WO2023181403A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2023181403A1
WO2023181403A1 PCT/JP2022/014638 JP2022014638W WO2023181403A1 WO 2023181403 A1 WO2023181403 A1 WO 2023181403A1 JP 2022014638 W JP2022014638 W JP 2022014638W WO 2023181403 A1 WO2023181403 A1 WO 2023181403A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
point
hfo1123
refrigerant
r1234yf
Prior art date
Application number
PCT/JP2022/014638
Other languages
English (en)
French (fr)
Inventor
雄亮 田代
健太 村田
拓也 松田
英明 前山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/014638 priority Critical patent/WO2023181403A1/ja
Publication of WO2023181403A1 publication Critical patent/WO2023181403A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • chlorofluorocarbons CFC
  • hydrochlorofluorocarbons HCFC
  • refrigerants containing chlorine is currently regulated because of their large impact on the ozone layer in the stratosphere (impact on global warming).
  • HFCs hydrofluorocarbons
  • R32 difluoromethane
  • R32 has a global warming potential (GWP) of 675, and it has been pointed out that it may cause global warming. Therefore, it is desired to develop a refrigerant that has a small GWP and has less impact on the ozone layer.
  • GWP global warming potential
  • HFO1123 1,1,2-trifluoroethylene
  • GWP GWP of approximately 0.3
  • Patent Document 1 1,1,2-trifluoroethylene
  • the refrigerant used in Patent Document 1 contains R32 and R744 (carbon dioxide) together with HFO1123, thereby suppressing the disproportionation reaction of HFO1123.
  • R744 has a higher condensation pressure than the conventionally used R32. Therefore, in an existing refrigeration cycle device in which R32 is used as a refrigerant, when the refrigerant is replaced with a refrigerant containing R744, the condensation pressure increases.
  • existing refrigeration cycle devices have pressure resistance up to about the condensing pressure of R32, they may not have pressure resistance to pressures higher than the condensing pressure of R32.
  • the refrigerant of Patent Document 1 is a refrigerant for existing refrigeration cycle apparatuses in which conventional refrigerants (for example, R32) are used. It is difficult to replace.
  • the present disclosure aims to provide a refrigeration cycle device that is less affected by global warming and can be manufactured by replacing the refrigerant of an existing refrigeration cycle device that uses a conventional refrigerant (for example, R32). shall be.
  • a conventional refrigerant for example, R32
  • the refrigeration cycle device of the present disclosure includes: Equipped with a refrigeration circuit including a compressor, an outdoor heat exchanger, an indoor heat exchanger and an expansion valve, A refrigerant is sealed in the refrigeration circuit,
  • the refrigerant contains three components: R1234yf, HFO1123 and R290,
  • the composition diagram showing the mass ratio of the three components in triangular coordinates is as follows: Point A indicating that R1234yf is 100% by mass, HFO1123 is 0% by mass, and R290 is 0% by mass; Point B indicating that R1234yf is 85% by mass, HFO1123 is 0% by mass, and R290 is 15% by mass; Point C indicating that R1234yf is 20% by mass, HFO1123 is 80% by mass, and R290 is 0% by mass; Point D indicating that R1234yf is 6.2% by mass, HFO1123 is 78.8% by mass, and R290 is 15% by mass,
  • the mass ratio of the three components is a first straight line connecting the point
  • FIG. 1 is a schematic configuration diagram showing a refrigeration cycle device according to Embodiment 1.
  • FIG. 3 is a triangular composition diagram showing a range of mass ratios of refrigerants according to Embodiment 1.
  • FIG. 3 is a triangular composition diagram showing a preferable mass ratio range of the refrigerant according to Embodiment 1.
  • FIG. 2 is a triangular composition diagram showing a more preferable mass ratio range of the refrigerant according to Embodiment 1.
  • FIG. 1 is a schematic configuration diagram showing a refrigeration cycle device according to a first embodiment.
  • the refrigeration cycle device includes a refrigeration circuit including a compressor 1, a flow path switching valve 2 that switches the flow direction during cooling and heating, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5. Be prepared. Note that in a refrigeration cycle device that does not require switching between cooling and heating, the flow path switching valve 2 is not necessary.
  • the high-temperature, high-pressure gaseous refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 3 via the flow path switching valve 2 (flow path indicated by a solid line) and is condensed there.
  • the liquid refrigerant condensed in the outdoor heat exchanger 3 flows into the indoor heat exchanger 5 via the expansion valve 4, where it evaporates (vaporizes).
  • the gaseous refrigerant evaporated in the indoor heat exchanger 5 returns to the compressor 1 via the flow path switching valve 2 (flow path indicated by a solid line). In this way, during cooling, the refrigerant circulates in the refrigeration circuit of the refrigeration cycle device in the direction of the solid arrow shown in FIG.
  • the high-temperature, high-pressure gaseous refrigerant compressed by the compressor 1 flows into the indoor heat exchanger 5 via the flow path switching valve 2 (flow path indicated by the dotted line), where it is condensed. do.
  • the liquid refrigerant condensed in the indoor heat exchanger 5 flows into the outdoor heat exchanger 3 via the expansion valve 4, where it evaporates (vaporizes).
  • the refrigerant evaporated in the outdoor heat exchanger 3 returns to the compressor 1 via the flow path switching valve 2 (the flow path indicated by the dotted line). In this way, during heating, the refrigerant circulates in the refrigeration circuit of the refrigeration cycle device in the direction of the dashed arrow shown in FIG.
  • the refrigeration cycle device of the present embodiment may further include other equipment such as a gas-liquid splitter, a receiver, an accumulator, and a high-low pressure heat exchanger.
  • the refrigerant sealed in the refrigeration circuit contains three components of R1234yf (2,3,3,3-tetrafluoro-1-propene), HFO1123 (1,1,2-trifluoroethylene) and R290 (propane) within a predetermined composition range. I'm here.
  • the respective mass ratios of R1234yf, HFO1123, and R290 in the refrigerant are the respective mass ratios of R1234yf, HFO1123, and R290 in the refrigerant before operation of the refrigeration cycle device including the refrigeration circuit.
  • the respective mass ratios of R1234yf, HFO1123 and R290 are considered to be the same as the respective mass ratios of R1234yf, HFO1123 and R290 in the refrigerant before being sealed in the refrigeration circuit.
  • the respective mass ratios of R1234yf, HFO1123 and R290 in the refrigerant in the refrigerant cylinder filled with the refrigerant sealed in the refrigeration circuit are as follows: It is assumed that the respective mass ratios are the same.
  • FIG. 2 is a composition diagram (triangular composition diagram) expressed in triangular coordinates showing the mass ratio (composition ratio) of the three components (R1234yf, HFO1123, and R290) contained in the refrigerant.
  • the mass ratio of the three components is, in FIG. 2, a first straight line connecting point A and point B, a second straight line connecting point A and point C, a third straight line connecting point B and point D, and It exists within the first range (the shaded area in FIG. 2) surrounded by the first curve connecting point C and point D. Note that the first range does not include the case where the ratio of at least one of the three components is 0% by mass. That is, the mass ratio of each of the three components is greater than 0% by mass.
  • Point A indicates that R1234yf is 100% by mass, HFO1123 is 0% by mass, and R290 is 0% by mass.
  • R1234yf/HFO1123/R290 100/0/0% by mass.
  • the first curve connecting points C and D connects points C and D, with the mass ratio of the R290 component as the X axis, and the direction perpendicular to the X axis as the Y axis.
  • the mass ratio of R290 is X [%] and the mass ratio of HFO1123 is Y [%]
  • Y 0.014X 2 -0.250X+79.4
  • the mass ratio Z [%] of R1234yf is expressed by the following formula (2).
  • Z 100-X-Y (2)
  • the first curve is a line (boundary line) indicating a composition where the condensation pressure is equivalent to R32.
  • the condensation pressure of the refrigerant is equal to or lower than the condensation pressure of R32. Therefore, even if a refrigerant having a mass ratio in this range is replaced with R32 in an existing refrigeration cycle device in which R32 is used as a refrigerant, the refrigerant can be used without changing the pressure resistance specifications of the refrigeration cycle device. Reliability in terms of pressure resistance of the device can be maintained.
  • R1234yf, HFO1123 and R290 all have low GWP. Specifically, the GWP of R1234yf is 1, the GWP of HFO1123 is approximately 0.3, and the GWP of R290 is 6. In this embodiment, since the refrigerant contains these three components, the GWP of the refrigerant is low, and a refrigeration cycle device using the refrigerant has less impact on global warming.
  • R290 is flammable
  • the mass ratio of the refrigerant is within the first range shown by diagonal lines in FIG. 2, and the ratio of R290 in the refrigerant is as low as 15% by mass or less.
  • R1234yf is a slightly flammable refrigerant included in the A2L classification in the flammability classification of ASHRAE34, the flammability of the entire refrigerant can be kept low. Therefore, the flammability of the refrigerant in this embodiment is equal to or lower than that of R32.
  • the flammability of R32 is classified as A2L in the flammability classification of ASHRAE34.
  • HFO1123 tends to undergo a disproportionation reaction under high temperature and high pressure conditions.
  • R1234yf and R290 can suppress the disproportionation reaction of HFO1123.
  • the refrigerant includes R1234yf and R290 as well as HFO1123. Therefore, the refrigerant can suppress the disproportionation reaction of HFO1123.
  • HFO1123 is known to cause a disproportionation reaction represented by the following formula (A).
  • CF 2 CHF ⁇ 1.5C+0.5CF 4 +HF+250kJ/mol (A)
  • the refrigerant has a flammability equal to or lower than that of R32, and can suppress the disproportionation reaction of HFO1123. Therefore, even if the refrigerant of this embodiment is replaced with R32 in an existing refrigeration cycle device in which R32 is used as the refrigerant, the refrigerant does not require changes to the equipment and control specifications (safety specifications) of the refrigeration cycle device. It is possible to maintain reliability in terms of safety of the refrigeration cycle device.
  • HFO1123 has a high operating pressure and a small volumetric flow rate of refrigerant, so the pressure loss is small and performance can be easily ensured.
  • R1234yf has high theoretical performance.
  • the refrigerant contains HFO1123 and R1234yf, it can have high performance equivalent to or higher than R32. Therefore, even if this refrigerant is replaced with R32 in an existing refrigeration cycle device in which R32 is used as the refrigerant, the performance of the refrigeration cycle device can be maintained without requiring changes to the cycle specifications of the refrigeration cycle device. be able to.
  • the refrigeration cycle device of this embodiment is less affected by global warming, and can be manufactured by replacing the refrigerant of an existing refrigeration cycle device that uses a conventional refrigerant (for example, R32). It turns out that it is. Furthermore, it can be seen that the refrigeration cycle device has excellent performance. Note that the refrigeration cycle device of this embodiment may be manufactured by a method other than replacing the refrigerant of an existing refrigeration cycle device. The refrigeration cycle device of this embodiment may be a newly manufactured refrigeration cycle device.
  • FIG. 3 is a triangular composition diagram showing preferred ranges of mass ratios (composition ratios) of the three components (R1234yf, HFO1123 and R290) contained in the refrigerant.
  • the mass ratio of the three components is determined by the 2-1 straight line connecting point A2 and point B2, the 2-2 straight line connecting point A2 and point C, and the 2-2 line connecting point B2 and point D.
  • -3 Exists within the second range (shaded area in FIG. 3) surrounded by the straight line and the first curve. Note that the second range does not include the case where the ratio of at least one of the three components is 0% by mass. That is, the mass ratio of each of the three components is greater than 0% by mass.
  • Point A2 indicates that R1234yf is 50% by mass, HFO1123 is 50% by mass, and R290 is 0% by mass.
  • Point B2 indicates that R1234yf is 35% by mass, HFO1123 is 50% by mass, and R290 is 15% by mass.
  • Point C and point D show the same mass ratio as point C and point D that exist on FIG.
  • the ratio of HFO1123 in the refrigerant is as large as 50% by mass or more.
  • the refrigerant can have a lower GWP, suppress a drop in operating pressure, and have better performance. Therefore, a refrigeration cycle device using the refrigerant has less influence on global warming and can have better performance.
  • FIG. 4 is a triangular composition diagram showing a range of more preferable mass ratios (composition ratios) of the three components (R1234yf, HFO1123 and R290) contained in the refrigerant.
  • the mass ratio of the three components is determined by the 3rd straight line connecting point B3 and point C, the 3rd straight line connecting point B3 and point D, and the 3rd line surrounded by the first curve. It exists within the range (the shaded area in FIG. 4).
  • the third range does not include a case where the ratio of at least one of the three components is 0% by mass. That is, the mass ratio of each of the three components is greater than 0% by mass.
  • Point B3 indicates that R1234yf is 20% by mass, HFO1123 is 65% by mass, and R290 is 15% by mass.
  • Point C and point D show the same mass ratio as point C and point D that exist on FIG.
  • the ratio of R1234yf in the refrigerant is 20% by mass or less.
  • the refrigerant can have a lower GWP, suppress a drop in operating pressure, and have even better performance. Therefore, a refrigeration cycle device using this refrigerant can have even less influence on global warming and even better performance.
  • the percentage of the mass-based content C2 of R290 to the mass-based content C1 of HFO1123 in the refrigerant (C2/C1) ⁇ 100 is preferably 15% or more and less than 50%. Even in a small amount, R290 has an excellent suppressing effect on the disproportionation reaction of HFO1123. Therefore, when the percentage (C2/C1) ⁇ 100 is 15% or more, an excellent effect of suppressing the disproportionation reaction of HFO1123 can be obtained. Further, if the percentage (C2/C1) ⁇ 100 is less than 50%, the content of HFO1123 in the refrigerant can be increased. Therefore, the refrigerant can have a low GWP and excellent cycle performance.
  • the refrigerant used in this embodiment can consist of only the above three components. Moreover, the refrigerant may further contain other components. The blending ratio of other components is set within a range that does not impede the main effects of this embodiment. For example, the total content of the above three components in the refrigerant can be 90% by mass or more and 100% by mass or less.
  • the refrigerant used in this embodiment may further contain refrigerating machine oil.
  • refrigerating machine oil include commonly used refrigerating machine oils (ester lubricating oil, ether lubricating oil, fluorine lubricating oil, mineral lubricating oil, hydrocarbon lubricating oil, etc.). In that case, it is preferable to select a refrigerating machine oil that is excellent in terms of stability and the like.
  • the refrigerant used in this embodiment may further contain a stabilizer as necessary, for example when a high degree of stability is required under severe usage conditions.
  • Stabilizers are components that improve the stability of refrigerants against heat and oxidation.
  • the stabilizer include known stabilizers conventionally used in refrigeration cycle devices, such as oxidation resistance improvers, heat resistance improvers, metal deactivators, and the like.
  • the refrigerant used in this embodiment may further contain a polymerization inhibitor.
  • the polymerization inhibitor include hydroquinone, hydroquinone methyl ether, and benzotriazole.
  • the refrigeration cycle device of this embodiment is preferably a refrigeration cycle device (air conditioner) for air conditioning.
  • R32 is a refrigerant that has conventionally been mainly used in air conditioners, and the refrigerant used in the refrigeration cycle device of this embodiment has a condensation pressure lower than that of R32. For this reason, reliability can be maintained in terms of pressure resistance, especially for air conditioning refrigeration cycle devices.
  • refrigeration cycle devices for air conditioning include room air conditioners, window air conditioners, mobile air conditioners, package air conditioners, and building multi-air conditioners.
  • the compressor 1 can be filled with refrigerating machine oil.
  • refrigerating machine oil either one having high compatibility with the refrigerant or one having low compatibility with the refrigerant can be used.
  • the refrigerant contains the three components R1234yf (2,3,3,3-tetrafluoro-1-propene), HFO1123 (1,1,2-trifluoroethylene), and R290 (propane) in a predetermined manner. Contains within the composition range.
  • R290 is replaced with a refrigerant selected from the group consisting of hydrocarbons having 1 to 5 carbon atoms and fluorinated hydrocarbons having 1 to 5 carbon atoms. At least one compound is used. Thereby, it is possible to provide a refrigeration cycle device that is less affected by global warming and can be manufactured by replacing the refrigerant of an existing refrigeration cycle device that uses a conventional refrigerant (for example, R32).
  • the above compounds include methane (CH 4 ), ethane (C 2 H 6 ), butane (C 4 H 10 ), isobutane (iso-C 4 H 10 ), propylene (C 3 H 6 ), fluoromethane (CH 3 F, R41), fluoroethane (C 2 H 5 F, R161), and 1,1-difluoroethane (C 2 H 4 F 2 , R152a).
  • a refrigeration cycle device includes: Equipped with a refrigeration circuit including a compressor, an outdoor heat exchanger, an indoor heat exchanger and an expansion valve, A refrigerant is sealed in the refrigeration circuit, The refrigerant contains three components: R1234yf, HFO1123 and butane,
  • the composition diagram showing the mass ratio of the three components in triangular coordinates is as follows: Point A indicating that R1234yf is 100% by mass, HFO1123 is 0% by mass, and butane is 0% by mass; Point B indicating that R1234yf is 85% by mass, HFO1123 is 0% by mass and butane is 15% by mass; Point C indicating that R1234yf is 20% by mass, HFO1123 is 80% by mass, and butane is 0% by mass; Point D indicating that R1234yf is 6.2% by mass, HFO1123 is 78.8% by mass and butane is 15% by mass, The mass ratio of the three components is is
  • a refrigeration cycle device includes: Equipped with a refrigeration circuit including a compressor, an outdoor heat exchanger, an indoor heat exchanger and an expansion valve, A refrigerant is sealed in the refrigeration circuit, The refrigerant contains three components: R1234yf, HFO1123 and isobutane,
  • the composition diagram showing the mass ratio of the three components in triangular coordinates is as follows: Point A indicating that R1234yf is 100% by mass, HFO1123 is 0% by mass, and isobutane is 0% by mass; Point B indicating that R1234yf is 85% by mass, HFO1123 is 0% by mass and isobutane is 15% by mass; Point C indicating that R1234yf is 20% by mass, HFO1123 is 80% by mass, and isobutane is 0% by mass; Point D indicating that R1234yf is 6.2% by mass, HFO1123 is 78.8% by mass and isobutane is 15% by mass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、前記冷凍回路内に冷媒が封入されており、前記冷媒は、R1234yfHFO1123及びR290の三成分を含有し、前記三成分の質量比率を三角座標で表した組成図は、R1234yfHFO1123/R290=100/0/0質量%であることを示す点Aと、R1234yf/HFO1123/R290=85/0/15質量%であることを示す点Bと、R1234yf/HFO1123/R290=20/80/0質量%であることを示す点Cと、R1234yfHFO1123/R290=6.2/78.8/15質量%であることを示す点Dと、を含み、前記三成分の質量比率は、前記点Aと前記点Bとを結ぶ第1直線、前記点Aと前記点Cとを結ぶ第2直線、前記点Bと前記点Dとを結ぶ第3直線、及び、前記点Cと前記点Dとを結ぶ第1曲線によって囲まれる第1範囲内に存在し、前記三成分のそれぞれの質量比率は、0質量%よりも大きい、冷凍サイクル装置。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関する。
 従来、空気調和機、冷凍機等の冷凍サイクル装置には、冷媒としてクロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)等が用いられていた。しかし、CFC、HCFCなどの塩素を含む冷媒は、成層圏のオゾン層への影響(地球温暖化への影響)が大きいため、現在、使用が規制されている。
 このため、冷媒として、塩素を含まずオゾン層への影響が少ないハイドロフルオロカーボン(HFC)が用いられるようになった。このようなHFCとして、例えば、ジフルオロメタン(以下、「R32」と記載。)が挙げられる。
 しかし、R32は、地球温暖化係数(GWP)が675であり、地球温暖化の原因となる可能性が指摘されている。このため、GWPが小さく、オゾン層への影響が少ない冷媒の開発が望まれている。
 地球温暖化への影響が少なく、かつ、冷凍サイクル装置が充分なサイクル性能を得ることのできる冷媒として、GWPが約0.3である1,1,2-トリフルオロエチレン(以下、「HFO1123」と記載。)が知られている。しかし、HFO1123は、高温、高圧の状態において、不均化反応が発生しやすい。このため、HFO1123を含み、かつ、不均化反応を抑制できる冷媒が検討されている(例えば、特許文献1)。
国際公開第2021/075075号
 特許文献1で用いられる冷媒は、HFO1123とともに、R32及びR744(二酸化炭素)を含むことにより、HFO1123の不均化反応が抑制される。しかし、R744は、従来用いられていたR32よりも凝縮圧力が高い。よって、冷媒としてR32が用いられている既存の冷凍サイクル装置において、冷媒をR744を含む冷媒に入れ替えると、凝縮圧力が高くなる。しかし、既存の冷凍サイクル装置は、R32の凝縮圧力程度までは耐圧性を備えているが、R32の凝縮圧力よりも高い圧力に対する耐圧性を有していない可能性がある。このため、特に耐圧性の面で冷凍サイクル装置の信頼性を確保する観点を考慮すると、特許文献1の冷媒は、従来の冷媒(例えば、R32)が用いられていた既存の冷凍サイクル装置の冷媒と入れ替えることが困難である。
 一方、コスト低減の観点から、既存の冷凍サイクル装置の冷媒と入れ替えることのできる冷媒、いわゆるレトロフィット可能な冷媒、が求められている。
 本開示は、地球温暖化の影響が少なく、従来の冷媒(例えば、R32)が用いられていた既存の冷凍サイクル装置の冷媒を入れ替えることによっても作製可能である冷凍サイクル装置を提供することを目的とする。
 本開示の冷凍サイクル装置は、
 圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、
 前記冷凍回路内に冷媒が封入されており、
 前記冷媒は、R1234yf、HFO1123及びR290の三成分を含有し、
 前記三成分の質量比率を三角座標で表した組成図は、
 R1234yfが100質量%、HFO1123が0質量%及びR290が0質量%であることを示す点Aと、
 R1234yfが85質量%、HFO1123が0質量%及びR290が15質量%であることを示す点Bと、
 R1234yfが20質量%、HFO1123が80質量%及びR290が0質量%であることを示す点Cと、
 R1234yfが6.2質量%、HFO1123が78.8質量%及びR290が15質量%であることを示す点Dと、を含み、
 前記三成分の質量比率は、
 前記点Aと前記点Bとを結ぶ第1直線、
 前記点Aと前記点Cとを結ぶ第2直線、
 前記点Bと前記点Dとを結ぶ第3直線、及び、
 前記点Cと前記点Dとを結ぶ第1曲線
 によって囲まれる第1範囲内に存在し、
 前記三成分のそれぞれの質量比率は、0質量%よりも大きい、冷凍サイクル装置である。
 本開示によれば、地球温暖化の影響が少なく、従来の冷媒(例えば、R32)が用いられていた既存の冷凍サイクル装置の冷媒を入れ替えることによっても作製可能である冷凍サイクル装置を提供することができる。
実施形態1に係る冷凍サイクル装置を示す概略構成図である。 実施形態1に係る冷媒の質量比率の範囲を示す三角組成図である。 実施形態1に係る冷媒の好ましい質量比率の範囲を示す三角組成図である。 実施形態1に係る冷媒のより好ましい質量比率の範囲を示す三角組成図である。
 以下、本開示の実施の形態を図面に基づいて説明する。
 実施の形態1.
 まず、本実施形態の冷凍サイクル装置の概要について簡単に説明する。図1は、実施形態1に係る冷凍サイクル装置を示す概略構成図である。冷凍サイクル装置は、圧縮機1と、冷房時と暖房時の流れ方向を切替える流路切替弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5とを含む冷凍回路を備える。なお、冷房と暖房を切替える必要のない冷凍サイクル装置においては、流路切替弁2は必要ない。
 冷房時において、圧縮機1で圧縮された高温高圧のガス状冷媒は、流路切替弁2(実線で示す流路)を経由して室外熱交換器3へと流入し、そこで凝縮する。室外熱交換器3で凝縮した液状冷媒は、膨張弁4を経由して室内熱交換器5に流入し、そこで蒸発(気化)する。最後に、室内熱交換器5にて蒸発したガス状冷媒は、流路切替弁2(実線で示す流路)を経由して圧縮機1へ戻る。このように、冷房時において、冷媒は、冷凍サイクル装置の冷凍回路内を図1に示す実線矢印の方向に循環する。
 一方、暖房時においては、圧縮機1で圧縮された高温高圧のガス状冷媒は、流路切替弁2(点線で示す流路)を経由して室内熱交換器5へと流入し、そこで凝縮する。室内熱交換器5で凝縮した液状冷媒は、膨張弁4を経由して室外熱交換器3へと流入し、そこで蒸発(気化)する。室外熱交換器3で蒸発した冷媒は、流路切替弁2(点線で示す流路)を経由して圧縮機1へ戻る。このように、暖房時において、冷媒は、冷凍サイクル装置の冷凍回路内を図1に示す破線矢印の方向に循環する。
 なお、上記構成は、冷房および暖房運転を実施可能な冷凍サイクル装置の最小構成要素である。本実施形態の冷凍サイクル装置は、さらに、気液分岐器、レシーバー、アキュームレータ、高低圧熱交換器等の他の機器を備えていてもよい。
 <冷媒>
 初めに、本開示の理解を深めるために、R32、R290、R1234yf(2,3,3,3-テトラフルオロ-1-プロペン)、HFO1123、R744(二酸化炭素)の吸入時における単一冷媒の物性値(圧力、密度、定圧比熱、密度×比熱)を表1に示す。該物性値は、吸入飽和温度が10℃、吸入SH(吸入温度-吸入飽和温度)が1Kの条件での値である。表1において、「密度」、「定圧比熱」及び「密度×比熱」欄中の[%]の数値は、R32の密度、定圧比熱及び密度×比熱をそれぞれ100%としたときの、各冷媒の密度、定圧比熱及び密度×比熱の百分率を示す。
Figure JPOXMLDOC01-appb-T000001
 単一冷媒の圧力が大きいほど、凝縮圧力が大きくなる。R744は、R32よりも圧力が大きいため、凝縮圧力も大きい。
 本実施形態において、冷凍回路内に封入される冷媒について説明する。該冷媒は、R1234yf(2,3,3,3-テトラフルオロ-1-プロペン)、HFO1123(1,1,2-トリフルオロエチレン)及びR290(プロパン)の三成分を所定の組成範囲内で含んでいる。
 本開示において、冷媒中のR1234yf、HFO1123及びR290のそれぞれの質量比率とは、該冷凍回路を備える冷凍サイクル装置の作動前における冷媒中のR1234yf、HFO1123及びR290のそれぞれの質量比率である。R1234yf、HFO1123及びR290のそれぞれの質量比率は、冷凍回路内に封入される前の冷媒中のR1234yf、HFO1123及びR290のそれぞれの質量比率と同一であると見做す。すなわち、冷凍回路内に封入される冷媒が充填された冷媒ボンベの中の冷媒中のR1234yf、HFO1123及びR290のそれぞれの質量比率は、冷凍回路内に封入された冷媒中のR1234yf、HFO1123及びR290のそれぞれの質量比率と同一であると見做す。
 図2は、冷媒中に含まれる三成分(R1234yf、HFO1123及びR290)の質量比率(組成比率)を示す三角座標で表された組成図(三角組成図)である。該三成分の質量比率は、図2において、点Aと点Bとを結ぶ第1直線、点Aと点Cとを結ぶ第2直線、点Bと点Dとを結ぶ第3直線、及び、点Cと点Dとを結ぶ第1曲線によって囲まれる第1範囲内(図2の斜線部)に存在する。なお、第1範囲は、三成分の少なくともいずれかの比率が0質量%である場合を含まない。すなわち、三成分のそれぞれの質量比率は、0質量%よりも大きい。
 点Aは、R1234yfが100質量%、HFO1123が0質量%及びR290が0質量%であることを示す。以下、このような質量比率を「R1234yf/HFO1123/R290=100/0/0質量%」と記載する。
 点Bは、質量比率が「R1234yf/HFO1123/R290=85/0/15質量%」であることを示す。
 点Cは、質量比率が「R1234yf/HFO1123/R290=20/80/0質量%」であることを示す。
 点Dは、質量比率が「R1234yf/HFO1123/R290=6.2/78.8/15質量%」であることを示す。
 図2において、点Cと点Dとを結ぶ第1曲線は、点Cと点Dとを結び、R290の成分の質量比率をX軸とし、該X軸に対して垂直方向をY軸とした座標系において、R290の質量比率をX[%]、HFO1123の質量比率をY[%]としたとき、下記式(1)で表される。
 Y=0.014X-0.250X+79.4 (1)
 R1234yfの質量比率Z[%]は、下記式(2)で表される。
 Z=100-X-Y (2)
 なお、第1曲線は、凝縮圧力がR32と同等になる組成を示す線(境界線)である。
 図2中の点Cと点Dとを結ぶ第1曲線の右上側の質量比率の範囲では、冷媒の凝縮圧力がR32の凝縮圧力と同等以下である。よって、この範囲の質量比率を有する冷媒は、冷媒としてR32が用いられている既存の冷凍サイクル装置において、R32と入れ替えた場合でも、冷凍サイクル装置の耐圧仕様の変更を要さずに、冷凍サイクル装置の耐圧面での信頼性を維持することができる。
 R1234yf、HFO1123及びR290は、いずれもGWPが低い。具体的には、R1234yfのGWPは1、HFO1123のGWPは約0.3、R290のGWPは6である。本実施の形態において、冷媒はこれらの三成分を含むため、該冷媒のGWPは低くなり、該冷媒を用いた冷凍サイクル装置は、地球温暖化への影響が少ない。
 R290は可燃性であるが、本実施の形態では、冷媒の質量比率が図2の斜線で示される第1範囲内であり、冷媒中のR290の比率が15質量%以下と低くなっている。更に、R1234yfは、ASHRAE34の燃焼性区分におけるA2L区分に含まれる微燃焼性冷媒であるため、冷媒全体の燃焼性を低く保つことができる。このため、本実施の形態における冷媒の燃焼性はR32の燃焼性と同等以下である。R32の燃焼性は、ASHRAE34の燃焼性区分におけるA2L区分である。
 HFO1123は、高温、高圧の状態において、不均化反応が発生しやすい。R1234yf及びR290はHFO1123の不均化反応を抑制することができる。本実施の形態において、冷媒は、HFO1123とともに、R1234yf及びR290を含む。よって、該冷媒はHFO1123の不均化反応を抑制することができる。
 R290によるHFO1234の付近化反応の抑制効果は、不均化反応発生時の化学反応の様態の変化で説明できる。HFO1123は以下の式(A)で示される不均化反応を起こすことが知られている。
CF=CHF→1.5C+0.5CF+HF+250kJ/mol (A)
 HFO1123に対するR290混合率が少ないと、下記の式(B)で示される化学反応が支配的である。
+2CF=8HF+5C[gr]+212kJ/mol (B)
 式(B)で示される化学反応では、反応熱が大きく、新たな反応伝播を誘発しやすいため、HFO1123の不均化反応の抑制効果が小さい。
 R290混合率が大きいと、下記の式(C)で示される化学反応が支配的である。
=2CH+C[gr]+45kJ/mol (C)
 式(C)で示される化学反応では、反応熱が小さく、新たな反応伝播を発生させるためのエネルギーが小さいため、HFO1123の不均化反応の抑制効果が大きい。
 式(B)及び式(C)の化学反応のいずれが支配的となるかは、冷媒中に存在する水素(H)とフッ素(F)の比率の影響を受けると推察される。本実施の形態の冷媒では、H/Fの比率が1を超えるため、支配的となる化学反応が上記の式(B)から式(C)に変化しやすく、不均化反応時の発生温度を低下させ、不均化反応の伝播を抑制する効果が向上すると推察される。
 R1234yfによるHFO1123の不均化反応の抑制効果は、希釈によりHFO1123の濃度を低減することによるものと推察される。
 上記の通り、本実施の形態において、冷媒はR32と同等以下の燃焼性を有し、かつHFO1123の不均化反応を抑制することができる。よって、本実施の形態の冷媒は、冷媒としてR32が用いられている既存の冷凍サイクル装置において、R32と入れ替えた場合でも、冷凍サイクル装置の機器及び制御の仕様(安全性仕様)の変更を要さずに、冷凍サイクル装置の安全性面での信頼性を維持することができる。
 HFO1123は、動作圧力が高く、冷媒の体積流量が小さいため、圧力損失が小さく、性能を確保しやすい。R1234yfは、高い理論性能を有する。本実施の形態において、冷媒は、HFO1123及びR1234yfを含むため、R32と同等以上の高い性能を有することができる。よって、該冷媒は、冷媒としてR32が用いられている既存の冷凍サイクル装置において、R32と入れ替えた場合でも、冷凍サイクル装置のサイクル仕様の変更を要さずに、冷凍サイクル装置の性能を維持することができる。
 以上のことから、本実施の形態の冷凍サイクル装置は、地球温暖化の影響が少なく、従来の冷媒(例えば、R32)が用いられていた既存の冷凍サイクル装置の冷媒を入れ替えることによっても作製可能であることが分かる。更に、該冷凍サイクル装置は、優れた性能を有することが分かる。なお、本実施の形態の冷凍サイクル装置は、既存の冷凍サイクル装置の冷媒を入れ替える以外の方法で作製されるものでもよい。本実施の形態の冷凍サイクル装置は、新規に作製された冷凍サイクル装置であってもよい。
 本実施の形態において、冷媒の好ましい質量比率について図3を用いて説明する。図3は、冷媒中に含まれる三成分(R1234yf、HFO1123及びR290)の好ましい質量比率(組成比率)の範囲を示す三角組成図である。該三成分の質量比率は、図3において、点A2と点B2とを結ぶ第2-1直線、点A2と点Cとを結ぶ第2-2直線、点B2と点Dとを結ぶ第2-3直線、及び、第1曲線によって囲まれる第2範囲内(図3の斜線部)に存在する。なお、第2範囲は、三成分の少なくともいずれかの比率が0質量%である場合を含まない。すなわち、三成分のそれぞれの質量比率は、0質量%よりも大きい。
 点A2は、R1234yfが50質量%、HFO1123が50質量%及びR290が0質量%であることを示す。
 点B2は、R1234yfが35質量%、HFO1123が50質量%及びR290が15質量%であることを示す。
 点C及び点Dは、図2上に存在する点C及び点Dと同一の質量比率を示す。
 図3の第2範囲内では、冷媒中のHFO1123の比率が50質量%以上と大きくなっている。これにより、冷媒は、より低いGWPを有し、かつ、動作圧力の低下が抑制され、より優れた性能を有することができる。よって、該冷媒を用いた冷凍サイクル装置は、地球温暖化への影響がより少なく、かつ、より優れた性能を有することができる。
 本実施の形態において、冷媒のより好ましい質量比率について図4を用いて説明する。図4は、冷媒中に含まれる三成分(R1234yf、HFO1123及びR290)のより好ましい質量比率(組成比率)の範囲を示す三角組成図である。該三成分の質量比率は、図4において、点B3と点Cとを結ぶ第3-1直線、点B3と点Dとを結ぶ第3-2直線、及び、第1曲線によって囲まれる第3範囲内(図4の斜線部)に存在する。なお、第3範囲は、三成分の少なくともいずれかの比率が0質量%である場合を含まない。すなわち、三成分のそれぞれの質量比率は、0質量%よりも大きい。
 点B3は、R1234yfが20質量%、HFO1123が65質量%及びR290が15質量%であることを示す。
 点C及び点Dは、図2上に存在する点C及び点Dと同一の質量比率を示す。
 図4の第3範囲内では、冷媒中のR1234yfの比率が20質量%以下となっている。これにより、冷媒は、更に低いGWPを有し、かつ、動作圧力の低下が抑制され、更に優れた性能を有することができる。よって、該冷媒を用いた冷凍サイクル装置は、地球温暖化への影響が更に少なく、かつ、更に優れた性能を有することができる。
 冷媒中のHFO1123の質量基準の含有率C1に対する、R290の質量基準の含有率C2の百分率(C2/C1)×100は、15%以上50%未満であることが好ましい。R290は、少量であっても、HFO1123の不均化反応の抑制効果が優れている。よって、百分率(C2/C1)×100が15%以上であれば、優れたHFO1123の不均化反応の抑制効果を得ることができる。また、百分率(C2/C1)×100が50%未満であれば、冷媒中のHFO1123の含有率を大きくすることができる。よって、冷媒はGWPが低く、かつ、優れたサイクル性能を有することができる。
 本実施形態において用いられる冷媒は、上記三成分のみからなることができる。また、該冷媒は、さらに他の成分を含んでいてもよい。他の成分の配合比率等は、本実施形態の主要な効果を妨げない範囲内において設定される。例えば、冷媒中の上記三成分の合計含有率は、90質量%以上100質量%以下とすることができる。
 本実施形態において用いられる冷媒は、更に冷凍機油を含有してもよい。冷凍機油としては、例えば、一般に用いられる冷凍機油(エステル系潤滑油、エーテル系潤滑油、フッ素系潤滑油、鉱物系潤滑油、炭化水素系潤滑油等)が挙げられる。その場合、安定性等の面で優れている冷凍機油を選択することが好ましい。
 本実施形態において用いられる冷媒は、例えば過酷な使用条件において高度の安定性を要求される場合などには、必要に応じて安定剤をさらに含有してもよい。安定剤は熱および酸化に対する冷媒の安定性を向上させる成分である。安定剤としては、従来から冷凍サイクル装置に用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が挙げられる。
 本実施形態において用いられる冷媒は、更に重合禁止剤を含んでいてもよい。重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンメチルエーテル、ベンゾトリアゾール等が挙げられる。
 <冷凍サイクル装置>
 本実施形態の冷凍サイクル装置は、空気調和用の冷凍サイクル装置(空気調和機)であることが好ましい。R32は、従来、主に空気調和機に用いられていた冷媒であり、本実施形態の冷凍サイクル装置に用いられる冷媒は、R32の凝縮圧力より低い凝縮圧力を有する。このため、特に空気調和用の冷凍サイクル装置について、耐圧性の面で信頼性を維持することができる。
 空気調和用の冷凍サイクル装置(空気調和機)としては、例えば、ルームエアコン、ウィンドウ型エアコン、モバイルエアコン、パッケージエアコン、ビル用マルチエアコン等が挙げられる。
 <冷凍機油>
 本実施の形態において、圧縮機1内に冷凍機油を充填することができる。冷凍機油としては、冷媒との相溶性が高いもの、冷媒との相溶性が低いもの、のいずれも用いることができる。
 実施の形態2.
 実施の形態1では、冷媒は、R1234yf(2,3,3,3-テトラフルオロ-1-プロペン)、HFO1123(1,1,2-トリフルオロエチレン)及びR290(プロパン)の三成分を所定の組成範囲内で含んでいる。実施の形態2では、実施の形態1の冷媒において、R290に代えて、炭素数が1以上5以下の炭化水素、及び、炭素数が1以上5以下のフッ化炭化水素からなる群より選ばれる少なくとも1種の化合物を用いる。これにより、地球温暖化の影響が少なく、従来の冷媒(例えば、R32)が用いられていた既存の冷凍サイクル装置の冷媒を入れ替えることによっても作製可能である冷凍サイクル装置を提供することができる。
 上記化合物としては、メタン(CH)、エタン(C)、ブタン(C10)、イソブタン(iso-C10)、プロピレン(C)、フルオロメタン(CHF、R41)、フルオロエタン(CF、R161)、及び、1,1-ジフルオロエタン(C、R152a)が挙げられる。
 [付記1]
 本開示の一実施形態に係る冷凍サイクル装置は、
 圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、
 前記冷凍回路内に冷媒が封入されており、
 前記冷媒は、R1234yf、HFO1123及びブタンの三成分を含有し、
 前記三成分の質量比率を三角座標で表した組成図は、
 R1234yfが100質量%、HFO1123が0質量%及びブタンが0質量%であることを示す点Aと、
 R1234yfが85質量%、HFO1123が0質量%及びブタンが15質量%であることを示す点Bと、
 R1234yfが20質量%、HFO1123が80質量%及びブタンが0質量%であることを示す点Cと、
 R1234yfが6.2質量%、HFO1123が78.8質量%及びブタンが15質量%であることを示す点Dと、を含み、
 前記三成分の質量比率は、
 前記点Aと前記点Bとを結ぶ第1直線、
 前記点Aと前記点Cとを結ぶ第2直線、
 前記点Bと前記点Dとを結ぶ第3直線、及び、
 前記点Cと前記点Dとを結ぶ第1曲線
 によって囲まれる第1範囲内に存在し、
 前記三成分のそれぞれの質量比率は、0質量%よりも大きい、冷凍サイクル装置である。
 [付記2]
 本開示の一実施形態に係る冷凍サイクル装置は、
 圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、
 前記冷凍回路内に冷媒が封入されており、
 前記冷媒は、R1234yf、HFO1123及びイソブタンの三成分を含有し、
 前記三成分の質量比率を三角座標で表した組成図は、
 R1234yfが100質量%、HFO1123が0質量%及びイソブタンが0質量%であることを示す点Aと、
 R1234yfが85質量%、HFO1123が0質量%及びイソブタンが15質量%であることを示す点Bと、
 R1234yfが20質量%、HFO1123が80質量%及びイソブタンが0質量%であることを示す点Cと、
 R1234yfが6.2質量%、HFO1123が78.8質量%及びイソブタンが15質量%であることを示す点Dと、を含み、
 前記三成分の質量比率は、
 前記点Aと前記点Bとを結ぶ第1直線、
 前記点Aと前記点Cとを結ぶ第2直線、
 前記点Bと前記点Dとを結ぶ第3直線、及び、
 前記点Cと前記点Dとを結ぶ第1曲線
 によって囲まれる第1範囲内に存在し、
 前記三成分のそれぞれの質量比率は、0質量%よりも大きい、冷凍サイクル装置である。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 流路切替弁、3 室外熱交換器、4 膨張弁、5 室内熱交換器。

Claims (4)

  1.  圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、
     前記冷凍回路内に冷媒が封入されており、
     前記冷媒は、R1234yf、HFO1123及びR290の三成分を含有し、
     前記三成分の質量比率を三角座標で表した組成図は、
     R1234yfが100質量%、HFO1123が0質量%及びR290が0質量%であることを示す点Aと、
     R1234yfが85質量%、HFO1123が0質量%及びR290が15質量%であることを示す点Bと、
     R1234yfが20質量%、HFO1123が80質量%及びR290が0質量%であることを示す点Cと、
     R1234yfが6.2質量%、HFO1123が78.8質量%及びR290が15質量%であることを示す点Dと、を含み、
     前記三成分の質量比率は、
     前記点Aと前記点Bとを結ぶ第1直線、
     前記点Aと前記点Cとを結ぶ第2直線、
     前記点Bと前記点Dとを結ぶ第3直線、及び、
     前記点Cと前記点Dとを結ぶ第1曲線
     によって囲まれる第1範囲内に存在し、
     前記三成分のそれぞれの質量比率は、0質量%よりも大きい、冷凍サイクル装置。
  2.  前記第1曲線は、R290の成分の質量比率をX軸とし、前記X軸に対して垂直方向をY軸とした座標系において、R290の質量比率をX[%]、HFO1123の質量比率をY[%]としたとき、下記式(1)で表され、
     Y=0.014X-0.250X+79.4 (1)
     R1234yfの質量比率Z[%]は、下記式(2)で表される、
     Z=100-X-Y (2)
     請求項1に記載の冷凍サイクル装置。
  3.  前記組成図は、
     R1234yfが50質量%、HFO1123が50質量%及びR290が0質量%であることを示す点A2と、
     R1234yfが35質量%、HFO1123が50質量%及びR290が15質量%であることを示す点B2と、を含み、
     前記三成分の質量比率は、
     前記点A2と前記点B2とを結ぶ第2-1直線、
     前記点A2と前記点Cとを結ぶ第2-2直線、
     前記点B2と前記点Dとを結ぶ第2-3直線、及び、
     前記第1曲線
     によって囲まれる第2範囲内に存在する、請求項1又は請求項2に記載の冷凍サイクル装置。
  4.  前記組成図は、
     R1234yfが20質量%、HFO1123が65質量%及びR290が15質量%であることを示す点B3を含み、
     前記三成分の質量比率は、
     前記点B3と前記点Cとを結ぶ第3-1直線、
     前記点B3と前記点Dとを結ぶ第3-2直線、及び、
     前記第1曲線
     によって囲まれる第3範囲内に存在する、請求項1から請求項3のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2022/014638 2022-03-25 2022-03-25 冷凍サイクル装置 WO2023181403A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014638 WO2023181403A1 (ja) 2022-03-25 2022-03-25 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014638 WO2023181403A1 (ja) 2022-03-25 2022-03-25 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2023181403A1 true WO2023181403A1 (ja) 2023-09-28

Family

ID=88100266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014638 WO2023181403A1 (ja) 2022-03-25 2022-03-25 冷凍サイクル装置

Country Status (1)

Country Link
WO (1) WO2023181403A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140887A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2017145244A1 (ja) * 2016-02-22 2017-08-31 三菱電機株式会社 冷凍サイクル装置
JP2019034983A (ja) * 2017-08-10 2019-03-07 パナソニックIpマネジメント株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
WO2019124327A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷凍サイクル装置
JP2020073640A (ja) * 2019-09-26 2020-05-14 三菱電機株式会社 冷凍サイクル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140887A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2017145244A1 (ja) * 2016-02-22 2017-08-31 三菱電機株式会社 冷凍サイクル装置
JP2019034983A (ja) * 2017-08-10 2019-03-07 パナソニックIpマネジメント株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
WO2019124327A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷凍サイクル装置
JP2020073640A (ja) * 2019-09-26 2020-05-14 三菱電機株式会社 冷凍サイクル装置

Similar Documents

Publication Publication Date Title
AU2018387884B2 (en) Refrigeration Cycle Apparatus
CN110591651B (zh) 一种制冷剂组合物其可用于家用空调
Pham et al. R32 and HFOs as low-GWP refrigerants for air conditioning
US20190153282A1 (en) Low gwp heat transfer compositions
CN110878195B (zh) 一种含三氟碘甲烷的冷媒和含有其的混合物和换热系统
CN110843457B (zh) 一种采用环保制冷剂的汽车空调热泵系统
CN110878194B (zh) 一种含r13i1的环保混合制冷剂及换热系统
JP2002228307A (ja) 混合冷媒充填方法および充填された装置
JPH0959612A (ja) トリフルオロイオドメタンを含む混合作動流体およびそれを用いた冷凍サイクル装置
CN112300761B (zh) 制冷剂及其制备方法和空调系统
WO2023181403A1 (ja) 冷凍サイクル装置
CN116083054B (zh) 环保混合制冷工质、制冷剂及制冷系统
JP2020073640A (ja) 冷凍サイクル装置
US20220243108A1 (en) Composition containing fluorohydrocarbons and preparation method thereof
CN113801635A (zh) 用于新能源汽车热泵的二元近共沸制冷剂混合物
CN110591652B (zh) 一种热传递组合物及换热系统
CN113637458A (zh) 制冷工质、制冷装置及应用
WO2023067934A1 (ja) 冷媒組成物、冷凍サイクル作動媒体、及び、冷凍サイクルシステム
CN112877035B (zh) 一种制冷剂混合物和空调系统
CN114992919B (zh) 制冷工质、制冷剂及制冷系统
CN114907817B (zh) 环保混合制冷工质、制冷剂及制冷系统
JP7354271B2 (ja) 冷凍サイクル装置
WO2017145243A1 (ja) 冷凍サイクル装置
CN116162443B (zh) 混合环保制冷工质、制冷装置及应用
CN114181664B (zh) 一种环保混合制冷工质、制冷剂及制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024509703

Country of ref document: JP

Kind code of ref document: A