WO2022118826A1 - 高周波誘電加熱用接着剤、構造体及び構造体の製造方法 - Google Patents

高周波誘電加熱用接着剤、構造体及び構造体の製造方法 Download PDF

Info

Publication number
WO2022118826A1
WO2022118826A1 PCT/JP2021/043772 JP2021043772W WO2022118826A1 WO 2022118826 A1 WO2022118826 A1 WO 2022118826A1 JP 2021043772 W JP2021043772 W JP 2021043772W WO 2022118826 A1 WO2022118826 A1 WO 2022118826A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric heating
frequency dielectric
frequency
adhesive
heating adhesive
Prior art date
Application number
PCT/JP2021/043772
Other languages
English (en)
French (fr)
Inventor
晃司 土渕
直紀 田矢
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to EP21900579.0A priority Critical patent/EP4257354A1/en
Priority to CN202180080954.6A priority patent/CN116547145A/zh
Priority to JP2022566928A priority patent/JPWO2022118826A1/ja
Priority to US18/039,901 priority patent/US20240052206A1/en
Publication of WO2022118826A1 publication Critical patent/WO2022118826A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/54Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1025Zinc oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/303Average diameter greater than 1µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/021Treatment by energy or chemical effects using electrical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/14Glass
    • C09J2400/143Glass in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/04Presence of homo or copolymers of ethene

Definitions

  • the present invention relates to a high-frequency dielectric heating adhesive, a structure, and a method for manufacturing the structure.
  • Patent Document 1 a surface layer and a back layer made of a glass plate and an intermediate layer made of a plurality of plastic sheets are laminated with an ethylene-vinyl acetate copolymer resin sheet (EVA sheet) interposed therebetween.
  • EVA sheet ethylene-vinyl acetate copolymer resin sheet
  • Patent Document 2 a motor core material in which 50 electromagnetic steel sheets are laminated via an insulating coating having adhesive ability is pressurized by a pressure cylinder of a high-frequency dielectric heating device, and a high frequency is applied between electrodes at the same time.
  • the laminated iron core (laminated body) to be manufactured is described.
  • the insulating film having this adhesive ability contains an organic resin such as an epoxy resin as a main component.
  • Patent Document 1 describes a method in which a glass plate, an EVA sheet, and a polycarbonate sheet are laminated, placed in an oven-type vacuum chamber, heated from room temperature to 130 ° C., and reduced to 70 cmHg to produce composite glass. Have been described.
  • the composite glass (laminated body) described in Patent Document 1 it is necessary to join the glass plate and the polycarbonate sheet after raising the temperature and reducing the pressure in the vacuum chamber. It is difficult to join each other in a short time.
  • the application time of the high frequency when manufacturing the laminated iron core (laminated body) described in Patent Document 2 is 2 minutes or 4 minutes, and the steel plates (adhesions) cannot be joined to each other in a short time.
  • the adherends in the structure may be displaced from each other. rice field.
  • An object of the present invention is to provide an adhesive for high-frequency dielectric heating that can bond three or more adherends at a time in a short time and suppress the occurrence of displacement between adherends, and the high-frequency dielectric heating. It is an object of the present invention to provide a structure in which three or more adherends are joined by an adhesive for use, and a method for manufacturing the structure.
  • the present invention is a high-frequency dielectric heating adhesive for joining three or more adherends, and the high-frequency dielectric heating adhesive is obtained by applying a thermoplastic resin and a high-frequency electric field.
  • the melt volume rate at the lower limit temperature TL and the upper limit temperature TU is 1 cm 3/10 min or more and 300 cm 3/10 min or less, including the dielectric filler that generates heat, and the lower limit temperature TL (unit: ° C.) is the following formula.
  • An adhesive for high-frequency dielectric heating which is defined by (Equation 11) and whose upper limit temperature TU (unit: ° C.) is defined by the following formula (Equation 12), is provided.
  • TL Softening temperature TM + 10 ° C.
  • the three or more adherends are either adherends having no flow start temperature or adheres having a flow start temperature. It is a body, and it is preferable that the flow start temperature TF2 (° C.) of the adherend and the flow start temperature TF1 (° C.) of the high-frequency dielectric heating adhesive satisfy the relationship of the following formula (Equation 2). -5 ⁇ TF2-TF1 ... (Equation 2)
  • the flow start temperature TF1 of the high-frequency dielectric heating adhesive is preferably 80 ° C. or higher and 200 ° C. or lower.
  • the adherend having the flow start temperature when at least one of the three or more adherends is an adherend having a flow start temperature, the adherend having the flow start temperature.
  • the flow start temperature TF2 of the above is preferably 90 ° C. or higher.
  • the dielectric property DP1 of the high-frequency dielectric heating adhesive and the dielectric property DP2 of each of the three or more adherends are expressed by the following formula (Equation 1). ) Satisfying the relationship. 0 ⁇ DP1-DP2 ... (number 1) (The dielectric property DP1 and the dielectric property DP2 are the values of the dielectric properties (tan ⁇ / ⁇ 'r) of the high-frequency dielectric heating adhesive and the three or more adherends, respectively. tan ⁇ is a dielectric loss tangent at 23 ° C. and a frequency of 40.68 MHz. ⁇ 'r is the relative permittivity at 23 ° C. and a frequency of 40.68 MHz. )
  • the dielectric property DP2 of each of the three or more adherends is preferably 0.015 or less.
  • the dielectric property DP1 of the high-frequency dielectric heating adhesive is preferably 0.005 or more.
  • the high-frequency dielectric heating adhesive is preferably an adhesive sheet.
  • the thickness TS1 of the adhesive sheet and the thickness TS2 of each of the three or more adherends satisfy the relationship of the following mathematical formula (Equation 3). Is preferable. TS1 ⁇ TS2 ... (number 3)
  • the thickness TS1 of the adhesive sheet is preferably 5 ⁇ m or more and 2000 ⁇ m or less.
  • the thickness accuracy of the adhesive sheet is preferably within ⁇ 10%.
  • a step of arranging the high-frequency dielectric heating adhesive according to the above-mentioned one aspect of the present invention between the three or more adherends, and a high-frequency frequency on the high-frequency dielectric heating adhesive is provided.
  • a method for manufacturing a structure which comprises a step of applying an electric field to join the three or more adherends.
  • the three or more adherends and the high-frequency dielectric heating adhesive are arranged between the electrodes of the dielectric heating device, and the three or more adherends are adhered. It is preferable to apply a high-frequency electric field while pressurizing the body and the high-frequency dielectric heating adhesive with the electrodes.
  • an adhesive for high frequency dielectric heating that can join three or more adherends at a time in a short time and can suppress the occurrence of displacement between the adherends. Further, according to one aspect of the present invention, it is possible to provide a structure in which three or more adherends are bonded by the high-frequency dielectric heating adhesive and a method for manufacturing the structure.
  • the high-frequency dielectric heating adhesive includes a thermoplastic resin and a dielectric filler that generates heat by applying a high-frequency electric field.
  • a high frequency electric field is an electric field whose direction is reversed at a high frequency.
  • thermoplastic resin contained in the high-frequency dielectric heating adhesive may be referred to as a thermoplastic resin (A), and the dielectric filler may be referred to as a dielectric filler (B).
  • the high-frequency dielectric heating adhesive is a high-frequency dielectric heating adhesive for joining three or more adherends.
  • the melt volume rate at the lower limit temperature TL and the upper limit temperature TU is 1 cm 3/10 min or more and 300 cm 3/10 min or less.
  • the lower limit temperature TL (unit: ° C.) is defined by the following formula (Equation 11)
  • the upper limit temperature TU unit: ° C.
  • TL Softening temperature TM + 10 ° C. of the high-frequency dielectric heating adhesive ...
  • TU Thermal decomposition temperature of the high-frequency dielectric heating adhesive TD-10 ° C ... (Equation 12)
  • the measured load of the melt volume rate at the lower limit temperature TL is 20 kg.
  • the measured load of the melt volume rate at the upper limit temperature TU is 5 kg.
  • melt volume rate (MVR) the melt volume rate (hereinafter, may be referred to as MVR) of the high-frequency dielectric heating adhesive is measured at a softening temperature TM + 10 ° C. and a thermal decomposition temperature TD-10 ° C. The value is within the range of 1 cm 3/10 min or more and 300 cm 3/10 min or less.
  • the softening temperature TM + 10 ° C. is considered to represent the temperature at which the high-frequency dielectric heating adhesive begins to melt and the adhesiveness with the adherend begins to develop.
  • the thermal decomposition of the thermoplastic resin in the high-frequency dielectric heating adhesive does not start, and the thermal decomposition in the high-frequency dielectric heating adhesive causes the bondability with the adherend. It represents a temperature that is unlikely to affect. That is, these temperatures are temperatures at which the adhesiveness for high-frequency dielectric heating and the adherend are surely generated, and temperatures that are unlikely to affect the deterioration of the bonding strength between the adhesive for high-frequency dielectric heating and the adherend. And represents.
  • “min” in the unit is an abbreviation for "minute”.
  • the MVR of the high-frequency dielectric heating adhesive according to the present embodiment is less than 1 cm 3/10 min at each of the above measured temperatures, the fluidity of the high-frequency dielectric heating adhesive is too low, and the anchor effect is difficult to be exhibited. , It becomes difficult to obtain characteristics such as wettability to the adherend. Specifically, even if a high-frequency electric field is applied to the high-frequency dielectric heating adhesive, the MVR of the high-frequency dielectric heating adhesive is too low, so that the high-frequency dielectric heating adhesive spreads wet on the surface of the adherend. It is considered difficult. Therefore, it takes time for the high-frequency dielectric heating adhesive to wet and spread on the surface of the adherend. Moreover, it is difficult to obtain an anchor effect.
  • the MVR of the high-frequency dielectric heating adhesive according to the present embodiment is less than 1 cm 3/10 min, it takes a joining time, it becomes difficult to join in a short time, and the joining strength tends to be weakened. If the MVR of the high-frequency dielectric heating adhesive according to the present embodiment exceeds 300 cm / 3/10 min at each of the above measurement temperatures, the fluidity of the high-frequency dielectric heating adhesive becomes too high, so that three or more are adhered. When the bodies are joined at once, the adherends are likely to be displaced from each other.
  • the MVR of the high-frequency dielectric heating adhesive according to the present embodiment is preferably 2 cm 3/10 min or more, preferably 3 cm 3/10 min or more, at a softening temperature TM + 10 ° C. and a thermal decomposition temperature TD-10 ° C. More preferably, it is 4 cm 3/10 min or more, and even more preferably.
  • the MVR of the high-frequency dielectric heating adhesive according to the present embodiment is preferably 275 cm 3/10 min or less, preferably 250 cm 3/10 min or less, at a softening temperature TM + 10 ° C. and a thermal decomposition temperature TD-10 ° C.
  • the MVR of the high-frequency dielectric heating adhesive according to the present embodiment is 2 cm 3/10 min or more, three or more adherends can be bonded at one time in a shorter time, and more sufficient bonding strength can be obtained. It will be easier to get rid of.
  • the MVR of the high-frequency dielectric heating adhesive according to the present embodiment is 275 cm 3/10 min or less, the occurrence of misalignment between adherends is more likely to be suppressed.
  • MVR (cm 3/10 min) is a value measured using a flow tester.
  • the MVR of the high-frequency dielectric heating adhesive can be measured by the method described in the item of Examples described later.
  • the softening temperature TM of the high-frequency dielectric heating adhesive according to the present embodiment is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and even more preferably 90 ° C. or higher.
  • the softening temperature TM of the high-frequency dielectric heating adhesive according to the present embodiment is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and even more preferably 160 ° C. or lower.
  • the structure manufactured by using the high-frequency dielectric heating adhesive can easily obtain heat resistance in general life. If the softening temperature TM of the high-frequency dielectric heating adhesive is 200 ° C or lower, it is easy to prevent the time required for melting the high-frequency dielectric heating adhesive during joining from becoming long, and the high-frequency dielectric heating adhesive and the adherend can be easily prevented. It is easy to obtain the bonding strength with.
  • the softening temperature can be measured by the method described in the item of Examples described later.
  • the thermal decomposition temperature TD of the high-frequency dielectric heating adhesive according to the present embodiment is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, and even more preferably 220 ° C. or higher.
  • the thermal decomposition temperature TD of the high-frequency dielectric heating adhesive is 180 ° C. or higher, the structure manufactured by using the high-frequency dielectric heating adhesive can easily obtain heat resistance in general life. Further, since a sufficient output can be applied when a high-frequency electric field is applied, it is easy to bond the high-frequency dielectric heating adhesive and the adherend in a short time.
  • the upper limit of the thermal decomposition temperature TD of the high-frequency dielectric heating adhesive according to the present embodiment is not particularly limited, and may be, for example, 600 ° C. or lower, 500 ° C. or lower, or 400 ° C. or lower. May be good.
  • the pyrolysis temperature can be measured according to JIS K 7120: 1987.
  • the thermal decomposition temperature of the high-frequency dielectric heating adhesive according to the present embodiment is, for example, a temperature corresponding to the peak top of the exothermic peak observed on the low temperature side of the DTA curve. Specifically, it can be measured by the method described in the item of the embodiment described later.
  • the flow start temperature TF1 of the high-frequency dielectric heating adhesive according to the present embodiment is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and even more preferably 100 ° C. or higher.
  • the flow start temperature TF1 of the high-frequency dielectric heating adhesive according to the present embodiment is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, further preferably 160 ° C. or lower, and 140 ° C. or lower. Is even more preferable.
  • the flow start temperature TF1 of the high-frequency dielectric heating adhesive is 80 ° C. or higher, the occurrence of misalignment between the adherends is likely to be suppressed.
  • the structure manufactured by using the high-frequency dielectric heating adhesive can easily obtain heat resistance in general life.
  • the flow start temperature TF1 of the high-frequency dielectric heating adhesive is 200 ° C. or lower, it is easy to prevent the time required for melting the high-frequency dielectric heating adhesive from becoming long at the time of joining, and the adhesive and the high-frequency dielectric heating adhesive are adhered. It is easy to obtain the bonding strength with the body.
  • the flow start temperature can be measured by the method described in the item of Examples described later.
  • the difference (TF2-TF1) between the flow start temperature TF2 (° C.) of the adherend and the flow start temperature TF1 (° C.) of the high-frequency dielectric heating adhesive can satisfy the relationship of the following mathematical formula (Equation 2-1). It is more preferable to satisfy the relationship of the following mathematical formula (Equation 2-2), further preferably to satisfy the relationship of the following mathematical formula (Equation 2-3), and to satisfy the relationship of the following mathematical formula (Equation 2-4). It is even more preferable to satisfy the relationship of the following formula (Equation 2-5), further preferably to satisfy the relationship of the following formula (Equation 2-6), and the following formula (Equation 2-7). It is even more preferable to satisfy the relationship of. 0 ⁇ TF2-TF1 ...
  • the difference (TF2-TF1) between the flow start temperature TF2 (° C.) of the adherend and the flow start temperature TF1 (° C.) of the high-frequency dielectric heating adhesive can satisfy the relationship of the following mathematical formula (Equation 2-8). It is more preferable to satisfy the relationship of the following mathematical formula (Equation 2-9), further preferably satisfy the relationship of the following mathematical formula (Equation 2-10), and satisfy the relationship of the following mathematical formula (Equation 2-11). Even more preferable.
  • the flow start temperature TF2 of the adherend having the flow start temperature is preferably 90 ° C. or higher. It is more preferably 100 ° C. or higher, further preferably 110 ° C. or higher, further preferably 120 ° C. or higher, and even more preferably 130 ° C. or higher.
  • the flow start temperature TF2 of the adherend having the flow start temperature is preferably 1200 ° C. or lower, more preferably 400 ° C. or lower.
  • the adherend is made of, for example, ceramic or a curable resin, there is no upper limit of the flow start temperature TF2 of the adherend.
  • the flow start temperature TF2 of the adherend is 90 ° C. or higher, it becomes easy to join the adherend without damaging the shape of the adherend.
  • the dielectric property DP1 of the high-frequency dielectric heating adhesive is a mathematical formula with respect to the dielectric property DP2 of each of the three adherends. It is preferable to satisfy the relationship (Equation 1). 0 ⁇ DP1-DP2 ...
  • dielectric property DP1 and dielectric property DP2 are values of the dielectric properties (tan ⁇ / ⁇ 'r) of the adhesive for high-frequency dielectric heating and three or more adherends, respectively, and tan ⁇ is 23 ° C. and a frequency. It is a dielectric loss tangent at 40.68 MHz, and ⁇ 'r is a relative permittivity at 23 ° C. and a frequency of 40.68 MHz.)
  • the high-frequency dielectric heating adhesive is the following mathematical formula (Equation 1A), (Equation 1B), and number (Equation 1C). ) Satisfying. 0 ⁇ DP1-DP2A ... (number 1A) 0 ⁇ DP1-DP2B ... (number 1B) 0 ⁇ DP1-DP2C ... (number 1C)
  • the difference (DP1-DP2) between the dielectric property DP1 of the high-frequency dielectric heating adhesive and the dielectric property DP2 of the adherend preferably satisfies the relationship of the following formula (Equation 1-1), and the following formula (Formula 1-). It is more preferable to satisfy the relationship of 2). 0.005 ⁇ DP1-DP2 ... (Equation 1-1) 0.01 ⁇ DP1-DP2 ... (Equation 1-2)
  • the difference (DP1-DP2) between the dielectric property DP1 of the high-frequency dielectric heating adhesive and the dielectric property DP2 of the adherend usually preferably satisfies the relationship of the following formula (Equation 1-3), and the following formula (number). It is more preferable to satisfy the relationship of 1-4).
  • the dielectric property DP1 of the high-frequency dielectric heating adhesive according to the present embodiment is preferably 0.005 or more, more preferably 0.008 or more, and further preferably 0.01 or more.
  • the dielectric property DP1 of the high-frequency dielectric heating adhesive according to the present embodiment is preferably 0.1 or less, more preferably 0.08 or less, further preferably 0.05 or less, and 0. It is particularly preferable that it is 0.03 or less.
  • the dielectric property DP1 of the high-frequency dielectric heating adhesive is 0.005 or more, the high-frequency dielectric heating adhesive does not generate a predetermined heat when subjected to the dielectric heating treatment, and the high-frequency dielectric heating adhesive and the cover are covered. It is possible to prevent a problem that it becomes difficult to firmly bond the body to the body.
  • the dielectric property DP1 of the high-frequency dielectric heating adhesive is 0.1 or less, overheating can be easily prevented, and damage to the portion of the adherend in contact with the high-frequency dielectric heating adhesive is unlikely to occur.
  • the dielectric property DP2 of each of the three or more adherends is preferably 0.015 or less, more preferably 0.01 or less, and 0.005 or less. Is even more preferable.
  • the dielectric property DP2 of the adherend is 0.015 or less, heat generation of the adherend can be suppressed, so that it becomes easy to join without damaging the shape of the adherend at the time of joining.
  • the dielectric property DP2 of the adherend is usually 0 or more.
  • the dielectric property (tan ⁇ / ⁇ 'r) is a value obtained by dividing the dielectric loss tangent (tan ⁇ ) measured using an impedance material device or the like by the relative permittivity ( ⁇ 'r) measured using an impedance material device or the like. Is.
  • the dielectric loss tangent (tan ⁇ ) and the relative permittivity ( ⁇ 'r) as the dielectric properties of the high-frequency dielectric heating adhesive and the adherend can be easily and accurately measured using an impedance material analyzer.
  • the details of the high-frequency dielectric heating adhesive and the method for measuring the dielectric properties of the adherend are as follows. First, a high-frequency dielectric heating adhesive and a sheet for measuring an adherend are obtained.
  • a measuring sheet having a uniform thickness is obtained by cutting out or cutting out from the structure.
  • a measurement sheet is obtained by making a sheet with a hot press machine or the like.
  • the thickness of the measuring sheet is, for example, 10 ⁇ m or more and 2 mm or less.
  • the sheet thus obtained was subjected to a relative permittivity ( ⁇ 'r) and a dielectric loss tangent (tan ⁇ ) under the condition of a frequency of 40.68 MHz at 23 ° C. using an RF impedance material analyzer E4991A (manufactured by Agent). Each is measured and the value of the dielectric property (tan ⁇ / ⁇ 'r) is calculated.
  • the shape of the high-frequency dielectric heating adhesive according to the present embodiment is not particularly limited, but is preferably a sheet shape. That is, the high-frequency dielectric heating adhesive according to the present embodiment is preferably an adhesive sheet (sometimes referred to as a high-frequency dielectric heating adhesive sheet). Since the high-frequency dielectric heating adhesive is an adhesive sheet, the time required for the manufacturing process of the structure can be further shortened.
  • the thickness TS1 of the adhesive sheet according to the present embodiment and the thickness TS2 of each of the three or more adherends satisfy the relationship of the following mathematical formula (Equation 3).
  • TS1 ⁇ TS2 ... (number 3) When the high-frequency dielectric heating adhesive according to the present embodiment is an adhesive sheet, by satisfying the relationship of the above formula (Equation 3), the heat generated from the adhesive sheet does not become excessive when a high-frequency electric field is applied, and the adhesive is adhered. The heat damage to the body can be further suppressed.
  • the thickness TS1 of the adhesive sheet according to the present embodiment is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, further preferably 30 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the upper limit of the thickness TS1 of the adhesive sheet is not particularly limited. As the thickness of the adhesive sheet increases, the weight of the entire structure obtained by adhering the adhesive sheet and the adherend also increases. Therefore, the thickness of the adhesive sheet is preferably within a range that does not cause any problem in actual use. .. Considering the practicality and moldability of the adhesive sheet, the thickness TS1 of the adhesive sheet according to the present embodiment is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, and further preferably 600 ⁇ m or less. ..
  • the thickness accuracy of the adhesive sheet according to the present embodiment is preferably within ⁇ 10%, more preferably within ⁇ 8%, and even more preferably within ⁇ 5%.
  • the thickness accuracy of the adhesive sheet according to the present embodiment is within ⁇ 10%, the laminated body can be stably installed in the joining device when joining. Further, since the pressure is uniformly applied to the adhesive sheet surface when the high frequency electric field is applied, it is possible to suppress the displacement and deformation of the laminated body.
  • the thickness accuracy of the adhesive sheet can be calculated by the method described in the item of Examples described later.
  • the thickness accuracy of the adhesive sheet is usually 0% or more.
  • the adhesive sheet as a high-frequency dielectric heating adhesive is easier to handle and improves workability at the time of joining with an adherend, as compared with the case of using a liquid adhesive that needs to be applied.
  • the adhesive sheet as a high-frequency dielectric heating adhesive can appropriately control the sheet thickness and the like. Therefore, the adhesive sheet can be applied to the roll-to-roll method, and the adhesive sheet can be applied to an arbitrary area and an arbitrary area according to the adhesion area with the adherend and the shape of the adherend by punching or the like. Can be processed into a shape. Therefore, the adhesive sheet as the adhesive for high-frequency dielectric heating has a great advantage from the viewpoint of the manufacturing process.
  • thermoplastic resin (A) The type of the thermoplastic resin (A) is not particularly limited.
  • the thermoplastic resin (A) is, for example, a polyolefin resin, a styrene resin, a polyacetal resin, a polycarbonate resin, an acrylic resin, a polyamide resin, from the viewpoint of being easily melted and having a predetermined heat resistance. It is preferably at least one selected from the group consisting of a polyimide resin, a polyvinyl acetate resin, a phenoxy resin and a polyester resin.
  • the thermoplastic resin (A) is preferably a polyolefin-based resin or a styrene-based resin, and more preferably a polyolefin-based resin. If the thermoplastic resin (A) is a polyolefin resin or a styrene resin, the high-frequency dielectric heating adhesive is likely to melt when a high-frequency electric field is applied, and the high-frequency dielectric heating adhesive and the adherend according to the present embodiment are used. Can be easily bonded.
  • the polyolefin-based resin includes a polyolefin-based resin having a polar moiety and a polyolefin-based resin having no polar moiety, and when specifying the presence or absence of a polar moiety, the polyolefin-based resin having a polar moiety or the polar moiety is specified. It is described as a polyolefin-based resin that does not have.
  • thermoplastic resin (A) is a polyolefin resin having a polar moiety.
  • the thermoplastic resin (A) may be a polyolefin resin having no polar moiety.
  • the polyolefin-based resin as the thermoplastic resin (A) is composed of, for example, a resin made of a homopolymer such as polyethylene, polypropylene, polybutene and polymethylpentene, and ethylene, propylene, butene, hexene, octene and 4-methylpentene and the like. Examples thereof include ⁇ -olefin resins made of a copolymer of monomers selected from the group.
  • the polyolefin-based resin as the thermoplastic resin (A) may be a single resin or a combination of two or more resins.
  • the polar moiety in the polyolefin-based resin having a polar moiety is not particularly limited as long as it is a moiety that can impart polarity to the polyolefin-based resin. Polyolefin-based resins having polar moieties are preferable because they exhibit high adhesive strength to the adherend.
  • the polyolefin-based thermoplastic resin having a polar moiety may be a copolymer of an olefin-based monomer and a monomer having a polar moiety.
  • the polyolefin-based thermoplastic resin having a polar moiety may be a resin obtained by introducing a polar moiety into an olefin-based polymer obtained by polymerization of an olefin-based monomer by modification such as an addition reaction.
  • the type of the olefin-based monomer constituting the polyolefin-based resin having a polar moiety is not particularly limited.
  • the olefin-based monomer include ethylene, propylene, butene, hexene, octene, 4-methyl-1-pentene and the like.
  • the olefin-based monomer may be used alone or in combination of two or more.
  • the olefin-based monomer is preferably at least one of ethylene and propylene from the viewpoint of excellent mechanical strength and stable adhesive properties.
  • the olefin-derived structural unit in the polyolefin-based resin having a polar moiety is preferably ethylene or a structural unit derived from propylene.
  • Examples of the polar moiety include a hydroxyl group, a carboxy group, a vinyl acetate structure, an acid anhydride structure, and the like.
  • Examples of the polar moiety include an acid-modified structure introduced into the polyolefin resin by acid modification.
  • the acid-modified structure as a polar site is a site introduced by acid-modifying a thermoplastic resin (for example, a polyolefin resin).
  • the compound used for acid modification of a thermoplastic resin is an unsaturated carboxylic acid derived from any of an unsaturated carboxylic acid, an acid anhydride of an unsaturated carboxylic acid, and an ester of an unsaturated carboxylic acid. Acid derivative components can be mentioned.
  • a polyolefin-based resin having an acid-modified structure may be referred to as an acid-modified polyolefin-based resin.
  • Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid and citraconic acid.
  • Examples of the acid anhydride of the unsaturated carboxylic acid include acid anhydrides of unsaturated carboxylic acids such as maleic anhydride, itaconic anhydride and citraconic anhydride.
  • ester of unsaturated carboxylic acid examples include methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dimethyl maleate, monomethyl maleate, dimethyl fumarate, diethyl fumarate, and dimethyl itaconate.
  • Esters of unsaturated carboxylic acids such as diethyl itaconate, dimethyl citraconate, diethyl citraconate and dimethyl tetrahydrohydride phthalate.
  • the melt flow rate (hereinafter, may be referred to as MFR) of the thermoplastic resin (A) is preferably 0.5 g / 10 min or more, preferably 1.0 g. It is more preferably / 10 min or more, and further preferably 2.0 g / 10 min or more. In the high-frequency dielectric heating adhesive according to the present embodiment, the melt flow rate of the thermoplastic resin (A) is preferably 100 g / 10 min or less, more preferably 90 g / 10 min or less, and 80 g / 10 min or less.
  • the MFR of the high-frequency dielectric heating adhesive is 0.5 g / 10 min or more, the fluidity can be maintained and the film thickness accuracy can be easily obtained. For example, the film film accuracy when the film is formed by extrusion molding can be easily obtained. ..
  • the MFR of the high-frequency dielectric heating adhesive is 100 g / 10 min or less, film-forming property can be easily obtained. For example, when the MFR is 50 g / 10 min or less, the film-forming property when a film is formed by extrusion molding is likely to be improved.
  • the MFR of the thermoplastic resin (A) can be measured at a predetermined test temperature and load according to, for example, JIS K 7210-1: 2014 or JIS K 6924-1: 1997.
  • the test conditions are, for example, when the structural unit derived from the olefin in the thermoplastic resin (A) is polyethylene, the test temperature is 190 ° C. and the load is 2.16 kg.
  • the structural unit derived from olefin is ethylene-vinyl acetate copolymer
  • the test temperature is 190 ° C. and the load is 2.16 kg.
  • the dielectric filler (B) is a filler that generates heat when a high frequency electric field is applied.
  • the dielectric filler (B) is preferably a filler that generates heat when a high frequency electric field having a frequency range of 3 MHz or more and 300 MHz or less is applied.
  • the dielectric filler (B) is preferably a filler that generates heat by applying a high frequency electric field having a frequency range of 3 MHz or more and 300 MHz or less, for example, a frequency of 13.56 MHz, 27.12 MHz or 40.68 MHz.
  • the dielectric filler (B) includes zinc oxide, silicon carbide (SiC), anatase-type titanium oxide, barium titanate, barium titanate, lead titanate, potassium niobate, rutyl-type titanium oxide, and aluminum hydrated aluminum silicate. It is preferable to use one kind or a combination of two or more kinds of an inorganic material having crystalline water such as hydrated aluminosilicate of an alkali metal or an inorganic material having crystalline water such as hydrated aluminosilicate of an alkaline earth metal.
  • the dielectric filler (B) preferably contains at least one selected from the group consisting of zinc oxide, silicon carbide, barium titanate and titanium oxide.
  • the dielectric filler (B) has a wide variety of types, can be selected from various shapes and sizes, and the adhesive properties and mechanical properties of the high-frequency dielectric heating adhesive can be improved according to the application. It is more preferably zinc oxide.
  • zinc oxide As the dielectric filler (B), a colorless high-frequency dielectric heating adhesive can be obtained.
  • Zinc oxide has the lowest density among the dielectric fillers, so when the adherend is bonded using a high-frequency dielectric heating adhesive containing zinc oxide as the dielectric filler (B), an adhesive containing another dielectric filler. It is difficult to increase the total weight of the bonded body as compared with the case of using.
  • Zinc oxide is not too hard among ceramics, so it does not easily damage the equipment for manufacturing high-frequency dielectric heating adhesives. Since zinc oxide is an inert oxide, it causes little damage to the thermoplastic resin even when blended with the thermoplastic resin.
  • the titanium oxide as the dielectric filler (B) is preferably at least one of anatase-type titanium oxide and rutile-type titanium oxide, and more preferably anatase-type titanium oxide from the viewpoint of excellent dielectric properties. ..
  • the volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is preferably 5% by volume or more, more preferably 8% by volume or more, and further preferably 10% by volume or more. ..
  • the volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is preferably 50% by volume or less, more preferably 40% by volume or less, and further preferably 35% by volume or less. , 25% by volume or less is more preferable.
  • the volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is 5% by volume or more, the heat generation property is improved, and it is easy to firmly bond the high-frequency dielectric heating adhesive and the adherend. ..
  • the volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is 50% by volume or less, it is possible to prevent the strength of the adhesive from decreasing, and as a result, the bonding strength is increased by using the adhesive. Can be prevented from decreasing.
  • the high-frequency dielectric heating adhesive according to the present embodiment is an adhesive sheet
  • the volume content of the dielectric filler (B) in the adhesive sheet is 50% by volume or less, so that flexibility as a sheet is obtained. Since it is easy to prevent a decrease in toughness, it is easy to process a high-frequency dielectric heating adhesive sheet into a desired shape in a subsequent step.
  • the total volume of the thermoplastic resin (A) and the dielectric filler (B) is contained.
  • the volume content of the dielectric filler (B) is preferably 5% by volume or more, more preferably 8% by volume or more, and further preferably 10% by volume or more.
  • the volume content of the dielectric filler (B) is preferably 50% by volume or less, more preferably 40% by volume or less, based on the total volume of the thermoplastic resin (A) and the dielectric filler (B). , 35% by volume or less, more preferably 25% by volume or less.
  • the volume average particle size of the dielectric filler (B) is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and further preferably 3 ⁇ m or more.
  • the volume average particle size of the dielectric filler (B) is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the high-frequency dielectric heating adhesive exhibits high heat generation performance when a high-frequency electric field is applied, and the adhesive layer is strong with the adherend in a short time. Can be glued to.
  • the high-frequency dielectric heating adhesive exhibits high heat generation performance when a high-frequency electric field is applied, and the adhesive layer is strong with the adherend in a short time. Can be glued to. Further, when the high-frequency dielectric heating adhesive according to the present embodiment is an adhesive sheet, the volume average particle diameter of the dielectric filler (B) is 30 ⁇ m or less, so that the strength of the high-frequency dielectric heating adhesive sheet can be prevented from decreasing.
  • the volume average particle size of the dielectric filler (B) is measured by the following method.
  • the particle size distribution of the dielectric filler (B) is measured by the laser diffraction / scattering method, and the volume average particle size is calculated from the result of the particle size distribution measurement according to JIS Z 8819-2: 2001.
  • the high-frequency dielectric heating adhesive according to the present embodiment is an adhesive sheet
  • the relationship between the average particle size DF of the dielectric filler (B) and the thickness TS1 of the adhesive sheet is 1 ⁇ TS1 / DF ⁇ 2500. It is preferable to meet.
  • TS1 / DF is preferably 1 or more, more preferably 2 or more, further preferably 5 or more, further preferably 10 or more, and even more preferably 20 or more. preferable.
  • TS1 / DF is 1 or more, it is possible to prevent a decrease in bonding strength due to contact between the dielectric filler (B) and the adherend during bonding.
  • TS1 / DF is preferably 2500 or less, more preferably 2000 or less, further preferably 1750 or less, further preferably 1000 or less, and even more preferably 500 or less. It is more preferably 100 or less, and even more preferably 50 or less.
  • TS1 / DF is 2500 or less, the load on the sheet manufacturing apparatus can be suppressed when the high-frequency dielectric heating adhesive sheet is manufactured.
  • the high-frequency dielectric heating adhesive according to the present embodiment may or may not contain an additive.
  • the additive may be, for example, a tackifier, a plasticizer, a wax, a colorant, an antioxidant, an ultraviolet absorber, an antibacterial agent, or a coupling.
  • Agents, viscosity modifiers, organic fillers, inorganic fillers and the like can be mentioned.
  • Organic fillers and inorganic fillers as additives are different from dielectric fillers.
  • the tackifier and the plasticizer can improve the melting characteristics and the adhesive characteristics of the high-frequency dielectric heating adhesive.
  • the tackifier include rosin derivatives, polyterpene resins, aromatic-modified terpene resins, hydrides of aromatic-modified terpene resins, terpene phenol resins, kumaron inden resins, aliphatic petroleum resins, aromatic petroleum resins, and aromatics.
  • Examples include hydrides of group petroleum resins.
  • the plasticizer include petroleum-based process oils, natural oils, dialkyl dibasates, and low molecular weight liquid polymers.
  • the petroleum-based process oil include paraffin-based process oils, naphthen-based process oils, aromatic process oils, and the like.
  • Examples of the natural oil include castor oil, tall oil and the like.
  • Examples of the dialkyl dibasic acid include dibutyl phthalate, dioctyl phthalate, and dibutyl adipate.
  • Examples of the low molecular weight liquid polymer include liquid polybutene and liquid polyisoprene.
  • the content of the additive in the high-frequency dielectric heating adhesive is usually 0.01 based on the total amount of the high-frequency dielectric heating adhesive. It is preferably 0% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more.
  • the content of the additive in the high-frequency dielectric heating adhesive is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the high-frequency dielectric heating adhesive according to this embodiment preferably does not contain a solvent. According to the high-frequency dielectric heating adhesive that does not contain a solvent, the problem of VOC (Volatile Organic Compounds) caused by the adhesive used for adhesion to the adherend is unlikely to occur.
  • VOC Volatile Organic Compounds
  • the high-frequency dielectric heating adhesive according to the present embodiment does not contain carbon or a carbon compound containing carbon as a main component (for example, carbon black or the like) and a conductive substance such as metal.
  • the high-frequency dielectric heating adhesive according to the present embodiment is, for example, carbon steel, ⁇ -iron, ⁇ -iron, ⁇ -iron, copper, iron oxide, brass, aluminum, iron-nickel alloy, iron-nickel-chromium alloy, carbon fiber. And preferably do not contain carbon black.
  • the content of the conductive substance in the adhesive is independently 20% by mass or less based on the total amount of the adhesive. It is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 1% by mass or less, and further preferably 0.1% by mass or less. preferable.
  • the content of the conductive substance in the adhesive is particularly preferably 0% by mass.
  • the total content of the thermoplastic resin (A) and the dielectric filler (B) in the high-frequency dielectric heating adhesive according to the present embodiment is preferably 80% by mass or more, and more preferably 90% by mass or more. It is preferably 99% by mass or more, and more preferably 99% by mass or more.
  • the high-frequency dielectric heating adhesive according to the present embodiment can be produced, for example, by mixing the above-mentioned components.
  • the high-frequency dielectric heating adhesive according to the present embodiment is an adhesive sheet, for example, each of the above components is premixed, kneaded using a known kneading device such as an extruder and a heat roll, and extruded. It can be manufactured by a known molding method such as calendar molding, injection molding, and casting molding. Among these exemplified molding methods, extrusion molding is preferable.
  • the material of the adherend is not particularly limited.
  • the material of the adherend may be any material of an organic material and an inorganic material (including a metal material and the like), and may be a composite material of an organic material and an inorganic material.
  • the material of the adherend is preferably an organic material.
  • the organic material as the material of the adherend include a plastic material and a rubber material.
  • the plastic material include polypropylene resin, polyethylene resin, epoxy resin, polyurethane resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polycarbonate resin (PC resin), polyamide resin (nylon 6 and nylon 66, etc.). , Polyester resin (polyethylene terephthalate (PET resin) and polybutylene terephthalate resin (PBT resin), etc.), polyacetal resin (POM resin), polymethylmethacrylate resin, polystyrene resin and the like.
  • the rubber material examples include styrene-butadiene rubber (SBR), ethylene propylene rubber (EPR), and silicone rubber.
  • the adherend may be a foaming material made of an organic material.
  • the material of the adherend is a thermoplastic resin
  • it is preferable that the thermoplastic resin contained in the adherend and the thermoplastic resin (A) contained in the high-frequency dielectric heating adhesive are different resins. In this case, it becomes easy to prevent damage to the adherend, so that the joining can be performed in a shorter time.
  • the adherend examples include glass material, cement material, ceramic material, metal material and the like.
  • the adherend may be a fiber reinforced resin (FRP) which is a composite material of the fiber and the above-mentioned plastic material.
  • FRP fiber reinforced resin
  • the plastic material in this fiber reinforced resin is, for example, polypropylene resin, polyethylene resin, polyurethane resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polycarbonate resin (PC resin), polyamide resin (nylon 6 and nylon 66, etc.).
  • Polyester resin polyethylene terephthalate (PET resin) and polybutylene terephthalate resin (PBT resin), etc.
  • POM resin polyacetal resin
  • polymethylmethacrylate resin epoxy resin, polystyrene resin, etc. It is a kind.
  • fiber in the fiber reinforced resin include glass fiber, Kevlar fiber, carbon fiber and the like.
  • the adherend has low conductivity.
  • the plurality of adherends are made of the same material or different materials from each other.
  • the shape of the adherend is not particularly limited.
  • the adherend preferably has a surface on which the adhesive sheet can be bonded, and is preferably in the form of a sheet or a plate.
  • the shapes and dimensions of the adherends may be the same or different from each other. It is preferable that the thickness of the adherend independently satisfies the relationship of the above-mentioned mathematical formula (Equation 3).
  • the structure according to the present embodiment includes the high-frequency dielectric heating adhesive according to the present embodiment and three or more adherends. In the structure according to the present embodiment, three or more adherends are joined by the high-frequency dielectric heating adhesive according to the present embodiment.
  • the structure according to the present embodiment is preferably a structure (for example, a laminated body) in which three or more adherends are laminated via a high-frequency dielectric heating adhesive.
  • adherends may be bonded to each other with an adhesive having the same composition (adhesive for high frequency dielectric heating) or bonded to each other with an adhesive having a different composition (adhesive for high frequency dielectric heating).
  • the composition of the high-frequency dielectric heating adhesive is appropriately selected from the viewpoints of the material of the adherend to which the high-frequency dielectric heating adhesive is in contact, the adhesive strength to the adherend, the bonding time, and the like. Is preferable.
  • FIG. 1 shows a schematic cross-sectional view of the structure 1 as an example of the present embodiment.
  • the structure 1 is between the first adherend 110, the second adherend 120 and the third adherend 130 as the three adherends, and the first adherend 110 and the second adherend 120.
  • the first high-frequency dielectric heating adhesive 11 arranged and the second high-frequency dielectric heating adhesive 12 arranged between the second adherend 120 and the third adherend 130 are included.
  • the first adherend 110, the first high-frequency dielectric heating adhesive 11, the second adherend 120, the second high-frequency dielectric heating adhesive 12, and the third adherend 130 are laminated in this order. It is a laminated body.
  • the material of the adherend as the outermost layer in the laminated body is preferably an organic material.
  • the material of the first adherend 110 and the third adherend 130 as the outermost layer is an organic material.
  • the position and thickness of the high-frequency dielectric heating adhesive are not limited to the position and thickness shown in FIG.
  • the shape, size, number, etc. of the adherend are not limited to the shape, size, number, etc. shown in FIG.
  • the shape of the adherend may be a rectangular shape of the cut surface in the direction of gravity, or may be a shape having an inclination such as a triangle.
  • the structure according to the present embodiment is not limited to a structure in which a plurality of adherends as shown in FIG. 1 are laminated via a high-frequency dielectric heating adhesive.
  • the method for manufacturing the structure according to the present embodiment includes a step of arranging the high-frequency dielectric heating adhesive according to the present embodiment between three or more adherends and applying a high-frequency electric field to the high-frequency dielectric heating adhesive.
  • the process includes joining three or more adherends.
  • three or more adherends and a high-frequency dielectric heating adhesive are arranged between electrodes of a dielectric heating device, and three or more adherends and high-frequency dielectric heating are arranged. It is preferable to apply a high frequency electric field while pressurizing the adhesive with the electrode. By applying a high-frequency electric field while pressurizing with the electrodes in this way, it becomes easier to manufacture the structure in a shorter time.
  • the manufacturing method using the high-frequency dielectric heating adhesive according to the present embodiment only a predetermined portion can be locally heated from the outside by the dielectric heating device. Therefore, even when the adherend is a large and complicated three-dimensional structure or a large and complicated three-dimensional structure and higher dimensional accuracy is required, the high-frequency dielectric heating adhesive according to the present embodiment is required.
  • the production method using an agent is effective.
  • the joining method according to one aspect of the present embodiment includes the following steps P1 and P2.
  • Step P1 is a step of arranging the high-frequency dielectric heating adhesive according to the present embodiment between three or more adherends.
  • the adherend and the high-frequency dielectric heating adhesive are alternately arranged, and the adherend is interposed via the high-frequency dielectric heating adhesive.
  • the high-frequency dielectric heating adhesive may be sandwiched between a part of the adherends, at a plurality of locations between the adherends, or across the entire surface between the adherends. From the viewpoint of improving the adhesive strength between the adherends, it is preferable to sandwich the high-frequency dielectric heating adhesive over the entire joint surface between the adherends. Further, as one aspect of sandwiching the high-frequency dielectric heating adhesive in a part between the adherends, the high-frequency dielectric heating adhesive is arranged in a frame shape along the outer periphery of the joint surface between the adherends. An embodiment of sandwiching between adherends can be mentioned.
  • the bonding strength between the adherends can be obtained, and the structure is compared with the case where the high-frequency dielectric heating adhesive is arranged over the entire joint surface. Can be made lighter. Further, according to one aspect in which the high-frequency dielectric heating adhesive is sandwiched between a part of the adherends, the amount of the high-frequency dielectric heating adhesive used can be reduced or the size can be reduced, so that the entire joint surface can be reduced. The high-frequency dielectric heating treatment time can be shortened as compared with the case where the high-frequency dielectric heating adhesive is arranged.
  • Step P2 is a step of applying a high-frequency electric field to the high-frequency dielectric heating adhesive arranged between the adherends in step P1 to join three or more adherends.
  • the frequency of the high frequency electric field to be applied is, for example, 3 MHz or more and 300 MHz or less.
  • a high frequency electric field can be applied to the high frequency dielectric heating adhesive.
  • FIG. 2 shows a schematic diagram illustrating a high-frequency dielectric heating process using the high-frequency dielectric heating adhesive and the dielectric heating device according to the present embodiment.
  • the dielectric heating device 50 shown in FIG. 2 includes a first high frequency electric field application electrode 51, a second high frequency electric field application electrode 52, and a high frequency power supply 53.
  • the first high-frequency electric field application electrode 51 and the second high-frequency electric field application electrode 52 are arranged so as to face each other.
  • the first high frequency electric field application electrode 51 and the second high frequency electric field application electrode 52 have a pressing mechanism.
  • first high frequency electric field application electrode 51 and second high frequency electric field application electrode 52 three or more adherends arranged between the electrodes and an adhesive for high frequency dielectric heating. It is also possible to apply a high frequency electric field while pressurizing and.
  • FIG. 2 shows an example of a method of manufacturing the structure 1 (see FIG. 1) using the dielectric heating device 50.
  • the dielectric heating device 50 By the dielectric heating device 50, the first adherend 110, the first high-frequency dielectric heating adhesive 11, the second adherend 120, and the second adherend are placed between the first high-frequency electric field application electrode 51 and the second high-frequency electric field application electrode 52. 2
  • the high-frequency dielectric heating adhesive 12 and the third adherend 130 can be pressure-treated.
  • the first high-frequency electric field application electrode 51 and the second high-frequency electric field application electrode 52 form a pair of flat plate electrodes parallel to each other, such an electrode arrangement type may be referred to as a parallel plate type.
  • a parallel plate type high frequency dielectric heating device for applying a high frequency electric field.
  • the entire high frequency dielectric heating adhesive can be heated, and the adherend and the high frequency dielectric can be heated. Can be bonded to the heating adhesive in a short time.
  • the dielectric heating device 50 has a first high-frequency dielectric heating adhesive 11 and a second sandwiched between the first adherend 110, the second adherend 120, and the third adherend 130. Dielectric heating treatment is performed via the high-frequency dielectric heating adhesive 12.
  • the first high-frequency electric field application electrode 51 and the second high-frequency electric field application electrode 52 pressurize the first adherend 110, the second adherend 120, and the dielectric heating device 50.
  • the third dielectric 130 is joined. It should be noted that, for example, three or more adherends may be joined by pressing only with the high-frequency dielectric heating adhesive and the weight of the adherend without performing the pressure treatment.
  • the dispersed dielectric filler (not shown) absorbs high frequency energy.
  • the dielectric filler functions as a heat generating source, and the heat generated by the dielectric filler melts the thermoplastic resin component, and even if the treatment is performed for a short time, the first adherend 110 and the second adherend are finally adhered.
  • the body 120 and the third dielectric 130 can be firmly joined.
  • first high frequency electric field application electrode 51 and the second high frequency electric field application electrode 52 have a press mechanism, they also function as a press device. Therefore, by pressurizing in the compression direction by the first high frequency electric field application electrode 51 and the second high frequency electric field application electrode 52, and by heating and melting the first high frequency dielectric heating adhesive 11 and the second high frequency dielectric heating adhesive 12.
  • the first adherend 110, the second adherend 120, and the third adherend 130 can be joined more firmly.
  • the case where the structure 1 shown in FIG. 1 is manufactured is described as an example, but the present invention is not limited to this example.
  • the high-frequency dielectric heating conditions can be changed as appropriate, but the following conditions are preferable.
  • the output of the high frequency electric field is preferably 10 W or more, more preferably 30 W or more, further preferably 50 W or more, and even more preferably 80 W or more.
  • the output of the high frequency electric field is preferably 50,000 W or less, more preferably 20,000 W or less, further preferably 15,000 W or less, still more preferably 10,000 W or less. It is even more preferable that it is 1,000 W or less. If the output of the high-frequency electric field is 10 W or more, it is possible to prevent the problem that the temperature does not easily rise during the dielectric heating treatment, so that it is easy to obtain good bonding strength. If the output of the high-frequency electric field is 50,000 W or less, it is easy to prevent a problem that temperature control by dielectric heating treatment becomes difficult.
  • the application time of the high frequency electric field is preferably 1 second or longer.
  • the application time of the high frequency electric field is preferably 300 seconds or less, more preferably 240 seconds or less, further preferably 180 seconds or less, further preferably 120 seconds or less, and 90 seconds or less. Is even more preferable. If the application time of the high-frequency electric field is 1 second or more, it is possible to prevent the problem that the temperature does not easily rise during the dielectric heating treatment, so that it is easy to obtain a good adhesive force. If the application time of the high-frequency electric field is 300 seconds or less, it is easy to prevent problems such as a decrease in the manufacturing efficiency of the structure, an increase in the manufacturing cost, and further thermal deterioration of the adherend.
  • the frequency of the high frequency electric field to be applied is preferably 1 kHz or more, more preferably 1 MHz or more, more preferably 3 MHz or more, further preferably 5 MHz or more, and more preferably 10 MHz or more. More preferred.
  • the frequency of the high frequency electric field to be applied is preferably 300 MHz or less, more preferably 100 MHz or less, further preferably 80 MHz or less, and even more preferably 50 MHz or less.
  • the industrial frequency bands 13.56 MHz, 27.12 MHz or 40.68 MHz assigned by the International Telecommunication Union are also used in the manufacturing method and joining method by high frequency dielectric heating of the present embodiment.
  • the high-frequency dielectric heating adhesive of the present embodiment satisfies the melt volume rate of 1 cm 3/10 min or more and 300 cm 3/10 min or less within the above-mentioned lower limit temperature TL or more and upper limit temperature TU or less.
  • the heating adhesive can obtain appropriate fluidity. Therefore, three or more adherends can be joined at one time in a short time, and the occurrence of misalignment between the adherends can be suppressed.
  • Adhesives for high-frequency dielectric heating are superior in water resistance and moisture resistance to general adhesives.
  • the high-frequency dielectric heating adhesive according to this embodiment is locally heated by applying a high-frequency electric field. Therefore, according to the high-frequency dielectric heating adhesive according to the present embodiment, it is easy to prevent a problem that the entire adherend is damaged at the time of joining with the adherend.
  • the high-frequency dielectric heating treatment is not limited to the dielectric heating device in which the electrodes described in the above embodiment are arranged to face each other, and a lattice electrode type high-frequency dielectric heating device may be used.
  • the lattice electrode type high-frequency dielectric heating device has lattice electrodes in which electrodes of the first polarity and electrodes of the second polarity opposite to the electrodes of the first polarity are alternately arranged on the same plane at regular intervals. ..
  • an embodiment using a dielectric heating device in which electrodes are arranged facing each other is exemplified for simplification.
  • thermoplastic resin (A) and the dielectric filler (B) shown in Table 1 were premixed.
  • the premixed material was supplied to the hopper of a 30 mm ⁇ twin-screw extruder, the cylinder set temperature and the die temperature were appropriately adjusted according to the type of the thermoplastic resin (A), and the premixed material was melt-kneaded. After cooling the melt-kneaded material, the material was cut to prepare granular pellets.
  • the prepared granular pellets were put into the hopper of a single-screw extruder equipped with a T-die, and the cylinder temperature and the die temperature were appropriately adjusted according to the type of the thermoplastic resin (A), and the film was transferred from the T-die.
  • the sheet-shaped high-frequency dielectric heating adhesive (high-frequency dielectric heating adhesive sheet) having a thickness of 400 ⁇ m according to Examples 1 to 6 and Comparative Examples 1 to 3 is used. Each was made.
  • thermoplastic resin (A), the dielectric filler (B) and the adherend shown in Table 1 is as follows.
  • LDPE-1 Low-density polyethylene (manufactured by Sumitomo Chemical Co., Ltd., trade name "Sumikasen L420", MFR: 3.5 g / 10 min (based on JIS K 7210-1: 2014))
  • LDPE-2 Low-density polyethylene (manufactured by Sumitomo Chemical Co., Ltd., trade name "Sumikasen L705", MFR: 7.0 g / 10 min (based on JIS K 7210-1: 2014))
  • LDPE-3 Low-density polyethylene (manufactured by Sumitomo Chemical Co., Ltd., trade name "Sumikasen G801", MFR: 20 g / 10 min (based on JIS K 7210-1: 2014))
  • LDPE-4 Low density polyethylene (manufactured by Sumitomo Chemical Co., Ltd., trade name "Sumikasen G807”, MFR: 75g
  • volume average particle size of dielectric filler The particle size distribution of the dielectric filler was measured by the laser diffraction / scattering method. From the results of the particle size distribution measurement, the volume average particle size was calculated according to JIS Z 8819-2: 2001. The calculated volume average particle size of zinc oxide (ZnO) was 11 ⁇ m.
  • a plate-shaped adherend having a length of 75 mm, a width of 25 mm, and a thickness of 2 mm was produced using a glass fiber polypropylene resin plate.
  • the flow start temperature TF2 of this adherend is 183 ° C.
  • the dielectric property DP2 of this adherend is 0.000.
  • the softening temperature and the flow start temperature of the high-frequency dielectric heating adhesive were measured using a descent type flow tester (manufactured by Shimadzu Corporation, model number "CFT-100D"). Using a die with a hole shape of ⁇ 2.0 mm, a length of 5.0 mm, and a cylinder with an inner diameter of 11.329 mm with a load of 5.0 kg, while raising the temperature of the measurement sample at a heating rate of 10 ° C./min, The stroke displacement rate (mm / min) that fluctuates with the temperature rise was measured to obtain a temperature-dependent chart of the stroke displacement rate of the sample. In this chart, the temperature of the peak obtained on the low temperature side was defined as the softening temperature.
  • the flow start temperature of the adherend was measured in the same manner as described above by cutting the adherend into pieces having a size of about 2 mm ⁇ 2 mm ⁇ 2 mm to prepare a measurement sample.
  • the thermal decomposition temperature of the adhesive for high frequency dielectric heating was measured using a thermal analysis measuring device (manufactured by Shimadzu Corporation, thermal analyzer TG-DTA simultaneous measuring device, model number "DTG-60"). The measurement conditions were heating from 30 ° C. to 500 ° C. at a heating rate of 10 ° C./min under an air atmosphere. The temperature at the peak top of the exothermic peak appearing on the low temperature side of the DTA curve was defined as the thermal decomposition temperature (unit: ° C.) in the vicinity of the temperature at which the weight loss appearing in the obtained TG curve began to occur.
  • MVR melt volume rate
  • the melt volume rate (MVR) of the high-frequency dielectric heating adhesive was measured using a descent type flow tester (manufactured by Shimadzu Corporation, model number "CFT-100D").
  • the measurement conditions were a die with a hole shape of ⁇ 2.0 mm, a length of 5.0 mm, and a cylinder with an inner diameter of 11.329 mm, and the measurement load was as follows.
  • the measured load at a temperature 10 ° C higher than the softening temperature of the high-frequency dielectric heating adhesive (lower limit temperature TL: softening temperature (° C) + 10 ° C) is 20 kg, which is 10 ° C higher than the thermal decomposition temperature of the high-frequency dielectric heating adhesive.
  • the measured load at a low temperature (upper limit temperature TU: thermal decomposition temperature (° C.) -10 ° C.) was 5 kg.
  • MVR was measured at the lower limit temperature TL and the upper limit temperature TU.
  • the thickness of 25 randomly selected high-frequency dielectric heating adhesive sheets was measured under the condition of 23 ° C.
  • the thickness was measured using a constant pressure thickness measuring instrument manufactured by Teclock Co., Ltd. (model number: "PG-02J", standard: JIS K 6783, JIS Z 1702, and JIS Z 1709). Based on the measurement results, the average thickness T ave , the maximum thickness T max , and the minimum thickness T min were calculated.
  • the thickness accuracy on the plus side was calculated by the following formula (Equation 4A), and the thickness accuracy on the minus side was calculated by the following formula (Equation 4B). The thickness accuracy is displayed based on the larger value of the thickness accuracy on the plus side and the thickness accuracy on the minus side.
  • the thickness accuracy on the plus side is + 3% and the value of the thickness accuracy on the minus side is -2%
  • the thickness accuracy is displayed as ⁇ 3%.
  • the adhesive sheet was cut into a size of 30 mm ⁇ 30 mm.
  • the dielectric material test fixture 16453A manufactured by Agent
  • the RF impedance material analyzer E4991A manufactured by Agent
  • the parallel plate method was used under the condition of a frequency of 40.68 MHz at 23 ° C.
  • the relative permittivity ( ⁇ 'r) and the dielectric loss tangent (tan ⁇ ) were measured, respectively. Based on the measurement results, the value of the dielectric property (tan ⁇ / ⁇ 'r) was calculated.
  • a structure ST was produced by laminating three adherends WK1, WK2, and WK3.
  • a part of the electrode and the adhesive sheet is shaded so that the electrode and the adhesive sheet can be easily distinguished.
  • the produced high-frequency dielectric heating adhesive adheresive sheet
  • a plate-shaped adherend WK1 and WK3 having a length of 75 mm, a width of 25 mm and a thickness of 2 mm and a plate-shaped adherend WK2 having a length of 55 mm, a width of 25 mm and a thickness of 2 mm were laminated.
  • the adherend is the above-mentioned glass fiber polypropylene resin plate.
  • the adhesive sheets AS1 and AS2 are positioned at the end portions of the adherends WK1 and WK3 in the length direction and in the center of the adherend WK2 in the length direction. Placed in.
  • the materials of the adherends WK1, WK2, and WK3 were all the same.
  • the adherend and the adhesive sheet laminated in this way were fixed between the electrodes ELD1 and ELD2 of the high-frequency dielectric heating device (manufactured by Yamamoto Vinita, product name "YRP-400T-A").
  • the shape of the pressing surface of the electrodes ELD1 and ELD2 was a square having a size of 25 mm ⁇ 25 mm.
  • the adhesive sheets AS1 and AS2 and the electrodes ELD1 and ELD2 were fixed so as to overlap each other.
  • the adhesiveness of the prepared test piece for adhesiveness evaluation was evaluated according to the following criteria.
  • the tensile shear force (unit: MPa) as the adhesive force was measured using the test piece for adhesiveness evaluation prepared by using the high-frequency dielectric heating adhesive of each example.
  • a universal tensile tester manufactured by Instron, product name "Instron 5581" was used for the measurement of the tensile shear force.
  • the tensile speed in the measurement of the tensile shear force was 10 mm / min.
  • the adherend WK1 and the adherend WK3 were sandwiched between chucks of a testing machine, and the tensile shear force was measured according to JIS K 6850: 1999.
  • adherend B a plate-shaped adherend having a length of 12.5 mm, a width of 25 mm, and a thickness of 2 mm was prepared.
  • the adherend B was cut in half diagonally of the above-mentioned length and thickness when viewed from the side surface to obtain the adherend WK4 and the adherend WK5.
  • the adherend WK4 and the adherend WK5 obtained by halving have an inclined surface and an inclination angle of about 9.1 °.
  • the adherend A and the adherend B are made of the same material, and are the above-mentioned glass fiber polypropylene resin plate.
  • the adherend WK6, the adhesive sheet AS4, the adherend WK5, the adhesive sheet AS3, and the adherend WK4 were stacked in this order.
  • both ends of the adherends WK4, WK5, and WK6 in the length direction and both ends of the adhesive sheets AS3 and AS4 in the length direction were arranged at the same positions. Further, the adhesive sheet AS3 was superposed on the inclined surface of the adherend WK5, and the inclined surface of the adherend WK4 was laminated on the adhesive sheet AS3 so as to face the inclined surface of the adherend WK5. The adherend and the adhesive sheet laminated in this way were fixed between the electrodes ELD1 and ELD2 of the high-frequency dielectric heating device (manufactured by Yamamoto Vinita, product name "YRP-400T-A").
  • the shape of the pressing surface of the electrodes ELD1 and ELD2 was a square having a size of 25 mm ⁇ 25 mm.
  • the adhesive sheets AS3 and AS4 and the electrodes ELD1 and ELD2 were fixed so as to overlap each other.
  • a high-frequency electric field is applied by the high-frequency power supply HF connected to the electrodes ELD1 and ELD2 under the following high-frequency electric field application conditions to bond the adhesive sheet and the adherend, and a test piece for adhesiveness evaluation. (Structure ST2) was produced.
  • the pressing pressure when a high-frequency electric field is applied is the pressure applied to the joint portion of the adherend.
  • ⁇ High frequency electric field application condition Frequency: 40.68MHz Output: 50W Application time: 20 seconds Pressing pressure: 0.75 MPa
  • the total was set to (L1 + L2).
  • the horizontal distances L1 and L2, which represent the deviations between the adherends, were measured as follows. As shown in FIG.
  • the high-frequency dielectric heating adhesives of Examples 1 to 6 were able to bond three adherends at once in a short time, and were able to suppress displacement between the adherends.
  • three adherends are bonded with a bonding strength of 1 MPa or more, and there is little deviation between the adherends.
  • Comparative Examples 1 and 3 since the MVR of the high-frequency dielectric heating adhesive exceeds 300 cm 3/10 min, the fluidity of the adhesive when dielectric heating is bonded is too large. Therefore, it is considered that the adherends were displaced from each other when the adherends were joined using the adhesives of Comparative Examples 1 and 3.
  • the glass fiber polypropylene resin plate of the adherend has a flow start temperature TF2 of 183 and a dielectric property DP2 of 0.000. Therefore, the flow start temperature difference TF2-TF1 is the difference between the flow start temperature TF2 of the adherend and the flow start temperature TF1 of the high-frequency dielectric heating adhesive of each example. For example, in Example 1, from Table 1, since the flow start temperature TF1 of the high-frequency dielectric heating adhesive is 121 ° C., the flow start temperature difference TF2-TF1 is 62 ° C. Further, the difference in dielectric properties DP1-DP2 becomes the same value as the value of the high-frequency dielectric heating adhesive as a result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

3つ以上の被着体(110,120,130)を接合させるための高周波誘電加熱用接着剤(11,12)である。前記高周波誘電加熱用接着剤(11,12)は、熱可塑性樹脂と、高周波電界の印加により発熱する誘電フィラーとを含む。前記高周波誘電加熱用接着剤(11,12)は、下限温度TL、および上限温度TU以下における、MVRが、1cm3/10min以上、300cm3/10min以下であり、前記下限温度TL(単位:℃)は、下記数式(数11)で規定され、前記上限温度TU(単位:℃)は、下記数式(数12)で規定される。 TL=前記高周波誘電加熱用接着剤の軟化温度TM+10℃ …(数11) TU=前記高周波誘電加熱用接着剤の熱分解温度TD-10℃ …(数12)

Description

高周波誘電加熱用接着剤、構造体及び構造体の製造方法
 本発明は、高周波誘電加熱用接着剤、構造体及び構造体の製造方法に関する。
 複数の被着体同士を接合して積層体を製造する方法として、例えば、接着剤を被着体の間に介在させ、誘電加熱処理、誘導加熱処理、超音波溶着処理、又はレーザー溶着処理等を行う方法が提案されている。
 例えば、特許文献1には、ガラス板からなる表層及び裏層と、複数枚のプラスチックシートからなる中間層とが、エチレン-酢酸ビニル共重合体樹脂シート(EVAシート)を介在させて積層された複合ガラス(積層体)が記載されている。
 例えば、特許文献2には、50枚の電磁鋼板が接着能を有する絶縁被膜を介して積層されたモーターコア素材を、高周波誘電加熱装置の加圧シリンダーによって加圧し、同時に電極間に高周波を印加して製造する積層鉄芯(積層体)が記載されている。この接着能を有する絶縁被膜は、エポキシ樹脂等の有機樹脂を主成分として含有する。
特開2003-252658号公報 特開平11-187626号公報
 特許文献1には、ガラス板、EVAシート及びポリカーボネートシートを積層させて、これをオーブン式真空チャンバーに入れ、室温から130℃に昇温するとともに70cmHgに減圧して、複合ガラスを製造する方法が記載されている。特許文献1に記載された複合ガラス(積層体)を製造するためには、真空チャンバー内で昇温及び減圧した後にガラス板及びポリカーボネートシートを接合させる必要があるため、これら部材(被着体)同士を短時間で接合することが難しい。
 また、特許文献2に記載の積層鉄芯(積層体)を製造する際の高周波の印加時間が、2分又は4分であり、鋼板(被着体)同士を短時間で接合できていない。
 ところで、高周波誘電加熱用接着剤と、3つ以上の被着体を積層して、高周波誘電加熱処理を行って接合した構造体は、構造体中の被着体同士にずれが生じる場合があった。
 本発明の目的は、3つ以上の被着体を一度に短時間で接合できるとともに、被着体同士のズレの発生が抑制できる高周波誘電加熱用接着剤を提供すること、並びに当該高周波誘電加熱用接着剤により3つ以上の被着体が接合された構造体及び当該構造体の製造方法を提供することである。
 本発明の一態様によれば、3つ以上の被着体を接合させるための高周波誘電加熱用接着剤であって、前記高周波誘電加熱用接着剤は、熱可塑性樹脂と、高周波電界の印加により発熱する誘電フィラーとを含み、下限温度TL、および上限温度TUにおける、メルトボリュームレートが、1cm/10min以上、300cm/10min以下であり、前記下限温度TL(単位:℃)は、下記数式(数11)で規定され、前記上限温度TU(単位:℃)は、下記数式(数12)で規定される、高周波誘電加熱用接着剤が提供される。
  TL=前記高周波誘電加熱用接着剤の軟化温度TM+10℃ …(数11)
  TU=前記高周波誘電加熱用接着剤の熱分解温度TD-10℃ …(数12)
 但し、前記下限温度TLでのメルトボリュームレートの測定荷重は20kgであり、
 前記上限温度TUでのメルトボリュームレートの測定荷重は5kgである。
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記3つ以上の被着体は、それぞれ、流動開始温度を有さない被着体であるか、又は、流動開始温度を有する被着体であり、前記被着体の流動開始温度TF2(℃)と、前記高周波誘電加熱用接着剤の流動開始温度TF1(℃)とが、下記数式(数2)の関係を満たすことが好ましい。
  -5≦TF2-TF1 …(数2)
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記高周波誘電加熱用接着剤の流動開始温度TF1は、80℃以上、200℃以下であることが好ましい。
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記3つ以上の被着体のうち少なくともいずれかが流動開始温度を有する被着体である場合、前記流動開始温度を有する被着体の流動開始温度TF2は、90℃以上であることが好ましい。
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記高周波誘電加熱用接着剤の誘電特性DP1と、前記3つ以上の被着体のそれぞれの誘電特性DP2とが、下記数式(数1)の関係を満たすことが好ましい。
  0<DP1-DP2 …(数1)
(誘電特性DP1、及び誘電特性DP2は、それぞれ、前記高周波誘電加熱用接着剤、及び前記3つ以上の被着体の誘電特性(tanδ/ε’r)の値であり、
 tanδは、23℃かつ周波数40.68MHzにおける誘電正接であり、
 ε’rは、23℃かつ周波数40.68MHzにおける比誘電率である。)
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記3つ以上の被着体のそれぞれの誘電特性DP2は、いずれも、0.015以下であることが好ましい。
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記高周波誘電加熱用接着剤の誘電特性DP1は、0.005以上であることが好ましい。
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記高周波誘電加熱用接着剤は、接着シートであることが好ましい。
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記接着シートの厚さTS1と、前記3つ以上の被着体のそれぞれの厚さTS2が、下記数式(数3)の関係を満たすことが好ましい。
  TS1<TS2 …(数3)
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記接着シートの厚さTS1は、5μm以上、2000μm以下であることが好ましい。
 本発明の一態様に係る高周波誘電加熱用接着剤において、前記接着シートの厚さ精度は、±10%以内であることが好ましい。
 本発明の一態様によれば、前述の本発明の一態様に係る高周波誘電加熱用接着剤により前記3つ以上の被着体が接合されている構造体が提供される。
 本発明の一態様によれば、前記3つ以上の被着体の間に前述の本発明の一態様に係る高周波誘電加熱用接着剤を配置する工程と、前記高周波誘電加熱用接着剤に高周波電界を印加して、前記3つ以上の被着体を接合する工程と、を含む、構造体の製造方法が提供される。
 本発明の一態様に係る構造体の製造方法において、誘電加熱装置の電極の間に前記3つ以上の被着体と前記高周波誘電加熱用接着剤とを配置し、前記3つ以上の被着体と前記高周波誘電加熱用接着剤とを前記電極で加圧しながら高周波電界を印加することが好ましい。
 本発明の一態様によれば、3つ以上の被着体を一度に短時間で接合できるとともに、被着体同士のズレの発生が抑制できる高周波誘電加熱用接着剤を提供することができる。また、本発明の一態様によれば、当該高周波誘電加熱用接着剤により3つ以上の被着体が接合された構造体及び当該構造体の製造方法を提供することができる。
一実施形態に係る構造体の概略断面図である。 一実施形態に係る高周波誘電加熱用接着剤及び誘電加熱装置を用いた高周波誘電加熱処理を説明する概略図である。 実施例において接着性評価に用いた構造体の作製方法を説明するための概略斜視図である。 実施例において被着体のズレ評価に用いた構造体の作製方法を説明するための概略側面図である。 実施例において被着体のズレ評価の評価方法を説明するための概略側面図である。
[高周波誘電加熱用接着剤]
 本実施形態に係る高周波誘電加熱用接着剤は、熱可塑性樹脂と、高周波電界の印加により発熱する誘電フィラーとを含む。高周波電界とは、高周波で向きが反転する電界である。
 本明細書中、本実施形態に係る高周波誘電加熱用接着剤が含有する熱可塑性樹脂が熱可塑性樹脂(A)と表記され、誘電フィラーが誘電フィラー(B)と表記される場合がある。
 本実施形態に係る高周波誘電加熱用接着剤は、3つ以上の被着体を接合させるための高周波誘電加熱用接着剤である。そして、下限温度TL、および上限温度TUにおける、メルトボリュームレートが、1cm/10min以上、300cm/10min以下である。ここで、下限温度TL(単位:℃)は、下記数式(数11)で規定され、上限温度TU(単位:℃)は、下記数式(数12)で規定される。
  TL=前記高周波誘電加熱用接着剤の軟化温度TM+10℃ …(数11)
  TU=前記高周波誘電加熱用接着剤の熱分解温度TD-10℃ …(数12)
 但し、前記下限温度TLでのメルトボリュームレートの測定荷重は20kgであり、
 前記上限温度TUでのメルトボリュームレートの測定荷重は5kgである。
(メルトボリュームレート(MVR))
 本実施形態に係る高周波誘電加熱用接着剤において、高周波誘電加熱用接着剤のメルトボリュームレート(以下、MVRと称する場合がある)は、軟化温度TM+10℃、および熱分解温度TD-10℃において測定した値が、1cm/10min以上、300cm/10min以下の範囲内を満たしている。軟化温度TM+10℃は、高周波誘電加熱用接着剤が溶融し始め、被着体との接合性が発現し始める温度を表していると考えられる。熱分解温度TD-10℃は、高周波誘電加熱用接着剤中における熱可塑性樹脂の熱分解が開始せず、高周波誘電加熱用接着剤中の熱分解によって、被着体との接合性に対して影響を及ぼし難い温度を表している。つまり、これらの温度は、高周波誘電加熱用接着剤と被着体との接合性が確実に発生する温度と、高周波誘電加熱用接着剤と被着体との接合強度の劣化に影響し難い温度とを表している。本明細書において、単位中の「min」は、「分」の略称である。
 上記各測定温度において、本実施形態に係る高周波誘電加熱用接着剤のMVRが、1cm/10min未満であると、高周波誘電加熱用接着剤の流動性が低すぎるため、アンカー効果が発現し難く、被着体に対する濡れ性等の特性が得られ難くなる。具体的には、高周波誘電加熱用接着剤に高周波電界を印加しても、高周波誘電加熱用接着剤のMVRが低すぎることで、被着体の表面に、高周波誘電加熱用接着剤が濡れ広がり難いと考えられる。このため、高周波誘電加熱用接着剤が被着体の表面に濡れ広がる時間を要する。また、アンカー効果が得られ難い。したがって、本実施形態に係る高周波誘電加熱用接着剤のMVRが、1cm/10min未満である場合、接合時間を要し、短時間での接合が難しくなり、接合強度が弱くなる傾向がある。
 上記各測定温度において、本実施形態に係る高周波誘電加熱用接着剤のMVRが、300cm/10minを超えると、高周波誘電加熱用接着剤の流動性が高くなりすぎるため、3つ以上の被着体を一度に接合したときに、被着体同士にズレが発生しやすくなる。
 本実施形態に係る高周波誘電加熱用接着剤のMVRは、軟化温度TM+10℃、および熱分解温度TD-10℃において、2cm/10min以上であることが好ましく、3cm/10min以上であることがより好ましく、4cm/10min以上であることがよりさらに好ましい。
 本実施形態に係る高周波誘電加熱用接着剤のMVRは、軟化温度TM+10℃、および熱分解温度TD-10℃において、275cm/10min以下であることが好ましく、250cm/10min以下であることがより好ましく、225cm/10min以下であることがさらに好ましく、200cm/10min以下であることがよりさらに好ましく、150cm/10min以下であることがよりさらに好ましく、100cm/10min以下であることがよりさらに好ましく、50cm/10min以下であることがよりさらに好ましく、20cm/10min以下であることがよりさらに好ましく、10cm/10min以下であることが特に好ましい。
 本実施形態に係る高周波誘電加熱用接着剤のMVRが、2cm/10min以上であれば、より短時間で、3つ以上の被着体を一度に接合できるとともに、より十分な接合強度が得られやすくなる。
 本実施形態に係る高周波誘電加熱用接着剤のMVRが、275cm/10min以下であれば、被着体同士のズレの発生がより抑制されやすくなる。
 ここで、本実施形態に係る高周波誘電加熱用接着剤において、MVR(cm/10min)は、フローテスターを用いて測定した値である。高周波誘電加熱用接着剤のMVRは、具体的には、後述する実施例の項目において説明する方法により測定できる。
(軟化温度)
 本実施形態に係る高周波誘電加熱用接着剤の軟化温度TMは、70℃以上であることが好ましく、80℃以上であることがより好ましく、90℃以上であることがさらに好ましい。
 本実施形態に係る高周波誘電加熱用接着剤の軟化温度TMは、200℃以下であることが好ましく、180℃以下であることがより好ましく、160℃以下であることがさらに好ましい。
 高周波誘電加熱用接着剤の軟化温度TMが70℃以上であれば(好ましくは80℃以上であれば)、被着体同士のズレの発生がより抑制されやすくなる。また、当該高周波誘電加熱用接着剤を用いて製造した構造体は、一般生活における耐熱性を得やすい。
 高周波誘電加熱用接着剤の軟化温度TMが200℃以下であれば、接合時に高周波誘電加熱用接着剤を溶融させるための時間が長くなることを防ぎやすく、高周波誘電加熱用接着剤と被着体との接合強度も得やすい。
 軟化温度は、後述する実施例の項目において説明する方法により測定できる。
(熱分解温度)
 本実施形態に係る高周波誘電加熱用接着剤の熱分解温度TDは、180℃以上であることが好ましく、200℃以上であることがより好ましく、220℃以上であることがさらに好ましい。
 高周波誘電加熱用接着剤の熱分解温度TDが180℃以上であれば、当該高周波誘電加熱用接着剤を用いて製造した構造体は、一般生活における耐熱性を得やすい。また、高周波電界印加時に十分な出力を印加できるため、高周波誘電加熱用接着剤と被着体とを短時間で接合しやすい。
 本実施形態に係る高周波誘電加熱用接着剤の熱分解温度TDの上限は特に限定されず、例えば、600℃以下であってもよく、500℃以下であってもよく、400℃以下であってもよい。
 熱分解温度は、JIS K 7120:1987に準拠して測定することができる。本実施形態に係る高周波誘電加熱用接着剤の熱分解温度は、例えば、DTA曲線の低温側で観測される発熱ピークのピークトップに相当する温度である。具体的には、後述する実施例の項目において説明する方法により測定できる。
(流動開始温度)
 本実施形態に係る高周波誘電加熱用接着剤の流動開始温度TF1は、80℃以上であることが好ましく、90℃以上であることがより好ましく、100℃以上であることがさらに好ましい。
 本実施形態に係る高周波誘電加熱用接着剤の流動開始温度TF1は、200℃以下であることが好ましく、180℃以下であることがより好ましく、160℃以下であることがさらに好ましく、140℃以下であることがよりさらに好ましい。
 高周波誘電加熱用接着剤の流動開始温度TF1が80℃以上であれば、被着体同士のズレの発生が抑制されやすくなる。また、当該高周波誘電加熱用接着剤を用いて製造した構造体は、一般生活における耐熱性を得やすい。
 高周波誘電加熱用接着剤の流動開始温度TF1が200℃以下であれば、接合時に高周波誘電加熱用接着剤を溶融させるための時間が長くなることを防ぎやすく、高周波誘電加熱用接着剤と被着体との接合強度も得やすい。
 流動開始温度は、後述する実施例の項目において説明する方法により測定できる。
(流動開始温度TF1と、被着体の流動開始温度TF2との関係)
 高周波誘電加熱用接着剤の流動開始温度TF1と、被着体の流動開始温度TF2との関係について説明する。
 3つ以上の被着体がいずれも流動開始温度を有する場合、それぞれの被着体の流動開始温度と、高周波誘電加熱用接着剤の流動開始温度とが前記数式(数2)の関係を満たすことが好ましい。例えば、いずれも流動開始温度を有する3つの被着体を接合させる場合は、当該3つの被着体のそれぞれの流動開始温度が、数式(数2)の関係を満たすことが好ましい。例えば、3つの被着体の流動開始温度TF2が、互いに異なるTF2A(℃)、TF2B(℃)、及びTF2C(℃)の場合は、下記数式(数2A)、(数2B)及び数(数2C)を満たすことが好ましい。
  -5≦TF2A-TF1 …(数2A)
  -5≦TF2B-TF1 …(数2B)
  -5≦TF2C-TF1 …(数2C)
 また、3つ以上の被着体の少なくともいずれかが流動開始温度を有さない場合、高周波誘電加熱用接着剤は、当該流動開始温度を有さない被着体に対して数式(数2)の関係を満たさなくてよい。
 被着体の流動開始温度TF2(℃)と高周波誘電加熱用接着剤の流動開始温度TF1(℃)との差(TF2-TF1)は、下記数式(数2-1)の関係を満たすことがより好ましく、下記数式(数2-2)の関係を満たすことがさらに好ましく、下記数式(数2-3)の関係を満たすことがよりさらに好ましく、下記数式(数2-4)の関係を満たすことがさらになお好ましく、下記数式(数2-5)の関係を満たすことがさらになお好ましく、下記数式(数2-6)の関係を満たすことがさらになお好ましく、下記数式(数2-7)の関係を満たすことがさらになお好ましい。
  0≦TF2-TF1 …(数2-1)
  5≦TF2-TF1 …(数2-2)
  10≦TF2-TF1 …(数2-3)
  15≦TF2-TF1 …(数2-4)
  20≦TF2-TF1 …(数2-5)
  30≦TF2-TF1 …(数2-6)
  40≦TF2-TF1 …(数2-7)
 被着体の流動開始温度TF2(℃)と高周波誘電加熱用接着剤の流動開始温度TF1(℃)との差(TF2-TF1)は、下記数式(数2-8)の関係を満たすことが好ましく、下記数式(数2-9)の関係を満たすことがより好ましく、下記数式(数2-10)の関係を満たすことがさらに好ましく、下記数式(数2-11)の関係を満たすことがよりさらに好ましい。
  TF2-TF1≦1100 …(数2-8)
  TF2-TF1≦300 …(数2-9)
  TF2-TF1≦200 …(数2-10)
  TF2-TF1≦100 …(数2-11)
 3つ以上の被着体のうち、少なくともいずれかが流動開始温度を有する被着体である場合、流動開始温度を有する被着体の流動開始温度TF2は、90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、120℃以上であることがよりさらに好ましく、130℃以上であることがさらになお好ましい。
 流動開始温度を有する被着体の流動開始温度TF2は、1200℃以下であることが好ましく、400℃以下であることがより好ましい。
 被着体が、例えば、セラミック又は硬化性樹脂などで構成されている場合には、被着体の流動開始温度TF2の上限値がない。
 被着体の流動開始温度TF2が90℃以上であれば、被着体の接合時に、被着体の形状を損なうことなく接合し易くなる。
(誘電特性)
 高周波誘電加熱用接着剤の誘電特性DP1と、被着体の誘電特性DP2との関係について説明する。例えば、高周波誘電加熱用接着剤を用いて3つの被着体を接合させる場合、高周波誘電加熱用接着剤の誘電特性DP1は、当該3つの被着体のそれぞれの誘電特性DP2に対して、数式(数1)の関係を満たすことが好ましい。
  0<DP1-DP2 …(数1)
(誘電特性DP1、及び誘電特性DP2は、それぞれ、高周波誘電加熱用接着剤、及び3つ以上の被着体の誘電特性(tanδ/ε’r)の値であり、tanδは、23℃かつ周波数40.68MHzにおける誘電正接であり、ε’rは、23℃かつ周波数40.68MHzにおける比誘電率である。)
 また、例えば、3つの被着体の誘電特性DP2が、互いに異なるDP2A、DP2B、及びDP2Cの場合、高周波誘電加熱用接着剤は、下記数式(数1A)、(数1B)及び数(数1C)を満たすことが好ましい。
  0<DP1-DP2A …(数1A)
  0<DP1-DP2B …(数1B)
  0<DP1-DP2C …(数1C)
 高周波誘電加熱用接着剤の誘電特性DP1と被着体の誘電特性DP2との差(DP1-DP2)は、下記数式(数1-1)の関係を満たすことが好ましく、下記数式(数1-2)の関係を満たすことがより好ましい。
  0.005≦DP1-DP2 …(数1-1)
  0.01≦DP1-DP2 …(数1-2)
 高周波誘電加熱用接着剤の誘電特性DP1と被着体の誘電特性DP2との差(DP1-DP2)は、通常、下記数式(数1-3)の関係を満たすことが好ましく、下記数式(数1-4)の関係を満たすことがより好ましい。
  DP1-DP2≦0.1 …(数1-3)
  DP1-DP2≦0.05 …(数1-4)
 本実施形態に係る高周波誘電加熱用接着剤の誘電特性DP1は、0.005以上であることが好ましく、0.008以上であることがより好ましく、0.01以上であることがさらに好ましい。
 本実施形態に係る高周波誘電加熱用接着剤の誘電特性DP1は、0.1以下であることが好ましく、0.08以下であることがより好ましく、0.05以下であることがさらに好ましく、0.03以下であることが特に好ましい。
 高周波誘電加熱用接着剤の誘電特性DP1が、0.005以上であれば、誘電加熱処理をした際に、高周波誘電加熱用接着剤が所定の発熱をせず、高周波誘電加熱用接着剤と被着体とを強固に接合することが困難となるという不具合を防止できる。
 高周波誘電加熱用接着剤の誘電特性DP1が、0.1以下であれば、過熱を防ぎ易くなり、被着体の高周波誘電加熱用接着剤と接する部分の損傷が起き難い。
 本実施形態において、3つ以上の被着体のそれぞれの誘電特性DP2は、いずれも、0.015以下であることが好ましく、0.01以下であることがより好ましく、0.005以下であることがさらに好ましい。
 被着体の誘電特性DP2が、0.015以下であれば、被着体の発熱を抑制できるため、接合する際に被着体の形状を損なうことなく接合し易くなる。
 被着体の誘電特性DP2は、通常、0以上である。
 誘電特性(tanδ/ε’r)は、インピーダンスマテリアル装置等を用いて測定される誘電正接(tanδ)を、インピーダンスマテリアル装置等を用いて測定される比誘電率(ε’r)で除した値である。
 高周波誘電加熱用接着剤及び被着体の誘電特性としての誘電正接(tanδ)、及び比誘電率(ε’r)は、インピーダンスマテリアルアナライザを用いて、簡便かつ正確に測定することができる。
 なお、高周波誘電加熱用接着剤及び被着体の誘電特性の測定方法の詳細は、次のとおりである。まず、高周波誘電加熱用接着剤及び被着体の測定用シートを得る。構造体から測定用シートを得る必要がある場合は、構造体から切り出したり、削り出したりすることにより、均一な厚さの測定用シートを得る。シート化されていない高周波誘電加熱用接着剤、例えば、ペレット状の高周波誘電加熱用接着剤については、熱プレス機などでシート化することにより測定用シートを得る。測定用シートの厚さは、例えば、10μm以上、2mm以下である。このようにして得たシートについて、RFインピーダンスマテリアルアナライザE4991A(Agilent社製)を用いて、23℃における周波数40.68MHzの条件下、比誘電率(ε’r)、及び誘電正接(tanδ)をそれぞれ測定し、誘電特性(tanδ/ε’r)の値を算出する。
 本実施形態に係る高周波誘電加熱用接着剤の形状は、特に限定されないが、シート状であることが好ましい。すなわち、本実施形態に係る高周波誘電加熱用接着剤は、接着シート(高周波誘電加熱接着シートと称する場合がある。)であることが好ましい。高周波誘電加熱用接着剤が接着シートであることで、構造体の製造工程の時間をさらに短縮することができる。
 本実施形態に係る接着シートの厚さTS1と、3つ以上の被着体のそれぞれの厚さTS2が、下記数式(数3)の関係を満たすことが好ましい。
  TS1<TS2 …(数3)
 本実施形態に係る高周波誘電加熱用接着剤が接着シートである場合、前記数式(数3)の関係を満たすことにより、高周波電界の印加時に接着シートから発生する熱が過剰にならず、被着体への熱ダメージをより抑えることができる。
 本実施形態に係る接着シートの厚さTS1は、5μm以上であることが好ましく、10μm以上であることがより好ましく、30μm以上であることがさらに好ましく、50μm以上であることが特に好ましい。
 接着シートの厚さTS1が5μm以上であれば、被着体と接着する際に、接着シートが被着体の凹凸に追従しやすく、接着強度が発現しやすくなる。
 接着シートの厚さTS1の上限は、特に限定されない。接着シートの厚さが増すほど、接着シートと被着体とを接着して得られる構造体全体の重量も増加するため、接着シートは、実使用上問題ない範囲の厚さであることが好ましい。接着シートの実用性及び成形性も考慮すると、本実施形態に係る接着シートの厚さTS1は、2000μm以下であることが好ましく、1000μm以下であることがより好ましく、600μm以下であることがさらに好ましい。
 本実施形態に係る接着シートの厚さ精度は、±10%以内であることが好ましく、±8%以内であることがより好ましく、±5%以内であることがさらに好ましい。
 本実施形態に係る接着シートの厚さ精度が±10%以内であることにより、接合を行う際に積層体を接合装置に安定して設置することができる。
 また、高周波電界の印加時に接着シート面に圧力が均一に加わるため、積層体のずれや変形を抑えることができる。
 接着シートの厚さ精度は、後述する実施例の項目において説明する方法により算出できる。
 接着シートの厚さ精度は、通常、0%以上である。
 高周波誘電加熱用接着剤としての接着シートは、塗布が必要な液状の接着剤を用いる場合と比べて、取り扱い易く、被着体との接合時の作業性も向上する。
 また、高周波誘電加熱用接着剤としての接着シートは、シート厚さなどを適宜制御できる。そのため、接着シートをロール・ツー・ロール方式に適用することもでき、かつ、抜き加工等により、被着体との接着面積、並びに被着体の形状に合わせて、接着シートを任意の面積及び形状に加工できる。そのため、高周波誘電加熱用接着剤としての接着シートは、製造工程の観点からも、利点が大きい。
<熱可塑性樹脂(A)>
(熱可塑性樹脂)
 熱可塑性樹脂(A)の種類は、特に制限されない。
 熱可塑性樹脂(A)は、例えば、融解し易いとともに、所定の耐熱性を有する等の観点から、ポリオレフィン系樹脂、スチレン系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリ酢酸ビニル系樹脂、フェノキシ系樹脂及びポリエステル系樹脂からなる群から選択される少なくとも一種であることが好ましい。
 本実施形態に係る高周波誘電加熱用接着剤において、熱可塑性樹脂(A)は、ポリオレフィン系樹脂又はスチレン系樹脂であることが好ましく、ポリオレフィン系樹脂であることがより好ましい。熱可塑性樹脂(A)がポリオレフィン系樹脂又はスチレン系樹脂であれば、高周波電界の印加時に高周波誘電加熱用接着剤が溶融し易く、本実施形態に係る高周波誘電加熱用接着剤と被着体とを容易に接着できる。
 本明細書において、ポリオレフィン系樹脂は、極性部位を有するポリオレフィン系樹脂及び極性部位を有さないポリオレフィン系樹脂を含み、極性部位の有無を特定する場合に、極性部位を有するポリオレフィン系樹脂又は極性部位を有さないポリオレフィン系樹脂のように記載される。
 熱可塑性樹脂(A)が、極性部位を有するポリオレフィン系樹脂であることも好ましい。熱可塑性樹脂(A)が、極性部位を有さないポリオレフィン系樹脂でもよい。
(ポリオレフィン系樹脂)
 熱可塑性樹脂(A)としてのポリオレフィン系樹脂は、例えば、ポリエチレン、ポリプロピレン、ポリブテン及びポリメチルペンテン等のホモポリマーからなる樹脂、並びにエチレン、プロピレン、ブテン、ヘキセン、オクテン及び4-メチルペンテン等からなる群から選択されるモノマーの共重合体からなるα-オレフィン樹脂等が挙げられる。熱可塑性樹脂(A)としてのポリオレフィン系樹脂は、一種単独の樹脂でもよいし、二種以上の樹脂の組み合わせでもよい。
(極性部位を有するポリオレフィン系樹脂)
 極性部位を有するポリオレフィン系樹脂における極性部位は、ポリオレフィン系樹脂に対して極性を付与できる部位であれば特に限定されない。極性部位を有するポリオレフィン系樹脂は、被着体に対して高い接着力を示すので好ましい。
 極性部位を有するポリオレフィン系熱可塑性樹脂は、オレフィン系モノマーと極性部位を有するモノマーとの共重合体であってもよい。また、極性部位を有するポリオレフィン系熱可塑性樹脂は、オレフィン系モノマーの重合によって得られたオレフィン系ポリマーに極性部位を付加反応等の変性により導入させた樹脂でもよい。
 極性部位を有するポリオレフィン系樹脂を構成するオレフィン系モノマーの種類については、特に制限されない。オレフィン系モノマーとしては、例えば、エチレン、プロピレン、ブテン、ヘキセン、オクテン及び4-メチル-1-ペンテン等が挙げられる。オレフィン系モノマーは、これらの一種単独で用いられてもよく、二種以上の組み合わせで用いられてもよい。
 オレフィン系モノマーは、機械的強度に優れ、安定した接着特性が得られるという観点から、エチレン及びプロピレンの少なくともいずれかであることが好ましい。
 極性部位を有するポリオレフィン系樹脂におけるオレフィン由来の構成単位は、エチレン又はプロピレンに由来する構成単位であることが好ましい。
 極性部位としては、例えば、水酸基、カルボキシ基、酢酸ビニル構造、及び酸無水物構造等が挙げられる。極性部位としては、酸変性によってポリオレフィン系樹脂に導入される酸変性構造等も挙げられる。
 極性部位としての酸変性構造は、熱可塑性樹脂(例えば、ポリオレフィン系樹脂)を酸変性することによって導入される部位である。熱可塑性樹脂(例えば、ポリオレフィン系樹脂)を酸変性する際に用いる化合物としては、不飽和カルボン酸、不飽和カルボン酸の酸無水物及び不飽和カルボン酸のエステルのいずれかから導かれる不飽和カルボン酸誘導体成分が挙げられる。本明細書において、酸変性構造を有するポリオレフィン系樹脂を酸変性ポリオレフィン系樹脂と称する場合がある。
 不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸及びシトラコン酸などが挙げられる。
 不飽和カルボン酸の酸無水物としては、例えば、無水マレイン酸、無水イタコン酸及び無水シトラコン酸等の不飽和カルボン酸の酸無水物などが挙げられる。
 不飽和カルボン酸のエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、マレイン酸ジメチル、マレイン酸モノメチル、フマル酸ジメチル、フマル酸ジエチル、イタコン酸ジメチル、イタコン酸ジエチル、シトラコン酸ジメチル、シトラコン酸ジエチル及びテトラヒドロ無水フタル酸ジメチル等の不飽和カルボン酸のエステルなどが挙げられる。
 本実施形態に係る高周波誘電加熱用接着剤において、熱可塑性樹脂(A)のメルトフローレート(以下、MFRと称する場合がある)は、0.5g/10min以上であることが好ましく、1.0g/10min以上であることがより好ましく、2.0g/10min以上であることがさらに好ましい。
 本実施形態に係る高周波誘電加熱用接着剤において、熱可塑性樹脂(A)のメルトフローレートは、100g/10min以下であることが好ましく、90g/10min以下であることがより好ましく、80g/10min以下であることがさらに好ましく、50g/10min以下であることがよりさらに好ましく、30g/10min以下であることがよりさらに好ましく、15g/10min以下であることが特に好ましい。
 高周波誘電加熱用接着剤のMFRが0.5g/10min以上であれば、流動性が維持でき、膜厚精度が得られ易く、例えば、押出成形により成膜したときの膜厚精度が得られ易い。高周波誘電加熱用接着剤のMFRが100g/10min以下であれば、造膜性が得られやすい。例えば、MFRが50g/10min以下であれば、押出成形により成膜したときの造膜性がより向上しやすい。
 熱可塑性樹脂(A)のMFRは、例えば、JIS K 7210-1:2014又はJIS K 6924-1:1997に準じて、予め定められた試験温度及び荷重で測定できる。試験条件は、例えば、熱可塑性樹脂(A)におけるオレフィン由来の構成単位がポリエチレンの場合、試験温度は190℃、荷重は2.16kgである。オレフィン由来の構成単位がエチレン-酢酸ビニル共重合体の場合、試験温度は190℃、荷重は2.16kgである。
<誘電フィラー(B)>
 誘電フィラー(B)は、高周波電界の印加により発熱するフィラーである。
 誘電フィラー(B)は、周波数域が3MHz以上、300MHz以下の高周波電界を印加した時に発熱するフィラーであることが好ましい。誘電フィラー(B)は、周波数域3MHz以上、300MHz以下のうち、例えば、周波数13.56MHz、27.12MHz又は40.68MHz等の高周波電界の印加により発熱するフィラーであることが好ましい。
(種類)
 誘電フィラー(B)は、酸化亜鉛、炭化ケイ素(SiC)、アナターゼ型酸化チタン、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸鉛、ニオブ酸カリウム、ルチル型酸化チタン、水和ケイ酸アルミニウム、アルカリ金属の水和アルミノケイ酸塩等の結晶水を有する無機材料又はアルカリ土類金属の水和アルミノケイ酸塩等の結晶水を有する無機材料等の一種単独又は二種以上の組み合わせが好適である。
 誘電フィラー(B)は、酸化亜鉛、炭化ケイ素、チタン酸バリウム及び酸化チタンからなる群から選択される少なくともいずれかを含むことが好ましい。
 例示した誘電フィラーの中でも、種類が豊富であり、様々な形状及びサイズから選択でき、高周波誘電加熱用接着剤の接着特性及び機械特性を用途に合わせて改良できるため、誘電フィラー(B)は、酸化亜鉛であることがさらに好ましい。誘電フィラー(B)として酸化亜鉛を用いることで、無色の高周波誘電加熱用接着剤を得ることができる。酸化亜鉛は、誘電フィラーの中でも密度が小さいため、誘電フィラー(B)として酸化亜鉛を含有する高周波誘電加熱用接着剤を用いて被着体を接合した場合、他の誘電フィラーを含有する接着剤を用いた場合と比べて、接合体の総重量が増大し難い。酸化亜鉛は、セラミックの中でも硬度が高過ぎないため、高周波誘電加熱用接着剤の製造装置を傷つけ難い。酸化亜鉛は、不活性な酸化物であるため、熱可塑性樹脂と配合しても、熱可塑性樹脂に与えるダメージが少ない。
 また、誘電フィラー(B)としての酸化チタンは、アナターゼ型酸化チタン及びルチル型酸化チタンの少なくともいずれかであることが好ましく、誘電特性に優れるという観点から、アナターゼ型酸化チタンであることがより好ましい。
(体積含有率)
 高周波誘電加熱用接着剤中の誘電フィラー(B)の体積含有率は、5体積%以上であることが好ましく、8体積%以上であることがより好ましく、10体積%以上であることがさらに好ましい。
 高周波誘電加熱用接着剤中の誘電フィラー(B)の体積含有率は、50体積%以下であることが好ましく、40体積%以下であることがより好ましく、35体積%以下であることがさらに好ましく、25体積%以下であることがよりさらに好ましい。
 高周波誘電加熱用接着剤中の誘電フィラー(B)の体積含有率が5体積%以上であることで、発熱性が向上し、高周波誘電加熱用接着剤と被着体とを強固に接合し易い。
 高周波誘電加熱用接着剤中の誘電フィラー(B)の体積含有率が50体積%以下であることで、接着剤の強度低下を防ぐことができ、その結果、当該接着剤を用いることにより接合強度の低下を防ぐことができる。また、本実施形態に係る高周波誘電加熱用接着剤が接着シートである場合、接着シート中の誘電フィラー(B)の体積含有率が50体積%以下であることで、シートとしてのフレキシブル性を得やすく、靱性の低下も防止しやすくなるので、後工程で高周波誘電加熱接着シートを所望の形状に加工しやすい。
 なお、本実施形態に係る高周波誘電加熱用接着剤中に、熱可塑性樹脂(A)及び誘電フィラー(B)が含まれているため、熱可塑性樹脂(A)及び誘電フィラー(B)の合計体積に対して、誘電フィラー(B)の体積含有率は、5体積%以上であることが好ましく、8体積%以上であることがより好ましく、10体積%以上であることがさらに好ましい。熱可塑性樹脂(A)及び誘電フィラー(B)の合計体積に対して、誘電フィラー(B)の体積含有率は、50体積%以下であることが好ましく、40体積%以下であることがより好ましく、35体積%以下であることがさらに好ましく、25体積%以下であることがよりさらに好ましい。
(平均粒子径)
 誘電フィラー(B)の体積平均粒子径は、1μm以上であることが好ましく、2μm以上であることがより好ましく、3μm以上であることがさらに好ましい。
 誘電フィラー(B)の体積平均粒子径は、30μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることがさらに好ましい。
 誘電フィラー(B)の体積平均粒子径が1μm以上であることで、高周波誘電加熱用接着剤は、高周波電界の印加時に高い発熱性能を発現し、接着層は、被着体と短時間で強固に接着できる。
 誘電フィラー(B)の体積平均粒子径が30μm以下であることで、高周波誘電加熱用接着剤は、高周波電界の印加時に高い発熱性能を発現し、接着層は、被着体と短時間で強固に接着できる。また、本実施形態に係る高周波誘電加熱用接着剤が接着シートである場合、誘電フィラー(B)の体積平均粒子径が30μm以下であることで、高周波誘電加熱接着シートの強度低下を防止できる。
 誘電フィラー(B)の体積平均粒子径は、次のような方法によって測定される。レーザー回折・散乱法により、誘電フィラー(B)の粒度分布測定を行い、当該粒度分布測定の結果からJIS Z 8819-2:2001に準じて体積平均粒子径を算出する。
 本実施形態に係る高周波誘電加熱用接着剤が接着シートである場合、誘電フィラー(B)の平均粒子径Dと接着シートの厚さTS1とが、1≦TS1/D≦2500の関係を満たすことが好ましい。
 TS1/Dは、1以上であることが好ましく、2以上であることがより好ましく、5以上であることがさらに好ましく、10以上であることがよりさらに好ましく、20以上であることがさらになお好ましい。TS1/Dが1以上であれば、接着時に誘電フィラー(B)と被着体とが接触することに起因する接合強度の低下を防止できる。
 TS1/Dは、2500以下であることが好ましく、2000以下であることがより好ましく、1750以下であることがさらに好ましく、1000以下であることがよりさらに好ましく、500以下であることがよりさらに好ましく、100以下であることがよりさらに好ましく、50以下であることがさらになお好ましい。TS1/Dが2500以下であれば、高周波誘電加熱接着シートの作製時に、シート製造装置への負荷を抑制できる。
<添加剤>
 本実施形態に係る高周波誘電加熱用接着剤は、添加剤を含んでいてもよいし、添加剤を含んでいなくてもよい。
 本実施形態に係る高周波誘電加熱用接着剤が添加剤を含む場合、添加剤としては、例えば、粘着付与剤、可塑剤、ワックス、着色剤、酸化防止剤、紫外線吸収剤、抗菌剤、カップリング剤、粘度調整剤、有機充填剤、及び無機充填剤等が挙げられる。添加剤としての有機充填剤、及び無機充填剤は、誘電フィラーとは異なる。
 粘着付与剤及び可塑剤は、高周波誘電加熱用接着剤の溶融特性、及び接着特性を改良できる。
 粘着付与剤としては、例えば、ロジン誘導体、ポリテルペン樹脂、芳香族変性テルペン樹脂、芳香族変性テルペン樹脂の水素化物、テルペンフェノール樹脂、クマロン・インデン樹脂、脂肪族石油樹脂、芳香族石油樹脂、及び芳香族石油樹脂の水素化物が挙げられる。
 可塑剤としては、例えば、石油系プロセスオイル、天然油、二塩基酸ジアルキル、及び低分子量液状ポリマーが挙げられる。石油系プロセスオイルとしては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、及び芳香族系プロセスオイル等が挙げられる。天然油としては、例えば、ひまし油、及びトール油等が挙げられる。二塩基酸ジアルキルとしては、例えば、フタル酸ジブチル、フタル酸ジオクチル、及びアジピン酸ジブチル等が挙げられる。低分子量液状ポリマーとしては、例えば、液状ポリブテン、及び液状ポリイソプレン等が挙げられる。
 本実施形態に係る高周波誘電加熱用接着剤が添加剤を含む場合、高周波誘電加熱用接着剤中の添加剤の含有率は、通常、高周波誘電加熱用接着剤の全体量基準で、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。また、高周波誘電加熱用接着剤中の添加剤の含有率は、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 本実施形態に係る高周波誘電加熱用接着剤は、溶剤を含有しないことが好ましい。溶剤を含有しない高周波誘電加熱用接着剤によれば、被着体との接着に用いる接着剤に起因するVOC(Volatile Organic Compounds)の問題が発生し難い。
 本実施形態に係る高周波誘電加熱用接着剤は、炭素又は炭素を主成分とする炭素化合物(例えば、カーボンブラック等)及び金属等の導電性物質を含有しないことが好ましい。本実施形態に係る高周波誘電加熱用接着剤は、例えば、炭素鋼、α鉄、γ鉄、δ鉄、銅、酸化鉄、黄銅、アルミニウム、鉄-ニッケル合金、鉄-ニッケル-クロム合金、カーボンファイバー及びカーボンブラックを含有しないことが好ましい。
 本実施形態に係る高周波誘電加熱用接着剤が導電性物質を含有する場合、接着剤中の導電性物質の含有率は、それぞれ独立に、接着剤の全体量基準で、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、1質量%以下であることがよりさらに好ましく、0.1質量%以下であることがさらになお好ましい。
 接着剤中の導電性物質の含有率は、0質量%であることが特に好ましい。
 接着剤中の導電性物質の含有率が20質量%以下であれば、誘電加熱処理した際に電気絶縁破壊して接着部及び被着体の炭化という不具合を防止し易くなる。
 本実施形態に係る高周波誘電加熱用接着剤中、熱可塑性樹脂(A)及び誘電フィラー(B)の合計含有率は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。
(高周波誘電加熱用接着剤の製造方法)
 本実施形態に係る高周波誘電加熱用接着剤は、例えば、上述の各成分を混合することにより製造できる。本実施形態に係る高周波誘電加熱用接着剤が接着シートである場合、例えば、上述の各成分を予備混合し、押出機、及び熱ロール等の公知の混練装置を用いて混練し、押出成形、カレンダー成形、インジェクション成形、及びキャスティング成形等の公知の成形方法により製造できる。これら例示した成形方法の中でも、押出成形が好ましい。
<被着体>
 被着体の材質は、特に限定されない。被着体の材質は、有機材料、及び無機材料(金属材料等を含む。)のいずれの材料でもよく、有機材料と無機材料との複合材料でもよい。
 被着体の材質は、有機材料であることが好ましい。被着体の材質としての有機材料は、例えば、プラスチック材料、及びゴム材料が挙げられる。プラスチック材料としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エポキシ樹脂、ポリウレタン樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS樹脂)、ポリカーボネート樹脂(PC樹脂)、ポリアミド樹脂(ナイロン6及びナイロン66等)、ポリエステル樹脂(ポリエチレンテレフタレート(PET樹脂)及びポリブチレンテレフタレート樹脂(PBT樹脂)等)、ポリアセタール樹脂(POM樹脂)、ポリメチルメタクリレート樹脂、及びポリスチレン樹脂等が挙げられる。ゴム材料としては、スチレン-ブタジエンゴム(SBR)、エチレンプロピレンゴム(EPR)、及びシリコーンゴム等が挙げられる。また、被着体は、有機材料の発泡材でもよい。被着体の材質が熱可塑性樹脂である場合、被着体が含有する熱可塑性樹脂と、高周波誘電加熱用接着剤が含有する熱可塑性樹脂(A)とが異なる樹脂であることが好ましい。この場合、被着体の損傷を防ぎやすくなるので、より短時間で接合できる。
 被着体の材質としての無機材料としては、ガラス材料、セメント材料、セラミック材料、及び金属材料等が挙げられる。また、被着体は、繊維と上述したプラスチック材料との複合材料である繊維強化樹脂(Fiber Reinforced Plastics,FRP)でもよい。この繊維強化樹脂におけるプラスチック材料は、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリウレタン樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS樹脂)、ポリカーボネート樹脂(PC樹脂)、ポリアミド樹脂(ナイロン6及びナイロン66等)、ポリエステル樹脂(ポリエチレンテレフタレート(PET樹脂)及びポリブチレンテレフタレート樹脂(PBT樹脂)等)、ポリアセタール樹脂(POM樹脂)、ポリメチルメタクリレート樹脂、エポキシ樹脂、及びポリスチレン樹脂等からなる群から選択される少なくとも一種である。繊維強化樹脂における繊維は、例えば、ガラス繊維、ケブラー繊維、及び炭素繊維等が挙げられる。
 被着体は、導電性が低いことが好ましい。
 本実施形態に係る高周波誘電加熱用接着剤を用いて複数の被着体同士を接着する場合、複数の被着体は、互いに同じ材質であるか、又は異なる材質である。
 被着体の形状は、特に限定されない。本実施形態に係る高周波誘電加熱用接着剤が接着シートである場合、被着体は、接着シートを貼り合わせることのできる面を有することが好ましく、シート状又は板状であることが好ましい。複数の被着体同士を接着する場合は、それら被着体の形状及び寸法は、互いに同じでも異なっていてもよい。被着体の厚さは、それぞれ独立に、前述の数式(数3)の関係を満たすことが好ましい。
[構造体]
 本実施形態に係る構造体は、本実施形態に係る高周波誘電加熱用接着剤と、3つ以上の被着体とを含む。本実施形態に係る構造体において、3つ以上の被着体が本実施形態に係る高周波誘電加熱用接着剤により接合されている。本実施形態に係る構造体は、3つ以上の被着体が高周波誘電加熱用接着剤を介して積層された構造体(例えば、積層体)であることが好ましい。
 3つ以上の被着体は、互いに同じ組成の接着剤(高周波誘電加熱用接着剤)により接合されていてもよいし、互いに異なる組成の接着剤(高周波誘電加熱用接着剤)により接合されていてもよい。本実施形態に係る構造体において、高周波誘電加熱用接着剤の組成は、高周波誘電加熱用接着剤が接する被着体の材質、被着体に対する接着強度、及び接着時間等の観点から適宜選択されることが好ましい。
 図1には、本実施形態の一例としての構造体1の概略断面図が示されている。
 構造体1は、3つの被着体としての第1被着体110、第2被着体120及び第3被着体130と、第1被着体110及び第2被着体120の間に配置された第1高周波誘電加熱用接着剤11と、第2被着体120及び第3被着体130の間に配置された第2高周波誘電加熱用接着剤12と、を含む。構造体1は、第1被着体110、第1高周波誘電加熱用接着剤11、第2被着体120、第2高周波誘電加熱用接着剤12及び第3被着体130が、この順に積層された積層体である。
 本実施形態に係る構造体が積層体である場合、当該積層体における最外層としての被着体の材質は、有機材料であることが好ましい。例えば、図1の構造体1の場合、最外層としての第1被着体110及び第3被着体130の材質が有機材料であることが好ましい。
 本実施形態に係る構造体において、高周波誘電加熱用接着剤の配置されている位置及び厚さ等は、図1に示された位置及び厚さ等に限定されない。
 本実施形態に係る構造体において、被着体の形状、サイズ及び数等は、図1に示された形状、サイズ及び数等に限定されない。例えば、被着体の形状は、重力方向の切断面の形状が矩形であってもよく、三角形等の傾斜を有する形状であってもよい。
 本実施形態に係る構造体は、図1に示されたような複数の被着体が高周波誘電加熱用接着剤を介して積層された構造体に限定されない。
[構造体の製造方法]
 本実施形態に係る構造体の製造方法は、3つ以上の被着体の間に本実施形態に係る高周波誘電加熱用接着剤を配置する工程と、高周波誘電加熱用接着剤に高周波電界を印加して、3つ以上の被着体を接合する工程と、を含む。
 本実施形態に係る構造体の製造方法において、誘電加熱装置の電極の間に3つ以上の被着体と高周波誘電加熱用接着剤とを配置し、3つ以上の被着体と高周波誘電加熱用接着剤とを前記電極で加圧しながら高周波電界を印加することが好ましい。このように電極で加圧しながら高周波電界を印加することで、構造体をより短時間で製造し易くなる。
 本実施形態に係る高周波誘電加熱用接着剤を用いた製造方法によれば、誘電加熱装置によって、外部から、所定箇所のみを局所的に加熱することができる。そのため、被着体が、大型で且つ複雑な立体構造体又は厚さが大きく且つ複雑な立体構造体等であり、さらに高い寸法精度を求められる場合でも、本実施形態に係る高周波誘電加熱用接着剤を用いた製造方法は、有効である。
 以下、本実施形態に係る構造体の製造方法の一例として、本実施形態に係る高周波誘電加熱用接着剤を用いて、3つ以上の被着体を接合する態様を挙げて説明するが、本発明は、この態様に限定されない。
 本実施形態の一態様に係る接合方法は、以下の工程P1及び工程P2を含む。
・工程P1
 工程P1は、3つ以上の被着体の間に本実施形態に係る高周波誘電加熱用接着剤を配置する工程である。本実施形態に係る構造体として積層体を製造する場合、工程P1においては、例えば、被着体と高周波誘電加熱用接着剤とを交互に配置して、高周波誘電加熱用接着剤を介して3つ以上の被着体を積層させる。
 被着体同士を接合できるように、高周波誘電加熱用接着剤を被着体間で挟持することが好ましい。高周波誘電加熱用接着剤を、被着体間の一部において挟持するか、被着体間の複数箇所において挟持するか、又は被着体間の全面において挟持すればよい。被着体同士の接着強度を向上させる観点から、被着体同士の接合面全体に亘って高周波誘電加熱用接着剤を挟持することが好ましい。
 また、被着体間の一部において高周波誘電加熱用接着剤を挟持する一態様としては、被着体同士の接合面の外周に沿って高周波誘電加熱用接着剤を枠状に配置して、被着体間で挟持する態様が挙げられる。このように高周波誘電加熱用接着剤を枠状に配置することで、被着体同士の接合強度を得るとともに、接合面全体に亘って高周波誘電加熱用接着剤を配置した場合に比べて構造体を軽量化できる。
 また、被着体間の一部に高周波誘電加熱用接着剤を挟持する一態様によれば、用いる高周波誘電加熱用接着剤の量を減らしたり、サイズを小さくできるため、接合面全体に亘って高周波誘電加熱用接着剤を配置した場合に比べて高周波誘電加熱処理時間を短縮できる。
・工程P2
 工程P2は、工程P1において被着体間に配置した高周波誘電加熱用接着剤に高周波電界を印加して、3つ以上の被着体を接合する工程である。印加する高周波電界の周波数は、例えば、3MHz以上、300MHz以下である。例えば、誘電加熱装置を用いることにより、高周波電界を高周波誘電加熱用接着剤に印加することができる。
(誘電加熱装置)
 図2には、本実施形態に係る高周波誘電加熱用接着剤及び誘電加熱装置を用いた高周波誘電加熱処理を説明する概略図が示されている。
 図2に示された誘電加熱装置50は、第1高周波電界印加電極51と、第2高周波電界印加電極52と、高周波電源53と、を備えている。
 第1高周波電界印加電極51と、第2高周波電界印加電極52とは、互いに対向配置されている。第1高周波電界印加電極51及び第2高周波電界印加電極52は、プレス機構を有している。誘電加熱装置50の電極(第1高周波電界印加電極51及び第2高周波電界印加電極52)のプレス機構により、当該電極の間に配置された3つ以上の被着体と高周波誘電加熱用接着剤とを加圧しながら高周波電界を印加することもできる。
 図2には、誘電加熱装置50を用いて構造体1(図1参照)を製造する方法の一例が示されている。誘電加熱装置50により、第1高周波電界印加電極51と第2高周波電界印加電極52との間で第1被着体110、第1高周波誘電加熱用接着剤11、第2被着体120、第2高周波誘電加熱用接着剤12及び第3被着体130を加圧処理できる。
 第1高周波電界印加電極51と第2高周波電界印加電極52とが互いに平行な1対の平板電極を構成している場合、このような電極配置の形式を平行平板タイプと称する場合がある。
 高周波電界の印加には平行平板タイプの高周波誘電加熱装置を用いることも好ましい。平行平板タイプの高周波誘電加熱装置であれば、高周波電界が電極間に位置する高周波誘電加熱用接着剤を貫通するので、高周波誘電加熱用接着剤全体を温めることができ、被着体と高周波誘電加熱用接着剤とを短時間で接合できる。また、構造体としての積層体を製造する場合には、平行平板タイプの高周波誘電加熱装置を用いることが好ましい。
 第1高周波電界印加電極51及び第2高周波電界印加電極52のそれぞれに、例えば、周波数13.56MHz程度、周波数27.12MHz程度又は周波数40.68MHz程度の高周波電界を印加するための高周波電源53が接続されている。
 誘電加熱装置50は、図2に示すように、第1被着体110、第2被着体120及び第3被着体130の間に挟持した第1高周波誘電加熱用接着剤11及び第2高周波誘電加熱用接着剤12を介して、誘電加熱処理する。さらに、誘電加熱装置50は、誘電加熱処理に加えて、第1高周波電界印加電極51及び第2高周波電界印加電極52による加圧処理によって、第1被着体110、第2被着体120及び第3被着体130を接合する。なお、加圧処理を行わずに、例えば、高周波誘電加熱用接着剤及び被着体の自重のみによる押圧により3つ以上の被着体を接合してもよい。
 第1高周波電界印加電極51及び第2高周波電界印加電極52の間に、高周波電界を印加すると、第1高周波誘電加熱用接着剤11及び第2高周波誘電加熱用接着剤12における接着剤成分中に分散された誘電フィラー(図示せず)が、高周波エネルギーを吸収する。
 そして、誘電フィラーは、発熱源として機能し、誘電フィラーの発熱によって、熱可塑性樹脂成分を溶融させ、短時間処理であっても、最終的には、第1被着体110、第2被着体120及び第3被着体130を強固に接合できる。
 第1高周波電界印加電極51及び第2高周波電界印加電極52は、プレス機構を有することから、プレス装置としても機能する。そのため、第1高周波電界印加電極51及び第2高周波電界印加電極52による圧縮方向への加圧、並びに第1高周波誘電加熱用接着剤11及び第2高周波誘電加熱用接着剤12の加熱溶融によって、第1被着体110、第2被着体120及び第3被着体130をより強固に接合できる。なお、構造体の製造方法の説明において図1に示す構造体1を製造する場合を例に挙げて説明しているが、本発明は、この例に限定されない。
(高周波誘電加熱条件)
 高周波誘電加熱条件は、適宜変更できるが、以下の条件であることが好ましい。
 高周波電界の出力は、10W以上であることが好ましく、30W以上であることがより好ましく、50W以上であることがさらに好ましく、80W以上であることがよりさらに好ましい。
 高周波電界の出力は、50,000W以下であることが好ましく、20,000W以下であることがより好ましく、15,000W以下であることがさらに好ましく、10,000W以下であることがよりさらに好ましく、1,000W以下であることがさらになお好ましい。
 高周波電界の出力が10W以上であれば、誘電加熱処理時に温度が上昇し難いという不具合を防止できるので、良好な接合強度を得やすい。
 高周波電界の出力が50,000W以下であれば、誘電加熱処理による温度制御が困難となる不具合を防ぎ易い。
 高周波電界の印加時間は、1秒以上であることが好ましい。
 高周波電界の印加時間は、300秒以下であることが好ましく、240秒以下であることがより好ましく、180秒以下であることがさらに好ましく、120秒以下であることがよりさらに好ましく、90秒以下であることがさらになお好ましい。
 高周波電界の印加時間が1秒以上であれば、誘電加熱処理時に温度が上昇し難いという不具合を防止できるので、良好な接着力を得やすい。
 高周波電界の印加時間が300秒以下であれば、構造体の製造効率が低下したり、製造コストが高くなったり、さらには、被着体が熱劣化するといった不具合を防ぎ易い。
 印加する高周波電界の周波数は、1kHz以上であることが好ましく、1MHz以上であることがより好ましく、3MHz以上であることがより好ましく、5MHz以上であることがさらに好ましく、10MHz以上であることがよりさらに好ましい。
 印加する高周波電界の周波数は、300MHz以下であることが好ましく、100MHz以下であることがより好ましく、80MHz以下であることがさらに好ましく、50MHz以下であることがよりさらに好ましい。具体的には、国際電気通信連合により割り当てられた工業用周波数帯13.56MHz、27.12MHz又は40.68MHzが、本実施形態の高周波誘電加熱による製造方法や接合方法にも利用される。
(本実施形態の効果)
 本実施形態の高周波誘電加熱用接着剤は、前述の下限温度TL以上、上限温度TU以下の範囲内における、メルトボリュームレートが、1cm/10min以上、300cm/10min以下を満たすため、高周波誘電加熱用接着剤は、適度な流動性が得られる。このため、3つ以上の被着体を一度に短時間で接合できるとともに、被着体同士のズレの発生が抑制できる。また、本実施形態によれば、当該高周波誘電加熱用接着剤により3つ以上の被着体が接合された構造体及び当該構造体の製造方法を提供することができる。当該構造体の製造方法によれば、3つ以上の被着体が接合された構造体を短時間で製造できるとともに、被着体同士のズレの発生が抑制された構造体を製造することができる。
 高周波誘電加熱用接着剤は、一般的な粘着剤に比べて、耐水性及び耐湿性が優れる。
 本実施形態に係る高周波誘電加熱用接着剤は、高周波電界の印加により局所的に加熱される。それゆえ、本実施形態に係る高周波誘電加熱用接着剤によれば、被着体との接合時に被着体全体が損傷するという不具合を防ぎやすい。
〔実施形態の変形〕
 本発明は、前記実施形態に限定されない。本発明は、本発明の目的を達成できる範囲での変形及び改良等を含むことができる。
 高周波誘電加熱処理は、前記実施形態で説明した電極を対向配置させた誘電加熱装置に限定されず、格子電極タイプの高周波誘電加熱装置を用いてもよい。格子電極タイプの高周波誘電加熱装置は、一定間隔ごとに第一極性の電極と、第一極性の電極とは反対極性の第二極性の電極とを同一平面上に交互に配列した格子電極を有する。なお、図においては、簡略化のために電極を対向配置させた誘電加熱装置を用いた態様を例示した。
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
[高周波誘電加熱用接着剤の作製]
(実施例1~6及び比較例1~3)
 表1に示す熱可塑性樹脂(A)と誘電フィラー(B)を予備混合した。予備混合した材料を30mmφ二軸押出機のホッパーに供給し、シリンダー設定温度、およびダイス温度を熱可塑性樹脂(A)の種類にあわせて適宜調整し、予備混合した材料を溶融混練した。溶融混練した材料を冷却した後に、当該材料をカットすることにより、粒状のペレットを作製した。次いで、作製した粒状ペレットを、Tダイを設置した単軸押出機のホッパーに投入し、シリンダー温度、およびダイス温度を熱可塑性樹脂(A)の種類にあわせて適宜調整し、Tダイから、フィルム状溶融混練物を押出し、冷却ロールにて冷却させることにより、実施例1~6及び比較例1~3に係る厚さ400μmのシート状の高周波誘電加熱用接着剤(高周波誘電加熱接着シート)のそれぞれを作製した。
 表1に示す熱可塑性樹脂(A)、誘電フィラー(B)及び被着体の説明は、次の通りである。
・熱可塑性樹脂(A)
 LDPE-1:低密度ポリエチレン(住友化学株式会社製、商品名「スミカセンL420」、MFR:3.5g/10min(JIS K 7210-1:2014に準拠))
 LDPE-2:低密度ポリエチレン(住友化学株式会社製、商品名「スミカセンL705」、MFR:7.0g/10min(JIS K 7210-1:2014に準拠))
 LDPE-3:低密度ポリエチレン(住友化学株式会社製、商品名「スミカセンG801」、MFR:20g/10min(JIS K 7210-1:2014に準拠))
 LDPE-4:低密度ポリエチレン(住友化学株式会社製、商品名「スミカセンG807」、MFR:75g/10min(JIS K 7210-1:2014に準拠))
 LDPE-5:低密度ポリエチレン(住友化学株式会社製、商品名「スミカセンF101-1」、MFR:0.3g/10min(JIS K 7210-1:2014に準拠))
 EVA-1:エチレン-酢酸ビニル共重合樹脂(三井・ダウポリケミカル株式会社製、商品名「エバフレックスEV560」、MFR:3.5g/10min(JIS K 7210-1:2014に準拠))
 EVA-2:エチレン-酢酸ビニル共重合樹脂(東ソー株式会社製、商品名「ウルトラセン685」、MFR:2500g/10min(JIS K 6924-1:1997に準拠))
 EVA-3:エチレン-酢酸ビニル共重合樹脂(東ソー株式会社製、商品名「ウルトラセン722」、MFR:400g/10min(JIS K 6924-1:1997に準拠))
・誘電フィラー(B)
 ZnO:酸化亜鉛(堺化学工業株式会社製、製品名「LP-ZINC11」)。
(誘電フィラーの体積平均粒子径)
 レーザー回折・散乱法により、誘電フィラーの粒度分布を測定した。粒度分布測定の結果からJIS Z 8819-2:2001に準じて体積平均粒子径を算出した。算出した酸化亜鉛(ZnO)の体積平均粒子径は、11μmであった。
・被着体
 ガラス繊維ポリプロピレン樹脂板を用いて、長さ75mm、幅25mm、厚さ2mmの板状の被着体を作製した。この被着体の流動開始温度TF2は183℃である。また、この被着体の誘電特性DP2は、0.000である。
(軟化温度および流動開始温度)
 高周波誘電加熱用接着剤の軟化温度および流動開始温度は、降下式フローテスター(株式会社島津製作所製,型番「CFT-100D」)を用いて測定した。荷重5.0kgとし、穴形状がφ2.0mm、長さが5.0mmのダイ、内径が11.329mmのシリンダーを使用し、測定試料の温度を昇温速度10℃/minで上昇させながら、昇温とともに変動するストローク変位速度(mm/min)を測定して、試料のストローク変位速度の温度依存性チャートを得た。このチャートにおいて、低温側に得られるピークの温度を軟化温度とした。また、軟化温度のピークを経過した後、再度ストローク変位速度が上昇し始める温度を流動開始温度とした。被着体の流動開始温度は、被着体を2mm×2mm×2mm程度の大きさに刻んで、測定試料を作製し、上述と同様に測定した。
(熱分解温度)
 高周波誘電加熱用接着剤の熱分解温度は、熱分析測定装置(株式会社島津製作所製,熱分析計TG-DTA同時測定装置,型番「DTG-60」)を用いて測定した。測定条件は、大気雰囲気下、10℃/分の昇温速度で30℃から500℃まで加熱を行った。得られたTG曲線に現れる重量減少が生じ始める温度付近において、DTA曲線の低温側に現れる発熱ピークのピークトップの温度を熱分解温度(単位:℃)とした。
(MVR)
 高周波誘電加熱用接着剤のメルトボリュームレート(MVR)は、降下式フローテスター(株式会社島津製作所製,型番「CFT-100D」)を用いて測定した。測定条件は、穴形状がφ2.0mm、長さが5.0mmのダイ、内径が11.329mmのシリンダーを使用し、測定荷重は次のとおりとした。高周波誘電加熱用接着剤の軟化温度よりも10℃高い温度(下限温度TL:軟化温度(℃)+10℃)での測定荷重は20kgとし、高周波誘電加熱用接着剤の熱分解温度よりも10℃低い温度(上限温度TU:熱分解温度(℃)-10℃)での測定荷重は5kgとした。前記下限温度TL、及び前記上限温度TUで、MVRを測定した。
(厚さ精度)
 高周波誘電加熱接着シートの無作為に選んだ25箇所の厚さを23℃の条件下で測定した。厚さ測定は、株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K 6783、JIS Z 1702、及びJIS Z 1709に準拠)を用いて行った。測定結果に基づいて厚さの平均値Tave、厚さの最大値Tmax、及び厚さの最小値Tminを算出した。プラス側の厚さ精度は、下記数式(数4A)により算出し、マイナス側の厚さ精度は、下記数式(数4B)により算出した。厚さ精度は、プラス側の厚さ精度及びマイナス側の厚さ精度のどちらか大きい値に基づき表示する。例えば、プラス側の厚さ精度の値が+3%であり、マイナス側の厚さ精度の値が-2%の場合は、厚さ精度は、±3%と表示する。
  {(Tmax-Tave)/Tave}×100 …(数4A)
  {(Tmin-Tave)/Tave}×100 …(数4B)
(誘電特性)
 接着シートを、30mm×30mmの大きさに切断した。切断した接着シートについて、RFインピーダンスマテリアルアナライザE4991A(Agilent社製)に、誘電材料テスト・フィクスチャー 16453A(Agilent社製)を取り付け、平行板法にて、23℃における周波数40.68MHzの条件下、比誘電率(ε’r)及び誘電正接(tanδ)をそれぞれ測定した。測定結果に基づき、誘電特性(tanδ/ε’r)の値を算出した。
〔高周波誘電加熱用接着剤の評価〕
 以下に示すとおり高周波誘電加熱用接着剤(接着シート)を評価した。評価結果を表1に示す。
(接着性)
 図3に示すように、3枚の被着体WK1,WK2,WK3を積層させて構造体STを作製した。なお、図3においては、電極と接着シートとを区別し易いように、電極及び接着シートの一部に斜線を付している。
 まず、作製した高周波誘電加熱用接着剤(接着シート)を長さ25mm、幅25mmに切断し、2枚の接着シートAS1,AS2を準備した。長さ75mm、幅25mm、厚さ2mmの板状の被着体WK1,WK3と、長さ55mm、幅25mm、厚さ2mmの板状の被着体WK2を積層した。被着体は、前述のガラス繊維ポリプロピレン樹脂板である。被着体WK1,WK2,WK3を積層させる際に、接着シートAS1,AS2を、被着体WK1,WK3の長さ方向の端部に、被着体WK2の長さ方向の中央に位置するように配置した。被着体WK1,WK2,WK3の材質は、3枚とも同じとした。このように積層した被着体及び接着シートを、高周波誘電加熱装置(山本ビニター社製、製品名「YRP-400T-A」)の電極ELD1,ELD2の間に固定した。電極ELD1,ELD2の押し付け面の形状は、大きさが25mm×25mmである正方形とした。図3にも示すように、接着シートAS1,AS2及び電極ELD1,ELD2が重なり合うように固定した。このように固定した状態で、電極ELD1,ELD2に接続された高周波電源HFにより高周波電界を下記高周波電界印加条件で印加して接着シートと被着体とを接合し、接着性評価用の試験片(構造体ST)を作製した。高周波電界印加時の押し付け圧力は、被着体の接合部に加えた圧力である。
・高周波電界印加条件
  周波数   :40.68MHz
  出力    :250W
  印加時間  :20秒
  押し付け圧力:0.16MPa
 作製した接着性評価用の試験片の接着性を下記基準に沿って評価した。
  A:3枚の被着体共に1MPa以上の接合強度が得られていた。
  F:3枚の被着体共に1MPa未満の接合強度であった。
 各例の高周波誘電加熱用接着剤を用いて作製した接着性評価用の試験片を用いて、接着力としての引張せん断力(単位:MPa)を測定した。
 引張せん断力の測定には、万能引張試験機(インストロン社製、製品名「インストロン5581」)を用いた。引張せん断力の測定における引張速度は、10mm/minとした。被着体WK1と被着体WK3とを試験機のチャックで挟み、JIS K 6850:1999に準じて引張せん断力を測定した。
(被着体のズレ評価)
 図4に示すように、3枚の被着体WK4,WK5,WK6を積層させて構造体ST2を作製した。なお、図4においては、電極と接着シートとを区別し易いように、図3と同様に、電極及び接着シートに斜線を付している。
 まず、作製した高周波誘電加熱用接着剤(接着シート)を長さ12.5mm、幅25mmに切断し、2枚の接着シートAS3,AS4を準備した。被着体Aとして、長さ12.5mm、幅25mm、厚さ2mmの板状の被着体を準備し、被着体WK6とした。被着体Bとして、長さ12.5mm、幅25mm、厚さ2mmの板状の被着体を準備した。被着体Bを、側面から見て、前述の長さと厚さの対角線上に半裁して、被着体WK4及び被着体WK5とした。半裁して得られた被着体WK4及び被着体WK5は、傾斜面を有し、傾斜角が約9.1°である。被着体A及び被着体Bは同じ材質であり、前述のガラス繊維ポリプロピレン樹脂板である。
 次に、被着体WK6,接着シートAS4,被着体WK5,接着シートAS3,被着体WK4の順に重ねて積層した。積層する際に、被着体WK4,WK5,及びWK6のそれぞれの長さ方向の両端部と、接着シートAS3及びAS4のそれぞれの長さ方向の両端部とが揃う位置に配置した。また、被着体WK5の傾斜面上に、接着シートAS3を重ね、被着体WK4の傾斜面を被着体WK5の傾斜面と対向するように、接着シートAS3上に重ねた。
 このように積層した被着体及び接着シートを、高周波誘電加熱装置(山本ビニター社製、製品名「YRP-400T-A」)の電極ELD1,ELD2の間に固定した。電極ELD1,ELD2の押し付け面の形状は、大きさが25mm×25mmである正方形とした。図4にも示すように、接着シートAS3,AS4及び電極ELD1,ELD2が重なり合うように固定した。このように固定した状態で、電極ELD1,ELD2に接続された高周波電源HFにより高周波電界を下記高周波電界印加条件で印加して接着シートと被着体とを接合し、接着性評価用の試験片(構造体ST2)を作製した。高周波電界印加時の押し付け圧力は、被着体の接合部に加えた圧力である。
・高周波電界印加条件
  周波数   :40.68MHz
  出力    :50W
  印加時間  :20秒
  押し付け圧力:0.75MPa
 作製した被着体ズレ性評価用の試験片について、被着体同士のズレを下記基準に沿って評価した。被着体WK6の第1端面E6Aから被着体WK5の端面E5までの水平方向距離L1と、被着体WK6の第2端面E6Bから被着体WK4の端面E4までの水平方向距離L2との合計を(L1+L2)とした。
  A:(L1+L2)が、2.0mm以下であった。
  F:(L1+L2)が2.0mmを超えていた。
 被着体同士のズレを表す水平方向距離L1及びL2は、以下のように測定した。図5に示すように、まず、被着体WK6の長さ方向の第1端面E6Aと、この第1端面E6A側に位置する被着体WK5の端面E5との水平方向距離L1を測定した。同様に、被着体WK6の長さ方向の第2端面E6Bと、この第2端面E6B側に位置する被着体WK4の端面E4までの水平方向距離L2を測定した。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6の高周波誘電加熱用接着剤は、3つの被着体を一度に短時間で接合が可能であるとともに、被着体同士のズレを抑制することが可能であった。実施例1~6の高周波誘電加熱用接着剤を用いて作製した構造体において、3つの被着体が1MPa以上の接合強度で接合しており、かつ、被着体同士のズレが少ない。
 比較例1および3では、高周波誘電加熱用接着剤のMVRが、300cm/10minを超えているため、誘電加熱接着したときの接着剤の流動性が大きすぎる。このため、比較例1および3の接着剤を用いて被着体を接合する際に、被着体同士にズレが生じたと考えられる。
 比較例2では、高周波誘電加熱用接着剤のMVRが1cm/10min未満であるため、誘電加熱接着したときの接着剤の流動性が低すぎる。このため、アンカー効果が発現し難く、被着体に対する濡れ性が低く、短時間での接着性が低いと考えられる。
 前述のとおり、被着体のガラス繊維ポリプロピレン樹脂板は、流動開始温度TF2が183であり、誘電特性DP2は、0.000である。このため、流動開始温度差のTF2-TF1は、被着体の流動開始温度TF2と各例の高周波誘電加熱用接着剤の流動開始温度TF1との差となる。例えば、実施例1では、表1から、高周波誘電加熱用接着剤の流動開始温度TF1が121℃であるため、流動開始温度差のTF2-TF1は、62℃となる。また、誘電特性の差DP1-DP2は、結果として、高周波誘電加熱用接着剤の値と同じ値になる。
 1…構造体、11…第1高周波誘電加熱用接着剤、12…第2高周波誘電加熱用接着剤、50…誘電加熱装置、51…第1高周波電界印加電極、52…第2高周波電界印加電極、53…高周波電源、110…第1被着体、120…第2被着体、130…第3被着体、AS1…接着シート、AS2…接着シート、AS3…接着シート、AS4…接着シート、ELD1…電極、ELD2…電極、ST,ST2…構造体、WK1…被着体、WK2…被着体、WK3…被着体、WK4…被着体、WK5…被着体、WK6…被着体、E4,E5…端面、E6A…第1端面、E6B…第2端面、L1,L2…水平方向距離

Claims (14)

  1.  3つ以上の被着体を接合させるための高周波誘電加熱用接着剤であって、
     前記高周波誘電加熱用接着剤は、熱可塑性樹脂と、高周波電界の印加により発熱する誘電フィラーとを含み、
     下限温度TL、および上限温度TUにおける、メルトボリュームレートが、1cm/10min以上、300cm/10min以下であり、
     前記下限温度TL(単位:℃)は、下記数式(数11)で規定され、
     前記上限温度TU(単位:℃)は、下記数式(数12)で規定される、
     高周波誘電加熱用接着剤。
      TL=前記高周波誘電加熱用接着剤の軟化温度TM+10℃ …(数11)
      TU=前記高周波誘電加熱用接着剤の熱分解温度TD-10℃ …(数12)
     但し、前記下限温度TLでのメルトボリュームレートの測定荷重は20kgであり、
     前記上限温度TUでのメルトボリュームレートの測定荷重は5kgである。
  2.  前記3つ以上の被着体は、それぞれ、流動開始温度を有さない被着体であるか、又は、流動開始温度を有する被着体であり、前記被着体の流動開始温度TF2(℃)と、前記高周波誘電加熱用接着剤の流動開始温度TF1(℃)とが、下記数式(数2)の関係を満たす、
     請求項1に記載の高周波誘電加熱用接着剤。
      -5≦TF2-TF1 …(数2)
  3.  前記高周波誘電加熱用接着剤の流動開始温度TF1は、80℃以上、200℃以下である、
     請求項2に記載の高周波誘電加熱用接着剤。
  4.  前記3つ以上の被着体のうち少なくともいずれかが流動開始温度を有する被着体である場合、前記流動開始温度を有する被着体の流動開始温度TF2は、90℃以上である、
     請求項2又は請求項3に記載の高周波誘電加熱用接着剤。
  5.  前記高周波誘電加熱用接着剤の誘電特性DP1と、前記3つ以上の被着体のそれぞれの誘電特性DP2とが、下記数式(数1)の関係を満たす、
     請求項1から請求項4のいずれか一項に記載の高周波誘電加熱用接着剤。
      0<DP1-DP2 …(数1)
    (誘電特性DP1、及び誘電特性DP2は、それぞれ、前記高周波誘電加熱用接着剤、及び前記3つ以上の被着体の誘電特性(tanδ/ε’r)の値であり、
     tanδは、23℃かつ周波数40.68MHzにおける誘電正接であり、
     ε’rは、23℃かつ周波数40.68MHzにおける比誘電率である。)
  6.  前記3つ以上の被着体のそれぞれの誘電特性DP2は、いずれも、0.015以下である、
     請求項5に記載の高周波誘電加熱用接着剤。
  7.  前記高周波誘電加熱用接着剤の誘電特性DP1は、0.005以上である、
     請求項5又は請求項6に記載の高周波誘電加熱用接着剤。
  8.  前記高周波誘電加熱用接着剤は、接着シートである、
     請求項1から請求項7のいずれか一項に記載の高周波誘電加熱用接着剤。
  9.  前記接着シートの厚さTS1と、前記3つ以上の被着体のそれぞれの厚さTS2が、下記数式(数3)の関係を満たす、
     請求項8に記載の高周波誘電加熱用接着剤。
      TS1<TS2 …(数3)
  10.  前記接着シートの厚さTS1は、5μm以上、2000μm以下である、
     請求項8又は請求項9に記載の高周波誘電加熱用接着剤。
  11.  前記接着シートの厚さ精度は、±10%以内である、
     請求項8から請求項10のいずれか一項に記載の高周波誘電加熱用接着剤。
  12.  請求項1から請求項11のいずれか一項に記載の高周波誘電加熱用接着剤により前記3つ以上の被着体が接合されている、
     構造体。
  13.  前記3つ以上の被着体の間に請求項1から請求項11のいずれか一項に記載の高周波誘電加熱用接着剤を配置する工程と、
     前記高周波誘電加熱用接着剤に高周波電界を印加して、前記3つ以上の被着体を接合する工程と、を含む、
     構造体の製造方法。
  14.  誘電加熱装置の電極の間に前記3つ以上の被着体と前記高周波誘電加熱用接着剤とを配置し、
     前記3つ以上の被着体と前記高周波誘電加熱用接着剤とを前記電極で加圧しながら高周波電界を印加する、
     請求項13に記載の構造体の製造方法。
PCT/JP2021/043772 2020-12-04 2021-11-30 高周波誘電加熱用接着剤、構造体及び構造体の製造方法 WO2022118826A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21900579.0A EP4257354A1 (en) 2020-12-04 2021-11-30 Adhesive for high-frequency dielectric heating, structure, and method for manufacturing structure
CN202180080954.6A CN116547145A (zh) 2020-12-04 2021-11-30 高频介电加热用粘接剂、结构体及结构体的制造方法
JP2022566928A JPWO2022118826A1 (ja) 2020-12-04 2021-11-30
US18/039,901 US20240052206A1 (en) 2020-12-04 2021-11-30 Adhesive for high-frequency dielectric heating, structure, and method for manufacturing structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-202036 2020-12-04
JP2020202036 2020-12-04
JP2021-061708 2021-03-31
JP2021061708 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022118826A1 true WO2022118826A1 (ja) 2022-06-09

Family

ID=81853214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043772 WO2022118826A1 (ja) 2020-12-04 2021-11-30 高周波誘電加熱用接着剤、構造体及び構造体の製造方法

Country Status (4)

Country Link
US (1) US20240052206A1 (ja)
EP (1) EP4257354A1 (ja)
JP (1) JPWO2022118826A1 (ja)
WO (1) WO2022118826A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7563612B2 (ja) 2022-08-26 2024-10-08 株式会社レゾナック 金属材の連結体及び金属材の連結方法
JP7563611B2 (ja) 2022-07-27 2024-10-08 株式会社レゾナック 金属材の連結体及び金属材の連結方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187626A (ja) 1997-12-22 1999-07-09 Nippon Steel Corp 積層鉄芯製造方法
JP2003252658A (ja) 2002-02-27 2003-09-10 Haishiito Kogyo Kk 防犯防弾用複合ガラス
JP2010006908A (ja) * 2008-06-25 2010-01-14 Denso Corp 接着剤、接着構造体及び高周波誘電加熱接着装置
JP2014213524A (ja) * 2013-04-25 2014-11-17 日本電気硝子株式会社 積層体の製造方法
WO2018079354A1 (ja) * 2016-10-27 2018-05-03 リンテック株式会社 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接合方法
JP2018177825A (ja) * 2017-04-03 2018-11-15 リンテック株式会社 誘電加熱接着フィルムを用いてなる接着構造体の製造方法
JP2020070365A (ja) * 2018-10-31 2020-05-07 リンテック株式会社 高周波誘電加熱接着シート及び断熱構造体
WO2020203206A1 (ja) * 2019-03-29 2020-10-08 リンテック株式会社 接合方法及び高周波誘電加熱接着シート
WO2021200686A1 (ja) * 2020-03-31 2021-10-07 リンテック株式会社 高周波誘電加熱接着シート

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187626A (ja) 1997-12-22 1999-07-09 Nippon Steel Corp 積層鉄芯製造方法
JP2003252658A (ja) 2002-02-27 2003-09-10 Haishiito Kogyo Kk 防犯防弾用複合ガラス
JP2010006908A (ja) * 2008-06-25 2010-01-14 Denso Corp 接着剤、接着構造体及び高周波誘電加熱接着装置
JP2014213524A (ja) * 2013-04-25 2014-11-17 日本電気硝子株式会社 積層体の製造方法
WO2018079354A1 (ja) * 2016-10-27 2018-05-03 リンテック株式会社 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いてなる接合方法
JP2018177825A (ja) * 2017-04-03 2018-11-15 リンテック株式会社 誘電加熱接着フィルムを用いてなる接着構造体の製造方法
JP2020070365A (ja) * 2018-10-31 2020-05-07 リンテック株式会社 高周波誘電加熱接着シート及び断熱構造体
WO2020203206A1 (ja) * 2019-03-29 2020-10-08 リンテック株式会社 接合方法及び高周波誘電加熱接着シート
WO2021200686A1 (ja) * 2020-03-31 2021-10-07 リンテック株式会社 高周波誘電加熱接着シート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7563611B2 (ja) 2022-07-27 2024-10-08 株式会社レゾナック 金属材の連結体及び金属材の連結方法
JP7563612B2 (ja) 2022-08-26 2024-10-08 株式会社レゾナック 金属材の連結体及び金属材の連結方法

Also Published As

Publication number Publication date
JPWO2022118826A1 (ja) 2022-06-09
US20240052206A1 (en) 2024-02-15
EP4257354A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2018147352A1 (ja) 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いた接着方法
JP6648300B2 (ja) 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いた接着方法
WO2022118826A1 (ja) 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2021200686A1 (ja) 高周波誘電加熱接着シート
WO2021200685A1 (ja) 高周波誘電加熱接着シート
JP2020070365A (ja) 高周波誘電加熱接着シート及び断熱構造体
WO2021200684A1 (ja) 高周波誘電加熱接着シート
JP6796744B1 (ja) 接合方法
JP2018177825A (ja) 誘電加熱接着フィルムを用いてなる接着構造体の製造方法
JP7312539B2 (ja) 高周波誘電加熱接着シート
WO2022118825A1 (ja) 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2021200687A1 (ja) 高周波誘電加熱接着シートを用いた接着方法
JP7223553B2 (ja) 高周波誘電加熱接着シート、管の接合方法及び管接合体
CN116547145A (zh) 高频介电加热用粘接剂、结构体及结构体的制造方法
WO2021201173A1 (ja) 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2022004604A1 (ja) 高周波誘電加熱接着シート
WO2022004605A1 (ja) 高周波誘電加熱接着シート、接合方法及び接合体
WO2022004606A1 (ja) 高周波誘電加熱用接着剤
WO2023013651A1 (ja) 接合方法
JP2022045334A (ja) 接着方法
WO2022045156A1 (ja) 成型体、接合方法、及び成型体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566928

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180080954.6

Country of ref document: CN

Ref document number: 18039901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021900579

Country of ref document: EP

Effective date: 20230704