WO2018143462A1 - 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体 - Google Patents

塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体 Download PDF

Info

Publication number
WO2018143462A1
WO2018143462A1 PCT/JP2018/003855 JP2018003855W WO2018143462A1 WO 2018143462 A1 WO2018143462 A1 WO 2018143462A1 JP 2018003855 W JP2018003855 W JP 2018003855W WO 2018143462 A1 WO2018143462 A1 WO 2018143462A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
chloride resin
resin composition
compound
hydrocarbon group
Prior art date
Application number
PCT/JP2018/003855
Other languages
English (en)
French (fr)
Inventor
翔太 西村
光智 安部
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020197022360A priority Critical patent/KR102499858B1/ko
Priority to EP18747635.3A priority patent/EP3578602B1/en
Priority to MX2019008926A priority patent/MX2019008926A/es
Priority to US16/481,189 priority patent/US10882988B2/en
Priority to CN201880008980.6A priority patent/CN110234702B/zh
Priority to JP2018566159A priority patent/JP7092039B2/ja
Publication of WO2018143462A1 publication Critical patent/WO2018143462A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2427/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/322Liquid component is processing oil

Definitions

  • the present invention relates to a vinyl chloride resin composition, a vinyl chloride resin molded body, and a laminate.
  • Vinyl chloride resins are generally used in various applications because they are excellent in properties such as cold resistance, heat resistance, and oil resistance. Specifically, for example, in the formation of automobile interior parts such as automobile instrument panels and door trims, a skin made of a vinyl chloride resin molded body or a foam made of foamed polyurethane or the like is lined with a skin made of a vinyl chloride resin molded body. Automotive interior materials such as laminates are used.
  • the vinyl chloride resin molding which comprises the skin
  • the vinyl chloride resin molded body has good stickiness on the surface of the molded body (high surface slipperiness, high fluff resistance), and the appearance of the molded body surface is a compounding component. Various performances are required, such as no change over time due to precipitation (high blooming resistance).
  • “with fluff” means that fiber residue adheres to the surface when the surface is wiped with a cloth.
  • Patent Document 1 discloses a vinyl chloride resin composition for powder molding containing a vinyl chloride resin, a fatty acid amide, an organopolysiloxane, and a plasticizer. And in patent document 1, the dynamic friction coefficient of the vinyl chloride resin sheet formed using the vinyl chloride-type resin composition for powder molding is reduced by using saturated fatty acid primary amides, such as lauric acid amide, as fatty acid amide. The surface slipperiness of the vinyl chloride resin sheet is improved.
  • Patent Document 1 the conventional vinyl chloride resin sheet described in Patent Document 1 and the like needs to be further improved in order to achieve both high slipperiness on the sheet surface and high blooming resistance under normal temperature (23 ° C.) conditions. there were.
  • this invention aims at providing the vinyl chloride resin composition which can manufacture the vinyl chloride resin molded object which can make the outstanding surface slipperiness and blooming-proof property on normal temperature (23 degreeC) conditions compatible. To do.
  • Another object of the present invention is to provide a vinyl chloride resin molded product and a laminate that can achieve both excellent surface slipperiness and blooming resistance under normal temperature (23 ° C.) conditions.
  • the present inventor has intensively studied for the purpose of solving the above problems. Then, the present inventor has excellent slipperiness on the surface and is used under normal temperature (23 ° C.) conditions by using a vinyl chloride resin composition containing a vinyl chloride resin, a plasticizer, and a compound having a predetermined structure. The present inventors have found that a vinyl chloride resin molded product in which blooming in the resin is also satisfactorily suppressed can be obtained.
  • the vinyl chloride resin composition of the present invention comprises (a) a vinyl chloride resin, (b) a plasticizer, and (c).
  • R 1 (NR 2 COR 3 ) n (1) [In the formula (1), n is an integer of 2 or more and 6 or less, R 1 and R 3 are each a hydrocarbon group, R 2 is a hydrocarbon group or hydrogen, and n R 2 s are identical to each other. However, n R 3 s may be the same as or different from each other, and at least one of the n R 3 s is an unsaturated hydrocarbon group having one or more carbon-carbon unsaturated bonds. It is.
  • the vinyl chloride resin composition comprises (a) a vinyl chloride resin, (b) a plasticizer, and (c) a compound represented by the predetermined structure (hereinafter simply referred to as “(c) compound”).
  • the vinyl chloride resin molded article formed by molding the composition can achieve both excellent surface slipperiness and blooming resistance under normal temperature (23 ° C.) conditions. it can.
  • R 1 preferably has 1 to 8 carbon atoms. If the carbon number of R 1 is within the above predetermined range, the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition has surface slipperiness and blooming resistance under normal temperature (23 ° C.) conditions. This is because it is possible to achieve better compatibility.
  • n R 3 s are unsaturated hydrocarbon groups having one or more carbon-carbon unsaturated bonds. If all of n R 3 are unsaturated hydrocarbon groups having one or more carbon-carbon unsaturated bonds, a vinyl chloride resin molded article formed by molding a vinyl chloride resin composition has surface slipperiness, and This is because the blooming resistance under normal temperature (23 ° C.) conditions can be better balanced.
  • the number of carbon-carbon unsaturated bonds contained in the unsaturated hydrocarbon group of R 3 is preferably 1 or more and 4 or less, respectively. If the number of carbon-carbon unsaturated bonds of the unsaturated hydrocarbon group of R 3 is within the predetermined range, the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition has surface slipperiness, and This is because blooming resistance under normal temperature (23 ° C.) conditions can be further improved.
  • the number of carbon atoms of the n R 3 is 11 or more and 23 or less, respectively. If the number of carbon atoms of R 3 is within the predetermined range, the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition has surface slipperiness and blooming resistance under normal temperature (23 ° C.) conditions. This is because it is possible to achieve better compatibility.
  • the content of the compound (c) is preferably 0.04 parts by mass or more and 2.0 parts by mass or less per 100 parts by mass of the (a) vinyl chloride resin. . (C) If the content of the compound is within the above-mentioned predetermined range, the vinyl chloride resin molded product obtained by molding the vinyl chloride resin composition has a surface slipperiness and blooming resistance under normal temperature (23 ° C.) conditions. This is because sex can be achieved at a higher level.
  • R 2 is preferably hydrogen. If R 2 is hydrogen, the vinyl chloride resin molded product obtained by molding the vinyl chloride resin composition has both better surface slipping and blooming resistance under normal temperature (23 ° C.) conditions. Because you can.
  • the vinyl chloride resin composition of the present invention preferably further includes (d) an amide compound having a melting point higher than that of the compound (c). If the vinyl chloride resin composition further includes (d) the above-mentioned predetermined amide compound (hereinafter sometimes simply referred to as “(d) amide compound”), vinyl chloride formed by molding the vinyl chloride resin composition This is because the resin molded product can achieve both excellent surface slipperiness and excellent blooming resistance under high temperature conditions.
  • the amide compound (d) is represented by the following formula (2): R 4 (NR 5 COR 6 ) n (2)
  • R 4 and R 6 are each independently a hydrocarbon group
  • R 5 is a hydrocarbon group or hydrogen
  • n R 5 may be the same or different from each other
  • n R 6 may be the same or different from each other. It is preferable that it is a compound shown by this.
  • the (d) amide compound is a compound represented by the above-mentioned predetermined structure
  • the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition has surface slipperiness and blooming resistance under high temperature conditions. This is because it is possible to achieve better compatibility.
  • R 6 is preferably a saturated hydrocarbon group. This is because when R 6 is a saturated hydrocarbon group, the blooming resistance under a high temperature condition of a vinyl chloride resin molded article obtained by molding a vinyl chloride resin composition can be further enhanced.
  • the mixture of the compound (c) and the (d) amide compound preferably has a single melting point.
  • the mixture of the compound (c) and the (d) amide compound has a single melting point, the blooming resistance under a high temperature condition of the vinyl chloride resin molded product obtained by molding the vinyl chloride resin composition is further enhanced. Because it can.
  • the mixture of (c) compound and (d) amide compound “has a single melting point” means that (c) compound and (d) amide compound are combined in the vinyl chloride resin composition. In differential scanning calorimetry (DSC) of a mixture formed by mixing at the same ratio as the abundance ratio, this means that the main peak of endotherm observed when the temperature is raised is single.
  • the vinyl chloride resin composition of the present invention preferably has a single melting point of 120 ° C. or higher and 142 ° C. or lower. This is because, if the single melting point is within the above-mentioned range, the blooming resistance under a high temperature condition of the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition can be further enhanced.
  • the content of the (d) amide compound is preferably 0.2 to 5 times the content of the (c) compound. If the content of the (d) amide compound is 0.2 times or more of the content of the (c) compound, the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition under high temperature conditions This is because the blooming resistance can be further improved. Further, when the content of the (d) amide compound is 5 times or less of the content of the (c) compound, the surface slipperiness of the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition is further increased. This is because it can be increased.
  • the vinyl chloride resin composition of the present invention is preferably used for powder molding. This is because, if the vinyl chloride resin composition is used for powder molding, for example, a vinyl chloride resin molded article that can be used favorably as an automobile interior material such as a skin for an automobile instrument panel is easily obtained.
  • the vinyl chloride resin composition of the present invention is preferably used for powder slush molding. This is because, if the vinyl chloride resin composition is used for powder slush molding, for example, a vinyl chloride resin molded body that can be favorably used as an automobile interior material such as a skin for an automobile instrument panel can be obtained more easily.
  • the vinyl chloride resin molded object of this invention shape
  • the vinyl chloride resin molded article of the present invention is preferably used for the skin of automobile interior parts. If a vinyl chloride resin molded article is used for the skin of automobile interior parts, it is possible to produce automobile interior parts such as automobile instrument panels that have high surface slipperiness, good fuzziness, and are less likely to cause blooming. Because.
  • the laminated body of this invention has a foaming polyurethane molded object and either of the vinyl chloride resin molded object mentioned above.
  • the laminate having the polyurethane foam molded article and the above-described vinyl chloride resin molded article is, for example, an automobile such as an automobile instrument panel having both excellent surface slipperiness and blooming resistance under normal temperature (23 ° C.) conditions. It can be suitably used as an automobile interior material used for the production of interior parts.
  • a vinyl chloride resin composition capable of producing a vinyl chloride resin molded article that can achieve both excellent surface slipperiness and blooming resistance under normal temperature (23 ° C.) conditions can be obtained.
  • the vinyl chloride resin molded object and laminated body which can make the outstanding surface slipperiness and blooming-proof property on normal temperature (23 degreeC) conditions compatible are obtained.
  • the vinyl chloride resin composition of the present invention can be used, for example, when forming the vinyl chloride resin molded article of the present invention.
  • the vinyl chloride resin molded body formed using the vinyl chloride resin composition of the present invention is preferably used as an automobile interior material such as a skin provided in an automobile interior part such as an automobile instrument panel and a door trim. Can do.
  • the vinyl chloride resin molded body of the present invention can be used, for example, when forming the laminate of the present invention.
  • the laminated body formed using the vinyl chloride resin molding of this invention can be used suitably as a motor vehicle interior material used when manufacturing motor vehicle interior parts, such as a vehicle instrument panel and a door trim, for example.
  • the vinyl chloride resin composition of the present invention includes (a) a vinyl chloride resin, (b) a plasticizer, and (c) a compound having a predetermined structure, and optionally, a predetermined (d) amide compound and / or Or you may further contain an additive. And since the vinyl chloride resin composition of this invention contains the said (a) vinyl chloride resin, (b) plasticizer, and the said (c) compound at least, using the said composition, it is excellent. In addition, it is possible to form a vinyl chloride resin molded article having both surface slipperiness and blooming resistance under normal temperature (23 ° C.) conditions.
  • the vinyl chloride resin composition of this invention contains the said (a) vinyl chloride resin, (b) a plasticizer, and the said (c) compound at least, it forms the said composition.
  • the vinyl chloride resin molded article can also exhibit excellent fluff resistance. Therefore, when the vinyl chloride resin composition of the present invention is used, for example, for automotive instrument panels and door trims having excellent surface slipping, blooming resistance under normal temperature (23 ° C.) conditions, and fluff resistance. Thus, a vinyl chloride resin molded article suitable as an automobile interior material such as a skin can be obtained.
  • the vinyl chloride resin composition of the present invention is a powder. It is preferably used for molding, and more preferably used for powder slush molding.
  • vinyl chloride resin for example, one kind or two or more kinds of vinyl chloride resin particles can be contained, and optionally one kind or two or more kinds of vinyl chloride resin fine particles can be further contained.
  • the vinyl chloride resin preferably contains at least vinyl chloride resin particles, and more preferably contains vinyl chloride resin particles and vinyl chloride resin fine particles.
  • the (a) vinyl chloride resin can be produced by any conventionally known production method such as suspension polymerization method, emulsion polymerization method, solution polymerization method or bulk polymerization method.
  • “resin particles” refers to particles having a particle size of 30 ⁇ m or more, and “resin particles” refers to particles having a particle size of less than 30 ⁇ m.
  • the vinyl chloride resin (a) is preferably a vinyl chloride containing a vinyl chloride monomer unit in addition to a homopolymer composed of vinyl chloride monomer units, preferably 50% by mass or more, more preferably 70% by mass or more.
  • examples thereof include a system copolymer.
  • a monomer (comonomer) copolymerizable with a vinyl chloride monomer that can constitute a vinyl chloride copolymer for example, as described in International Publication No. 2016/098344 Things can be used.
  • these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Vinyl chloride resin particles In the vinyl chloride resin composition, the vinyl chloride resin particles usually function as a matrix resin (base material). The vinyl chloride resin particles are preferably produced by a suspension polymerization method.
  • the average degree of polymerization of the vinyl chloride resin constituting the vinyl chloride resin particles is preferably 1000 or more, and preferably 3000 or less. If the average degree of polymerization of the vinyl chloride resin constituting the vinyl chloride resin particles is equal to or higher than the above lower limit, for example, tensile strength is ensured while sufficiently securing the physical strength of the vinyl chloride resin molded body formed using the vinyl chloride resin composition. This is because the properties, particularly the tensile elongation, can be improved.
  • the molded article of vinyl chloride resin with good tensile elongation is, for example, the skin of an automotive instrument panel with excellent ductility, which breaks as designed without causing debris to scatter when the airbag is inflated and deployed. It can be suitably used as an automobile interior material. Moreover, it is because the meltability of a vinyl chloride resin composition can be improved if the average polymerization degree of the vinyl chloride resin which comprises a vinyl chloride resin particle is below the said upper limit. In the present invention, the “average degree of polymerization” can be measured according to JIS K6720-2.
  • the average particle diameter of the vinyl chloride resin particles is usually 30 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, preferably 500 ⁇ m or less, and more preferably 200 ⁇ m or less. This is because if the average particle diameter of the vinyl chloride resin particles is equal to or greater than the above lower limit, the powder flowability of the vinyl chloride resin composition is further improved. Further, if the average particle diameter of the vinyl chloride resin particles is not more than the above upper limit, the meltability of the vinyl chloride resin composition is further improved, and the surface smoothness of the vinyl chloride resin molded body formed using the composition is improved. It is because it can improve more.
  • the “average particle diameter” can be measured as a volume average particle diameter by a laser diffraction method in accordance with JIS Z8825.
  • the content ratio of the vinyl chloride resin particles in the vinyl chloride resin is preferably 70% by mass or more, more preferably 80% by mass or more, and can be 100% by mass.
  • the content is preferably not more than mass%, more preferably not more than 90 mass%.
  • Vinyl chloride resin fine particles In the vinyl chloride resin composition, the vinyl chloride resin fine particles usually function as a dusting agent (powder fluidity improver).
  • the vinyl chloride resin fine particles are preferably produced by an emulsion polymerization method.
  • the average degree of polymerization of the vinyl chloride resin constituting the vinyl chloride resin fine particles is preferably 500 or more, more preferably 700 or more, preferably 1000 or less, and more preferably 900 or less. If the average degree of polymerization of the vinyl chloride resin constituting the vinyl chloride resin fine particles as a dusting agent is not less than the above lower limit, the powder flowability of the vinyl chloride resin composition becomes better, and the composition is used. This is because the tensile elongation of the obtained molded article becomes better.
  • the meltability of the vinyl chloride resin composition is further improved, and a vinyl chloride resin molded article formed using the composition This is because the surface smoothness of the material is further improved.
  • the average particle size of the vinyl chloride resin fine particles is usually less than 30 ⁇ m, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, preferably 0.1 ⁇ m or more, and 1 ⁇ m or more. Is more preferable. This is because, if the average particle diameter of the vinyl chloride resin fine particles is not less than the above lower limit, for example, the powder fluidity of the vinyl chloride resin composition can be further improved without excessively reducing the size as a dusting agent. . Moreover, if the average particle diameter of the vinyl chloride resin fine particles is not more than the above upper limit, the meltability of the vinyl chloride resin composition is further increased, and the surface smoothness of the formed vinyl chloride resin molded product can be further improved. It is.
  • the content ratio of the vinyl chloride resin fine particles in the vinyl chloride resin may be 0% by mass, preferably 5% by mass or more, more preferably 10% by mass or more, It is preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the content ratio of the vinyl chloride resin fine particles in the vinyl chloride resin is not less than the above lower limit, the powder flowability of the vinyl chloride resin composition is further improved.
  • the content ratio of the vinyl chloride resin fine particles in the vinyl chloride resin is not more than the above upper limit, the physical strength of the vinyl chloride resin molded body formed using the vinyl chloride resin composition can be further increased. Because.
  • plasticizer for example, a primary plasticizer and a secondary plasticizer described in International Publication No. 2016/098344 can be used. These components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the plasticizers described above from the viewpoint of easily obtaining a vinyl chloride resin composition and a vinyl chloride resin molded article, it is preferable to use at least a primary plasticizer as the plasticizer (b). More preferably, a secondary plasticizer is used in combination.
  • the plasticizer (b) trimellitic acid ester and / or pyromellitic acid ester is preferably used, and at least trimellitic acid ester is more preferably used. It is more preferable to use bean oil in combination.
  • the form of the plasticizer (b) is not particularly limited, but (a) from the viewpoint of easy mixing with the vinyl chloride resin, and from the viewpoint of further suppressing the occurrence of blooming on the surface of the vinyl chloride resin molded body. Is preferably liquid at normal temperature (23 ° C.).
  • the content of the plasticizer (b) is preferably 10 parts by mass or more, more preferably 60 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the (a) vinyl chloride resin. More preferably, it is 200 mass parts or less, More preferably, it is 160 mass parts or less, More preferably, it is 120 mass parts or less, More preferably, it is 100 mass parts or less.
  • content of a plasticizer is more than the said minimum, the tensile elongation of the vinyl chloride resin molded object formed using the vinyl chloride resin composition can fully be raised. Further, if the content of the plasticizer (b) is not more than the above upper limit, the stickiness of the surface of the vinyl chloride resin molded body can be further suppressed, and the surface slipperiness and fluff resistance can be further enhanced. .
  • the predetermined compound contained in the vinyl chloride resin composition of the present invention has the following formula (1): R 1 (NR 2 COR 3 ) n (1)
  • n is an integer of 2 to 6
  • R 1 is an n-valent hydrocarbon group
  • R 2 is a monovalent hydrocarbon group or hydrogen
  • R 3 is a monovalent hydrocarbon group.
  • n R 2 s may be the same or different from each other
  • n R 3 s may be the same or different from each other
  • at least one of the n R 3 is a carbon- An unsaturated hydrocarbon group having one or more carbon unsaturated bonds.
  • It is characterized by being shown by this.
  • the compound (c) has a structure in which n hydrogens of a hydrocarbon are substituted with an amide group represented by —NR 2 COR 3 . If the compound (c) does not have the above predetermined structure, the surface slipperiness of the vinyl chloride resin molded body formed using the vinyl chloride resin composition and the blooming resistance under normal temperature (23 ° C.) conditions It is not possible to achieve a good balance between the properties and the fluff resistance of the vinyl chloride resin molded product cannot be secured sufficiently high.
  • the compound (c) usually improves the fluidity, releasability and workability of the composition by reducing the friction between the components in the vinyl chloride resin composition, particularly the particulate components, and the above composition. It exhibits a function as a lubricant for satisfactorily suppressing the stickiness of the surface of a vinyl chloride resin molded article formed using a product.
  • a lubricant when a lubricant is blended in a vinyl chloride resin molded article, the lubricant moves to the surface of the molded article with aging, particularly under normal temperature (23 ° C.) conditions, and blooming is likely to occur.
  • the (c) compound contained in the vinyl chloride resin composition of the present invention has the above-mentioned predetermined structure.
  • the surface of the vinyl chloride resin molded body formed using the vinyl chloride resin composition It is possible to exhibit excellent surface slipping and fluff resistance while suppressing the occurrence of blooming.
  • the vinyl chloride resin composition of the present invention contains the compound (c), for example, a vinyl chloride resin molded article formed using the composition without further including other lubricants described later. Surface slipperiness and fluff resistance can be sufficiently enhanced.
  • n in the above formula (1) needs to be an integer of 2 or more and 6 or less, and n is preferably an integer of 2 or more and 3 or less, and more preferably 2. If n is not within the above predetermined range, the reason is not clear, but the surface slipperiness of the vinyl chloride resin molded body formed using the vinyl chloride resin composition and resistance to normal temperature (23 ° C.) The blooming property cannot be satisfactorily achieved and the fluff resistance of the vinyl chloride resin molded product cannot be secured sufficiently high.
  • R 1 in the above formula (1) is an n-valent hydrocarbon group, may be an n-valent aliphatic hydrocarbon group, or may be an n-valent aromatic hydrocarbon group, It is preferably a valent aliphatic hydrocarbon group, and more preferably an n-valent saturated aliphatic hydrocarbon group. Furthermore, R 1 is preferably an n-valent chain hydrocarbon group, more preferably an n-valent chain aliphatic hydrocarbon group, and an n-valent chain saturated aliphatic carbon group. More preferably, it is a hydrogen group. The number of carbon atoms which R 1 has preferably is 1 or more, more preferably 2 or more, preferably 8 or less, more preferably 6 or less.
  • R 1 examples include a methylene group, a methylmethylene group, an ethylene group (dimethylene group), a dimethylmethylene group, an isopropylene group, a trimethylene group, an isobutylene group, a tetramethylene group, and a hexamethylene group.
  • a methylene group, an ethylene group (dimethylene group) and a hexamethylene group are preferable. If the structure of R 1 is as described above, the reason is not clear, but the surface slipperiness of the vinyl chloride resin molded article formed using the vinyl chloride resin composition, and under normal temperature (23 ° C.) conditions. This is because the blooming resistance can be made better and the fluff resistance of the vinyl chloride resin molded product can be secured sufficiently high.
  • R 2 in the above formula (1) is a monovalent hydrocarbon group or hydrogen, and n R 2 s may be the same as or different from each other.
  • the monovalent hydrocarbon group for R 2 may be a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group, but it may be a monovalent aliphatic carbon group. It is preferably a hydrogen group, more preferably a monovalent chain aliphatic hydrocarbon group, and even more preferably a monovalent chain saturated aliphatic hydrocarbon group.
  • the hydrocarbon group of R 2 preferably has 1 or 2 carbon atoms, more preferably 1. Examples of R 2 include hydrogen, methyl group, and ethyl group.
  • the R 2 it is preferable that at least one of the n R 2 is hydrogen, and more preferably all n R 2 are hydrogen. If the structure of R 2 is as described above, the surface slipping property of the vinyl chloride resin molded body formed using the vinyl chloride resin composition and the blooming resistance under normal temperature (23 ° C.) conditions are improved. This is because it is possible to achieve both, and the fluff resistance of the vinyl chloride resin molded product can be secured sufficiently high.
  • R 3 in the above formula (1) is a monovalent hydrocarbon group, and n R 3 s may be the same or different from each other, but at least one of the n R 3 is carbon-carbon.
  • the unsaturated hydrocarbon group must have at least one unsaturated bond. That is, the compound (c), may be unsaturated hydrocarbon group having a saturated hydrocarbon group and R 3 of R 3 is not mixed, only the unsaturated hydrocarbon group R 3 is present in one molecule May be.
  • R 3 does not have the above-mentioned predetermined structure, the reason is not clear, but the surface slipperiness of the vinyl chloride resin molded body formed using the vinyl chloride resin composition and under normal temperature (23 ° C.) conditions The blooming resistance cannot be satisfactorily achieved at the same time, and the fluff resistance of the vinyl chloride resin molded article cannot be secured sufficiently high.
  • the saturated hydrocarbon group represented by R 3 is preferably a monovalent saturated aliphatic hydrocarbon group, and more preferably a monovalent chain saturated aliphatic hydrocarbon group.
  • the carbon number of the saturated hydrocarbon group of R 3 is preferably 11 or more, more preferably 13 or more, further preferably 15 or more, and preferably 23 or less, It is more preferably 21 or less, still more preferably 19 or less, and particularly preferably 17.
  • saturated hydrocarbon group for R 3 examples include CH 3 (CH 2 ) 10 —, CH 3 (CH 2 ) 12 —, CH 3 (CH 2 ) 14 —, CH 3 (CH 2 ) 16 —, CH 3 (CH 2) 18 -, CH 3 (CH 2) 20 -, CH 3 (CH 2) 22 -, and the like.
  • the unsaturated hydrocarbon group for R 3 is preferably a monovalent unsaturated aliphatic hydrocarbon group, and more preferably a monovalent chain-type unsaturated aliphatic hydrocarbon group. Furthermore, the unsaturated hydrocarbon group for R 3 is preferably a monovalent chain unsaturated hydrocarbon group.
  • the number of carbon atoms contained in the unsaturated hydrocarbon group of R 3 is preferably 11 or more, more preferably 13 or more, further preferably 15 or more, and preferably 23 or less. , 21 or less, more preferably 19 or less, and particularly preferably 17.
  • R 3 If the structure of R 3 is as described above, the reason is not clear, but the surface slipperiness of the vinyl chloride resin molded body formed using the vinyl chloride resin composition, and under normal temperature (23 ° C.) conditions. This is because the blooming resistance can be made better and the fluff resistance of the vinyl chloride resin molded product can be secured sufficiently high.
  • Examples of the unsaturated hydrocarbon group for R 3 include mono-unsaturated groups such as CH 3 (CH 2 ) 7 CH ⁇ CH (CH 2 ) 7 — and CH 3 (CH 2 ) 7 CH ⁇ CH (CH 2 ) 11 —.
  • the unsaturated hydrocarbon group for R 3 is more preferably an unsaturated hydrocarbon group having a carbon-carbon double bond.
  • R 3 is preferably an unsaturated hydrocarbon group in which all n R 3 s have one or more carbon-carbon unsaturated bonds. Further, the number of carbon-carbon unsaturated bonds of the unsaturated hydrocarbon group of R 3 is preferably 1 or more, preferably 4 or less, more preferably 3 or less, and more preferably 2 or less. Is more preferable, and 1 is particularly preferable. If the structure of R 3 is as described above, the reason is not clear, but the surface slipperiness of the vinyl chloride resin molded body formed using the vinyl chloride resin composition, and under normal temperature (23 ° C.) conditions. This is because the blooming resistance can be made better and the fluff resistance of the vinyl chloride resin molded product can be secured sufficiently high. Among the above, R 3 is preferably a monounsaturated hydrocarbon group having a carbon-carbon double bond, more preferably CH 3 (CH 2 ) 7 CH ⁇ CH (CH 2 ) 7 —.
  • the compound (c) is an unsaturated fatty acid amide (secondary unsaturated fatty acid amide) having n amide bonds in one molecule.
  • Amide and long chain unsaturated fatty acid amide (secondary amide of long chain unsaturated fatty acid) is more preferable.
  • examples of the compound (c) include ethylene bisoleic acid amide (particularly dimethylene bisoleic acid amide), ethylene biserucic acid amide, hexamethylene bisoleic acid amide, and the like. Among these, as the compound (c), ethylene bisoleic acid amide and hexamethylene bisoleic acid amide are preferable.
  • the melting point of the compound is preferably 20 ° C or higher, more preferably 40 ° C or higher, preferably 119 ° C or lower, more preferably 117 ° C or lower.
  • the melting point refers to the melting point observed when the second temperature increase is performed in the differential scanning calorimetry (DSC) of the target product in the atmosphere at a temperature increase rate of 10 ° C./min. .
  • the content of the compound (c) is preferably 0.04 parts by mass or more, more preferably 0.1 parts by mass or more, per 100 parts by mass of the above-mentioned (a) vinyl chloride resin. More preferably, it is more than 0.1 parts by mass, even more preferably more than 0.16 parts by mass, even more preferably more than 0.2 parts by mass, preferably less than 2.0 parts by mass. More preferably, it is 0.0 parts by mass or less. (A) If the content of the compound (c) relative to the vinyl chloride resin is not less than the above lower limit, the surface slipperiness and fluff resistance of the vinyl chloride resin molded body formed using the vinyl chloride resin composition can be further improved. Because.
  • the vinyl chloride resin molded body formed using the vinyl chloride resin composition is resistant to normal temperature (23 ° C.) This is because the blooming property can be further improved.
  • the content of the compound (c) is preferably 0.04 parts by mass or more, more preferably 0.1 parts by mass or more per 100 parts by mass of the above-described (b) plasticizer. More preferably 12 parts by mass or more, still more preferably 0.16 parts by mass or more, still more preferably 0.2 parts by mass or more, and preferably 2.0 parts by mass or less, More preferably, it is 1.0 part by mass or less.
  • a plasticizer tends to cause stickiness of the surface of a vinyl chloride resin molded article, and if the content of the (c) compound relative to the (b) plasticizer is at least the above lower limit, the vinyl chloride resin composition This is because the surface slipperiness and fluff resistance of the vinyl chloride resin molded body formed using can be further improved. Further, if the content of the compound (c) relative to the plasticizer (b) is not more than the above upper limit, the blooming resistance under normal temperature (23 ° C.) condition of the vinyl chloride resin molded body formed using the vinyl chloride resin composition This is because the properties can be further improved.
  • the vinyl chloride resin composition of the present invention preferably further contains a predetermined (d) amide compound in addition to the components described above. If (d) the amide compound has a melting point higher than the melting point of (c) compound, the surface slipperiness of the vinyl chloride resin molded body formed using the vinyl chloride resin composition, and the high temperature condition Both blooming resistance can be satisfactorily achieved.
  • “high temperature” specifically means a temperature equal to or higher than the melting point of the compound (c) described above.
  • the vinyl chloride resin composition of this invention further contains the said (d) amide compound, the vinyl chloride resin molded object formed using the said vinyl chloride resin composition is more than melting
  • the melting point of the amide compound (d) is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, further preferably 140 ° C. or higher, and preferably 250 ° C. or lower.
  • the temperature is more preferably 200 ° C. or lower, and still more preferably 160 ° C. or lower.
  • the melting point of the amide compound is 130 ° C. or more and 250 ° C. or less, the blooming resistance under a high temperature condition of the vinyl chloride resin molded product obtained by molding the vinyl chloride resin composition can be further enhanced. is there.
  • the difference between the melting point of the (d) amide compound and the melting point of the compound (c) described above is preferably 15 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 25 ° C. or higher. 40 ° C. or lower, preferably 35 ° C. or lower, more preferably 30 ° C. or lower. If the difference between the melting point of the (d) amide compound and the melting point of the (c) compound is 15 ° C. or more and 40 ° C. or less, the resistance of the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition under high temperature conditions. This is because the blooming property can be further enhanced.
  • the mixture formed by mixing (c) compound and (d) amide compound at the same ratio as the existing ratio in the vinyl chloride resin composition preferably has a single melting point. If the mixture of the above-mentioned (c) compound and (d) amide compound has a single melting point, the blooming resistance under a high temperature condition of the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition is improved. This is because it can be further increased.
  • the single melting point of the mixture of the compound (c) and the (d) amide compound described above is preferably 120 ° C. or higher, more preferably 122 ° C. or higher, and 124 ° C. or higher. Is more preferably 142 ° C. or lower, more preferably 138 ° C.
  • the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition is used under high temperature conditions. This is because the blooming resistance can be further improved.
  • the amide compound is represented by the following formula (2): R 4 (NR 5 COR 6 ) n (2) [In the formula (2), n is an integer of 2 to 6, R 4 is an n-valent hydrocarbon group, R 5 is a monovalent hydrocarbon group or hydrogen, and R 6 is a monovalent hydrocarbon group. It is a hydrocarbon group, n R 5 may be the same or different from each other, and n R 6 may be the same or different from each other. It is preferable that it is shown by this. That is, the (d) amide compound preferably has a structure in which n hydrogen atoms of a hydrocarbon are substituted with an amide group represented by —NR 5 COR 6 . (D) If the amide compound has the above predetermined structure, the surface slipping property of the vinyl chloride resin molded body formed using the vinyl chloride resin composition and the blooming resistance under high temperature conditions are better. Can be compatible.
  • n in the above formula (2) is an integer of 2 or more and 6 or less, and n is preferably an integer of 2 or more and 3 or less, and more preferably 2. If n is within the above predetermined range, the reason is not clear, but the blooming resistance under high temperature conditions of the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition can be further improved. is there.
  • R 4 in the above formula (2) is an n-valent hydrocarbon group, may be an n-valent aliphatic hydrocarbon group, or may be an n-valent aromatic hydrocarbon group, It is preferably a valent aliphatic hydrocarbon group, and more preferably an n-valent saturated aliphatic hydrocarbon group. Further, R 4 is preferably an n-valent chain hydrocarbon group, more preferably an n-valent chain aliphatic hydrocarbon group, and an n-valent chain saturated aliphatic carbon group. More preferably, it is a hydrogen group. R 4 has preferably 1 or more carbon atoms, more preferably 2 or more carbon atoms, preferably 8 or less, and more preferably 6 or less. It is preferable number of carbon atoms in R 4 is the same as the number of carbon atoms of R 1 in the above-described compound (c).
  • R 4 examples include a methylene group, a methylmethylene group, an ethylene group (dimethylene group), a dimethylmethylene group, an isopropylene group, a trimethylene group, an isobutylene group, a tetramethylene group, and a hexamethylene group.
  • a methylene group, an ethylene group (dimethylene group) and a hexamethylene group are preferable. If the structure of R 4 is as described above, the reason is not clear, but the blooming resistance under a high temperature condition of the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition can be further improved. It is.
  • R 5 in the above formula (2) is a monovalent hydrocarbon group or hydrogen, and n R 5 s may be the same as or different from each other.
  • the monovalent hydrocarbon group for R 5 may be a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group. It is preferably a hydrogen group, more preferably a monovalent chain aliphatic hydrocarbon group, and even more preferably a monovalent chain saturated aliphatic hydrocarbon group.
  • the hydrocarbon group of R 5 preferably has 1 or 2 carbon atoms, more preferably 1. Examples of R 5 include hydrogen, methyl group, and ethyl group.
  • the R 5 it is preferable that at least one of the n R 5 is hydrogen, and more preferably all n R 5 is hydrogen. If the structure of R 5 is as described above, the reason is not clear, but the blooming resistance under a high temperature condition of the vinyl chloride resin molded article obtained by molding the vinyl chloride resin composition can be further improved. It is.
  • R 6 in the above formula (2) is a monovalent hydrocarbon group, and n R 6 s may be the same as or different from each other. Further, the n R 6 may or may not contain an unsaturated hydrocarbon group having one or more carbon-carbon unsaturated bonds. That is, (d) In the amide compound may be unsaturated hydrocarbon group having a saturated hydrocarbon group and R 6 in R 6 is not mixed, only saturated hydrocarbon group R 6 is present in one molecule May be. If R 6 has the above-mentioned predetermined structure, the reason is not clear, but the blooming resistance under a high temperature condition of the vinyl chloride resin molded article formed by molding the vinyl chloride resin composition can be further enhanced. It is.
  • the saturated hydrocarbon group of R 6 is preferably a monovalent saturated aliphatic hydrocarbon group, and more preferably a monovalent chain saturated aliphatic hydrocarbon group.
  • the number of carbon atoms contained in the saturated hydrocarbon group represented by R 6 is preferably 11 or more, more preferably 13 or more, further preferably 15 or more, and preferably 23 or less, It is more preferably 21 or less, still more preferably 19 or less, and particularly preferably 17. If the structure of R 6 is as described above, the reason is not clear, but the blooming resistance under a high temperature condition of the vinyl chloride resin molded body obtained by molding the vinyl chloride resin composition can be further improved. It is.
  • R 6 It is preferable number of carbon atoms of R 6 is the same as the number of carbon atoms in R 3 in the above-described compound (c).
  • Examples of the saturated hydrocarbon group for R 6 include CH 3 (CH 2 ) 10 —, CH 3 (CH 2 ) 12 —, CH 3 (CH 2 ) 14 —, CH 3 (CH 2 ) 16 —, and CH 3. (CH 2) 18 -, CH 3 (CH 2) 20 -, CH 3 (CH 2) 22 -, and the like.
  • the unsaturated hydrocarbon group for R 6 is preferably a monovalent unsaturated aliphatic hydrocarbon group, and more preferably a monovalent chain-type unsaturated aliphatic hydrocarbon group. Further, the unsaturated hydrocarbon group for R 6 is preferably a monovalent chain unsaturated hydrocarbon group.
  • the number of carbon atoms contained in the unsaturated hydrocarbon group of R 6 is preferably 11 or more, more preferably 13 or more, further preferably 15 or more, and preferably 23 or less. , 21 or less, more preferably 19 or less, and particularly preferably 17.
  • Examples of the unsaturated hydrocarbon group for R 6 include mono-unsaturated groups such as CH 3 (CH 2 ) 7 CH ⁇ CH (CH 2 ) 7 — and CH 3 (CH 2 ) 7 CH ⁇ CH (CH 2 ) 11 —.
  • the unsaturated hydrocarbon group for R 6 is preferably an unsaturated hydrocarbon group having a carbon-carbon double bond.
  • R 6 is preferably one or more of saturated hydrocarbon groups among n R 6 , and more preferably all are saturated hydrocarbon groups (that is, having no unsaturated bond). . If the structure of R 6 is as described above, the reason is not clear, but the blooming resistance under a high temperature condition of the vinyl chloride resin molded article obtained by molding the vinyl chloride resin composition can be further improved. It is. Among the above, R 6 is preferably a chain saturated aliphatic hydrocarbon group, more preferably CH 3 (CH 2 ) 10 — and CH 3 (CH 2 ) 16 —, and CH 3 (CH 2 ). 16- is more preferable.
  • the amide compound is a saturated fatty acid amide (secondary amide of saturated fatty acid) having n amide bonds in one molecule. It is preferably a long chain saturated fatty acid amide (secondary amide of a long chain saturated fatty acid).
  • examples of the (d) amide compound include ethylene bislauric acid amide, ethylene bis stearic acid amide (particularly dimethylene bis stearic acid amide), ethylene bispalmitic acid amide, hexamethylene bis stearic acid amide, and the like. Is mentioned. Among these, as the (d) amide compound, ethylene bis stearic acid amide and hexamethylene bis stearic acid amide are preferable.
  • the content of the amide compound is preferably 0.04 parts by mass or more, more preferably 0.06 parts by mass or more per 100 parts by mass of the above-mentioned (a) vinyl chloride resin.
  • the amount is more preferably 08 parts by mass or more, preferably 0.4 parts by mass or less, more preferably 0.3 parts by mass or less, and further preferably 0.2 parts by mass or less.
  • the content of the (d) amide compound relative to the vinyl chloride resin is not more than the above upper limit, the surface slipperiness of the vinyl chloride resin molded body formed using the vinyl chloride resin composition can be further improved.
  • the content of (d) the amide compound with respect to the vinyl chloride resin (a) is not less than the above lower limit, the blooming resistance under high temperature conditions of the vinyl chloride resin molded body formed using the vinyl chloride resin composition is improved. This is because it can be further improved.
  • the content of (d) the amide compound is preferably 0.04 parts by mass or more, more preferably 0.06 parts by mass or more per 100 parts by mass of the above-mentioned (b) plasticizer. It is more preferably 0.08 parts by mass or more, preferably 0.4 parts by mass or less, more preferably 0.3 parts by mass or less, and further preferably 0.2 parts by mass or less.
  • a plasticizer tends to cause stickiness of the surface of a vinyl chloride resin molded article. If the content of (d) an amide compound relative to (b) the plasticizer is not more than the above upper limit, the vinyl chloride resin composition This is because the surface slipperiness of the vinyl chloride resin molded body formed using a product can be secured at a sufficiently high level.
  • the content of (d) the amide compound relative to (b) the plasticizer is not less than the above lower limit, the blooming resistance under high temperature conditions of the vinyl chloride resin molded body formed using the vinyl chloride resin composition is further improved. It is because it can improve.
  • the content of the (d) amide compound is preferably 0.2 times or more, more preferably 0.25 times or more, and 0.3 times or more of the content of the above-mentioned (c) compound. More preferably, it is 5 times or less, more preferably 2 times or less, still more preferably 1 time or less, and still more preferably 0.6 times or less.
  • (D) When the content of the amide compound is 0.2 times or more of the content of the (c) compound, blooming resistance under high temperature conditions of a vinyl chloride resin molded article formed by molding a vinyl chloride resin composition This is because the sex can be further enhanced.
  • the content of the (d) amide compound is 5 times or less than the content of the (c) compound, the reason is not clear, but the vinyl chloride resin molded body formed by molding the vinyl chloride resin composition This is because the surface slipperiness can be secured at a sufficiently high level.
  • the total of the content of the (c) compound and the content of the (d) amide compound is preferably 0.2 parts by mass or more per 100 parts by mass of the above-mentioned (a) vinyl chloride resin. It is more preferably 22 parts by mass or more, further preferably 0.24 parts by mass or more, preferably 0.6 parts by mass or less, more preferably 0.55 parts by mass or less, 0 More preferably, it is 5 parts by mass or less.
  • a vinyl chloride resin formed using a vinyl chloride resin composition if the sum of the content of the compound (c) and the content of the (d) amide compound in the vinyl chloride resin is within the predetermined range. This is because the surface slipperiness of the molded body and the blooming resistance under high temperature conditions can be better balanced.
  • the total of the content of the (c) compound and the content of the (d) amide compound is preferably 0.2 parts by mass or more per 100 parts by mass of the above-described (b) plasticizer. More preferably, it is more preferably 0.24 parts by mass or more, more preferably 0.6 parts by mass or less, and even more preferably 0.55 parts by mass or less. More preferably, it is 5 parts by mass or less. If the sum of the content of the compound (c) and the content of the (d) amide compound is within the predetermined range, the surface slipperiness of the vinyl chloride resin molded body formed using the vinyl chloride resin composition, This is because the blooming resistance under a high temperature condition can be better balanced.
  • the vinyl chloride resin composition of the present invention may further contain various additives in addition to the components described above.
  • the additive is not particularly limited, and other than the above-mentioned compounds (c) and (d) amide compounds, components that can function as a lubricant (other lubricants); perchloric acid-treated hydrotalcite, zeolite, ⁇ - Stabilizers such as diketones and fatty acid metal salts; mold release agents; other dusting agents other than the above vinyl chloride resin fine particles; impact resistance improvers; perchloric acid compounds other than perchloric acid-treated hydrotalcite (perchloric acid) Sodium, potassium perchlorate, etc.); antioxidants; antifungal agents; flame retardants; antistatic agents; fillers; light stabilizers; Among the additives that can be contained in the vinyl chloride resin composition of the present invention, perchloric acid-treated hydrotalcite, zeolite, ⁇ -diketone, fatty acid metal salt, release agent, other
  • lubricants include, but are not limited to, fatty acid amides other than the above-mentioned (c) compound and (d) amide compound, silicone oil, and the like.
  • examples of fatty acid amides other than the above-mentioned compounds (c) and (d) amide compounds include saturated fatty acids having one or more amide bonds in the molecule, such as lauric acid amide and stearic acid amide. Amides; unsaturated fatty acid amides having only one amide bond in the molecule, such as oleic acid amide and erucic acid amide;
  • the silicone oil may be an unmodified silicone oil, a modified silicone oil, or a mixture thereof.
  • [Content] And content of other lubricants can be 0 mass part per 100 mass parts of (a) vinyl chloride resin mentioned above, can also be over 0 mass part, and is 2.0 mass parts or less. It is preferably 1.0 parts by mass or less, more preferably 0.5 parts by mass or less, and particularly preferably 0.2 parts by mass or less. If another lubricant is further blended in the vinyl chloride resin composition, the surface slipperiness and fluff resistance of the vinyl chloride resin molded article formed using the composition can be further improved. Further, when the content of other lubricants is set to the above upper limit or less, the excellent blooming resistance of the vinyl chloride resin molded article formed using the vinyl chloride resin composition can be maintained.
  • content of other lubricants can be 0 mass part per 100 mass parts of (b) plasticizers mentioned above, can also be over 0 mass part, and should be 2.0 mass parts or less. Is preferably 1.0 part by mass or less, more preferably 0.5 part by mass or less, and particularly preferably 0.2 part by mass or less.
  • a plasticizer is likely to cause stickiness of the surface of a vinyl chloride resin molded article. If another lubricant is further added to the vinyl chloride resin composition, vinyl chloride formed using the composition is used. The surface slipperiness and fluff resistance of the resin molding can be further improved. Further, when the content of other lubricants is set to the above upper limit or less, the excellent blooming resistance of the vinyl chloride resin molded article formed using the vinyl chloride resin composition can be maintained.
  • the content of other lubricants can be 0 parts by mass per 100 parts by mass of the compound (c) described above, can be more than 0 parts by mass, and is preferably 100 parts by mass or less. More preferably, it is 67 parts by mass or less. If another lubricant is further blended in the vinyl chloride resin composition, the surface slipperiness and fluff resistance of the vinyl chloride resin molded article formed using the composition can be further improved. Further, when the content of other lubricants is set to the above upper limit or less, the excellent blooming resistance of the vinyl chloride resin molded article formed using the vinyl chloride resin composition can be maintained.
  • the vinyl chloride resin composition of the present invention can be prepared by mixing the components described above.
  • a mixing method of the above (a) vinyl chloride resin, (b) plasticizer, (c) compound, and (d) an amide compound and / or various additives further blended as necessary.
  • the temperature at the time of dry blending is not specifically limited, 50 degreeC or more is preferable, 70 degreeC or more is more preferable, and 200 degreeC or less is preferable.
  • vinyl chloride resin composition can be used suitably for powder molding, and can be used suitably by powder slush molding.
  • the vinyl chloride resin molded article of the present invention is obtained by molding the above-described vinyl chloride resin composition by an arbitrary method. And since the vinyl chloride resin molded article of the present invention is formed using any of the vinyl chloride resin compositions described above, usually at least (a) vinyl chloride resin, (b) plasticizer, (C) a compound having the above-mentioned predetermined structure, and is excellent in surface slipperiness, blooming resistance under normal temperature (23 ° C.) conditions, and fluff resistance. Therefore, the vinyl chloride resin molded article of the present invention is suitably used for manufacturing the skin of automobile interior parts such as automobile instrument panels and door trims, in which surface stickiness and blooming are well suppressed.
  • the mold temperature at the time of powder slush molding is not particularly limited and is preferably 200 ° C. or higher, and preferably 220 ° C. or higher. More preferably, it is preferably 300 ° C. or less, and more preferably 280 ° C. or less.
  • the vinyl chloride resin composition of the present invention is sprinkled on a mold in the above temperature range and left for 5 seconds to 30 seconds, and then the excess vinyl chloride resin composition is shaken off, and further, at an arbitrary temperature. Leave for 30 seconds to 3 minutes. Thereafter, the mold is cooled to 10 ° C. or more and 60 ° C. or less, and the obtained vinyl chloride resin molded article of the present invention is removed from the mold. And the sheet-like molded object which modeled the shape of the metal mold
  • the laminated body of this invention has a foaming polyurethane molded object and either of the vinyl chloride resin molded object mentioned above.
  • the vinyl chloride resin molded body usually constitutes one surface of the laminate.
  • the laminated body of this invention has the vinyl chloride resin molding formed using the vinyl chloride resin composition of this invention, for example, the slipperiness of the surface of the said molding side, normal temperature (23 degreeC) ) Excellent blooming resistance and fluff resistance under conditions. Therefore, the laminate of the present invention is suitably used as an automobile interior material for forming automobile interior parts such as an automobile instrument panel and a door trim.
  • the lamination method of the foamed polyurethane molded product and the vinyl chloride resin molded product is not particularly limited, and for example, the following method can be used. That is, (1) A method in which a foamed polyurethane molded product and a vinyl chloride resin molded product are separately prepared and then bonded together by heat fusion, thermal bonding, or using a known adhesive; (2) Vinyl chloride Polymerization is performed by reacting isocyanates, which are raw materials of the polyurethane foam molded body, and polyols on the resin molded body, and polyurethane is foamed by a known method to form polyurethane foam on the vinyl chloride resin molded body. And a method of directly forming a molded body. Among these, the latter method (2) is preferable because the process is simple and the vinyl chloride resin molded body and the polyurethane foam molded body are easily bonded firmly even in the case of obtaining laminated bodies having various shapes. It is.
  • the tensile properties at low temperature of the vinyl chloride resin molded body are as follows. Measure the tensile elongation (%) and tensile fracture stress (MPa) for the initial (unheated) and after heating (thermal aging test), respectively. It was evaluated by. ⁇ Initial >> The obtained vinyl chloride resin molded sheet was punched with No. 1 dumbbell described in JIS K6251, and in accordance with JIS K7161, the tensile elongation (%) and tensile fracture at a low temperature of ⁇ 35 ° C. at a tensile speed of 200 mm / min. Stress (MPa) was measured.
  • the surface slipperiness of the vinyl chloride resin molded body was evaluated by measuring the dynamic friction coefficient as follows. Specifically, using a texture tester (manufactured by Trinity Labs, product name “TL201Ts”), in a measurement environment at a temperature of 23 ° C. and a relative humidity of 50%, load: 50 g, speed: 10 mm / second, test range: The dynamic friction coefficient of the surface of the sheet was measured by bringing the tactile contactor into contact with the surface of the vinyl chloride resin molded sheet under the conditions of 50 mm and measurement range: 30 mm excluding 10 mm before and after the test range. The smaller the value of the dynamic friction coefficient, the better the surface slipperiness of the vinyl chloride resin molded article, indicating that the surface stickiness is well suppressed.
  • the sample piece whose brightness was measured was placed on the sample stand of the Gakushin Abrasion Tester (manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd., product name “RT-200”) so that the vinyl chloride resin molded article side was up Put it on.
  • a total load applied to the test piece by attaching a load of 500 g to the wear tester was set to 500 g weight (about 5 N).
  • a paper towel Nippon Paper Crecia Co., Ltd., product name “COMFORT”
  • the paper towel makes contact with the surface of the test piece on the side of the vinyl chloride resin molding.
  • the test piece surface and the paper towel were rubbed by reciprocating 10 times in the state. Further, the brightness (L * value after the wear test) was measured in the same manner as described above at 20 locations where the brightness was measured in advance. Then, at 20 points, a difference in brightness between before and after was measured abrasion test - results were averaged (L * value after abrasion test before abrasion test L * value) as [Delta] L *. It shows that the smaller the value of ⁇ L * is, the higher the fluff resistance of the surface of the vinyl chloride resin molded body is, and the less the fiber residue adheres to the surface of the molded body. Note that the test for fluff resistance was performed in an environment of a temperature of 23 ° C. and a relative humidity of 50%.
  • ⁇ Blooming resistance under normal temperature conditions The degree of occurrence of bloom on the surface of the vinyl chloride resin molded body under normal temperature conditions was evaluated as follows. That is, the state of the surface of the vinyl chloride resin molded sheet (the side on which the texture pattern was applied) was visually observed twice immediately after sheet formation and two weeks after sheet formation. And when the part which wiped the white powder on the surface of the vinyl chloride resin molded sheet was confirmed, it was judged that bloom had occurred, and blooming resistance was evaluated according to the following criteria. In addition, storage of the vinyl chloride resin molded sheet and confirmation of the presence or absence of bloom were performed in an environment of normal temperature (23 ° C.) and relative humidity of 50%.
  • the degree of bloom on the surface of the vinyl chloride resin molded body under high temperature conditions was evaluated as follows. That is, with respect to the state of the surface of the vinyl chloride resin molded sheet (the side on which the embossed pattern is applied), it was visually observed immediately after the sheet formation and twice after storing the sheet under high temperature conditions (temperature 120 ° C.) for 500 hours. Observed. Then, when a white powdered part is confirmed on the surface of the vinyl chloride resin molded sheet, it is judged that bloom has occurred, and the blooming resistance under high temperature conditions is determined according to the following criteria. evaluated.
  • A There is no change in the surface state of the vinyl chloride resin molded sheet immediately after sheet formation and after 500 hours storage under high temperature conditions.
  • a mixture is prepared by mixing the lubricant ((c) compound and / or (d) amide compound) used in each example and comparative example at the same mass ratio as the mass ratio of the added amount in the examples and comparative examples. did.
  • the obtained mixture was subjected to differential scanning calorimetry (DSC), and the melting point when the temperature was raised for the second time in the atmosphere at a temperature rising rate of 10 ° C./min was measured.
  • DSC differential scanning calorimetry
  • Example 1-1 Preparation of vinyl chloride resin composition> Among the blending components shown in Table 1, components other than the plasticizer (trimellitic acid ester and epoxidized soybean oil) and vinyl chloride resin fine particles as a dusting agent were placed in a Henschel mixer and mixed. Then, when the temperature of the mixture rises to 80 ° C., all of the plasticizer is added, and the temperature is further raised to dry up (the plasticizer is absorbed by the vinyl chloride resin particles, which are vinyl chloride resins, The mixture was further improved.) Thereafter, when the dried-up mixture was cooled to a temperature of 100 ° C. or less, vinyl chloride resin fine particles as a dusting agent were added to prepare a vinyl chloride resin composition.
  • the plasticizer trimellitic acid ester and epoxidized soybean oil
  • vinyl chloride resin fine particles as a dusting agent were added to prepare a vinyl chloride resin composition.
  • the vinyl chloride resin composition obtained above is sprinkled on a mold with a texture heated to a temperature of 250 ° C., left to melt for an arbitrary time of about 8 to 20 seconds, and then an excess vinyl chloride resin composition. Shaken off. Thereafter, the embossed mold sprinkled with the vinyl chloride resin composition was allowed to stand in an oven set at a temperature of 200 ° C., and the embossed mold was cooled with cooling water when 60 seconds had elapsed after standing. . When the mold temperature was cooled to 40 ° C., a vinyl chloride resin molded sheet of 200 mm ⁇ 300 mm ⁇ 1 mm as a vinyl chloride resin molded body was removed from the mold.
  • the obtained vinyl chloride resin molded sheet is subjected to initial (unheated) low-temperature tensile properties, surface slip properties, blooming resistance under normal temperature conditions, and blooming resistance under high-temperature conditions according to the above-described method. Was measured and evaluated. The results are shown in Table 1.
  • a polyol mixture was obtained. Moreover, the liquid mixture which mixed the obtained polyol mixture and polymethylene polyphenylene polyisocyanate (polymeric MDI) in the ratio from which the index becomes 98 was prepared. And the prepared liquid mixture was poured on the vinyl chloride resin molded sheet laid in the metal mold
  • a foamed polyurethane molded product is lined on a vinyl chloride resin molded sheet (thickness: 1 mm) as the skin.
  • the laminated body formed was formed in a mold. And the formed laminated body was taken out from the metal mold
  • Example 1-2 In the preparation of the vinyl chloride resin composition, the vinyl chloride resin composition, the chloride was added in the same manner as in Example 1-1 except that 0.2 part of polyether-modified silicone oil as an additive (other lubricant) was further added. A vinyl resin molded body and a laminate were formed. The addition of the polyether-modified silicone oil was performed together with the addition of the compound (c). Measurement and evaluation were performed in the same manner as in Example 1-1. The results are shown in Table 1.
  • Example 1-3 In the preparation of the vinyl chloride resin composition, the vinyl chloride resin composition, the vinyl chloride resin molded article and the laminate were prepared in the same manner as in Example 1-1 except that the amount of the compound (c) was changed to 0.5 part. Formed. Measurement and evaluation were performed in the same manner as in Example 1-1. The results are shown in Table 1.
  • Example 1-4 In the preparation of the vinyl chloride resin composition, the vinyl chloride resin composition, the vinyl chloride resin molded article and the laminate were prepared in the same manner as in Example 1-1 except that the amount of the compound (c) was changed to 1.0 part. Formed. Measurement and evaluation were performed in the same manner as in Example 1-1. The results are shown in Table 1.
  • Example 1-3 In the preparation of the vinyl chloride resin composition, in the same manner as in Example 1-1, except that (c) the compound was not used and (d) 1.0 part of ethylenebisstearic acid amide as the amide compound was added. A vinyl resin composition, a vinyl chloride resin molded body, and a laminate were formed. Measurement and evaluation were performed in the same manner as in Example 1-1. The results are shown in Table 1.
  • Example 2-1 Preparation of vinyl chloride resin composition> Among the blending components shown in Table 2, the components except the plasticizer (trimellitic acid ester and epoxidized soybean oil) and the vinyl chloride resin fine particles as the dusting agent were placed in a Henschel mixer and mixed. Then, when the temperature of the mixture rises to 80 ° C., all of the plasticizer is added, and the temperature is further raised to dry up (the plasticizer is absorbed by the vinyl chloride resin particles, which are vinyl chloride resins, The mixture was further improved.) Thereafter, when the dried-up mixture was cooled to a temperature of 100 ° C. or less, vinyl chloride resin fine particles as a dusting agent were added to prepare a vinyl chloride resin composition. When only the melting point of the lubricant was measured, a single melting point was observed at 133 ° C.
  • the vinyl chloride resin composition obtained above is sprinkled on a mold with a texture heated to a temperature of 250 ° C., left to melt for an arbitrary time of about 8 to 20 seconds, and then an excess vinyl chloride resin composition. Shaken off. Thereafter, the embossed mold sprinkled with the vinyl chloride resin composition was allowed to stand in an oven set at a temperature of 200 ° C., and the embossed mold was cooled with cooling water when 60 seconds had elapsed after standing. . When the mold temperature was cooled to 40 ° C., a vinyl chloride resin molded sheet of 200 mm ⁇ 300 mm ⁇ 1 mm as a vinyl chloride resin molded body was removed from the mold. Then, the obtained vinyl chloride resin molded sheet was measured and evaluated for initial (unheated) low-temperature tensile properties, surface slipperiness, and high-temperature blooming resistance according to the method described above. The results are shown in Table 2.
  • a polyol mixture was obtained. Moreover, the liquid mixture which mixed the obtained polyol mixture and polymethylene polyphenylene polyisocyanate (polymeric MDI) in the ratio from which the index becomes 98 was prepared. And the prepared liquid mixture was poured on the vinyl chloride resin molded sheet laid in the metal mold
  • a foamed polyurethane molded product is lined on a vinyl chloride resin molded sheet (thickness: 1 mm) as the skin.
  • the laminated body formed was formed in a mold. And the formed laminated body was taken out from the metal mold
  • Example 2-2 In the preparation of the vinyl chloride resin composition, in the same manner as in Example 2-1, except that the amount of (d) ethylenebisstearic acid amide as the amide compound was changed to 0.1 part, the vinyl chloride resin composition, A vinyl resin molded body and a laminate were formed. Measurement and evaluation were performed in the same manner as in Example 2-1. The results are shown in Table 2. When only the melting point of the lubricant was measured, a single melting point was observed at 129 ° C.
  • Example 2-3 In the preparation of the vinyl chloride resin composition, in the same manner as in Example 2-1, except that the amount of (d) ethylenebisstearic acid amide as the amide compound was changed to 0.3 part, the vinyl chloride resin composition, the chloride A vinyl resin molded body and a laminate were formed. Measurement and evaluation were performed in the same manner as in Example 2-1. The results are shown in Table 2. When only the melting point of the lubricant was measured, a single melting point was observed at 137 ° C.
  • Example 2-4 In the preparation of the vinyl chloride resin composition, (c) the amount of ethylene bisoleic acid amide as the compound was changed to 0.2 part, and (d) the amount of ethylene bis stearic acid amide as the amide compound was 0.1 part.
  • a vinyl chloride resin composition, a vinyl chloride resin molded body, and a laminate were formed in the same manner as in Example 2-1, except that the above was changed. Measurement and evaluation were performed in the same manner as in Example 2-1. The results are shown in Table 2. When the melting point of only the lubricant was measured, a single melting point was observed at 128 ° C.
  • Example 2-5 In the preparation of the vinyl chloride resin composition, (c) the amount of ethylenebisoleic acid amide as the compound was changed to 0.3 part, and (d) the amount of ethylenebisstearic acid amide as the amide compound was 0.1 part.
  • a vinyl chloride resin composition, a vinyl chloride resin molded body, and a laminate were formed in the same manner as in Example 2-1, except that the above was changed. Measurement and evaluation were performed in the same manner as in Example 2-1. The results are shown in Table 2. When only the melting point of the lubricant was measured, a single melting point was observed at 124 ° C.
  • Example 2-6 A vinyl chloride resin composition, vinyl chloride was prepared in the same manner as in Example 2-1, except that in the preparation of the vinyl chloride resin composition, the amount of ethylene bisoleic acid amide as compound (c) was changed to 0.3 part. A resin molded body and a laminate were formed. Measurement and evaluation were performed in the same manner as in Example 2-1. The results are shown in Table 2. When the melting point of only the lubricant was measured, a single melting point was observed at 128 ° C.
  • Example 2--7 In the preparation of the vinyl chloride resin composition, (c) the amount of ethylene bisoleic acid amide as the compound was changed to 0.25 parts, and (d) the amount of ethylene bis stearic acid amide as the amide compound was 0.05 parts.
  • a vinyl chloride resin composition, a vinyl chloride resin molded body, and a laminate were formed in the same manner as in Example 2-1, except that the above was changed. Measurement and evaluation were performed in the same manner as in Example 2-1. The results are shown in Table 2. When only the melting point of the lubricant was measured, a single melting point was observed at 120 ° C.
  • Example 2-8 In the preparation of the vinyl chloride resin composition, the amount of ethylene bisoleic acid amide as compound (c) was changed to 0.05 part, and the amount of ethylene bis stearic acid amide as compound (d) was 0.25 part.
  • a vinyl chloride resin composition, a vinyl chloride resin molded body, and a laminate were formed in the same manner as in Example 2-1, except that the above was changed. Measurement and evaluation were performed in the same manner as in Example 2-1. The results are shown in Table 2. When only the melting point of the lubricant was measured, a single melting point was observed at 142 ° C.
  • Example 2-1 In the preparation of the vinyl chloride resin composition, the same procedure as in Example 2-1 was conducted, except that (c) the compound was not used and (d) the amount of ethylenebisstearic acid amide as the amide compound was changed to 0.3 part. Thus, a vinyl chloride resin composition, a vinyl chloride resin molded body, and a laminate were formed. Measurement and evaluation were performed in the same manner as in Example 2-1. The results are shown in Table 2. The melting point of ethylene bis stearamide used as a lubricant was 144 ° C.
  • Example 1-1 not containing an amide compound was evaluated for blooming resistance under high temperature conditions. The results are shown in Table 2. The melting point of ethylenebisoleic acid amide used as a lubricant in Example 1-1 was 117 ° C.
  • Example 2-1 to 2-8 in which the (c) compound and (d) the amide compound were used in combination the vinyl chloride resin molded article was more than in Example 1-1 in which the (d) amide compound was not used. It can be seen that the blooming resistance under high temperature conditions is improved. On the other hand, in Comparative Example 2-1 in which the compound (c) was not used, it was found that although the blooming resistance under high temperature conditions was good, the surface slipperiness of the vinyl chloride resin molded article was deteriorated.
  • the vinyl chloride resin composition which can manufacture the vinyl chloride resin molded object which can make the outstanding surface slipperiness and blooming-proof property on normal temperature (23 degreeC) conditions can be provided.
  • the vinyl chloride resin molded object and laminated body which can make the outstanding surface slipperiness and blooming-proof property on normal temperature (23 degreeC) conditions compatible can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明は、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立し得る塩化ビニル樹脂成形体を製造可能な塩化ビニル樹脂組成物を提供することを目的とする。本発明の塩化ビニル樹脂組成物は、(a)塩化ビニル樹脂と、(b)可塑剤と、(c)下記式(1)〔式(1)中、nは2以上6以下の整数であり、R1およびR3はそれぞれ炭化水素基であり、R2は炭化水素基又は水素であり、前記n個のR3のうち少なくとも1つは炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基である。〕で示される化合物と、を含む。 R1(NR2COR3)n (1)

Description

塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
 本発明は、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体に関するものである。
 塩化ビニル樹脂は、一般に、耐寒性、耐熱性、耐油性などの特性に優れているため、種々の用途に用いられている。
 具体的には、例えば、自動車インスツルメントパネルおよびドアトリム等の自動車内装部品の形成には、塩化ビニル樹脂成形体からなる表皮や塩化ビニル樹脂成形体からなる表皮に発泡ポリウレタン等の発泡体を裏打ちしてなる積層体などの自動車内装材が用いられている。
 そして、自動車インスツルメントパネル等の自動車内装部品の表皮を構成する塩化ビニル樹脂成形体には、車内での快適な使用性や高い意匠性を発揮することが求められている。上記観点から、塩化ビニル樹脂成形体には、例えば、成形体表面のべた付きが良好に抑えられていること(高い表面滑り性、高い耐毛羽付き性)、成形体表面の外観が配合成分の析出により経時変化しないこと(高い耐ブルーミング性)等、様々な性能が求められている。
 ここで、「毛羽付き」とは、表面を布で拭いた際に表面に繊維カスが付着することを指す。
 例えば、特許文献1には、塩化ビニル樹脂と、脂肪酸アミドと、オルガノポリシロキサンと、可塑剤とを含む粉末成形用塩化ビニル系樹脂組成物が開示されている。そして、特許文献1では、脂肪酸アミドとして、ラウリン酸アミドなどの飽和脂肪酸第一級アミドを用いることで粉末成形用塩化ビニル系樹脂組成物を用いて形成した塩化ビニル樹脂シートの動摩擦係数を低減させており、塩化ビニル樹脂シートの表面滑り性を高めている。
特開平8-291243号公報
 しかしながら、特許文献1などに記載の従来の塩化ビニル樹脂シートには、シート表面における高い滑り性、および常温(23℃)条件下での高い耐ブルーミング性を両立させることにおいて更なる改善の必要があった。
 そこで、本発明は、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立し得る塩化ビニル樹脂成形体を製造可能な塩化ビニル樹脂組成物を提供することを目的とする。
 また、本発明は、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立し得る塩化ビニル樹脂成形体および積層体を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、塩化ビニル樹脂と、可塑剤と、所定の構造を有する化合物とを含む塩化ビニル樹脂組成物を用いれば、表面の滑り性に優れ、且つ、常温(23℃)条件下でのブルーミングも良好に抑制された塩化ビニル樹脂成形体が得られることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の塩化ビニル樹脂組成物は、(a)塩化ビニル樹脂と、(b)可塑剤と、(c)下記式(1):
  R(NRCOR   (1)
〔式(1)中、nは2以上6以下の整数であり、RおよびRはそれぞれ炭化水素基であり、Rは炭化水素基又は水素であり、n個のRは互いに同一でも異なっていてもよく、n個のRは互いに同一でも異なっていてもよく、前記n個のRのうち少なくとも1つは炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基である。〕で示される化合物と、を含むことを特徴とする。このように、塩化ビニル樹脂組成物が、(a)塩化ビニル樹脂と、(b)可塑剤と、(c)上記所定の構造で示される化合物(以下、単に「(c)化合物」と略記する場合がある。)と、を含めば、当該組成物を成形してなる塩化ビニル樹脂成形体が、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立することができる。
 ここで、本発明の塩化ビニル樹脂組成物は、前記Rが有する炭素数が1以上8以下であることが好ましい。Rが有する炭素数が上記所定の範囲内であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体が、表面滑り性、および常温(23℃)条件下での耐ブルーミング性を、より良好に両立することができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記n個のRの全てが炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基であることが好ましい。n個のRの全てが炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体が、表面滑り性、および常温(23℃)条件下での耐ブルーミング性を、より良好に両立することができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記Rの不飽和炭化水素基が有する炭素-炭素不飽和結合の数がそれぞれ1以上4以下であることが好ましい。Rの不飽和炭化水素基が有する炭素-炭素不飽和結合の数が上記所定の範囲内であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体が、表面滑り性、および常温(23℃)条件下での耐ブルーミング性を、更に良好に両立することができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記n個のRが有する炭素数がそれぞれ11以上23以下であることが好ましい。Rが有する炭素数が上記所定の範囲内であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体が、表面滑り性、および常温(23℃)条件下での耐ブルーミング性を、更に良好に両立することができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記(c)化合物の含有量が、前記(a)塩化ビニル樹脂100質量部あたり0.04質量部以上2.0質量部以下であることが好ましい。(c)化合物の含有量が上記所定の範囲内であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体が、表面滑り性、および常温(23℃)条件下での耐ブルーミング性を、より高いレベルで両立することができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記Rが水素であることが好ましい。Rが水素であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体が、表面滑り性、および常温(23℃)条件下での耐ブルーミング性を、一層良好に両立することができるからである。
 また、本発明の塩化ビニル樹脂組成物は、(d)前記(c)化合物の融点よりも高い融点を有するアミド化合物を更に含むことが好ましい。塩化ビニル樹脂組成物が(d)上記所定のアミド化合物(以下、単に「(d)アミド化合物」と略記する場合がある。)を更に含めば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体が、優れた表面滑り性と、高温条件下での優れた耐ブルーミング性とを両立することができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記(d)アミド化合物が下記式(2):
  R(NRCOR   (2)
〔式(2)中、nは2以上6以下の整数であり、RおよびRはそれぞれ独立して、炭化水素基であり、Rは炭化水素基又は水素であり、n個のRは互いに同一でも異なっていてもよく、n個のRは互いに同一でも異なっていてもよい。〕で示される化合物であることが好ましい。前記(d)アミド化合物が上記所定の構造で示される化合物であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体が、表面滑り性と、高温条件下での耐ブルーミング性とを、より良好に両立することができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記Rが飽和炭化水素基であることが好ましい。前記Rが飽和炭化水素基であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記(c)化合物と前記(d)アミド化合物との混合物が単一の融点を有することが好ましい。(c)化合物と(d)アミド化合物との混合物が単一の融点を有すれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
 なお、本発明において、(c)化合物と(d)アミド化合物との混合物が「単一の融点を有する」とは、(c)化合物と(d)アミド化合物とを塩化ビニル樹脂組成物中の存在比と同じ比率で混合してなる混合物の示差走査熱量測定(DSC)において、昇温を行なったときに観測される吸熱のメインピークが単一であることを意味する。
 また、本発明の塩化ビニル樹脂組成物は、前記単一の融点が120℃以上142℃以下あることが好ましい。前記単一の融点が上述した値の範囲内であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記(d)アミド化合物の含有量が、前記(c)化合物の含有量の0.2倍以上5倍以下であることが好ましい。前記(d)アミド化合物の含有量が、前記(c)化合物の含有量の0.2倍以上であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。また、前記(d)アミド化合物の含有量が、前記(c)化合物の含有量の5倍以下であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の表面滑り性を更に高めることができるからである。
 また、本発明の塩化ビニル樹脂組成物は、粉体成形に用いられることが好ましい。塩化ビニル樹脂組成物を粉体成形に用いれば、例えば、自動車インスツルメントパネル用表皮などの自動車内装材として良好に使用し得る塩化ビニル樹脂成形体が容易に得られるからである。
 そして、本発明の塩化ビニル樹脂組成物は、パウダースラッシュ成形に用いられることが好ましい。塩化ビニル樹脂組成物をパウダースラッシュ成形に用いれば、例えば、自動車インスツルメントパネル用表皮などの自動車内装材として良好に使用し得る塩化ビニル樹脂成形体がより容易に得られるからである。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の塩化ビニル樹脂成形体は、上述した塩化ビニル樹脂組成物のいずれかを成形してなることを特徴とする。塩化ビニル樹脂成形体が上述した塩化ビニル樹脂組成物を用いてなれば、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立することができる。
 ここで、本発明の塩化ビニル樹脂成形体は、自動車内装部品の表皮用であることが好ましい。塩化ビニル樹脂成形体を自動車内装部品の表皮に使用すれば、表面滑り性が高く、毛羽付きが良好に抑えられ、且つ、ブルーミングが生じ難い自動車インスツルメントパネル等の自動車内装部品を製造し得るからである。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の積層体は、発泡ポリウレタン成形体と、上述した塩化ビニル樹脂成形体のいずれかと、を有することを特徴とする。発泡ポリウレタン成形体および上述の塩化ビニル樹脂成形体を有する積層体は、例えば、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立する自動車インスツルメントパネル等の自動車内装部品の製造に用いられる自動車内装材として好適に使用できる。
 本発明によれば、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立し得る塩化ビニル樹脂成形体を製造可能な塩化ビニル樹脂組成物が得られる。
 また、本発明によれば、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立し得る塩化ビニル樹脂成形体および積層体が得られる。
 以下、本発明の実施形態について詳細に説明する。
 本発明の塩化ビニル樹脂組成物は、例えば、本発明の塩化ビニル樹脂成形体を形成する際に用いることができる。そして、本発明の塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体は、例えば、自動車インスツルメントパネルおよびドアトリム等の自動車内装部品が備える表皮などの、自動車内装材として好適に用いることができる。
 また、本発明の塩化ビニル樹脂成形体は、例えば、本発明の積層体を形成する際に用いることができる。そして、本発明の塩化ビニル樹脂成形体を用いて形成した積層体は、例えば、自動車インスツルメントパネルおよびドアトリム等の自動車内装部品を製造する際に用いる自動車内装材として好適に用いることができる。
(塩化ビニル樹脂組成物)
 本発明の塩化ビニル樹脂組成物は、(a)塩化ビニル樹脂と、(b)可塑剤と、所定の構造を有する(c)化合物とを含み、任意に、所定の(d)アミド化合物および/または添加剤を更に含んでもよい。そして、本発明の塩化ビニル樹脂組成物は、少なくとも、上記(a)塩化ビニル樹脂と、(b)可塑剤と、上記(c)化合物とを含んでいるため、当該組成物を用いて、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立する塩化ビニル樹脂成形体を形成することができる。また、本発明の塩化ビニル樹脂組成物は、少なくとも、上記(a)塩化ビニル樹脂と、(b)可塑剤と、上記(c)化合物とを含んでいるため、当該組成物を成形してなる塩化ビニル樹脂成形体は、優れた耐毛羽付き性を発揮することもできる。従って、本発明の塩化ビニル樹脂組成物を使用すれば、例えば、表面滑り性、常温(23℃)条件下での耐ブルーミング性、および耐毛羽付き性に優れた自動車インスツルメントパネルおよびドアトリム用の表皮などの自動車内装材として好適な塩化ビニル樹脂成形体を得ることができる。
 なお、例えば、本発明の塩化ビニル樹脂組成物を用いて、自動車内装材として良好に使用し得る塩化ビニル樹脂成形体を容易に得る観点からは、本発明の塩化ビニル樹脂組成物は、粉体成形に用いられることが好ましく、パウダースラッシュ成形に用いられることがより好ましい。
<(a)塩化ビニル樹脂>
 (a)塩化ビニル樹脂としては、例えば、1種類または2種類以上の塩化ビニル樹脂粒子を含有することができ、任意に、1種類または2種類以上の塩化ビニル樹脂微粒子を更に含有することができる。中でも、(a)塩化ビニル樹脂は、少なくとも塩化ビニル樹脂粒子を含有することが好ましく、塩化ビニル樹脂粒子および塩化ビニル樹脂微粒子を含有することがより好ましい。
 そして、(a)塩化ビニル樹脂は、懸濁重合法、乳化重合法、溶液重合法、塊状重合法など、従来から知られているいずれの製造法によっても製造し得る。
 なお、本明細書において、「樹脂粒子」とは、粒子径が30μm以上の粒子を指し、「樹脂微粒子」とは、粒子径が30μm未満の粒子を指す。
 また、(a)塩化ビニル樹脂としては、塩化ビニル単量体単位からなる単独重合体の他、塩化ビニル単量体単位を好ましくは50質量%以上、より好ましくは70質量%以上含有する塩化ビニル系共重合体が挙げられる。そして、塩化ビニル系共重合体を構成し得る、塩化ビニル単量体と共重合可能な単量体(共単量体)の具体例としては、例えば、国際公開第2016/098344号に記載のものを使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<<塩化ビニル樹脂粒子>>
 塩化ビニル樹脂組成物において、塩化ビニル樹脂粒子は、通常、マトリックス樹脂(基材)として機能する。なお、塩化ビニル樹脂粒子は、懸濁重合法により製造することが好ましい。
[平均重合度]
 そして、塩化ビニル樹脂粒子を構成する塩化ビニル樹脂の平均重合度は、1000以上であることが好ましく、3000以下であることが好ましい。塩化ビニル樹脂粒子を構成する塩化ビニル樹脂の平均重合度が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の物理的強度を十分確保しつつ、例えば、引張特性、特には引張伸びをより良好にできるからである。そして、引張伸びが良好な塩化ビニル樹脂成形体は、例えば、エアバッグが膨張、展開した際に、破片が飛散することなく設計通りに割れる、延性に優れた自動車インスツルメントパネルの表皮などの自動車内装材として好適に用いることができる。また、塩化ビニル樹脂粒子を構成する塩化ビニル樹脂の平均重合度が上記上限以下であれば、塩化ビニル樹脂組成物の溶融性を向上させることができるからである。
 なお、本発明において「平均重合度」は、JIS K6720-2に準拠して測定することができる。
[平均粒子径]
 また、塩化ビニル樹脂粒子の平均粒子径は、通常30μm以上であり、50μm以上が好ましく、100μm以上がより好ましく、500μm以下が好ましく、200μm以下がより好ましい。塩化ビニル樹脂粒子の平均粒子径が上記下限以上であれば、塩化ビニル樹脂組成物の粉体流動性がより向上するからである。また、塩化ビニル樹脂粒子の平均粒子径が上記上限以下であれば、塩化ビニル樹脂組成物の溶融性がより向上すると共に、当該組成物を用いて形成した塩化ビニル樹脂成形体の表面平滑性をより向上できるからである。
 なお、本発明において、「平均粒子径」は、JIS Z8825に準拠し、レーザー回折法により体積平均粒子径として測定することができる。
[含有割合]
 そして、(a)塩化ビニル樹脂中の塩化ビニル樹脂粒子の含有割合は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、100質量%とすることができ、95質量%以下であることが好ましく、90質量%以下であることがより好ましい。(a)塩化ビニル樹脂中の塩化ビニル樹脂粒子の含有割合が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の物理的強度を十分確保しつつ引張伸びをより良好にできるからである。また、(a)塩化ビニル樹脂中の塩化ビニル樹脂粒子の含有割合が上記上限以下であれば、塩化ビニル樹脂組成物の粉体流動性が向上するからである。
<<塩化ビニル樹脂微粒子>>
 塩化ビニル樹脂組成物において、塩化ビニル樹脂微粒子は、通常、ダスティング剤(粉体流動性改良剤)として機能する。なお、塩化ビニル樹脂微粒子は、乳化重合法により製造することが好ましい。
[平均重合度]
 そして、塩化ビニル樹脂微粒子を構成する塩化ビニル樹脂の平均重合度は、500以上が好ましく、700以上がより好ましく、1000以下が好ましく、900以下がより好ましい。ダスティング剤としての塩化ビニル樹脂微粒子を構成する塩化ビニル樹脂の平均重合度が上記下限以上であれば、塩化ビニル樹脂組成物の粉体流動性がより良好になると共に、当該組成物を用いて得られる成形体の引張伸びがより良好になるからである。また、塩化ビニル樹脂微粒子を構成する塩化ビニル樹脂の平均重合度が上記上限以下であれば、塩化ビニル樹脂組成物の溶融性がより向上し、当該組成物を用いて形成した塩化ビニル樹脂成形体の表面平滑性がより向上するからである。
[平均粒子径]
 また、塩化ビニル樹脂微粒子の平均粒子径は、通常30μm未満であり、10μm以下であることが好ましく、5μm以下であることがより好ましく、0.1μm以上であることが好ましく、1μm以上であることがより好ましい。塩化ビニル樹脂微粒子の平均粒子径が上記下限以上であれば、例えばダスティング剤としてのサイズを過度に小さくすることなく、塩化ビニル樹脂組成物の粉体流動性を更に良好に発揮できるからである。また、塩化ビニル樹脂微粒子の平均粒子径が上記上限以下であれば、塩化ビニル樹脂組成物の溶融性がより高まり、形成される塩化ビニル樹脂成形体の表面平滑性を更に向上させることができるからである。
[含有割合]
 そして、(a)塩化ビニル樹脂中の塩化ビニル樹脂微粒子の含有割合は、0質量%であってもよいが、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。(a)塩化ビニル樹脂中の塩化ビニル樹脂微粒子の含有割合が上記下限以上であれば、塩化ビニル樹脂組成物の粉体流動性が更に向上するからである。また、(a)塩化ビニル樹脂中の塩化ビニル樹脂微粒子の含有割合が上記上限以下であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の物理的強度をより高めることができるからである。
<(b)可塑剤>
 (b)可塑剤としては、例えば、国際公開第2016/098344号に記載の一次可塑剤および二次可塑剤などを使用することができる。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 上述した可塑剤の中でも、塩化ビニル樹脂組成物および塩化ビニル樹脂成形体を容易に良好に得られる観点からは、(b)可塑剤としては、少なくとも一次可塑剤を用いることが好ましく、一次可塑剤および二次可塑剤を併用することがより好ましい。具体的には、(b)可塑剤としては、トリメリット酸エステルおよび/またはピロメリット酸エステルを用いることが好ましく、少なくともトリメリット酸エステルを用いることがより好ましく、トリメリット酸エステルとエポキシ化大豆油とを併用することが更に好ましい。
 ここで、(b)可塑剤の形態は特に限定されないが、(a)塩化ビニル樹脂との混合容易性の観点から、また、塩化ビニル樹脂成形体の表面でのブルーミング発生をより抑制する観点からは、常温(23℃)で液体であることが好ましい。
[含有量]
 そして、(b)可塑剤の含有量は、(a)塩化ビニル樹脂100質量部に対して、10質量部以上であることが好ましく、60質量部以上であることがより好ましく、80質量部以上であることが更に好ましく、200質量部以下であることが好ましく、160質量部以下であることがより好ましく、120質量部以下であることが更に好ましく、100質量部以下であることが一層好ましい。(b)可塑剤の含有量が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の引張伸びを十分に高めることができる。また、(b)可塑剤の含有量が上記上限以下であれば、塩化ビニル樹脂成形体の表面のべた付きを更に抑制し、表面滑り性および耐毛羽付き性を更に高めることができるからである。
<(c)化合物>
 本発明の塩化ビニル樹脂組成物が含む所定の化合物は、下記式(1):
  R(NRCOR   (1)
〔式(1)中、nは2以上6以下の整数であり、Rはn価の炭化水素基であり、Rは1価の炭化水素基又は水素であり、Rは1価の炭化水素基であり、n個のRは互いに同一でも異なっていてもよく、n個のRは互いに同一でも異なっていてもよく、前記n個のRのうち少なくとも1つは炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基である。〕で示されることを特徴とする。即ち、上記(c)化合物は、炭化水素のn個の水素が-NRCORで示されるアミド基で置換された構造を有している。そして、(c)化合物が上記所定の構造を有さなければ、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および常温(23℃)条件下での耐ブルーミング性を良好に両立することができないと共に、当該塩化ビニル樹脂成形体の耐毛羽付き性を十分に高く確保することができない。
 なお、(c)化合物は、通常、塩化ビニル樹脂組成物中の成分同士、特に粒子状成分同士の摩擦を軽減させて組成物の流動性、離型性、加工性を向上させると共に、上記組成物を用いて形成した塩化ビニル樹脂成形体の表面のべた付きを良好に抑える滑剤としての機能を発揮する。ここで、一般に、塩化ビニル樹脂成形体に滑剤を配合した場合、特に常温(23℃)条件下では経時により成形体の表面に滑剤が移行して結晶化し、ブルーミングを発生し易い。しかしながら、本発明の塩化ビニル樹脂組成物が含む(c)化合物は上記所定の構造を有しているところ、驚くべきことに、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の表面にブルーミングが生じることを抑制しつつ、優れた表面滑り性および耐毛羽付き性を発揮させることができる。
 また、本発明の塩化ビニル樹脂組成物は(c)化合物を含んでいるため、例えば、後述するその他の滑剤を更に含ませることなく、当該組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性および耐毛羽付き性を十分に高めることができる。
<<構造>>
[n]
 ここで、上記式(1)のnは2以上6以下の整数であることが必要であり、nは、2以上3以下の整数であることが好ましく、2であることがより好ましい。nが上記所定の範囲内でなければ、理由は明らかではないが、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および常温(23℃)条件下での耐ブルーミング性を良好に両立できないと共に、当該塩化ビニル樹脂成形体の耐毛羽付き性を十分に高く確保することができない。
[R
 また、上記式(1)のRはn価の炭化水素基であり、n価の脂肪族炭化水素基であってもよく、n価の芳香族炭化水素基であってもよいが、n価の脂肪族炭化水素基であることが好ましく、n価の飽和脂肪族炭化水素基であることがより好ましい。更には、Rは、n価の鎖式の炭化水素基であることが好ましく、n価の鎖式の脂肪族炭化水素基であることがより好ましく、n価の鎖式の飽和脂肪族炭化水素基であることが更に好ましい。
 また、Rが有する炭素数は1以上であることが好ましく、2以上であることがより好ましく、8以下であることが好ましく、6以下であることがより好ましい。
 Rとしては、例えば、メチレン基、メチルメチレン基、エチレン基(ジメチレン基)、ジメチルメチレン基、イソプロピレン基、トリメチレン基、イソブチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられる。これらの中でも、Rとしては、メチレン基、エチレン基(ジメチレン基)およびヘキサメチレン基が好ましい。
 Rの構造が上記の通りであれば、理由は明らかではないが、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および常温(23℃)条件下での耐ブルーミング性をより良好に両立し得ると共に、当該塩化ビニル樹脂成形体の耐毛羽付き性を十分に高く確保することができるからである。
[R
 また、上記式(1)のRは1価の炭化水素基又は水素であり、n個のRは互いに同一でも異なっていてもよい。ここで、Rの1価の炭化水素基としては、1価の脂肪族炭化水素基であってもよく、1価の芳香族炭化水素基であってもよいが、1価の脂肪族炭化水素基であることが好ましく、1価の鎖式の脂肪族炭化水素基であることがより好ましく、1価の鎖式の飽和脂肪族炭化水素基であることが更に好ましい。
 また、Rの炭化水素基が有する炭素数は1または2であることが好ましく、1であることがより好ましい。
 Rとしては、例えば、水素、メチル基、エチル基が挙げられる。
 Rとしては、n個のRのうち少なくとも1つは水素であることが好ましく、n個のRの全てが水素であることがより好ましい。
 Rの構造が上記の通りであれば、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および常温(23℃)条件下での耐ブルーミング性をより良好に両立し得ると共に、当該塩化ビニル樹脂成形体の耐毛羽付き性を十分に高く確保することができるからである。
[R
 また、上記式(1)のRは1価の炭化水素基であり、n個のRは互いに同一でも異なっていてもよいが、n個のRのうち少なくとも1つは炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基である必要がある。つまり、(c)化合物には、一分子中にRの飽和炭化水素基とRの不飽和炭化水素基とが混在していてもよく、Rの不飽和炭化水素基のみが存在していても良い。Rが上記所定の構造を有さなければ、理由は明らかではないが、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の表面滑り性、および常温(23℃)条件下での耐ブルーミング性を良好に両立させることができないと共に、当該塩化ビニル樹脂成形体の耐毛羽付き性を十分に高く確保することができない。
 ここで、Rの飽和炭化水素基としては、1価の飽和脂肪族炭化水素基であることが好ましく、1価の鎖式の飽和脂肪族炭化水素基であることがより好ましい。
 また、Rの飽和炭化水素基が有する炭素数は、それぞれ11以上であることが好ましく、13以上であることがより好ましく、15以上であることが更に好ましく、23以下であることが好ましく、21以下であることがより好ましく、19以下であることが更に好ましく、17であることが特に好ましい。
 Rの飽和炭化水素基としては、例えば、CH(CH10-、CH(CH12-、CH(CH14-、CH(CH16-、CH(CH18-、CH(CH20-、CH(CH22-、等が挙げられる。
 また、Rの不飽和炭化水素基としては、1価の不飽和脂肪族炭化水素基であることが好ましく、1価の鎖式の不飽和脂肪族炭化水素基であることがより好ましい。更には、Rの不飽和炭化水素基としては、1価の鎖式の不飽和炭化水素基であることが好ましい。
 また、Rの不飽和炭化水素基が有する炭素数は、それぞれ11以上であることが好ましく、13以上であることがより好ましく、15以上であることが更に好ましく、23以下であることが好ましく、21以下であることがより好ましく、19以下であることが更に好ましく、17であることが特に好ましい。Rの構造が上記の通りであれば、理由は明らかではないが、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および常温(23℃)条件下での耐ブルーミング性をより良好に両立し得ると共に、当該塩化ビニル樹脂成形体の耐毛羽付き性を十分に高く確保することができるからである。
 Rの不飽和炭化水素基としては、例えば、CH(CHCH=CH(CH-、CH(CHCH=CH(CH11-などのモノ不飽和炭化水素基;CH(CH(CH=CHCH(CH-などのジ不飽和炭化水素基;CHCH(CH=CHCH(CH-などのトリ不飽和炭化水素基;テトラ不飽和炭化水素基;ペンタ不飽和炭化水素基;ヘキサ不飽和炭化水素基;などの炭素-炭素二重結合を有する不飽和炭化水素基、並びに、炭素-炭素三重結合を有する不飽和炭化水素基、等が挙げられる。中でも、Rの不飽和炭化水素基としては、炭素-炭素二重結合を有する不飽和炭化水素基であることがより好ましい。
 更に、Rは、n個のRの全てが炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基であることが好ましい。更には、Rの不飽和炭化水素基が有する炭素-炭素不飽和結合の数がそれぞれ1以上であることが好ましく、4以下であることが好ましく、3以下であることがより好ましく、2以下であることが更に好ましく、1であることが特に好ましい。Rの構造が上記の通りであれば、理由は明らかではないが、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および常温(23℃)条件下での耐ブルーミング性をより良好に両立し得ると共に、当該塩化ビニル樹脂成形体の耐毛羽付き性を十分に高く確保することができるからである。
 そして、上述した中でも、Rとしては、炭素-炭素二重結合を有するモノ不飽和炭化水素基が好ましく、CH(CHCH=CH(CH-がより好ましい。
 そして、上記R、RおよびRの好適な構造を考慮すれば、(c)化合物は、一分子中にn個のアミド結合を有する、不飽和脂肪酸アミド(不飽和脂肪酸の第二級アミド)であることが好ましく、長鎖不飽和脂肪酸アミド(長鎖不飽和脂肪酸の第二級アミド)であることがより好ましい。
 具体的には、(c)化合物としては、例えば、エチレンビスオレイン酸アミド(特にジメチレンビスオレイン酸アミド)、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド等が挙げられる。中でも、(c)化合物としては、エチレンビスオレイン酸アミドおよびヘキサメチレンビスオレイン酸アミドが好ましい。
<<融点>>
 (c)化合物の融点は、20℃以上であることが好ましく、40℃以上であることがより好ましく、119℃以下であることが好ましく、117℃以下であることがより好ましい。
 なお、本発明において、融点は、対象品の示差走査熱量測定(DSC)において、大気中、昇温速度10℃/分の条件で2回目の昇温を行なったときに観測される融点を指す。
<<含有量>>
 (c)化合物の含有量は、上述した(a)塩化ビニル樹脂100質量部あたり、0.04質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.12質量部以上であることが更に好ましく、0.16質量部以上であることが一層好ましく、0.2質量部以上であることがより一層好ましく、2.0質量部以下であることが好ましく、1.0質量部以下であることがより好ましい。(a)塩化ビニル樹脂に対する(c)化合物の含有量が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の表面滑り性および耐毛羽付き性をより向上できるからである。また、(a)塩化ビニル樹脂に対する(c)化合物の含有量が上記上限以下であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の常温(23℃)条件下での耐ブルーミング性をより向上できるからである。
 また、(c)化合物の含有量は、上述した(b)可塑剤100質量部あたり、0.04質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.12質量部以上であることが更に好ましく、0.16質量部以上であることが一層好ましく、0.2質量部以上であることがより一層好ましく、2.0質量部以下であることが好ましく、1.0質量部以下であることがより好ましい。一般に、(b)可塑剤は塩化ビニル樹脂成形体の表面のべた付きの原因となり易いところ、(b)可塑剤に対する(c)化合物の含有量が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の表面滑り性および耐毛羽付き性を更に向上できるからである。また、(b)可塑剤に対する(c)化合物の含有量が上記上限以下であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の常温(23℃)条件下での耐ブルーミング性を更に向上できるからである。
<(d)アミド化合物>
 本発明の塩化ビニル樹脂組成物は、上述した成分以外に、所定の(d)アミド化合物を更に含んでいることが好ましい。そして、(d)アミド化合物が(c)化合物の融点よりも高い融点を有すれば、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および高温条件下での耐ブルーミング性を良好に両立することができる。ここで、「高温」とは、具体的には、上述した(c)化合物の融点以上の温度を意味する。そして、本発明の塩化ビニル樹脂組成物が上記(d)アミド化合物を更に含む場合、当該塩化ビニル樹脂組成物を用いて形成された塩化ビニル樹脂成形体は、当該(c)化合物の融点以上の温度の条件下であっても、優れた耐ブルーミング性を発揮することができる。
<<融点>>
 具体的に、(d)アミド化合物の融点は、130℃以上であることが好ましく、135℃以上であることがより好ましく、140℃以上であることが更に好ましく、250℃以下であることが好ましく、200℃以下であることがより好ましく、160℃以下であることが更に好ましい。(d)アミド化合物の融点が130℃以上250℃以下であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
 また、(d)アミド化合物の融点と上述した(c)化合物の融点との差は15℃以上であることが好ましく、20℃以上であることがより好ましく、25℃以上であることが更に好ましく、40℃以下であることが好ましく、35℃以下であることがより好ましく、30℃以下であることが更に好ましい。(d)アミド化合物の融点と(c)化合物の融点との差が15℃以上40℃以下であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
 さらに、(c)化合物と(d)アミド化合物とを塩化ビニル樹脂組成物中の存在比と同じ比率で混合してなる混合物は、単一の融点を有することが好ましい。上述した(c)化合物と(d)アミド化合物との混合物が単一の融点を有すれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。さらに、上述した(c)化合物と(d)アミド化合物との混合物が有する単一の融点は、120℃以上であることが好ましく、122℃以上であることがより好ましく、124℃以上であることが更に好ましく、142℃以下であることが好ましく、138℃以下であることがより好ましく、134℃以下であることが更に好ましく、128℃以下であることが一層好ましい。上記(c)化合物と(d)アミド化合物との混合物が有する単一の融点が上記所定の範囲内であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
 ここで、本発明において、(d)アミド化合物を含む塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができる理由は、明らかではないが、高温条件下であっても、(d)アミド化合物が、アミド基を有する化合物である(c)化合物と相互作用して、(d)アミド化合物よりも融点が低い(c)化合物のブルーミングを防止し得るからであると推察される。
<<構造>>
 そして、(d)アミド化合物は、下記式(2):
  R(NRCOR   (2)
〔式(2)中、nは2以上6以下の整数であり、Rはn価の炭化水素基であり、Rは1価の炭化水素基又は水素であり、Rは1価の炭化水素基であり、n個のRは互いに同一でも異なっていてもよく、n個のRは互いに同一でも異なっていてもよい。〕で示されることが好ましい。即ち、上記(d)アミド化合物は、炭化水素のn個の水素が-NRCORで示されるアミド基で置換された構造を有することが好ましい。そして、(d)アミド化合物が上記所定の構造を有すれば、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および高温条件下での耐ブルーミング性をより良好に両立することができる。
[n]
 ここで、上記式(2)のnは2以上6以下の整数であり、nは、2以上3以下の整数であることが好ましく、2であることがより好ましい。nが上記所定の範囲内であれば、理由は明らかではないが、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
[R
 また、上記式(2)のRはn価の炭化水素基であり、n価の脂肪族炭化水素基であってもよく、n価の芳香族炭化水素基であってもよいが、n価の脂肪族炭化水素基であることが好ましく、n価の飽和脂肪族炭化水素基であることがより好ましい。更には、Rは、n価の鎖式の炭化水素基であることが好ましく、n価の鎖式の脂肪族炭化水素基であることがより好ましく、n価の鎖式の飽和脂肪族炭化水素基であることが更に好ましい。
 また、Rが有する炭素数は1以上であることが好ましく、2以上であることがより好ましく、8以下であることが好ましく、6以下であることがより好ましい。なお、Rの炭素数は上述した(c)化合物におけるRの炭素数と同じであることが好ましい。
 Rとしては、例えば、メチレン基、メチルメチレン基、エチレン基(ジメチレン基)、ジメチルメチレン基、イソプロピレン基、トリメチレン基、イソブチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられる。これらの中でも、Rとしては、メチレン基、エチレン基(ジメチレン基)およびヘキサメチレン基が好ましい。
 Rの構造が上記の通りであれば、理由は明らかではないが、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
[R
 また、上記式(2)のRは1価の炭化水素基又は水素であり、n個のRは互いに同一でも異なっていてもよい。ここで、Rの1価の炭化水素基としては、1価の脂肪族炭化水素基であってもよく、1価の芳香族炭化水素基であってもよいが、1価の脂肪族炭化水素基であることが好ましく、1価の鎖式の脂肪族炭化水素基であることがより好ましく、1価の鎖式の飽和脂肪族炭化水素基であることが更に好ましい。
 また、Rの炭化水素基が有する炭素数は1または2であることが好ましく、1であることがより好ましい。
 Rとしては、例えば、水素、メチル基、エチル基が挙げられる。
 Rとしては、n個のRのうち少なくとも1つは水素であることが好ましく、n個のRの全てが水素であることがより好ましい。
 Rの構造が上記の通りであれば、理由は明らかではないが、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
[R
 また、上記式(2)のRは1価の炭化水素基であり、n個のRは互いに同一でも異なっていてもよい。また、n個のRの中に、炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基が含まれていてもよいし、含まれていなくてもよい。つまり、(d)アミド化合物には、一分子中にRの飽和炭化水素基とRの不飽和炭化水素基とが混在していてもよく、Rの飽和炭化水素基のみが存在していても良い。Rが上記所定の構造を有すれば、理由は明らかではないが、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
 ここで、Rの飽和炭化水素基としては、1価の飽和脂肪族炭化水素基であることが好ましく、1価の鎖式の飽和脂肪族炭化水素基であることがより好ましい。
 また、Rの飽和炭化水素基が有する炭素数は、それぞれ11以上であることが好ましく、13以上であることがより好ましく、15以上であることが更に好ましく、23以下であることが好ましく、21以下であることがより好ましく、19以下であることが更に好ましく、17であることが特に好ましい。Rの構造が上記の通りであれば、理由は明らかではないが、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。なお、Rの炭素数は上述した(c)化合物におけるRの炭素数と同じであることが好ましい。
 Rの飽和炭化水素基としては、例えば、CH(CH10-、CH(CH12-、CH(CH14-、CH(CH16-、CH(CH18-、CH(CH20-、CH(CH22-、等が挙げられる。
 また、Rの不飽和炭化水素基としては、1価の不飽和脂肪族炭化水素基であることが好ましく、1価の鎖式の不飽和脂肪族炭化水素基であることがより好ましい。更には、Rの不飽和炭化水素基としては、1価の鎖式の不飽和炭化水素基であることが好ましい。
 また、Rの不飽和炭化水素基が有する炭素数は、それぞれ11以上であることが好ましく、13以上であることがより好ましく、15以上であることが更に好ましく、23以下であることが好ましく、21以下であることがより好ましく、19以下であることが更に好ましく、17であることが特に好ましい。
 Rの不飽和炭化水素基としては、例えば、CH(CHCH=CH(CH-、CH(CHCH=CH(CH11-などのモノ不飽和炭化水素基;CH(CH(CH=CHCH(CH-などのジ不飽和炭化水素基;CHCH(CH=CHCH(CH-などのトリ不飽和炭化水素基;テトラ不飽和炭化水素基;ペンタ不飽和炭化水素基;ヘキサ不飽和炭化水素基;などの炭素-炭素二重結合を有する不飽和炭化水素基、並びに、炭素-炭素三重結合を有する不飽和炭化水素基、等が挙げられる。中でも、Rの不飽和炭化水素基としては、炭素-炭素二重結合を有する不飽和炭化水素基であることが好ましい。
 更に、Rは、n個のRのうち、飽和炭化水素基が1つ以上あることが好ましく、全てが飽和炭化水素基である(すなわち、不飽和結合を有さない)ことがより好ましい。Rの構造が上記の通りとなれば、理由は明らかではないが、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。
 そして、上述した中でも、Rとしては、鎖式の飽和脂肪族炭化水素基が好ましく、CH(CH10-およびCH(CH16-がより好ましく、CH(CH16-が更に好ましい。
 そして、上記R、RおよびRの好適な構造を考慮すれば、(d)アミド化合物は、一分子中にn個のアミド結合を有する、飽和脂肪酸アミド(飽和脂肪酸の第二級アミド)であることが好ましく、長鎖飽和脂肪酸アミド(長鎖飽和脂肪酸の第二級アミド)であることがより好ましい。
 具体的には、(d)アミド化合物としては、例えば、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド(特にジメチレンビスステアリン酸アミド)、エチレンビスパルミチン酸アミド、ヘキサメチレンビスステアリン酸アミド、等が挙げられる。中でも、(d)アミド化合物としては、エチレンビスステアリン酸アミド、およびヘキサメチレンビスステアリン酸アミドが好ましい。
<<含有量>>
 (d)アミド化合物の含有量は、上述した(a)塩化ビニル樹脂100質量部あたり、0.04質量部以上であることが好ましく、0.06質量部以上であることがより好ましく、0.08質量部以上であることが更に好ましく、0.4質量部以下であることが好ましく、0.3質量部以下であることがより好ましく、0.2質量部以下であることが更に好ましい。(a)塩化ビニル樹脂に対する(d)アミド化合物の含有量が上記上限以下であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の表面滑り性を更に向上できるからである。また、(a)塩化ビニル樹脂に対する(d)アミド化合物の含有量が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に向上できるからである。
 また、(d)アミド化合物の含有量は、上述した(b)可塑剤100質量部あたり、0.04質量部以上であることが好ましく、0.06質量部以上であることがより好ましく、0.08質量部以上であることが更に好ましく、0.4質量部以下であることが好ましく、0.3質量部以下であることがより好ましく、0.2質量部以下であることが更に好ましい。一般に、(b)可塑剤は塩化ビニル樹脂成形体の表面のべた付きの原因となり易いところ、(b)可塑剤に対する(d)アミド化合物の含有量が上記上限以下であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の表面滑り性を十分に高いレベルで確保できるからである。また、(b)可塑剤に対する(d)アミド化合物の含有量が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に向上できるからである。
 さらに、(d)アミド化合物の含有量は、上述した(c)化合物の含有量の0.2倍以上であることが好ましく、0.25倍以上であることがより好ましく、0.3倍以上であることが更に好ましく、5倍以下であることが好ましく、2倍以下であることがより好ましく、1倍以下であることが更に好ましく、0.6倍以下であることが一層好ましい。(d)アミド化合物の含有量が、(c)化合物の含有量の0.2倍以上であれば、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性を更に高めることができるからである。また、(d)アミド化合物の含有量が、(c)化合物の含有量の5倍以下であれば、理由は明らかではないが、塩化ビニル樹脂組成物を成形してなる塩化ビニル樹脂成形体の表面滑り性を十分に高いレベルで確保できるからである。
 また、(c)化合物の含有量と(d)アミド化合物の含有量との合計は、上述した(a)塩化ビニル樹脂100質量部あたり、0.2質量部以上であることが好ましく、0.22質量部以上であることがより好ましく、0.24質量部以上であることが更に好ましく、0.6質量部以下であることが好ましく、0.55質量部以下であることがより好ましく、0.5質量部以下であることが更に好ましい。(a)塩化ビニル樹脂に対する(c)化合物の含有量と(d)アミド化合物の含有量との合計が上記所定の範囲内であれば、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および高温条件下での耐ブルーミング性をより良好に両立し得るからである。
 さらに、(c)化合物の含有量と(d)アミド化合物の含有量との合計は、上述した(b)可塑剤100質量部あたり、0.2質量部以上であることが好ましく、0.22質量部以上であることがより好ましく、0.24質量部以上であることが更に好ましく、0.6質量部以下であることが好ましく、0.55質量部以下であることがより好ましく、0.5質量部以下であることが更に好ましい。(c)化合物の含有量と(d)アミド化合物の含有量との合計が上記所定の範囲内であれば、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性、および高温条件下での耐ブルーミング性をより良好に両立し得るからである。
<添加剤>
 本発明の塩化ビニル樹脂組成物は、上述した成分以外に、各種添加剤を更に含有してもよい。添加剤としては、特に限定されることなく、上述した(c)化合物および(d)アミド化合物以外に滑剤として機能し得る成分(その他の滑剤);過塩素酸処理ハイドロタルサイト、ゼオライト、β-ジケトン、脂肪酸金属塩などの安定剤;離型剤;上記塩化ビニル樹脂微粒子以外のその他のダスティング剤;耐衝撃性改良剤;過塩素酸処理ハイドロタルサイト以外の過塩素酸化合物(過塩素酸ナトリウム、過塩素酸カリウム等);酸化防止剤;防カビ剤;難燃剤;帯電防止剤;充填剤;光安定剤;発泡剤;などが挙げられる。
 そして、本発明の塩化ビニル樹脂組成物に含み得る添加剤のうち、過塩素酸処理ハイドロタルサイト、ゼオライト、β-ジケトン、脂肪酸金属塩、離型剤、その他のダスティング剤、耐衝撃性改良剤、過塩素酸処理ハイドロタルサイト以外の過塩素酸化合物、酸化防止剤、防カビ剤、難燃剤、帯電防止剤、充填剤、光安定剤、発泡剤としては、例えば、国際公開第2016/098344号に記載のものを使用することができ、その好適含有量も同様とすることができる。
<<その他の滑剤>>
 その他の滑剤としては、特に限定されることなく、上述した(c)化合物および(d)アミド化合物以外の脂肪酸アミド、シリコーンオイル等が挙げられる。
 より具体的には、上述した(c)化合物および(d)アミド化合物以外の脂肪酸アミドとしては、例えば、ラウリン酸アミド、ステアリン酸アミドなどの、分子中に一つ以上のアミド結合を有する飽和脂肪酸アミド;オレイン酸アミド、エルカ酸アミドなどの、分子中にアミド結合を一つのみ有する不飽和脂肪酸アミド;等が挙げられる。
 また、シリコーンオイルは、未変性シリコーンオイルであってもよいし、変性シリコーンオイルであってもよいし、これらの混合物であってもよい。
[含有量]
 そして、その他の滑剤の含有量は、上述した(a)塩化ビニル樹脂100質量部あたり、0質量部とすることができ、0質量部超とすることもでき、2.0質量部以下であることが好ましく、1.0質量部以下であることがより好ましく、0.5質量部以下が更に好ましく、0.2質量部以下が特に好ましい。塩化ビニル樹脂組成物にその他の滑剤を更に配合すれば、当該組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性および耐毛羽付き性をより高め得る。また、その他の滑剤の含有量を上記上限以下とすれば、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の優れた耐ブルーミング性を維持し得る。
 また、その他の滑剤の含有量は、上述した(b)可塑剤100質量部あたり、0質量部とすることができ、0質量部超とすることもでき、2.0質量部以下であることが好ましく、1.0質量部以下であることがより好ましく、0.5質量部以下が更に好ましく、0.2質量部以下が特に好ましい。一般に、(b)可塑剤は塩化ビニル樹脂成形体の表面のべた付きの原因となり易いところ、塩化ビニル樹脂組成物にその他の滑剤を更に配合すれば、当該組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性および耐毛羽付き性をより高め得る。また、その他の滑剤の含有量を上記上限以下とすれば、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の優れた耐ブルーミング性を維持し得る。
 更に、その他の滑剤の含有量は、上述した(c)化合物100質量部あたり、0質量部とすることができ、0質量部超とすることもでき、100質量部以下であることが好ましく、67質量部以下であることがより好ましい。塩化ビニル樹脂組成物にその他の滑剤を更に配合すれば、当該組成物を用いて形成される塩化ビニル樹脂成形体の表面滑り性および耐毛羽付き性をより高め得る。また、その他の滑剤の含有量を上記上限以下とすれば、塩化ビニル樹脂組成物を用いて形成される塩化ビニル樹脂成形体の優れた耐ブルーミング性を維持し得る。
<塩化ビニル樹脂組成物の調製方法>
 本発明の塩化ビニル樹脂組成物は、上述した成分を混合して調製することができる。
 ここで、上記(a)塩化ビニル樹脂と、(b)可塑剤と、(c)化合物と、必要に応じて更に配合される(d)アミド化合物および/または各種添加剤との混合方法としては、特に限定されることなく、例えば、塩化ビニル樹脂微粒子を含むダスティング剤を除く成分をドライブレンドにより混合し、その後、ダスティング剤を添加、混合する方法が挙げられる。ここで、ドライブレンドには、ヘンシェルミキサーの使用が好ましい。また、ドライブレンド時の温度は、特に制限されることなく、50℃以上が好ましく、70℃以上がより好ましく、200℃以下が好ましい。
<塩化ビニル樹脂組成物の用途>
 そして、得られた塩化ビニル樹脂組成物は、粉体成形に好適に用いることができ、パウダースラッシュ成形により好適に用いることができる。
(塩化ビニル樹脂成形体)
 本発明の塩化ビニル樹脂成形体は、上述した塩化ビニル樹脂組成物を、任意の方法で成形することにより得られることを特徴とする。そして、本発明の塩化ビニル樹脂成形体は、上述した塩化ビニル樹脂組成物のいずれかを用いて形成されているため、通常、少なくとも、(a)塩化ビニル樹脂と、(b)可塑剤と、上記所定の構造を有する(c)化合物とを含んでおり、表面の滑り性、常温(23℃)条件下での耐ブルーミング性、および耐毛羽付き性に優れている。
 従って、本発明の塩化ビニル樹脂成形体は、表面のべた付きおよびブルーミングが良好に抑制された自動車インスツルメントパネルおよびドアトリム等の自動車内装部品の表皮を製造する際に好適に用いられる。
<<塩化ビニル樹脂成形体の形成方法>>
 ここで、パウダースラッシュ成形により塩化ビニル樹脂成形体を形成する場合、パウダースラッシュ成形時の金型温度は、特に制限されることなく、200℃以上とすることが好ましく、220℃以上とすることがより好ましく、300℃以下とすることが好ましく、280℃以下とすることがより好ましい。
 そして、塩化ビニル樹脂成形体を製造する際には、特に限定されることなく、例えば、以下の方法を用いることができる。即ち、上記温度範囲の金型に本発明の塩化ビニル樹脂組成物を振りかけて、5秒以上30秒以下の間放置した後、余剰の塩化ビニル樹脂組成物を振り落とし、さらに、任意の温度下、30秒以上3分以下の間放置する。その後、金型を10℃以上60℃以下に冷却し、得られた本発明の塩化ビニル樹脂成形体を金型から脱型する。そして、金型の形状をかたどったシート状の成形体を得る。
(積層体)
 本発明の積層体は、発泡ポリウレタン成形体と、上述した塩化ビニル樹脂成形体のいずれかとを有する。なお、塩化ビニル樹脂成形体は、通常、積層体の一方の表面を構成する。
 そして、本発明の積層体は、例えば、本発明の塩化ビニル樹脂組成物を用いて形成された塩化ビニル樹脂成形体を有しているため、当該成形体側の表面の滑り性、常温(23℃)条件下での耐ブルーミング性、および耐毛羽付き性に優れている。従って、本発明の積層体は、例えば、自動車インスツルメントパネルおよびドアトリム等の自動車内装部品を形成する自動車内装材として好適に用いられる。
 ここで、発泡ポリウレタン成形体と塩化ビニル樹脂成形体との積層方法は、特に限定されることなく、例えば、以下の方法を用いることができる。即ち、(1)発泡ポリウレタン成形体と、塩化ビニル樹脂成形体とを別途準備した後に、熱融着、熱接着、または、公知の接着剤などを用いることにより貼り合わせる方法;(2)塩化ビニル樹脂成形体上で発泡ポリウレタン成形体の原料となるイソシアネート類とポリオール類などとを反応させて重合を行うと共に、公知の方法によりポリウレタンの発泡を行うことにより、塩化ビニル樹脂成形体上に発泡ポリウレタン成形体を直接形成する方法;などが挙げられる。中でも、工程が簡素である点、および、種々の形状の積層体を得る場合においても塩化ビニル樹脂成形体と発泡ポリウレタン成形体とを強固に接着し易い点から、後者の方法(2)が好適である。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 そして、塩化ビニル樹脂成形体の低温での引張特性、表面滑り性、常温条件下での耐ブルーミング性、および高温条件下での耐ブルーミング性;および、積層体における塩化ビニル樹脂成形体の毛羽付き性;は、下記の方法で測定および評価した。
<低温での引張特性>
 塩化ビニル樹脂成形体の低温での引張特性は、以下の通り、初期(未加熱)および加熱(熱老化試験)後のそれぞれについて、引張伸び(%)および引張破壊応力(MPa)を測定することにより評価した。
<<初期>>
 得られた塩化ビニル樹脂成形シートを、JIS K6251に記載の1号ダンベルで打ち抜き、JIS K7161に準拠して、引張速度200mm/分で、-35℃の低温下における引張伸び(%)および引張破壊応力(MPa)を測定した。引張伸びの値が大きいほど、初期(未加熱)の塩化ビニル樹脂成形体の、低温での延性が優れていることを示す。
<<加熱(熱老化試験)後>>
 発泡ポリウレタン成形体が裏打ちされた積層体を試料とした。当該試料をオーブンに入れ、温度130℃の環境下で100時間、加熱を行った。次に、加熱後の積層体から発泡ポリウレタン成形体を剥離して、塩化ビニル樹脂成形シートのみを準備した。そして、上記初期の場合と同様の条件にて、加熱後の塩化ビニル樹脂成形シートの引張伸び(%)および引張破壊応力(MPa)を測定した。引張伸びの値が大きいほど、加熱(熱老化試験)後における塩化ビニル樹脂成形体の、低温での延性が優れていることを示す。
<表面滑り性>
 塩化ビニル樹脂成形体の表面滑り性は、以下の通り、動摩擦係数を測定することにより評価した。
 具体的には、風合いテスター(トリニティラボ社製、製品名「TL201Ts」)を用いて、温度23℃、相対湿度50%の測定環境下において、荷重:50g、速度:10mm/秒、試験範囲:50mm、計測範囲:試験範囲の前後10mmを除いた30mm、の条件にて、触覚接触子を、塩化ビニル樹脂成形シートの表面に接触させることにより、当該シート表面の動摩擦係数を測定した。動摩擦係数の値が小さいほど、塩化ビニル樹脂成形体の表面滑り性が優れており、表面のべた付きが良好に抑制されていることを示す。
<耐毛羽付き性>
 塩化ビニル樹脂成形体に発泡ポリウレタン成形体が裏打ちされた積層体を170mm×300mmの寸法に切り出して試験片とした。そして、試験片のうち塩化ビニル樹脂成形体側における任意の20箇所について、色差計(コニカミノルタセンシング社製、製品名「CR-400」)を用いて明度(摩擦試験前のL値)を測定した。
 次に、明度を測定した試料片を、学振型摩耗試験機(大栄科学精器製作所製、製品名「RT-200」)の試料台の上に、塩化ビニル樹脂成形体側が上になるように置いた。また、上記摩耗試験機に500gの荷重を取り付けて試験片に掛かる合計荷重を500g重(約5N)とした。そして、摩耗試験機の先端にペーパータオル(日本製紙クレシア(株)製、製品名「COMFORT」)1枚を取り付けた後、取り付けたペーパータオルを、ペーパータオルが試験片の塩化ビニル樹脂成形体側の表面と接触する状態で10往復させることにより、試験片表面とペーパータオルとを擦った。更に、予め明度を測定した20箇所について、上記と同様の方法で明度(摩耗試験後のL値)を測定した。そして、20箇所における、測定した摩耗試験前後での明度の差(摩耗試験後のL値-摩擦試験前のL値)の平均値をΔLとして算出した。ΔLの値が小さいほど、塩化ビニル樹脂成形体の表面の耐毛羽付き性が高く、成形体表面に繊維カスが付着し難いことを示す。
 なお、耐毛羽付き性の試験は、温度23℃、相対湿度50%の環境下にて行った。
<常温条件下での耐ブルーミング性>
 常温条件下における塩化ビニル樹脂成形体の表面でのブルームの発生程度は、以下の通り評価した。
 即ち、塩化ビニル樹脂成形シートの表面(シボ模様が施されている側)の状態について、シート形成直後およびシート形成から2週間後の2回、目視観察した。そして、塩化ビニル樹脂成形シートの表面に白く粉をふいたような部分が確認される場合に、ブルームが発生していると判断して、以下の基準に従って、耐ブルーミング性を評価した。
なお、塩化ビニル樹脂成形シートの保管およびブルームの有無の確認は、常温(23℃)、相対湿度50%の環境下にて行った。
 A:シート形成直後とシート形成から2週間後との塩化ビニル樹脂成形シートの表面状態に変化が見られない。
 B:シート形成直後に比べ、シート形成から2週間後の塩化ビニル樹脂成形シートの表面にブルームの発生が僅かに確認できる。
 C:シート形成直後に比べ、シート形成から2週間後の塩化ビニル樹脂成形シートの表面にブルームの発生がはっきりと確認できる。
<高温条件下での耐ブルーミング性>
 高温条件下における塩化ビニル樹脂成形体の表面でのブルームの発生程度は、以下の通り評価した。
 即ち、塩化ビニル樹脂成形シートの表面(シボ模様が施されている側)の状態について、シート形成直後、およびシートを高温条件(温度120℃)下にて500時間保管した後の2回、目視観察した。そして、塩化ビニル樹脂成形シートの表面に白く粉をふいたような部分が確認される場合に、ブルームが発生していると判断して、以下の基準に従って、高温条件下での耐ブルーミング性を評価した。
 A:シート形成直後と高温条件下保管500時間後との塩化ビニル樹脂成形シートの表面状態に変化が見られない。
 B:シート形成直後に比べ、高温条件下保管500時間後の塩化ビニル樹脂成形シートの表面にブルームの発生が僅かに確認できる。
 C:シート形成直後に比べ、高温条件下保管500時間後の塩化ビニル樹脂成形シートの表面にブルームの発生がはっきりと確認できる。
<滑剤のみの融点>
 各実施例および比較例で使用した滑剤((c)化合物および/または(d)アミド化合物)を当該実施例および比較例での添加量の質量比と同じ質量比で混合してなる混合物を調製した。得られた混合物について示差走査熱量測定(DSC)を実施し、大気中、昇温速度10℃/分の条件で2回目の昇温を行なったときの融点を測定した。
(実施例1-1)
<塩化ビニル樹脂組成物の調製>
 表1に示す配合成分のうち、可塑剤(トリメリット酸エステルおよびエポキシ化大豆油)と、ダスティング剤である塩化ビニル樹脂微粒子とを除く成分をヘンシェルミキサーに入れて混合した。そして、混合物の温度が80℃に上昇した時点で上記可塑剤を全て添加し、更に昇温することにより、ドライアップ(可塑剤が、塩化ビニル樹脂である塩化ビニル樹脂粒子に吸収されて、上記混合物がさらさらになった状態をいう。)させた。その後、ドライアップさせた混合物が温度100℃以下に冷却された時点でダスティング剤である塩化ビニル樹脂微粒子を添加し、塩化ビニル樹脂組成物を調製した。
<塩化ビニル樹脂成形体の形成>
 上述で得られた塩化ビニル樹脂組成物を、温度250℃に加熱したシボ付き金型に振りかけ、8秒~20秒程度の任意の時間放置して溶融させた後、余剰の塩化ビニル樹脂組成物を振り落とした。その後、当該塩化ビニル樹脂組成物を振りかけたシボ付き金型を、温度200℃に設定したオーブン内に静置し、静置から60秒経過した時点で当該シボ付き金型を冷却水で冷却した。金型温度が40℃まで冷却された時点で、塩化ビニル樹脂成形体としての、200mm×300mm×1mmの塩化ビニル樹脂成形シートを金型から脱型した。
 そして、得られた塩化ビニル樹脂成形シートについて、上述の方法に従って、初期(未加熱)の低温での引張特性、表面滑り性、常温条件下での耐ブルーミング性および高温条件下での耐ブルーミング性を測定、評価した。結果を表1に示す。
<積層体の形成>
 得られた塩化ビニル樹脂成形シートを、200mm×300mm×10mmの金型の中に、シボ付き面を下にして敷いた。
 別途、プロピレングリコールのPO(プロピレンオキサイド)・EO(エチレンオキサイド)ブロック付加物(水酸基価28、末端EO単位の含有量=10%、内部EO単位の含有量4%)を50部、グリセリンのPO・EOブロック付加物(水酸基価21、末端EO単位の含有量=14%)を50部、水を2.5部、トリエチレンジアミンのエチレングリコ-ル溶液(東ソー社製、商品名「TEDA-L33」)を0.2部、トリエタノールアミンを1.2部、トリエチルアミンを0.5部、および整泡剤(信越化学工業製、商品名「F-122」)を0.5部混合して、ポリオール混合物を得た。また、得られたポリオール混合物とポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)とを、インデックスが98になる比率で混合した混合液を調製した。そして、調製した混合液を、上述の通り金型内に敷かれた塩化ビニル樹脂成形シートの上に注いだ。その後、348mm×255mm×10mmのアルミニウム板で上記金型に蓋をして、金型を密閉した。金型を密閉してから5分間放置することにより、表皮としての塩化ビニル樹脂成形シート(厚さ:1mm)に、発泡ポリウレタン成形体(厚み:9mm、密度:0.18g/cm)が裏打ちされた積層体が、金型内で形成された。
 そして、形成された積層体を金型から取り出し、積層体における塩化ビニル樹脂シートについて、上述の方法に従って、加熱後の低温での引張特性、および、耐毛羽付き性を測定、評価した。結果を表1に示す。
(実施例1-2)
 塩化ビニル樹脂組成物の調製において、添加剤(その他の滑剤)としてのポリエーテル変性シリコーンオイル0.2部を更に添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。なお、ポリエーテル変性シリコーンオイルの添加は(c)化合物の添加と共に行った。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(実施例1-3)
 塩化ビニル樹脂組成物の調製において、(c)化合物の量を0.5部に変更した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(実施例1-4)
 塩化ビニル樹脂組成物の調製において、(c)化合物の量を1.0部に変更した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-1)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用しなかった以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-2)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、(d)アミド化合物としてのエチレンビスステアリン酸アミドを0.5部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、耐毛羽付き性以外は、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-3)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、(d)アミド化合物としてのエチレンビスステアリン酸アミドを1.0部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-4)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、(d)アミド化合物としてのエチレンビスラウリン酸アミドを0.5部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、耐毛羽付き性以外は、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-5)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、(d)アミド化合物としてのエチレンビスラウリン酸アミドを1.0部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-6)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、その他の滑剤としての、分子中に一つのアミド結合を有する飽和脂肪酸アミド(ラウリン酸アミド)を0.5部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-7)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、その他の滑剤としての、分子中に一つのアミド結合を有する飽和脂肪酸アミド(ラウリン酸アミド)を1.0部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-8)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、その他の滑剤としての、分子中に一つのアミド結合を有する飽和脂肪酸アミド(ステアリン酸アミド)を0.5部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、耐毛羽付き性以外は、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-9)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、その他の滑剤としての、分子中に一つのアミド結合を有する飽和脂肪酸アミド(ステアリン酸アミド)を1.0部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-10)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、その他の滑剤としての、分子中にアミド結合を一つのみ有する不飽和脂肪酸アミド(オレイン酸アミド)を0.5部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、耐毛羽付き性以外は、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-11)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、その他の滑剤としての、分子中にアミド結合を一つのみ有する不飽和脂肪酸アミド(オレイン酸アミド)を1.0部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-12)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、その他の滑剤としての、分子中にアミド結合を一つのみ有する不飽和脂肪酸アミド(エルカ酸アミド)を0.5部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、耐毛羽付き性以外は、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(比較例1-13)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、その他の滑剤としての、分子中にアミド結合を一つのみ有する不飽和脂肪酸アミド(エルカ酸アミド)を1.0部添加した以外は実施例1-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例1-1と同様に測定、評価を行った。結果を表1に示す。
(実施例2-1)
<塩化ビニル樹脂組成物の調製>
 表2に示す配合成分のうち、可塑剤(トリメリット酸エステルおよびエポキシ化大豆油)と、ダスティング剤である塩化ビニル樹脂微粒子とを除く成分をヘンシェルミキサーに入れて混合した。そして、混合物の温度が80℃に上昇した時点で上記可塑剤を全て添加し、更に昇温することにより、ドライアップ(可塑剤が、塩化ビニル樹脂である塩化ビニル樹脂粒子に吸収されて、上記混合物がさらさらになった状態をいう。)させた。その後、ドライアップさせた混合物が温度100℃以下に冷却された時点でダスティング剤である塩化ビニル樹脂微粒子を添加し、塩化ビニル樹脂組成物を調製した。
 なお、滑剤のみの融点を測定したところ、133℃に単一の融点が観測された。
<塩化ビニル樹脂成形体の形成>
 上述で得られた塩化ビニル樹脂組成物を、温度250℃に加熱したシボ付き金型に振りかけ、8秒~20秒程度の任意の時間放置して溶融させた後、余剰の塩化ビニル樹脂組成物を振り落とした。その後、当該塩化ビニル樹脂組成物を振りかけたシボ付き金型を、温度200℃に設定したオーブン内に静置し、静置から60秒経過した時点で当該シボ付き金型を冷却水で冷却した。金型温度が40℃まで冷却された時点で、塩化ビニル樹脂成形体としての、200mm×300mm×1mmの塩化ビニル樹脂成形シートを金型から脱型した。
 そして、得られた塩化ビニル樹脂成形シートについて、上述の方法に従って、初期(未加熱)の低温での引張特性、表面滑り性および高温条件下での耐ブルーミング性を測定、評価した。結果を表2に示す。
<積層体の形成>
 得られた塩化ビニル樹脂成形シートを、200mm×300mm×10mmの金型の中に、シボ付き面を下にして敷いた。
 別途、プロピレングリコールのPO(プロピレンオキサイド)・EO(エチレンオキサイド)ブロック付加物(水酸基価28、末端EO単位の含有量=10%、内部EO単位の含有量4%)を50部、グリセリンのPO・EOブロック付加物(水酸基価21、末端EO単位の含有量=14%)を50部、水を2.5部、トリエチレンジアミンのエチレングリコ-ル溶液(東ソー社製、商品名「TEDA-L33」)を0.2部、トリエタノールアミンを1.2部、トリエチルアミンを0.5部、および整泡剤(信越化学工業製、商品名「F-122」)を0.5部混合して、ポリオール混合物を得た。また、得られたポリオール混合物とポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)とを、インデックスが98になる比率で混合した混合液を調製した。そして、調製した混合液を、上述の通り金型内に敷かれた塩化ビニル樹脂成形シートの上に注いだ。その後、348mm×255mm×10mmのアルミニウム板で上記金型に蓋をして、金型を密閉した。金型を密閉してから5分間放置することにより、表皮としての塩化ビニル樹脂成形シート(厚さ:1mm)に、発泡ポリウレタン成形体(厚み:9mm、密度:0.18g/cm)が裏打ちされた積層体が、金型内で形成された。
 そして、形成された積層体を金型から取り出し、積層体における塩化ビニル樹脂シートについて、上述の方法に従って、加熱後の低温での引張特性を測定、評価した。結果を表2に示す。
(実施例2-2)
 塩化ビニル樹脂組成物の調製において、(d)アミド化合物としてのエチレンビスステアリン酸アミドの量を0.1部に変更した以外は実施例2-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例2-1と同様に測定、評価を行った。結果を表2に示す。
 なお、滑剤のみの融点を測定したところ、129℃に単一の融点が観測された。
(実施例2-3)
 塩化ビニル樹脂組成物の調製において、(d)アミド化合物としてのエチレンビスステアリン酸アミドの量を0.3部に変更した以外は実施例2-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例2-1と同様に測定、評価を行った。結果を表2に示す。
 なお、滑剤のみの融点を測定したところ、137℃に単一の融点が観測された。
(実施例2-4)
 塩化ビニル樹脂組成物の調製において、(c)化合物としてのエチレンビスオレイン酸アミドの量を0.2部に変更し、(d)アミド化合物としてのエチレンビスステアリン酸アミドの量を0.1部に変更した以外は実施例2-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例2-1と同様に測定、評価を行った。結果を表2に示す。
 なお、滑剤のみの融点を測定したところ、128℃に単一の融点が観測された。
(実施例2-5)
 塩化ビニル樹脂組成物の調製において、(c)化合物としてのエチレンビスオレイン酸アミドの量を0.3部に変更し、(d)アミド化合物としてのエチレンビスステアリン酸アミドの量を0.1部に変更した以外は実施例2-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例2-1と同様に測定、評価を行った。結果を表2に示す。
 なお、滑剤のみの融点を測定したところ、124℃に単一の融点が観測された。
(実施例2-6)
 塩化ビニル樹脂組成物の調製において、(c)化合物としてのエチレンビスオレイン酸アミドの量を0.3部に変更した以外は実施例2-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例2-1と同様に測定、評価を行った。結果を表2に示す。
 なお、滑剤のみの融点を測定したところ、128℃に単一の融点が観測された。
(実施例2-7)
 塩化ビニル樹脂組成物の調製において、(c)化合物としてのエチレンビスオレイン酸アミドの量を0.25部に変更し、(d)アミド化合物としてのエチレンビスステアリン酸アミドの量を0.05部に変更した以外は実施例2-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例2-1と同様に測定、評価を行った。結果を表2に示す。
 なお、滑剤のみの融点を測定したところ、120℃に単一の融点が観測された。
(実施例2-8)
 塩化ビニル樹脂組成物の調製において、(c)化合物としてのエチレンビスオレイン酸アミドの量を0.05部に変更し、(d)アミド化合物としてのエチレンビスステアリン酸アミドの量を0.25部に変更した以外は実施例2-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例2-1と同様に測定、評価を行った。結果を表2に示す。
 なお、滑剤のみの融点を測定したところ、142℃に単一の融点が観測された。
(比較例2-1)
 塩化ビニル樹脂組成物の調製において、(c)化合物を使用せず、(d)アミド化合物としてのエチレンビスステアリン酸アミドの量を0.3部に変更した以外は実施例2-1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体を形成した。
 そして、実施例2-1と同様に測定、評価を行った。結果を表2に示す。
 なお、滑剤として用いたエチレンビスステアリン酸アミドの融点は144℃であった。
 また、比較のため、(d)アミド化合物を含まない実施例1-1について、高温条件下での耐ブルーミング性の評価を行った。結果を表2に示す。
 なお、実施例1-1で滑剤として用いたエチレンビスオレイン酸アミドの融点は117℃であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1)新第一塩ビ社製、製品名「ZEST(登録商標)1700ZI」(懸濁重合法で調製、平均重合度:1700、平均粒子径:130μm)
2)新第一塩ビ社製、製品名「ZEST PQLTX」(乳化重合法で調製、平均重合度:800、平均粒子径:1.8μm)
3)花王社製、製品名「トリメックスN-08」
4)ADEKA社製、製品名「アデカサイザー O-130S」
5)日本化成社製、製品名「スリパックス(登録商標)O」
6)日本化成社製、製品名「スリパックスE」
7)日本化成社製、製品名「スリパックスL」
8)日本化成社製、製品名「ダイヤミッド(登録商標)Y」
9)日本化成社製、製品名「アマイド(登録商標)AP-1」
10)日本化成社製、製品名「ダイヤミッドO-200」
11)日本化成社製、製品名「ダイヤミッドL-200」
12)信越化学工業社製、製品名「X-50-1039A」(ポリエーテル変性シリコーンオイル)
13)協和化学工業社製、製品名「アルカマイザー(登録商標)5」
14)水澤化学工業社製、製品名「MIZUKALIZER DS」
15)昭和電工社製、製品名「カレンズDK-1」
16)堺化学工業社、製品名「SAKAI SZ2000」
17)ADEKA社製、製品名「アデカスタブ LS-12」
18)大日精化社製、製品名「DA PX 1720(A)ブラック」
 表1より、所定の構造を有する(c)化合物を用いた実施例1-1~1-4では、当該(c)化合物を用いなかった比較例1-1~1-13と比較して、塩化ビニル樹脂成形体の良好な表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立していることが分かる。
 また、表2より、所定の構造を有する(c)化合物と、当該(c)化合物の融点よりも高い融点を有する(d)アミド化合物とを併用した実施例2-1~2-8では、塩化ビニル樹脂成形体の良好な表面滑り性、および高温条件下での耐ブルーミング性を両立していることが分かる。特に、当該(c)化合物および(d)アミド化合物を併用した実施例2-1~2-8では、(d)アミド化合物を使用しなかった実施例1-1よりも塩化ビニル樹脂成形体の高温条件下での耐ブルーミング性が向上することが分かる。一方、(c)化合物を使用しなかった比較例2-1では、高温条件下での耐ブルーミング性は良好であるものの、塩化ビニル樹脂成形体の表面滑り性が悪化することが分かる。
 本発明によれば、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立し得る塩化ビニル樹脂成形体を製造可能な塩化ビニル樹脂組成物を提供することができる。
 また、本発明によれば、優れた表面滑り性、および常温(23℃)条件下での耐ブルーミング性を両立し得る塩化ビニル樹脂成形体および積層体を提供することができる。

Claims (18)

  1.  (a)塩化ビニル樹脂と、
     (b)可塑剤と、
     (c)下記式(1):
      R(NRCOR   (1)
    〔式(1)中、nは2以上6以下の整数であり、RおよびRはそれぞれ炭化水素基であり、Rは炭化水素基又は水素であり、n個のRは互いに同一でも異なっていてもよく、n個のRは互いに同一でも異なっていてもよく、前記n個のRのうち少なくとも1つは炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基である。〕
    で示される化合物と、を含む、塩化ビニル樹脂組成物。
  2.  前記Rが有する炭素数が1以上8以下である、請求項1に記載の塩化ビニル樹脂組成物。
  3.  前記n個のRの全てが炭素-炭素不飽和結合を一つ以上有する不飽和炭化水素基である、請求項1または2に記載の塩化ビニル樹脂組成物。
  4.  前記Rの不飽和炭化水素基が有する炭素-炭素不飽和結合の数がそれぞれ1以上4以下である、請求項1~3のいずれか一項に記載の塩化ビニル樹脂組成物。
  5.  前記n個のRが有する炭素数がそれぞれ11以上23以下である、請求項1~4のいずれか一項に記載の塩化ビニル樹脂組成物。
  6.  前記(c)化合物の含有量が、前記(a)塩化ビニル樹脂100質量部あたり0.04質量部以上2.0質量部以下である、請求項1~5のいずれか一項に記載の塩化ビニル樹脂組成物。
  7.  前記Rが水素である、請求項1~6のいずれか一項に記載の塩化ビニル樹脂組成物。
  8.  (d)前記(c)化合物の融点よりも高い融点を有するアミド化合物を更に含む、請求項1~7のいずれか一項に記載の塩化ビニル樹脂組成物。
  9.  前記(d)アミド化合物が下記式(2):
      R(NRCOR   (2)
    〔式(2)中、nは2以上6以下の整数であり、RおよびRはそれぞれ独立して、炭化水素基であり、Rは炭化水素基又は水素であり、n個のRは互いに同一でも異なっていてもよく、n個のRは互いに同一でも異なっていてもよい。〕
    で示される化合物である、請求項8に記載の塩化ビニル樹脂組成物。
  10.  前記Rが飽和炭化水素基である、請求項9に記載の塩化ビニル樹脂組成物。
  11.  前記(c)化合物と前記(d)アミド化合物との混合物が単一の融点を有する、請求項8~10のいずれか一項に記載の塩化ビニル樹脂組成物。
  12.  前記単一の融点が120℃以上142℃以下である、請求項11に記載の塩化ビニル樹脂組成物。
  13.  前記(d)アミド化合物の含有量が、前記(c)化合物の含有量の0.2倍以上5倍以下である、請求項8~12のいずれか一項に記載の塩化ビニル樹脂組成物。
  14.  粉体成形に用いられる、請求項1~13のいずれか一項に記載の塩化ビニル樹脂組成物。
  15.  パウダースラッシュ成形に用いられる、請求項14に記載の塩化ビニル樹脂組成物。
  16.  請求項1~15のいずれか一項に記載の塩化ビニル樹脂組成物を成形してなる、塩化ビニル樹脂成形体。
  17.  自動車内装部品の表皮用である、請求項16に記載の塩化ビニル樹脂成形体。
  18.  発泡ポリウレタン成形体と、請求項16または17に記載の塩化ビニル樹脂成形体と、を有する積層体。
PCT/JP2018/003855 2017-02-06 2018-02-05 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体 WO2018143462A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197022360A KR102499858B1 (ko) 2017-02-06 2018-02-05 염화비닐 수지 조성물, 염화비닐 수지 성형체, 및 적층체
EP18747635.3A EP3578602B1 (en) 2017-02-06 2018-02-05 Vinyl chloride resin composition, vinyl chloride resin molded product, and laminate
MX2019008926A MX2019008926A (es) 2017-02-06 2018-02-05 Composicion de resina de cloruro de vinilo, producto moldeado de resina de cloruro de vinilo, y laminado.
US16/481,189 US10882988B2 (en) 2017-02-06 2018-02-05 Vinyl chloride resin composition, vinyl chloride resin molded product, and laminate
CN201880008980.6A CN110234702B (zh) 2017-02-06 2018-02-05 氯乙烯树脂组合物、氯乙烯树脂成型体及层叠体
JP2018566159A JP7092039B2 (ja) 2017-02-06 2018-02-05 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017019781 2017-02-06
JP2017-019781 2017-02-06
JP2017207351 2017-10-26
JP2017-207351 2017-10-26

Publications (1)

Publication Number Publication Date
WO2018143462A1 true WO2018143462A1 (ja) 2018-08-09

Family

ID=63040782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003855 WO2018143462A1 (ja) 2017-02-06 2018-02-05 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体

Country Status (7)

Country Link
US (1) US10882988B2 (ja)
EP (1) EP3578602B1 (ja)
JP (1) JP7092039B2 (ja)
KR (1) KR102499858B1 (ja)
CN (1) CN110234702B (ja)
MX (1) MX2019008926A (ja)
WO (1) WO2018143462A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162650A (ja) * 1982-03-23 1983-09-27 Achilles Corp 印刷インクの付着防止軟質塩化ビニルシ−ト
JPS59155450A (ja) * 1983-02-24 1984-09-04 Okamoto Kk 耐インキ性可塑化ポリ塩化ビニル樹脂製シ−ト状物
JPS60155237A (ja) * 1984-01-24 1985-08-15 Mitsubishi Plastics Ind Ltd 熱収縮性ラベル用フイルム
JPS6438462A (en) * 1987-08-03 1989-02-08 Mitsubishi Kasei Vinyl Molded article of vinyl chloride resin
JPH03181539A (ja) * 1989-12-08 1991-08-07 Achilles Corp 塩化ビニル系樹脂成形品
JPH06143513A (ja) * 1992-10-19 1994-05-24 Mitsubishi Kasei Vinyl Co 農業用軟質塩化ビニル系樹脂フィルム
JPH08291243A (ja) 1995-04-21 1996-11-05 Zeon Kasei Co Ltd 粉末成形用塩化ビニル樹脂組成物およびそれを用いた積層体
JPH09241460A (ja) * 1996-03-11 1997-09-16 Mitsubishi Chem Mkv Co 粉体成形用発泡性塩化ビニル系樹脂組成物
JP2000026684A (ja) * 1998-07-08 2000-01-25 Mitsui Chemicals Inc 農業用塩化ビニル系樹脂フィルム
WO2016075902A1 (ja) * 2014-11-11 2016-05-19 日本ゼオン株式会社 粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体
WO2016098344A1 (ja) 2014-12-17 2016-06-23 日本ゼオン株式会社 塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE618785A (ja) 1961-06-12 1900-01-01
US4072790A (en) * 1974-12-17 1978-02-07 The Goodyear Tire & Rubber Company Extrudable compounded polyvinyl chloride
JPH01156357A (ja) * 1987-12-14 1989-06-19 Hitachi Chem Co Ltd 粉末成形用塩化ビニル系樹脂組成物
JPH02219845A (ja) * 1989-02-21 1990-09-03 Dainippon Ink & Chem Inc 塩化ビニル系樹脂用着色剤
JP3056763B2 (ja) 1990-03-29 2000-06-26 アキレス株式会社 農業用塩化ビニル系樹脂フィルム
JP2001001450A (ja) * 1999-06-24 2001-01-09 Mitsui Chemicals Inc 積層体
JP4457772B2 (ja) * 2004-06-18 2010-04-28 コニカミノルタエムジー株式会社 銀塩光熱写真ドライイメージング材料及び画像記録方法
EP2604652B1 (en) * 2010-08-12 2017-01-04 Zeon Corporation Vinyl chloride resin composition for forming powder, and formed article and laminate of vinyl chloride resin
CN103554777A (zh) * 2013-10-31 2014-02-05 合肥得润电子器件有限公司 一种通讯设备线束用耐磨聚氯乙烯绝缘料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162650A (ja) * 1982-03-23 1983-09-27 Achilles Corp 印刷インクの付着防止軟質塩化ビニルシ−ト
JPS59155450A (ja) * 1983-02-24 1984-09-04 Okamoto Kk 耐インキ性可塑化ポリ塩化ビニル樹脂製シ−ト状物
JPS60155237A (ja) * 1984-01-24 1985-08-15 Mitsubishi Plastics Ind Ltd 熱収縮性ラベル用フイルム
JPS6438462A (en) * 1987-08-03 1989-02-08 Mitsubishi Kasei Vinyl Molded article of vinyl chloride resin
JPH03181539A (ja) * 1989-12-08 1991-08-07 Achilles Corp 塩化ビニル系樹脂成形品
JPH06143513A (ja) * 1992-10-19 1994-05-24 Mitsubishi Kasei Vinyl Co 農業用軟質塩化ビニル系樹脂フィルム
JPH08291243A (ja) 1995-04-21 1996-11-05 Zeon Kasei Co Ltd 粉末成形用塩化ビニル樹脂組成物およびそれを用いた積層体
JPH09241460A (ja) * 1996-03-11 1997-09-16 Mitsubishi Chem Mkv Co 粉体成形用発泡性塩化ビニル系樹脂組成物
JP2000026684A (ja) * 1998-07-08 2000-01-25 Mitsui Chemicals Inc 農業用塩化ビニル系樹脂フィルム
WO2016075902A1 (ja) * 2014-11-11 2016-05-19 日本ゼオン株式会社 粉体成形用塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体
WO2016098344A1 (ja) 2014-12-17 2016-06-23 日本ゼオン株式会社 塩化ビニル樹脂組成物及びその製造方法、塩化ビニル樹脂成形体及びその製造方法、並びに、積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578602A4

Also Published As

Publication number Publication date
CN110234702B (zh) 2022-01-04
EP3578602A1 (en) 2019-12-11
EP3578602A4 (en) 2020-09-30
JPWO2018143462A1 (ja) 2019-11-21
EP3578602B1 (en) 2023-05-03
US20190390048A1 (en) 2019-12-26
MX2019008926A (es) 2019-09-26
JP7092039B2 (ja) 2022-06-28
CN110234702A (zh) 2019-09-13
US10882988B2 (en) 2021-01-05
KR20190111957A (ko) 2019-10-02
KR102499858B1 (ko) 2023-02-13

Similar Documents

Publication Publication Date Title
JP7367693B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2017170220A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
JP6522868B1 (ja) 粉体成形用塩化ビニル系樹脂組成物、塩化ビニル系樹脂成形体及び積層体
WO2021261162A1 (ja) 塩化ビニル樹脂組成物、粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体の製造方法
WO2016152085A1 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
WO2018143462A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2020196396A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
JP7160028B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2023054207A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2021193165A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
JP2023051457A (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2023189509A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
JP2022086823A (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2024070985A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2024070984A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2023127609A1 (ja) 可塑剤組成物、樹脂組成物、樹脂成形体および積層体
JP2024065973A (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
JP7251542B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2023127569A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2024070506A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2023008443A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2023054638A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2023189511A1 (ja) 粉体成形用塩化ビニル樹脂組成物およびその製造方法、塩化ビニル樹脂成形体、並びに積層体
WO2023182060A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
JP2023081211A (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566159

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022360

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018747635

Country of ref document: EP