合金製の複数のプレートフィン211及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管である内面溝付管201を有している熱交換器が、蒸発器と凝縮器のうちの一方になる。この熱交換器は、内面溝付管201の内部を流れる冷媒とプレートフィン211に沿って流れる流体である空気に熱交換させる熱交換器である。複数のプレートフィン211の各々が、複数の貫通穴211aを有している。熱交換器において、複数の内面溝付管201が、複数のプレートフィン211の複数の貫通穴211aを貫通している。これら複数の内面溝付管201の外周が、複数の貫通穴211aの内周に密着している。
 上記の冷凍サイクル装置は、熱交換器に、アルミニウム製またはアルミニウム合金製の複数のフィンである金属板19、差込フィン194またはプレートフィン211、及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管である扁平管16、扁平多孔管193または内面溝付管201を有している。冷凍サイクル装置がこのような構成を有していることから、例えば伝熱管に銅パイプを使う場合に比べて、熱交換器の材料費を削減することができる。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 10 空気調和装置(冷凍サイクル装置の例)
 16 扁平管(伝熱管の例)
 16a,193b 平面部
 19 金属板(フィンの例)
 23,125 室外熱交換器(蒸発器の例、及び、凝縮器の例)
 27 室内熱交換器(蒸発器の例、及び、凝縮器の例)
 193 扁平多孔管(伝熱管、扁平管の例)
 194 差込フィン
 194a 切り欠き
 201 内面溝付管(伝熱管の例)
 211 プレートフィン
 211a 貫通穴
特開平11-256358号公報

Claims (28)

  1.  少なくとも1,2-ジフルオロエチレンを含む可燃性の冷媒と、
     前記冷媒を蒸発させる蒸発器(27,23,125)と、
     前記冷媒を凝縮させる凝縮器(23,27,125)と、
    を備え、
     前記蒸発器と前記凝縮器のうちの少なくとも一方が、アルミニウム製またはアルミニウム合金製の複数のフィン(19,194,211)及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管(16,193,201)を有し、前記伝熱管の内部を流れる前記冷媒と前記フィンに沿って流れる流体に熱交換させる熱交換器であり、
     前記冷媒が、前記蒸発器と前記凝縮器とを循環して冷凍サイクルを繰り返すように構成されている、冷凍サイクル装置(10)。
  2.  前記複数のフィン(211)の各々が、複数の穴(211a)を有し、
     前記複数の伝熱管(201)が、前記複数のフィンの前記複数の穴を貫通し、
     前記複数の伝熱管の外周が、前記複数の穴の内周に密着している、
    請求項1に記載の冷凍サイクル装置(10)。
  3.  前記複数の伝熱管が、複数の扁平管(16,193)であり、
     互いに隣り合う前記扁平管の平面部(16a,193b)が、互いに向かい合うように配置されている、
    請求項1に記載の冷凍サイクル装置(10)。
  4.  前記複数のフィン(19)の各々が、波形に折り曲げられて、互いに隣り合う前記扁平管の前記平面部(16a)の間に配置され、前記平面部に熱を伝えられるように前記平面部に接続されている、
    請求項3に記載の冷凍サイクル装置(10)。
  5.  前記複数のフィン(194)の各々が、前記複数の切り欠(194a)きを有し、
     前記複数の扁平管(193)が、前記複数のフィンの前記複数の切り欠きに差し込まれて前記複数のフィンに熱を伝えらるように接続されている、
    請求項3に記載の冷凍サイクル装置(10)。
  6.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  7.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点A(68.6, 0.0, 31.4)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0)、
      点C(32.9, 67.1, 0.0)及び
      点O(100.0, 0.0, 0.0)
    の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD、CO及びOA上の点は除く)、
    前記線分AA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分BD、CO及びOAが直線である、
    請求項6に記載の冷凍サイクル装置(10)。
  8.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点G(72.0, 28.0, 0.0)、
      点I(72.0, 0.0, 28.0)、
      点A(68.6, 0.0, 31.4)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0) 及び
      点C(32.9, 67.1, 0.0)
    の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分IA、BD及びCG上の点は除く)、
    前記線分AA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分GI、IA、BD及びCGが直線である、
    請求項6に記載の冷凍サイクル装置(10)。
  9.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点J(47.1, 52.9, 0.0)、
      点P(55.8, 42.0, 2.2)、
      点N(68.6, 16.3, 15.1)、
      点K(61.3, 5.4, 33.3)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0) 及び
      点C(32.9, 67.1, 0.0)
    の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
    前記線分PNは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分NKは、
      座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
    で表わされ、
    前記線分KA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分JP、BD及びCGが直線である、
    請求項6に記載の冷凍サイクル装置(10)。
  10.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点J(47.1, 52.9, 0.0)、
      点P(55.8, 42.0, 2.2)、
      点L(63.1, 31.9, 5.0)、
      点M(60.3, 6.2, 33.5)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0) 及び
      点C(32.9, 67.1, 0.0)
    の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
    前記線分PLは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分MA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分JP、LM、BD及びCGが直線である、
    請求項6に記載の冷凍サイクル装置(10)。
  11.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点P(55.8, 42.0, 2.2)、
      点L(63.1, 31.9, 5.0)、
      点M(60.3, 6.2, 33.5)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点F(0.0, 61.8, 38.2)及び
      点T(35.8, 44.9, 19.3)
    の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
    前記線分PLは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分MA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分FTは、
      座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
    で表わされ、
    前記線分TPは、
      座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
    で表わされ、かつ
    前記線分LM及びBFが直線である、
    請求項6に記載の冷凍サイクル装置(10)。
  12.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点P(55.8, 42.0, 2.2)、
      点L(63.1, 31.9, 5.0)、
      点Q(62.8, 29.6, 7.6) 及び
      点R(49.8, 42.3, 7.9)
    の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
    前記線分PLは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分RPは、
      座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
    で表わされ、かつ
    前記線分LQ及びQRが直線である、
    請求項6に記載の冷凍サイクル装置(10)。
  13.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点S(62.6, 28.3, 9.1)、
      点M(60.3, 6.2, 33.5)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点F(0.0, 61.8, 38.2)及び
      点T(35.8, 44.9, 19.3)
    の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
    前記線分MA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分FTは、
      座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
    で表わされ、
    前記線分TSは、
      座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
    で表わされ、かつ
    前記線分SM及びBFが直線である、
    請求項6に記載の冷凍サイクル装置(10)。
  14.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%含む、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  15.  前記冷媒が、HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  16.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
      0<a≦11.1のとき、
       点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
       点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
       点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
       点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
       点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
       点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
    の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
      11.1<a≦18.2のとき、
       点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
       点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
       点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
       点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
      18.2<a≦26.7のとき、
       点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
       点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
       点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
       点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
      26.7<a≦36.7のとき、
       点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
       点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
       点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
       点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
      36.7<a≦46.7のとき、
       点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)、
       点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)、
       点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
       点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  17.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
      0<a≦11.1のとき、
       点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
       点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
       点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
       点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
       点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
    の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
      11.1<a≦18.2のとき、
       点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
       点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
       点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
       点W(0.0, 100.0-a, 0.0)
    の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
      18.2<a≦26.7のとき、
       点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
       点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
       点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
       点W(0.0, 100.0-a, 0.0)
    の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
      26.7<a≦36.7のとき、
       点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
       点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
       点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
       点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
      36.7<a≦46.7のとき、
       点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
       点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
       点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
       点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  18.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点I(72.0, 0.0, 28.0)、
       点J(48.5, 18.3, 33.2)、
       点N(27.7, 18.2, 54.1)及び
       点E(58.3, 0.0, 41.7)
    の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
     前記線分IJは、
      座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
    で表わされ、
     前記線分NEは、
      座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
    で表わされ、かつ
     前記線分JN及びEIが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  19.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点M(52.6, 0.0, 47.4)、
       点M’(39.2, 5.0, 55.8)、
       点N(27.7, 18.2, 54.1)、
       点V(11.0, 18.1, 70.9)及び
       点G(39.6, 0.0, 60.4)
    の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
     前記線分MM’は、
      座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
    で表わされ、
     前記線分M’Nは、
      座標(0.0313y2-1.4551y+43.824, y, -0.0313y2+0.4551y+56.176)
    で表わされ、
     前記線分VGは、
      座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
    で表わされ、かつ
     前記線分NV及びGMが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  20.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点O(22.6, 36.8, 40.6)、
       点N(27.7, 18.2, 54.1)及び
       点U(3.9, 36.7, 59.4)
    の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分ONは、
      座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
    で表わされ、
     前記線分NUは、
      座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
    で表わされ、かつ
     前記線分UOが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  21.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点Q(44.6, 23.0, 32.4)、
       点R(25.5, 36.8, 37.7)、
       点T(8.6, 51.6, 39.8)、
       点L(28.9, 51.7, 19.4)及び
       点K(35.6, 36.8, 27.6)
    の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分QRは、
      座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
    で表わされ、
     前記線分RTは、
      座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
    で表わされ、
     前記線分LKは、
      座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
    で表わされ、
     前記線分KQは、
      座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
    で表わされ、かつ
     前記線分TLが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  22.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点P(20.5, 51.7, 27.8)、
       点S(21.9, 39.7, 38.4)及び
       点T(8.6, 51.6, 39.8)
    の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分PSは、
      座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
    で表わされ、
     前記線分STは、
      座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
    で表わされ、かつ
     前記線分TPが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  23.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点I(72.0, 28,0, 0.0)
       点K(48.4, 33.2, 18.4)
       点B’(0.0, 81.6, 18.4)
       点H(0.0, 84.2, 15.8)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
     前記線分IKは、
      座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
    で表わされ、
     前記線分HRは、
      座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
    で表わされ、
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、かつ
     前記線分KB’及びGIが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  24.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点I(72.0, 28,0, 0.0)
       点J(57.7, 32.8, 9.5)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
     前記線分IJは、
      座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
    で表わされ、かつ
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、
     前記線分JR及びGIが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  25.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点M(47.1, 52.9, 0.0)
       点P(31.8, 49.8, 18.4)
       点B’(0.0, 81.6, 18.4)
       点H(0.0, 84.2, 15.8)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
     前記線分MPは、
      座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
    で表わされ、
     前記線分HRは、
      座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
    で表わされ、
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、かつ
     前記線分PB’及びGMが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  26.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点M(47.1, 52.9, 0.0)
       点N(38.5, 52.1, 9.5)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
     前記線分MNは、
      座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
    で表わされ、かつ
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、
     前記線分JR及びGIが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  27.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点P(31.8, 49.8, 18.4)
       点S(25.4, 56.2, 18.4)及び
       点T(34.8, 51.0, 14.2)
    の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分STは、
      座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
    で表わされ、かつ
     前記線分TPは、
      座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
    で表わされ、
     前記線分PSが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
  28.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点Q(28.6, 34.4, 37.0)
       点B’’(0.0, 63.0, 37.0)
       点D(0.0, 67.0, 33.0)及び
       点U(28.7, 41.2, 30.1)
    の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
     前記線分DUは、
      座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
     前記線分UQは、
      座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)
    で表わされ、
     前記線分QB’’及びB’’Dが直線である、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(10)。
PCT/JP2018/046532 2017-12-18 2018-12-18 冷凍サイクル装置 WO2019124361A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880081129.6A CN111479897A (zh) 2017-12-18 2018-12-18 制冷循环装置
JP2019561108A JPWO2019124361A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
EP18891707.4A EP3730576A4 (en) 2017-12-18 2018-12-18 REFRIGERATION CYCLE DEVICE
US16/955,207 US20200340714A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/913,500 US20200363106A1 (en) 2017-12-18 2020-06-26 Refrigeration cycle apparatus

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2017242187 2017-12-18
JP2017-242183 2017-12-18
JP2017242185 2017-12-18
JP2017242183 2017-12-18
JP2017-242187 2017-12-18
JP2017-242186 2017-12-18
JP2017242186 2017-12-18
JP2017-242185 2017-12-18
PCT/JP2018/037483 WO2019123782A1 (ja) 2017-12-18 2018-10-05 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/037483 2018-10-05
PCT/JP2018/038749 WO2019123807A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038746 2018-10-17
PCT/JP2018/038746 WO2019123804A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038749 2018-10-17
PCT/JP2018/038748 WO2019123806A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038747 2018-10-17
PCT/JP2018/038747 WO2019123805A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038748 2018-10-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/955,207 A-371-Of-International US20200340714A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/913,500 Continuation-In-Part US20200363106A1 (en) 2017-12-18 2020-06-26 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2019124361A1 true WO2019124361A1 (ja) 2019-06-27

Family

ID=66992737

Family Applications (15)

Application Number Title Priority Date Filing Date
PCT/JP2018/042032 WO2019123898A1 (ja) 2017-12-18 2018-11-13 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
PCT/JP2018/042027 WO2019123897A1 (ja) 2017-12-18 2018-11-13 冷凍サイクル装置
PCT/JP2018/045289 WO2019124139A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法
PCT/JP2018/045288 WO2019124138A1 (ja) 2017-12-18 2018-12-10 空調ユニット
PCT/JP2018/045978 WO2019124229A1 (ja) 2017-12-18 2018-12-13 冷凍装置
PCT/JP2018/045979 WO2019124230A1 (ja) 2017-12-18 2018-12-13 温水製造装置
PCT/JP2018/046426 WO2019124326A1 (ja) 2017-12-18 2018-12-17 熱交換ユニット
PCT/JP2018/046428 WO2019124328A1 (ja) 2017-12-18 2018-12-17 熱源ユニットおよび冷凍サイクル装置
PCT/JP2018/046427 WO2019124327A1 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
PCT/JP2018/046531 WO2019124360A1 (ja) 2017-12-18 2018-12-18 空気調和機
PCT/JP2018/046630 WO2019124398A1 (ja) 2017-12-18 2018-12-18 圧縮機
PCT/JP2018/046532 WO2019124361A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
PCT/JP2018/046631 WO2019124399A1 (ja) 2017-12-18 2018-12-18 圧縮機
PCT/JP2018/046533 WO2019124362A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
PCT/JP2018/046582 WO2019124380A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置

Family Applications Before (11)

Application Number Title Priority Date Filing Date
PCT/JP2018/042032 WO2019123898A1 (ja) 2017-12-18 2018-11-13 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
PCT/JP2018/042027 WO2019123897A1 (ja) 2017-12-18 2018-11-13 冷凍サイクル装置
PCT/JP2018/045289 WO2019124139A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法
PCT/JP2018/045288 WO2019124138A1 (ja) 2017-12-18 2018-12-10 空調ユニット
PCT/JP2018/045978 WO2019124229A1 (ja) 2017-12-18 2018-12-13 冷凍装置
PCT/JP2018/045979 WO2019124230A1 (ja) 2017-12-18 2018-12-13 温水製造装置
PCT/JP2018/046426 WO2019124326A1 (ja) 2017-12-18 2018-12-17 熱交換ユニット
PCT/JP2018/046428 WO2019124328A1 (ja) 2017-12-18 2018-12-17 熱源ユニットおよび冷凍サイクル装置
PCT/JP2018/046427 WO2019124327A1 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
PCT/JP2018/046531 WO2019124360A1 (ja) 2017-12-18 2018-12-18 空気調和機
PCT/JP2018/046630 WO2019124398A1 (ja) 2017-12-18 2018-12-18 圧縮機

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/046631 WO2019124399A1 (ja) 2017-12-18 2018-12-18 圧縮機
PCT/JP2018/046533 WO2019124362A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
PCT/JP2018/046582 WO2019124380A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置

Country Status (4)

Country Link
JP (1) JP7448851B2 (ja)
CN (2) CN111556949B (ja)
WO (15) WO2019123898A1 (ja)
ZA (1) ZA202003916B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017386A1 (ja) 2018-07-17 2020-01-23 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
EP3825383A4 (en) 2018-07-17 2022-10-05 Daikin Industries, Ltd. REFRIGERATION CIRCUIT DEVICE FOR A VEHICLE
EP4230707A1 (en) 2018-07-17 2023-08-23 Daikin Industries, Ltd. Refrigerant cycle apparatus
CN113396198A (zh) 2019-01-30 2021-09-14 大金工业株式会社 含有制冷剂的组合物、以及使用该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
CN114656928A (zh) 2019-01-30 2022-06-24 大金工业株式会社 含有制冷剂的组合物、以及使用该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
JP6696633B1 (ja) 2019-02-05 2020-05-20 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
WO2020162415A1 (ja) 2019-02-06 2020-08-13 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
EP4102685A4 (en) * 2020-02-07 2023-03-22 Mitsubishi Electric Corporation ROTOR, ELECTRIC MOTOR, COMPRESSOR, REFRIGERATION CYCLE DEVICE AND AIR CONDITIONING DEVICE
CN111928460A (zh) * 2020-07-20 2020-11-13 江苏大学 一种收集空调外机输出热的装置
CN112097423B (zh) * 2020-09-10 2022-02-18 佛山市艺兴冷气工程有限公司 一种空调的制冷剂分流设备及其使用方法
AU2022213724A1 (en) * 2021-01-29 2023-08-24 Daikin Industries, Ltd. Refrigerant-containing composition, use thereof, refrigerator having said composition, and method for operating said refrigerator
JP2023132720A (ja) * 2022-03-11 2023-09-22 株式会社デンソー 複合型熱交換器、熱交換システム
WO2023181403A1 (ja) * 2022-03-25 2023-09-28 三菱電機株式会社 冷凍サイクル装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256358A (ja) 1998-03-09 1999-09-21 Sanyo Electric Co Ltd 熱交換器用耐食性銅パイプ
JP2010230242A (ja) * 2009-03-27 2010-10-14 Panasonic Corp アルミニウム製チューブの接続構造および熱交換器
JP2015078789A (ja) * 2013-10-16 2015-04-23 三菱電機株式会社 熱交換器および熱交換器を備えた空気調和装置
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186557A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186670A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP2016133256A (ja) * 2015-01-19 2016-07-25 ダイキン工業株式会社 空気調和装置の熱交換ユニット
JP2017036861A (ja) * 2015-08-07 2017-02-16 ダイキン工業株式会社 冷媒回収用容器および冷凍装置
JP2017122549A (ja) * 2016-01-08 2017-07-13 株式会社デンソー 熱交換器及びその製造方法

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190115U (ja) * 1975-01-17 1976-07-19
JPS5939790U (ja) * 1982-09-06 1984-03-14 株式会社東芝 コンプレツサの冷却装置
JP2803451B2 (ja) 1991-07-12 1998-09-24 三菱電機株式会社 冷媒圧縮機及び冷蔵庫及び冷凍空調装置及び冷媒圧縮機の組立方法
JPH05264070A (ja) * 1992-03-17 1993-10-12 Mitsubishi Electric Corp 空気調和機の室外ユニット
JPH10309050A (ja) * 1996-05-16 1998-11-17 Matsushita Electric Ind Co Ltd 圧縮機
JP2869038B2 (ja) * 1996-06-05 1999-03-10 松下電器産業株式会社 3成分混合冷媒を用いたヒートポンプ装置
JPH1046170A (ja) * 1996-08-06 1998-02-17 Kao Corp 冷凍機作動流体用組成物
JP3860942B2 (ja) * 1999-11-18 2006-12-20 株式会社ジャパンエナジー 冷凍装置用潤滑油組成物、作動流体及び冷凍装置
JP3763120B2 (ja) 2000-08-09 2006-04-05 三菱電機株式会社 空気調和装置
JP2002089978A (ja) * 2000-09-11 2002-03-27 Daikin Ind Ltd ペア型の冷凍装置およびマルチ型の冷凍装置
JP2002257366A (ja) * 2001-03-02 2002-09-11 Sekisui Chem Co Ltd 給湯暖房システム
JP3885535B2 (ja) 2001-09-07 2007-02-21 株式会社デンソー 給湯装置
JP2004028035A (ja) * 2002-06-28 2004-01-29 Fujitsu General Ltd 密閉形圧縮機
JP3925383B2 (ja) * 2002-10-11 2007-06-06 ダイキン工業株式会社 給湯装置、空調給湯システム、及び給湯システム
JP2004251535A (ja) * 2003-02-20 2004-09-09 Aisin Seiki Co Ltd 空気調和機
JP2004361036A (ja) * 2003-06-06 2004-12-24 Daikin Ind Ltd 空気調和装置
JP2005061711A (ja) * 2003-08-12 2005-03-10 Osaka Gas Co Ltd 排熱回収給湯装置
JP2005241045A (ja) * 2004-02-24 2005-09-08 Sanyo Electric Co Ltd 空気調和装置
JP2006211824A (ja) * 2005-01-28 2006-08-10 Mitsubishi Electric Corp 圧縮機
JP2008039305A (ja) * 2006-08-07 2008-02-21 Daikin Ind Ltd 建物において温水を循環させて暖房を行う温水循環暖房システムおよび蒸発器用散水装置
JP4172514B2 (ja) * 2006-10-10 2008-10-29 ダイキン工業株式会社 圧縮機
JP4859694B2 (ja) * 2007-02-02 2012-01-25 三菱重工業株式会社 多段圧縮機
JP4840215B2 (ja) * 2007-03-27 2011-12-21 株式会社日立製作所 永久磁石式回転電機及びそれを用いた圧縮機
JP2008286422A (ja) * 2007-05-15 2008-11-27 Panasonic Corp 冷蔵庫
JP2009063216A (ja) * 2007-09-06 2009-03-26 Hitachi Appliances Inc 熱交換器およびそれを用いた空気調和機
JP2009092274A (ja) * 2007-10-05 2009-04-30 Hitachi Appliances Inc 空気調和機
JP5038105B2 (ja) * 2007-11-19 2012-10-03 パナソニック株式会社 弁装置およびそれを備える空気調和機
JP2009150620A (ja) * 2007-12-21 2009-07-09 Toshiba Carrier Corp 2元ヒートポンプ式空気調和装置
JP2010103346A (ja) * 2008-10-24 2010-05-06 Daido Steel Co Ltd Ipm型集中巻モータ用磁石及びその製造方法、該磁石を用いたipm型集中巻モータ
JP2010119190A (ja) * 2008-11-12 2010-05-27 Toyota Motor Corp 磁石埋め込み型モータ用ロータと磁石埋め込み型モータ
JP5452138B2 (ja) * 2009-09-01 2014-03-26 三菱電機株式会社 冷凍空調装置
JP5542423B2 (ja) * 2009-12-22 2014-07-09 東芝産業機器システム株式会社 回転電機の回転子、および回転電機
JP2011252636A (ja) * 2010-06-01 2011-12-15 Panasonic Corp 温水暖房給湯装置
JP5388969B2 (ja) * 2010-08-23 2014-01-15 三菱電機株式会社 熱交換器及びこの熱交換器が搭載された空気調和機
JP5595245B2 (ja) * 2010-11-26 2014-09-24 三菱電機株式会社 冷凍装置
CN103975204B (zh) * 2011-12-06 2016-02-24 三菱电机株式会社 热泵式制热和热水供给系统
JP2013126281A (ja) * 2011-12-14 2013-06-24 Daikin Ind Ltd 界磁子の製造方法及び界磁子用の端板
JP5506770B2 (ja) 2011-12-16 2014-05-28 三菱電機株式会社 空気調和機
JP5881435B2 (ja) * 2012-01-27 2016-03-09 三菱電機株式会社 熱交換器及びこれを備えた空気調和機
JP2015111012A (ja) * 2012-03-26 2015-06-18 東芝キヤリア株式会社 冷凍サイクル装置
JPWO2013151043A1 (ja) * 2012-04-02 2015-12-17 東芝キヤリア株式会社 冷凍サイクル装置
WO2014045400A1 (ja) 2012-09-21 2014-03-27 三菱電機株式会社 冷凍装置及びその制御方法
JP5776746B2 (ja) * 2013-01-29 2015-09-09 ダイキン工業株式会社 空気調和装置
CN108469126A (zh) * 2013-01-31 2018-08-31 日立江森自控空调有限公司 室外机及采用该室外机的冷冻循环装置
WO2014156190A1 (ja) * 2013-03-29 2014-10-02 パナソニックヘルスケア株式会社 二元冷凍装置
CZ2014196A3 (cs) * 2013-04-17 2015-08-19 Mitsubishi Electric Corporation Chladicí kompresor
WO2014203354A1 (ja) * 2013-06-19 2014-12-24 三菱電機株式会社 冷凍サイクル装置
GB2530915C (en) * 2013-06-19 2019-10-30 Mitsubishi Electric Corp Air-conditioning apparatus
JP2015023721A (ja) * 2013-07-22 2015-02-02 ダイキン工業株式会社 回転子、モータおよび圧縮機
JP2015055455A (ja) * 2013-09-13 2015-03-23 三菱電機株式会社 室外機及び空気調和機
JP6118227B2 (ja) * 2013-10-22 2017-04-19 株式会社日立産機システム 永久磁石回転電機およびそれを用いる圧縮機
EP3070417A4 (en) * 2013-11-12 2017-09-27 Mitsubishi Electric Corporation Refrigeration system
AU2014348212C1 (en) 2013-11-18 2018-11-29 Arcturus Therapeutics, Inc. Ionizable cationic lipid for RNA delivery
JP2015114082A (ja) * 2013-12-13 2015-06-22 ダイキン工業株式会社 冷媒配管接合体および冷媒配管接合体の製造方法
JP6354616B2 (ja) * 2014-02-20 2018-07-11 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
CN106062159B (zh) * 2014-02-20 2019-04-16 Agc株式会社 热循环系统用组合物以及热循环系统
JP6375639B2 (ja) * 2014-02-21 2018-08-22 ダイキン工業株式会社 空気調和装置
JP6293262B2 (ja) * 2014-03-14 2018-03-14 三菱電機株式会社 圧縮機及び冷凍サイクル装置
JP2015218909A (ja) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた温水生成装置
JP6519909B2 (ja) * 2014-07-18 2019-05-29 出光興産株式会社 冷凍機油組成物、及び冷凍装置
WO2016104418A1 (ja) * 2014-12-22 2016-06-30 三菱電機株式会社 回転電機の回転子
JP2016174461A (ja) * 2015-03-17 2016-09-29 ダイキン工業株式会社 ロータ
WO2016190232A1 (ja) * 2015-05-22 2016-12-01 ダイキン工業株式会社 温度調整用流体供給装置
WO2017038489A1 (ja) * 2015-09-01 2017-03-09 三菱電機株式会社 回転子、回転電機、電動圧縮機および冷凍空調装置
JP6733145B2 (ja) * 2015-09-30 2020-07-29 ダイキン工業株式会社 水熱交換器収容ユニット
JP2017145975A (ja) * 2016-02-15 2017-08-24 三菱電機株式会社 冷凍サイクル装置、冷凍サイクル装置の製造方法、冷凍サイクル装置のドロップイン方法、及び、冷凍サイクル装置のリプレース方法
JP2017192190A (ja) * 2016-04-12 2017-10-19 日立ジョンソンコントロールズ空調株式会社 永久磁石モータ、及びそれを用いた圧縮機、空気調和機
US11131490B2 (en) * 2016-05-09 2021-09-28 Mitsubishi Electric Corporation Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256358A (ja) 1998-03-09 1999-09-21 Sanyo Electric Co Ltd 熱交換器用耐食性銅パイプ
JP2010230242A (ja) * 2009-03-27 2010-10-14 Panasonic Corp アルミニウム製チューブの接続構造および熱交換器
JP2015078789A (ja) * 2013-10-16 2015-04-23 三菱電機株式会社 熱交換器および熱交換器を備えた空気調和装置
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186557A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186670A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP2016133256A (ja) * 2015-01-19 2016-07-25 ダイキン工業株式会社 空気調和装置の熱交換ユニット
JP2017036861A (ja) * 2015-08-07 2017-02-16 ダイキン工業株式会社 冷媒回収用容器および冷凍装置
JP2017122549A (ja) * 2016-01-08 2017-07-13 株式会社デンソー 熱交換器及びその製造方法

Also Published As

Publication number Publication date
WO2019124326A1 (ja) 2019-06-27
WO2019123897A1 (ja) 2019-06-27
WO2019124138A1 (ja) 2019-06-27
WO2019123898A1 (ja) 2019-06-27
JP7448851B2 (ja) 2024-03-13
WO2019124399A1 (ja) 2019-06-27
JP2023010806A (ja) 2023-01-20
CN111492187B (zh) 2022-05-27
WO2019124139A1 (ja) 2019-06-27
WO2019124327A1 (ja) 2019-06-27
CN111556949A (zh) 2020-08-18
WO2019124380A1 (ja) 2019-06-27
CN111492187A (zh) 2020-08-04
WO2019124360A1 (ja) 2019-06-27
WO2019124398A1 (ja) 2019-06-27
WO2019124362A1 (ja) 2019-06-27
CN111556949B (zh) 2022-05-13
ZA202003916B (en) 2022-12-21
WO2019124230A1 (ja) 2019-06-27
WO2019124229A1 (ja) 2019-06-27
WO2019124328A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2019124361A1 (ja) 冷凍サイクル装置
EP3730576A1 (en) Refrigeration cycle device
US20200363106A1 (en) Refrigeration cycle apparatus
US20200393178A1 (en) Refrigeration cycle apparatus
US20200326103A1 (en) Refrigeration cycle
WO2019124146A1 (ja) 冷凍サイクル
US20200325375A1 (en) Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
WO2020218544A1 (ja) フッ素化炭化水素及び二酸化炭素を含む冷媒、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018891707

Country of ref document: EP

Effective date: 20200720