WO2018189916A1 - 電気めっき方法及び装置 - Google Patents

電気めっき方法及び装置 Download PDF

Info

Publication number
WO2018189916A1
WO2018189916A1 PCT/JP2017/017949 JP2017017949W WO2018189916A1 WO 2018189916 A1 WO2018189916 A1 WO 2018189916A1 JP 2017017949 W JP2017017949 W JP 2017017949W WO 2018189916 A1 WO2018189916 A1 WO 2018189916A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
electroplating
metal element
base material
plating
Prior art date
Application number
PCT/JP2017/017949
Other languages
English (en)
French (fr)
Inventor
雅之 飯森
諒佑 竹田
Original Assignee
Ykk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ykk株式会社 filed Critical Ykk株式会社
Priority to CN201780089163.3A priority Critical patent/CN110475913B/zh
Priority to RU2019131191A priority patent/RU2718587C1/ru
Priority to BR112019011899-3A priority patent/BR112019011899B1/pt
Priority to KR1020197018582A priority patent/KR102282185B1/ko
Priority to EP17905121.4A priority patent/EP3611294B1/en
Priority to MX2019011879A priority patent/MX2019011879A/es
Priority to US16/495,733 priority patent/US11236431B2/en
Priority to JP2019512172A priority patent/JP6722821B2/ja
Priority to PCT/JP2018/014318 priority patent/WO2018190202A1/ja
Priority to US16/493,539 priority patent/US11072866B2/en
Priority to BR112019011972-8A priority patent/BR112019011972B1/pt
Priority to KR1020197018583A priority patent/KR102243188B1/ko
Priority to CN201880021279.8A priority patent/CN110462110B/zh
Priority to EP18784523.5A priority patent/EP3611293B1/en
Priority to MX2019010840A priority patent/MX2019010840A/es
Priority to JP2019512458A priority patent/JP6793251B2/ja
Priority to TW107112695A priority patent/TWI679315B/zh
Publication of WO2018189916A1 publication Critical patent/WO2018189916A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/02Slide fasteners
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/16Apparatus for electrolytic coating of small objects in bulk
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/16Apparatus for electrolytic coating of small objects in bulk
    • C25D17/18Apparatus for electrolytic coating of small objects in bulk having closed containers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/007Electroplating using magnetic fields, e.g. magnets
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B19/00Slide fasteners
    • A44B19/24Details
    • A44B19/26Sliders
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/625Discontinuous layers, e.g. microcracked layers

Definitions

  • the present disclosure relates to an electroplating method and apparatus.
  • Patent Document 1 stirs the object 6 to be plated on the elastic body 4 in accordance with the expansion and contraction of the elastic body 4 at the bottom of the processing container 1.
  • electroplating by energization between the first electrode 7 and the second electrode 12 provided on the elastic body 4. This stirring and electroplating are performed simultaneously.
  • the elastic body 4 is deformed by an air cylinder.
  • FIG. 2 of the same document shows a state where the rod of the air cylinder is retracted
  • FIG. 3 of the same document shows a state where the rod is advanced.
  • the object 6 to be plated is agitated by repeating the states of FIGS.
  • Patent Document 2 discloses that the pipe 1 in the barrel 2 is smoothed with a medium 7 during copper plating in paragraph 0052 of the same document.
  • Patent Document 3 discloses a plating apparatus that uses a centrifugal force generated by rotating a plating chamber to perform plating on an object to be plated.
  • the plating chamber 4 includes a rotating body 11 provided with a cathode 10, a tubular member 3, and an anode 13 loosely fitted to the tubular member 3 inside the rotating body 11.
  • the rotating body 11 is driven by an electric motor 18.
  • the rotating body 11 rotates, the workpiece 1 in the rotating body 11 is pressed against the cathode 10 according to the centrifugal force.
  • a plating layer is formed on the external electrode of the workpiece 1 facing the anode 13.
  • Patent Document 4 relates to a plating apparatus similar to Patent Document 3.
  • Patent document 4 discloses introducing a stirring medium into a plating process chamber in order to suppress aggregation of a to-be-plated object and a conductive medium.
  • An electroplating method includes: A stirring step of causing a group of base materials (51) settled in the electrolytic solution in the electroplating tank (10) to flow in the circumferential direction along the inner wall (19) of the electroplating tank (10); An electroplating step of electroplating the group of base materials (51) flowing along the circumferential direction in the electrolytic solution in the electroplating tank (10); The flow along the circumferential direction of the group of base materials (51) occurs with the flow along the circumferential direction of the magnetic media (30) in the electrolytic solution in the electroplating tank (10), or Occurs with the rotation of the stirring section (46) provided on the bottom side of the electroplating tank (10), A lower cathode in which at least a part of the group of base materials (51) flowing along the circumferential direction in the electrolytic solution in the electroplating tank (10) is provided on the bottom side of the electroplating tank (10).
  • the base material (51) which is in contact with (21) and located above the base material (51) in contact with the lower catho
  • the lower cathode (21) extends along the circumferential direction in the vicinity of the inner wall (19) on the bottom side of the cylindrical portion (11) of the electroplating tank (10).
  • an upper anode (22) provided above the lower cathode (21) extends along the circumferential direction.
  • the stirring section (46) is rotatably provided on the bottom side of the electroplating tank (10) and constitutes at least a part of the bottom of the electroplating tank (10).
  • the electroplating tank (10) includes a cylindrical portion (11), and the cylindrical portion (11) is a stationary member.
  • the magnetic media (30) is a rod or needle-like member.
  • the maximum rpm of the substrate (51) in the electroplating tank (10) is less than 40 rpm.
  • the substrate (51) comprises one or more substrate metal elements, A plating layer (52) comprising at least a first plating layer metal element and a second plating layer metal element different from the first plating layer metal element immediately above the substrate (51) by the electroplating step.
  • the second plating layer metal element is the same metal element as at least one of the one or more base metal elements;
  • the ratio of the second plating layer metal element in the plating layer (52) continuously decreases in accordance with the distance from the base material (51) in the thickness direction of the plating layer (52), and / or There is no clear interface between the substrate (51) and the plating layer (52).
  • the ratio of the first plating layer metal element on the surface of the plating layer (52) is less than 100% or less than 90%.
  • the plating layer (52) has a thickness of 150 nm or less, or 100 nm or less.
  • the plating layer (52) has an opposite surface (52s) opposite the substrate (51); The decrease in the ratio of the second plating layer metal element in the plating layer (52) reaches the opposite surface (52s) or in the vicinity of the opposite surface (52s) in the thickness direction of the plating layer (52). Continue until.
  • the substrate (51) includes a plurality of the substrate metal elements
  • the plating layer (52) includes a plurality of the second plating layer metal elements, The proportion of each second plating layer metal element in the plating layer (52) decreases as the plating layer (52) moves away from the substrate (51) in the thickness direction.
  • the proportion of the first plating layer metal element in the plating layer (52) decreases as the thickness of the plating layer (52) approaches the substrate (51). .
  • the substrate (51) is a metal or alloy containing at least copper as the substrate metal element.
  • the plating layer (52) is a metal or alloy containing at least tin as the first plating layer metal element.
  • the plating layer (52) has an opposite surface (52s) opposite the substrate (51);
  • the opposite surface (52s) is formed with two-dimensionally dense particle-like portions and / or small lump-like portions.
  • the plating material (5) including the base material (51) and the plating layer (52) is at least a part of the clothing component (7).
  • An electroplating apparatus includes: An electroplating tank (10) for storing an electrolytic solution is used, and a lower cathode (21) provided on the bottom side of the electroplating tank (10) and an upper anode (22) provided above the lower cathode (21).
  • An electroplating tank (10) comprising: A stirring mechanism (40) for causing a group of substrates (51) settled in the electrolytic solution in the electroplating tank (10) to flow in the circumferential direction along the inner wall (19) of the electroplating tank (10);
  • the flow along the circumferential direction of the group of base materials (51) occurs with the flow along the circumferential direction of the magnetic media (30) in the electrolytic solution in the electroplating tank (10), or Occurs with the rotation of the stirring section (46) provided on the bottom side of the electroplating tank (10),
  • At least a part of the group of base materials (51) flowing along the circumferential direction in the electrolytic solution in the electroplating tank (10) is in contact with the lower cathode (21), and the lower cathode (21).
  • the base material (51) positioned above the base material (51) in contact with the lower electrode (21) is electrically connected to the lower cathode (21) through at least the base material (51) in contact with the lower cathode (21). Connected.
  • the stirring mechanism (40) acts magnetically on the group of magnetic media (30) in the electrolyte in the electroplating tank (10) to cause the group of magnetism.
  • the media (30) is caused to flow along the circumferential direction, and accordingly, the group of base materials (51) are caused to flow along the circumferential direction.
  • the stirring mechanism (40) is A stirring portion (46) rotatably provided on the bottom side of the electroplating tank (10); A rotational force supply mechanism (47) is provided for supplying rotational force to the stirring section (46).
  • the stirring portion (46) includes a radial array of wings (463) protruding upward.
  • the electroplating tank (10) includes a cylindrical portion (11) having an opening (18) in the upper portion that allows charging or collection of the base material (51),
  • the lower cathode (21) extends along the circumferential direction in the vicinity of the inner wall (19) on the bottom side of the cylindrical portion (11).
  • the cylindrical portion (11) is a stationary member.
  • the maximum rpm of the substrate (51) in the electroplating tank (10) is less than 40 rpm.
  • An electroplating apparatus is the electroplating apparatus according to any one of the above, wherein the base material (51) includes one or more base metal elements.
  • a plating layer (52) including at least a first plating layer metal element and a second plating layer metal element different from the first plating layer metal element is formed directly on the base material (51), The second plating layer metal element is the same metal element as at least one of the one or more base metal elements;
  • the ratio of the second plating layer metal element in the plating layer (52) continuously decreases in accordance with the distance from the base material (51) in the thickness direction of the plating layer (52), and / or There is no clear interface between the substrate (51) and the plating layer (52).
  • the proportion of the first plating layer metal element (Sn) decreases as it approaches the substrate in the thickness direction of the plating layer. It is a figure which shows element distribution in the cross section of the plating material which concerns on 1 aspect of this indication, the 1st plating layer metal element (Sn) exists in a plating layer, and a base metal element (Cu) is a base material and a plating layer. It indicates that the base metal element (Zn) exists in the base material and the plating layer. It is shown that Cu exists near the surface of the plating layer rather than Zn. It is a SEM photograph which shows the section of the plating material concerning one mode of this indication, and shows that a clear interface does not exist between a substrate and a plating layer.
  • the base metal element (Zn) is not present in the plating layer. It is a SEM photograph which shows the state of the surface of the plating layer of the conventional plating material, and it is shown that the crack and the pinhole are formed. It is a schematic graph which shows the change of the ratio of each metal element of the plating material in the thickness direction of the plating layer which concerns on 1 aspect of this indication.
  • the proportion of the second plating layer metal element (Zn) in the plating layer continuously decreases as the plating layer moves away from the substrate in the thickness direction.
  • the proportion of the first plating layer metal element (Cu) decreases as it approaches the substrate in the thickness direction of the plating layer.
  • the proportion of the second plating layer metal element (Cu) in the plating layer continuously decreases as the plating layer is separated from the substrate in the thickness direction.
  • the proportion of the first plating layer metal element (Zn) decreases as it approaches the substrate in the thickness direction of the plating layer.
  • the proportion of the second plating layer metal element (Cu, Zn) in the plating layer decreases steeply and continuously as the distance from the substrate in the thickness direction of the plating layer.
  • the proportion of the first plating layer metal element (Sn) decreases as it approaches the substrate in the thickness direction of the plating layer.
  • the thickness of the plating layer is further thinner than in the case of FIG.
  • It is a schematic graph at the time of forming a plating layer thinner than FIG. It is a mimetic diagram showing roughly the layer structure of the plating material concerning one mode of this indication, and the plating layer formed just above the substrate contains the ground plating layer and the surface plating layer. It is a schematic graph which shows the change of the ratio of each metal element of the plating material in the thickness direction of the plating layer which concerns on 1 aspect of this indication.
  • the base plating layer is made of a certain first plating layer metal element (Sn).
  • the surface plating layer is made of another first plating layer metal element (Cu). It is a schematic graph which shows the change of the ratio of each metal element of the plating material in the thickness direction of the plating layer which concerns on 1 aspect of this indication.
  • the proportion of the second plating layer metal element (Zn) in the plating layer continuously decreases as the plating layer moves away from the substrate in the thickness direction.
  • the proportion of the first plating layer metal element (Cu) decreases as it approaches the substrate in the thickness direction of the plating layer.
  • the proportion of the second plating layer metal element (Fe) in the plating layer continuously decreases as the plating layer moves away from the substrate in the thickness direction.
  • the proportion of the first plating layer metal element (Cu) decreases as it approaches the substrate in the thickness direction of the plating layer.
  • FIG. 22 is a schematic partial cross-sectional view of the electroplating apparatus along X22-X22 in FIG. 21. It is a schematic graph which shows that the maximum rpm of a base material increases according to the time passage of a stirring and electroplating process. It is a mimetic diagram showing a schematic structure of an electroplating device of an example which is not limited and can be used for manufacture of a plating material concerning one mode of this indication.
  • FIG. 22 is a schematic partial cross-sectional view of the electroplating apparatus along X22-X22 in FIG. 21. It is a schematic graph which shows that the maximum rpm of a base material increases according to the time passage of a stirring and electroplating process. It is a mimetic diagram showing a schematic structure of an electroplating device of an example which is not limited and can be used for manufacture of a plating material concerning one mode of this indication.
  • FIG. 22 is a schematic partial cross-sectional view of the electroplating apparatus along X22-X22 in FIG
  • FIG. 25 is a schematic top schematic view of the stirring unit of the electroplating apparatus shown in FIG. 24, showing that the stirring unit includes a radial array of wings protruding upward.
  • Each feature included in one or more disclosed embodiments and example embodiments is not individually independent.
  • Those skilled in the art can combine each example embodiment and / or each feature without undue explanation.
  • Those skilled in the art can also understand the synergistic effect of this combination. In principle, duplicate description between the embodiments is omitted.
  • the reference drawings are mainly for description of the invention, and may be simplified for convenience of drawing.
  • a plurality of characteristics described with respect to a certain plating material and / or manufacturing method of a plating material and a certain electroplating method and / or electroplating apparatus are understood as a combination of these characteristics, and others. It is understood as an individual feature that is independent of the feature. An individual feature is understood as an independent individual feature without requiring a combination with other features, but is also understood as a combination with one or more other individual features. The description of all individual feature combinations is redundant to those skilled in the art and is omitted. Individual features are manifested by expressions such as “some embodiments”, “some cases”, “some examples”.
  • the individual characteristics are not effective only for the plating material and / or the manufacturing method of the plating material and the electroplating method and / or the electroplating apparatus disclosed in the drawings, for example. It is understood as a universal feature that can also be applied to a method for producing a plating material and various other electroplating methods and / or electroplating apparatuses.
  • first”, “second”, and “third” are used to logically distinguish the nouns to which these are attached.
  • first is not used to indicate that there is only one noun to which it is attached (except where it is explicitly indicated).
  • a plurality of second plating layer metal elements the presence of a plurality of metal elements as the second plating layer metal elements is indicated.
  • first, second, and third are not used to indicate that the nouns to which they are attached are different (except when explicitly indicated as such).
  • the third metal element is the same metal element as at least one of the one or more first metal elements”
  • the third metal element can be the same as the first metal element. .
  • FIG. 1 is a schematic perspective view of the cap of the plating material 5.
  • FIG. 2 is a schematic perspective view of a clothing component 7 in which a cap of the plating material 5 is attached to the core material 6.
  • FIG. 3 is a schematic diagram schematically showing the layer structure of the plating material 5, and shows a base 51 and a plating layer 52 formed immediately above the base 51.
  • the interface 53 of the base material 51 and the plating layer 52 is illustrated by a solid line, there is actually no clear interface.
  • the base material 51 contains one or more base metal elements.
  • the plating layer 52 includes one or more first plating layer metal elements.
  • the plating layer 52 includes a base metal element in addition to the first plating layer metal element.
  • FIG. 1 is a schematic perspective view of the cap of the plating material 5.
  • FIG. 2 is a schematic perspective view of a clothing component 7 in which a cap of the plating material 5 is attached to the core material 6.
  • FIG. 3 is a schematic diagram schematically showing the layer structure of
  • FIG. 4 is a schematic graph showing changes in the ratio of each metal element of the plating material 5 in the thickness direction of the plating layer 52.
  • the proportion of the second plating layer metal element (Cu, Zn) in the plating layer 52 continuously decreases as the plating layer 52 moves away from the base material 51 in the thickness direction.
  • the proportion of the first plating layer metal element (Sn) decreases as the thickness of the plating layer 52 approaches the substrate 51.
  • FIG. 5 is a diagram showing an element distribution in a cross section of the plating material 5, wherein the first plating layer metal element (Sn) is present in the plating layer 52, and the base metal element (Cu) is the base material 51 and the plating layer. 52 indicates that the base metal element (Zn) is present in the base 51 and the plating layer 52.
  • FIG. 6 is an SEM photograph showing a cross section of the plating material 5 according to one embodiment of the present disclosure, and shows that there is no clear interface between the base material 51 and the plating layer 52.
  • FIG. 7 is an SEM photograph showing the state of the surface of the plating layer 52, and it is shown that the particulate portions and / or small block portions are densely formed in two dimensions.
  • the plating material 5 includes a base material 51 and a plating layer 52 formed immediately above the base material 51.
  • the plating material 5 may be a component in which the base 51 is covered with at least a plating layer 52.
  • the plating material 5 may be at least a part of the clothing component 7.
  • the plating material 5 is a part of the clothing component 7 and is combined with another part to produce the clothing component 7.
  • the plating material 5 is a cap-shaped base 51 that is a cap, and plating that is formed on the surface of the base 51 or covers the entire surface of the base 51. It has a layer 52.
  • the plating material 5 of FIG. 1 is attached to the core material 6, and the clothing component 7 is constructed. In the field of clothing parts, it is strongly required to ensure variations in the metal color and metallic luster of the clothing parts while suppressing materials and / or manufacturing costs.
  • the base material 51 includes one or more base metal elements.
  • the plating layer 52 includes at least a first plating layer metal element and a second plating layer metal element different from the first plating layer metal element.
  • the base material 51 consists of a pure metal
  • the base material 51 contains one base metal element.
  • the base material 51 consists of an alloy
  • the base material 51 contains two or more base metal elements.
  • a trace amount of inevitable impurities or inevitable metals may be included in the process of manufacturing or refining a metal material such as pure metal or alloy.
  • the substrate 51 is made of brass (CuZn)
  • the substrate 51 can contain other trace amounts of metals or alloys.
  • the Sn electrode material for electroplating may contain a trace amount of metal other than Sn.
  • the base metal element can be any arbitrary metal element.
  • the first and second plating layer metal elements, or other plating layer metal elements, can be any arbitrary metal element.
  • the second plating layer metal element contained in the plating layer 52 is the same metal element as at least one of the one or more base metal elements.
  • the first plating layer metal element is Sn
  • the second plating layer metal element is Cu and / or Zn.
  • the first plating layer metal element (Sn in the example of FIG. 4) is different from at least one base metal element (both Cu and Zn in the example of FIG. 4).
  • the first plating layer metal element included in the plating layer 52 is different from at least one of the plurality of base metal elements (this is better understood from reference to FIG. 11 and the like). .
  • the second plating layer metal element in the plating layer 52 (in accordance with the separation from the substrate 51 in the thickness direction of the plating layer 52).
  • the ratio of Cu and Zn) decreases continuously.
  • there is no clear interface between the plated layer 52 and the substrate 51 as can be seen from the non-limiting example demonstration of FIG.
  • the adhesion between the substrate 51 and the plating layer 52 is enhanced.
  • the occurrence of peeling at the interface between the substrate 51 and the plating layer 52 can be reduced and / or the thickness of the plating layer 52 can be reduced.
  • the first plating layer metal element is derived from metal ions present in the electrolyte during electroplating.
  • the second plating layer metal element is derived from the base metal element of the base 51.
  • the plating layer can be defined as a layer including a metal deposited on the substrate by electroplating in the thickness direction. Therefore, in this specification, a plating layer may contain metals other than the metal deposited on the base material by electroplating.
  • the plating layer metal element described above is a metal element constituting the plating layer, in other words, a metal element contained in the plating layer.
  • the second plating layer metal element can be derived from the composition of the substrate.
  • the first plating layer metal element need not be derived from the composition of the substrate. More specifically, without limitation, the first plating layer metal element may be a metal element deposited on the substrate as at least a part of the plating layer.
  • the first plating layer metal element is supplied into the plating solution separately from the base material, and coincides with the metal element of the deposit of metal ions that migrates toward the base material.
  • the second plating layer metal element is not limited to precipitates on the substrate.
  • the second plating layer metal element is a base metal element that was present in or included in the base material to be plated and / or a base metal element that has been eluted and deposited from the base material to be plated. obtain.
  • the base metal element is a metal element constituting the base, in other words, a metal element contained in the base.
  • the ratio of the metal element on the surface of the plating layer can be easily changed by changing the thickness of the plating layer.
  • the ratio of the metal element differs between the surface of the plating layer having a thickness T1 in FIG. 4 and the surface of the plating layer having a thickness T2 in FIG.
  • the configuration of the plating layer can be changed by changing the thickness of the plating layer, and variations of the plating layer can be easily obtained.
  • Variations in the plating layer can be variations in chemical properties, electrical properties, and / or physical properties depending on the proportion of elements.
  • the variation of the plating layer can be a variation of the color of the plating layer.
  • the boundary L1 of a plating layer and a base material is drawn.
  • the first plating layer metal element (Sn) is not completely zero in the base material region deeper than the boundary L1. However, this is due to errors in the measurement and data output process.
  • the first plating layer metal element (Sn) does not exist in the region of the substrate 51.
  • a curve showing the change in the proportion of the first plating layer metal element in the thickness direction of the plating layer 52 and the base in the thickness direction of the plating layer 52 are shown. Curves showing changes in the ratio of the metal elements intersect.
  • the opposite surface 52 s of the plating layer 52 is also referred to as the surface of the plating layer 52.
  • the decrease in the proportion of the second plating layer metal element in the plating layer 52 extends to the opposite surface 52s in the thickness direction of the plating layer 52 or It continues until it reaches the vicinity of the opposite surface 52s.
  • the plating layer 52 is not formed so thick that there is no change in the proportion of the base metal element. The thinning of the plating layer 52 contributes to a reduction in the amount of metal material used for forming the plating layer.
  • the substrate 51 includes a plurality of substrate metal elements
  • the plating layer 52 includes a plurality of substrate metal elements
  • the plating layer 52 The ratio of each second plating layer metal element in the plating layer 52 decreases as the distance from the substrate 51 increases in the thickness direction.
  • the base material 51 includes three or more base metal elements is also assumed. It is also assumed that the plating layer 52 includes two or more plating layer metal elements.
  • the element ratio depends on atomic percent (at%). That is, when the proportion of an element is large, the atomic percentage value of that element is large.
  • the atomic percentage is determined using a JAMP9500F Auger electron spectroscopic analyzer manufactured by JEOL Ltd.
  • the base metal element and the first plating layer metal element may be various arbitrary metal elements.
  • the base metal 51 is made of brass (CuZn), and the base metal element is copper (Cu). And zinc (Zn).
  • the substrate 51 is a metal or alloy containing at least copper as a substrate metal element.
  • the plating layer 52 is a metal or alloy containing at least tin (Sn) as the first plating layer metal element.
  • the base 51 includes a plurality of base metal elements (for example, Cu, Sn), and the plating layer 52 includes a plurality of second plating layer metal elements (for example, Cu, Sn, etc.). Sn).
  • the proportion of each second plating layer metal element (for example, Cu, Sn) in the plating layer 52 decreases as the plating layer 52 moves away from the substrate 51 in the thickness direction.
  • the opposite surface 52s of the plating layer 52 is formed with two-dimensionally dense particle portions and / or small block portions.
  • the plated layer 52 may have increased alkali, acid, and chemical resistance due to its dense surface state. Even if the plating layer 52 is made thin, sufficient chemical resistance of the plating layer 52 is ensured.
  • the thickness of the plating layer 52 is 150 nm or less, or 100 nm or less. In the plating materials according to some embodiments, there is no particular problem in terms of plating adhesion even when the thickness of the plating layer 52 is 150 nm or less or 100 nm or less.
  • the minimum thickness may be set in consideration of the productivity of the plating material. From such a viewpoint, 150 nm or less or 100 nm or less is preferable. However, the thickness is not limited to this, and the film thickness may be further increased by continuing the plating time.
  • the boundary between the substrate 51 and the plating layer 52 is determined based on the measurement method shown in FIG. 4 and / or FIG. In the measurement method of FIG. 4, the boundary between the base material 51 and the plating layer 52 is determined by the depth from the surface of the plating layer 52 that reaches the ratio of the predetermined base metal element in the base material 51. In the measurement method of FIG.
  • the boundary between the base material 51 and the plating layer 52 for the product of the present invention should be determined as follows.
  • a position where the ratio of the base metal element reaches 98% with respect to the maximum ratio of the main base metal element in the base 51 is determined as a boundary between the base 51 and the plating layer 52.
  • the main base metal element in the base material 51 is the single base metal element.
  • the main base metal element in the base material 51 is the base metal element having the largest proportion, that is, atomic percent, when the base material 51 includes a plurality of base metal elements.
  • the atomic percentage of Cu which is the metal component with the largest proportion (metal component with the largest atomic percent), is 80 at.
  • a position where 98% of% is reached is defined as a boundary.
  • the conventional barrel plating and stationary plating are not in the interface-free state as in the embodiment of the present invention, but have a clear interface, and the position is defined as the boundary between the substrate 51 and the plating layer 52.
  • the position of the average height (Rc) of the irregularities on the surface is defined as the boundary between the substrate 51 and the plating layer 52 for convenience.
  • FIG. 8 is an SEM photograph showing a cross section of a conventional plating material, and shows that an interface exists between the substrate and the plating layer.
  • FIG. 9 is a diagram showing an element distribution in a cross section of a conventional plating material, in which a plating layer metal element (Sn) is present in the plating layer, and a plating layer metal element and a base metal element (Cu) are base material and plating.
  • the film thickness may be increased to more than 200 nm in order to improve the color tone and surface state of the plating surface, and the plating layer is simple on the base material. Therefore, the boundary between the substrate 51 and the plating layer 52 can be clearly identified visually. However, since the surface of the base material actually has fine irregularities, the interface is the irregular surface itself.
  • FIG. 10 is an SEM photograph showing the state of the surface of the plating layer of the conventional plating material, and shows that cracks and pinholes are formed.
  • the base material is made of brass (CuZn), and the plating layer is made of a CuSn alloy.
  • the elemental percentage of Cu and the elemental percentage of Sn are substantially constant.
  • FIG. 8 there is a clear interface between the plating layer and the substrate, which is understood from the difference in the metal structure between the plating layer and the substrate.
  • the plating layer does not contain Zn as a base metal element.
  • the reason why the plating layer contains Cu is that Cu is a plating layer metal element.
  • cracks D1 and pinholes D2 exist on the surface of the plating layer.
  • Corrosion and collapse of the plating layer can proceed due to the entry of alkali, acid, and chemical into the crack D1 and the pinhole D2.
  • a plating thickness of about 10,000 nm or more is required.
  • a thickness of 100 nm such as 250 nm is used.
  • a compromise is made where a plating layer having a thickness of up to 200 nm is formed, and it can withstand a certain practical level with respect to problems such as plating peeling, oxidation and discoloration.
  • the plating layer of the conventional plating material in FIGS. 8 to 10 is formed by barrel plating.
  • Barrel plating is a method in which a material to be plated, a base material referred to in the present specification, is placed in a barrel (rotary basket) immersed in a plating bath, and electroplating is performed while rotating the barrel.
  • a large amount of material to be plated can be electroplated at a time.
  • the plating layer of the plating material according to the embodiment of FIGS. 1 to 7 is formed by a non-limiting example method described later with reference to FIGS. 19 to 28, it should not necessarily be limited to this method. is not.
  • One of ordinary skill in the art can improve on existing barrel plating or devise other methods that are quite different to achieve a plating layer according to the present disclosure.
  • the plating material according to the embodiment illustrated in FIGS. 1 to 7 can contribute to solving the conventional problem of low adhesion due to the interface between the base material and the plating layer. Even if the plating layer is formed thick, if there is an interface between the plating layer and the substrate, peeling of the plating layer can be induced. Additionally or alternatively, the plating material according to the embodiment illustrated in FIGS. 1 to 7 can contribute to solving the conventional problem that the plating layer is thick. Additionally or alternatively, the plating material according to the embodiment illustrated in FIGS. 1 to 7 can contribute to solving the conventional problem that there are a large number of cracks and / or pinholes on the surface of the plating layer.
  • FIG. 11 is a schematic graph showing a change in the ratio of each metal element of the plating material in the thickness direction of the plating layer.
  • the substrate 51 is made of brass (CuZn)
  • the first plating layer metal element is copper (Cu).
  • the proportion of the second plating layer metal element (Zn) in the plating layer continuously decreases as the plating layer moves away from the substrate in the thickness direction.
  • the first plating layer metal element is copper (Cu)
  • a change in the ratio of the metal element (Cu) derived from the substrate 51 in the plating layer cannot be observed.
  • the ratio of the metal element (Cu) decreases as the thickness of the plating layer approaches the substrate.
  • the change in the ratio of the metal element (Cu) in the plating layer in FIG. 11 indicates the change in the total ratio of Cu as the base metal element and Cu as the first plating layer metal element.
  • the change in the ratio of the metal element (Cu) in the plating layer in FIG. It is confirmed that the ratio of the first plating layer metal element (Cu) decreases as it approaches the substrate.
  • FIG. 12 is a schematic graph showing a change in the ratio of each metal element of the plating material in the thickness direction of the plating layer.
  • the base material 51 is made of brass (CuZn), and the first plating layer metal element is zinc (Zn).
  • the proportion of the second plating layer metal element (Cu) in the plating layer continuously decreases as the distance from the substrate in the thickness direction of the plating layer.
  • the first plating layer metal element is zinc (Zn)
  • the proportion of the metal element (Zn) decreases in accordance with the approach to the substrate in the thickness direction of the plating layer.
  • the first plating layer metal element (Zn) in accordance with the approach to the substrate in the thickness direction of the plating layer. ) To reduce the percentage.
  • FIG. 13 is a schematic graph showing a change in the ratio of each metal element of the plating material in the thickness direction of the plating layer.
  • the base material 51 is made of brass (CuZn)
  • the first plating layer metal element is tin (Sn).
  • the proportion of the second plating layer metal element (Cu or Zn) in the plating layer decreases steeply and continuously as the distance from the substrate in the thickness direction of the plating layer.
  • the proportion of the first plating layer metal element (Sn) decreases as it approaches the substrate in the thickness direction of the plating layer.
  • the plating layer is formed by an apparatus different from that of FIG. 4, and the remarkable effect that the thickness of the plating layer is thinner than the plating layer of FIG. 4 is obtained.
  • the thickness of the plating layer should not necessarily be limited to the thicknesses of the above examples.
  • the thickness of the plating is larger than 20 nm, a plating material having a color closer to the silver color that is the color of the Sn material can be obtained.
  • the thickness of the plating is smaller than 20 nm, a plating material having a color closer to yellow, which is the color of the brass of the base material 51, can be obtained.
  • the plating thickness in FIG. 13 is 10 nm is shown in FIG.
  • the plating material of the embodiment of FIG. 13 has a light gold color, while yellow has a slightly stronger color.
  • a plating material having an advantage in adhesion over conventional barrel plating can be obtained.
  • FIG. 15 is a schematic diagram schematically showing the layer structure of the plating material, and the plating layer formed immediately above the substrate includes a base plating layer and a surface plating layer.
  • FIG. 16 is a schematic graph showing a change in the ratio of each metal element of the plating material in the thickness direction of the plating layer.
  • the plating layer is composed of a base plating layer and a surface plating layer.
  • the substrate 51 is made of brass (CuZn)
  • the first plating layer metal element of the base plating layer is made of tin (Sn)
  • the first plating layer metal element of the surface plating layer is copper (Cu ).
  • the proportion of the second plating layer metal element (Cu or Zn) in the base plating layer continuously decreases as the plating layer is separated from the substrate in the thickness direction.
  • the proportion of the first plating layer metal element (Sn) in the base plating layer continuously decreases as the thickness approaches the substrate in the thickness direction of the plating layer.
  • the proportion of the second plating layer metal element (Zn) in the surface plating layer continuously decreases in accordance with the separation from the base plating layer in the thickness direction of the plating layer, and the first plating layer metal element ( The ratio of Sn) decreases continuously as well.
  • the first plating layer metal element of the surface plating layer is copper (Cu)
  • a change in the ratio of the metal element (Cu) derived from the substrate 51 in the surface plating layer cannot be observed.
  • the proportion of the metal element (Cu) in the surface plating layer decreases in the thickness direction of the surface plating layer in accordance with the approach to the base plating layer in the thickness direction of the surface plating layer. It supports that the ratio of the metal element (Cu) derived from the base material 51 of the plating layer decreases.
  • FIG. 17 is a schematic graph showing a change in the ratio of each metal element of the plating material in the thickness direction of the plating layer.
  • the substrate 51 is made of zinc (Zn)
  • the first plating layer metal element of the plating layer is copper (Cu).
  • the proportion of the second plating layer metal element (Zn) in the plating layer continuously decreases as the plating layer moves away from the substrate in the thickness direction.
  • the proportion of the first plating layer metal element (Cu) decreases as it approaches the substrate in the thickness direction of the plating layer.
  • FIG. 18 is a schematic graph showing changes in the ratio of each metal element of the plating material in the thickness direction of the plating layer.
  • the base material 51 is made of stainless steel and contains a base metal element (Fe).
  • the first plating layer metal element of the plating layer is copper (Cu).
  • the proportion of the second plating layer metal element (Fe) in the plating layer continuously decreases as the plating layer moves away from the substrate in the thickness direction.
  • the proportion of the first plating layer metal element (Cu) decreases as it approaches the substrate in the thickness direction of the plating layer.
  • the thickness of the portion in which the ratio of the second plating layer metal element continuously decreases in accordance with the separation from the base material 51 in the thickness direction of the plating layer 52 is 10 nm or more. Or 20 nm or more, or 60 nm or more.
  • FIG. 17 shows that the ratio of the second plating layer metal element (Zn) continuously decreases in the thickness range of 60 nm and / or 400 nm or more.
  • FIG. 18 shows that the ratio of the second plating layer metal element (Fe) decreases in the thickness range of 60 nm and / or 100 nm or more.
  • FIG. 4 shows that the ratio of the second plating layer metal element (Cu) continuously decreases in the thickness range of 60 nm or more.
  • FIG. 4 shows that the ratio of the second plating layer metal element (Zn) continuously decreases in the thickness range of 40 nm or more.
  • 11 and 12 are the same as FIG.
  • FIG. 13 shows that the ratio of the second plating layer metal element (Cu, Zn) continuously and steeply decreases in the thickness range of 10 nm and / or 20 nm or more.
  • the thickness of the portion where the proportion of the second plating layer metal element continuously decreases as the distance from the substrate 51 in the thickness direction of the plating layer 52 is 80 nm or less. Or 60 nm or less, or 30 nm or less, or 20 nm or less.
  • FIG. 4 shows that the ratio of the second plating layer metal element (Cu, Zn) continuously decreases in the thickness range of 80 nm or less or 60 nm or less.
  • FIG. 13 shows that the ratio of the second plating layer metal element (Cu, Zn) continuously and steeply decreases in the thickness range of 30 nm or less and / or 20 nm or less.
  • the proportion of the first plating layer metal element on the surface of the plating layer 52 is less than 100% or less than 90%. Because of the second plating metal element in the plating layer, the ratio of the first plating layer metal element on the outermost surface of the plating layer 52 does not become 100%. The ratio of the first plating layer metal element on the surface of the plating layer 52 is theoretically less than 100%, or less than 90% even when foreign matter and measurement error are taken into consideration. For example, in the embodiment of FIG. 13, the plating is finished when Sn which is the first plating layer metal element reaches 35%.
  • the ratio of the metal element of the plating layer is theoretically 100% on the surface of the plated material after the completion of plating, or 90% or more in consideration of foreign matter and measurement error. Yes.
  • FIG. 19 is a schematic flowchart showing a non-limiting example manufacturing method of a plating material.
  • FIG. 20 is a schematic diagram illustrating a schematic configuration of an electroplating apparatus of a non-limiting example that can be used for manufacturing a plating material.
  • FIG. 21 is a schematic top view of the plating tank of the electroplating apparatus, showing an arrangement example of the cathode and the anode in the plating tank, and showing the low friction material provided at the bottom of the plating tank.
  • FIG. 22 is a schematic partial cross-sectional view of the electroplating apparatus along X22-X22 in FIG.
  • FIG. 23 is a schematic graph showing that the maximum rpm of the substrate increases with time of the stirring and electroplating steps.
  • FIG. 24 is a schematic diagram showing a schematic configuration of an electroplating apparatus of a non-limiting example that can be used for manufacturing a plating material.
  • FIG. 25 is a schematic top view of the stirring unit of the electroplating apparatus shown in FIG.
  • FIG. 26 is a schematic diagram showing a schematic configuration of the electroplating apparatus, and shows an example in which a hollow or non-hollow cylindrical part is provided in the central part of the plating tank.
  • FIG. 27 is a schematic diagram showing a schematic configuration of the electroplating apparatus, and shows an example in which the arrangement of the cathode and the anode is different.
  • FIG. 28 is a schematic diagram showing a schematic configuration of the electroplating apparatus, and shows a plate-like stirring unit.
  • the method for producing a plating material includes a step of introducing a base material containing a base metal element into an electroplating tank, and a step of electroplating while causing the base material to flow in the circumferential direction in the electroplating tank. May be included.
  • a plating layer containing a first plating layer metal element different from the base metal element is formed immediately above the base material.
  • the formed plating layer further includes a base metal element.
  • the ratio of the second plating layer metal element in the plating layer decreases as the distance from the substrate in the thickness direction of the plating layer decreases, and / or a clear interface between the plating layer and the substrate. Does not exist.
  • step of electroplating while allowing the base material to flow in the circumferential direction in the electroplating tank is based on the disclosure described later, and a group of base materials that have settled in the electrolytic solution in the electroplating tank It can be understood to include an agitation step for flowing in the circumferential direction along the electroplating process and an electroplating step for electroplating a group of substrates flowing in the circumferential direction in the electrolytic solution in the electroplating tank.
  • An electroplating apparatus 1 includes an electroplating tank 10 that stores an electrolytic solution, and a group of substrates that have settled in the electrolytic solution stored in the electroplating tank 10.
  • the stirring mechanism 40 which makes 51 flow is provided.
  • the electrolytic solution is, for example, a cyan electrolytic solution.
  • the base material 51 may be referred to as a material to be plated.
  • the stirring mechanism 40 causes the group of base materials 51 that have settled in the electrolyte stored in the electroplating tank 10 to move around the inner wall 19 of the electroplating tank 10 while maintaining a substantially settled state. Flow in the direction.
  • the stirring mechanism 40 magnetically acts on the group of magnetic media 30 in the electrolytic solution of the electroplating tank 10 to cause the group of magnetic media 30 to flow.
  • the magnetic media 30 flows, the magnetic media 30 collides with the base material 51.
  • the kinetic force of the magnetic medium 30 is transmitted to the base material 51, and the base material 51 starts to flow.
  • the flow of the base material 51 is maintained or promoted by continuous or intermittent collision of the magnetic media 30 with respect to the base material 51.
  • the substrate 51 and the plating layer 52 are polished by the contact and collision between the substrates 51 and the contact and collision between the substrate 51 and the magnetic medium 30.
  • the stirring mechanism 40 causes the group of base materials 51 to flow in the circumferential direction by the rotation of the stirring unit 46 provided on the bottom side of the electroplating tank 10.
  • the stirring mechanism 40 includes a stirring unit 46 that is rotatably provided on the bottom side of the electroplating tank 10, and a rotational force supply mechanism 47 that supplies a rotational force to the stirring unit 46.
  • Each base material 51 flows in the circumferential direction in accordance with the rotation of the stirring unit 46.
  • the base material 51 and the plating layer 52 are polished by contact and collision between the base materials 51 before the plating layer 52 is formed, and contact and collision between the base materials 51 in the growth process of the plating layer 52.
  • the stirring unit 46 is rotatably provided on the bottom side of the electroplating tank 10 and constitutes at least a part of the bottom of the electroplating tank 10. Due to the rotation of the stirring unit 46, at least a part of the bottom of the electroplating tank 10 rotates relative to the cylindrical part 11 of the electroplating tank 10.
  • the electroplating tank 10 includes a cylindrical portion 11 and a bottom portion 12 in some cases.
  • the cylinder part 11 is a cylindrical member having an opening 18 in the upper part that allows the base material 51 to be charged or collected.
  • a bottom portion 12 is provided at the lower end of the cylindrical portion 11.
  • the electroplating tank 10 and the cylinder part 11 are stationary members.
  • the cylinder part 11 is arranged so that the central axis of the cylinder part 11 coincides with a rotation axis AX5 described later. In some cases, the central axis of the cylindrical portion 11 and the rotation axis AX5 coincide with the vertical direction. Therefore, the group of base materials 51 put into the electroplating tank 10 is sedimented in the electrolytic solution downward in the vertical direction and is deposited on the bottom 12.
  • the electroplating apparatus 1 includes a lower cathode 21 provided on the bottom side of the electroplating tank 10 and an upper anode 22 provided above the lower cathode 21.
  • the bottom side is equal to the direction in which the base material 51 of the base material 51 put into the electrolytic solution of the electroplating tank 10 sinks.
  • the lower cathode 21 is connected to the negative electrode of the power source 90, and the upper anode 22 is connected to the positive electrode of the power source 90.
  • the metal ions released or eluted from the upper anode 22 into the electrolyte solution or the metal ions previously placed in the electrolyte solution receive electrons from the substrate 51 in direct contact with the lower cathode 21, and other substrates. Electrons are received from the substrate 51 electrically connected to the lower cathode 21 via 51. After receiving the electrons, the metal ions are deposited on the substrate 51 to form a plating layer.
  • the substrate 51 in direct contact with the lower cathode 21 can supply the electrons transferred from the lower cathode 21 to the substrate 51 to the metal ions.
  • the base material 51 that is not in direct contact with the lower cathode 21 and is electrically connected to the lower cathode 21 via one or more other base materials 51 is transmitted via the other one or more base materials 51.
  • the electrons derived from the lower cathode 21 can be supplied to the metal ions.
  • the group of substrates 51 flows along the circumferential direction while maintaining a substantially settled state in the electrolytic solution stored in the electroplating tank 10, and at least one of the group of substrates 51.
  • the substrate 51 is in contact with the lower cathode 21, and the substrate 51 positioned above the substrate 51 in contact with the lower cathode 21 is electrically connected to the lower cathode 21 through at least the substrate 51 in contact with the lower cathode 21. Is done.
  • the group of base materials 51 are in contact with the lower cathode 21 and are electrically connected to the lower cathode 21, and are not in contact with the lower cathode 21 and at least the first base material 51.
  • a plurality of base materials 51 belonging to the second group electrically connected to the lower cathode 21 through at least one base material 51 belonging to the group may be included.
  • the group of base materials 51 includes a plurality of members belonging to a third group electrically connected to the lower cathode 21 via at least one base material 51 belonging to the first group and at least one base material 51 belonging to the second group.
  • a substrate 51 may be included.
  • Flowing along the circumferential direction while maintaining a substantially settled state means a state in which most of the base material 51 does not float in the electrolytic solution. Flowing along the circumferential direction while maintaining a substantially settled state does not eliminate the presence of the substrate 51 that temporarily floats due to accidental disturbance of the flow of the electrolyte or collision between the substrates 51.
  • a group of base materials 51 are plated while rotating at a low speed of 3 to 8 rpm, and the plating is performed until uniform and non-uniform plating is obtained. It takes a long time.
  • the method of the present disclosure it is possible to promote shortening of the time required until uniform and non-uniform color plating is obtained. In some cases, the time required for the plating process is halved compared to barrel plating.
  • the lower cathode 21 extends along the circumferential direction in the vicinity of the inner wall 19 on the bottom side of the cylindrical portion 11 (see, for example, FIG. 21).
  • the lower cathode 21 may be an annular electrode located on the bottom side of the electroplating tank 10. Since the group of base materials 51 flows in the circumferential direction, when the lower cathode 21 includes an annular electrode, good contact between the base material 51 and the lower cathode 21 is ensured.
  • the circumferential direction is a direction that travels along the inner wall 19 of the electroplating tank 10, and is not limited to a direction conforming to a perfect circular shape, but includes a direction conforming to an elliptical shape or other shapes.
  • the lower cathode is preferably annular, other shapes such as a rod shape, a plate shape, and a spherical shape may be used, or the entire bottom portion 12 of the electroplating tank 10 may be used as the cathode.
  • the upper anode 22 extends along the circumferential direction. Thereby, it is avoided or suppressed that a difference occurs in the growth rate of the plating layer in the circumferential direction. More specifically, the upper anode 22 extends along the circumferential direction on the opening 18 side of the cylindrical portion 11.
  • the upper anode 22 is an annular electrode located at the upper part of the electroplating tank 10.
  • the upper anode 22 is a metal wire, although not necessarily limited thereto, and is provided so as to be easily replaceable with a new metal wire.
  • the upper anode 22 may be spherical, plate-shaped, or chip-shaped. As the upper anode 22, various kinds of metals and materials can be adopted.
  • one or more metals selected from the group consisting of carbon, stainless steel, copper, tin, zinc, brass, titanium, gold, silver, nickel, chromium, lead, palladium, cobalt, platinum, ruthenium, and rhodium.
  • the upper anode 22 elutes into the electrolytic solution, and the volume and weight are reduced with the passage of time. Note that the fact that the anode and the cathode extend along the circumferential direction does not mean a complete circle, but includes a state where the electrodes are arranged intermittently along the circumferential direction.
  • the desired finish color can be secured by appropriately adjusting the metal species of the upper anode 22 and the composition of the electrolytic solution.
  • the base material 51 is covered with a gold, black, silver, light copper, dark copper, or brown plating layer.
  • various kinds of metals can be adopted.
  • a plating layer also grows on the lower cathode 21. Therefore, in some cases, the plating layer is removed or the lower cathode 21 is replaced at an appropriate timing.
  • the electroplating apparatus 1 further includes a lid 15 in some cases.
  • the lid 15 is provided with a hole for passing a wiring connected to the upper anode 22.
  • the height of the upper anode 22 in the depth direction of the electroplating tank 10 is determined by determining the distance between the upper anode 22 and the lid 15. In other words, the upper anode 22 is positioned at an appropriate height in the electroplating tank 10 by covering the electroplating tank 10 with the lid 15.
  • a group of magnetic media 30 is introduced into the electroplating tank 10.
  • the stirring mechanism 40 in FIG. 20 does not directly act on the base material 51 to cause the base material 51 to flow, but acts on the base material 51 via the group of magnetic media 30.
  • one magnetic medium 30 is sufficiently smaller than one substrate 51.
  • the specific type of magnetic media 30 can vary.
  • the magnetic medium 30 may be a rod or a needle-like member.
  • the magnetic media 30 may be a sphere, a rectangular parallelepiped, a cube, or a pyramid.
  • the magnetic medium 30 is typically made of stainless steel, but is not necessarily limited thereto.
  • the outermost plating layer of the base material 51 can be effectively polished when it collides with the base material 51.
  • the upper anode 22 may be suspended by a rod without using the lid 15.
  • the flow of the group of base materials 51 along the circumferential direction causes the stirring mechanism 40 to magnetically act on the group of magnetic media 30 in the electrolytic solution of the electroplating tank 10. This is ensured by causing the group of magnetic media 30 to flow along the circumferential direction.
  • the flow of the group of base materials 51 along the circumferential direction occurs with the flow of the magnetic media 30 in the electrolytic solution in the electroplating tank 10 along the circumferential direction.
  • the magnetic medium 30 flows along the circumferential direction, the magnetic medium 30 has a larger kinetic force than the base material 51. Effective polishing of the plating layer during growth is promoted.
  • the stirring mechanism 40 includes an electric motor 41, a rotating shaft 42, a rotating plate 43, and one or more permanent magnets 44 in some cases.
  • the rotational force generated by the electric motor 41 is transmitted directly or indirectly to the rotating shaft 42, the rotating plate 43 fixed to the rotating shaft 42 rotates, and the permanent magnet 44 on the rotating plate 43 rotates in the circumferential direction.
  • a rotational force transmission system such as a non-supporting belt is provided between the electric motor 41 and the rotating shaft 42.
  • a specific configuration of the stirring mechanism 40 is appropriately determined by those skilled in the art.
  • the agitation mechanism 40 can include a magnetic circuit.
  • the magnetic medium 30 can flow along the circumferential direction without rotation of a physical member.
  • the permanent magnet 44 is fixed to the upper surface of the rotating plate 43 such that, for example, the N pole is directed vertically upward.
  • the magnetic medium 30 is attracted to the permanent magnet 44. Accordingly, the magnetic medium 30 is taken to the permanent magnet 44 according to the circumferential movement of the permanent magnet 44. In this manner, the circumferential flow of the magnetic medium 30 is achieved, and thereby the circumferential flow of the substrate 51 is achieved.
  • the stirring unit 46 includes a disk portion 461 that forms at least a part of the bottom of the electroplating tank 10, and a rotating shaft 462 that is connected to the disk portion 461.
  • the upper surface of the disk portion 461 coincides with the bottom surface of the bottom portion 12 of the electroplating tank 10.
  • a protrusion 464 that protrudes upward in the vertical direction is provided at the center of the upper surface of the disk portion 461.
  • a radial array of wing parts 463 projecting upward, that is, vertically upward is provided on the upper surface of the disk part 461.
  • the wing parts 463 are provided radially with respect to the center of the disk part 461.
  • the flow along the circumferential direction of the group of base materials 51 is generated along with the rotation of the stirring unit 46 provided on the bottom side of the electroplating tank 10.
  • the stirring unit 46 rotates around the rotation axis AX5
  • the wing portion 463 also rotates around the rotation axis AX5. Focusing on one wing portion 463, the wing portion 463 travels along the circumferential direction, and in this process, a flow is generated in the electrolyte solution, and a flow along the circumferential direction of the base material 51 is generated.
  • the wing portion 463 can directly contact and collide with the base material 51. In some cases, the wing 463 has a low height with respect to the upper surface of the disk portion 461. Smooth rotation of the stirring unit 46 is promoted. In this way, uniform stirring of the base material 51 in the electroplating tank 10 is promoted.
  • the cylinder part 11 of the electroplating tank 10 is a stationary member.
  • the inclined portion provided in the radially outer region of the disk portion 461 is disposed on the flange portion 119 extending toward the radially inner side provided at the lower end of the cylindrical portion 11 of the electroplating tank 10.
  • a drain pipe (not shown) is connected to the gap between the inclined portion of the disk portion 461 and the flange portion 119.
  • the electrolytic solution in the electroplating tank 10 can be discharged by opening and closing the drain pipe.
  • Rotational force supply mechanism 47 includes an electric motor 471 and a power transmission belt 472.
  • the rotational force of the electric motor 471 is transmitted to the rotating shaft 462 of the stirring unit 46 via the power transmission belt 472.
  • the rotation shaft 462 rotates, the disk portion 461 connected to the rotation shaft 462 rotates, and the wing portion 463 on the upper surface of the disk portion 461 moves along the circumferential direction.
  • the group of base materials 51 that have settled on the disk portion 461 of the stirring portion 46 in the electrolytic solution of the electroplating tank 10 move along the circumferential direction.
  • the low friction material 13 is provided on the bottom surface of the bottom portion 12 radially inward of the lower cathode 21. Thereby, the flow of the base material 51 on the bottom portion 12 is promoted.
  • a low friction material is provided on the inner wall 19 of the electroplating bath 10.
  • the low friction material is, for example, a resin sheet, and is made of, for example, polyethylene, polypropylene, polyvinyl chloride, or polyurethane.
  • stirring and electroplating are performed simultaneously.
  • the surface of the substrate 51 is polished, and the surface of the plating layer 52 on the substrate 51 is polished.
  • the magnetic medium 30 collides with the base material 51 and also the base materials 51 collide with each other, so that the plating can be advanced while affecting the surface state. It is assumed that a continuous change in the ratio of the metal elements of the plating layer 2 occurs. Also in the apparatus of FIG. 24, by adjusting the number of rotations and causing the base materials 51 to collide with each other at a rate of a certain frequency or more, the plating can be advanced while affecting the surface state.
  • the plating layers shown in FIGS. 4, 11, 12, and 16 to 18 are formed by the electroplating apparatus 1 shown in FIG.
  • the plating layers in FIGS. 13 and 14 are formed by the electroplating apparatus 1 in FIG.
  • polishing the plating layer during the plating layer growth process seems to be contrary to the initial purpose of growing the plating layer.
  • the flatness of the plating layer increases from the thin stage, and as a result, the desired finish with the thin plating layer, in other words, the desired flatness and glossiness are achieved.
  • the reduction in the thickness of the plating layer results in a reduction in time and electric power required for electroplating, and can significantly contribute to a reduction in the product unit price of the plating material 5 and / or the clothing part 7.
  • the flatness of the surface of the substrate 51 is remarkably low in the initial stage of the stirring and electroplating process. Therefore, the group of base materials 51 settled in the solution of the electroplating tank 10 does not flow due to contact resistance with other surrounding base materials 51 despite the collision of the magnetic media 30. Even in such a case, the flatness of the outermost surface of the substrate 51 increases with the increase in the number of collisions with the magnetic medium 30 with the passage of time, the increase in the number of collisions between the substrates 51, and the growth of the plating layer. The flow of the group of base materials 51 is promoted.
  • the switch of the power supply 90 is turned on, and a voltage is applied between the lower cathode 21 and the upper anode 22.
  • the electric motor 41 is turned on, the rotating shaft 42 rotates, and the permanent magnet 44 rotates along the circumferential direction. Entrained by the permanent magnet 44, the magnetic medium 30 flows along the circumferential direction.
  • the base material 51 is pressed by the magnetic medium 30 and receives a force flowing along the circumferential direction.
  • the contact resistance between the base materials 51 is large between the time t1 and the time t2, and the flow along the circumferential direction of the base material 51 does not occur. That is, the maximum rpm (revolutions per minute) of the base material 51 is substantially zero.
  • FIG. 23 some variations of the maximum rpm change are shown by a solid line, a one-dot broken line, and a two-dot broken line.
  • the change in the maximum rpm is the geometric shape of the electroplating tank 10, the volume of the electroplating tank 10, the number and / or weight of the base material 51 put into the electroplating tank 10, the number and / or weight of the magnetic media 30, and the electric motor.
  • the number of rotations 41 and the number and arrangement of the permanent magnets 44 may depend.
  • the end time of the stirring and electroplating process is appropriately determined by those skilled in the art through testing.
  • the calculation method of rpm is as follows, for example. First, the circumferential movement distance of the specific base material 51 per unit time is measured. Next, the distance per minute is converted. In this way, rpm is obtained.
  • the maximum rpm is based on the assumption that, for example, any 10 base materials 51 that flow relatively quickly visually are used as samples. That is, it is not realistic to obtain rpm for all of the group of base materials 51. Therefore, the maximum rpm means the maximum value of rpm calculated for the specific ten substrates 51.
  • the identification and interpretation of the maximum rpm specified in the claims shall also be in accordance with the method described in this paragraph.
  • the flow direction of the substrate 51 is reversed during the stirring process.
  • production of the aggregation of the base material 51 on the bottom part 12 of the electroplating tank 10 can be accelerated
  • the stirring process the rotation of the electric motor 41 is stopped and the rotation direction of the electric motor 41 is reversed.
  • production of the aggregation of the base material 51 on the bottom part 12 of the electroplating tank 10 can be accelerated
  • the stirring mechanism 40 it may be difficult to obtain the stirring force of the base material 51, and it may be difficult to uniformly stir the base material 51. Such a problem can be avoided or suppressed by causing the stirring mechanism 40 to stop stirring and / or reverse stirring during the stirring process.
  • the maximum rpm of the substrate 51 When the maximum rpm of the substrate 51 is large, it is assumed that the probability that the substrate 51 moves radially outward in accordance with the centrifugal force and contacts the lower cathode 21 of the electroplating tank 10 is increased. However, when the maximum rpm of the substrate 51 is large, there is a concern that the probability of occurrence of the non-powered substrate 51 is increased. When the probability of occurrence of the base material 51 in the non-powered state is increased, this results in variations in the plating thickness of the individual base materials 51 in the group of base materials 51. In view of this point, in the present embodiment, the maximum rpm of the base material 51 in the electroplating tank 10 is maintained below the optimum value. Thereby, plating thickness variation can be reduced effectively.
  • the non-powered base material 51 means a base material 51 that is not in direct contact with the lower cathode 21 and is not electrically connected to the lower cathode 21 via another base material 51. To do. As will be apparent to those skilled in the art, the non-powered base material 51 suffers from a bipolar phenomenon.
  • the rotation speed of stirring is adjusted so that the lower the weight of the base material charged at one time is, the lower the rotation speed of the base material or the inner diameter of the electroplating tank 10 is set.
  • the maximum rotation speed (rpm) of the base material 51 in the electroplating tank 10 may be a rotational speed that allows the base material 51 to maintain a substantially settled state.
  • the rotation speed of the base material 51 varies depending on the input amount of the base material 51, it is preferable that the input amount and the rotation speed be such that the subsidence state can be substantially maintained.
  • the input amount of the base material 51 is 10 to 8000 grams with respect to 20 to 30 liters of plating solution, and the magnetic media is placed in an electroplating tank of about 50 cc to 400 cc.
  • the maximum rpm of the base material 51 in the electroplating tank 10 is maintained below 40 rpm. Thereby, plating thickness variation can be reduced effectively.
  • the maximum rpm of the substrate 51 in the electroplating tank 10 is less than 30 rpm, or less than 25 rpm, or less than 20 rpm, or less than 15 rpm, or Maintained below 10 rpm.
  • the maximum rpm of the base material 51 in the electroplating tank 10 is maintained below 120 rpm. Thereby, plating thickness variation can be reduced effectively.
  • the maximum rpm of the substrate 51 in the electroplating tank 10 is less than 100 rpm, less than 80 rpm, less than 70 rpm, less than 60 rpm, or Maintained below 50 rpm.
  • the collision frequency between the base materials 51 may be adjusted by setting the number of rotations as described above. You may make it produce the collision of the base material 51.
  • a hollow or non-hollow cylindrical portion is provided in the center of the electroplating tank 10.
  • the flow path of the substrate 51 is limited to the outside in the radial direction, that is, on the lower cathode 21. Thereby, the generation
  • the cylindrical portion is electrically conductive and is a nonmagnetic material. Even in such a case, the same description as described above applies.
  • FIG. 27 shows an example in which the arrangement of the lower cathode 21 and the upper anode 22 is different.
  • the lower cathode 21 is an annular wire.
  • the upper anode 22 is an annular wire.
  • the lower cathode 21 is fixed near the inner wall 19 on the bottom side of the electroplating tank 10.
  • the upper anode 22 is fixed near the inner wall 19 on the opening 18 side of the electroplating tank 10. Even in such a case, the same description as described above applies.
  • the stirring unit 46 and / or the disk unit 461 has a flat plate shape.
  • the lower cathode 21 is disposed on the flange portion 119 described above. Even in such a case, the same description as described above applies.
  • FIG. 29 is a schematic front view of a slide fastener, which is referred to in order to show variations of plating materials.
  • the plating material 5 may be a metal material part included in the slide fastener 8, for example, a stopper 81, a slider 82, and a handle 83.
  • Example 1 relates to an example using magnetic media as described with reference to FIG.
  • a plating tank having a radius of 300 mm and a depth of 150 mm, that is, a volume of 40 liters was used.
  • the plating tank is made of metal.
  • a rubber sheet was affixed to the inner peripheral surface of the cylindrical portion of the plating tank, and a polyethylene low friction material was affixed to the bottom of the plating tank.
  • the exposed part between the rubber sheet and the low friction material was used as the cathode.
  • the cathode is provided by a part of the plating tank.
  • the cathode is formed in an annular shape continuously in the circumferential direction.
  • the anode was immersed in the solution in a suspended manner.
  • a copper wire was used as the anode.
  • Stainless steel pins were used as magnetic media.
  • One stainless steel pin has a length of 5 mm and a diameter of 0.5 mm.
  • Stainless steel pins were added to the plating tank for 100 cc.
  • a button shell was used as the substrate.
  • the shell has been subjected to a degreasing and cleaning process.
  • the input amount of the shell is 1 kg.
  • the rotation speed of the electric motor was 1800 rpm.
  • the rotational speed of the solution is 30 rpm.
  • the rotational speed of the solution can be determined based on observations of floating indicators.
  • the rotational speed of the shell is less than 40 rpm.
  • Most of the shells were in a power supply state, and a plating layer having a uniform thickness could be formed.
  • Example 2 The same as Example 1 except that 2 kg of shells and 200 cc of stainless steel pins were added. Most of the shells were in a power supply state, and a plating layer having a uniform thickness could be formed.
  • Example 3 is the same as Example 1 except that 3 kg of shells, 250 cc of stainless steel pins are added, and the rotation direction of the electric motor 41 is intermittently reversed at intervals of 30 seconds. Most of the shells were in a power supply state, and a plating layer having a uniform thickness could be formed. However, some shells do not flow well, and it is expected that the thickness of the plating layer is uneven while not being confirmed.
  • a plating material specified as follows is disclosed.
  • -Appendix 1 A substrate (51) comprising one or more substrate metal elements;
  • the plating layer (52) includes at least a first plating layer metal element and a second plating layer metal element different from the first plating layer metal element;
  • the second plating layer metal element is the same metal element as at least one of the one or more base metal elements;
  • the ratio of the second plating layer metal element in the plating layer (52) continuously decreases in accordance with the distance from the base material (51) in the thickness direction of the plating layer (52), and / or A plating material having no clear interface between the substrate (51) and the plating layer (52).
  • the base material includes one or more base metal elements
  • the plating layer includes at least first and second plating layer metal elements.
  • the base metal element, the first plating layer metal element, and the second plating layer metal element are the first metal element, the second metal element, and the third metal. May alternatively be referred to as an element.
  • the invention described in the claims is specified as shown in the following supplementary notes.
  • a substrate (51) comprising one or more first metal elements;
  • the plating layer (52) includes at least a second metal element and a third metal element different from the second metal element;
  • the third metal element is the same metal element as at least one of the one or more first metal elements;
  • the proportion of the third metal element in the plating layer (52) decreases continuously as the distance from the substrate (51) increases in the thickness direction of the plating layer (52), and / or the substrate.
  • the plating material in which a clear interface does not exist between the said plating layer (52).
  • the substrate (51) comprises one or more substrate metal elements;
  • the plating layer (52) includes at least a first plating layer metal element and a second plating layer metal element different from the first plating layer metal element;
  • the second plating layer metal element is the same metal element as at least one of the one or more base metal elements;
  • the ratio of the second plating layer metal element in the plating layer (52) continuously decreases in accordance with the distance from the base material (51) in the thickness direction of the plating layer (52), and / or
  • the plating material according to appendix 3 or 4 wherein there is no clear interface between the substrate (51) and the plating layer (52).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

電気めっき方法は、電気めっき槽(10)内の電解液に沈降した一群の基材(51)を電気めっき槽(10)の内壁(19)沿いの周方向に流動させる撹拌工程と、電気めっき槽(10)内の電解液において周方向沿いに流動する一群の基材(51)を電気めっきする電気めっき工程を含む。一群の基材(51)の周方向沿いの流動が、電気めっき槽(10)内の電解液中の磁性メディア(30)の周方向沿いの流動に伴って生じ、若しくは、電気めっき槽(10)の底側に設けられた撹拌部(46)の回転に伴って生じる。電気めっき槽(10)内の電解液において周方向沿いに流動する一群の基材(51)の少なくとも一部が、電気めっき槽(10)の底側に設けられた下部カソード(21)に接触し、下部カソード(21)に接触した基材(51)よりも上方に位置する基材(51)が、少なくとも下部カソード(21)に接触した基材(51)を介して下部カソード(21)に電気的に接続される。

Description

電気めっき方法及び装置
 本開示は、電気めっき方法及び装置に関する。
 特許文献1は、同文献の図1乃至図3から理解できるように、処理容器1の底部の弾性体4の伸縮変形に応じて弾性体4上の被めっき物6を撹拌すること、更には、弾性体4に設けられた第1電極7と、第2電極12の間の通電により電気めっきすることを開示する。この撹拌と電気めっきは同時に行われる。弾性体4の変形は、エアーシリンダーにより行われる。同文献の図2は、エアーシリンダーのロッドが後退した状態を示し、同文献の図3は、ロッドが前進した状態を示す。図2と図3の状態を繰り返すことにより被めっき物6が撹拌される。
 特許文献2は、同文献の段落0052において銅めっきに際してバレル2中の配管1をメディア7で平滑化することを開示する。
 特許文献3は、めっき処理室を回転させることで生じる遠心力を使用し、被めっき物にめっき処理するめっき装置を開示する。めっき処理室4は、カソード10が設けられた回転体11と、筒状部材3と、回転体11の内部で筒状部材3に遊嵌されたアノード13を有する。回転体11は、電動モーター18により駆動される。回転体11が回転すると、回転体11内の被めっき物1は、遠心力に応じてカソード10に押し付けられる。カソード10とアノード13間の通電に応じ、アノード13に面した被めっき物1の外部電極上にめっき層が形成される。同文献は、段落0038において回転体11を正回転、停止、逆回転、停止の順で制御すると説明する。
 特許文献4は、特許文献3と同様のめっき装置に関する。特許文献4は、被めっき物と導電メディアの凝集を抑制するために撹拌メディアをめっき処理室に導入することを開示する。
 服飾製品のボタンやスライドファスナーのスライダーのような、数グラム程度の小型の金属部品については、例えば特許文献5に記載のようなバレルめっき方法を使用することが一般的である。
特開2015-63711号公報 特開2013-119650号公報 特許第5741944号公報 特許第4725051号公報 特開平1-139799号公報
 バレルめっきにおいては、めっき層と基材の界面に起因してめっき層と基材の密着性が低いという課題がある。
 本開示の一態様に係る電気めっき方法は、
 電気めっき槽(10)内の電解液に沈降した一群の基材(51)を前記電気めっき槽(10)の内壁(19)沿いの周方向に流動させる撹拌工程と、
 前記電気めっき槽(10)内の前記電解液において前記周方向沿いに流動する前記一群の基材(51)を電気めっきする電気めっき工程を含み、
 前記一群の基材(51)の前記周方向沿いの流動が、前記電気めっき槽(10)内の前記電解液中の磁性メディア(30)の前記周方向沿いの流動に伴って生じ、若しくは、前記電気めっき槽(10)の底側に設けられた撹拌部(46)の回転に伴って生じ、
 前記電気めっき槽(10)内の前記電解液において前記周方向沿いに流動する前記一群の基材(51)の少なくとも一部が、前記電気めっき槽(10)の底側に設けられた下部カソード(21)に接触し、前記下部カソード(21)に接触した基材(51)よりも上方に位置する基材(51)が、少なくとも前記下部カソード(21)に接触した前記基材(51)を介して前記下部カソード(21)に電気的に接続される。
 幾つかの実施形態においては、前記下部カソード(21)が、前記電気めっき槽(10)の筒部(11)の底側の内壁(19)近傍で前記周方向沿いに延びる。
 幾つかの実施形態においては、前記下部カソード(21)よりも上方に設けられる上部アノード(22)が、前記周方向沿いに延びる。
 幾つかの実施形態においては、前記撹拌部(46)は、前記電気めっき槽(10)の底側に回転可能に設けられ、前記電気めっき槽(10)の底部の少なくとも一部を構成する。
 幾つかの実施形態においては、前記電気めっき槽(10)が筒部(11)を含み、前記筒部(11)が静止部材である。
 幾つかの実施形態においては、前記磁性メディア(30)が棒又は針状の部材である。
 幾つかの実施形態においては、前記電気めっき槽(10)内における前記基材(51)の最大rpmが40rpm未満である。
 幾つかの実施形態においては、前記基材(51)が、1以上の基材金属元素を含み、
 前記電気めっき工程により前記基材(51)の直上に、少なくとも第1のめっき層金属元素と、前記第1のめっき層金属元素とは異なる第2のめっき層金属元素を含むめっき層(52)が形成され、
 前記第2のめっき層金属元素が、前記1以上の基材金属元素の少なくとも一つと同一の金属元素であり、
 前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記めっき層(52)における前記第2のめっき層金属元素の割合が連続的に減少する、及び/又は、前記基材(51)と前記めっき層(52)の間に明確な界面が存在しない。
 幾つかの実施形態においては、前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記第2のめっき層金属元素の割合が連続的に減少する部分の厚みが10nm以上、又は20nm以上、又は、60nm以上である。
 幾つかの実施形態においては、前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記第2のめっき層金属元素の割合が連続的に減少する部分の厚みが、80nm以下、又は60nm以下、又は、30nm以下、又は、20nm以下である。
 幾つかの実施形態においては、前記めっき層(52)の表面において前記第1のめっき層金属元素の割合は100%未満、又は、90%未満である。
 幾つかの実施形態においては、前記めっき層(52)の厚みが、150nm以下、又は100nm以下である。
 幾つかの実施形態においては、前記めっき層(52)が、前記基材(51)とは反対側の反対面(52s)を有し、
 前記めっき層(52)における前記第2のめっき層金属元素の割合の減少は、前記めっき層(52)の厚み方向において前記反対面(52s)に至るまで又は前記反対面(52s)の近傍に至るまで継続する。
 幾つかの実施形態においては、前記基材(51)が、複数の前記基材金属元素を含み、
 前記めっき層(52)が、複数の前記第2のめっき層金属元素を含み、
 前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記めっき層(52)における各第2のめっき層金属元素の割合が減少する。
 幾つかの実施形態においては、前記めっき層(52)の厚み方向において前記基材(51)に接近するに応じて前記めっき層(52)における前記第1のめっき層金属元素の割合が減少する。
 幾つかの実施形態においては、前記基材(51)が前記基材金属元素として少なくとも銅を含む金属又は合金である。
 幾つかの実施形態においては、前記めっき層(52)が、前記第1のめっき層金属元素として少なくとも錫を含む金属又は合金である。
 幾つかの実施形態においては、前記めっき層(52)が、前記基材(51)とは反対側の反対面(52s)を有し、
 前記反対面(52s)には粒子状部分及び/又は小塊状部分が2次元状に密集して形成されている。
 幾つかの実施形態においては、前記基材(51)と前記めっき層(52)を含むめっき材(5)が、服飾部品(7)の少なくとも一部である。
 本開示の幾つかの態様に係る電気めっき装置は、
 電解液を蓄える電気めっき槽(10)にして、前記電気めっき槽(10)の底側に設けられた下部カソード(21)及び前記下部カソード(21)よりも上方に設けられる上部アノード(22)を備える電気めっき槽(10)と、
 前記電気めっき槽(10)内の前記電解液に沈降した一群の基材(51)を前記電気めっき槽(10)の内壁(19)沿いの周方向に流動させる撹拌機構(40)を備え、
 前記一群の基材(51)の前記周方向沿いの流動が、前記電気めっき槽(10)内の前記電解液中の磁性メディア(30)の前記周方向沿いの流動に伴って生じ、若しくは、前記電気めっき槽(10)の底側に設けられた撹拌部(46)の回転に伴って生じ、
 前記電気めっき槽(10)内の前記電解液において前記周方向沿いに流動する前記一群の基材(51)の少なくとも一部が、前記下部カソード(21)に接触し、前記下部カソード(21)に接触した基材(51)よりも上方に位置する基材(51)が、少なくとも前記下部カソード(21)に接触した前記基材(51)を介して前記下部カソード(21)に電気的に接続される。
 幾つかの実施形態においては、前記撹拌機構(40)は、前記電気めっき槽(10)内の前記電解液中の一群の磁性メディア(30)に対して磁気的に作用して前記一群の磁性メディア(30)を前記周方向沿いに流動させ、これに伴って、前記周方向沿いの前記一群の基材(51)の流動が生じる。
 幾つかの実施形態においては、前記撹拌機構(40)は、
 前記電気めっき槽(10)の底側において回転可能に設けられた撹拌部(46)と、
 前記撹拌部(46)に回転力を供給する回転力供給機構(47)を備える。
 幾つかの実施形態においては、前記撹拌部(46)は、上方に突出する翼部(463)の放射状配列を含む。
 幾つかの実施形態においては、前記電気めっき槽(10)が、基材(51)の投入又は回収を許容する開口(18)を上部に有する筒部(11)を含み、
 前記下部カソード(21)が、前記筒部(11)の底側の内壁(19)近傍で前記周方向沿いに延びる。
 幾つかの実施形態においては、前記筒部(11)が静止部材である。
 幾つかの実施形態においては、前記電気めっき槽(10)内における前記基材(51)の最大rpmが40rpm未満である。
 本開示の幾つかの態様に係る電気めっき装置は、前記基材(51)が1以上の基材金属元素を含む上記いずれかに記載の電気めっき装置であって、
 前記基材(51)の直上に、少なくとも第1のめっき層金属元素と、前記第1のめっき層金属元素とは異なる第2のめっき層金属元素を含むめっき層(52)が形成され、
 前記第2のめっき層金属元素が、前記1以上の基材金属元素の少なくとも一つと同一の金属元素であり、
 前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記めっき層(52)における前記第2のめっき層金属元素の割合が連続的に減少する、及び/又は、前記基材(51)と前記めっき層(52)の間に明確な界面が存在しない。
 本開示の一態様によれば、基材とめっき層の密着性が高められためっき材を提供できる。
本開示の一態様に係るめっき材のキャップの概略的な斜視図である。 本開示の一態様に係るめっき材のキャップが芯材に装着された服飾部品の概略的な斜視図である。 本開示の一態様に係るめっき材の層構造を概略的に示す模式図であり、基材と、基材の直上に形成されためっき層を示す。 本開示の一態様に係るめっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Cu,Zn)の割合が連続的に減少する。めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Sn)の割合が減少する。 本開示の一態様に係るめっき材の断面における元素分布を示す図であり、第1のめっき層金属元素(Sn)がめっき層に存在し、基材金属元素(Cu)が基材及びめっき層に存在し、基材金属元素(Zn)が基材及びめっき層に存在することを示す。Cuは、Znよりもめっき層の表面近くまで存在していることが示される。 本開示の一態様に係るめっき材の断面を示すSEM写真であり、基材とめっき層の間に明確な界面が存在しないことを示す。 本開示の一態様に係るめっき層の表面の状態を示すSEM写真であり、粒子状部分及び/又は小塊状部分が2次元状に密集して形成されていることが示される。 従来のめっき材の断面を示すSEM写真であり、基材とめっき層の間に界面が存在することを示す。 従来のめっき材の断面における元素分布を示す図であり、めっき層金属元素(Sn)がめっき層に存在し、めっき層金属元素及び基材金属元素(Cu)が基材及びめっき層に存在し、基材金属元素(Zn)が基材に存在することを示す。基材金属元素(Zn)がめっき層に存在しないことが示される。 従来のめっき材のめっき層の表面の状態を示すSEM写真であり、クラックやピンホールが形成されていることが示される。 本開示の一態様に係るめっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Zn)の割合が連続的に減少する。めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Cu)の割合が減少する。 本開示の一態様に係るめっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Cu)の割合が連続的に減少する。めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Zn)の割合が減少する。 本開示の一態様に係るめっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Cu,Zn)の割合が連続的に急峻に減少する。めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Sn)の割合が減少する。図4の場合よりもめっき層の厚みが更に薄くなる。 図13よりも薄くめっき層を形成した場合の概略的なグラフである。 本開示の一態様に係るめっき材の層構造を概略的に示す模式図であり、基材の直上に形成されためっき層が、下地めっき層と表面めっき層を含む。 本開示の一態様に係るめっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。下地めっき層が、ある第1のめっき層金属元素(Sn)から成る。表面めっき層が、別の第1のめっき層金属元素(Cu)から成る。 本開示の一態様に係るめっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Zn)の割合が連続的に減少する。めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Cu)の割合が減少する。 本開示の一態様に係るめっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Fe)の割合が連続的に減少する。めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Cu)の割合が減少する。 本開示の一態様に係るめっき材の非限定の一例の製造方法を示す概略的なフローチャートである。 本開示の一態様に係るめっき材の製造のために用いられ得る非限定の一例の電気めっき装置の概略的な構成を示す模式図である。 本開示の一態様に係る電気めっき装置のめっき槽の概略的な上面模式図であり、めっき槽におけるカソード及びアノードの配置例を示し、また、めっき槽の底部に設けられた低摩擦材を示す。 図21のX22-X22に沿う電気めっき装置の概略的な部分断面図である。 撹拌及び電気めっき工程の時間経過に応じて基材の最大rpmが増加することを示す概略的なグラフである。 本開示の一態様に係るめっき材の製造のために用いられ得る非限定の一例の電気めっき装置の概略的な構成を示す模式図である。 図24に示した電気めっき装置の撹拌部の概略的な上面模式図であり、撹拌部が、上方に突出する翼部の放射状配列を含むことを示す。 本開示の別形態に係る電気めっき装置の概略的な構成を示す模式図であり、めっき槽の中央部に中空又は非中空の円柱部が設けられる例を示す。 本開示の別形態に係る電気めっき装置の概略的な構成を示す模式図であり、カソード及びアノードの配置が異なる例を示す。 本開示の別形態に係る電気めっき装置の概略的な構成を示す模式図であり、平板状の撹拌部を示す。 スライドファスナーの概略的な正面模式図であり、めっき材のバリエーションを示すために参酌される。
 以下、図1乃至図29を参照しつつ、本発明の非限定の実施形態例について説明する。開示の1以上の実施形態例及び実施形態例に包含される各特徴は、個々に独立したものではない。当業者は、過剰説明を要せず、各実施形態例及び/又は各特徴を組み合わせることができる。また、当業者は、この組み合わせによる相乗効果も理解可能である。実施形態例間の重複説明は、原則的に省略する。参照図面は、発明の記述を主たる目的とするものであり、作図の便宜のために簡略化されている場合がある。
 以下の記述において、あるめっき材及び/又はめっき材の製造方法、及び、ある電気めっき方法及び/又は電気めっき装置に関して記述される複数の特徴が、これらの特徴の組み合わせとして理解される他、他の特徴とは独立した個別の特徴として理解される。個別の特徴は、他の特徴との組み合わせを必須とすることなく独立した個別の特徴として理解されるが、1以上の他の個別の特徴との組み合わせとしても理解される。個別の特徴の組み合わせの全てを記述することは当業者には冗長である他なく、省略される。個別の特徴は、「幾つかの実施形態」、「幾つかの場合」、「幾つかの例」といった表現により明示される。個別の特徴は、例えば、図面に開示されためっき材及び/又はめっき材の製造方法、及び、電気めっき方法及び/又は電気めっき装置にのみ有効であるものではなく、他の様々なめっき材及び/又はめっき材の製造方法、及び、他の様々な電気めっき方法及び/又は電気めっき装置にも通用する普遍的な特徴として理解される。
 第1、第2、第3といった用語は、これらが付された名詞を論理的に区別するために付される。例えば、第1との用語は、これが付された名詞が一つだけ存在することを明示するために用いられない(そのように明示する場合を除く)。例えば、「複数の第2のめっき層金属元素」といった記述において、第2のめっき層金属元素としての複数の金属元素の存在が示される。第1、第2、第3との用語は、これらが付された名詞が異なることを明示するために用いられない(そのように明示する場合を除く)。例えば、「第3金属元素が、1以上の第1金属元素の少なくとも一つと同一の金属元素であり」との記述から分かるように、第3金属元素は、第1金属元素と同一であり得る。
 図1は、めっき材5のキャップの概略的な斜視図である。図2は、めっき材5のキャップが芯材6に装着された服飾部品7の概略的な斜視図である。図3は、めっき材5の層構造を概略的に示す模式図であり、基材51と、基材51の直上に形成されためっき層52を示す。なお、基材51とめっき層52の界面53が実線により図示されるが、実際には明確な界面が存在しない。基材51は、1以上の基材金属元素を含む。めっき層52は、1以上の第1のめっき層金属元素を含む。めっき層52は、第1のめっき層金属元素に加えて、基材金属元素を含む。図4は、めっき層52の厚み方向におけるめっき材5の各金属元素の割合の変化を示す概略的なグラフである。めっき層52の厚み方向において基材51から離間するに応じてめっき層52における第2のめっき層金属元素(Cu,Zn)の割合が連続的に減少する。めっき層52の厚み方向において基材51に接近するに応じて第1のめっき層金属元素(Sn)の割合が減少する。図5は、めっき材5の断面における元素分布を示す図であり、第1のめっき層金属元素(Sn)がめっき層52に存在し、基材金属元素(Cu)が基材51及びめっき層52に存在し、基材金属元素(Zn)が基材51及びめっき層52に存在することを示す。Cuは、Znよりもめっき層の表面近くまで存在していることが示される。図6は、本開示の一態様に係るめっき材5の断面を示すSEM写真であり、基材51とめっき層52の間に明確な界面が存在しないことを示す。図7は、めっき層52の表面の状態を示すSEM写真であり、粒子状部分及び/又は小塊状部分が2次元状に密集して形成されていることが示される。
 幾つかの実施形態においては、めっき材5は、基材51と、基材51の直上に形成されためっき層52を含む。めっき材5は、基材51が少なくともめっき層52により被覆された部品であり得る。必ずしもこの限りではないが、めっき材5は、服飾部品7の少なくとも一部であり得る。図1及び図2に例示の幾つかの場合、めっき材5が服飾部品7の一部であり、別のパーツに組み合わされ、服飾部品7が製造される。図1及び図3の例示の幾つかの場合、めっき材5が、キャップであるカップ状の基材51と、基材51の表面上に形成された又は基材51の全表面を被覆するめっき層52を有する。図2に示す場合、図1のめっき材5が芯材6に装着され、服飾部品7が構築される。なお、服飾部品の分野においては、材料及び/又は製造コストを抑えながら、服飾部品の金属色や金属光沢のバリエーションを確保することが強く求められる。
 図3及び図4に例示の幾つかの場合、基材51が、1以上の基材金属元素を含む。めっき層52が、少なくとも、第1のめっき層金属元素と、第1のめっき層金属元素とは異なる第2のめっき層金属元素を含む。基材51が純金属から成る場合、基材51は、一つの基材金属元素を含む。基材51が合金から成る場合、基材51は、2以上の基材金属元素を含む。なお、純金属又は合金といった金属材の製造又は精製過程において微量な不可避不純物又は不可避金属が含まれてしまう場合がある。例えば、基材51が黄銅(CuZn)から成る場合、基材51には他の微量な金属又は合金が含まれ得る。例えば、電気めっき用のSnの電極材には、Sn以外の微量な金属が含まれ得る。本明細書で述べる基材金属元素及びめっき層金属元素は、いずれも不可避金属を意味しないものと理解される。なお、基材金属元素は、様々な任意の金属元素であり得る。第1及び第2のめっき層金属元素、又はこれ以外のめっき層金属元素は、様々な任意の金属元素であり得る。
 図3及び図4から理解できるように、幾つかの場合、めっき層52に含まれる第2のめっき層金属元素が、1以上の基材金属元素の少なくとも一つと同一の金属元素である。図4の例では、第1のめっき層金属元素が、Snであり、第2のめっき層金属元素が、Cu及び/又はZnである。第1のめっき層金属元素(図4の例ではSn)は、少なくとも一つの基材金属元素(図4の例ではCu及びZnの両方)とは異なる。幾つかの場合、めっき層52に含まれる第1のめっき層金属元素は、複数の基材金属元素のうち少なくとも一つとは異なる(この点は、図11等の参照からより良く理解される)。
 図4及び図5の非限定の一例の実証から分かるように、幾つかの場合、めっき層52の厚み方向において基材51から離間するに応じてめっき層52における第2のめっき層金属元素(図4の例ではCu及びZn)の割合が連続的に減少する。追加的又は代替的に、図6の非限定の一例の実証から分かるように、めっき層52と基材51の間に明確な界面が存在しない。かかる場合、基材51とめっき層52の密着性が高められる。この密着性の向上のため、例えば、基材51とめっき層52の界面での剥離の発生が低減され、及び/又は、めっき層52の薄厚化が促進され得る。なお、必ずしもこの限りではないが、第1のめっき層金属元素は、電気めっきに際して電解液中に存在する金属イオンに由来する。第2のめっき層金属元素は、基材51の基材金属元素に由来する。
 本明細書の開示全体から理解できるように、必要ならば、めっき層は、その厚み方向において電気めっきにより基材上に析出した金属を含む層として定義され得る。従って、本明細書においては、めっき層は、電気めっきにより基材上に析出した金属以外の金属を含み得る。上述しためっき層金属元素は、めっき層を構成する金属元素であり、換言すれば、めっき層に含まれる金属元素である。第2のめっき層金属元素は、基材の組成に由来し得る。他方、第1のめっき層金属元素は、基材の組成に由来する必要性はない。限定の意図なくより具体的に述べれば、第1のめっき層金属元素は、めっき層の少なくとも一部として基材上に析出した金属元素であり得る。例えば、第1のめっき層金属元素は、基材とは別にめっき液中に供給され、基材に向かって電気泳動する金属イオンの析出物の金属元素に一致する。第2のめっき層金属元素は、第1のめっき層金属元素とは異なり、基材上の析出物には限られない。第2のめっき層金属元素は、めっき対象の基材に存在していた又は含まれていた基材金属元素、及び/又は、めっき対象の基材から溶出して析出した基材金属元素であり得る。基材金属元素は、基材を構成する金属元素であり、換言すれば、基材に含まれる金属元素である。
 図4及び図5の非限定の一例の実証から分かるように、幾つかの場合、めっき層の厚みの変更によりめっき層の表面での金属元素の割合が簡単に変更可能である。例えば、図4の厚みT1のめっき層の表面と、図4の厚みT2のめっき層の表面では、金属元素の割合が異なる。めっき層の厚みの変更によりめっき層の構成を変化させることができ、めっき層のバリエーションが簡単に得られる。めっき層のバリエーションは、元素の割合に応じた化学的特性、電気的特性、及び/又は物理的特性のバリエーションであり得る。めっき層のバリエーションは、めっき層の色のバリエーションであり得る。幾つかの場合、服飾部品の金属色や金属光沢のバリエーションがより簡単に確保される。なお、図4では、めっき層と基材の境界L1が描かれる。図4では、第1のめっき層金属元素(Sn)が、境界L1よりも深部の基材領域において完全にゼロになっていない。しかしながら、これは計測とデータ出力過程で生じる誤差に起因する。図5の元素分布からわかるように第1のめっき層金属元素(Sn)は基材51の領域には存在しない。
 図4及び図5の非限定の一例の実証から分かるように、幾つかの場合、めっき層52の厚み方向において基材51に接近するに応じて第1のめっき層金属元素(Sn)の割合が減少する。図4の非限定の一例の実証から分かるように、幾つかの場合、めっき層52の厚み方向における第1のめっき層金属元素の割合の変化を示す曲線と、めっき層52の厚み方向における基材金属元素の割合の変化を示す曲線が交差する。換言すれば、基材51側とは反対側のめっき層52の反対面52sの近傍において第1のめっき層金属元素が多く存在し、めっき層52における基材51の近傍の領域において第2のめっき層金属元素が多く存在する。本明細書では、めっき層52の反対面52sがめっき層52の表面とも呼ばれる。
 図4の非限定の一例の実証から分かるように、幾つかの場合、めっき層52における第2のめっき層金属元素の割合の減少は、めっき層52の厚み方向において反対面52sに至るまで又は反対面52sの近傍に至るまで継続する。換言すれば、幾つかの実施形態においては、基材金属元素の割合に変化がなくなる程までめっき層52が厚く形成されない。めっき層52の薄厚化は、めっき層の形成のために用いられる金属材の量の低減に寄与する。
 図4の非限定の一例の実証から分かるように、幾つかの場合、基材51が、複数の基材金属元素を含み、めっき層52が、複数の基材金属元素を含み、めっき層52の厚み方向において基材51から離間するに応じてめっき層52における各第2のめっき層金属元素の割合が減少する。基材51が、3以上の基材金属元素を含む場合も想定される。めっき層52が、2又は3以上のめっき層金属元素を含む場合も想定される。
 なお、元素の割合については、原子パーセント(at%)に依拠するものとする。すなわち、ある元素の割合が大きい時、その元素の原子パーセントの値が大きい。原子パーセントの決定は、日本電子(株)製 JAMP9500F オージェ電子分光分析装置を用いて決定するものとする。
 基材金属元素及び第1のめっき層金属元素は、様々な任意の金属元素であり得るが、一例としては、基材51が黄銅(CuZn)から成り、基材金属元素が、銅(Cu)及び亜鉛(Zn)である。幾つかの場合、基材51は、基材金属元素として少なくとも銅を含む金属又は合金である。めっき層52は、幾つかの場合、第1のめっき層金属元素として少なくとも錫(Sn)を含む金属又は合金である。図4等に例示の幾つかの場合、基材51が複数の基材金属元素(例えば、Cu,Sn)を含み、めっき層52が、複数の第2のめっき層金属元素(例えば、Cu,Sn)を含む。めっき層52の厚み方向において基材51から離間するに応じてめっき層52における各第2のめっき層金属元素(例えば、Cu,Sn)の割合が減少する。
 図7の非限定の一例の実証から分かるように、幾つかの場合、めっき層52の反対面52sには粒子状部分及び/又は小塊状部分が2次元状に密集して形成される。めっき層52は、その緻密な表面状態のため、高められたアルカリ、酸、薬品耐性を有し得る。めっき層52を薄くしたとしても、めっき層52の十分な薬品耐性が確保される。幾つかの場合、めっき層52の厚みが、150nm以下、又は100nm以下である。なお、幾つかの実施形態に係るめっき材においては、めっき層52の厚みは、150nm以下、又は100nm以下でもめっきの密着性の面で特段の問題が無い。従って、めっき材の生産性を考慮すれば必要最低限の厚みにすればよい。かかる観点から150nm以下、又は100nm以下が好ましいが、これに限らず、めっき時間を長く継続して膜厚を更に厚くしてもよい。
 上述したように、幾つかの場合、基材51とめっき層52の間に明確な界面が存在しない。めっき層52における第1の及び/又は第2のめっき層金属元素の割合の緩やかな変化が無界面に帰結していることが推定される。めっき層52の厚みの決定のため、基材51とめっき層52の境界を定める必要がある。本明細書においては、図4及び/又は図5に示す測定方法に基づいて基材51とめっき層52の境界が決定される。図4の測定方法では、基材51における所定の基材金属元素の割合に到達するめっき層52の表面からの深さにより基材51とめっき層52の境界が定められる。図5の測定方法では、第1のめっき層金属元素の分布及び/又は基材金属元素の分布から基材51とめっき層52の境界が定められる。例えば、Cu:Zn=80:20の元素比の黄銅の基材51が用いられる場合、Cuの原子パーセントが約80at%であり、Znの原子パーセントが約20at%に到達する位置に境界が定められ得る。しかし、図4に示す元素パーセントの割合の変化は、測定機においてエッチングにより放出される材料の元素分析により観察されるものであり、当然に誤差を含む。基材51とめっき層52の境界は、このような測定誤差も踏まえ、妥当な深さに決定されるべきものである。
 本発明の実施品についての基材51とめっき層52の境界が次のように決定されるべきものとする。基材51における主たる基材金属元素の最大割合に対してその基材金属元素の割合が98%に到達する位置が、基材51とめっき層52の境界として決定される。基材51における主たる基材金属元素は、基材51が単一の基材金属元素を含む場合、その単一の基材金属元素である。基材51における主たる基材金属元素は、基材51が複数の基材金属元素を含む場合、割合、つまり、原子パーセントが最大の基材金属元素である。例えば、Cu:Zn=80:20の元素比の黄銅が基材51として用いられる場合、割合が最大の金属成分(原子パーセントが最大の金属成分)であるCuの原子パーセントが、最大割合の80at%の98%に到達した位置が境界として定められる。
 なお、従来のバレルめっきや静止めっきについては、本発明の実施品のような無界面状態ではなく、明確な界面が存在するので、その位置を基材51とめっき層52の境界と定義する。ただ、母材の表面には実際には微細な凹凸があるため、便宜上はその表面の凹凸の平均高さ(Rc)の位置を基材51とめっき層52の境界と定義する。
 上述のように、幾つかの場合、めっき層52における第2のめっき層金属元素の割合が緩慢に変化し、及び/又は、基材51とめっき層52の間に明確な界面が存在しない。このようなめっき層52を有しない従来のめっき材について図8乃至図10を参照して記述する。図8は、従来のめっき材の断面を示すSEM写真であり、基材とめっき層の間に界面が存在することを示す。図9は、従来のめっき材の断面における元素分布を示す図であり、めっき層金属元素(Sn)がめっき層に存在し、めっき層金属元素及び基材金属元素(Cu)が基材及びめっき層に存在し、基材金属元素(Zn)が基材に存在することを示す。基材金属元素(Zn)がめっき層に存在しないことが示される。図8、図9のとおり、従来のバレルめっきにおいては、めっき表面の色調や表面状態の改善のために膜厚を200nmよりも厚くする場合があり、かつ、母材の上にめっき層が単純に積層するように形成されるため、基材51とめっき層52の境界は視覚的に明確に特定できる。ただ、母材の表面には実際には微細な凹凸があるため、界面とはその凹凸の表面自体になる。なお、めっき膜厚を数値的に表現する場合には、便宜上はその表面の凹凸の平均高さ(Rc)の位置を基材51とめっき層52の境界とする。また、図10は、従来のめっき材のめっき層の表面の状態を示すSEM写真であり、クラックやピンホールが形成されていることが示される。
 図8乃至図10では、基材が黄銅(CuZn)から成り、めっき層がCuSn合金から成る。250nm厚のCuSn層のめっき層においてCuの元素パーセントとSnの元素パーセントが実質的に一定である。図8に示すように、めっき層と基材の金属組織の違いから理解される明確な界面がめっき層と基材の間に存在する。図9に示すように、めっき層は、基材金属元素のZnを含まない。めっき層がCuを含む理由は、Cuがめっき層金属元素であるためである。図10に示すように、めっき層の表面には、クラックD1やピンホールD2が存在する。クラックD1やピンホールD2へのアルカリ、酸、薬品の進入によりめっき層の腐蝕や崩壊が進行し得る。この課題及び/又は他の課題に完全に対処するには10000nm程度以上のめっき厚が必要とされているが、従来の現実的な工業生産レベルでのめっき材においては、例えば、250nm厚といった100nm~200nmを超える厚みのめっき層を形成して、めっき剥がれや酸化や変色といった問題についてある程度の実用レベルに耐えれるところで妥協している。
 図8乃至図10の従来例のめっき材のめっき層は、バレルめっきにより形成されたものである。バレルめっきは、めっき浴に浸漬したバレル(回転カゴ)内に被めっき材、本明細書で言う基材を投入し、バレルを回転させながら電気めっきする方法である。一度に多量の被めっき材を電気めっきすることができる利点がある。図1乃至図7の実施形態に係るめっき材のめっき層は、図19乃至図28を参照して記述する後述の非限定の一例の方法により形成されるが、必ずしもこの方法に限定されるべきではない。当業者は、本開示に係るめっき層を実現するため、既存のバレルめっきを改良し、又は、全く異なる別の方法を想到し得る。
 図1乃至図7に例示の実施形態に係るめっき材は、図8乃至図10の従来のめっき材の1以上の問題を解決し得る。すなわち、図1乃至図7に例示の実施形態に係るめっき材は、基材とめっき層の界面に起因した低い密着性という従来の課題の解決に貢献し得る。めっき層を厚く形成しても、めっき層と基材の間に界面があれば、めっき層の剥離が誘起され得る。追加的又は代替的に、図1乃至図7に例示の実施形態に係るめっき材は、めっき層が厚いという従来の課題の解決に貢献し得る。追加的又は代替的に、図1乃至図7に例示の実施形態に係るめっき材は、めっき層の表面に多数のクラック及び/又はピンホールがあるという従来の課題の解決に貢献し得る。
 以下、図11乃至図18を参照して金属元素のバリエーションについて主に記述する。図11は、めっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。図11においては、基材51が黄銅(CuZn)から成り、第1のめっき層金属元素が銅(Cu)である。図11から分かるように、めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Zn)の割合が連続的に減少する。図11の場合、第1のめっき層金属元素が銅(Cu)であるため、めっき層における基材51由来の金属元素(Cu)の割合の変化が観察できない。
 めっき層の厚み方向において基材に接近するに応じて金属元素(Cu)の割合が減少する。図11のめっき層における金属元素(Cu)の割合の変化は、基材金属元素としてのCuと第1のめっき層金属元素としてのCuの合計の割合の変化を示す。しかし、めっき層52の表面側において第1のめっき層金属元素が多く存在することが明らかであるため、図11のめっき層における金属元素(Cu)の割合の変化は、めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Cu)の割合が減少することを裏付ける。
 図12は、めっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。図12においては、基材51が黄銅(CuZn)から成り、第1のめっき層金属元素が亜鉛(Zn)である。図12から分かるように、めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Cu)の割合が連続的に減少する。図12の場合、第1のめっき層金属元素が亜鉛(Zn)であるため、めっき層における基材51由来の金属元素(Zn)の割合の変化が観察できない。めっき層の厚み方向において基材に接近するに応じて金属元素(Zn)の割合が減少することは、めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Zn)の割合が減少することを裏付ける。
 図13は、めっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。図13においては、基材51が黄銅(CuZn)から成り、第1のめっき層金属元素が錫(Sn)である。めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Cu又はZn)の割合が連続的に急峻に減少する。めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Sn)の割合が減少する。図13の場合、図4とは異なる装置でめっき層が形成され、図4のめっき層よりもめっき層の厚みが薄くなる顕著な効果が得られる。
 なお、めっき層の厚みは、必ずしも、上述の各例の厚みに限定されるべきではない。例えば、図13の場合、めっきの厚みを20nmより大きくすれば、よりSnの素材の色であるシルバー色に近づく色目のめっき材が得られる。逆に、めっきの厚みを20nmより小さくすれば、より基材51の黄銅の色である黄色に近づく色目のめっき材が得られる。
 具体的には、図13のめっきの厚みを10nmとした例を、図14に記載する。この場合、図13の実施形態のめっき材が薄いゴールド色となるのに対して、それよりも若干黄色が強い色目となる。このように、厚みを10nmとした本発明の実施形態の場合であっても、従来のバレルめっきよりも密着性において優位性があるめっき材が得られる。
 図15は、めっき材の層構造を概略的に示す模式図であり、基材の直上に形成されためっき層が、下地めっき層と表面めっき層を含む。図16は、めっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。図16では、図15のように、めっき層が下地めっき層と表面めっき層から成る。図16においては、基材51が黄銅(CuZn)から成り、下地めっき層の第1のめっき層金属元素が錫(Sn)から成り、表面めっき層の第1のめっき層金属元素が銅(Cu)から成る。めっき層の厚み方向において基材から離間するに応じて下地めっき層における第2のめっき層金属元素(Cu又はZn)の割合が連続的に減少する。めっき層の厚み方向において基材に接近するに応じて下地めっき層の第1のめっき層金属元素(Sn)の割合が連続的に減少する。
 めっき層の厚み方向において下地めっき層から離間するに応じて表面めっき層における第2のめっき層金属元素(Zn)の割合が連続的に減少し、下地めっき層の第1のめっき層金属元素(Sn)の割合も同様に連続的に減少する。図16の場合、表面めっき層の第1のめっき層金属元素が銅(Cu)であるため、表面めっき層における基材51由来の金属元素(Cu)の割合の変化が観察できない。表面めっき層の厚み方向において下地めっき層に接近するに応じて表面めっき層の金属元素(Cu)の割合が減少することは、表面めっき層の厚み方向において下地めっき層に接近するに応じて表面めっき層の基材51由来の金属元素(Cu)の割合が減少することを裏付ける。
 基材51として主に黄銅が用いられる例について記述したが、他の金属(例えば、亜鉛、ステンレス)、合金、或いは純金属(亜鉛等)が用いられることも想定される。単層や2層の他、3層以上にめっき層が形成される場合も想定される。図4、図11乃至図14、及び図16~18においてめっき層52の表面の位置が52sにより示される。
 図17は、めっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。図17においては、基材51が亜鉛(Zn)から成り、めっき層の第1のめっき層金属元素が銅(Cu)である。めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Zn)の割合が連続的に減少する。めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Cu)の割合が減少する。
 図18は、めっき層の厚み方向におけるめっき材の各金属元素の割合の変化を示す概略的なグラフである。図18においては、基材51がステンレスから成り、基材金属元素(Fe)を含む。めっき層の第1のめっき層金属元素が銅(Cu)である。めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素(Fe)の割合が連続的に減少する。めっき層の厚み方向において基材に接近するに応じて第1のめっき層金属元素(Cu)の割合が減少する。
 上述の開示から分かるように、幾つかの場合、めっき層52の厚み方向において基材51から離間するに応じて第2のめっき層金属元素の割合が連続的に減少する部分の厚みが10nm以上、又は20nm以上、又は、60nm以上である。図17は、60nm及び/又は400nm以上の厚み範囲において第2のめっき層金属元素(Zn)の割合が連続的に減少することを示す。図18は、60nm及び/又は100nm以上の厚み範囲において第2のめっき層金属元素(Fe)の割合が減少することを示す。図4は、60nm以上の厚み範囲において第2のめっき層金属元素(Cu)の割合が連続的に減少することを示す。図4は、40nm以上の厚み範囲において第2のめっき層金属元素(Zn)の割合が連続的に減少することを示す。図11及び図12は、図4と同様である。図13は、10nm及び/又は20nm以上の厚み範囲において第2のめっき層金属元素(Cu,Zn)の割合が連続的に急峻に減少することを示す。
 上述の開示から分かるように、幾つかの場合、めっき層52の厚み方向において基材51から離間するに応じて第2のめっき層金属元素の割合が連続的に減少する部分の厚みが80nm以下、又は60nm以下、又は、30nm以下、又は、20nm以下である。図4は、80nm以下又は60nm以下の厚み範囲において第2のめっき層金属元素(Cu,Zn)の割合が連続的に減少することを示す。図11及び図12も同様である。図13は、30nm以下及び/又は20nm以下の厚み範囲において第2のめっき層金属元素(Cu,Zn)の割合が連続的に急峻に減少することを示す。
 上述の開示から分かるように、幾つかの場合、めっき層52の表面において第1のめっき層金属元素の割合は100%未満、又は90%未満である。めっき層における第2のめっき金属元素のため、めっき層52の最表面において第1のめっき層金属元素の割合が100%にならない。めっき層52の表面において第1のめっき層金属元素の割合が理論上は100%未満であり、又は、異物や測定誤差を考慮しても90%未満である。例えば、図13の実施形態では、第1のめっき層金属元素であるSnが35%に到達した時点でめっきを終了している。従来のバレルめっきにおいては、めっき終了後のめっき材の表面において、めっき層金属元素の割合が理論上は100%であるし、又は、異物や測定誤差を考慮しても90%以上となっている。所望の色目のめっき状態において電気めっきを停止することで、微妙な色目の違うめっき材を簡単に製造できる。
 以下、図19乃至図28を参照して非限定の一例のめっき材の製造方法(又は電気めっき方法)と、これに用いられ得る電気めっき装置の構成について記述する。なお、図19乃至図28及びこれに関する記述は、上述のめっき材について何らの限定を与えるものではない。図19は、めっき材の非限定の一例の製造方法を示す概略的なフローチャートである。図20は、めっき材の製造のために用いられ得る非限定の一例の電気めっき装置の概略的な構成を示す模式図である。図21は、電気めっき装置のめっき槽の概略的な上面模式図であり、めっき槽におけるカソード及びアノードの配置例を示し、また、めっき槽の底部に設けられた低摩擦材を示す。図22は、図21のX22-X22に沿う電気めっき装置の概略的な部分断面図である。図23は、撹拌及び電気めっき工程の時間経過に応じて基材の最大rpmが増加することを示す概略的なグラフである。図24は、めっき材の製造のために用いられ得る非限定の一例の電気めっき装置の概略的な構成を示す模式図である。図25は、図24に示した電気めっき装置の撹拌部の概略的な上面模式図であり、撹拌部が、上方に突出する翼部の放射状配列を含むことを示す。図26は、電気めっき装置の概略的な構成を示す模式図であり、めっき槽の中央部に中空又は非中空の円柱部が設けられる例を示す。図27は、電気めっき装置の概略的な構成を示す模式図であり、カソード及びアノードの配置が異なる例を示す。図28は、電気めっき装置の概略的な構成を示す模式図であり、平板状の撹拌部を示す。
 図19に示すように、めっき材の製造方法は、基材金属元素を含む基材を電気めっき槽に投入する工程と、電気めっき槽において基材を周方向に流動させながら電気めっきする工程を含み得る。この電気めっき方法により基材の直上に基材金属元素とは異なる第1のめっき層金属元素を含むめっき層が形成される。上述したように、この形成されためっき層が基材金属元素を更に含む。上述したように、めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素の割合が減少する、及び/又は、めっき層と基材の間に明確な界面が存在しない。めっき材5に関して記述した他の特徴が、この段落で述べためっき材にも通用する。上述した「電気めっき槽において基材を周方向に流動させながら電気めっきする工程」は、後述の開示に基づけば、電気めっき槽内の電解液に沈降した一群の基材を電気めっき槽の内壁沿いの周方向に流動させる撹拌工程と、電気めっき槽内の電解液において周方向沿いに流動する一群の基材を電気めっきする電気めっき工程を含むものと理解できる。
 図20及び図24に例示される幾つかの実施形態に係る電気めっき装置1は、電解液を蓄える電気めっき槽10と、電気めっき槽10に蓄えられた電解液中で沈降した一群の基材51を流動させる撹拌機構40を備える。電解液は、例えば、シアン系の電解液である。基材51を被めっき材と呼ぶ場合がある。撹拌機構40の作動に応じて基材51の周方向の流動が生じ、同時に電気めっきも行われる。幾つかの場合、撹拌機構40は、電気めっき槽10に蓄えられた電解液中で沈降した一群の基材51を、実質的に沈降状態を維持しながら電気めっき槽10の内壁19沿いの周方向に流動させる。
 図20に例示の幾つかの場合、撹拌機構40は、電気めっき槽10の電解液中の一群の磁性メディア30に対して磁気的に作用して一群の磁性メディア30を流動させる。磁性メディア30の流動に際して磁性メディア30が基材51に衝突する。磁性メディア30の運動力が基材51に伝達し、基材51が流動を開始する。基材51に対する磁性メディア30の連続的又は断続的な衝突により基材51の流動が維持又は促進される。基材51同士の接触及び衝突、また、基材51と磁性メディア30の接触及び衝突により、基材51及びめっき層52が研磨される。
 図24に例示の幾つかの場合、撹拌機構40は、電気めっき槽10の底側に設けられた撹拌部46の回転により一群の基材51を周方向に流動させる。撹拌機構40は、電気めっき槽10の底側において回転可能に設けられた撹拌部46と、撹拌部46に回転力を供給する回転力供給機構47を備える。撹拌部46の回転に応じて各基材51が周方向に流動する。めっき層52が形成される前の基材51同士の接触及び衝突、また、めっき層52の成長過程の基材51同士の接触及び衝突により、基材51及びめっき層52が研磨される。
 幾つかの場合、撹拌部46は、電気めっき槽10の底側に回転可能に設けられ、電気めっき槽10の底部の少なくとも一部を構成する。撹拌部46の回転により、電気めっき槽10の筒部11に対して電気めっき槽10の底部の少なくとも一部が相対的に回転する。
 電気めっき槽10は、幾つかの場合、筒部11及び底部12を含む。筒部11は、基材51の投入又は回収を許容する開口18を上部に有する円筒状部材である。筒部11の下端には底部12が設けられる。電気めっき槽10及び筒部11は静止部材である。筒部11は、筒部11の中心軸が後述の回転軸AX5に合致するように配される。筒部11の中心軸及び回転軸AX5は、幾つかの場合、鉛直方向に合致する。従って、電気めっき槽10に投入された一群の基材51は鉛直方向下方に向けて電解液中で沈降し、底部12上に堆積する。
 電気めっき装置1は、幾つかの場合、電気めっき槽10の底側に設けられた下部カソード21及び下部カソード21よりも上方に設けられる上部アノード22を備える。底側とは、電気めっき槽10の電解液中に投入された基材51の基材51が沈降していく方向に等しい。下部カソード21が電源90の負極に接続し、上部アノード22が電源90の正極に接続される。
 上部アノード22から電解液中に放出又は溶出した金属イオン、又は、電解液中にあらかじめ入れておいた金属イオンは、下部カソード21に直接接触した基材51から電子を受け取り、また他の基材51を介して下部カソード21に電気的に接続した基材51から電子を受け取る。金属イオンは、電子の受け取り後、基材51上に析出し、めっき層を形成する。下部カソード21に直接的に接触した基材51は、下部カソード21からその基材51に受け渡された電子を金属イオンに供給することができる。下部カソード21に直接的に接触せず、下部カソード21に対して他の1以上の基材51を介して電気的に接続した基材51は、他の1以上の基材51を介して伝達した下部カソード21由来の電子を金属イオンに供給することができる。
 幾つかの実施形態では、一群の基材51は、電気めっき槽10に蓄えられた電解液中で実質的に沈降状態を維持しながら周方向沿いに流動し、一群の基材51の少なくとも一部が下部カソード21に接触し、下部カソード21に接触した基材51よりも上方に位置する基材51が、少なくとも下部カソード21に接触した基材51を介して下部カソード21に電気的に接続される。換言すれば、一群の基材51は、下部カソード21に接触して下部カソード21に電気的に接続した第1グループに属する複数の基材51と、下部カソード21に接触せず、少なくとも第1グループに属する少なくとも一つの基材51を介して下部カソード21に電気的に接続された第2グループに属する複数の基材51を含み得る。一群の基材51は、第1グループに属する少なくとも一つの基材51と第2グループに属する少なくとも一つの基材51を介して下部カソード21に電気的に接続された第3グループに属する複数の基材51を含み得る。実質的に沈降状態を維持しながら周方向沿いに流動することは、大半の基材51が電解液中で浮き上がらない状態を意味する。実質的に沈降状態を維持しながら周方向沿いに流動することは、偶発的な電解液の流れの乱れや基材51同士の衝突により一時的に浮遊する基材51の存在を排除するものではなく、これを包含する。ある特定の場合、実質的に沈降状態を維持しながら周方向沿いに流動することは、めっき処理液及び/又は基材51が最大回転速度で流動している状態において、偶発的な電解液の流れの乱れや基材51同士の衝突により一時的に浮遊したごく一部の基材51を除く大半の基材51が電気めっき槽10の底部又は他の基材51と接触している状態を包含する。これにより基材51と下部カソード21間の電気的接続がより確実に確保でき、基材51が無給電状態になることを回避可能である。
 一般的なバレルめっきは、バレルの回転数が3~8rpmと低速で回転することで一群の基材51を撹拌しながらめっきをするものであり、均一で色むらのないめっきが得られるまでにより長い時間を要してしまう。他方、本開示の方法によれば、均一で色むらのないめっきが得られるまでに要する時間の短縮化も促進可能である。幾つかの場合、バレルめっきと比較してめっき工程に要する時間が半減される。
 下部カソード21は、筒部11の底側の内壁19近傍で周方向沿いに延びる(例えば、図21参照)。下部カソード21は、電気めっき槽10の底側に位置する環状電極であり得る。一群の基材51が周方向に流動するため、下部カソード21が環状電極を含む場合、基材51と下部カソード21の良好な接触が確保される。なお、周方向とは、電気めっき槽10の内壁19に沿いに進行する方向であり、正円形状に即した方向に限定されず、楕円形状やその他の形状に即した方向も包含する。なお、下部カソードは環状が好ましいが、それ以外にも棒状、板状、球状などの形状でもよいし、電気めっき槽10の底部12の全体又は一部をカソードとしてもよい。
 上部アノード22は、周方向沿いに延びる。これにより、周方向においてめっき層の成長速度に差が生じることが回避又は抑制される。より端的には、上部アノード22は、筒部11の開口18側で周方向沿いに延びる。上部アノード22は、電気めっき槽10の上部に位置する環状電極である。幾つかの場合、上部アノード22は、必ずしもこれに限られないが、金属ワイヤであり、新たな金属ワイヤに簡単に交換可能に設けられる。別例においては、上部アノード22は、球状、板状、チップ状であり得る。上部アノード22としては、様々な種類の金属や材料が採用され得る。例えば、カーボン、ステンレス、銅、錫、亜鉛、黄銅、チタン、金、銀、ニッケル、クロム、鉛、パラジウム、コバルト、白金、ルテニウム、ロジウムの群から選択される1以上の金属である。上部アノード22は、電気めっきの進行に伴い、電解液中に溶出し、時間の経過と共に体積及び重量が減じられる。なお、アノードやカソードが周方向沿いに延びるというのは完全な円であることを意味するのではなく、部分断続的に周方向に沿って電極が配置されている状態を含む。
 上部アノード22の金属種や電解液の組成を適切に調整することにより所望の仕上げ色を確保することができる。例えば、基材51は、金色、黒色、シルバー色、淡銅色、濃銅色、ブラウン色のめっき層により被覆される。
 下部カソード21としては、様々な種類の金属が採用され得る。例えば、ステンレス、銅、錫、亜鉛、ステンレス、カーボン、チタン、金、銀、ニッケル、クロム、鉛、パラジウム、コバルト、白金、ルテニウム、ロジウムの群から選択される1以上の金属である。下部カソード21にもめっき層が成長する。従って、幾つかの場合、適切なタイミングでめっき層が除去され、又は下部カソード21が交換される。
 電気めっき装置1は、幾つかの場合、蓋15を更に有する。蓋15には上部アノード22に接続した配線を通過するための孔が設けられる。電気めっき槽10の深さ方向における上部アノード22の高さは、蓋15に対する上部アノード22の間隔を定めることにより決定される。換言すれば、電気めっき槽10に蓋15をすることにより、上部アノード22は電気めっき槽10内で適切な高さに位置決めされる。
 図20に例示の幾つかの場合、電気めっき槽10内には一群の基材51に加えて、一群の磁性メディア30が投入される。上述したように、図20の撹拌機構40は、基材51に対して直接的に作用して基材51を流動させるものではなく、一群の磁性メディア30を介して基材51に対して作用する。幾つかの場合、一つの磁性メディア30は、一つの基材51に比して十分に小さい。磁性メディア30の具体的な種類は様々であり得る。一例としては、磁性メディア30は、棒又は針状の部材であり得る。別例としては、磁性メディア30は、球、直方体、立方体、又はピラミッド状であり得る。磁性メディア30は、典型的には、ステンレス製であるが、必ずしもこの限りではない。磁性メディア30が、棒又は針状のステンレス材である時、基材51との衝突時に基材51の最外面のめっき層を効果的に研磨することができる。なお、蓋15を使わずに棒材で上部アノード22を吊り下げるようにしてもよい。
 図20に例示の幾つかの場合、周方向沿いの一群の基材51の流動は、撹拌機構40が、電気めっき槽10の電解液中の一群の磁性メディア30に対して磁気的に作用して一群の磁性メディア30を周方向沿いに流動させることにより確保される。一群の基材51の周方向沿いの流動が、電気めっき槽10内の電解液中の磁性メディア30の周方向沿いの流動に伴って生じる。磁性メディア30が周方向沿いに流動する時、磁性メディア30は、基材51よりも大きい運動力を持つ。成長過程のめっき層の効果的な研磨が促進される。
 撹拌機構40は、幾つかの場合、電動モーター41、回転軸42、回転板43、及び1以上の永久磁石44を有する。電動モーター41で生成される回転力が直接又は間接的に回転軸42に伝達し、回転軸42に固定された回転板43が回転し、回転板43上の永久磁石44が周方向に回転する。電動モーター41と回転軸42の間に回転力伝達系、例えば、無担ベルト等を設けることも想定される。撹拌機構40の具体的な構成は、当業者により適切に決定される。
 幾つかの場合、撹拌機構40は、磁気回路を含むことができる。磁気回路を適切に設計することにより、物理的な部材の回転を伴うことなく、磁性メディア30を周方向沿いに流動させることができる。
 永久磁石44は、例えば、N極が鉛直方向上方に向くように回転板43の上面に固定されている。磁性メディア30は、永久磁石44に吸引される。従って、永久磁石44の周方向移動に応じて磁性メディア30が永久磁石44に連行される。このようにして磁性メディア30の周方向の流動が達成され、これにより基材51の周方向の流動が達成される。
 図24に例示の幾つかの場合、撹拌部46は、電気めっき槽10の底部の少なくとも一部を成す円盤部461、及び円盤部461に連結した回転軸462を含む。円盤部461の上面は、電気めっき槽10の底部12の底面に一致する。円盤部461の上面の中央には鉛直方向上方に突出した突起部464が設けられる。図25に例示のように、円盤部461の上面には、上方、つまり鉛直方向上方に突出する翼部463の放射状配列が設けられる。翼部463は、円盤部461の中央に関して放射状に設けられる。
 一群の基材51の周方向沿いの流動が、電気めっき槽10の底側に設けられた撹拌部46の回転に伴って生じる。撹拌部46が回転軸AX5周りに回転する時、翼部463も回転軸AX5周りに回転する。一つの翼部463に着目すると、翼部463は、周方向沿いに進行し、この過程で、電解液に流れを生じさせ、基材51の周方向沿いの流動が生じる。翼部463は、基材51に直接的に接触及び衝突し得る。幾つかの場合、翼部463は、円盤部461の上面に関して低い高さを持つ。撹拌部46の円滑な回転が促進される。このようにして電気めっき槽10内での基材51の均一な撹拌が促進される。なお、電気めっき槽10の筒部11は静止部材である。
 円盤部461の径方向外側領域に設けられた傾斜部が、電気めっき槽10の筒部11の下端に設けられた径方向内側に向けて延びるフランジ部119上に配置される。円盤部461の傾斜部とフランジ部119の間の隙間は、不図示のドレイン管が接続されている。ドレイン管の開閉により電気めっき槽10の電解液を排出可能である。
 回転力供給機構47は、電動モーター471と、及び動力伝達ベルト472を含む。電動モーター471の回転力が動力伝達ベルト472を介して撹拌部46の回転軸462に伝達する。これに応じて回転軸462が回転し、また、回転軸462に連結した円盤部461が回転し、円盤部461の上面上の翼部463が周方向沿いに移動する。これにより電気めっき槽10の電解液中で撹拌部46の円盤部461上に沈降していた一群の基材51が周方向沿いに遊動する。
 幾つかの場合、図21及び図22の例示から分かるように、下部カソード21よりも径方向内側の底部12の底面上には低摩擦材13が設けられる。これにより、底部12上での基材51の流動が促進される。幾つかの場合、追加的又は代替的に、低摩擦材が電気めっき槽10の内壁19に設けられる。低摩擦材は、例えば、樹脂製シートであり、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリウレタン製である。
 図20及び図24に例示の幾つかの実施形態では、電気めっき装置1において、撹拌と電気めっきが同時に行われる。撹拌過程で、基材51の表面が研磨され、基材51上のめっき層52の表面が研磨される。図20の装置では磁性メディア30が基材51に衝突すると共に基材51同士をも衝突することで、表面状態に影響を与えつつめっきを進行させることができ、これにより、先に図示した第2のめっき層金属元素の割合の連続的な変化が生じるものと想定される。図24の装置においても、回転数を調整して基材51同士を一定頻度以上の割合で衝突させることで、表面状態に影響を与えつつめっきを進行させることができ、これにより、先に図示した第2のめっき層金属元素の割合の連続的な変化が生じるものと想定される。なお、図4、図11、図12、及び図16~18のめっき層は、図20の電気めっき装置1により形成されたものである。図13及び14のめっき層は、図24の電気めっき装置1により形成されたものである。
 めっき層の成長過程でめっき層が研磨されることは、めっき層を成長させることの当初目的に反するように見える。しかしながら、めっき層の成長過程でめっき層が研磨される場合、めっき層が薄い段階からその平坦度が高まり、結果として薄いめっき層で所望の仕上がり、換言すれば、所望の平坦度や光沢度を得ることに帰結し得る。めっき層の薄厚化は、電気めっきに要する時間及び電力の低減に帰結し、めっき材5及び/又は服飾部品7の製品単価の低減に顕著に寄与し得る。
 幾つかの場合、撹拌及び電気めっき工程の初期段階では、基材51の表面の平坦度が著しく低い。従って、電気めっき槽10の溶液中で沈降した一群の基材51は、磁性メディア30の衝突にも関わらず、周囲の他の基材51との接触抵抗のために流動しない。このような場合においても、時間経過に伴う、磁性メディア30との衝突数の増加、基材51同士の衝突数の増加、及びめっき層の成長に伴い、基材51の最外面の平坦度が高まり、一群の基材51の流動が促進される。
 図23を参酌して上述の点について補足的に説明する。時刻t1の時、電源90のスイッチがオンされ、下部カソード21と上部アノード22の間に電圧が印加される。また、時刻t1の時、電動モーター41がオン状態となり、回転軸42が回転し、永久磁石44が周方向沿いに回転する。永久磁石44に連行され、磁性メディア30が周方向沿いに流動する。基材51は、磁性メディア30により押され、周方向沿いに流動する力を受ける。しかし、時刻t1と時刻t2の間では、基材51同士の接触抵抗が大きく、基材51の周方向沿いの流動は生じない。つまり、基材51の最大rpm(revolutions per minute)は実質的にゼロである。
 時刻t1と時刻t2の期間において、基材51同士の接触及び衝突が繰り返され、基材51と磁性メディア30の接触及び衝突が繰り返され、また、基材51の最外面上でめっき層が成長し、これにより、基材51の平滑性が高められる。結果として、時刻t2を経過した後、一群の基材51の周方向沿いの流動が徐々に開始する。時刻t3を経過した後、一群の基材51の周方向沿いの流動が顕著になる。時刻t4を過ぎた後、一群の基材51の周方向沿いの流動が安定化する。
 図23では、実線、一点破線、二点破線により最大rpmの変化の幾つかのバリエーションを示す。最大rpmの変化は、電気めっき槽10の幾何形状、電気めっき槽10の容積、電気めっき槽10に投入する基材51の個数及び/又は重量、磁性メディア30の個数及び/又は重量、電動モーター41の回転数、永久磁石44の個数や配置態様に依存し得る。この撹拌及び電気めっき工程の終了時刻は、試験を経て当業者により適切に決められる。
 なお、rpmの算出方法は、例えば、次の通りである。まず、単位時間当たりの特定の基材51の周方向移動距離を測定する。次に、一分間当たりの距離に換算する。このようにしてrpmが求められる。最大rpmは、例えば、目視して相対的に速く流動している任意の10個の基材51をサンプルとすることを前提とする。すなわち、一群の基材51の全てについてrpmを求めることは現実的ではない。従って、最大rpmは、特定の10個の基材51について算出したrpmの最大値を意味するものとする。請求項で特定した最大rpmの特定及び解釈についても、本段落に説明した方法に則るものとする。
 幾つかの場合、撹拌過程で、基材51の流動方向が反転される。これにより、電気めっき槽10の底部12上での基材51の凝集の発生の低減又は回避を促進することができる。例えば、撹拌過程で、電動モーター41の回転が停止され、電動モーター41の回転方向が反転される。これにより、電気めっき槽10の底部12上での基材51の凝集の発生の低減又は回避を促進することができる。磁性メディア30から受けた力に応じて基材51が流動する方式では、基材51の撹拌力が得にくく、基材51を均一に撹拌し難い場合がある。撹拌機構40が撹拌過程で撹拌停止及び/又は撹拌反転を実行することにより、このような問題が回避又は抑制され得る。
 基材51の最大rpmが大きい時、基材51が遠心力に応じて径方向外側に移動し、電気めっき槽10の下部カソード21に接触する確率が高められることが想定される。しかしながら、基材51の最大rpmが大きい時、無給電状態の基材51の発生確率が高まることが懸念される。無給電状態の基材51の発生確率が高まると、一群の基材51における個々の基材51のめっき厚のバラツキに帰結してしまう。この点に鑑みて、本実施形態においては、電気めっき槽10内における基材51の最大rpmが最適値未満に維持される。これによりめっき厚バラツキを効果的に低減することができる。なお、無給電状態の基材51とは、下部カソード21に直接的に接触してなく、下部カソード21に対して他の基材51を介して電気的に接続されていない基材51を意味する。当業者には明らかなように、無給電状態の基材51は、バイポーラ現象を被ってしまう。
 実質的な沈降状態を維持するべく、一度に投入する基材の重量が小さいほど低回転になるように撹拌回転数が調整され、若しくは基材の回転半径若しくは電気めっき槽10の内径が設定される。
 電気めっき槽10内における基材51の最大回転速度(rpm)は、基材51が実質的に沈降状態を維持できる程度の回転数であればよい。基材51の回転速度は基材51の投入量に応じても変化するものであるが、この場合においても、実質的に沈降状態を維持できる程度の投入量と回転数であることが好ましい。幾つかの場合、めっき液20リットル~30リットルに対し、基材51の投入量は10グラム~8000グラムであり、磁性メディアを50cc~400cc程度電気めっき槽に入れる。
 幾つかの場合、図20に示すタイプの電気めっき装置においては、電気めっき槽10内における基材51の最大rpmが40rpm未満に維持される。これによりめっき厚バラツキを効果的に低減することができる。
 幾つかの場合、図20に示すタイプの電気めっき装置においては、電気めっき槽10内における基材51の最大rpmが30rpm未満、或いは、25rpm未満、或いは、20rpm未満、或いは、15rpm未満、或いは、10rpm未満に維持される。
 幾つかの場合、図24に示すタイプの電気めっき装置においては、電気めっき槽10内における基材51の最大rpmが120rpm未満に維持される。これによりめっき厚バラツキを効果的に低減することができる。
 幾つかの場合、図24に示すタイプの電気めっき装置においては、電気めっき槽10内における基材51の最大rpmが100rpm未満、或いは、80rpm未満、或いは、70rpm未満、或いは、60rpm未満、或いは、50rpm未満に維持される。なお、図24に示すタイプの電気めっき装置においては、上述のように回転数の設定により基材51同士の衝突頻度を調整してもよいが、更に研磨用のメディアを混入させて研磨メディアと基材51の衝突を生じさせるようにしてもよい。
 図26に例示の幾つかの場合、電気めっき槽10の中央に中空又は非中空の円柱部が設けられる。この円柱部により基材51の流路が径方向外側、つまり下部カソード21上に限定される。これにより、無給電状態の基材51の発生確率が低減され得る。なお、円柱部は、被導電性であり、非磁性体である。このような場合においても、上述の説明と同様の説明が当てはまる。
 図27は、下部カソード21及び上部アノード22の配置が異なる例を示す。下部カソード21は、環状のワイヤである。同様に、上部アノード22は、環状のワイヤである。下部カソード21は、電気めっき槽10の底側で内壁19近傍に固定される。上部アノード22は、電気めっき槽10の開口18側で内壁19近傍に固定される。このような場合においても、上述の説明と同様の説明が当てはまる。
 図28に例示の幾つかの場合、撹拌部46及び/又は円盤部461が平板状である。また、下部カソード21が上述のフランジ部119上に配置される。このような場合においても、上述の説明と同様の説明が当てはまる。
 図29は、スライドファスナーの概略的な正面模式図であり、めっき材のバリエーションを示すために参酌される。めっき材5は、スライドファスナー8に含まれる金属材部品、例えば、止め具81、スライダー82、引手83であり得る。
 実施例1
 実施例1は、図20を参照して説明したように磁性メディアを用いる例に関する。半径300mm、深さ150mm、つまり容積40リットルのめっき槽を用いた。めっき槽は金属製である。めっき槽の筒部の内周面にゴムシートを貼り付け、めっき槽の底部にポリエチレン製の低摩擦材を貼り付けた。ゴムシートと低摩擦材の間の露出部をカソードとして用いた。つまり、カソードは、めっき槽の一部が提供する。カソードは、周方向に連続して環状に構成される。アノードは、吊り下げ式にて溶液中に浸漬した。アノードとしては銅ワイヤを用いた。磁性メディアとしてステンレスピンを用いた。一つのステンレスピンの大きさは、長さ5mm、直径0.5mmである。ステンレスピンを100cc分だけめっき槽に加えた。基材としてはボタン用のシェルを用いた。シェルは、真鍮(Cu:Zn=65:35)製である。シェルは、脱脂及び洗浄工程を経たものである。シェルの投入量は、1kgである。電動モーターの回転速度は、1800rpmとした。溶液の回転速度は、30rpmである。溶液の回転速度は、浮遊する指標の観測に基づいて決定できる。シェルの回転速度は、40rpm未満である。ほとんどのシェルが給電状態にあり、均一な厚みのめっき層を形成することができた。
 実施例2
 シェルを2kg投入し、ステンレスピンを200cc投入した点を除いて実施例1と同様である。ほとんどのシェルが給電状態にあり、均一な厚みのめっき層を形成することができた。
 実施例3
 シェルを3kg投入し、ステンレスピンを250cc投入し、電動モーター41の回転方向を30秒間隔で間欠的に反転させた点を除いて実施例1と同様である。大半のシェルが給電状態にあり、均一な厚みのめっき層を形成することができた。しかし、一部のシェルが上手く流動せず、未確認ながら、めっき層の厚みにむらが生じていることが予想される。
 シェルに代えてスライドファスナー用のスライダーについても同様の試験を行い、同様の結果が得られた。
 上述の開示において、次のように特定されるめっき材が開示されている。
-付記1-
 1以上の基材金属元素を含む基材(51)と、
 前記基材(51)の直上に形成されためっき層(52)を備え、
 前記めっき層(52)が、少なくとも、第1のめっき層金属元素と、前記第1のめっき層金属元素とは異なる第2のめっき層金属元素を含み、
 前記第2のめっき層金属元素が、前記1以上の基材金属元素の少なくとも一つと同一の金属元素であり、
 前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記めっき層(52)における前記第2のめっき層金属元素の割合が連続的に減少する、及び/又は、前記基材(51)と前記めっき層(52)の間に明確な界面が存在しない、めっき材。
 出願時の本願請求項9乃至19で特定される特徴が上述の付記1のめっき材にも通用する。
 上述の開示においては、基材が1以上の基材金属元素を含み、めっき層が、少なくとも第1及び第2のめっき層金属元素を含むものと記述してきた。望まれるならば、又は、必要性に応じて、基材金属元素、第1のめっき層金属元素、及び第2のめっき層金属元素は、第1金属元素、第2金属元素、及び第3金属元素と代替的に呼ばれ得る。かかる場合、請求項に記載された発明は、次の付記に示されるように特定される。
-付記2-
 1以上の第1金属元素を含む基材(51)と、
 前記基材(51)の直上に形成されためっき層(52)を備え、
 前記めっき層(52)が、少なくとも、第2金属元素と、前記第2金属元素とは異なる第3金属元素を含み、
 前記第3金属元素が、前記1以上の第1金属元素の少なくとも一つと同一の金属元素であり、
 前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記めっき層(52)における前記第3金属元素の割合が連続的に減少する、及び/又は、前記基材(51)と前記めっき層(52)の間に明確な界面が存在しない、めっき材。
 出願時の本願請求項9乃至19で特定される特徴が、必要な用語の置換を必要条件として、上述の付記2のめっき材にも通用する。
 上述の開示においては、めっき層の厚み方向において基材から離間するに応じてめっき層における第2のめっき層金属元素の割合が連続的に減少する、及び/又は、基材とめっき層の間に明確な界面が存在しないことが幾つかの主な特徴の一つとして記述してきた。しかしながら、この主たる特徴の一つは、他の特徴よりも優位又は他の特徴の前提となるものではない。例えば、次の発明も理解される。
-付記3-
 基材(51)と、
 前記基材(51)の直上に形成されためっき層(52)を備え、
 前記めっき層(52)が、前記基材(51)とは反対側の反対面(52s)を有し、
 前記反対面(52s)には粒子状部分及び/又は小塊状部分が2次元状に密集して形成されている、めっき材。
-付記4-
 前記反対面(52s)にはクラック又はピンホールが実質的に存在しない、付記3に記載のめっき材。
-付記5-
 前記基材(51)が、1以上の基材金属元素を含み、
 前記めっき層(52)が、少なくとも、第1のめっき層金属元素と、前記第1のめっき層金属元素とは異なる第2のめっき層金属元素を含み、
 前記第2のめっき層金属元素が、前記1以上の基材金属元素の少なくとも一つと同一の金属元素であり、
 前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記めっき層(52)における前記第2のめっき層金属元素の割合が連続的に減少する、及び/又は、前記基材(51)と前記めっき層(52)の間に明確な界面が存在しない、付記3又は4に記載のめっき材。
 上述の教示を踏まえると、当業者をすれば、各実施形態に対して様々な変更を加えることができる。請求の範囲に盛り込まれた符号は、参考のためであり、請求の範囲を限定解釈する目的で参照されるべきものではない。
5      めっき材
51     基材
52     めっき層

Claims (27)

  1.  電気めっき槽(10)内の電解液に沈降した一群の基材(51)を前記電気めっき槽(10)の内壁(19)沿いの周方向に流動させる撹拌工程と、
     前記電気めっき槽(10)内の前記電解液において前記周方向沿いに流動する前記一群の基材(51)を電気めっきする電気めっき工程を含み、
     前記一群の基材(51)の前記周方向沿いの流動が、前記電気めっき槽(10)内の前記電解液中の磁性メディア(30)の前記周方向沿いの流動に伴って生じ、若しくは、前記電気めっき槽(10)の底側に設けられた撹拌部(46)の回転に伴って生じ、
     前記電気めっき槽(10)内の前記電解液において前記周方向沿いに流動する前記一群の基材(51)の少なくとも一部が、前記電気めっき槽(10)の底側に設けられた下部カソード(21)に接触し、前記下部カソード(21)に接触した基材(51)よりも上方に位置する基材(51)が、少なくとも前記下部カソード(21)に接触した前記基材(51)を介して前記下部カソード(21)に電気的に接続される、電気めっき方法。
  2.  前記下部カソード(21)が、前記電気めっき槽(10)の筒部(11)の底側の内壁(19)近傍で前記周方向沿いに延びる、請求項1に記載の電気めっき方法。
  3.  前記下部カソード(21)よりも上方に設けられる上部アノード(22)が、前記周方向沿いに延びる、請求項1又は2に記載の電気めっき方法。
  4.  前記撹拌部(46)は、前記電気めっき槽(10)の底側に回転可能に設けられ、前記電気めっき槽(10)の底部の少なくとも一部を構成する、請求項1乃至3のいずれか一項に記載の電気めっき方法。
  5.  前記電気めっき槽(10)が筒部(11)を含み、前記筒部(11)が静止部材である、請求項1乃至4のいずれか一項に記載の電気めっき方法。
  6.  前記磁性メディア(30)が棒又は針状の部材である、請求項1乃至5のいずれか一項に記載の電気めっき方法。
  7.  前記電気めっき槽(10)内における前記基材(51)の最大rpmが40rpm未満である、請求項1乃至6のいずれか一項に記載の電気めっき方法。
  8.  前記基材(51)が、1以上の基材金属元素を含み、
     前記電気めっき工程により前記基材(51)の直上に、少なくとも第1のめっき層金属元素と、前記第1のめっき層金属元素とは異なる第2のめっき層金属元素を含むめっき層(52)が形成され、
     前記第2のめっき層金属元素が、前記1以上の基材金属元素の少なくとも一つと同一の金属元素であり、
     前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記めっき層(52)における前記第2のめっき層金属元素の割合が連続的に減少する、及び/又は、前記基材(51)と前記めっき層(52)の間に明確な界面が存在しない、請求項1乃至7のいずれか一項に記載の電気めっき方法。
  9.  前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記第2のめっき層金属元素の割合が連続的に減少する部分の厚みが10nm以上、又は20nm以上、又は、60nm以上である、請求項8に記載の電気めっき方法。
  10.  前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記第2のめっき層金属元素の割合が連続的に減少する部分の厚みが、80nm以下、又は60nm以下、又は、30nm以下、又は、20nm以下である、請求項8又は9に記載の電気めっき方法。
  11.  前記めっき層(52)の表面において前記第1のめっき層金属元素の割合は100%未満、又は、90%未満である、請求項8乃至10のいずれか一項に記載の電気めっき方法。
  12.  前記めっき層(52)の厚みが、150nm以下、又は100nm以下である、請求項8乃至11のいずれか一項に記載の電気めっき方法。
  13.  前記めっき層(52)が、前記基材(51)とは反対側の反対面(52s)を有し、
     前記めっき層(52)における前記第2のめっき層金属元素の割合の減少は、前記めっき層(52)の厚み方向において前記反対面(52s)に至るまで又は前記反対面(52s)の近傍に至るまで継続する、請求項8乃至12のいずれか一項に記載の電気めっき方法。
  14.  前記基材(51)が、複数の前記基材金属元素を含み、
     前記めっき層(52)が、複数の前記第2のめっき層金属元素を含み、
     前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記めっき層(52)における各第2のめっき層金属元素の割合が減少する、請求項8乃至13のいずれか一項に記載の電気めっき方法。
  15.  前記めっき層(52)の厚み方向において前記基材(51)に接近するに応じて前記めっき層(52)における前記第1のめっき層金属元素の割合が減少する、請求項8乃至14のいずれか一項に記載の電気めっき方法。
  16.  前記基材(51)が前記基材金属元素として少なくとも銅を含む金属又は合金である、請求項8乃至15のいずれか一項に記載の電気めっき方法。
  17.  前記めっき層(52)が、前記第1のめっき層金属元素として少なくとも錫を含む金属又は合金である、請求項8乃至16のいずれか一項に記載の電気めっき方法。
  18.  前記めっき層(52)が、前記基材(51)とは反対側の反対面(52s)を有し、
     前記反対面(52s)には粒子状部分及び/又は小塊状部分が2次元状に密集して形成されている、請求項8乃至17のいずれか一項に記載の電気めっき方法。
  19.  前記基材(51)と前記めっき層(52)を含むめっき材(5)が、服飾部品(7)の少なくとも一部である、請求項8乃至18のいずれか一項に記載の電気めっき方法。
  20.  電解液を蓄える電気めっき槽(10)にして、前記電気めっき槽(10)の底側に設けられた下部カソード(21)及び前記下部カソード(21)よりも上方に設けられる上部アノード(22)を備える電気めっき槽(10)と、
     前記電気めっき槽(10)内の前記電解液に沈降した一群の基材(51)を前記電気めっき槽(10)の内壁(19)沿いの周方向に流動させる撹拌機構(40)を備え、
     前記一群の基材(51)の前記周方向沿いの流動が、前記電気めっき槽(10)内の前記電解液中の磁性メディア(30)の前記周方向沿いの流動に伴って生じ、若しくは、前記電気めっき槽(10)の底側に設けられた撹拌部(46)の回転に伴って生じ、
     前記電気めっき槽(10)内の前記電解液において前記周方向沿いに流動する前記一群の基材(51)の少なくとも一部が、前記下部カソード(21)に接触し、前記下部カソード(21)に接触した基材(51)よりも上方に位置する基材(51)が、少なくとも前記下部カソード(21)に接触した前記基材(51)を介して前記下部カソード(21)に電気的に接続される、電気めっき装置。
  21.  前記撹拌機構(40)は、前記電気めっき槽(10)内の前記電解液中の一群の磁性メディア(30)に対して磁気的に作用して前記一群の磁性メディア(30)を前記周方向沿いに流動させ、これに伴って、前記周方向沿いの前記一群の基材(51)の流動が生じる、請求項20に記載の電気めっき装置。
  22.  前記撹拌機構(40)は、
     前記電気めっき槽(10)の底側において回転可能に設けられた撹拌部(46)と、
     前記撹拌部(46)に回転力を供給する回転力供給機構(47)を備える、請求項20に記載の電気めっき装置。
  23.  前記撹拌部(46)は、上方に突出する翼部(463)の放射状配列を含む、請求項22に記載の電気めっき装置。
  24.  前記電気めっき槽(10)が、基材(51)の投入又は回収を許容する開口(18)を上部に有する筒部(11)を含み、
     前記下部カソード(21)が、前記筒部(11)の底側の内壁(19)近傍で前記周方向沿いに延びる、請求項20乃至23のいずれか一項に記載の電気めっき装置。
  25.  前記筒部(11)が静止部材である、請求項24に記載の電気めっき装置。
  26.  前記電気めっき槽(10)内における前記基材(51)の最大rpmが40rpm未満である、請求項20乃至25のいずれか一項に記載の電気めっき装置。
  27.  前記基材(51)が1以上の基材金属元素を含む請求項20乃至26のいずれか一項に記載の電気めっき装置であって、
     前記基材(51)の直上に、少なくとも第1のめっき層金属元素と、前記第1のめっき層金属元素とは異なる第2のめっき層金属元素を含むめっき層(52)が形成され、
     前記第2のめっき層金属元素が、前記1以上の基材金属元素の少なくとも一つと同一の金属元素であり、
     前記めっき層(52)の厚み方向において前記基材(51)から離間するに応じて前記めっき層(52)における前記第2のめっき層金属元素の割合が連続的に減少する、及び/又は、前記基材(51)と前記めっき層(52)の間に明確な界面が存在しない、電気めっき装置。
PCT/JP2017/017949 2017-04-14 2017-05-11 電気めっき方法及び装置 WO2018189916A1 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
CN201780089163.3A CN110475913B (zh) 2017-04-14 2017-05-11 电镀方法和装置
RU2019131191A RU2718587C1 (ru) 2017-04-14 2017-05-11 Способ и устройство для нанесения гальванического покрытия
BR112019011899-3A BR112019011899B1 (pt) 2017-04-14 2017-05-11 Método e dispositivo de eletrodeposição
KR1020197018582A KR102282185B1 (ko) 2017-04-14 2017-05-11 전기 도금 방법 및 장치
EP17905121.4A EP3611294B1 (en) 2017-04-14 2017-05-11 Electroplating method
MX2019011879A MX2019011879A (es) 2017-04-14 2017-05-11 Metodo y dispositivo de electroenchapado.
US16/495,733 US11236431B2 (en) 2017-04-14 2017-05-11 Electroplating method
JP2019512172A JP6722821B2 (ja) 2017-04-14 2017-05-11 電気めっき方法及び装置
PCT/JP2018/014318 WO2018190202A1 (ja) 2017-04-14 2018-04-03 めっき材及びその製造方法
US16/493,539 US11072866B2 (en) 2017-04-14 2018-04-03 Plated material and manufacturing method therefor
BR112019011972-8A BR112019011972B1 (pt) 2017-04-14 2018-04-03 Artigo galvanizado e método de fabricação do mesmo
KR1020197018583A KR102243188B1 (ko) 2017-04-14 2018-04-03 도금재 및 그 제조 방법
CN201880021279.8A CN110462110B (zh) 2017-04-14 2018-04-03 镀敷件及其制造方法
EP18784523.5A EP3611293B1 (en) 2017-04-14 2018-04-03 Plated material and manufacturing method therefor
MX2019010840A MX2019010840A (es) 2017-04-14 2018-04-03 Material enchapado y metodo de fabricacion del mismo.
JP2019512458A JP6793251B2 (ja) 2017-04-14 2018-04-03 めっき材及びその製造方法
TW107112695A TWI679315B (zh) 2017-04-14 2018-04-13 電氣鍍敷方法及裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/015365 2017-04-14
PCT/JP2017/015365 WO2018189901A1 (ja) 2017-04-14 2017-04-14 めっき材及びその製造方法

Publications (1)

Publication Number Publication Date
WO2018189916A1 true WO2018189916A1 (ja) 2018-10-18

Family

ID=63792499

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2017/015365 WO2018189901A1 (ja) 2017-04-14 2017-04-14 めっき材及びその製造方法
PCT/JP2017/017949 WO2018189916A1 (ja) 2017-04-14 2017-05-11 電気めっき方法及び装置
PCT/JP2018/014318 WO2018190202A1 (ja) 2017-04-14 2018-04-03 めっき材及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015365 WO2018189901A1 (ja) 2017-04-14 2017-04-14 めっき材及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014318 WO2018190202A1 (ja) 2017-04-14 2018-04-03 めっき材及びその製造方法

Country Status (10)

Country Link
US (2) US11236431B2 (ja)
EP (2) EP3611294B1 (ja)
JP (2) JP6722821B2 (ja)
KR (2) KR102282185B1 (ja)
CN (2) CN110475913B (ja)
BR (1) BR112019011899B1 (ja)
MX (2) MX2019011879A (ja)
RU (1) RU2718587C1 (ja)
TW (2) TWI679315B (ja)
WO (3) WO2018189901A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130874A1 (ja) 2019-12-24 2021-07-01 Ykk株式会社 電気めっき装置及びめっき物の製造方法
WO2023013054A1 (ja) * 2021-08-06 2023-02-09 Ykk株式会社 ファスナーストリンガー、ファスナーチェーン及びスライドファスナーの製造方法、並びに電気めっき装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733934A4 (en) * 2017-12-26 2021-07-14 Hallmark Technology Co., Ltd. ELECTRODEPOSITION ASSEMBLY MECHANISM
CN114746585A (zh) * 2019-12-24 2022-07-12 Ykk株式会社 电镀系统
JP2021160117A (ja) * 2020-03-31 2021-10-11 株式会社日立製作所 積層体、金属めっき液、および積層体の製造方法
JP7466069B1 (ja) 2023-03-13 2024-04-11 三井金属鉱業株式会社 亜鉛箔及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741944B2 (ja) 1978-06-29 1982-09-06
JPH01139799A (ja) 1987-11-25 1989-06-01 Kanehiro Metaraijingu:Kk バレルメッキ装置
JP4725051B2 (ja) 2004-08-04 2011-07-13 株式会社村田製作所 めっき方法およびめっき装置
JP2012062566A (ja) * 2010-08-16 2012-03-29 Hitachi Metals Ltd メッキ装置
JP2013119650A (ja) 2011-12-07 2013-06-17 Mitsubishi Electric Corp 部分めっき工法
WO2013141166A1 (ja) * 2012-03-23 2013-09-26 株式会社Neomaxマテリアル はんだ被覆ボールおよびその製造方法
JP2015063711A (ja) 2013-09-24 2015-04-09 吉昭 濱田 表面処理装置およびめっき方法
WO2016075828A1 (ja) * 2014-11-14 2016-05-19 合同会社ナポレ企画 服飾付属部品の表面電解処理方法、服飾付属品及びその製造方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725051Y1 (ja) 1968-11-09 1972-08-05
JP2628184B2 (ja) * 1988-04-25 1997-07-09 日新製鋼株式会社 微粉末に金属を電気めっきする方法
JPH0544083A (ja) * 1991-08-13 1993-02-23 Nisshin Steel Co Ltd 粉末の電気めつき法
JPH0711479A (ja) 1993-06-28 1995-01-13 Nkk Corp 亜鉛系合金めっき鋼板及びその製造方法
JP3087554B2 (ja) * 1993-12-16 2000-09-11 株式会社村田製作所 メッキ方法
US6010610A (en) * 1996-04-09 2000-01-04 Yih; Pay Method for electroplating metal coating(s) particulates at high coating speed with high current density
US5911865A (en) * 1997-02-07 1999-06-15 Yih; Pay Method for electroplating of micron particulates with metal coatings
KR100589449B1 (ko) * 1997-04-17 2006-06-14 세키스이가가쿠 고교가부시키가이샤 전자회로부품
JP3282585B2 (ja) * 1998-06-02 2002-05-13 株式会社村田製作所 メッキ装置及びメッキ方法
JP2002042556A (ja) * 2000-07-28 2002-02-08 Hitachi Cable Ltd フラットケーブル用導体及びその製造方法並びにフラットケーブル
JP2002069667A (ja) 2000-08-28 2002-03-08 Sony Corp 多元素錫合金めっき被膜とその形成方法
JP3746221B2 (ja) 2001-10-11 2006-02-15 日本エレクトロプレイテイング・エンジニヤース株式会社 カップ式めっき装置
JP3930832B2 (ja) * 2003-06-06 2007-06-13 株式会社山本鍍金試験器 水槽
JP4367149B2 (ja) 2004-01-30 2009-11-18 日立電線株式会社 フラットケーブル用導体及びその製造方法並びにフラットケーブル
JP2006032851A (ja) 2004-07-21 2006-02-02 Mitsui Mining & Smelting Co Ltd 被覆銅、ホイスカの発生抑制方法、プリント配線基板および半導体装置
JP2009065005A (ja) * 2007-09-07 2009-03-26 Panasonic Corp チップ状電子部品の製造方法
US8231773B2 (en) * 2007-12-11 2012-07-31 GM Global Technology Operations LLC Method of treating nanoparticles using an intermittently processing electrochemical cell
JP4959592B2 (ja) 2008-01-18 2012-06-27 株式会社日立製作所 ネットワーク映像モニタリングシステム及びモニタ装置
US8698002B2 (en) * 2009-01-20 2014-04-15 Mitsubishi Shindoh Co., Ltd. Conductive member and method for producing the same
JP4987028B2 (ja) 2009-03-31 2012-07-25 Jx日鉱日石金属株式会社 プリント基板端子用銅合金すずめっき材
WO2010144509A2 (en) 2009-06-08 2010-12-16 Modumetal Llc Electrodeposited, nanolaminate coatings and claddings for corrosion protection
CN101954618A (zh) * 2009-07-13 2011-01-26 豪昱电子有限公司 磁力研磨机
JP5435355B2 (ja) 2009-09-04 2014-03-05 日立金属株式会社 メッキ装置
JP5650899B2 (ja) * 2009-09-08 2015-01-07 上村工業株式会社 電気めっき装置
JP5598754B2 (ja) * 2010-06-08 2014-10-01 日立金属株式会社 めっき装置
JP2012025975A (ja) * 2010-07-20 2012-02-09 Hitachi Metals Ltd メッキ装置
JP2012087388A (ja) * 2010-10-21 2012-05-10 Furukawa Electric Co Ltd:The 表面処理銅箔及び銅張積層板
US20120245019A1 (en) * 2011-03-23 2012-09-27 Brookhaven Science Associates, Llc Method and Electrochemical Cell for Synthesis of Electrocatalysts by Growing Metal Monolayers, or Bilayers and Treatment of Metal, Carbon, Oxide and Core-Shell Nanoparticles
RU2464361C1 (ru) * 2011-04-11 2012-10-20 Федеральное государственное образовательное учреждение высшего профессионального образования "РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ ЗАОЧНЫЙ УНИВЕРСИТЕТ" Устройство для нанесения гальванических покрытий
JP5741944B2 (ja) 2011-09-02 2015-07-01 株式会社村田製作所 めっき装置、及びめっき方法
EP2842338A1 (en) 2012-04-24 2015-03-04 VID SCALE, Inc. Method and apparatus for smooth stream switching in mpeg/3gpp-dash
US9388502B2 (en) * 2012-07-12 2016-07-12 Ykk Corporation Button or fastener member of copper-plated aluminum or aluminum alloy and method of production thereof
CN102925937B (zh) * 2012-09-07 2015-07-01 上海大学 磁场下连续制备高硅钢薄带的方法及装置
JP5667152B2 (ja) * 2012-09-19 2015-02-12 Jx日鉱日石金属株式会社 表面処理めっき材およびその製造方法、並びに電子部品
JP2014070265A (ja) * 2012-10-01 2014-04-21 Panasonic Corp バレルめっき装置およびこのバレルめっき装置を用いた電子部品の製造方法
RU153631U1 (ru) * 2014-01-09 2015-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Волгоградский государственный аграрный университет Гальваническая ванна для покрытия деталей цилиндрической формы
JP6197778B2 (ja) 2014-10-24 2017-09-20 Jfeスチール株式会社 容器用鋼板およびその製造方法
JP6463622B2 (ja) * 2014-11-27 2019-02-06 Ykk株式会社 めっき装置、めっきユニット、及びめっきライン
JP6328288B2 (ja) 2017-03-23 2018-05-23 Ykk株式会社 服飾付属部品の表面電解処理装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741944B2 (ja) 1978-06-29 1982-09-06
JPH01139799A (ja) 1987-11-25 1989-06-01 Kanehiro Metaraijingu:Kk バレルメッキ装置
JP4725051B2 (ja) 2004-08-04 2011-07-13 株式会社村田製作所 めっき方法およびめっき装置
JP2012062566A (ja) * 2010-08-16 2012-03-29 Hitachi Metals Ltd メッキ装置
JP2013119650A (ja) 2011-12-07 2013-06-17 Mitsubishi Electric Corp 部分めっき工法
WO2013141166A1 (ja) * 2012-03-23 2013-09-26 株式会社Neomaxマテリアル はんだ被覆ボールおよびその製造方法
KR20130133097A (ko) * 2012-03-23 2013-12-05 가부시키가이샤 네오맥스 마테리아르 땜납 피복 볼 및 그 제조 방법
JP2015063711A (ja) 2013-09-24 2015-04-09 吉昭 濱田 表面処理装置およびめっき方法
WO2016075828A1 (ja) * 2014-11-14 2016-05-19 合同会社ナポレ企画 服飾付属部品の表面電解処理方法、服飾付属品及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130874A1 (ja) 2019-12-24 2021-07-01 Ykk株式会社 電気めっき装置及びめっき物の製造方法
EP4083273A4 (en) * 2019-12-24 2022-11-30 Ykk Corporation ELECTROPLATING APPARATUS AND METHOD OF MAKING A PLATED PRODUCT
WO2023013054A1 (ja) * 2021-08-06 2023-02-09 Ykk株式会社 ファスナーストリンガー、ファスナーチェーン及びスライドファスナーの製造方法、並びに電気めっき装置

Also Published As

Publication number Publication date
EP3611294A4 (en) 2021-01-13
BR112019011899B1 (pt) 2023-01-17
JP6722821B2 (ja) 2020-07-15
EP3611293A1 (en) 2020-02-19
KR102243188B1 (ko) 2021-04-22
CN110462110A (zh) 2019-11-15
BR112019011972A2 (pt) 2019-11-05
TW201942420A (zh) 2019-11-01
WO2018190202A1 (ja) 2018-10-18
KR20190087585A (ko) 2019-07-24
TW201842235A (zh) 2018-12-01
JP6793251B2 (ja) 2020-12-02
EP3611293A4 (en) 2021-02-17
JPWO2018190202A1 (ja) 2019-11-07
RU2718587C1 (ru) 2020-04-08
US20200032410A1 (en) 2020-01-30
WO2018189901A1 (ja) 2018-10-18
US11072866B2 (en) 2021-07-27
BR112019011899A2 (pt) 2019-10-22
CN110475913A (zh) 2019-11-19
EP3611294B1 (en) 2024-01-24
TWI691621B (zh) 2020-04-21
CN110462110B (zh) 2020-08-11
CN110475913B (zh) 2020-09-01
MX2019011879A (es) 2019-12-02
KR102282185B1 (ko) 2021-07-27
EP3611294A1 (en) 2020-02-19
US20200095700A1 (en) 2020-03-26
US11236431B2 (en) 2022-02-01
EP3611293B1 (en) 2024-01-03
TWI679315B (zh) 2019-12-11
MX2019010840A (es) 2019-11-18
KR20190087586A (ko) 2019-07-24
JPWO2018189916A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018189916A1 (ja) 電気めっき方法及び装置
JP6359683B2 (ja) 服飾付属部品の表面電解処理方法、服飾付属品及びその製造方法
US20050056542A1 (en) Plating tool, plating method, electroplating apparatus, plated product, and method for producing plated product
JP6328288B2 (ja) 服飾付属部品の表面電解処理装置
US8840773B2 (en) Reclaiming metal from articles
JP2011134593A (ja) リチウムイオン二次電池用集電体
JP6078022B2 (ja) スピンドルモータ及びハードディスク装置
BR112019011972B1 (pt) Artigo galvanizado e método de fabricação do mesmo
JP3797425B2 (ja) めっき方法
JP3492449B2 (ja) めっき方法およびめっき装置
JP2005048282A (ja) めっき治具、めっき方法、および電気めっき装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512172

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019011899

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197018582

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019011899

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190612

WWE Wipo information: entry into national phase

Ref document number: 2017905121

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017905121

Country of ref document: EP

Effective date: 20191114