WO2018079356A1 - 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接着方法 - Google Patents

誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接着方法 Download PDF

Info

Publication number
WO2018079356A1
WO2018079356A1 PCT/JP2017/037618 JP2017037618W WO2018079356A1 WO 2018079356 A1 WO2018079356 A1 WO 2018079356A1 JP 2017037618 W JP2017037618 W JP 2017037618W WO 2018079356 A1 WO2018079356 A1 WO 2018079356A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
adhesive film
dielectric heating
heating adhesive
component
Prior art date
Application number
PCT/JP2017/037618
Other languages
English (en)
French (fr)
Inventor
正和 石川
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to US16/345,166 priority Critical patent/US11541607B2/en
Priority to JP2018547590A priority patent/JP6648300B2/ja
Priority to EP17863547.0A priority patent/EP3533848A4/en
Priority to CN201780066588.2A priority patent/CN109890923B/zh
Publication of WO2018079356A1 publication Critical patent/WO2018079356A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/04Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/40Applying molten plastics, e.g. hot melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/40Applying molten plastics, e.g. hot melt
    • B29C65/42Applying molten plastics, e.g. hot melt between pre-assembled parts
    • B29C65/425Applying molten plastics, e.g. hot melt between pre-assembled parts characterised by the composition of the molten plastics applied between pre-assembled parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J131/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid, or of a haloformic acid; Adhesives based on derivatives of such polymers
    • C09J131/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C09J131/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J177/00Adhesives based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/48Circuits
    • H05B6/50Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • C09J2423/106Presence of homo or copolymers of propene in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2451/00Presence of graft polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester

Definitions

  • the present invention relates to a dielectric heating adhesive film and an adhesion method using the dielectric heating adhesive film.
  • a dielectric heating adhesive film that is used for different types of adherends and can obtain a strong adhesive force even in a relatively short time by dielectric heating treatment (sometimes referred to as high-frequency dielectric heating treatment), and
  • the present invention relates to an adhesion method using such a dielectric heating adhesive film (sometimes simply referred to as a joining method).
  • a polyolefin and a carbon compound, or a conductive material are mixed in a polyolefin resin to produce an adhesive having a dielectric loss tangent (tan ⁇ ) of 0.03 or more.
  • an adhesion method in which a plurality of adherends are adhered by a dielectric heating treatment with a frequency of 40 MHz, interposed between the adherends (see Patent Documents 3 and 4).
  • An adhesive composition for dielectric heating comprising a dielectric heating medium filled with an adhesive having affinity for a plurality of adherends (base materials) to be bonded, and having a relative dielectric constant of
  • ⁇ ′ the dielectric loss tangent is tan ⁇
  • d the total thickness of the base material to be bonded
  • the coefficient C is in the range of 78 to 85
  • a dielectric heating adhesive layer composition satisfying 1/2 ⁇ d has been proposed (see Patent Document 5).
  • a modified polyolefin-based resin composition for heat bonding and a sheet thereof have been proposed for the purpose of exhibiting excellent adhesiveness to difficult-to-bond substrates (see Patent Document 6). More specifically, (a) a polyolefin resin, (b) an epoxy group-containing vinyl monomer, (c) an aromatic vinyl monomer, and (d) a (meth) acrylic acid monomer, A modified polyolefin resin composition or the like, which is a resin composition obtained by a graft reaction and has a heat of fusion in the range of 1 to 100 J / g and a melting point in the range of 80 to 190 ° C.
  • JP 2010-6908 A (Claims etc.) JP 2008-156510 A (Claims etc.) JP 2003-238745 A (claims, etc.) Japanese Patent Laid-Open No. 2003-193090 (Claims) JP 2014-37489 A (Claims etc.) JP 2009-126922 A (Claims etc.)
  • the modified polyolefin-based resin composition disclosed in Patent Document 6 stipulates that the heat of fusion and the melting point are values within a predetermined range, but any description about including a dielectric filler, There was no suggestion and there was a fundamental problem that it could not be used for dielectric heating adhesive films. Moreover, the disclosed modified polyolefin resin composition has a problem that the main component is a predetermined graft polyolefin resin, which is extremely expensive and economically disadvantageous.
  • the present inventors have controlled the amount of heat of fusion of the thermoplastic resin used for the dielectric heating adhesive film to a value within a predetermined range, for example, dielectric heating for less than 40 seconds. It has been found that good adhesion can be obtained by the treatment and that a dielectric filler having a relatively wide range of particle sizes can be used, and the present invention has been completed. In other words, the present invention can be applied to various adherends, and good adhesiveness can be obtained by a short-time dielectric heat treatment, and a dielectric filler having a relatively wide average particle diameter can be used.
  • An object of the present invention is to provide a predetermined dielectric heating adhesive film and an adhesion method using the predetermined dielectric heating adhesive film.
  • a dielectric heating adhesive film for bonding a pair of adherends made of the same material or different materials by dielectric heating treatment, Containing a thermoplastic resin as component A and a dielectric filler as component B;
  • the dielectric heating adhesive film satisfies the following conditions (i) to (ii).
  • the melting point or softening point measured in accordance with the method specified in JIS K 7121 (1987) is a value within the range of 80 to 200 ° C.
  • the heat of fusion measured according to JIS K 7121 (1987) is a value within the range of 1 to 80 J / g.
  • a dielectric heating adhesive film having a predetermined melting point and the like and a heat of fusion can be applied to various adherends, and good adhesiveness can be obtained even by a short dielectric heating treatment. it can.
  • a predetermined melting point or softening point in the state of the dielectric heating adhesive film a good balance between heat resistance (including heat resistance creep resistance) in the use environment and the like and weldability in the dielectric heating treatment Can be achieved.
  • the dielectric property (tan ⁇ / ⁇ ′) obtained by dividing the dielectric loss tangent (tan ⁇ ) by the dielectric constant ( ⁇ ′) measured under the condition of a frequency of 40 MHz at 23 ° C. Is preferably 0.005 or more.
  • the blending amount of the B component is preferably set to a value in the range of 5 to 800 parts by mass with respect to 100 parts by mass of the A component.
  • the component A is composed of a polyolefin resin, an olefin thermoplastic elastomer, a styrene thermoplastic elastomer, a polyamide resin, a polyvinyl acetate resin, a polyacetal resin, and a polyester resin. It is preferably at least one thermoplastic resin selected from the group consisting of By using such a thermoplastic resin, even if it is a short time dielectric heat treatment, even if it dissolves uniformly and quickly, it is good even if the adherend is composed of a difficult-to-adhere polypropylene resin or polyester resin, etc. Can be reliably obtained.
  • the B component is preferably zinc oxide.
  • the B component is zinc oxide, a predetermined heat generation effect can be exhibited in the dielectric heat treatment even if it is a relatively small amount of the component B added to the adhesive component A.
  • zinc oxide is used, uniform dispersion into the component A, which is an adhesive component, is possible, and the transparency between the dielectric heating adhesive film and the weldability in the dielectric heating treatment are good. Balance can be achieved.
  • the average particle size of the component B measured in accordance with JIS Z 8819-2 (2001) may be set to a value within the range of 0.1 to 30 ⁇ m. preferable.
  • Another aspect of the present invention is a dielectric heating process comprising a thermoplastic resin as component A and a dielectric filler as component B in order to bond a pair of adherends made of the same material or different materials by dielectric heating treatment.
  • An adhesion method using an adhesive film wherein the dielectric heating adhesive film satisfies the following conditions (i) to (ii):
  • the melting point or softening point measured in accordance with the method specified in JIS K 7121 (1987) is a value within the range of 80 to 200 ° C.
  • the heat of fusion measured according to JIS K 7121 (1987) is a value within the range of 1 to 80 J / g.
  • the adhesion method using the dielectric heating adhesive film characterized by including the following process (1) and (2) sequentially.
  • good adhesiveness can be obtained by a short-time dielectric heat treatment.
  • the dielectric heating adhesive film satisfies not only the above conditions (i) to (ii) but also the following condition (iii).
  • a dielectric property (tan ⁇ / ⁇ ′) obtained by dividing tan ⁇ which is a dielectric loss tangent by ⁇ ′ which is a dielectric constant is a value of 0.005 or more. That is, if it is an adhesion method using such a dielectric heating adhesive film, it can be applied to various adherends, and good adhesiveness, heat-resistant creep characteristics, etc. can be obtained even by a short dielectric heating treatment. it can.
  • FIG. 1 is a diagram for explaining a dielectric heating process using a dielectric heating apparatus.
  • 2A and 2B are views (photograph, magnification: 150 times) for explaining the surface and cross-sectional state of the dielectric heating adhesive film of the present invention.
  • the dielectric heating adhesive film in the first embodiment is a dielectric heating adhesive film for bonding a pair of adherends made of the same material or different materials by dielectric heating treatment, Containing a thermoplastic resin as component A and a dielectric filler as component B;
  • the dielectric heating adhesive film satisfies the following conditions (i) to (ii).
  • the melting point or softening point measured in accordance with the method defined in JIS K 7121 (1987) is a value within the range of 80 to 200 ° C.
  • the heat of fusion measured according to JIS K 7121 (1987) is a value within the range of 1 to 80 J / g.
  • the compounding components and forms of the dielectric heating adhesive film in the first embodiment will be specifically described.
  • thermoplastic resin as the component A is not particularly limited. For example, it is easy to melt and has a predetermined heat resistance, and therefore, a polyolefin-based resin, an olefin-based thermoplastic elastomer, a styrene-based resin. At least one of thermoplastic elastomer, polyamide resin, polyvinyl acetate resin, polyacetal resin, polycarbonate resin, polyacrylic resin, polyamide resin, polyimide resin, polyvinyl acetate resin, phenoxy resin, and polyester resin It is preferable.
  • the polyolefin-based resin includes a resin made of a homopolymer such as polyethylene, polypropylene, polybutene, and polymethylpentene, and a copolymer such as ethylene, propylene, butene, hexene, octene, and 4-methylpentene.
  • a resin made of a homopolymer such as polyethylene, polypropylene, polybutene, and polymethylpentene
  • a copolymer such as ethylene, propylene, butene, hexene, octene, and 4-methylpentene.
  • ⁇ -olefin resins One kind or a combination of two or more kinds of ⁇ -olefin resins.
  • a polypropylene resin is particularly preferable because it is easy to adjust the melting point or softening point and is inexpensive and excellent in mechanical strength and transparency. It can be said.
  • the dielectric constant ( ⁇ / 1 MHz) is set to a value within the range of 2.2 to 2.6, and the dielectric power factor (tan ⁇ / 1 MHz) is set to 0.0005 to 0.00. It is preferable that the value be within the range of 0018, and the loss coefficient is about 0.0047.
  • the dielectric constant ( ⁇ / 1 MHz) is set to a value in the range of 2.8 to 4.1, and the dielectric power factor (tan ⁇ / 1 MHz) is 0.005 to 0.
  • the value is preferably in the range of .026, and the loss coefficient is preferably in the range of 0.0168 to 0.11.
  • the melting point or softening point of the component A is preferably set to a value within the range of 80 to 200 ° C. That is, when the component A is a crystalline resin, the melting point measured by a differential scanning calorimeter (DSC) or the like is defined as a temperature within a predetermined range as the temperature at which the crystal part is dissolved, thereby ensuring heat resistance in the usage environment. And a good balance between the weldability in the dielectric heat treatment can be achieved. More specifically, using a differential scanning calorimeter, 10 mg of a measurement sample (first thermoplastic resin) is heated to 250 ° C., and then cooled to 25 ° C.
  • DSC differential scanning calorimeter
  • the melting point of the measurement sample can be the peak temperature of the melting peak observed on the DSC chart (melting curve) when heated and melted again at a heating rate of 10 ° C./min. .
  • the softening point (glass transition point) measured in accordance with the ring and ball method or the like is set to a value within a predetermined range as the temperature at which the amorphous part is dissolved. By prescribing, it is also possible to achieve a good balance between heat resistance and weldability in dielectric heat treatment. More specifically, the softening point of the component A can be measured according to JIS K 6863 (1994).
  • the melting point or softening point of the component A is less than 80 ° C., the heat resistance becomes insufficient, the use application is excessively limited, or the mechanical strength is significantly reduced. There is.
  • the melting point or softening point of the component A exceeds 200 ° C., it may take too much time for welding in the dielectric heat treatment, or the adhesive strength may become excessively low. Therefore, in the component A, the melting point or softening point of the first thermoplastic resin is more preferably set to a value within the range of 100 to 190 ° C., and further preferably set to a value within the range of 130 to 180 ° C.
  • the melting point or softening point of the dielectric heating adhesive film to be described later is also in the preferred range similar to the A component, but the melting point or softening point described above is intended for the A component only.
  • the average molecular weight (weight average molecular weight) of the component A is usually preferably in the range of 5000 to 300,000. This is because when the weight average molecular weight of the component A is less than 5000, the heat resistance and the adhesive strength may be significantly reduced. On the other hand, when the weight average molecular weight of the component A exceeds 300,000, the weldability when the dielectric heat treatment is performed may be significantly reduced. Therefore, the weight average molecular weight of the component A is more preferably in the range of 10,000 to 200,000, and further preferably in the range of 30,000 to 100,000.
  • the weight average molecular weight of the component A can be measured by, for example, an intrinsic viscosity method or a gel permeation chromatography method (GPC method) in accordance with JIS K 7367-3 (1999).
  • the melt flow rate (MFR) of the component A is also affected by the weight average molecular weight, but is usually within the range of 1 to 300 g / 10 min under the conditions of 230 ° C. and 2.16 kg load. It is preferable. That is, when the MFR is 1 g / 10 min or more, the heat resistance of the bonded portion is relatively improved. On the other hand, when the MFR is 300 g / 10 min or less, the adhesion time by dielectric heating can be shortened, and stable adhesion can be obtained. Therefore, the MFR is preferably 1 to 100 g / 10 min, and more preferably 1 to 50 g / 10 min. The MFR value can be measured under the conditions of 230 ° C. and 2.16 kg load according to JIS K 7210-1 (2014).
  • the type of the dielectric filler as the B component is not particularly limited as long as it is a high-frequency absorbing filler having a high dielectric loss factor that can generate heat when a high frequency such as a frequency of 28 MHz or 40 MHz is applied. Therefore, zinc oxide, silicon carbide (SiC), anatase type titanium oxide, barium titanate, barium zirconate titanate, lead titanate, potassium niobate, rutile type titanium oxide, hydrated aluminum silicate, alkali metal or alkaline earth.
  • SiC silicon carbide
  • anatase type titanium oxide barium titanate, barium zirconate titanate, lead titanate, potassium niobate
  • rutile type titanium oxide hydrated aluminum silicate
  • alkali metal or alkaline earth One kind alone or a combination of two or more kinds of inorganic substances having water of crystallization such as hydrated aluminosilicates of the similar metals are suitable.
  • the adhesive properties and mechanical properties of the dielectric adhesive film can be improved according to the application, and even a relatively small amount of heat can be generated.
  • Zinc oxide and silicon carbide are particularly preferable because of their rich nature.
  • the blending amount of the B component is preferably set to a value within the range of 5 to 800 parts by mass with respect to 100 parts by mass of the A component.
  • the reason for this is that if the blending amount of the B component is excessively reduced, even when dielectric heat treatment is performed, the exothermicity becomes poor, the meltability of the A component is excessively decreased, and strong adhesion is obtained. This is because it may not be possible.
  • the blending amount of the component B is excessively large, the fluidity of the dielectric heating adhesive film may be excessively lowered when the dielectric heating treatment is performed.
  • the blending amount of the B component is more preferably within a range of 30 to 600 parts by mass, and even more preferably within a range of 50 to 300 parts by mass with respect to 100 parts by mass of the A component. .
  • the average particle diameter (median diameter, D50) of the component B measured in accordance with JIS Z 8819-2 (2001) is set to a value within the range of 0.1 to 30 ⁇ m.
  • the reason for this is that when the average particle size is less than 0.1 ⁇ m, although depending on the type of filler, the distance that can be polarized inside the filler is reduced and the degree of polarization is reduced. Accordingly, the reversal motion when a high frequency is applied is lowered, so that the dielectric heating property is excessively lowered and it may be difficult to firmly adhere the adherends to each other.
  • the average particle diameter increases, the distance that can be polarized inside the filler increases, the degree of polarization increases, and the reversal motion when a high frequency is applied becomes intense, so that the dielectric heating property is improved.
  • the average particle diameter exceeds 30 ⁇ m, the distance to the surrounding dielectric filler is short, so that the reversal motion when applying a high frequency under the influence of the charge is reduced, and the dielectric heating property is excessively reduced, Alternatively, it may be difficult to firmly bond the adherends to each other.
  • the average particle size of the component B is more preferably set to a value in the range of 1 to 30 ⁇ m, more preferably a value in the range of 2 to 25 ⁇ m, and a value in the range of 3 to 20 ⁇ m. Is most preferred.
  • organics excluding tackifiers, plasticizers, waxes, colorants, antioxidants, UV absorbers, antibacterial agents, coupling agents, viscosity modifiers, dielectric fillers in dielectric heating adhesive films Or it is preferable to mix
  • Tackifiers and plasticizers can improve the melting and adhesion properties of the dielectric heating adhesive film.
  • the tackifier include rosin derivatives, polyterpene resins, aromatic modified terpene resins and hydrides thereof, terpene phenol resins, coumarone / indene resins, aliphatic petroleum resins, aromatic petroleum resins and hydrides thereof. Can be mentioned.
  • plasticizers include paraffinic process oils, naphthenic process oils, petroleum process oils such as aromatic process oils, natural oils such as castor oil and tall oil, dibutyl phthalate, dioctyl phthalate, Examples include low molecular weight liquid polymers such as dialkyl dibasic acid such as dibutyl adipate, liquid polybutene, or liquid polyisoprene. In that case, although it depends on the kind of additive and its compounding application, it is usually preferable to set the value within the range of 0.1 to 20% by mass of the total amount of the dielectric heating adhesive film. % Is more preferable, and a value within the range of 2 to 5% by mass is even more preferable.
  • the thickness of the dielectric heating adhesive film is usually preferably in the range of 10 to 2,000 ⁇ m. This is because when the thickness of the dielectric heating adhesive film reaches a value of 10 ⁇ m, the adhesive strength between the adherends may suddenly decrease. On the other hand, when the thickness of the dielectric heating adhesive film exceeds 2,000 ⁇ m, it may be difficult to wind it in a roll or to apply to a roll-to-roll method. is there. Therefore, although it depends on the use of the dielectric heating adhesive film, it is usually more preferable to set the thickness of the dielectric heating adhesive film to a value in the range of 100 to 1,000 ⁇ m, and a value in the range of 200 to 600 ⁇ m. More preferably.
  • Dielectric properties (tan ⁇ / ⁇ ′) Dielectric properties (tan ⁇ / ⁇ ′)
  • the dielectric loss tangent (tan ⁇ ) and dielectric constant ( ⁇ ′) as dielectric properties of the dielectric heating adhesive film can be measured in accordance with JIS C 2138: 2007. It can be measured accurately. That is, the dielectric property (tan ⁇ / ⁇ ′), which is a value obtained by dividing the dielectric loss tangent (tan ⁇ ) measured using an impedance material device by the dielectric constant ( ⁇ ′) measured in the same manner, is 0.005 or more. It is preferable to use a value.
  • the dielectric property of the dielectric heating adhesive film is more preferably set to a value within the range of 0.008 to 0.05, and further preferably set to a value within the range of 0.01 to 0.03.
  • the measuring method of the dielectric property of this dielectric heating adhesive film is explained in full detail in Example 1 mentioned later.
  • Total light transmittance Moreover, it is preferable to set it as a value of 1% or more as a total light transmittance of a dielectric heating adhesive film.
  • the reason for this is that when the total light transmittance (%) is less than 1%, when the thickness of the dielectric heating adhesive film becomes excessively thick, it is practically difficult to align it with a predetermined place by visual observation. This is because there are cases.
  • the upper limit value of the total light transmittance of the dielectric heating adhesive film is not particularly limited, but when the total light transmittance value is excessively large, the types of usable A component and B component are excessively limited. May be.
  • the total light transmittance of the dielectric heating adhesive film is more preferably set to a value within the range of 5 to 99%, and further preferably set to a value within the range of 10 to 95%. It is found that when a preferable polyolefin resin is used as the A component and a preferable dielectric filler is used as the B component, and a suitable blending ratio (about 100 parts by weight: 156 parts by weight), it is usually about 50%. ing. In addition, the measuring method of the total light transmittance (%) of the dielectric heating adhesive film will be described in detail in Example 1 described later.
  • the melting point or softening point of the dielectric heating adhesive film is set to a value within the range of 80 to 200 ° C. That is, as described above, similarly to the component A, the melting point or softening point of the dielectric heating adhesive film can be measured using a differential scanning calorimeter (DSC) or the like.
  • DSC differential scanning calorimeter
  • the melting point or softening point of the dielectric heating adhesive film exceeds 200 ° C., it may take excessive time for welding in the dielectric heating treatment, or the adhesive strength may decrease. Accordingly, the melting point or softening point of the dielectric heating adhesive film is more preferably set to a value within the range of 100 to 190 ° C., and further preferably set to a value within the range of 130 to 180 ° C.
  • the heat of fusion measured according to JIS K 7121 (1987) of the dielectric heating adhesive film is set to a value within the range of 1 to 80 J / g. This is because by defining the dielectric heating adhesive film to a value within a predetermined range, it is possible to achieve a good balance between the heat resistance in the usage environment and the weldability in the dielectric heating treatment. More specifically, when the amount of heat of fusion is less than 1 J / g, the heat resistance becomes insufficient, and the high-frequency adhesiveness and adhesive strength (tensile shear force), and further the heat-resistant creep resistance are significantly reduced. Sometimes.
  • the heat of fusion is more preferably in the range of 5 to 70 J / g, and even more preferably in the range of 10 to 60 J / g.
  • the heat of fusion due to the blending of additives and the like, for example, in the obtained DSC chart, there may be a plurality of melting peaks. In such a case, from the total amount of the plurality of melting peaks, the dielectric heating adhesive film The amount of heat of fusion can be calculated.
  • the storage elastic modulus (E ′) measured under the condition of a frequency of 10 Hz is a room temperature and a temperature of 80 ° C. Both are preferably in the range of 1 ⁇ 10 6 to 1 ⁇ 10 10 Pa. This is because when the storage elastic modulus becomes a value less than 1 ⁇ 10 6 Pa at room temperature or 80 ° C., tackiness appears on the surface of the dielectric heating adhesive film, and storage in a roll shape becomes difficult due to blocking. Because there is.
  • the dielectric heating adhesive film tends to become brittle, and unwinding from a roll or bonding to an adherend with high tension. This is because it may be difficult.
  • the second embodiment includes a thermoplastic resin as an A component and a dielectric filler as a B component in order to bond a pair of adherends made of the same material or different materials by dielectric heat treatment, and Satisfy the following conditions (i) to (ii) (I)
  • the melting point or softening point measured in accordance with the method specified in JIS K 7121 (1987) is a value within the range of 80 to 200 ° C.
  • the heat of fusion measured according to JIS K 7121 (1987) is a value within the range of 1 to 80 J / g.
  • Step of sandwiching a dielectric heating adhesive film between a pair of adherends (2) High frequency using a dielectric heating device with respect to the dielectric heating adhesive film sandwiched between a pair of adherends Step of performing dielectric heat treatment under conditions of output of 0.1 to 20 kW and high frequency application time of less than 1 to 40 seconds
  • the method for bonding a dielectric heating adhesive film in the second embodiment is different from that in the first embodiment. The explanation will focus on the points.
  • Step (1) is a step of placing the dielectric heating adhesive film at a predetermined location, and is a step of sandwiching the dielectric heating adhesive film between a plurality of adherends made of the same or different materials. At that time, it is usually preferable to cut the dielectric heating adhesive film into a predetermined shape and sandwich it between a plurality of adherends. Furthermore, in order to arrange the dielectric heating adhesive film at an accurate position so as not to be displaced, one or both sides of the dielectric heating adhesive film may be provided with an adhesive portion on the entire surface or partially. Furthermore, it is also preferable to provide a temporary fixing hole, a protrusion, or the like in a part of the dielectric heating adhesive film.
  • Organic, inorganic, metal, etc. materials may be sufficient, and those composite materials may be sufficient.
  • organic materials include polypropylene resin, polyethylene resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polycarbonate resin, polyamide resin such as nylon 6 and nylon 66, polybutylene terephthalate resin (PBT resin), polyacetal resin ( POM resin), plastic materials such as polymethyl methacrylate resin and polystyrene resin, and rubber materials such as styrene-butadiene rubber (SBR), ethylene propylene rubber (EPR), and silicone rubber.
  • the inorganic material include glass.
  • FRP fiber reinforced resin
  • Step (2) In the step (2), as shown in FIG. 1, for example, a high frequency output of 0.1 to 20 kW is applied to a dielectric heating adhesive film sandwiched between adherends using a dielectric heating device. In this process, the dielectric heat treatment is performed under a condition of time 1 second or more and less than 40 seconds.
  • the dielectric heating bonding apparatus used in the step (2) and the dielectric heating conditions will be described.
  • the dielectric heating bonding device 10 has a dielectric heating bonding film 13 sandwiched between a first adherend 12 and a second adherend 14, as shown in FIG. It is an apparatus used for bonding the first adherend 12 and the second adherend 14 by pressurizing the first high-frequency applying electrode 16 and the second high-frequency applying electrode 18 while performing dielectric heating treatment.
  • the dielectric heating and bonding apparatus 10 includes a high frequency power source for applying a high frequency of, for example, a frequency of about 28 MHz or 40 MHz to each of the first high frequency application electrode 16 and the second high frequency application electrode 18 that are arranged to face each other. 20 is provided.
  • a dielectric heating adhesive film that is, a dielectric heating uniformly dispersed in the dielectric heating adhesive film in the overlapping portion of the first adherend and the second adherend.
  • the medium absorbs high frequency energy.
  • the dielectric heating medium functions as a heat source, and the heat generation melts the olefin resin that is the main component of the dielectric heating adhesive film, and finally the first adherend and the second adherend. Can be glued. Therefore, as shown in FIG. 1, pressure in the compression direction of the first high-frequency application electrode 16 and the second high-frequency application electrode 18, which are also used as a pressing device, is taken into account, and the dielectric heating adhesive film 13 is heated and melted. The first adherend 12 and the second adherend 14 can be firmly bonded.
  • the dielectric heating and bonding conditions can be changed as appropriate.
  • the high frequency output is preferably in the range of 0.1 to 20 kW, preferably in the range of 0.2 to 10 kW. Is more preferable, and a value within the range of 0.2 to 5 kW is even more preferable.
  • the application time of the high frequency is also preferably a value within a range of 1 to less than 40 seconds, more preferably a value within a range of 5 to 30 seconds, and a value within a range of 10 to 20 seconds. More preferably.
  • the high frequency is preferably set to a value within the range of 1 to 100 MHz, more preferably set to a value within the range of 5 to 80 MHz, and further preferably set to a value within the range of 10 to 50 MHz.
  • the industrial frequency bands 13.56 MHz, 27.12 MHz and 40.68 MHZ allocated by the International Telecommunications Union are also used for the dielectric heating bonding method of the present embodiment.
  • Example 1 Production of Dielectric Heating Adhesive Film Random Polypropylene Resin (Prime Polymer Co., Prime Polypro N-744NP, Melting Point: 130 ° C., Described as A1-1 in Table 1) as Component A and B Component 156 parts by mass of zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., LPZINC11, average particle size: 11 ⁇ m, described as B1 in Table 1) was weighed in each container.
  • the melt-kneaded product was extruded and cooled to room temperature, whereby the dielectric heating adhesive film of Example 1 was obtained.
  • 2A and 2B show the surface and cross-sectional state of the dielectric heating adhesive film as photographs (magnification 150 times), respectively.
  • Dielectric properties (tan ⁇ / ⁇ ′) About the dielectric heating adhesive film cut
  • the dielectric heating adhesive film cut to a predetermined size is compliant with JIS K 7361-1 (1997), using a Nippon Denshoku Industries Co., Ltd. Hazemeter NDH5000 as a D65 light source. The transmittance was measured.
  • a dielectric heating adhesive film (adhesive film) cut to a predetermined size is sandwiched between two glass fiber reinforced polypropylene plates (25 cm ⁇ 10 cm ⁇ 1.5 mm) as adherends. It was. Next, a high frequency is applied for a predetermined time under a condition of a frequency of 40 MHz and an output of 200 W in a state of being fixed between electrodes of a high frequency dielectric heating device (YRP-400TA manufactured by Yamamoto Vinita Co., Ltd.), and an adhesive film and an adherend. A test piece formed by adhering was prepared. About the obtained test piece, the high frequency adhesiveness was evaluated on the following references
  • A The adherends adhered to each other with an adhesive film by applying a high frequency for less than 10 seconds.
  • The adherends adhered to each other with an adhesive film by applying a high frequency of 10 seconds to less than 40 seconds.
  • The adherends adhered to each other with an adhesive film by applying a high frequency of 40 seconds to less than 60 seconds.
  • X Even when a high frequency was applied for 60 seconds, the adherends were not adhered to each other by the adhesive film.
  • Heat-resistant creep test (6) A weight of 100 g was attached to the end of the test piece obtained by the evaluation of high-frequency adhesion, and the sample was suspended in an oven at 80 ° C. and allowed to stand for 24 hours. Finally, after removing the test piece from the oven and returning to room temperature, the heat-resistant creep test was evaluated according to the following criteria. A: Adhesion was maintained even after 24 hours. ⁇ : Adhered until 12 hours, but the weight had dropped off after 24 hours. ⁇ : The weight had fallen off within 12 hours. X: In the evaluation of high-frequency adhesiveness, it was not possible to perform adhesion, or the adhesion state could not be maintained until the test was performed, and the adherend had fallen off, so the heat-resistant creep test could not be performed.
  • Example 2 In Example 2, the type of component A was changed to an olefinic thermoplastic elastomer (manufactured by Sumitomo Chemical Co., Ltd., Espolex TPE-4675, melting point: 160 ° C., described as A-2 in Table 1). A dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that.
  • Example 3 In Example 3, the type of component A was changed to a styrene thermoplastic elastomer (manufactured by Sumitomo Chemical Co., Ltd., Espolex SB-2400, melting point: 162 ° C., described as A-3 in Table 1). A dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that.
  • Example 4 the type of component A was 70 parts by weight of A-1 used in Example 1, maleic anhydride-modified polypropylene (manufactured by Sanyo Chemical Industries, Ltd., Umex 1001, melting point: 142 ° C., table A dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that it was combined with 30 parts by mass.
  • Example 5 the type of component A is described as an ethylene- (meth) acrylic acid copolymer (manufactured by Mitsui DuPont Polychemical Co., Ltd., Nucrel 410, melting point: 98 ° C., A-1 in Table 1. ) A dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that the above was changed.
  • Example 6 the type of component B was 156 parts by mass of zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., LPZINC2, average particle size: 2 ⁇ m, specific gravity: 5.6, in Table 1, B-2).
  • a dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that.
  • Example 7 the type of component B is silicon carbide (produced by Taiheiyo Random Co., Ltd., GMF15, average particle size: 0.5 ⁇ m, specific gravity: 5.6, described as B-3 in Table 1).
  • a dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that the amount was 156 parts by mass.
  • Example 8 the type of component A is described as crystalline polyester resin (manufactured by Toyobo Co., Ltd., Byron GM-915, melting point: 139 ° C., weight average molecular weight: 45000, A-1 in Table 1. )
  • the dielectric heating adhesive film was changed to 100 parts by mass, and the dielectric heating adhesive film was the same as in Example 1 except that the adherend was a combination of glass fiber reinforced polypropylene plate / ABS plate (each 15 cm ⁇ 10 cm ⁇ 1.5 mm). Was created and evaluated.
  • Example 9 the type of component A is described as crystalline polyester resin (manufactured by Toyobo Co., Ltd., Byron GM-920, melting point: 107 ° C., weight average molecular weight: 30000, A-7 in Table 1. )
  • the type of component B is described as zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd., average particle size: 0.4 ⁇ m, specific gravity: 5.6, B-4 in Table 1). .) 156 parts by mass, and further, a dielectric heating adhesive film as in Example 1 except that the adherend was a combination of glass fiber reinforced polypropylene plate / ABS plate (15 cm ⁇ 10 cm ⁇ 1.5 mm each). Was created and evaluated.
  • Example 10 In Example 10, a dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that the amount of B-1 used in Example 1 was 267 parts by mass.
  • Example 11 In Example 11, a dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that the amount of B-1 used in Example 1 was 67 parts by mass.
  • Comparative Example 1 In Comparative Example 1, the type of component A was homopolypropylene (Nippon Polypro Co., Ltd., Novatec PPMH4, melting point: 165 ° C., MFR: 5 g / 10 min, described as A-8 in Table 1) 100 A dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that the type of component B zinc oxide was changed to B4 and 156 parts by mass used in Example 9, while changing to parts by mass.
  • Comparative Example 2 In Comparative Example 2, a dielectric heating adhesive film was prepared and evaluated in the same manner as in Example 1 except that 100 parts by mass of A1 random polypropylene used in Example 1 was used, and B component was not blended. did.
  • Comparative Example 3 In Comparative Example 3, the type of component A was an ethylene / ⁇ -olefin copolymer (manufactured by Sumitomo Chemical Co., Ltd., Exelen FX352, melting point: 70 ° C., MFR: 4 g / 10 minutes, Table 1: A1-9 In addition to changing to 100 parts by mass and changing the type of component B zinc oxide to B4 and 156 parts by mass used in Example 9, a dielectric heating adhesive film was prepared in the same manner as in Example 1. Created and evaluated.
  • ethylene / ⁇ -olefin copolymer manufactured by Sumitomo Chemical Co., Ltd., Exelen FX352, melting point: 70 ° C.
  • MFR 4 g / 10 minutes
  • Table 1 A1-9
  • a dielectric heating adhesive film was prepared in the same manner as in Example 1. Created and evaluated.
  • various adherends have a predetermined melting point or softening point, and control the amount of heat of fusion to a value within a predetermined range, even in a short period of dielectric heating treatment.
  • a strong adhesive force can be obtained.
  • prescribed transparency total light transmittance
  • the dielectric heating adhesive film and the like of the present invention since the physical properties such as the thickness and storage modulus of the adhesive film can be appropriately controlled, it can be applied to a roll-to-roll method, and punching or the like Thus, the dielectric heating adhesive film can be processed into an arbitrary area and shape in accordance with the bonding area and shape between the plurality of adherends, and it can be said that there are great manufacturing advantages.
  • High-frequency dielectric heating device 12 First adherend 13: Dielectric heating adhesive film 14: Second adherend 16: First high-frequency application electrode (also used as a press device) 18: Second high-frequency application electrode (also used as pressing device) 20: High frequency power supply

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

短時間の誘電加熱処理であっても、強固な接着を実現できる誘電加熱接着フィルム及びそれを用いた接着方法を提供する。 誘電加熱処理によって、同一材料若しくは異なる材料からなる一対の被着体を接着するための誘電加熱接着フィルム等であって、A成分としての熱可塑性樹脂、及びB成分としての誘電フィラーを含有し、かつ、下記(i)~(ii)の条件を満足する。 (i)JIS K 7121(1987)に規定の方法に従って測定した融点または軟化点が80~200℃の範囲内の値である。 (ii)JIS K 7121(1987)に準じて測定した融解熱量が1~80J/gの範囲内の値である。

Description

誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接着方法
 本発明は、誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接着方法に関する。
 特に、異種の被着体に用いられ、誘電加熱処理(高周波誘電加熱処理と称する場合もある。)によって、比較的短時間であっても、強固な接着力が得られる誘電加熱接着フィルム、及びそのような誘電加熱接着フィルムを用いてなる接着方法(単に、接合方法と称する場合もある。)に関する。
 近年、一般的に困難な、複数の被着体の接着方法として、例えば、所定樹脂中に、発熱材料を配合してなる接着剤を介在させ、誘電加熱処理、誘導加熱処理、超音波溶着処理、あるいは、レーザー溶着処理等の接着方法を実施する旨が提案されている。
 ここで、誘電加熱処理としては、接着剤中に、カーボンブラック(CB)や炭化ケイ素(SiC)等を混合し、それを複数の被着体の間に介在させて、周波数28又は40MHzの誘電加熱処理、若しくはマイクロ波加熱処理を施すことによって、複数の被着体を接着させる接着方法が提案されている(特許文献1及び2参照)。
 また、他の誘電加熱処理としては、ポリオレフィン系樹脂に、強誘電体と炭素化合物、或いは導電物質等を混合し、誘電正接(tanδ)が0.03以上の接着剤を作成し、それを複数の被着体の間に介在させて、周波数40MHzの誘電加熱処理によって、複数の被着体を接着させる接着方法が提案されている(特許文献3及び4参照)。
 また、接着する複数の被着体(母材)に対して、親和性を有する接着剤に、誘電加熱媒体を充填してなる、誘電加熱用の接着剤組成物であって、比誘電率をε’、誘電正接をtanδとし、接着しようとする母材の合計厚さをd(mm)としたとき、係数Cを78~85の範囲として、かつ、C×{(tanδ)/ε’}1/2≧dを満たす、誘電加熱性の接着層組成物が提案されている(特許文献5参照)。
 さらにまた、難接着基材に対して、優れた接着性を示すことを目的として、加熱接着用の変性ポリオレフィン系樹脂組成物およびそのシートが提案されている(特許文献6参照)。
 より具体的には、(a)ポリオレフィン系樹脂に、(b)エポキシ基含有ビニル単量体と、(c)芳香族ビニル単量体と、(d)(メタ)アクリル酸単量体を、グラフト反応させてなる樹脂組成物であって、融解熱量を1~100J/gの範囲とし、融点を80~190℃の範囲とすることを特徴とした変性ポリオレフィン系樹脂組成物等である。
特開2010-6908号公報(特許請求の範囲等) 特開2008-156510号公報(特許請求の範囲等) 特開2003-238745号公報(特許請求の範囲等) 特開2003-193009号公報(特許請求の範囲等) 特開2014-37489号公報(特許請求の範囲等) 特開2009-126922号公報(特許請求の範囲等)
 しかしながら、特許文献1及び特許文献2に開示された誘電加熱処理によると、それぞれ接着剤中に、カーボンブラック(CB)のような導電性材料を、相当量充填して、接着層組成物が構成してあることから、誘電加熱処理した際に、電気絶縁破壊を起こし、接着部や被着体同士の炭化が生じやすいという問題が見られた。
 その上、得られる接着層組成物が、完全不透明な黒色(可視光透過率:0%)であって、被着体同士を上下方向において位置合わせすることが困難であった。
 そのため、正確な位置に誘電加熱処理を施したり、正しい位置を接着したりするのが困難であるという問題が見られた。
 また、特許文献3及び特許文献4に開示されている誘電加熱処理によると、それぞれ接着用樹脂組成物に対して、金属や炭化化合物等の導電物質を相当量添加してあることから、誘電加熱処理した際に、同じく電気絶縁破壊を起こしやすいという問題が見られた。
 その上、得られる接着用樹脂組成物が、完全不透明(可視光透過率:0%)であって、複数の被着体同士を上下方向において位置合わせすることが困難であった。
 そのため、正確な位置に誘電加熱処理を施すことが困難であるという問題が見られた。
 また、特許文献5に開示されている誘電加熱用の接着層組成物によると、接着する母材の合計厚さが接着性に影響することから、使用可能な被着体の種類が、過度に制限されやすいという問題が見られた。
 しかも、十分な接着強度を得るため、少なくとも40~70秒間の誘電加熱処理が必要であって、実使用上、処理時間が長く、経済的に不利益であるという問題があった。
 その上、特許文献1~5に開示された、いずれの誘電加熱用の接着層組成物において、接着剤成分の融解熱量(融解エンタルピー)の値に着目し、それを制御することによって、誘電加熱用接着剤の高周波接着性や引張せん断力、さらには、耐熱クリープ性を制御しようとする態様につき、何ら記載も、示唆もなされていなかった。
 ましてや、接着剤成分の融解熱量を所定範囲内の値に制御することによって、短時間の誘電加熱処理であっても、十分な接着力が得られる旨の効果は何ら見出されていなかった。
 一方、特許文献6に開示された変性ポリオレフィン系樹脂組成物等は、融解熱量や融点を所定範囲内の値とする旨を規定しているものの、誘電フィラーを含むことについては、何ら記載も、示唆もなく、誘電加熱接着フィルムの用途には使用できないという、根本的な問題があった。
 その上、開示された変性ポリオレフィン系樹脂組成物等は、主成分が、所定のグラフトポリオレフィン系樹脂であって、極めて高価であって、経済的に不利であるという問題も見られた。
 そこで、本発明者らは、従来の問題を鋭意検討した結果、誘電加熱接着フィルムに用いられる熱可塑性樹脂の融解熱量を所定範囲内の値に制御することによって、例えば、40秒未満の誘電加熱処理によっても良好な接着性が得られ、かつ、比較的幅広い範囲の粒径の誘電フィラーを使用できることを見出し、本発明を完成させたものである。
 すなわち、本発明は、各種被着体に適用でき、短時間の誘電加熱処理によっても良好な接着性が得られ、かつ、比較的幅広い範囲の平均粒径を有する誘電フィラーを使用することができる、所定の誘電加熱接着フィルム、及び所定の誘電加熱接着フィルムを用いた接着方法を提供することを目的とする。
 本願発明によれば、誘電加熱処理によって、同一材料若しくは異なる材料からなる一対の被着体を接着するための誘電加熱接着フィルムであって、
 A成分としての熱可塑性樹脂、及びB成分としての誘電フィラーを含有し、
 かつ、下記(i)~(ii)の条件を満足することを特徴とする誘電加熱接着フィルムである。
(i)JIS K 7121(1987)に規定の方法に従って測定した融点または軟化点が80~200℃の範囲内の値である。
(ii)JIS K 7121(1987)に準じて測定した融解熱量が1~80J/gの範囲内の値である。
 すなわち、少なくとも、所定の融点等と、融解熱量とを有する誘電加熱接着フィルムであれば、各種被着体に適用でき、かつ、短時間の誘電加熱処理によっても、良好な接着性を得ることができる。
 また、誘電加熱接着フィルムの状態で、所定の融点又は軟化点を有することにより、使用環境等における耐熱性(耐熱クリープ性を含む)と、誘電加熱処理における溶着性との間で、良好なバランスを図ることができる。
 また、本願発明の誘電加熱接着フィルムを構成するにあたり、23℃における周波数40MHzの条件下に測定される、誘電正接(tanδ)を誘電率(ε’)で除した誘電特性(tanδ/ε’)が0.005以上の値であることが好ましい。
 このように、誘電加熱接着フィルムにおける誘電特性の値を制御することによって、誘電加熱処理における良好な溶着性を定量的に確保し、ひいては、一対の被着体の間で、強固な接着力を得ることができる。
 また、本願発明の誘電加熱接着フィルムを構成するにあたり、A成分100質量部に対して、B成分の配合量を5~800質量部の範囲内の値とすることが好ましい。
 このように、かかるA成分に対する、B成分の配合量比であれば、誘電加熱接着フィルムとしての所定の取り扱い性を向上させることができるとともに、短時間の誘電加熱処理によっても、良好な接着性を確実に得ることができる。
 また、本願発明の誘電加熱接着フィルムを構成するにあたり、A成分は、ポリオレフィン系樹脂、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリアミド樹脂、ポリ酢酸ビニル樹脂、ポリアセタール樹脂、およびポリエステル系樹脂からなる群から選択される少なくとも一つの熱可塑性樹脂であることが好ましい。
 このような熱可塑性樹脂を用いることによって、短時間の誘電加熱処理によっても、均一かつ迅速に溶解し、被着体が難接着性のポリプロピレン樹脂やポリエステル樹脂等から構成されていたとしても、良好な接着性を確実に得ることができる。
 また、本願発明の誘電加熱接着フィルムを構成するにあたり、B成分が、酸化亜鉛であることが好ましい。
 このように、B成分が、酸化亜鉛であれば、接着剤成分であるA成分中への比較的少量の配合であっても、誘電加熱処理において、所定の発熱効果を発揮することができる。
 その上、酸化亜鉛であれば、接着剤成分である、A成分中への均一分散が可能になって、誘電加熱接着フィルムの透明性と、誘電加熱処理における溶着性との間で、良好なバランスを図ることができる。
 また、本願発明の誘電加熱接着フィルムを構成するにあたり、JIS Z 8819-2(2001)に準拠して測定されるB成分の平均粒子径を0.1~30μmの範囲内の値とすることが好ましい。
 このようにB成分の平均粒子径を所定範囲に制御することによって、フィラー内部で分極できる距離が大きくなるため分極の度合いが大きくなり、高周波印加した際の反転運動が激しくなるため、誘電加熱性を向上させることができる。
 本発明の別の態様は、誘電加熱処理によって、同一材料若しくは異なる材料からなる一対の被着体を接着するため、A成分としての熱可塑性樹脂、及びB成分としての誘電フィラーを含有する誘電加熱接着フィルムを用いた接着方法であって、誘電加熱接着フィルムが、下記(i)~(ii)の条件を満足し、
(i)JIS K 7121(1987)に規定の方法に従って測定した融点または軟化点が80~200℃の範囲内の値である。
(ii)JIS K 7121(1987)に準じて測定した融解熱量が1~80J/gの範囲内の値である。
 かつ、下記工程(1)および(2)を順次に含むことを特徴とする誘電加熱接着フィルムを用いた接着方法である。
(1)一対の被着体の間に、誘電加熱接着フィルムを挟持する工程
(2)一対の被着体の間に挟持した、誘電加熱接着フィルムに対して、誘電加熱装置を用いて、高周波出力0.1~20kW、及び高周波印加時間1~40秒未満の条件で、誘電加熱処理を行う工程
 すなわち、このような誘電加熱接着フィルムを用いた接着方法であれば、各種被着体に適用でき、かつ、短時間の誘電加熱処理によっても、良好な接着性を得ることができる。
 本発明の誘電加熱接着フィルムを用いた接着方法を実施するに際して、誘電加熱接着フィルムが、上記(i)~(ii)の条件のみならず、下記(iii)の条件も満足することが好ましい。
(iii)23℃における周波数40MHzの条件下、誘電正接であるtanδを誘電率であるε’で除した誘電特性(tanδ/ε’)が0.005以上の値である。
 すなわち、このような誘電加熱接着フィルムを用いた接着方法であれば、各種被着体に適用でき、かつ、短時間の誘電加熱処理によっても、良好な接着性や耐熱クリープ特性等を得ることができる。
図1は、誘電加熱装置を用いてなる、誘電加熱処理を説明するための図である。 図2(a)~(b)は、本発明の誘電加熱接着フィルムの表面および断面状態を説明するための図(写真、倍率:150倍)である。
[第1の実施形態]
 第1の実施形態における誘電加熱接着フィルムは、誘電加熱処理によって、同一材料若しくは異なる材料からなる一対の被着体を接着するための誘電加熱接着フィルムであって、
 A成分としての熱可塑性樹脂、及びB成分としての誘電フィラーを含有し、
 かつ、下記(i)~(ii)の条件を満足することを特徴とする誘電加熱接着フィルムである。
(i)JIS K 7121(1987)に規定の方法に従って測定した、融点または軟化点が80~200℃の範囲内の値である。
(ii)JIS K 7121(1987)に準じて測定した融解熱量が1~80J/gの範囲内の値である。
 以下、第1の実施形態における誘電加熱接着フィルムの配合成分や形態等につき、具体的に説明する。
1.誘電加熱接着フィルムの配合成分
(1)A成分
(種類)
 A成分としての熱可塑性樹脂の種類については、特に制限されるものではないが、例えば、融解しやすいとともに、所定の耐熱性を有すること等から、ポリオレフィン系樹脂、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリアミド樹脂、ポリ酢酸ビニル樹脂、ポリアセタール樹脂、ポリカーボネート系樹脂、ポリアクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリ酢酸ビニル系樹脂、フェノキシ系樹脂およびポリエステル系樹脂の少なくとも一つとすることが好ましい。
 より具体的には、ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等のホモポリマーからなる樹脂、及びエチレン、プロピレン、ブテン、ヘキセン、オクテン、4-メチルペンテン等の共重合体からなるα‐オレフィン樹脂等の一種単独または二種以上の組み合わせが挙げられる。
 そして、ポリオレフィン樹脂の中においても、ポリプロピレン樹脂であれば、融点または軟化点の調整が容易であって、かつ、安価であるばかりか、機械的強度や透明性に優れていることから、特に好ましいと言える。
 なお、本願発明に用いるポリプロピレン系樹脂の場合、その誘電率(ε/1MHz)を2.2~2.6の範囲内の値とし、誘電力率(tanδ/1MHz)を0.0005~0.0018の範囲内の値とし、さらには、損失係数を0.0047程度とすることが好ましい。
 また、本願発明に用いる結晶性ポリエステル樹脂の場合、その誘電率(ε/1MHz)を2.8~4.1の範囲内の値とし、誘電力率(tanδ/1MHz)を0.005~0.026の範囲内の値とし、さらには、損失係数を0.0168~0.11の範囲内の値とすることが好ましい。
(融点又は軟化点)
 また、A成分の融点又は軟化点を80~200℃の範囲内の値とすることが好ましい。
 すなわち、A成分が、結晶性樹脂の場合、結晶部分が溶解する温度として、示差走査熱量計(DSC)等で測定される融点を所定範囲内の値に規定することにより、使用環境等における耐熱性と、誘電加熱処理における溶着性との間の良好なバランスを図ることができる。
 より具体的には、示差走査熱量計を用いて、測定試料(第1の熱可塑性樹脂)10mgを、250℃まで昇温した後、25℃まで10℃/分の降温速度で冷却して結晶化させ、再度10℃/分の昇温速度で加熱して、融解させた際に、DSCチャート(融解曲線)上で観察される融解ピークのピーク温度を、測定試料の融点とすることができる。
 また、A成分が、非結晶性(アモルファス性)樹脂の場合、非晶部分が溶解する温度として、環球法等に準拠して測定される軟化点(ガラス転移点)を所定範囲内の値に規定することによって、こちらも耐熱性と、誘電加熱処理における溶着性との間の良好なバランスを図ることができる。
 より具体的には、JIS K 6863(1994)に準拠して、A成分の軟化点を測定することができる。
 いずれにしても、A成分の融点又は軟化点が、80℃未満の値になると、耐熱性が不十分となって、使用用途が過度に制限されたり、機械的強度が著しく低下したりする場合がある。
 一方、A成分の融点又は軟化点が、200℃を超えた値になると、誘電加熱処理における溶着に過度に時間がかかったり、接着力が過度に低くなったりする場合がある。
 したがって、A成分において、第1の熱可塑性樹脂の融点又は軟化点を100~190℃の範囲内の値とすることがより好ましく、130~180℃の範囲内の値とすることがさらに好ましい。
 その他、後述する誘電加熱接着フィルムにおける融点または軟化点についても、A成分と同様の好適範囲であるが、あくまで、上述した融点または軟化点は、A成分を対象としたものである。
(平均分子量)
 また、A成分の平均分子量(重量平均分子量)は、通常、5000~30万の範囲内の値とすることが好ましい。
 この理由は、A成分の重量平均分子量が、5000未満の値になると、耐熱性や接着強度が著しく低下する場合があるためである。
 一方、A成分の重量平均分子量が30万を超えた値になると、誘電加熱処理を実施した際の溶着性等が著しく低下する場合があるためである。
 したがって、A成分の重量平均分子量を1万~20万の範囲内の値とすることがより好ましく、3万~10万の範囲内の値とすることがさらに好ましい。
 なお、A成分の重量平均分子量は、例えば、JIS K 7367-3(1999)に準拠して、極限粘度法や、あるいは、ゲルパーミエーションクロマトグラフィ法(GPC法)により測定することができる。
(メルトフローレート)
 また、A成分のメルトフローレート(MFR)は、重量平均分子量にも影響されるが、通常、230℃、2.16kg荷重の条件下で、通常1~300g/10minの範囲内の値とすることが好ましい。
 すなわち、かかるMFRが1g/10min以上であれば、接着部の耐熱性が、相対的に向上するためである。
 一方、かかるMFRが300g/10min以下であることで、誘電加熱による接着時間を短くすることが可能となり、安定した接着性を得ることができるためである。
 したがって、かかるMFRを1~100g/10minとすることが好ましく、1~50g/10minとすることがさらに好ましい。
 なお、かかるMFRの値は、JIS K 7210-1(2014)に準拠し、230℃、2.16kg荷重の条件下で測定することができる。
(2)B成分
(種類)
 B成分としての誘電フィラーの種類は、例えば、周波数28MHz又は40MHz等の高周波の印加により、発熱可能な高誘電損率を有する高周波吸収性充填剤であれば特に制限されるものではない。
 したがって、酸化亜鉛、炭化ケイ素(SiC)、アナターゼ型酸化チタン、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸鉛、ニオブ酸カリウム、ルチル型酸化チタン、水和ケイ酸アルミニウム、アルカリ金属又はアルカリ土類金属の水和アルミノケイ酸塩等の結晶水を有する無機物質等の一種単独又は二種以上の組み合わせが好適である。
 これらの中でも、種類が豊富で、さまざまな形状、サイズから選択ができ、誘電接着フィルムの接着特性や機械特性を用途に合わせて改良することができるとともに、比較的少量の配合であっても発熱性に富んでいることから、酸化亜鉛や炭化ケイ素が特に好ましい。
(配合量)
 また、A成分100質量部に対して、B成分の配合量を5~800質量部の範囲内の値とすることが好ましい。
 この理由は、B成分の配合量が過度に少なくなると、誘電加熱処理をした場合であっても、発熱性に乏しくなって、A成分の溶融性が過度に低下して、強固な接着が得られない場合があるためである。
 一方、B成分の配合量が過度に多くなると、誘電加熱処理をした際の誘電加熱接着フィルムの流動性が、過度に低下する場合があるためである。
 したがって、A成分100質量部に対して、B成分の配合量を30~600質量部の範囲内の値とすることがより好ましく、50~300質量部の範囲内の値とすることがさらに好ましい。
(平均粒子径)
 また、JIS Z 8819-2(2001)に準拠して測定されるB成分の平均粒子径(メディアン径、D50)を0.1~30μmの範囲内の値とすることが好ましい。
 この理由は、かかる平均粒子径が0.1μm未満になると、フィラーの種類にもよるが、フィラー内部で分極できる距離が小さくなるため分極の度合いが小さくなるためである。したがって、高周波印加した際の反転運動が低下するため、誘電加熱性が過度に低下し、被着体同士の強固な接着が困難となったりする場合がある。
 一方、平均粒子径が増大するにつれて、フィラー内部で分極できる距離が大きくなるため分極の度合いが大きくなり、高周波印加した際の反転運動が激しくなるため、誘電加熱性が向上する。
 しかしながら、平均粒子径が30μmを超えると、周囲の誘電フィラーとの距離が短いため、その電荷の影響を受けて高周波印加した際の反転運動が低下し、誘電加熱性が過度に低下したり、あるいは、被着体同士の強固な接着が困難となったりする場合がある。
 したがって、B成分の平均粒子径を1~30μmの範囲内の値とすることがより好ましく、2~25μmの範囲内の値とすることがさらに好ましく、3~20μmの範囲内の値とすることが最も好ましい。
(3)添加剤
 また、誘電加熱接着フィルム中に、粘着付与剤、可塑剤、ワックス、着色剤、酸化防止剤、紫外線吸収剤、抗菌剤、カップリング剤、粘度調整剤、誘電フィラーを除く有機又は無機の充填剤等の少なくとも一つの各種添加剤を配合することが好ましい。
 粘着付与剤や可塑剤は、誘電加熱接着フィルムの溶融特性や接着特性を改良することができる。粘着付与剤としては、例えば、ロジン誘導体、ポリテルペン樹脂、芳香族変性テルペン樹脂及びその水素化物、テルペンフェノール樹脂、クマロン・インデン樹脂、脂肪族系石油系樹脂、芳香族系石油樹脂及びその水素化物が挙げられる。
 また、可塑剤としては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、あるいは芳香族系プロセルスオイルなどの石油系プロセスオイル、ひまし油あるいはトール油などの天然油、フタル酸ジブチル、フタル酸ジオクチルあるいはアジピン酸ジブチルなどの二塩基酸ジアルキル、液状ポリブテンあるいは液状ポリイソプレンなどの低分子量液状ポリマーが例示される。
 その場合、添加剤の種類やその配合用途等にもよるが、通常、誘電加熱接着フィルムの全体量の、0.1~20質量%の範囲内の値とすることが好ましく、1~10質量%の範囲内の値とすることがより好ましく、2~5質量%の範囲内の値とすることがさらに好ましい。
2.誘電加熱接着フィルム
(1)厚さ
 また、誘電加熱接着フィルムの厚さを、通常、10~2,000μmの範囲内の値とすることが好ましい。
 この理由は、誘電加熱接着フィルムの厚さが10μmの値になると、被着体同士の接着強度が急激に低下する場合があるためである。
 一方、誘電加熱接着フィルムの厚さが2,000μmを超えた値になると、ロール状に巻いたり、さらには、ロール・ツー・ロール方式に適用したりすることが困難となる場合があるためである。
 したがって、誘電加熱接着フィルムの用途等にもよるが、通常、誘電加熱接着フィルムの厚さを、100~1,000μmの範囲内の値とすることがより好ましく、200~600μmの範囲内の値とすることがさらに好ましい。
(2)誘電特性(tanδ/ε’)
 また、誘電加熱接着フィルムの誘電特性としての誘電正接(tanδ)や誘電率(ε’)に関し、JIS C 2138:2007に準拠して測定することもできるが、インピーダンスマテリアル法に準じて、簡便かつ正確に測定することができる。
 すなわち、インピーダンスマテリアル装置等を用いて測定される誘電正接(tanδ)を、同様に測定される誘電率(ε’)で除した値である誘電特性(tanδ/ε’)を0.005以上の値とすることが好ましい。
 この理由は、かかる誘電特性が0.005未満になると、A成分の種類等にかかわらず、誘電加熱処理をした場合であっても、所定の発熱をせず、被着体同士を強固に接着することが困難となる場合があるためである。
 但し、誘電特性の値が、過度に大きくなると、使用可能なA成分の種類や誘電フィラーの種類が過度に制限されたり、全光線透過率が急激に低下したりする場合がある。
 したがって、誘電加熱接着フィルムの誘電特性を0.008~0.05の範囲内の値とすることがより好ましく、0.01~0.03の範囲内の値とすることがさらに好ましい。
 なお、かかる誘電加熱接着フィルムの誘電特性の測定方法は、後述する実施例1において詳述する。
(3)全光線透過率
 また、誘電加熱接着フィルムの全光線透過率として、1%以上の値とすることが好ましい。
 この理由は、かかる全光線透過率(%)が1%未満になると、誘電加熱接着フィルムの厚さが過度に厚くなった場合に、目視による所定場所への位置合わせが事実上、困難となる場合があるためである。
 但し、誘電加熱接着フィルムの全光線透過率の上限値については、特に制限はないが、かかる全光線透過率の値が過度に大きくなると、使用可能なA成分やB成分の種類が過度に制限される場合がある。
 したがって、誘電加熱接着フィルムの全光線透過率を5~99%の範囲内の値とすることがより好ましく、10~95%の範囲内の値とすることがさらに好ましい。
 なお、A成分として、好ましいポリオレフィン樹脂と、B成分として、好ましい誘電フィラーを用いるとともに、好適な配合比率(約100重量部:156重量部)とすると、通常、50%程度となることが判明している。
 その他、誘電加熱接着フィルムの全光線透過率(%)の測定方法は、後述する実施例1において詳述する。
(4)融点または軟化点
 また、誘電加熱接着フィルムとしての融点又は軟化点を80~200℃の範囲内の値とする。
 すなわち、上述したように、A成分と同様に、誘電加熱接着フィルムの融点又は軟化点を、示差走査熱量計(DSC)等を用いて測定することができる。
 そして、誘電加熱接着フィルムの融点又は軟化点が80℃未満の値になると、耐熱性が不十分となって、耐熱クリープ性が著しく低下し、融着した被着体の保存安定性を損なう場合がある。
 一方、誘電加熱接着フィルムの融点又は軟化点が、200℃を超えた値になると、誘電加熱処理における溶着に過度に時間がかかったり、接着強度が逆に低下したりする場合がある。
 したがって、誘電加熱接着フィルムの融点、又は軟化点を100~190℃の範囲内の値とすることがより好ましく、130~180℃の範囲内の値とすることがさらに好ましい。
(5)融解熱量
 誘電加熱接着フィルムのJIS K 7121(1987)に準じて測定した融解熱量を1~80J/gの範囲内の値とする。
 この理由は、誘電加熱接着フィルムを所定範囲内の値に規定することにより、使用環境等における耐熱性と、誘電加熱処理における溶着性との間の良好なバランスを図ることができるためである。
 より具体的には、かかる融解熱量が1J/g未満の値になると、耐熱性が不十分となって、高周波接着性や接着力(引張せん断力)、さらには、耐熱クリープ性が著しく低下したりする場合がある。
 一方、かかる融解熱量が80J/gを超えた値になると、誘電加熱処理における溶着に過度に時間がかかったり、得られる接着力(引張せん断力)が過度に低くなったりする場合がある。
 したがって、かかる融解熱量を5~70J/gの範囲内の値とすることがより好ましく、10~60J/gの範囲内の値とすることがさらに好ましい。
 なお、添加剤の配合等に起因して、例えば、得られるDSCチャートにおいて、融解ピークが複数存在する場合があるが、そのような場合、複数の融解ピークの合計量から、誘電加熱接着フィルムの融解熱量を算出することができる。
(6)粘弾性特性
 また、誘電加熱接着フィルムの粘弾性特性(動的弾性率)に関して、周波数10Hzの条件下に測定した貯蔵弾性率(E’)が、室温及び80℃の温度下において、ともに1×106~1×1010Paの範囲内の値であることが好ましい。
 この理由は、かかる貯蔵弾性率が、室温または80℃で1×106Pa未満の値になると、誘電加熱接着フィルムの表面にタック性が現れ、ロール形状での保管がブロッキングにより困難になる場合があるためである。
 一方、かかる貯蔵弾性率が、室温または80℃で1×1010Paを超えた値になると、誘電加熱接着フィルムが脆性となりやすくロールからの巻出しや高テンションでの被着体への貼りあわせが困難となる場合があるためである。
[第2の実施形態]
 第2の実施形態は、誘電加熱処理によって、同一材料若しくは異なる材料からなる一対の被着体を接着するため、A成分としての熱可塑性樹脂、及びB成分としての誘電フィラーを含有し、かつ、下記(i)~(ii)の条件を満足し、
(i)JIS K 7121(1987)に規定の方法に従って測定した融点または軟化点が80~200℃の範囲内の値である。
(ii)JIS K 7121(1987)に準じて測定した融解熱量が1~80J/gの範囲内の値である。
 かつ、下記工程(1)および(2)を順次に含むことを特徴とする誘電加熱接着フィルムを用いた接着方法である。
(1)一対の被着体の間に、誘電加熱接着フィルムを挟持する工程
(2)一対の被着体の間に挟持した、誘電加熱接着フィルムに対して、誘電加熱装置を用いて、高周波出力0.1~20kW、及び高周波印加時間1~40秒未満の条件で、誘電加熱処理を行う工程
 以下、第2の実施形態における誘電加熱接着フィルムの接着方法につき、第1の実施形態と異なる点を中心に説明する。
1.工程(1)
 工程(1)は、誘電加熱接着フィルムを、所定場所に配置する工程であって、同一若しくは異なる材料からなる複数の被着体の間に、誘電加熱接着フィルムを挟持する工程である。
 その際、通常、誘電加熱接着フィルムを、所定形状に切断し、複数の被着体の間に挟持することが好ましい。
 更に言えば、誘電加熱接着フィルムを、位置ずれしないように、正確な位置に配置すべく、誘電加熱接着フィルムの一面又は両面であって、かつ、全面あるいは、部分的に、粘着部を設けたり、さらには、誘電加熱接着フィルムの一部に、仮固定用孔や突起等を設けたりすることも好ましい。
 また、第2実施形態で使用される被着体の材質としては、特に制限はなく、有機、無機、及び金属等の材料でもよく、それらの複合材料であってもよい。有機材料としては、ポリプロピレン樹脂、ポリエチレン樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS樹脂)、ポリカーボネート樹脂、ナイロン6、ナイロン66等のポリアミド樹脂、ポリブチレンテレフタレート樹脂(PBT樹脂)、ポリアセタール樹脂(POM樹脂)、ポリメチルメタクリレート樹脂、ポリスチレン樹脂、等のプラスチック材料、スチレン-ブタジエンゴム(SBR)、エチレンプロピレンゴム(EPR)、シリコーンゴム等のゴム材料が挙げられる。無機材料としてはガラス等が挙げられる。
 また、ガラス繊維と前記のプラスチック材料との複合材料である繊維強化樹脂(FRP)も好ましい被着体の材質として挙げられる。
2.工程(2)
 工程(2)は、図1に示すように、被着体同士の間に挟持した、誘電加熱接着フィルムに対して、誘電加熱装置を用いて、例えば、高周波出力0.1~20kW、及び印加時間1秒以上、40秒未満の条件で、誘電加熱処理を行う工程である。
 以下、工程(2)において使用する誘電加熱接着装置や、その誘電加熱条件について、説明する。
(1)誘電加熱接着装置
 誘電加熱接着装置10は、図1に示すように、第1被着体12及び第2被着体14との間に挟持した、誘電加熱接着フィルム13を介して、誘電加熱処理するとともに、第1の高周波印加電極16及び第2の高周波印加電極18の加圧処理によって、第1被着体12及び第2被着体14を接着するために用いられる装置である。
 そして、かかる誘電加熱接着装置10は、対向配置されている第1の高周波印加電極16及び第2の高周波印加電極18のそれぞれに、例えば、周波数28MHz又は40MHz程度の高周波を印加するための高周波電源20を備えている。
 また、両電極間に、高周波電界を印加すると、第1被着体及び第2被着体の重ね合わせ部分において、誘電加熱接着フィルム、すなわち、当該誘電加熱接着フィルム中に均一分散された誘電加熱媒体が、高周波エネルギーを吸収する。
 さらにまた、誘電加熱媒体は、発熱源として機能し、その発熱によって、誘電加熱接着フィルムの主成分であるオレフィン系樹脂が溶融し、最終的には、第1被着体及び第2被着体を接着することができる。
 したがって、図1に示すように、プレス装置として兼用する、第1の高周波印加電極16及び第2の高周波印加電極18の圧縮方向への加圧も加味され、誘電加熱接着フィルム13の加熱溶融によって、第1被着体12及び第2被着体14を強固に接着することができる。
(2)誘電加熱接着条件
 よって、誘電加熱接着条件は、適宜変更できるが、通常、高周波出力としては、0.1~20kWの範囲内の値とすることが好ましく、0.2~10kWの範囲内の値とすることがより好ましく、0.2~5kWの範囲内の値とすることがさらに好ましい。
 また、高周波の印加時間についても、1~40秒未満の範囲内の値とすることが好ましく、5~30秒間の範囲内の値とすることがより好ましく、10~20秒間の範囲内の値とすることがさらに好ましい。
 さらに、高周波の周波数を1~100MHzの範囲内の値とすることが好ましく、5~80MHzの範囲内の値とすることがより好ましく、10~50MHzの範囲内の値とすることがさらに好ましい。具体的には、国際電気通信連合により割り当てられた工業用周波数帯13.56MHz、27.12MHz、40.68MHZが、本実施形態の誘電加熱接着方法にも利用される。
[実施例1]
1.誘電加熱接着フィルムの作成
 A成分としてランダムポリプロピレン系樹脂(プライムポリマー社製、プライムポリプロN-744NP、融点:130℃、表1中、A1-1と記載する。)100質量部と、B成分として酸化亜鉛(堺化学工業社製、LPZINC11,平均粒子径:11μm、表1中、B1と記載する。)156質量部と、をそれぞれ容器内に秤量した。
 次いで、表1に示すように、A成分と、B成分とを予備混合した後、30mmφ二軸押出機のホッパーに供給し、シリンダー設定温度180~200℃、ダイス温度200℃に設定し、溶融混練することにより、粒状のペレットを得た。
 次いで、得られた粒状のペレットを、Tダイを設置した単軸押出機のホッパーに投入し、シリンダー温度を200℃、ダイス温度を200℃の条件として、Tダイから、厚さ400μmのフィルム状溶融混練物を押し出し、室温に冷却させることにより、実施例1の誘電加熱接着フィルムを得た。
 なお、図2(a)~(b)に、それぞれ誘電加熱接着フィルムの表面および断面状態を写真(倍率150倍)として示す。
2.誘電加熱接着フィルムの評価
(1)平均厚さ
 所定大きさに切断した誘電加熱接着フィルムの厚さを、マイクロメーターを用いて、10箇所測定し、その平均値を算出し、誘電加熱接着フィルムの平均厚さ(単に、厚さと称する場合がある。)とした。
(2)融解熱量
 誘電加熱接着フィルムにつき、示差走査熱量計(DSC)として、Q2000(TAインスツルメント社製)を用いて、DSCチャート(融解曲線)を得て、その融解ピークに対応した所定面積から、A1成分の融解熱量を算出した。
(3)融点または軟化点
 誘電加熱接着フィルムとしての融点を、示差走査熱量計(DSC)として、Q2000(TAインスツルメント社製)を用いて、測定した。
 より具体的には、測定試料(誘電加熱接着フィルム)10mgを、250℃まで昇温した後、25℃まで10℃/分の降温速度で冷却して結晶化させ、再度10℃/分の昇温速度で加熱して、融解させた際に、DSCチャート(融解曲線)上で観察される融解ピークのピーク温度を、誘電加熱接着フィルムの融点とした。
(4)誘電特性(tanδ/ε’)
 所定大きさに切断した誘電加熱接着フィルムについて、インピーダンスマテリアルアナライザE4991(Agilent社製)を用いて、23℃における周波数40MHzの条件下、誘電率(ε’)及び誘電正接(tanδ)をそれぞれ測定し、誘電特性(tanδ/ε’)の値を算出した。
(5)全光線透過率
 所定大きさに切断した誘電加熱接着フィルムにつき、JIS K 7361-1(1997)に準拠し、日本電色工業社製ヘーズメーターNDH5000を用いて、D65光源として、全光線透過率を測定した。
(6)高周波接着性
 所定大きさに切断した誘電加熱接着フィルム(接着フィルム)を、被着体として2枚のガラス繊維強化ポリプロピレン板(25cm×10cm×1.5mm)の間の所定場所に挟みこんだ。
 次いで、高周波誘電加熱装置(山本ビニター社製YRP-400T-A)の電極間に固定した状態で、周波数40MHz、出力200Wの条件下に、所定時間高周波を印加して、接着フィルムと被着体を接着させてなる試験片を作成した。
 得られた試験片につき、以下の基準で、高周波接着性を評価した。
◎:10秒未満の高周波印加で、被着体同士が、接着フィルムによって接着した。
○:10秒以上~40秒未満の高周波印加で、被着体同士が、接着フィルムによって接着した。
△:40秒以上~60秒未満の高周波印加で、被着体同士が、接着フィルムによって接着した。
×:60秒高周波印加しても、被着体同士が、接着フィルムによって接着しなかった。
(7)引張せん断試験
 万能引張試験機(インストロン社製インストロン5581)を用い、引張速度100mm/分の条件で、上述した(6)高周波接着性の評価で得られた試験片の引張せん断力を測定し、さらに、破壊モードを観察した。
◎:材料破壊又は凝集破壊であり、引張せん断強度が6MPa以上であった。
○:材料破壊又は凝集破壊であり、引張せん断強度が2MPa以上~6MPa未満であった。
△:界面剥離であり、引張せん断強度が2MPa未満であった。
×:高周波接着性の評価において接着できなかった、もしくは試験を行うまで接着状態が維持できず被着体が脱落してしまったため引張せん断試験を行うことができなかった。
(8)耐熱クリープ試験
 上述した(6)高周波接着性の評価で得られた試験片の端部に、100gの錘を付け、80℃のオーブン中に垂下し、24時間静置した。
 最後に、試験片をオーブンから取り出し、室温に戻した後、下記基準に沿って、耐熱クリープ試験を評価した。
◎:24時間経過後も接着を維持していた。
○:12時間まで接着していたが、24時間経過時には錘が脱落していた。
△:12時間以内に錘が脱落していた。
×:高周波接着性の評価において接着できなかった、もしくは試験を行うまで接着状態が維持できず被着体が脱落してしまったため耐熱クリープ試験を行うことができなかった。
[実施例2]
 実施例2においては、A成分の種類を、オレフィン系熱可塑性エラストマー(住友化学(株)製、エスポレックスTPE-4675、融点:160℃、表1中、A-2と記載する。)に変更した以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[実施例3]
 実施例3においては、A成分の種類を、スチレン系熱可塑性エラストマー(住友化学(株)製、エスポレックスSB-2400、融点:162℃、表1中、A-3と記載する。)に変更した以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[実施例4]
 実施例4においては、A成分の種類を、実施例1で用いたA-1を70質量部と、無水マレイン酸変性ポリプロピレン(三洋化成工業(株)製、ユーメックス1001、融点:142℃、表1中、A-4と記載する。)30質量部と、の組み合わせとした以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[実施例5]
 実施例5においては、A成分の種類を、エチレン-(メタ)アクリル酸共重合体(三井・デュポンポリケミカル社製、ニュクレル410、融点:98℃、表1中、A-5と記載する。)に変更した以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[実施例6]
 実施例6においては、B成分の種類を、酸化亜鉛(堺化学工業社製、LPZINC2,平均粒子径:2μm、比重:5.6、表1中、B-2と記載する。)156質量部とした以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[実施例7]
 実施例7においては、B成分の種類を、炭化ケイ素(太平洋ランダム(株)製、GMF15,平均粒子径:0.5μm、比重:5.6、表1中、B-3と記載する。)156質量部とした以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[実施例8]
 実施例8においては、A成分の種類を、結晶性ポリエステル樹脂(東洋紡(株)製、バイロンGM-915、融点:139℃、重量平均分子量:45000、表1中、A-6と記載する。)100質量部に変え、さらには、被着体をガラス繊維強化ポリプロピレン板/ABS板(それぞれ15cm×10cm×1.5mm)の組合せとした以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[実施例9]
 実施例9においては、A成分の種類を、結晶性ポリエステル樹脂(東洋紡(株)製、バイロンGM-920、融点:107℃、重量平均分子量:30000、表1中、A-7と記載する。)100質量部に変えるとともに、B成分の種類を、酸化亜鉛(和光純薬工業(株)製、平均粒子径:0.4μm、比重:5.6、表1中、B-4と記載する。)156質量部とし、さらには、被着体をガラス繊維強化ポリプロピレン板/ABS板(それぞれ15cm×10cm×1.5mm)の組合せとした以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[実施例10]
 実施例10においては、実施例1で使用したB-1の配合量を267質量部とした以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[実施例11]
 実施例11においては、実施例1で使用したB-1の配合量を67質量部とした以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[比較例1]
 比較例1においては、A成分の種類を、ホモポリプロピレン(日本ポリプロ(株)製、ノバテックPPMH4、融点:165℃、MFR:5g/10分、表1中、A-8と記載する。)100質量部に変えるとともに、B成分の酸化亜鉛の種類を、実施例9で使用したB4、156質量部に変更した以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[比較例2]
 比較例2においては、実施例1で用いたA1のランダムポリプロピレン100質量部を用いただけで、 B成分を配合しなかった以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
[比較例3]
 比較例3においては、A成分の種類を、エチレン/α-オレフィン共重合体(住友化学(株)製、エクセレンFX352、融点:70℃、MFR:4g/10分、表1中、A1-9と記載する。)100質量部に変えるとともに、B成分の酸化亜鉛の種類を、実施例9で使用したB4、156質量部に変更した以外は、実施例1と同様に、誘電加熱接着フィルムを作成し、評価した。
Figure JPOXMLDOC01-appb-T000001
 本発明の誘電加熱接着フィルム等によれば、所定融点または軟化点を有するとともに、融解熱量を所定範囲内の値に制御することによって、短時間の誘電加熱処理であっても、各種被着体に対して、強固な接着力を得ることができるようになった。
 そして、所定の透明性(全光線透過率)も確保できることから、所定の位置決め部材を用いることなく、被着体の所定表面の所望位置に追随させて載置することができるようになった。
 また、本発明の誘電加熱接着フィルムを用いた接着方法であれば、誘電加熱装置によって、外部から、所定箇所のみを局所的に加熱することができるため、大型で且つ複雑な立体構造体や、厚物で複雑な立体構造等において、高い寸法精度を求められる被着体であっても、接着するのに大変有効である。
 その上、本発明の誘電加熱接着フィルム等によれば、接着フィルムの厚さや貯蔵弾性率などの物性を適宜制御できることから、ロール・ツー・ロール方式に適用することもでき、かつ、抜き加工等により、複数の被着体の間の接着面積や形状に合わせて、誘電加熱接着フィルムを任意の面積や形状に処理することもできるようになり、製造上の利点も大きいと言える。
10:高周波誘電加熱装置
12:第1被着体
13:誘電加熱接着フィルム
14:第2被着体
16:第1の高周波印加電極(プレス装置兼用)
18:第2の高周波印加電極(プレス装置兼用)
20:高周波電源

Claims (8)

  1.  誘電加熱処理によって、同一材料若しくは異なる材料からなる一対の被着体を接着するための誘電加熱接着フィルムであって、
     A成分としての熱可塑性樹脂、及びB成分としての誘電フィラーを含有し、
     かつ、下記(i)~(ii)の条件を満足することを特徴とする誘電加熱接着フィルム。
    (i)JIS K 7121(1987)に規定の方法に従って測定した融点または軟化点が80~200℃の範囲内の値である。
    (ii)JIS K 7121(1987)に準じて測定した融解熱量が1~80J/gの範囲内の値である。
  2.  23℃における周波数40MHzの条件下、誘電正接であるtanδを誘電率であるε’で除した誘電特性(tanδ/ε’)が0.005以上の値であることを特徴とする請求項1に記載の誘電加熱接着フィルム。
  3.  前記A成分100質量部に対して、前記B成分の配合量を5~800質量部の範囲内の値とすることを特徴とする請求項1または2に記載の誘電加熱接着フィルム。
  4.  前記A成分は、ポリオレフィン系樹脂、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリアミド樹脂、ポリ酢酸ビニル樹脂、ポリアセタール樹脂、およびポリエステル系樹脂からなる群から選択される少なくとも一つの熱可塑性樹脂であることを特徴とする請求項1~3のいずれか一項に記載の誘電加熱接着フィルム。
  5.  前記B成分が、酸化亜鉛であることを特徴とする請求項1~4に記載の誘電加熱接着フィルム。
  6.  前記B成分のJIS Z 8819-2(2001)に準拠して測定される平均粒子径を1~30μmの範囲内の値とすることを特徴とする請求項1~5に記載の誘電加熱接着フィルム。
  7.  誘電加熱処理によって、同一材料若しくは異なる材料からなる一対の被着体を接着するため、A成分としての熱可塑性樹脂、及びB成分としての誘電フィラーを含有する誘電加熱接着フィルムを用いた接着方法であって、
     前記誘電加熱接着フィルムが、下記(i)~(ii)の条件を満足し、
    (i)JIS K 7121(1987)に規定の方法に従って測定した融点または軟化点が80~200℃の範囲内の値である。
    (ii)JIS K 7121(1987)に準じて測定した融解熱量が1~80J/gの範囲内の値である。
     かつ、下記工程(1)および(2)を順次に含むことを特徴とする誘電加熱接着フィルムを用いた接着方法。
    (1)前記一対の被着体の間に、前記誘電加熱接着フィルムを挟持する工程
    (2)前記一対の被着体の間に挟持した、前記誘電加熱接着フィルムに対して、誘電加熱装置を用いて、高周波出力0.1~20kW、及び高周波印加時間1~40秒未満の条件で、誘電加熱処理を行う工程
  8.  前記誘電加熱接着フィルムが、上記(i)~(ii)の条件のみならず、下記(iii)の条件も満足することを特徴とする請求項7に記載の誘電加熱接着フィルムを用いた接着方法。
    (iii)23℃における周波数40MHzの条件下、誘電正接であるtanδを誘電率であるε’で除した誘電特性(tanδ/ε’)が0.005以上の値である。
PCT/JP2017/037618 2016-10-27 2017-10-18 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接着方法 WO2018079356A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/345,166 US11541607B2 (en) 2016-10-27 2017-10-18 Dielectric-heating bonding film and bonding method using dielectric-heating bonding film
JP2018547590A JP6648300B2 (ja) 2016-10-27 2017-10-18 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いた接着方法
EP17863547.0A EP3533848A4 (en) 2016-10-27 2017-10-18 DIELECTRICALLY WARMING ADHESIVE FILM AND CONNECTION PROCESS WITH DIELECTRICALLY HEATING ADHESIVE FILM
CN201780066588.2A CN109890923B (zh) 2016-10-27 2017-10-18 介电加热粘接膜、及使用了介电加热粘接膜的粘接方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016210218 2016-10-27
JP2016-210218 2016-10-27
JP2017-021803 2017-02-09
JP2017021806 2017-02-09
JP2017-021806 2017-02-09
JP2017021803 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018079356A1 true WO2018079356A1 (ja) 2018-05-03

Family

ID=62023521

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2017/037617 WO2018079355A1 (ja) 2016-10-27 2017-10-18 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接着方法
PCT/JP2017/037618 WO2018079356A1 (ja) 2016-10-27 2017-10-18 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接着方法
PCT/JP2017/037616 WO2018079354A1 (ja) 2016-10-27 2017-10-18 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接合方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037617 WO2018079355A1 (ja) 2016-10-27 2017-10-18 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接着方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037616 WO2018079354A1 (ja) 2016-10-27 2017-10-18 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接合方法

Country Status (6)

Country Link
US (3) US11673340B2 (ja)
EP (3) EP3533847B1 (ja)
JP (4) JP6648299B2 (ja)
KR (1) KR102366349B1 (ja)
CN (3) CN109923184B (ja)
WO (3) WO2018079355A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070365A (ja) * 2018-10-31 2020-05-07 リンテック株式会社 高周波誘電加熱接着シート及び断熱構造体
JP2020163786A (ja) * 2019-03-29 2020-10-08 リンテック株式会社 高周波誘電加熱接着シート、布帛接合体及び接合方法
WO2021201173A1 (ja) * 2020-03-31 2021-10-07 リンテック株式会社 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2023054114A1 (ja) * 2021-09-28 2023-04-06 リンテック株式会社 高周波誘電加熱用接着剤

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004604A1 (ja) * 2020-06-30 2022-01-06 リンテック株式会社 高周波誘電加熱接着シート
WO2022004606A1 (ja) * 2020-06-30 2022-01-06 リンテック株式会社 高周波誘電加熱用接着剤
CN111909628A (zh) * 2020-08-05 2020-11-10 苏州中来光伏新材股份有限公司 一种增强型光伏封装胶膜及其制备方法
US20230321921A1 (en) * 2020-08-31 2023-10-12 Lintec Corporation Molded body, joining method, and method for producing molded body
JPWO2022118825A1 (ja) * 2020-12-04 2022-06-09
JPWO2022118826A1 (ja) * 2020-12-04 2022-06-09

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174474A (ja) * 1982-04-07 1983-10-13 Mitsui Toatsu Chem Inc 熱接着剤
JPH0872055A (ja) * 1994-09-06 1996-03-19 Mitsui Toatsu Chem Inc 加熱方法
JPH08258173A (ja) * 1995-03-24 1996-10-08 Oji Yuka Synthetic Paper Co Ltd 筐 体
JPH11157398A (ja) * 1997-11-27 1999-06-15 Hayashi Gijutsu Kenkyusho:Kk 高周波ウェルド用パッド材
JP2000289113A (ja) * 1999-04-07 2000-10-17 Hayashi Gijutsu Kenkyusho:Kk 高周波ウェルダ用加工材
JP2001146524A (ja) * 1999-09-07 2001-05-29 Sekisui Chem Co Ltd ポリオレフィン系樹脂フィルム
JP2001226533A (ja) * 2000-02-16 2001-08-21 Idemitsu Petrochem Co Ltd 高周波ウエルダー成形用樹脂及び樹脂組成物並びに成形体
JP2003193009A (ja) 2001-10-16 2003-07-09 Toyobo Co Ltd 誘電加熱接着用樹脂組成物、ホットメルト接着剤、被接着材の接着方法、ホットメルト接着剤の被接着材として用いられる被接着用樹脂組成物、接着複合体およびその解体方法
JP2003238745A (ja) 2002-02-15 2003-08-27 Toyobo Co Ltd 樹脂組成物、それを用いた接着剤およびその接着方法
JP2008156510A (ja) 2006-12-25 2008-07-10 Denso Corp マイクロ波吸収性物質を含有する接着剤及び接着構造体
JP2009126922A (ja) 2007-11-22 2009-06-11 Kaneka Corp 変性ポリオレフィン系樹脂組成物
JP2010006908A (ja) 2008-06-25 2010-01-14 Denso Corp 接着剤、接着構造体及び高周波誘電加熱接着装置
JP2014037489A (ja) 2012-08-17 2014-02-27 Saitama Prefecture 接着剤及び樹脂接合方法
JP2015151493A (ja) * 2014-02-17 2015-08-24 三菱樹脂株式会社 ウェルダー加工用フィルム

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969294A (en) * 1975-02-26 1976-07-13 E. I. Du Pont De Nemours And Company Segmented copolyester adhesives stabilized by alkaline earth oxides and carboxylic compounds
JPS5946774B2 (ja) 1975-12-03 1984-11-14 ダイニツク カブシキガイシヤ ウエルダ−カコウセイノカイリヨウサレタ ネツカソセイゴウセイジユシシ−ト
CA1110794A (en) 1977-06-10 1981-10-13 Eastman Kodak Company Low temperature adhesives for photographic materials
JPS54161645A (en) 1978-06-12 1979-12-21 Sekisui Chem Co Ltd High-frequency heating adhesive
JPS5559921A (en) * 1978-10-30 1980-05-06 Mitsui Toatsu Chem Inc Method of gluing polyolefin molding
JPS5655474A (en) * 1979-10-12 1981-05-16 Sekisui Chem Co Ltd Radiofrequency heating curable adhesive
JPS6239221A (ja) * 1985-08-14 1987-02-20 Asahi Chem Ind Co Ltd 高周波誘電加熱によるポリオレフイン樹脂成形品などの接着方法
JPS61171783A (ja) * 1986-01-17 1986-08-02 Sekisui Chem Co Ltd 高周波加熱接着剤
JPH01294393A (ja) * 1988-05-20 1989-11-28 Matsushita Electric Ind Co Ltd 面状採暖具の接着方法
JPH02261626A (ja) 1989-04-03 1990-10-24 Matsushita Electric Ind Co Ltd 溶接材および溶接方法
JPH0415282A (ja) * 1990-05-08 1992-01-20 Dainippon Printing Co Ltd 接着剤組成物およびそれを用いた接着剤層の固化方法
DE69129705T2 (de) * 1990-12-24 1999-04-08 Ford Werke Ag Verfahren und Vorrichtung zum Verbinden eines leitenden Gegenstandes mit einem nichtleitenden Gegenstand.
JP3545808B2 (ja) * 1994-08-05 2004-07-21 アキレス株式会社 カレンダー成形用ポリオレフィン組成物
JPH0967461A (ja) 1995-09-01 1997-03-11 Sekisui Chem Co Ltd マイクロ波融着用樹脂組成物
JP2001172413A (ja) * 1999-12-22 2001-06-26 Mitsubishi Plastics Ind Ltd 非結晶性のポリエステル系樹脂シート及びそれを用いた包装体
JP2004181969A (ja) * 2000-01-25 2004-07-02 Hiraoka & Co Ltd 表面処理シートの熱融着接合方法
JP2001260231A (ja) 2000-03-14 2001-09-25 Mitsubishi Plastics Ind Ltd 発熱体を内蔵したプラスチック成形体
WO2002088229A1 (en) 2001-04-25 2002-11-07 Dow Global Technologies, Inc. Dielectric heating of thermoplastic compositions
US6706136B2 (en) * 2001-10-16 2004-03-16 Toyo Boseki Kabushiki Kaisha Resin composition for high-frequency bonding
JP3968585B2 (ja) * 2001-12-14 2007-08-29 平岡織染株式会社 テント用防汚性防水シート
CN1820034B (zh) * 2002-10-15 2010-10-27 埃克森美孚化学专利公司 聚烯烃粘合剂组合物和由其制成的制品
US20070084550A1 (en) * 2005-10-07 2007-04-19 Epstein Adam S Method to increase the fusion of radio-frequency welds between dissimilar materials
CN101495282B (zh) * 2006-05-31 2013-08-21 陶氏环球技术有限责任公司 使用微波能选择性加热热塑性聚合物体系
WO2007143018A2 (en) * 2006-05-31 2007-12-13 The Dow Chemical Company Microwave applicator equipment for rapid uniform heating of receptive polymer systems
KR101422464B1 (ko) * 2009-07-02 2014-07-23 생-고뱅 퍼포먼스 플라스틱스 코포레이션 봉합성 재료, 및 유전 용접을 형성하는 방법
BR112014015134A2 (pt) * 2011-12-21 2017-06-13 Dow Global Technologies Llc método para melhorar a formação de um artigo com base em poliolefina e artigo de poliolefina
JP2013130224A (ja) * 2011-12-21 2013-07-04 Three M Innovative Properties Co 部材の接着構造と部材の接着方法
WO2013105340A1 (ja) * 2012-01-10 2013-07-18 東レ株式会社 炭素繊維強化ポリプロピレンシートおよびその成形品
JP2014180808A (ja) * 2013-03-19 2014-09-29 Kaneka Corp 接着層が被覆された誘電加熱用の針金
DE102013010703A1 (de) * 2013-06-27 2014-12-31 Merck Patent Gmbh Mikrokugeln
US20160032166A1 (en) * 2014-01-22 2016-02-04 Zhejiang Saintyear Electronic Technologies Co., Ltd. Hot-melt adhesive composition and method for preparing the same, hot-melt adhesive thermal conductive sheet and method for preparing the same
CN107531011B (zh) * 2015-05-28 2023-12-29 大日本印刷株式会社 转印箔
US11542415B2 (en) * 2017-04-03 2023-01-03 Lintec Corporation High-frequency dielectric heating adhesive sheet, and adhesion method in which same is used

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174474A (ja) * 1982-04-07 1983-10-13 Mitsui Toatsu Chem Inc 熱接着剤
JPH0872055A (ja) * 1994-09-06 1996-03-19 Mitsui Toatsu Chem Inc 加熱方法
JPH08258173A (ja) * 1995-03-24 1996-10-08 Oji Yuka Synthetic Paper Co Ltd 筐 体
JPH11157398A (ja) * 1997-11-27 1999-06-15 Hayashi Gijutsu Kenkyusho:Kk 高周波ウェルド用パッド材
JP2000289113A (ja) * 1999-04-07 2000-10-17 Hayashi Gijutsu Kenkyusho:Kk 高周波ウェルダ用加工材
JP2001146524A (ja) * 1999-09-07 2001-05-29 Sekisui Chem Co Ltd ポリオレフィン系樹脂フィルム
JP2001226533A (ja) * 2000-02-16 2001-08-21 Idemitsu Petrochem Co Ltd 高周波ウエルダー成形用樹脂及び樹脂組成物並びに成形体
JP2003193009A (ja) 2001-10-16 2003-07-09 Toyobo Co Ltd 誘電加熱接着用樹脂組成物、ホットメルト接着剤、被接着材の接着方法、ホットメルト接着剤の被接着材として用いられる被接着用樹脂組成物、接着複合体およびその解体方法
JP2003238745A (ja) 2002-02-15 2003-08-27 Toyobo Co Ltd 樹脂組成物、それを用いた接着剤およびその接着方法
JP2008156510A (ja) 2006-12-25 2008-07-10 Denso Corp マイクロ波吸収性物質を含有する接着剤及び接着構造体
JP2009126922A (ja) 2007-11-22 2009-06-11 Kaneka Corp 変性ポリオレフィン系樹脂組成物
JP2010006908A (ja) 2008-06-25 2010-01-14 Denso Corp 接着剤、接着構造体及び高周波誘電加熱接着装置
JP2014037489A (ja) 2012-08-17 2014-02-27 Saitama Prefecture 接着剤及び樹脂接合方法
JP2015151493A (ja) * 2014-02-17 2015-08-24 三菱樹脂株式会社 ウェルダー加工用フィルム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070365A (ja) * 2018-10-31 2020-05-07 リンテック株式会社 高周波誘電加熱接着シート及び断熱構造体
JP2020163786A (ja) * 2019-03-29 2020-10-08 リンテック株式会社 高周波誘電加熱接着シート、布帛接合体及び接合方法
WO2021201173A1 (ja) * 2020-03-31 2021-10-07 リンテック株式会社 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2023054114A1 (ja) * 2021-09-28 2023-04-06 リンテック株式会社 高周波誘電加熱用接着剤

Also Published As

Publication number Publication date
WO2018079354A1 (ja) 2018-05-03
KR102366349B1 (ko) 2022-02-22
CN109923184A (zh) 2019-06-21
JPWO2018079356A1 (ja) 2019-09-12
CN109890923B (zh) 2022-05-17
US20200063001A1 (en) 2020-02-27
EP3533848A4 (en) 2020-09-30
CN109923184B (zh) 2021-07-20
JP6648299B2 (ja) 2020-02-14
US11007722B2 (en) 2021-05-18
CN109890925B (zh) 2021-12-14
KR20190075935A (ko) 2019-07-01
US11541607B2 (en) 2023-01-03
US20190329504A1 (en) 2019-10-31
JP6632748B2 (ja) 2020-01-22
EP3533847B1 (en) 2023-09-27
WO2018079355A1 (ja) 2018-05-03
JP2019094503A (ja) 2019-06-20
EP3533849A4 (en) 2020-07-01
JP6499808B2 (ja) 2019-04-10
JPWO2018079354A1 (ja) 2018-11-01
JP6648300B2 (ja) 2020-02-14
US11673340B2 (en) 2023-06-13
JPWO2018079355A1 (ja) 2019-09-12
EP3533849A1 (en) 2019-09-04
CN109890925A (zh) 2019-06-14
EP3533848A1 (en) 2019-09-04
CN109890923A (zh) 2019-06-14
EP3533847A1 (en) 2019-09-04
EP3533847A4 (en) 2020-07-01
US20190283334A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
WO2018079356A1 (ja) 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接着方法
WO2018147352A1 (ja) 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いた接着方法
JP2018177825A (ja) 誘電加熱接着フィルムを用いてなる接着構造体の製造方法
WO2020203206A1 (ja) 接合方法及び高周波誘電加熱接着シート
WO2021200686A1 (ja) 高周波誘電加熱接着シート
WO2021200684A1 (ja) 高周波誘電加熱接着シート
WO2021200685A1 (ja) 高周波誘電加熱接着シート
JP7223553B2 (ja) 高周波誘電加熱接着シート、管の接合方法及び管接合体
WO2021201173A1 (ja) 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2022118826A1 (ja) 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2022118825A1 (ja) 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2022004604A1 (ja) 高周波誘電加熱接着シート
JP2022045334A (ja) 接着方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017863547

Country of ref document: EP

Effective date: 20190527