WO2016190232A1 - 温度調整用流体供給装置 - Google Patents

温度調整用流体供給装置 Download PDF

Info

Publication number
WO2016190232A1
WO2016190232A1 PCT/JP2016/064989 JP2016064989W WO2016190232A1 WO 2016190232 A1 WO2016190232 A1 WO 2016190232A1 JP 2016064989 W JP2016064989 W JP 2016064989W WO 2016190232 A1 WO2016190232 A1 WO 2016190232A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
temperature
flow rate
pipe
flow
Prior art date
Application number
PCT/JP2016/064989
Other languages
English (en)
French (fr)
Inventor
秀雄 千頭
ウィム ヴァンシュテーンキステ、
Original Assignee
ダイキン工業株式会社
ダイキン ヨーロッパ エヌ.ヴイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社, ダイキン ヨーロッパ エヌ.ヴイ. filed Critical ダイキン工業株式会社
Priority to EP16799937.4A priority Critical patent/EP3299731B1/en
Priority to AU2016266354A priority patent/AU2016266354B2/en
Priority to CN201680029320.7A priority patent/CN107614980B/zh
Priority to JP2017520675A priority patent/JP6297217B2/ja
Priority to US15/576,065 priority patent/US10345023B2/en
Publication of WO2016190232A1 publication Critical patent/WO2016190232A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • F25B2700/1351Mass flow of refrigerants through the evaporator of the cooled fluid upstream or downstream of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a fluid supply device for temperature adjustment.
  • the present invention sends a fluid from a heat exchanger that transmits heat supplied from a refrigerant to a temperature adjustment fluid to a temperature adjustment target that uses the heat of the fluid, and receives a fluid that returns from the temperature adjustment target.
  • the present invention relates to a temperature adjusting fluid supply apparatus that leads to a heat exchanger again.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-144963 discloses a temperature adjustment fluid supply that sends a fluid that has been heat exchanged with a refrigerant in a heat exchanger to a temperature adjustment target (air conditioner) disposed indoors. An apparatus is disclosed.
  • a pump capable of adjusting the flow rate may be used in order to adjust the flow rate of the fluid in accordance with the thermal load or the like to be temperature adjusted.
  • a pump capable of adjusting the flow rate is used, for example, as in Patent Document 1 (Japanese Patent Laid-Open No. 2010-144963)
  • the flow rate of the fluid is detected by a flow rate sensor, and the pump is controlled based on the detection result.
  • the viscosity of the fluid used in the temperature adjusting fluid supply device generally increases as the temperature decreases.
  • the viscosity increases relatively greatly due to a decrease in temperature.
  • An object of the present invention is to provide a fluid between a heat exchanger that transmits heat supplied from a refrigerant to a fluid for temperature adjustment and a temperature adjustment target that uses the heat of the fluid, using a flow-adjustable pump.
  • a temperature adjusting fluid supply device that circulates, and that can appropriately control a pump and prevent freezing of fluid in a pipe even when the fluid temperature drops. is there.
  • a temperature adjustment fluid supply apparatus includes a heat exchanger, a supply pipe, a return pipe, a pump, a first flow rate detection means, a second flow rate detection means, a temperature detection means, and a control unit. And comprising.
  • the heat exchanger transfers heat supplied from the refrigerant to the temperature adjusting fluid.
  • a fluid flowing from the heat exchanger toward the temperature adjustment target flows through the supply pipe.
  • a fluid returning from the temperature adjustment target flows through the return pipe.
  • the pump is provided in the supply pipe or the return pipe.
  • the pump can adjust the flow rate.
  • the first flow rate detection means is provided in the supply pipe or the return pipe.
  • the first flow rate detecting means detects the flow rate of the fluid.
  • the second flow rate detection means is provided in the supply pipe or the return pipe.
  • the second flow rate detection means detects the flow rate of the fluid.
  • the detectable flow rate change is coarser than the first flow rate detection means, and the influence on the detection accuracy due to the fluid viscosity change is smaller than that of the first flow rate detection means.
  • the temperature detecting means detects the temperature of the fluid.
  • the control unit switches between pump control based on the detection result of the first flow rate detection means and pump control based on the detection result of the second flow rate detection means based on the temperature of the fluid detected by the temperature detection means.
  • the control of the pump is switched to the control based on the detection result of the second flow rate detecting means that has a relatively small influence on the detection accuracy due to the viscosity change based on the temperature of the fluid. It is done. Therefore, even when the fluid temperature is lowered, it is possible to prevent the fluid from freezing in the piping by appropriately controlling the pump.
  • the pump control is switched to the control based on the detection result of the first flow rate detecting means whose detectable flow rate change is relatively fine based on the temperature of the fluid. . Therefore, when the temperature of the fluid is relatively high and the viscosity is relatively low, it is possible to operate the apparatus efficiently by finely controlling the flow rate of the fluid.
  • the temperature adjustment fluid supply device is the temperature adjustment fluid supply device according to the first aspect, and the first flow rate detection means and the second flow rate detection means are provided in the supply pipe.
  • the first flow rate detection means and the second flow rate detection means are provided in the supply pipe having a relatively high fluid temperature, so that the fluid becomes highly viscous at the flow rate detection position. Hateful. Therefore, compared with the case where the first flow rate detection unit and the second flow rate detection unit are provided in the return pipe, the influence of the fluid viscosity on the flow rate detection can be suppressed.
  • the temperature adjustment fluid supply apparatus is the temperature adjustment fluid supply apparatus according to the second aspect, and the temperature detection means detects the temperature of the fluid flowing through the supply pipe.
  • the temperature detecting means detects the temperature of the fluid flowing through the supply pipe provided with the first flow rate detecting means and the second flow rate detecting means. For this reason, it is easy to appropriately switch between pump control based on the detection result of the first flow rate detection means and pump control based on the detection result of the second flow rate detection means.
  • a temperature adjustment fluid supply device is the temperature adjustment fluid supply device according to any one of the first to third aspects, wherein the first flow rate detection means analogizes the detection result of the flow rate of the fluid. Output.
  • the second flow rate detection means outputs a binary detection result of the fluid flow rate.
  • the flow rate of the fluid can be finely detected by the first flow rate detection means, and whether the flow rate is equal to or higher than the predetermined amount can also be detected by the second flow rate detection means.
  • the temperature adjustment fluid supply apparatus is the temperature adjustment fluid supply apparatus according to any one of the first to fourth aspects, and is installed outdoors.
  • the temperature of the fluid tends to be low at a low outside air temperature.
  • the pump control based on the detection result of the first flow rate detection means and the pump control based on the detection result of the second flow rate detection means are switched based on the temperature of the fluid, the pump is appropriately controlled. Freezing of the fluid in the piping can be prevented.
  • the control of the pump is switched to the control based on the detection result of the second flow rate detecting means that has a relatively small influence on the detection accuracy due to the viscosity change based on the temperature of the fluid. It is done. Therefore, even when the fluid temperature is lowered, it is possible to prevent the fluid from freezing in the piping by appropriately controlling the pump.
  • the pump control is switched to the control based on the detection result of the first flow rate detecting means whose detectable flow rate change is relatively fine based on the temperature of the fluid. . Therefore, when the temperature of the fluid is relatively high and the viscosity is relatively low, the apparatus can be efficiently operated by finely controlling the flow rate of the fluid.
  • the influence of the viscosity of the fluid on the detection of the flow rate can be suppressed.
  • the temperature adjusting fluid supply device it is easy to appropriately switch between pump control based on the detection result of the first flow rate detection means and pump control based on the detection result of the second flow rate detection means. It is.
  • the flow rate of the fluid can be finely detected by the first flow rate detection means, and whether the flow rate is equal to or higher than the predetermined amount can be detected by the second flow rate detection means.
  • the temperature of the fluid tends to be low at a low outside air temperature.
  • the pump control based on the detection result of the first flow rate detection means and the pump control based on the detection result of the second flow rate detection means are switched based on the temperature of the fluid, the pump is appropriately controlled. Freezing of the fluid in the piping can be prevented.
  • FIG. 1 It is a schematic block diagram of the air-conditioning system containing the temperature adjustment fluid supply apparatus which concerns on one Embodiment of this invention. It is a flowchart which concerns on the minimum flow control of the pump of the fluid supply apparatus for temperature control concerning FIG.
  • a temperature adjusting fluid supply apparatus 100 according to an embodiment of the present invention will be described below with reference to the drawings.
  • the following embodiment is only a specific example of the temperature adjusting fluid supply apparatus according to the embodiment of the present invention, and can be changed without departing from the gist of the invention.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system 1 including a temperature adjusting fluid supply apparatus 100 according to an embodiment of the present invention.
  • the air conditioning system 1 is a system capable of performing an operation of heating / cooling a temperature adjusting fluid using a vapor compression heat pump cycle.
  • the temperature adjusting fluid in the present embodiment is an air conditioning fluid.
  • the air conditioning target space is heated / cooled using the heat of the temperature adjusting fluid heated / cooled by the refrigerant.
  • the air conditioning system 1 includes a temperature adjusting fluid supply device 100 and an air conditioning equipment unit 400.
  • the temperature adjustment fluid supply device 100 supplies the temperature adjustment fluid (temperature adjustment fluid) heated / cooled by the refrigerant to the air conditioner 430 of the air conditioner unit 400 that is the object of temperature adjustment. Device).
  • the temperature adjusting fluid supply device 100 is installed outdoors.
  • the temperature adjusting fluid supply apparatus 100 mainly includes a compressor 11, a switching mechanism 12, a heat source side heat exchanger 13, an expansion valve 14, a use side heat exchanger 20, a fluid supply unit 31, and a supply.
  • the pipe 32, the fluid return part 41, the return pipe 42, the pump 50, the flow sensor 60, the flow switch 70, the temperature sensor 80, and the control part 90 are provided.
  • the compressor 11, the switching mechanism 12, the heat source side heat exchanger 13, the expansion valve 14, and the use side heat exchanger 20 are pipes (a discharge pipe 12a, a suction pipe 12b, and a first gas refrigerant pipe 12c described later).
  • the second gas refrigerant pipe 12d and the liquid refrigerant pipe 15) constitute a refrigerant circuit 10 in which the refrigerant circulates.
  • the refrigerant circuit 10 is filled with an HFC refrigerant such as R-410A, for example.
  • R-410A an HFC refrigerant
  • the kind of refrigerant is an example, and is not limited to this.
  • the use side heat exchanger 20 and a temperature adjustment target are connected by a pipe including a supply pipe 32 and a return pipe 42, and a fluid circuit 300 in which a temperature adjusting fluid circulates.
  • a temperature adjusting fluid in which a temperature adjusting fluid circulates.
  • brine such as an aqueous ethylene glycol solution
  • the temperature adjusting fluid has a property that the viscosity increases as the temperature decreases.
  • heat is transferred from the refrigerant flowing through the refrigerant circuit 10 to the temperature adjusting fluid flowing through the fluid circuit 300.
  • the heat of the temperature adjustment fluid supplied from the temperature adjustment fluid supply device 100 is used to heat / cool the air-conditioning target space where the air conditioner 430 exists.
  • the compressor 11 is a mechanism for compressing the refrigerant.
  • the compressor 11 includes a rotary type or scroll type volumetric compression element (not shown) accommodated in a casing (not shown), and a compressor motor 11a also accommodated in the casing. It is a driven hermetic compressor.
  • the compressor motor 11a is configured such that the rotation speed (that is, the operating frequency) is variably configured by an inverter, and thus the capacity of the compressor 11 is configured to be variable.
  • the switching mechanism 12 includes a heat source side heat radiation operating state in which the heat source side heat exchanger 13 functions as a refrigerant radiator, and a heat source in which the heat source side heat exchanger 13 functions as a refrigerant evaporator.
  • the side evaporation operation state can be switched.
  • the switching mechanism 12 is a four-way switching valve.
  • the switching mechanism 12 has a discharge pipe 12a through which the refrigerant discharged from the compressor 11 flows, a suction pipe 12b through which the refrigerant sucked into the compressor 11 flows, and one end connected to the gas side of the heat source side heat exchanger 13.
  • the first gas refrigerant pipe 12c and one end are connected to the second gas refrigerant pipe 12d connected to the gas side of the use side heat exchanger 20.
  • the switching mechanism 12 can switch the communication between the discharge pipe 12a and the first gas refrigerant pipe 12c and the communication between the second gas refrigerant pipe 12d and the suction pipe 12b (in the heat source side heat radiation operation state). (Refer to the broken line of the switching mechanism 12 in FIG. 1). Further, the switching mechanism 12 can switch the communication between the discharge pipe 12a and the second gas refrigerant pipe 12d and the communication between the first gas refrigerant pipe 12c and the suction pipe 12b (heat source side evaporation operation). Corresponding to the state, see the solid line of the switching mechanism 12 in FIG. 1).
  • the switching mechanism 12 is not limited to a four-way switching valve.
  • the switching mechanism 12 may be configured by combining a plurality of electromagnetic valves so as to have a function of switching the flow direction of the refrigerant in the same manner as described above.
  • the heat source side heat exchanger 13 is a heat exchanger that functions as a refrigerant radiator or evaporator by exchanging heat between refrigerant and outdoor air.
  • a liquid refrigerant pipe 15 having one end connected to the liquid side of the use side heat exchanger 20 is connected to the liquid side of the heat source side heat exchanger 13.
  • a first gas refrigerant pipe 12 c having one end connected to the switching mechanism 12 is connected to the gas side of the heat source side heat exchanger 13. Outdoor air for heat exchange with the refrigerant is supplied to the heat source side heat exchanger 13 by a fan 13a.
  • the expansion valve 14 is an electric expansion valve with a variable opening that performs decompression of the refrigerant flowing through the liquid refrigerant pipe 15.
  • the expansion valve 14 is provided in the liquid refrigerant pipe 15.
  • the utilization-side heat exchanger 20 performs heat exchange between the refrigerant flowing through the refrigerant circuit 10 and the temperature adjusting fluid flowing through the fluid circuit 300, whereby the refrigerant evaporator Or it is a heat exchanger which functions as a heat radiator.
  • the use-side heat exchanger 20 is a heat exchanger that transfers heat (hot / cold heat) supplied from the refrigerant flowing through the refrigerant circuit 10 to the temperature adjusting fluid.
  • the liquid refrigerant pipe 15 having one end connected to the liquid side of the heat source side heat exchanger 13 is connected to the liquid side of the flow path through which the refrigerant of the use side heat exchanger 20 flows.
  • a second gas refrigerant pipe 12d having one end connected to the switching mechanism 12 is connected to the gas side of the flow path through which the refrigerant of the use side heat exchanger 20 flows.
  • a return pipe 42 is connected to the inlet side of the flow path through which the temperature adjusting fluid of the use side heat exchanger 20 flows.
  • a supply pipe 32 is connected to the outlet side of the flow path through which the temperature adjusting fluid of the use side heat exchanger 20 flows.
  • the fluid supply unit 31 is a pipe connection unit. Connected to the fluid supply unit 31 is a forward external pipe 410 of the air conditioner unit 400 described later, through which a temperature adjusting fluid flows toward the air conditioner 430 of the air conditioner unit 400.
  • the fluid supply part 31 is a flange type connection part, it is not limited to this.
  • the fluid supply unit 31 may be, for example, a screw-type connection unit.
  • the forward external pipe 410 and the supply pipe 32 are detachably connected, but the present invention is not limited to this.
  • the temperature adjusting fluid supply apparatus 100 may not have the fluid supply unit 31 that removably connects the outgoing external pipe 410 and the supply pipe 32.
  • the outgoing external pipe 410 and the supply pipe 32 may be directly connected by welding.
  • the outgoing external pipe 410 does not exist, and the supply pipe 32 may be directly connected to the air conditioner 430 of the air conditioner unit 400.
  • the supply pipe 32 is a pipe connecting the use side heat exchanger 20 and the fluid supply unit 31.
  • a temperature adjustment fluid flows from the use-side heat exchanger 20 toward the air conditioner 430 of the air conditioner unit 400 that is a temperature adjustment target.
  • the temperature adjusting fluid supplied with heat from the refrigerant in the use side heat exchanger 20 flows toward the fluid supply unit 31 (see the arrow in FIG. 1).
  • the fluid return part 41 is a pipe connection part.
  • the fluid return section 41 is connected to a return external pipe 420 of the air conditioning equipment unit 400 described later, through which a temperature adjusting fluid that returns from the air conditioning equipment 430 of the air conditioning equipment unit 400 flows.
  • the fluid return part 41 is a flange-type connection part, it is not limited to this.
  • the fluid return part 41 may be, for example, a screw-type connection part.
  • the temperature adjusting fluid supply apparatus 100 may not include the fluid return portion 41 that removably connects the return external pipe 420 and the return pipe 42.
  • the return external pipe 420 and the return pipe 42 may be directly connected by welding.
  • the return external pipe 420 does not exist, and the return pipe 42 may be directly connected to the air conditioner 430 of the air conditioner unit 400.
  • the return pipe 42 is a pipe that connects the use side heat exchanger 20 and the fluid return section 41.
  • the temperature adjusting fluid that returns from the air conditioner 430 of the air conditioner unit 400 that is a temperature adjustment target flows through the return pipe 42.
  • the temperature adjusting fluid used by the air conditioner 430 of the air conditioner unit 400 for heating / cooling the air-conditioning target space flows toward the fluid return portion 41 (see the arrow in FIG. 1). .
  • the return pipe 42 is provided with an expansion tank 43 that accommodates the temperature adjusting fluid when the temperature of the temperature adjusting fluid in the fluid circuit 300 rises and expands.
  • the expansion tank 43 is a sealed tank.
  • the pump 50 is a pump for boosting the temperature adjusting fluid and circulating the temperature adjusting fluid in the fluid circuit 300.
  • a centrifugal or positive displacement pump element (not shown) is driven by a pump motor 51.
  • the pump 50 is provided in the supply pipe 32.
  • the present invention is not limited to this, and the pump 50 may be provided in the return pipe 42.
  • the pump motor 51 is configured such that the rotation speed (that is, the operating frequency) is variably configured by an inverter, and thus the capacity of the pump 50 is configured to be variable.
  • the flow sensor 60 is an example of a first flow rate detection unit.
  • the flow sensor 60 detects the flow rate of the temperature adjusting fluid.
  • the flow sensor 60 is provided in the supply pipe 32. More specifically, the flow sensor 60 is provided on the upstream side of the supply pipe 32 from the pump 50 (between the use-side heat exchanger 20 and the pump 50).
  • the flow sensor 60 is, for example, a vortex flowmeter that determines the flow rate by measuring the number of Karman vortices generated on the downstream side of a vortex generator disposed in the flow.
  • the flow sensor 60 outputs the detection result of the flow rate of the temperature adjusting fluid in an analog manner.
  • the flow sensor 60 detects the flow rate of the temperature adjusting fluid with a continuous numerical value, and outputs the detection result. That is, the flow sensor 60 detects the flow rate of the temperature adjusting fluid in multiple stages and outputs the detection result.
  • the detection result of the flow sensor 60 is output to the control unit 90 described later.
  • the signal output from the flow sensor 60 is not limited to an analog signal.
  • the flow sensor 60 may output a pulse signal
  • the control unit 90 may be configured to receive the pulse signal converted into an analog output by the converter.
  • the detection accuracy is likely to decrease as the viscosity of the temperature adjusting fluid increases.
  • the value of the lower limit flow rate that can guarantee the detection accuracy increases. Therefore, in the flow sensor 60, when the temperature of the temperature adjusting fluid decreases and the viscosity increases, the flow rate may not be detected (especially when the flow rate is low), or an incorrect flow rate may be detected. .
  • the flow switch 70 is an example of a second flow rate detection unit.
  • the flow switch 70 detects the flow rate of the temperature adjusting fluid.
  • the flow switch 70 is provided in the supply pipe 32. More specifically, the flow switch 70 is provided on the downstream side of the supply pipe 32 from the pump 50 (between the pump 50 and the fluid supply unit 31).
  • the flow switch 70 is configured as follows.
  • a paddle (not shown) is installed in the flow path in the flow switch 70 through which the temperature adjusting fluid flows.
  • the paddle is pushed by the temperature adjustment fluid and the detection switch is activated, and the flow rate of the temperature adjustment fluid is detected. Is done.
  • the flow switch 70 outputs a binary detection result of the flow rate of the temperature adjusting fluid.
  • the flow switch 70 detects the flow rate of the temperature adjusting fluid in two stages (whether the flow rate is equal to or higher than the predetermined amount Fsw) and outputs the detection result. Therefore, the flow rate change that can be detected by the flow switch 70 is coarser than the flow rate change that can be detected by the flow sensor 60 that detects the flow rate in multiple stages.
  • the detection result of the flow switch 70 is output to the control unit 90 described later.
  • the flow switch 70 configured as described above, a change in viscosity of the temperature adjusting fluid hardly affects the detection accuracy. For this reason, even when the temperature of the temperature adjusting fluid decreases and the viscosity increases and the flow sensor 60 cannot detect the flow rate, the flow switch 70 can detect the flow rate correctly (the temperature adjusting fluid equal to or greater than the predetermined amount Fsw). Can be detected).
  • the temperature sensor 80 is an example of temperature detection means for detecting the temperature of the temperature adjusting fluid.
  • the temperature sensor 80 is provided in the supply pipe 32. More specifically, the temperature sensor 80 is installed upstream of the flow sensor 60 in the supply pipe 32 (between the use-side heat exchanger 20 and the flow sensor 60). The temperature sensor 80 detects the temperature of the temperature adjusting fluid flowing through the supply pipe 32.
  • the temperature sensor 80 is, for example, a thermistor, but is not limited to this, and various sensors can be used.
  • the detection result of the temperature sensor 80 is output to the control unit 90 described later.
  • control unit 90 has a microcomputer, a memory, and the like (not shown) as main components.
  • the control unit 90 is electrically connected to, for example, the compressor motor 11a, the motor (not shown) of the fan 13a, the expansion valve 14, the pump motor 51, and the like.
  • the control unit 90 is configured to exchange control signals and the like with a remote controller (not shown) operated by the user of the air conditioner 430.
  • control unit 90 is electrically connected to a sensor (not shown) provided in each part of the refrigerant circuit 10, and acquires a detection result (temperature, pressure, etc.) relating to the state of the refrigerant transmitted from the sensor.
  • the control unit 90 is electrically connected to the flow sensor 60, the flow switch 70, and the temperature sensor 80, and the flow rate and temperature of the temperature adjustment fluid transmitted from the flow sensor 60, the flow switch 70, and the temperature sensor 80.
  • the detection result is accepted.
  • control unit 90 is electrically connected to other sensors (not shown) provided in each part of the fluid circuit 300, and the detection result (temperature, etc.) regarding the state of the temperature adjusting fluid transmitted from the sensor. To get.
  • the control unit 90 controls the operation of each component of the temperature adjusting fluid supply device 100 based on the control signal received from the remote controller, the detection result of the sensor, and the like by causing the microcomputer to execute the program stored in the memory. To do.
  • control unit 90 controls the pump 50 based on the detection result of the flow sensor 60 and the pump 50 based on the detection result of the flow switch 70 based on the temperature of the temperature adjusting fluid detected by the temperature sensor 80. Switch between the controls.
  • the air conditioning equipment unit 400 includes an air conditioning equipment 430 installed in an indoor air conditioning target space, a forward external pipe 410, and a return external pipe 420.
  • FIG. 1 there is one air conditioner 430, but the present invention is not limited to this, and a plurality of air conditioners 430 may be provided.
  • the air conditioner unit 400 may be provided with a valve or the like for individually switching supply / non-supply of the temperature adjusting fluid to each air conditioner 430.
  • the forward external pipe 410 is a pipe that connects the air conditioner 430 and the fluid supply unit 31.
  • the outgoing external pipe 410 is connected to the supply pipe 32 in the fluid supply unit 31.
  • the temperature adjusting fluid flows from the fluid supply unit 31, in other words, from the supply pipe 32 to the air conditioner 430 in the outgoing external pipe 410.
  • a part of the outgoing external pipe 410 that connects the air conditioner 430 installed indoors and the temperature adjusting fluid supply device 100 installed outdoors may be installed outdoors.
  • the return external pipe 420 is a pipe that connects the air conditioner 430 and the fluid return unit 41.
  • the return external pipe 420 is connected to the return pipe 42 at the fluid return portion 41.
  • the temperature adjusting fluid flows from the air conditioner 430 to the fluid return unit 41, in other words, from the air conditioner 430 to the return pipe 42.
  • a part of the return external pipe 420 that connects the air conditioner 430 installed indoors and the temperature adjusting fluid supply device 100 installed outdoors may be installed outdoors.
  • the air conditioning equipment 430 is a heat exchanger that functions as a radiator for the temperature adjusting fluid circulating in the fluid circuit 300.
  • the air conditioner 430 is an example of a temperature adjustment target.
  • a forward external pipe 410 is connected to the inlet of the temperature adjusting fluid of the air conditioner 430.
  • a return external pipe 420 is connected to the temperature adjusting fluid outlet of the air conditioner 430.
  • the air conditioner 430 is specifically a radiator, a floor cooling / heating panel, or the like.
  • the air conditioner 430 when the air conditioner 430 is a radiator, the air conditioner 430 is provided near an indoor wall.
  • the air conditioner 430 is a floor cooling / heating panel, the air conditioner 430 is provided under the floor of the room.
  • the switching mechanism 12 is switched to the heat source side evaporation operation state (the state indicated by the solid line in the switching mechanism 12 in FIG. 1).
  • the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 11 through the suction pipe 12b, compressed to the high pressure in the refrigeration cycle in the compressor 11, and discharged to the discharge pipe 12a.
  • the control unit 90 performs capacity control of the compressor 11 (control of the number of revolutions of the compressor motor 11a) based on detection results relating to the state of the refrigerant by various sensors (not shown) provided in the refrigerant circuit 10.
  • the high-pressure refrigerant discharged to the discharge pipe 12a is sent to the use side heat exchanger 20 through the switching mechanism 12 and the second gas refrigerant pipe 12d.
  • the high-pressure refrigerant sent to the use side heat exchanger 20 exchanges heat with the temperature adjusting fluid circulating in the fluid circuit 300 by the pump 50 in the use side heat exchanger 20 and supplies heat to the temperature adjusting fluid. (Heat radiation).
  • the refrigerant that has supplied heat to the temperature adjusting fluid in the use side heat exchanger 20 flows through the liquid refrigerant pipe 15 and is decompressed in the expansion valve 14 to be in a low-pressure gas-liquid two-phase state, and enters the heat source side heat exchanger 13. Sent.
  • the opening degree of the expansion valve 14 is controlled by the control unit 90 based on detection results regarding the state of the refrigerant by various sensors (not shown) provided in the refrigerant circuit 10.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 13 evaporates in the heat source side heat exchanger 13 by exchanging heat with outdoor air supplied by the fan 13a.
  • the low-pressure refrigerant evaporated in the heat source side heat exchanger 13 is again sucked into the compressor 11 through the first gas refrigerant pipe 12c, the switching mechanism 12, and the suction pipe 12b.
  • the temperature adjusting fluid circulating in the fluid circuit 300 is heated by the heat radiation of the refrigerant in the use side heat exchanger 20.
  • the temperature adjusting fluid heated in the use side heat exchanger 20 flows into the supply pipe 32, is sucked into the pump 50, is pressurized, and is sent from the fluid supply unit 31 to the external pipe 410.
  • the control unit 90 performs capacity control of the pump 50 (control of the number of rotations of the pump motor 51) in accordance with detection results relating to the state of the temperature adjusting fluid by various sensors provided in the fluid circuit 300.
  • the temperature adjusting fluid heated in the use side heat exchanger 20 and flowing through the supply pipe 32 goes to the air conditioner 430 through the forward external pipe 410.
  • the temperature adjusting fluid sent to the air conditioner 430 dissipates heat in the air conditioner 430, and thereby heats indoor walls and floors.
  • the temperature adjusting fluid that has passed through the pipe in the air conditioner 430 is sent to the fluid return section 41 through the return external pipe 420, flows through the return pipe 42, and returns to the use side heat exchanger 20.
  • the temperature adjusting fluid supply apparatus 100 is installed outdoors. Moreover, a part of the outward external pipe 410 and the return external pipe 420 of the air conditioner unit 400 may be installed outdoors. Therefore, when the temperature adjustment fluid is not circulating in the pipe at the low outside air temperature where the air conditioning device 430 performs heating, the temperature adjustment fluid may freeze in the pipe.
  • the control unit 90 uses the detection result of the flow rate of the temperature adjustment fluid, regardless of the air conditioning load or the like, so that the temperature adjustment fluid with the minimum allowable water amount Fmin is the lowest in the fluid circuit 300.
  • the capacity of the pump 50 is controlled so that the flow is limited.
  • the flow rate of the temperature adjusting fluid is detected by a flow sensor 60 that can detect a minute flow rate change (the flow rate of the temperature adjusting fluid can be detected by a continuous numerical value).
  • the control unit 90 performs capacity control of the pump 50 as described below (see the flowchart shown in FIG. 2).
  • the control unit 90 acquires the temperature T of the temperature adjusting fluid from the temperature sensor 80 (step S1). For example, the control unit 90 periodically acquires the temperature T of the temperature adjusting fluid detected by the temperature sensor 80.
  • step S2 the control unit 90 determines whether or not the current control of the pump 50 is the first control described later.
  • the process proceeds to step S3, and when the first control is not being performed (when the second control described later is being performed), the process proceeds to step S6.
  • the control unit 90 is set to perform the first control, for example.
  • step S3 the control unit 90 determines whether or not the temperature T of the temperature adjusting fluid is higher than a predetermined threshold value Tth1.
  • the predetermined threshold value Tth1 is a temperature at which the flow sensor 60 can correctly detect the temperature adjustment fluid having the allowable minimum water amount Fmin flowing in the fluid circuit 300 when the temperature T of the temperature adjustment fluid is higher than the threshold value Tth1.
  • the predetermined threshold value Tth1 is stored in advance in the memory of the control unit 90.
  • Step S3 when it is determined that the temperature T of the temperature adjusting fluid is higher than the threshold value Tth1, the control unit 90 continues the first control (Step S4).
  • the first control is control of the pump 50 based on the detection result of the flow sensor 60. Specifically, in the first control, the control unit 90 controls the capacity of the pump 50 according to the detection result related to the state of the temperature adjusting fluid by the sensor provided in the fluid circuit 300 and the flow sensor 60.
  • the capacity control of the pump 50 is performed so that the detected flow rate of the temperature adjusting fluid does not fall below the allowable minimum water amount Fmin.
  • step S5 when it is determined in step S3 that the temperature T of the temperature adjusting fluid is equal to or lower than the threshold value Tth1, the control unit 90 switches the first control to the second control (step S5).
  • the second control is control of the pump 50 based on the detection result of the flow switch 70. Specifically, in the second control, the control unit 90 controls the capacity of the pump 50 according to the detection result related to the state of the temperature adjusting fluid by the sensor provided in the fluid circuit 300 and the flow switch 70.
  • the capacity control of the pump 50 is performed so that the detected flow rate of the temperature adjusting fluid does not fall below the allowable minimum water amount Fmin.
  • the controller 90 does not cause the flow rate of the temperature adjustment fluid to fall below a predetermined amount Fsw when the flow switch 70 is activated (determined that the temperature adjustment fluid is flowing by the flow switch 70).
  • a predetermined amount Fsw when the flow switch 70 is activated (determined that the temperature adjustment fluid is flowing by the flow switch 70).
  • the flow switch 70 is designed so that the predetermined amount Fsw at which the flow switch 70 operates is equal to or greater than the allowable minimum water amount Fmin.
  • step S6 the control unit 90 determines whether the temperature T of the temperature adjusting fluid is equal to or higher than a predetermined threshold Tth2.
  • the predetermined threshold value Tth2 is a temperature equal to or higher than the threshold value Tth1 (usually higher than the threshold value Tth2).
  • the predetermined threshold Tth2 is stored in advance in the memory of the control unit 90.
  • step S6 When it is determined in step S6 that the temperature T of the temperature adjusting fluid is equal to or higher than the threshold value Tth2, the control unit 90 switches the second control to the first control (step S7).
  • step S6 when it is determined in step S6 that the temperature T of the temperature adjusting fluid is lower than the threshold value Tth2, the control unit 90 continues the second control (step S8).
  • the temperature adjusting fluid supply apparatus 100 includes a use-side heat exchanger 20 as an example of a heat exchanger, a supply pipe 32, a return pipe 42, a pump 50, and a flow sensor 60 as an example of a first flow rate detection unit. And a flow switch 70 as an example of the second flow rate detection means, a temperature sensor 80 as an example of the temperature detection means, and a control unit 90.
  • the use side heat exchanger 20 transfers the heat supplied from the refrigerant to the temperature adjusting fluid.
  • a temperature adjustment fluid flows from the use-side heat exchanger 20 toward the air conditioner 430 of the air conditioner unit 400 that is a temperature adjustment target.
  • a temperature adjusting fluid that returns from the air conditioner 430 flows through the return pipe 42.
  • the pump 50 is provided in the supply pipe 32.
  • the flow rate of the pump 50 can be adjusted.
  • the flow sensor 60 is provided in the supply pipe 32.
  • the flow sensor 60 detects the flow rate of the temperature adjusting fluid.
  • the flow switch 70 is provided in the supply pipe 32.
  • the flow switch 70 detects the flow rate of the temperature adjusting fluid. In the flow switch 70, the detectable flow rate change is coarser than that of the flow sensor 60, and the influence on the detection accuracy due to the viscosity change of the temperature adjusting fluid is smaller than that of the flow sensor 60.
  • the temperature sensor 80 detects the temperature of the temperature adjusting fluid.
  • the control unit 90 switches between control of the pump 50 based on the detection result of the flow sensor 60 and control of the pump 50 based on the detection result of the flow switch 70 based on the temperature of the temperature adjusting fluid detected by the temperature sensor 80. .
  • the control of the pump 50 is switched to the control based on the detection result of the flow switch 70 that has a relatively small influence on the detection accuracy due to the viscosity change. Therefore, even when the fluid temperature is lowered, it is possible to appropriately control the pump 50 to prevent the temperature adjusting fluid from being frozen in the pipe. Further, here, the control of the pump 50 is switched to the control based on the detection result of the flow sensor 60 whose flow rate change that can be detected is relatively fine, based on the temperature of the temperature adjusting fluid. For this reason, when the temperature of the temperature adjusting fluid is relatively high and the viscosity is relatively low, it is possible to finely control the flow rate of the temperature adjusting fluid and operate the apparatus efficiently.
  • the flow sensor 60 and the flow switch 70 are provided in the supply pipe 32 where the temperature of the temperature adjusting fluid is relatively high, the fluid is unlikely to become highly viscous at the flow rate detection position. Therefore, compared to the case where the flow sensor 60 and the flow switch 70 are provided in the return pipe 42, the influence of the viscosity of the temperature adjusting fluid on the detection of the flow rate can be suppressed.
  • the temperature sensor 80 detects the temperature of the temperature adjusting fluid flowing through the supply pipe 32.
  • the temperature sensor 80 detects the temperature of the temperature adjusting fluid flowing through the supply pipe 32 provided with the flow sensor 60 and the flow switch 70. Therefore, it is easy to appropriately switch between the control of the pump 50 based on the detection result of the flow sensor 60 and the control of the pump 50 based on the detection result of the flow switch 70.
  • the flow sensor 60 outputs an analog output of the detection result of the flow rate of the temperature adjustment fluid.
  • the flow switch 70 outputs a binary detection result of the flow rate of the temperature adjusting fluid.
  • the flow rate of the temperature adjusting fluid can be finely detected by the flow sensor 60, and the flow switch 70 can detect whether the flow rate is a predetermined amount or more.
  • the temperature adjusting fluid supply apparatus 100 is installed outdoors. For this reason, the temperature of the temperature adjusting fluid tends to be low when the outside air temperature is low.
  • the pump 50 since the control of the pump 50 based on the detection result of the flow sensor 60 and the control of the pump 50 based on the detection result of the flow switch 70 are switched based on the temperature of the temperature adjusting fluid, the pump 50 is appropriately controlled. Thus, freezing of the temperature adjusting fluid in the pipe can be prevented.
  • the temperature adjusting fluid supply device 100 includes the compressor 11, the switching mechanism 12, the heat source side heat exchanger 13, and the expansion valve 14 that constitute the refrigeration cycle, but is not limited thereto.
  • the temperature adjusting fluid supply apparatus 100 receives the supply of refrigerant from another unit having a compressor, a switching mechanism, a heat source side heat exchanger, and an expansion valve constituting the refrigeration cycle to the usage side heat exchanger 20 and uses the refrigerant. It may be configured to return the refrigerant that passes through the side heat exchanger 20 to another unit.
  • the flow switch 70 that outputs a binary detection result of the flow rate of the temperature adjusting fluid is used as the second flow rate detection means, but is not limited thereto.
  • the second flow rate detection means may be a sensor that analogly outputs the detection result of the flow rate of the temperature adjustment fluid, which has a smaller influence on the detection accuracy due to the viscosity change of the temperature adjustment fluid than the flow sensor 60.
  • the flow sensor 60 and the flow switch 70 are both provided in the supply pipe 32, but are not limited thereto.
  • One or both of the flow sensor 60 and the flow switch 70 may be provided in the return pipe 42.
  • the flow sensor 60 and the flow switch 70 are provided in a place where the temperature of the temperature adjusting fluid is easily maintained higher than the return pipe 42. It is preferred that
  • the positional relationship among the flow sensor 60, the flow switch 70, and the pump 50 is as shown in FIG. 1 (in order of the flow sensor 60, the pump 50, and the flow switch 70 from the upstream side in the flow direction of the temperature adjusting fluid). It is not limited.
  • the flow switch 70 may be disposed on the upstream side of the pump 50, and may be disposed on the upstream side of the flow sensor 60.
  • the flow sensor 60 may be arranged on the downstream side of the pump 50. However, when the vortex flowmeter is used as the flow sensor 60, if the flow sensor 60 is disposed in the vicinity of the pump 50 on the downstream side of the pump 50, the detection accuracy of the flow sensor 60 may be affected. In some cases, the flow sensor 60 is preferably arranged upstream of the pump 50.
  • the temperature sensor 80 is installed in the supply pipe 32, but is not limited thereto, and may be installed in the return pipe 42, for example. However, in order to grasp the state of the temperature adjusting fluid whose flow rate is detected by the flow sensor 60 and the flow switch 70 and to appropriately control the pump 50, the temperature sensor 80 is provided with the flow sensor 60 and the flow switch 70. Preferably, it is provided in the same supply pipe 32 as is done.
  • the temperature sensor 80 does not need to be installed between the flow sensor 60 and the use-side heat exchanger 20, and is installed in another place of the supply pipe 32 (for example, downstream of the flow switch 70). Also good.
  • the thresholds Tth1 and Tth2 used for determining whether to control the pump 50 based on the detection result of the flow sensor 60 or to control the pump 50 based on the detection result of the flow switch 70 are controlled. Although stored in the memory of the unit 90 in advance, the present invention is not limited to this.
  • the threshold values Tth1 and Tth2 may be written in the memory of the control unit 90 via an input unit (not shown). Further, for example, the memory of the control unit 90 stores a plurality of threshold values for each type of temperature adjusting fluid, and according to the type of temperature adjusting fluid (for example, for temperature adjustment input via an input unit not shown) A threshold value (depending on the type of fluid) may be used.
  • the temperature adjusting fluid supply apparatus 100 is installed outdoors, but the present invention is not limited to this.
  • the temperature adjusting fluid supply apparatus 100 may be installed indoors. Even in such a case, for example, when a part of the outgoing external pipe 410 or the return external pipe 420 is installed outdoors and the temperature adjusting fluid is likely to become low temperature, the above configuration is adopted. Thus, it is easy to prevent freezing of the air-conditioning fluid in the pipe.
  • the temperature adjusting fluid flows through the supply pipe 32 toward the air conditioning device 430 that is the temperature adjusting target, and the air conditioning device 430 uses the heat of the temperature adjusting fluid to adjust the temperature (air conditioning device).
  • the temperature of the air that exchanges heat with the temperature adjusting fluid is adjusted).
  • the heat of the temperature adjusting fluid flowing through the fluid circuit 300 of the temperature adjusting fluid supply apparatus 100 may be used for temperature adjustments other than for air conditioning.
  • the temperature adjusting fluid is sent to a manufacturing process or a manufacturing apparatus to be adjusted through the supply pipe 32 for the purpose of adjusting the temperature of the manufacturing process or cooling the manufacturing apparatus in various manufacturing plants. Also good.
  • the present invention circulates a fluid between a heat exchanger that transmits heat supplied from a refrigerant to a fluid for temperature adjustment and a temperature adjustment target that uses the heat of the fluid, using a flow-adjustable pump. It can be widely applied to a fluid supply device for temperature adjustment and is useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Water Supply & Treatment (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

冷媒の熱を温度調整用の流体に伝える熱交換器と、流体の熱を利用する温度調整対象との間で流体を循環させる温度調整用流体供給装置であって、流体の凍結を防止可能な温度調整用流体供給装置を提供する。温度調整用流体供給装置(100)は、冷媒から供給される熱を温度調整用の流体に伝える熱交換器(20)、熱交換器から温度調整対象へ向かう流体が流れる供給管(32)、温度調整対象から戻る流体が流れる戻り管(42)、流量調整可能なポンプ(50)、フローセンサ(60)、フロースイッチ(70)、温度センサ(80)、及び制御部(90)を備える。フロースイッチは、フローセンサに比べ、検出可能な流量変化が粗く、流体の粘度変化による検出精度への影響が小さい。制御部は、温度センサが検出した流体の温度に基づき、フローセンサの検出結果に基づくポンプ制御と、フロースイッチの検出結果に基づくポンプ制御とを切り換える。

Description

温度調整用流体供給装置
 本発明は、温度調整用流体供給装置に関する。本発明は、特に、冷媒から供給される熱を温度調整用の流体に伝える熱交換器から、流体の熱を利用する温度調整対象へと流体を送り、温度調整対象から戻ってくる流体を受け付けて再び熱交換器へと導く温度調整用流体供給装置に関する。
 従来、冷媒から供給される熱を温度調整用の流体に伝える熱交換器から、流体の熱を利用する温度調整対象へと流体を送り、温度調整対象から戻ってくる流体を受け付けて再び熱交換器へと導く温度調整用流体供給装置が知られている。例えば、特許文献1(特開2010-144963号公報)には、熱交換器で冷媒と熱交換を行った流体を、室内に配置される温度調整対象(空調機器)に送る温度調整用流体供給装置が開示されている。
 このような温度調整用流体供給装置では、温度調整対象の熱負荷等に応じて流体の流量を調整するため、流量調整可能なポンプが用いられる場合がある。流量調整可能なポンプを用いる場合、例えば特許文献1(特開2010-144963号公報)のように、流量センサにより流体の流量を検出し、その検出結果に基づいてポンプが制御される。
 ところで、温度調整用流体供給装置に用いられる流体は、一般に温度の低下により粘度が上昇する。特に、ブラインを使用する場合には、温度低下によって比較的大きく粘度が上昇する。
 そのため、通常の流量センサでは、装置の使用条件等によって流体温度が低下した時に流量検出誤差が大きくなり、流体の流量が、実際の流量よりも大きく検出される可能性がある。そして、この検出結果に基づいてポンプが制御されると、流体温度低下時に、熱交換器と温度調整対象との間を循環する流体の量が目標量より少なくなり、配管内で流体が凍結するおそれがある。
 本発明の課題は、流量調整可能なポンプを用いて、冷媒から供給される熱を温度調整用の流体へと伝える熱交換器と、流体の熱を利用する温度調整対象との間で流体を循環させる温度調整用流体供給装置であって、流体温度低下時であっても、適切にポンプを制御し、配管内での流体の凍結を防止可能な温度調整用流体供給装置を提供することにある。
 第1観点に係る温度調整用流体供給装置は、熱交換器と、供給管と、戻り管と、ポンプと、第1流量検出手段と、第2流量検出手段と、温度検出手段と、制御部と、を備える。熱交換器は、冷媒から供給される熱を温度調整用の流体に伝える。供給管には、熱交換器から温度調整対象へと向かう流体が流れる。戻り管には、温度調整対象から戻る流体が流れる。ポンプは、供給管又は戻り管に設けられる。ポンプは、流量調整可能である。第1流量検出手段は、供給管又は戻り管に設けられる。第1流量検出手段は、流体の流量を検出する。第2流量検出手段は、供給管又は戻り管に設けられる。第2流量検出手段は、流体の流量を検出する。第2流量検出手段は、検出可能な流量変化が第1流量検出手段よりも粗く、流体の粘度変化による検出精度への影響が第1流量検出手段よりも小さい。温度検出手段は、流体の温度を検出する。制御部は、温度検出手段が検出した流体の温度に基づいて、第1流量検出手段の検出結果に基づくポンプの制御と、第2流量検出手段の検出結果に基づくポンプの制御とを切り換える。
 第1観点に係る温度調整用流体供給装置では、流体の温度に基づいて、ポンプの制御が、粘度変化による検出精度への影響が比較的小さい第2流量検出手段の検出結果に基づく制御に切り換えられる。そのため、流体温度低下時であっても、適切にポンプを制御して配管内での流体の凍結を防止することが可能である。また、第1観点に係る温度調整用流体供給装置では、流体の温度に基づいて、ポンプの制御が、検出可能な流量変化が比較的細かい第1流量検出手段の検出結果に基づく制御に切り換えられる。そのため、流体の温度が比較的高く、粘度が比較的低い場合には、流体の流量を細かく制御して効率よく装置を運転することが可能である。
 第2観点に係る温度調整用流体供給装置は、第1観点に係る温度調整用流体供給装置であって、第1流量検出手段および第2流量検出手段は、供給管に設けられる。
 第2観点に係る温度調整用流体供給装置では、流体の温度が比較的高い供給管に第1流量検出手段および第2流量検出手段が設けられるため、流量の検出位置において流体が高粘度になりにくい。そのため、戻り管に第1流量検出手段および第2流量検出手段を設ける場合に比べ、流体の粘度が流量の検出に与える影響を抑制することができる。
 第3観点に係る温度調整用流体供給装置は、第2観点に係る温度調整用流体供給装置であって、温度検出手段は、供給管を流れる流体の温度を検出する。
 第3観点に係る温度調整用流体供給装置では、温度検出手段が、第1流量検出手段および第2流量検出手段が設けられた供給管を流れる流体の温度を検出する。そのため、第1流量検出手段の検出結果に基づくポンプの制御と、第2流量検出手段の検出結果に基づくポンプの制御とを、適切に切り換えることが容易である。
 第4観点に係る温度調整用流体供給装置は、第1観点から第3観点のいずれかに係る温度調整用流体供給装置であって、第1流量検出手段は、流体の流量の検出結果をアナログ出力する。第2流量検出手段は、流体の流量の検出結果を二値出力する。
 ここでは、第1流量検出手段により流体の流量を細かく検出可能で、第2流量検出手段でも流量が所定量以上であるかを検出することができる。
 第5観点に係る温度調整用流体供給装置は、第1観点から第4観点のいずれかに係る温度調整用流体供給装置であって、屋外に設置される。
 第5観点に係る温度調整用流体供給装置では、低外気温時に、流体の温度が低温となりやすい。しかし、流体の温度に基づいて、第1流量検出手段の検出結果に基づくポンプの制御と、第2流量検出手段の検出結果に基づくポンプの制御とが切り換えられるため、適切にポンプを制御して配管内での流体の凍結を防止することができる。
 第1観点に係る温度調整用流体供給装置では、流体の温度に基づいて、ポンプの制御が、粘度変化による検出精度への影響が比較的小さい第2流量検出手段の検出結果に基づく制御に切り換えられる。そのため、流体温度低下時であっても、適切にポンプを制御して配管内での流体の凍結を防止することが可能である。また、第1観点に係る温度調整用流体供給装置では、流体の温度に基づいて、ポンプの制御が、検出可能な流量変化が比較的細かい第1流量検出手段の検出結果に基づく制御に切り換えられる。そのため、流体の温度が比較的高く、粘度が比較的低い場合には、流体の流量を細かく制御して、効率よく装置を運転することが可能である。
 第2観点に係る温度調整用流体供給装置では、流体の粘度が流量の検出に与える影響を抑制することができる。
 第3観点に係る温度調整用流体供給装置では、第1流量検出手段の検出結果に基づくポンプの制御と、第2流量検出手段の検出結果に基づくポンプの制御とを、適切に切り換えることが容易である。
 第4観点に係る温度調整用流体供給装置では、第1流量検出手段により流体の流量を細かく検出可能で、第2流量検出手段でも流量が所定量以上であるかを検出することができる。
 第5観点に係る温度調整用流体供給装置では、低外気温時に、流体の温度が低温となりやすい。しかし、流体の温度に基づいて、第1流量検出手段の検出結果に基づくポンプの制御と、第2流量検出手段の検出結果に基づくポンプの制御とが切り換えられるため、適切にポンプを制御して配管内での流体の凍結を防止することができる。
本発明の一実施形態に係る温度調整用流体供給装置を含む空調システムの概略構成図である。 図1に係る温度調整用流体供給装置のポンプの最低流量制御に係るフローチャートである。
 本発明の一実施形態に係る温度調整用流体供給装置100について、図面に基づいて以下に説明する。なお、以下の実施形態は、本発明の一実施形態に係る温度調整用流体供給装置の具体例にすぎず、発明の要旨を逸脱しない範囲で変更可能である。
 (1)全体構成
 図1は、本発明の一実施形態に係る温度調整用流体供給装置100を含む空調システム1の概略構成図である。
 空調システム1は、蒸気圧縮式のヒートポンプサイクルを利用して温度調整用流体を加熱/冷却する運転を行うことが可能なシステムである。本実施形態における温度調整用流体は、空調用の流体である。空調システム1では、冷媒により加熱/冷却された温度調整用流体の熱を利用して、空調対象空間の暖房/冷房が行われる。
 空調システム1は、温度調整用流体供給装置100および空調機器ユニット400を含む。
 (2)詳細構成
 以下に、温度調整用流体供給装置100および空調機器ユニット400について詳細に説明する。
 (2-1)温度調整用流体供給装置
 温度調整用流体供給装置100は、温度調整対象である空調機器ユニット400の空調機器430に、冷媒により加熱/冷却された温度調整用流体(温度調整用の流体)を供給する装置である。
 温度調整用流体供給装置100は、屋外に設置される。
 温度調整用流体供給装置100は、主に、圧縮機11と、切換機構12と、熱源側熱交換器13と、膨張弁14と、利用側熱交換器20と、流体供給部31と、供給管32と、流体戻り部41と、戻り管42と、ポンプ50と、フローセンサ60と、フロースイッチ70と、温度センサ80と、制御部90と、を備える。
 圧縮機11と、切換機構12と、熱源側熱交換器13と、膨張弁14と、利用側熱交換器20とは、配管(後述する吐出管12a,吸入管12b,第1ガス冷媒管12c,第2ガス冷媒管12dおよび液冷媒管15)により接続され、冷媒が循環する冷媒回路10を構成している。冷媒回路10には、例えばR-410A等のHFC系の冷媒が封入されている。ただし、冷媒の種類は例であって、これに限定されるものではない。
 利用側熱交換器20と、温度調整対象(後述する空調機器ユニット400の空調機器430)とは、供給管32および戻り管42を含む配管により接続され、温度調整用流体が循環する流体回路300を構成している。流体回路300には、温度調整用流体として、例えばエチレングリコール水溶液等のブラインが封入されている。ただし、温度調整用流体の種類は例であって、これに限定されるものではない。温度調整用流体は、温度が低下するに連れ、粘度が高くなる性質を有する。
 利用側熱交換器20では、冷媒回路10を流れる冷媒から、流体回路300を流れる温度調整用流体へと熱が伝えられる。後述する空調機器ユニット400の空調機器430では、温度調整用流体供給装置100が供給する温度調整用流体の熱を利用して、空調機器430の存在する空調対象空間の暖房/冷房が行われる。
 以下に、温度調整用流体供給装置100の各構成について説明する。
 (2-1-1)圧縮機
 圧縮機11は、冷媒を圧縮する機構である。ここでは、圧縮機11は、ケーシング(図示せず)内に収容されたロータリ式やスクロール式等の容積式の圧縮要素(図示せず)が、同じくケーシング内に収容された圧縮機モータ11aによって駆動される密閉式圧縮機である。圧縮機モータ11aは、インバータによって、その回転数(すなわち運転周波数)が可変に構成され、これにより圧縮機11の容量が可変に構成されている。
 (2-1-2)切換機構
 切換機構12は、熱源側熱交換器13を冷媒の放熱器として機能させる熱源側放熱運転状態と、熱源側熱交換器13を冷媒の蒸発器として機能させる熱源側蒸発運転状態とを切り換え可能に構成されている。切換機構12は、ここでは四路切換弁である。
 切換機構12は、圧縮機11から吐出された冷媒が流れる吐出管12aと、圧縮機11に吸入される冷媒が流れる吸入管12bと、一端が熱源側熱交換器13のガス側に接続された第1ガス冷媒管12cと、一端が利用側熱交換器20のガス側に接続された第2ガス冷媒管12dとに接続されている。
 切換機構12は、吐出管12aと第1ガス冷媒管12cとを連通させるとともに、第2ガス冷媒管12dと吸入管12bとを連通させる切り換えを行うことが可能である(熱源側放熱運転状態に対応、図1の切換機構12の破線参照)。また、切換機構12は、吐出管12aと第2ガス冷媒管12dとを連通させるとともに、第1ガス冷媒管12cと吸入管12bとを連通させる切り換えを行うことが可能である(熱源側蒸発運転状態に対応、図1の切換機構12の実線参照)。
 なお、切換機構12は、四路切換弁に限定されるものではない。例えば、切換機構12は、上記と同様に冷媒の流れ方向を切り換える機能を有するよう、複数の電磁弁を組み合わせて構成したものであってもよい。
 (2-1-3)熱源側熱交換器
 熱源側熱交換器13は、冷媒と室外空気との熱交換を行うことで冷媒の放熱器又は蒸発器として機能する熱交換器である。熱源側熱交換器13の液側には、一端が利用側熱交換器20の液側に接続された液冷媒管15が接続されている。熱源側熱交換器13のガス側には、一端が切換機構12と接続された第1ガス冷媒管12cが接続されている。熱源側熱交換器13には、冷媒と熱交換を行う室外空気が、ファン13aによって供給される。
 (2-1-4)膨張弁
 膨張弁14は、液冷媒管15を流れる冷媒の減圧を行う、開度可変の電動膨張弁である。膨張弁14は、液冷媒管15に設けられている。
 (2-1-5)利用側熱交換器
 利用側熱交換器20は、冷媒回路10を流れる冷媒と、流体回路300を流れる温度調整用流体との熱交換を行うことで、冷媒の蒸発器又は放熱器として機能する熱交換器である。また、利用側熱交換器20は、冷媒回路10を流れる冷媒から供給される熱(温熱/冷熱)を、温度調整用流体に伝える熱交換器である。
 利用側熱交換器20の冷媒が流れる流路の液側には、一端が熱源側熱交換器13の液側に接続された液冷媒管15が接続されている。利用側熱交換器20の冷媒が流れる流路のガス側には、一端が切換機構12と接続された第2ガス冷媒管12dが接続されている。また、利用側熱交換器20の温度調整用流体が流れる流路の入口側には、戻り管42が接続されている。利用側熱交換器20の温度調整用流体が流れる流路の出口側には、供給管32が接続されている。
 (2-1-6)流体供給部
 流体供給部31は、配管の接続部である。流体供給部31には、空調機器ユニット400の空調機器430へと向かう温度調整用流体が流れる、後述する空調機器ユニット400の往き外部配管410が接続される。流体供給部31は、フランジ型の接続部であるが、これに限定されるものではない。流体供給部31は、例えばねじ込み型の接続部等であってもよい。
 なお、本実施形態では、流体供給部31において、往き外部配管410と供給管32とが取り外し可能に接続されるが、これに限定されるものではない。例えば、温度調整用流体供給装置100は、往き外部配管410と供給管32とを取り外し可能に接続する流体供給部31を有さなくてもよい。例えば、往き外部配管410と供給管32とは、溶接により直接接続されてもよい。また、他の形態では、往き外部配管410は存在せず、供給管32は、空調機器ユニット400の空調機器430に直接接続されてもよい。
 (2-1-7)供給管
 供給管32は、利用側熱交換器20と、流体供給部31とを結ぶ配管である。供給管32には、利用側熱交換器20から、温度調整対象である空調機器ユニット400の空調機器430へと向かう温度調整用流体が流れる。供給管32には、利用側熱交換器20において冷媒から熱を供給された温度調整用流体が、流体供給部31に向かって流れる(図1中の矢印参照)。
 (2-1-8)流体戻り部
 流体戻り部41は、配管の接続部である。流体戻り部41には、空調機器ユニット400の空調機器430から戻る温度調整用流体が流れる、後述する空調機器ユニット400の戻り外部配管420が接続される。流体戻り部41は、フランジ型の接続部であるが、これに限定されるものではない。流体戻り部41は、例えばねじ込み型の接続部等であってもよい。
 なお、本実施形態では、流体戻り部41において、戻り外部配管420と戻り管42とが取り外し可能に接続されるが、これに限定されるものではない。例えば、温度調整用流体供給装置100は、戻り外部配管420と戻り管42とを取り外し可能に接続する流体戻り部41を有さなくてもよい。例えば、戻り外部配管420と戻り管42とは、溶接により直接接続されてもよい。また、他の形態では、戻り外部配管420は存在せず、戻り管42は、空調機器ユニット400の空調機器430に直接接続されてもよい。
 (2-1-9)戻り管
 戻り管42は、利用側熱交換器20と、流体戻り部41とを結ぶ配管である。戻り管42には、温度調整対象である空調機器ユニット400の空調機器430から戻る温度調整用流体が流れる。戻り管42には、空調対象空間の暖房/冷房のために空調機器ユニット400の空調機器430により利用された温度調整用流体が、流体戻り部41に向かって流れる(図1中の矢印参照)。
 戻り管42には、流体回路300内の温度調整用流体の温度が上昇し、膨張した時に、温度調整用流体を収容する膨張タンク43が設けられている。膨張タンク43は、密閉式のタンクである。
 (2-1-10)ポンプ
 ポンプ50は、温度調整用流体の昇圧を行い、温度調整用流体を流体回路300内で循環させるためのポンプである。ポンプ50では、遠心式や容積式のポンプ要素(図示せず)がポンプモータ51によって駆動される。ここでは、ポンプ50は、供給管32に設けられている。ただし、これに限定されるものではなく、ポンプ50は、戻り管42に設けられてもよい。ポンプモータ51は、インバータによって、その回転数(すなわち、運転周波数)が可変に構成され、これによりポンプ50の容量が可変に構成されている。
 (2-1-11)フローセンサ
 フローセンサ60は、第1流量検出手段の一例である。フローセンサ60は、温度調整用流体の流量を検出する。フローセンサ60は、供給管32に設けられている。より具体的には、フローセンサ60は、供給管32の、ポンプ50より上流側(利用側熱交換器20とポンプ50との間)に設けられている。
 フローセンサ60は、例えば、流れの中に配置された渦発生体の下流側に生じるカルマン渦の数を計測して流量を求める渦流量計である。
 フローセンサ60は、温度調整用流体の流量の検出結果をアナログ出力する。言い換えれば、フローセンサ60は、温度調整用流体の流量を連続した数値で検出し、この検出結果を出力する。つまり、フローセンサ60は、温度調整用流体の流量を多段階に検出し、この検出結果を出力する。
 フローセンサ60の検出結果は、後述する制御部90へと出力される。なお、フローセンサ60から出力される信号は、アナログ信号に限定されるものではない。例えば、フローセンサ60はパルス信号を出力し、制御部90は、変換器によりアナログ出力に変換されたパルス信号を受信するよう構成されてもよい。
 渦流量計のようなフローセンサ60では、温度調整用流体の粘度が高くなると、検出精度が低下しやすい。例えば具体的には、渦流量計のようなフローセンサ60では、温度調整用流体の粘度が高くなると、検出精度を保証できる下限流量の値が大きくなる。そのため、フローセンサ60では、温度調整用流体の温度が低下して粘度が高くなると、(特に流量が少ない場合に、)流量を検出できなくなったり、誤った流量が検出されたりする可能性がある。
 (2-1-12)フロースイッチ
 フロースイッチ70は、第2流量検出手段の一例である。フロースイッチ70は、温度調整用流体の流量を検出する。フロースイッチ70は、供給管32に設けられている。より具体的には、フロースイッチ70は、供給管32の、ポンプ50より下流側(ポンプ50と流体供給部31との間)に設けられている。
 ここでは、フロースイッチ70は、以下の様に構成されている。
 温度調整用流体が流れるフロースイッチ70内の流路には、図示しないパドルが設置されている。フロースイッチ70では、フロースイッチ70内の流路を所定量Fsw以上の温度調整用流体が流れると、パドルが温度調整用流体により押されて検出スイッチが作動し、温度調整用流体の流量が検出される。
 このような構成から、フロースイッチ70は、温度調整用流体の流量の検出結果を二値出力する。言い換えれば、フロースイッチ70は、温度調整用流体の流量を2段階で(流量が所定量Fsw以上か否かを)検出し、この検出結果を出力する。そのため、フロースイッチ70が検出可能な流量変化は、流量を多段階に検出するフローセンサ60の検出可能な流量変化に比べて粗い。フロースイッチ70の検出結果は、後述する制御部90へと出力される。
 上記のような構成のフロースイッチ70では、温度調整用流体の粘度変化が、検出精度に影響を与えにくい。そのため、温度調整用流体の温度が低下して粘度が高くなり、フローセンサ60では流量の検出が困難な場合にも、フロースイッチ70により正しく流量を検出可能(所定量Fsw以上の温度調整用流体が流れているか否かを検出可能)である。
 (2-1-13)温度センサ
 温度センサ80は、温度調整用流体の温度を検出する温度検出手段の一例である。温度センサ80は、供給管32に設けられている。温度センサ80は、より具体的には、供給管32の、フローセンサ60より上流側(利用側熱交換器20とフローセンサ60との間)に設置される。温度センサ80は、供給管32を流れる温度調整用流体の温度を検出する。
 温度センサ80は、例えば、サーミスタであるが、これに限定されるものではなく、各種センサを利用可能である。
 温度センサ80の検出結果は、後述する制御部90へと出力される。
 (2-1-14)制御部
 制御部90は、図示しないマイクロコンピュータやメモリ等を主な構成として有する。
 制御部90は、例えば、圧縮機モータ11a、ファン13aのモータ(図示せず)、膨張弁14、およびポンプモータ51等と電気的に接続されている。制御部90は、空調機器430のユーザが操作するリモコン(図示せず)との間で制御信号等のやりとりが行われるようになっている。
 また、制御部90は、冷媒回路10の各部に設けられた図示しないセンサと電気的に接続され、センサから送信される冷媒の状態に関する検出結果(温度や圧力等)を取得する。また、制御部90は、フローセンサ60、フロースイッチ70、および温度センサ80と電気的に接続され、フローセンサ60、フロースイッチ70、および温度センサ80から送信される温度調整用流体の流量や温度の検出結果を受け付ける。さらに、制御部90は、流体回路300の各部に設けられた、その他のセンサ(図示せず)と電気的に接続され、センサから送信される温度調整用流体の状態に関する検出結果(温度等)を取得する。
 制御部90は、マイクロコンピュータがメモリに記憶されたプログラムを実行することで、リモコンから受信した制御信号や、センサの検出結果等に基づき、温度調整用流体供給装置100の各構成の動作を制御する。
 制御部90は、後述するように、温度センサ80が検出した温度調整用流体の温度に基づいて、フローセンサ60の検出結果に基づくポンプ50の制御と、フロースイッチ70の検出結果に基づくポンプ50の制御とを切り換える。
 (2-2)空調機器ユニット
 空調機器ユニット400は、屋内の空調対象空間に設置された空調機器430と、往き外部配管410と、戻り外部配管420と、を有する。
 なお、図1では、空調機器430は1台であるが、これに限定されるものではなく、空調機器430は複数台設けられてもよい。複数台の空調機器430が設けられる場合、空調機器ユニット400には、各空調機器430への温度調整用流体の供給/非供給を個別に切り換えるための弁等が設けられてもよい。
 (2-2-1)往き外部配管
 往き外部配管410は、空調機器430と流体供給部31とを接続する配管である。往き外部配管410は、流体供給部31において供給管32と接続される。往き外部配管410には、流体供給部31から、言い換えれば供給管32から、空調機器430へと温度調整用流体が流れる。屋内に設置された空調機器430と、屋外に設置された温度調整用流体供給装置100とを接続する往き外部配管410は、その一部が屋外に設置されてもよい。
 (2-2-2)戻り外部配管
 戻り外部配管420は、空調機器430と流体戻り部41とを接続する配管である。戻り外部配管420は、流体戻り部41において戻り管42と接続される。戻り外部配管420には、空調機器430から流体戻り部41へと、言い換えれば空調機器430から戻り管42へと、温度調整用流体が流れる。屋内に設置された空調機器430と、屋外に設置された温度調整用流体供給装置100とを接続する戻り外部配管420は、その一部が屋外に設置されてもよい。
 (2-2-3)空調機器
 空調機器430は、流体回路300を循環する温度調整用流体の放熱器として機能する熱交換器である。空調機器430は、温度調整対象の一例である。空調機器430の温度調整用流体の入口には、往き外部配管410が接続されている。空調機器430の温度調整用流体の出口には、戻り外部配管420が接続されている。
 空調機器430は、具体的には、ラジエータや床冷暖房パネル等である。
 例えば、空調機器430がラジエータの場合、空調機器430は室内の壁際等に設けられる。例えば、空調機器430が床冷暖房パネルの場合、空調機器430は室内の床下等に設けられている。
 (3)空調機器による暖房時の温度調整用流体供給装置の動作
 空調機器430による暖房時の温度調整用流体供給装置100の動作について説明する。
 空調機器430による暖房時には、冷媒回路10において、切換機構12が熱源側蒸発運転状態(図1の切換機構12において実線で示された状態)に切り換えられる。
 このような状態の冷媒回路10において、冷凍サイクルにおける低圧の冷媒は、吸入管12bを通じて圧縮機11に吸入され、圧縮機11において冷凍サイクルにおける高圧まで圧縮され、吐出管12aに吐出される。制御部90は、冷媒回路10に設けられた、図示しない各種センサによる冷媒の状態に関する検出結果に基づいて、圧縮機11の容量制御(圧縮機モータ11aの回転数の制御)を行う。吐出管12aに吐出された高圧の冷媒は、切換機構12、第2ガス冷媒管12dを通って、利用側熱交換器20に送られる。利用側熱交換器20に送られた高圧の冷媒は、利用側熱交換器20において、ポンプ50によって流体回路300を循環する温度調整用流体と熱交換を行い、温度調整用流体に熱を供給(放熱)する。利用側熱交換器20において温度調整用流体に熱を供給した冷媒は、液冷媒管15を流れ、膨張弁14において減圧されて低圧の気液二相状態になり、熱源側熱交換器13に送られる。膨張弁14の開度は、冷媒回路10に設けられた図示しない各種センサによる冷媒の状態に関する検出結果に基づいて、制御部90により制御される。熱源側熱交換器13に送られた低圧の冷媒は、熱源側熱交換器13において、ファン13aによって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器13において蒸発した低圧の冷媒は、第1ガス冷媒管12c、切換機構12、および吸入管12bを通って、再び、圧縮機11に吸入される。
 流体回路300では、利用側熱交換器20における冷媒の放熱によって、流体回路300を循環する温度調整用流体が加熱される。利用側熱交換器20において加熱された温度調整用流体は、供給管32に流入し、ポンプ50に吸入されて昇圧され、流体供給部31から往き外部配管410に送られる。制御部90は、流体回路300に設けられた、各種センサによる温度調整用流体の状態に関する検出結果等に応じて、ポンプ50の容量制御(ポンプモータ51の回転数の制御)を行う。利用側熱交換器20において加熱され、供給管32を流れる温度調整用流体は、往き外部配管410を通って空調機器430へと向かう。空調機器430に送られた温度調整用流体は、空調機器430において放熱し、これにより、室内の壁際や床等を加熱する。空調機器430内の配管を通過した温度調整用流体は、戻り外部配管420を通って流体戻り部41に送られ、戻り管42を流れて利用側熱交換器20へと戻る。
 なお、温度調整用流体供給装置100は屋外に設置される。また、空調機器ユニット400の往き外部配管410および戻り外部配管420の一部は、屋外に設置されてもよい。そのため、空調機器430により暖房が行われる低外気温時に、配管内を温度調整用流体が循環していない場合、配管内で温度調整用流体が凍結するおそれがある。
 そこで、制御部90は、空調機器430による暖房時には、空調負荷等に関わらず、温度調整用流体の流量の検出結果に基づいて、流体回路300内を許容最小水量Fminの温度調整用流体が最低限流れるよう、ポンプ50の容量制御を行う。
 温度調整用流体の流量は、細かな流量変化を検出可能な(温度調整用流体の流量を連続した数値で検出可能な)フローセンサ60により検出されることが好ましい。しかし、温度調整用流体の温度が低下して粘度が上昇すると、上述したように、フローセンサ60による流量検出が困難になる。そのため、制御部90は、例えば、以下に示すように、ポンプ50の容量制御を行う(図2に示すフローチャート参照)。
 制御部90は、温度センサ80から、温度調整用流体の温度Tを取得する(ステップS1)。制御部90は、例えば、定期的に、温度センサ80により検出された温度調整用流体の温度Tを取得する。
 次に、ステップS2において、制御部90は、現在行われているポンプ50の制御が、後述する第1制御であるか否かを判定する。第1制御が行われている場合にはステップS3へ、第1制御が行われていない場合(後述する第2制御が行われている場合)にはステップS6へ進む。なお、温度調整用流体供給装置100の起動時には、制御部90は、例えば、第1制御を行うよう設定されている。
 ステップS3では、制御部90は、温度調整用流体の温度Tが、所定の閾値Tth1より高いか判定を行う。所定の閾値Tth1は、温度調整用流体の温度Tが閾値Tth1より高い場合、流体回路300内を流れる許容最小水量Fminの温度調整用流体を、フローセンサ60で正しく検出可能な温度である。所定の閾値Tth1は、制御部90のメモリに予め記憶されている。
 ステップS3において、温度調整用流体の温度Tが閾値Tth1より高いと判定された場合、制御部90は、第1制御を継続する(ステップS4)。第1制御は、フローセンサ60の検出結果に基づくポンプ50の制御である。具体的には、第1制御では、制御部90は、流体回路300に設けられたセンサによる温度調整用流体の状態に関する検出結果等に応じてポンプ50の容量制御を行うと共に、フローセンサ60により検出される温度調整用流体の流量が許容最小水量Fminを下回ることが無いよう、ポンプ50の容量制御を行う。
 一方、ステップS3において、温度調整用流体の温度Tが閾値Tth1以下と判定された場合、制御部90は、第1制御を第2制御に切り換える(ステップS5)。第2制御は、フロースイッチ70の検出結果に基づくポンプ50の制御である。具体的には、第2制御では、制御部90は、流体回路300に設けられたセンサによる温度調整用流体の状態に関する検出結果等に応じてポンプ50の容量制御を行うと共に、フロースイッチ70により検出される温度調整用流体の流量が許容最小水量Fminを下回ることが無いよう、ポンプ50の容量制御を行う。具体的には、制御部90は、温度調整用流体の流量が、フロースイッチ70が作動する(フロースイッチ70により温度調整用流体が流れていると判定される)所定量Fswを下回ることが無いよう、ポンプ50の容量制御を行う。なお、フロースイッチ70は、フロースイッチ70が作動する所定量Fswが、許容最小水量Fmin以上となるよう設計されている。
 ステップS6では、制御部90は、温度調整用流体の温度Tが、所定の閾値Tth2以上か判定を行う。所定の閾値Tth2は、閾値Tth1以上の(通常は、閾値Tth2より高い)温度である。所定の閾値Tth2は、制御部90のメモリに予め記憶されている。
 ステップS6において、温度調整用流体の温度Tが閾値Tth2以上と判定された場合、制御部90は、第2制御を第1制御に切り換える(ステップS7)。
 一方、ステップS6において、温度調整用流体の温度Tが閾値Tth2より低いと判定された場合、制御部90は、第2制御を継続する(ステップS8)。
 ステップS4,S5,S7,S8の終了後、処理はステップS1へ戻り、上記の処理が繰り返し実行される。
 (4)特徴
 (4-1)
 温度調整用流体供給装置100は、熱交換器の一例としての利用側熱交換器20と、供給管32と、戻り管42と、ポンプ50と、第1流量検出手段の一例としてのフローセンサ60と、第2流量検出手段の一例としてのフロースイッチ70と、温度検出手段の一例としての温度センサ80と、制御部90と、を備える。利用側熱交換器20は、冷媒から供給される熱を温度調整用流体に伝える。供給管32には、利用側熱交換器20から、温度調整対象である空調機器ユニット400の空調機器430へと向かう温度調整用流体が流れる。戻り管42には、空調機器430から戻る温度調整用流体が流れる。ポンプ50は、供給管32に設けられる。ポンプ50は、流量調整可能である。フローセンサ60は、供給管32に設けられる。フローセンサ60は、温度調整用流体の流量を検出する。フロースイッチ70は、供給管32に設けられる。フロースイッチ70は、温度調整用流体の流量を検出する。フロースイッチ70は、検出可能な流量変化がフローセンサ60よりも粗く、温度調整用流体の粘度変化による検出精度への影響がフローセンサ60よりも小さい。温度センサ80は、温度調整用流体の温度を検出する。制御部90は、温度センサ80が検出した温度調整用流体の温度に基づいて、フローセンサ60の検出結果に基づくポンプ50の制御と、フロースイッチ70の検出結果に基づくポンプ50の制御とを切り換える。
 ここでは、温度調整用流体の温度に基づいて、ポンプ50の制御が、粘度変化による検出精度への影響が比較的小さいフロースイッチ70の検出結果に基づく制御に切り換えられる。そのため、流体温度低下時であっても、適切にポンプ50を制御して配管内での温度調整用流体の凍結を防止することが可能である。また、ここでは、温度調整用流体の温度に基づいて、ポンプ50の制御が、検出可能な流量変化が比較的細かいフローセンサ60の検出結果に基づく制御に切り換えられる。そのため、温度調整用流体の温度が比較的高く、粘度が比較的低い場合には、温度調整用流体の流量を細かく制御して、効率よく装置を運転することが可能である。
 (4-2)
 温度調整用流体供給装置100では、フローセンサ60およびフロースイッチ70は、供給管32に設けられる。
 温度調整用流体の温度が比較的高い供給管32にフローセンサ60およびフロースイッチ70が設けられるため、流量の検出位置において流体が高粘度になりにくい。そのため、戻り管42にフローセンサ60およびフロースイッチ70を設ける場合に比べ、温度調整用流体の粘度が流量の検出に与える影響を抑制することができる。
 (4-3)
 温度調整用流体供給装置100では、温度センサ80は、供給管32を流れる温度調整用流体の温度を検出する。
 温度センサ80が、フローセンサ60およびフロースイッチ70が設けられた供給管32を流れる温度調整用流体の温度を検出する。そのため、フローセンサ60の検出結果に基づくポンプ50の制御と、フロースイッチ70の検出結果に基づくポンプ50の制御とを、適切に切り換えることが容易である。
 (4-4)
 温度調整用流体供給装置100では、フローセンサ60は、温度調整用流体の流量の検出結果をアナログ出力する。フロースイッチ70は、温度調整用流体の流量の検出結果を二値出力する。
 そのため、フローセンサ60により温度調整用流体の流量を細かく検出可能で、フロースイッチ70でも流量が所定量以上であるかを検出することができる。
 (4-5)
 温度調整用流体供給装置100は、屋外に設置される。そのため、低外気温時に温度調整用流体の温度が低温となりやすい。
 しかし、温度調整用流体の温度に基づいて、フローセンサ60の検出結果に基づくポンプ50の制御と、フロースイッチ70の検出結果に基づくポンプ50の制御とが切り換えられるため、適切にポンプ50を制御して配管内での温度調整用流体の凍結を防止することができる。
 (5)変形例
 以下に、上記実施形態の変形例を示す。なお、変形例は、互いに矛盾のない範囲で適宜組み合わされてもよい。
 (5-1)変形例A
 上記実施形態では、温度調整用流体供給装置100は、冷凍サイクルを構成する圧縮機11、切換機構12、熱源側熱交換器13、および膨張弁14を有するが、これに限定されるものではない。例えば、温度調整用流体供給装置100は、冷凍サイクルを構成する圧縮機、切換機構、熱源側熱交換器、および膨張弁を有する別ユニットから利用側熱交換器20に冷媒の供給を受け、利用側熱交換器20を通過して出てくる冷媒を別ユニットへ戻すよう構成されてもよい。
 (5-2)変形例B
 上記実施形態では、温度調整用流体の流量の検出結果を二値出力するフロースイッチ70が第2流量検出手段として用いられるが、これに限定されるものではない。例えば、第2流量検出手段は、温度調整用流体の粘度変化による検出精度への影響がフローセンサ60よりも小さい、温度調整用流体の流量の検出結果をアナログ出力するセンサであってもよい。
 (5-3)変形例C
 上記実施形態では、フローセンサ60およびフロースイッチ70は、いずれも供給管32に設けられているが、これに限定されるものではない。フローセンサ60およびフロースイッチ70の一方又は両方は、戻り管42に設けられてもよい。ただし、温度調整用流体の粘度変化による検出精度への影響を抑制するためには、温度調整用流体の温度が戻り管42よりも高く維持されやすい場所に、フローセンサ60およびフロースイッチ70が設けられることが好ましい。
 また、フローセンサ60、フロースイッチ70、およびポンプ50の位置関係は、図1に示すもの(温度調整用流体の流れ方向における上流側から、フローセンサ60、ポンプ50、フロースイッチ70の順)に限定されるものではない。
 例えば、フロースイッチ70は、ポンプ50より上流側に配置されてもよく、更にフローセンサ60よりも上流側に配置されてもよい。
 また、フローセンサ60は、ポンプ50より下流側に配置されてもよい。ただし、フローセンサ60として渦流量計が用いられる場合等、ポンプ50の下流側に、ポンプ50と近接してフローセンサ60が配置されると、フローセンサ60の検出精度に影響が出る可能性がある場合には、フローセンサ60はポンプ50より上流側に配置されることが好ましい。
 (5-4)変形例D
 上記実施形態では、温度センサ80は、供給管32に設置されるが、これに限定されるものではなく、例えば戻り管42に設置されてもよい。ただし、フローセンサ60およびフロースイッチ70により流量が検出される温度調整用流体の状態を把握し、ポンプ50を適切に制御するためには、温度センサ80は、フローセンサ60およびフロースイッチ70が設置されるのと同じ供給管32に設けられることが好ましい。
 なお、温度センサ80は、フローセンサ60と利用側熱交換器20との間に設置される必要はなく、供給管32の他の場所(例えば、フロースイッチ70の下流側等)に設置されてもよい。
 (5-5)変形例E
 上記実施形態では、フローセンサ60の検出結果に基づいてポンプ50の制御を行うか、フロースイッチ70の検出結果に基づいてポンプ50の制御を行うかの判定に用いられる閾値Tth1,Tth2が、制御部90のメモリに予め記憶されているが、これに限定されるものではない。
 例えば、閾値Tth1,Tth2は、図示しない入力部を介して制御部90のメモリに書き込まれてもよい。また、例えば、制御部90のメモリには、温度調整用流体の種類別に複数の閾値が記憶され、温度調整用流体の種類に応じた(例えば図示しない入力部を介して入力された温度調整用流体の種類に応じた)閾値が用いられるように構成されてもよい。
 (5-6)変形例F
 上記実施形態では、温度調整用流体供給装置100は、屋外に設置されるが、これに限定されるものではない。温度調整用流体供給装置100は屋内に設置されてもよい。このような場合であっても、例えば、往き外部配管410や戻り外部配管420の一部が屋外に設置され、温度調整用流体が低温になりやすい場合等に、上記のような構成とすることで、配管内での空調量流体の凍結を防止することが容易である。
 (5-7)変形例G
 上記実施形態では、温度調整用流体が、温度調整対象である空調機器430へ向かって供給管32を流れ、空調機器430において温度調整用流体の熱を利用して温度調整が行われる(空調機器430において温度調整用流体と熱交換する空気の温度調整が行われる)。しかし、温度調整用流体供給装置100の流体回路300を流れる温度調整用流体の熱は、空調用途以外の温度調整に利用されるものであってもよい。例えば、温度調整用流体は、各種製造工場において、製造工程の温度調整や、製造装置の冷却等を目的として、供給管32を通り温度調整対象の製造工程や製造装置に送られるものであってもよい。
 (5-8)変形例H
 上記実施形態では、利用側熱交換器20において加熱された温度調整用流体が温度調整対象へと流れる場合を例に、フローセンサ60の検出結果に基づくポンプ50の制御と、フロースイッチ70の検出結果に基づくポンプ50の制御との切り換えを説明したが、これに限定されるものではない。利用側熱交換器20において冷却された温度調整用流体が温度調整対象へと流れる場合に、温度センサ80が検出した温度調整用流体の温度に基づいて、フローセンサ60の検出結果に基づくポンプ50の制御と、フロースイッチ70の検出結果に基づくポンプ50の制御との切り換えが行われてもよい。
 (5-9)変形例I
 上記実施形態では、流体回路300内を許容最小水量Fminの温度調整用流体を流すために、フローセンサ60の検出結果に基づくポンプ50の制御と、フロースイッチ70の検出結果に基づくポンプ50の制御とが用いられているがこれに限定されるものではない。フローセンサ60の検出結果に基づくポンプ50の制御、および、フロースイッチ70の検出結果に基づくポンプ50の制御は、流体回路300内を流れる温度調整用流体の量に応じてポンプ50が制御される場合に広く適用できる。
 本発明は、流量調整可能なポンプを用いて、冷媒から供給される熱を温度調整用の流体へと伝える熱交換器と、流体の熱を利用する温度調整対象との間で流体を循環させる温度調整用流体供給装置に広く適用でき有用である。
20 利用側熱交換器(熱交換器)
32 供給管
42 戻り管
50 ポンプ
60 フローセンサ(第1流量検出手段)
70 フロースイッチ(第2流量検出手段)
80 温度センサ(温度検出手段)
90 制御部
100 温度調整用流体供給装置
特開2010-144963号公報

Claims (5)

  1.  冷媒から供給される熱を温度調整用の流体に伝える熱交換器(20)と、
     前記熱交換器から、温度調整対象へと向かう前記流体が流れる供給管(32)と、
     前記温度調整対象から戻る前記流体が流れる戻り管(42)と、
     前記供給管又は前記戻り管に設けられる、流量調整可能なポンプ(50)と、
     前記供給管又は前記戻り管に設けられ、前記流体の流量を検出する第1流量検出手段(60)と、
     前記供給管又は前記戻り管に設けられ、検出可能な流量変化が前記第1流量検出手段よりも粗く、前記流体の粘度変化による検出精度への影響が前記第1流量検出手段よりも小さい、前記流体の流量を検出する第2流量検出手段(70)と、
     前記流体の温度を検出する温度検出手段(80)と、
     前記温度検出手段が検出した前記流体の温度に基づいて、前記第1流量検出手段の検出結果に基づく前記ポンプの制御と、前記第2流量検出手段の検出結果に基づく前記ポンプの制御とを切り換える制御部(90)と、
    を備える、温度調整用流体供給装置(100)。
  2.  前記第1流量検出手段および前記第2流量検出手段は、前記供給管に設けられる、
    請求項1に記載の温度調整用流体供給装置。
  3.  前記温度検出手段は、前記供給管を流れる前記流体の温度を検出する、
    請求項2に記載の温度調整用流体供給装置。
  4.  前記第1流量検出手段は、前記流体の流量の検出結果をアナログ出力し、
     前記第2流量検出手段は、前記流体の流量の検出結果を二値出力する、
    請求項1から3のいずれか1項に記載の温度調整用流体供給装置。
  5.  屋外に設置される、
    請求項1から4のいずれか1項に記載の温度調整用流体供給装置。
PCT/JP2016/064989 2015-05-22 2016-05-20 温度調整用流体供給装置 WO2016190232A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16799937.4A EP3299731B1 (en) 2015-05-22 2016-05-20 Temperature-adjusting fluid supply apparatus
AU2016266354A AU2016266354B2 (en) 2015-05-22 2016-05-20 Temperature-adjusting fluid supply apparatus
CN201680029320.7A CN107614980B (zh) 2015-05-22 2016-05-20 温度调整用流体供应装置
JP2017520675A JP6297217B2 (ja) 2015-05-22 2016-05-20 温度調整用流体供給装置
US15/576,065 US10345023B2 (en) 2015-05-22 2016-05-20 Temperature-adjusting fluid supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015104965 2015-05-22
JP2015-104965 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016190232A1 true WO2016190232A1 (ja) 2016-12-01

Family

ID=57392846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064989 WO2016190232A1 (ja) 2015-05-22 2016-05-20 温度調整用流体供給装置

Country Status (6)

Country Link
US (1) US10345023B2 (ja)
EP (1) EP3299731B1 (ja)
JP (1) JP6297217B2 (ja)
CN (1) CN107614980B (ja)
AU (1) AU2016266354B2 (ja)
WO (1) WO2016190232A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480566A1 (de) * 2017-11-07 2019-05-08 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi Ein durchlauferhitzergerät mit durchlaufmesser
WO2019124229A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷凍装置
WO2019155548A1 (ja) * 2018-02-07 2019-08-15 三菱電機株式会社 空調システム及び空調制御方法
JPWO2019124229A1 (ja) * 2017-12-18 2020-12-17 ダイキン工業株式会社 冷凍装置
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480826B2 (en) * 2016-05-13 2019-11-19 Lochinvar, Llc System and method of controlling a mixing valve of a heating system
US11221150B2 (en) 2016-05-13 2022-01-11 Lochinvar, Llc System and method of controlling a mixing valve of a heating system
CN113418304B (zh) * 2021-05-24 2024-02-13 青岛经济技术开发区海尔热水器有限公司 热水器的控制方法、装置、设备及计算机可读存储介质
CN114151929A (zh) * 2021-12-07 2022-03-08 珠海格力电器股份有限公司 热泵空调机组及其防冻结控制方法、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112652A (ja) * 2004-10-12 2006-04-27 Nippon Steel Corp 蓄熱用製氷方法と装置
JP2009127918A (ja) * 2007-11-21 2009-06-11 Osaka Gas Co Ltd 熱源水供給システム
JP2013032896A (ja) * 2011-08-03 2013-02-14 Taiyo Nippon Sanso Corp 熱媒温度制御方法及び熱媒温度制御装置
JP2013104601A (ja) * 2011-11-11 2013-05-30 Mitsubishi Heavy Ind Ltd 温水加熱システム並びに制御装置及び制御方法
JP2013190162A (ja) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp 冷却装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382382A (en) * 1979-11-01 1983-05-10 General Electric Company Multilevel liquid sensing system
JPH0894406A (ja) * 1994-09-27 1996-04-12 Tokyo Gas Co Ltd 流速センサの出力補正装置および流量計
JP2007123295A (ja) * 2005-10-24 2007-05-17 Canon Inc 露光装置
JP5150472B2 (ja) 2008-12-17 2013-02-20 日立アプライアンス株式会社 ヒートポンプ装置
US20110282498A1 (en) * 2010-05-11 2011-11-17 FLS Solar Technologies, Inc. Solar thermal data acquisition systems and methods and systems using the same
DE102010022838A1 (de) * 2010-06-07 2011-12-08 Paw Gmbh & Co. Kg Verfahren zum Betreiben zumindest einer solarthermischen Anlage und solthermische Anlage
JP2014163594A (ja) * 2013-02-26 2014-09-08 Mitsubishi Electric Corp 流量制御装置及び流体回路システム
JP2015113986A (ja) * 2013-12-09 2015-06-22 パナソニックIpマネジメント株式会社 給湯装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112652A (ja) * 2004-10-12 2006-04-27 Nippon Steel Corp 蓄熱用製氷方法と装置
JP2009127918A (ja) * 2007-11-21 2009-06-11 Osaka Gas Co Ltd 熱源水供給システム
JP2013032896A (ja) * 2011-08-03 2013-02-14 Taiyo Nippon Sanso Corp 熱媒温度制御方法及び熱媒温度制御装置
JP2013104601A (ja) * 2011-11-11 2013-05-30 Mitsubishi Heavy Ind Ltd 温水加熱システム並びに制御装置及び制御方法
JP2013190162A (ja) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp 冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299731A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480566A1 (de) * 2017-11-07 2019-05-08 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi Ein durchlauferhitzergerät mit durchlaufmesser
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
JPWO2019124229A1 (ja) * 2017-12-18 2020-12-17 ダイキン工業株式会社 冷凍装置
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
WO2019124229A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷凍装置
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
JP7244763B2 (ja) 2017-12-18 2023-03-23 ダイキン工業株式会社 冷凍装置
WO2019155548A1 (ja) * 2018-02-07 2019-08-15 三菱電機株式会社 空調システム及び空調制御方法
JPWO2019155548A1 (ja) * 2018-02-07 2020-11-19 三菱電機株式会社 空調システム及び空調制御方法

Also Published As

Publication number Publication date
AU2016266354A1 (en) 2018-01-25
JPWO2016190232A1 (ja) 2018-02-22
CN107614980A (zh) 2018-01-19
AU2016266354B2 (en) 2018-03-22
JP6297217B2 (ja) 2018-03-20
US20180156511A1 (en) 2018-06-07
CN107614980B (zh) 2018-12-14
EP3299731A1 (en) 2018-03-28
US10345023B2 (en) 2019-07-09
EP3299731A4 (en) 2018-07-04
EP3299731B1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6297217B2 (ja) 温度調整用流体供給装置
US9951962B2 (en) Heat pump heating and hot-water system
EP3312528B1 (en) Air conditioner
US9157650B2 (en) Heat source apparatus
CN103180676A (zh) 制冷循环装置及制冷循环控制方法
CN107709887B (zh) 空气调节装置以及运行控制装置
CN101512248A (zh) 空调装置
CN112840164B (zh) 空调装置和管理装置
JP5772811B2 (ja) 冷凍装置
US11506435B2 (en) Water regulator
US11585578B2 (en) Refrigeration cycle apparatus
JP6111692B2 (ja) 冷凍装置
KR20100079405A (ko) 공기조화기 및 그 동작방법
JP6891910B2 (ja) 冷凍サイクル装置、および四路切換弁の異常判定方法
US11815281B2 (en) Air-conditioning device with a heat medium heat exchanger
EP3096087B1 (en) Air-conditioning and warm water supply unit
GB2603349A9 (en) Air conditioning device
JP7488478B2 (ja) 冷凍サイクル装置及び冷媒漏洩を判定する方法
WO2022049763A1 (ja) 空気調和装置
WO2020065924A1 (ja) 空気調和装置
JP2008145038A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576065

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017520675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016799937

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016266354

Country of ref document: AU

Date of ref document: 20160520

Kind code of ref document: A