WO2021200684A1 - 高周波誘電加熱接着シート - Google Patents

高周波誘電加熱接着シート Download PDF

Info

Publication number
WO2021200684A1
WO2021200684A1 PCT/JP2021/012956 JP2021012956W WO2021200684A1 WO 2021200684 A1 WO2021200684 A1 WO 2021200684A1 JP 2021012956 W JP2021012956 W JP 2021012956W WO 2021200684 A1 WO2021200684 A1 WO 2021200684A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric heating
adhesive sheet
frequency dielectric
adhesive layer
heating adhesive
Prior art date
Application number
PCT/JP2021/012956
Other languages
English (en)
French (fr)
Inventor
森 裕一
田矢 直紀
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to US17/915,042 priority Critical patent/US20230159795A1/en
Priority to JP2022512129A priority patent/JPWO2021200684A1/ja
Priority to CN202180026523.1A priority patent/CN115380090A/zh
Priority to EP21782219.6A priority patent/EP4129663A4/en
Publication of WO2021200684A1 publication Critical patent/WO2021200684A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1022Titania
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1025Zinc oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/303Average diameter greater than 1µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/41Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the carrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation

Definitions

  • the present invention relates to a high frequency dielectric heating adhesive sheet.
  • Patent Document 1 describes a sheet-shaped thermal adhesive containing at least one fine powder selected from the group consisting of carbon black, silicon oxide, metal and metal oxide.
  • the thermal adhesive described in Patent Document 1 is a single-layer sheet that is melted by dielectric heating.
  • the molten resin in the single-layer sheet may protrude from the bonded portion between the adherends.
  • the protruding resin may adhere to a surface other than the adhesive surface of the adherend, or may adhere to a dielectric heating device (for example, an electrode or the like).
  • An object of the present invention is to provide a high-frequency dielectric heating adhesive sheet in which the resin does not easily protrude from the bonded portion between the adherends even if pressure is applied when the adherends are dielectrically heat-bonded.
  • the present invention has a first adhesive layer, a second adhesive layer, and an intermediate layer arranged between the first adhesive layer and the second adhesive layer.
  • the first adhesive layer contains a first thermoplastic resin and a first dielectric filler that generates heat at a high frequency
  • the second adhesive layer contains a second thermoplastic resin and a second that generates heat at a high frequency.
  • a high-frequency dielectric heating adhesive sheet containing a dielectric filler and the intermediate layer does not contain a dielectric filler that generates heat at a high frequency is provided.
  • At least one of the MVR ratio MVRr1 represented by the following mathematical formula (Equation 2) and the MVR ratio MVRr2 represented by the following mathematical formula (Equation 3) is 0. It is preferably 0.01 or more.
  • MVRr1 MVRx1 / MVRy ... (Equation 2)
  • MVRr2 MVRx2 / MVRy ... (Equation 3)
  • MVRx1 is the MVR of the first adhesive layer at 230 ° C.
  • MVRx2 is the MVR of the second adhesive layer at 230 ° C.
  • MVRy is the MVR of the intermediate layer at 230 ° C.
  • MVry an MVR at 230 ° C. of the intermediate layer is preferably not more than 60cm 3 / 10min.
  • At least one of MVRx1 which is the MVR of the first adhesive layer at 230 ° C. and MVRx2 which is the MVR of the second adhesive layer at 230 ° C. is preferably 0.5 cm 3 / 10min or more.
  • the volume content of the first dielectric filler in the first adhesive layer and the volume content of the second dielectric filler in the second adhesive layer are 3% by volume or more and 60% by volume or less.
  • At least one of the first dielectric filler and the second dielectric filler is selected from the group consisting of zinc oxide, silicon carbide, barium titanate, and titanium oxide. It is preferable to contain at least one of the above.
  • At least one of the first thermoplastic resin and the second thermoplastic resin is preferably a polyolefin resin.
  • the thickness reduction rate before and after applying a high frequency to the high-frequency dielectric heating adhesive sheet is 50% or less.
  • the first adhesive layer and the second adhesive layer is in direct contact with the intermediate layer.
  • any layer of the high-frequency dielectric heating adhesive sheet is peeled off from the layer in contact with the layer after a cross-cut test in accordance with JIS K5600-5-6: 1999. It is preferable that the ratio of the number of lattices attached without the invention is 50% or more.
  • the present invention it is possible to provide a high-frequency dielectric heating adhesive sheet in which the resin does not easily protrude from the bonded portion between the adherends even if pressure is applied when the adherends are dielectrically heat-bonded.
  • the high-frequency dielectric heating adhesive sheet includes a first adhesive layer, a second adhesive layer, and an intermediate layer arranged between the first adhesive layer and the second adhesive layer.
  • the first adhesive layer contains a first thermoplastic resin and a first dielectric filler that generates heat at a high frequency.
  • the second adhesive layer contains a second thermoplastic resin and a second dielectric filler that generates heat at high frequencies.
  • the intermediate layer does not contain a dielectric filler that generates heat at high frequencies.
  • the first adhesive layer and the second adhesive layer are in direct contact with the intermediate layer. It is also preferable that both the first adhesive layer and the second adhesive layer are in direct contact with the intermediate layer.
  • the intermediate layer preferably contains one or more kinds of thermoplastic resins. From the viewpoint of adhesion, the intermediate layer more preferably contains at least one of a first thermoplastic resin and a second thermoplastic resin. It is also preferable that the main composition of the thermoplastic resin contained in the intermediate layer is the same as at least one of the main composition of the first thermoplastic resin and the main composition of the second thermoplastic resin. It is also preferable that the main composition of the thermoplastic resin contained in the intermediate layer is the same as the main composition of the first thermoplastic resin and the main composition of the second thermoplastic resin.
  • the "main composition of the thermoplastic resin” is, for example, when the thermoplastic resin is a polymer, it is the repeating unit contained most in the polymer among the repeating units contained in the polymer. If the thermoplastic resin is a polymer derived from a single monomer, the monomer unit (repeating unit) is the "main composition of the thermoplastic resin". When the thermoplastic resin is a copolymer, the repeating unit contained most in the polymer is the "main composition of the thermoplastic resin". When the thermoplastic resin is a copolymer, the "main composition of the thermoplastic resin” in the copolymer is a repeating unit (monomer unit) contained in an amount of 30% by mass or more, and in one embodiment, 30% by mass.
  • thermoplastic resin is a copolymer
  • the number of repeating units contained most may be two or more.
  • FIG. 1 shows a schematic cross-sectional view of an example of a high-frequency dielectric heating adhesive sheet according to the present embodiment.
  • the high-frequency dielectric heating adhesive sheet 1 has a first adhesive layer 10, a second adhesive layer 20 located on the surface side opposite to the first adhesive layer 10, a first adhesive layer 10, and a first adhesive layer 10 as outermost layers. It has an intermediate layer 30 arranged between the adhesive layers 20 of 2.
  • the first adhesive layer 10 and the intermediate layer 30 are in direct contact with each other, and the second adhesive layer 20 and the intermediate layer 30 are in direct contact with each other.
  • the high-frequency dielectric heating adhesive sheet 1 has a first surface 11 and a second surface 21 opposite to the first surface 11.
  • the first thermoplastic resin and the second thermoplastic resin may be the same resin or different resins.
  • the thermoplastic resin contained in the intermediate layer is also appropriately selected and used from the first thermoplastic resin described later and the same resin as described in the second thermoplastic resin. Is preferable.
  • the first thermoplastic resin and the second thermoplastic resin are the same resin, it is easy to reduce the manufacturing cost of the high-frequency dielectric heating adhesive sheet, and the manufactured high-frequency dielectric heating adhesive sheet is difficult to delaminate.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment can easily bond adherends made of different materials.
  • the first adherend is used as the first thermoplastic resin.
  • a resin that easily adheres to the body can be used, and a resin that easily adheres to the second adherend can be used as the second thermoplastic resin.
  • the polyolefin-based resin includes a polyolefin-based resin having a polar moiety and a polyolefin-based resin having no polar moiety, and when specifying the presence or absence of a polar moiety, the polyolefin-based resin having a polar moiety or the polar moiety It is described as a polyolefin-based resin that does not have.
  • At least one of the first thermoplastic resin and the second thermoplastic resin is a polyolefin resin having a polar moiety. At least one of the first thermoplastic resin and the second thermoplastic resin may be a polyolefin resin having no polar moiety.
  • the polyolefin-based resin as the thermoplastic resin is selected from the group consisting of, for example, a homopolymer such as polyethylene, polypropylene, polybutene and polymethylpentene, and a group consisting of ethylene, propylene, butene, hexene, octene and 4-methylpentene. Examples thereof include an ⁇ -olefin resin made of a copolymer of the monomers to be used.
  • the polyolefin-based resin as the thermoplastic resin may be a single type of resin or a combination of two or more types of resins.
  • the polar portion of the polyolefin-based resin having a polar moiety is not particularly limited as long as it can impart polarity to the polyolefin-based resin.
  • a polyolefin-based resin having a polar moiety is preferable because it exhibits high adhesive strength to an adherend.
  • the thermoplastic resin may be a copolymer of an olefin-based monomer and a monomer having a polar moiety. Further, the thermoplastic resin may be a resin obtained by introducing a polar moiety into an olefin polymer obtained by polymerizing an olefin monomer by modification such as an addition reaction.
  • the type of the olefin-based monomer constituting the polyolefin-based resin having a polar moiety as the thermoplastic resin is not particularly limited.
  • the olefin-based monomer include ethylene, propylene, butene, hexene, octene, 4-methyl-1-pentene and the like.
  • the olefin-based monomer may be used alone or in combination of two or more.
  • Ethylene and propylene are preferable as the olefin-based monomer from the viewpoint of excellent mechanical strength and stable adhesive properties.
  • the olefin-derived structural unit in the polyolefin-based resin having a polar moiety is preferably ethylene or a propylene-derived structural unit.
  • Examples of the polar moiety include a hydroxyl group, a carboxy group, a vinyl acetate structure, an acid anhydride structure, and an acid-modified structure introduced into a polyolefin resin by acid modification.
  • the acid-modified structure as a polar site is a site introduced by acid-modifying a thermoplastic resin (for example, a polyolefin resin).
  • a thermoplastic resin for example, a polyolefin resin
  • examples of the compound used for graft-modifying a thermoplastic resin include unsaturated carboxylic acids, acid anhydrides of unsaturated carboxylic acids, and esters of unsaturated carboxylic acids. Acid derivative components can be mentioned.
  • unsaturated carboxylic acids examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid and citraconic acid.
  • Examples of the acid anhydride of the unsaturated carboxylic acid include acid anhydrides of unsaturated carboxylic acids such as maleic anhydride, itaconic anhydride and citraconic anhydride.
  • ester of unsaturated carboxylic acid examples include methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dimethyl maleate, monomethyl maleate, dimethyl fumarate, diethyl fumarate, and dimethyl itaconic acid.
  • Esters of unsaturated carboxylic acids such as diethyl itaconic acid, dimethyl citraconic acid, diethyl citraconic acid and dimethyl tetrahydrohydride phthalate.
  • the copolymer When the thermoplastic resin is a copolymer of an olefin-based monomer and a monomer having a polar moiety, the copolymer preferably contains 2% by mass or more of a structural unit derived from the monomer having a polar moiety, and 4% by mass. It is more preferable to contain the above, further preferably 5% by mass or more, and further preferably 6% by mass or more. Further, the copolymer preferably contains 30% by mass or less of a constituent unit derived from a monomer having a polar moiety, more preferably 25% by mass or less, further preferably 20% by mass or less, and 15% by mass. It is particularly preferable to include the following.
  • the adhesive strength of the high-frequency dielectric heating adhesive sheet is improved. Further, when the copolymer contains 30% by mass or less of a constituent unit derived from a monomer having a polar moiety, it is possible to prevent the tack of the thermoplastic resin from becoming too strong. As a result, it becomes easy to prevent the molding process of the high-frequency dielectric heating adhesive sheet from becoming difficult.
  • the modification rate by acid is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 0.2. It is more preferably mass% or more.
  • the modification rate by acid is preferably 30% by mass or less, more preferably 20% by mass or less, and 10% by mass or less. Is even more preferable.
  • the adhesive strength of the high-frequency dielectric heating adhesive sheet is improved when the acid modification rate is 0.01% by mass or more.
  • the modification rate by acid is 30% by mass or less, it is possible to prevent the tack of the thermoplastic resin from becoming too strong. As a result, it becomes easy to prevent the molding process of the high-frequency dielectric heating adhesive sheet from becoming difficult.
  • the modification rate is a percentage of the mass of the acid-derived portion with respect to the total mass of the acid-modified polyolefin.
  • the polyolefin-based resin as the thermoplastic resin more preferably has an acid anhydride structure as the acid-modified structure.
  • the acid anhydride structure is preferably a structure introduced when the polyolefin resin is modified with maleic anhydride.
  • the modification rate with maleic anhydride is preferably in the same range as the modification rate when the polyolefin-based resin as the thermoplastic resin has an acid-modified structure, and is within this range. The obtained effect is also the same as when the polyolefin-based resin as the thermoplastic resin has an acid-modified structure.
  • the olefin-derived structural unit in the maleic anhydride-modified polyolefin is preferably an ethylene or propylene-derived structural unit. That is, the maleic anhydride-modified polyolefin is preferably a maleic anhydride-modified polyethylene resin or a maleic anhydride-modified polypropylene resin.
  • the thermoplastic resin according to the present embodiment is also preferably a copolymer (olefin-vinyl acetate copolymer resin) containing a structural unit derived from olefin and a structural unit derived from vinyl acetate.
  • the olefin-vinyl acetate copolymer resin as a thermoplastic resin has a structural unit derived from vinyl acetate, and the thermoplastic resin has a structural unit derived from a monomer having a polar moiety in a copolymer of an olefin-based monomer and a monomer having a polar moiety. It is preferable to have the same range as above, and the effect obtained within the range is also the same as when the thermoplastic resin is a copolymer of an olefin-based monomer and a monomer having a polar moiety.
  • the structural units derived from vinyl acetate in the ethylene-vinyl acetate copolymer resin and the propylene-vinyl acetate copolymer resin are also preferably in the same range as the percentage (mass%) described for the olefin-vinyl acetate copolymer resin.
  • the first dielectric filler and the second dielectric filler are fillers that generate heat at high frequencies.
  • the first dielectric filler and the second dielectric filler are preferably fillers that generate heat when a high frequency voltage having a frequency range of 3 MHz or more and 300 MHz or less is applied.
  • the first dielectric filler and the second dielectric filler are fillers that generate heat when a high frequency voltage such as a frequency of 13.56 MHz, 27.12 MHz or 40.68 MHz is applied in the frequency range of 3 MHz or more and 300 MHz or less. Is preferable.
  • the first dielectric filler and the second dielectric filler are independently zinc oxide, silicon carbide (SiC), titanium oxide, barium titanate, barium titanate, lead titanate, potassium niobate, and water.
  • Inorganic material with crystalline water such as aluminum silicate, hydrated aluminosilicate of alkali metal, or inorganic material with crystalline water such as hydrated aluminosilicate of alkaline earth metal, etc.
  • the types of the first dielectric filler and the second dielectric filler are the same as or different from each other.
  • At least one of the first dielectric filler and the second dielectric filler preferably contains at least one selected from the group consisting of zinc oxide, silicon carbide, barium titanate and titanium oxide. It is preferable that the first dielectric filler and the second dielectric filler are at least one independently selected from the group consisting of zinc oxide, silicon carbide, titanium oxide and barium titanate.
  • the first dielectric filler and the second dielectric filler can be improved. It is more preferable that at least one of the dielectric fillers of the above is zinc oxide.
  • Zinc oxide has the lowest density among the dielectric fillers, so when the adherend is bonded using a high-frequency dielectric heating adhesive sheet containing zinc oxide as the dielectric filler, and when a sheet containing another dielectric filler is used. In comparison, the total weight of the bonded body is unlikely to increase. Zinc oxide is not too hard among ceramics, so it does not easily damage the equipment for manufacturing high-frequency dielectric heating adhesive sheets. Since zinc oxide is an inert oxide, it causes little damage to the thermoplastic resin even when blended with the thermoplastic resin. Further, the titanium oxide as the dielectric filler is preferably at least one of anatase-type titanium oxide and rutile-type titanium oxide, and more preferably anatase-type titanium oxide from the viewpoint of excellent dielectric properties.
  • At least one of the volume content of the first dielectric filler in the first adhesive layer and the volume content of the second dielectric filler in the second adhesive layer is 3% by volume or more. Is more preferable, 5% by volume or more is more preferable, and 8% by volume or more is further preferable. At least one of the volume content of the first dielectric filler in the first adhesive layer and the volume content of the second dielectric filler in the second adhesive layer is 60% by volume or less and 50% by volume or less. It is preferable, it is more preferably 40% by volume or less, and further preferably 35% by volume or less. When the volume content of the first dielectric filler is 3% by volume or more, the first adhesive layer and the first adherend can be easily firmly adhered to each other.
  • the second adhesive layer and the second adherend can be easily firmly adhered to each other.
  • the volume content of the first dielectric filler is 60% by volume or less
  • the first adhesive layer can be easily processed.
  • the volume content of the second dielectric filler is 60% by volume or less
  • the second adhesive layer can be easily processed.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment is the first adherend and the second. It is easy to firmly adhere to the adherend.
  • the volume content of both the first dielectric filler and the second dielectric filler is 60% by volume or less, the flexibility of the first adhesive layer and the second adhesive layer can be easily obtained, and the decrease in toughness can be easily prevented. .. Since the intermediate layer does not contain a dielectric filler, it is easy to obtain flexibility of the high-frequency dielectric heating adhesive sheet as a whole, it is easy to prevent a decrease in toughness, and it is easy to process the high-frequency dielectric heating adhesive sheet into a desired shape in a subsequent process.
  • the volume content of the first dielectric filler in the first adhesive layer and the volume content of the second dielectric filler in the second adhesive layer are the same as or different from each other.
  • At least one of the volume average particle diameter of the first dielectric filler and the volume average particle diameter of the second dielectric filler is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and 3 ⁇ m. The above is more preferable. At least one of the volume average particle diameter of the first dielectric filler and the volume average particle diameter of the second dielectric filler is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and more preferably 20 ⁇ m or less. More preferred. When the volume average particle size of the first dielectric filler in the first adhesive layer is 1 ⁇ m or more, the first adhesive layer can exhibit high heat generation performance when a high frequency is applied.
  • the volume average particle size of the first dielectric filler in the first adhesive layer is 30 ⁇ m or less, it is possible to prevent a decrease in the strength of the first adhesive layer and to exhibit high heat generation performance when a high frequency is applied.
  • the volume average particle size of the second dielectric filler in the second adhesive layer is 1 ⁇ m or more, the second adhesive layer can exhibit high heat generation performance when a high frequency is applied.
  • the volume average particle size of the second dielectric filler in the second adhesive layer is 30 ⁇ m or less, it is possible to prevent a decrease in the strength of the second adhesive layer and to exhibit high heat generation performance when a high frequency is applied.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment When the volume average particle diameter of the first dielectric filler and the volume average particle diameter of the second dielectric filler are both 1 ⁇ m or more, the high-frequency dielectric heating adhesive sheet according to the present embodiment generates high heat when a high frequency is applied. The performance is exhibited, and the first dielectric and the second dielectric can be firmly adhered to each other in a shorter time. Since the volume average particle diameter of the first dielectric filler and the volume average particle diameter of the second dielectric filler are both 30 ⁇ m or less, it is possible to prevent a decrease in the strength of the high-frequency dielectric heating adhesive sheet, and the sheet as a whole can be prevented from decreasing when a high frequency is applied. High feasibility can be exhibited. The volume average particle diameter of the first dielectric filler and the volume average particle diameter of the second dielectric filler are the same as or different from each other.
  • the volume average particle size of the dielectric filler is measured by the following method.
  • the particle size distribution of the dielectric filler is measured by the laser diffraction / scattering method, and the volume average particle size is calculated from the result of the particle size distribution measurement according to JIS Z 8819-2: 2001.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment may or may not contain an additive.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment contains an additive, it is preferable that at least one of the first adhesive layer, the second adhesive layer and the intermediate layer contains the additive.
  • the additive includes, for example, a tackifier, a plasticizer, a wax, a colorant, an antioxidant, an ultraviolet absorber, an antibacterial agent, and a coupling agent. , Viscosity modifiers, organic fillers, inorganic fillers and the like. Organic fillers as additives and inorganic fillers are different from dielectric fillers.
  • the tackifier and the plasticizer can improve the melting characteristics and the adhesive characteristics of the high-frequency dielectric heating adhesive sheet.
  • the tackifier include rosin derivatives, polyterpene resins, aromatic-modified terpene resins, hydrides of aromatic-modified terpene resins, terpene phenol resins, kumaron inden resins, aliphatic petroleum resins, aromatic petroleum resins, and aromatics.
  • Examples include hydrides of group petroleum resins.
  • the plasticizer include petroleum-based process oils, natural oils, dialkyl dibasates, and low molecular weight liquid polymers. Examples of petroleum-based process oils include paraffin-based process oils, naphthenic process oils, aromatic process oils, and the like.
  • the content of the additive in the high-frequency dielectric heating adhesive sheet is usually 0.01% by mass or more based on the total amount of the high-frequency dielectric heating adhesive sheet. Is more preferable, 0.05% by mass or more is more preferable, and 0.1% by mass or more is further preferable.
  • the content of the additive in the high-frequency dielectric heating adhesive sheet is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment preferably does not contain carbon or a carbon compound containing carbon as a main component (for example, carbon black or the like) and a conductive substance such as metal.
  • the content of the conductive substance is preferably 5% by mass or less, more preferably 1% by mass or less, and 0.1% by mass or less, based on the total amount of the high-frequency dielectric heating adhesive sheet. Is even more preferable, and 0% by mass is even more preferable.
  • the content of the conductive substance in the high-frequency dielectric heating adhesive sheet is 5% by mass or less, it becomes easy to prevent the problem of carbonization of the adhesive portion and the adherend due to electrical dielectric breakdown during the dielectric heat treatment.
  • the total mass of the thermoplastic resin and the dielectric filler with respect to the total mass of the first adhesive layer, and the total mass of the thermoplastic resin and the dielectric filler with respect to the total mass of the second adhesive layer At least one of the above is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 99% by mass or more.
  • the total mass of the thermoplastic resin and the dielectric filler is preferably 80% by mass or more, more preferably 90% by mass or more, and 99 by mass, based on the total mass of the high-frequency dielectric heating adhesive sheet according to the present embodiment. It is more preferably mass% or more.
  • the volume content of the first thermoplastic resin with respect to all the thermoplastic resins in the first adhesive layer is preferably 50% by volume or more, preferably 60% by volume.
  • the above is more preferable, 70% by volume or more is further preferable, 80% by volume or more is further preferable, and 90% by volume or more is further preferable.
  • the volume content of the second thermoplastic resin with respect to all the thermoplastic resins in the second adhesive layer is preferably 50% by volume or more, preferably 60% by volume.
  • the sheet thickness ratio Trx represented by the following mathematical formula (Equation 1) is preferably 5 or more, more preferably 10 or more, and further preferably 15 or more.
  • Tx1 is the thickness of the first adhesive layer
  • Tx2 is the thickness of the second adhesive layer
  • Ty is the thickness of the intermediate layer.
  • the sheet thickness ratio Trx is 5 or more, the ratio of the thickness of the adhesive layer to the total thickness of the high-frequency dielectric heating adhesive sheet does not become too small, and the deterioration of the adhesiveness with the adherend can be suppressed.
  • the sheet thickness ratio Trx is 80 or less, the ratio of the thickness of the adhesive layer to the total thickness of the high-frequency dielectric heating adhesive sheet does not become too large, and the resin squeezes out from the bonded portion between the adherends. It can be further suppressed.
  • At least one of the thicknesses of the first adhesive layer and the second adhesive layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more. At least one of the thicknesses of the first adhesive layer and the second adhesive layer is preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less, and further preferably 400 ⁇ m or less. When the thickness of the first adhesive layer is 5 ⁇ m or more, the first adhesive layer has good heat generation, so that the adhesive strength can be easily obtained. When the thickness of the second adhesive layer is 5 ⁇ m or more, the second adhesive layer has good heat generation, so that the adhesive strength can be easily obtained.
  • the first adhesive layer can easily reduce the amount of resin that squeezes out during adhesion, and the amount of heat generated does not increase too much, so that the intermediate layer can be easily prevented from melting.
  • the second adhesive layer can easily reduce the amount of resin that squeezes out during adhesion, and the amount of heat generated does not increase too much, so that the intermediate layer can be easily prevented from melting.
  • the thickness of both the first adhesive layer and the second adhesive layer is 5 ⁇ m or more, the high-frequency dielectric heating adhesive sheet has good heat generation, so that the adhesive strength can be easily obtained.
  • the high-frequency dielectric heating adhesive sheet can easily reduce the amount of resin that squeezes out during adhesion, and the amount of heat generated does not increase too much. It is easy to prevent the layer from melting.
  • the thickness of the intermediate layer is preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, further preferably 50 ⁇ m or more, further preferably 75 ⁇ m or more, further preferably 100 ⁇ m or more. It is still preferable.
  • the thickness of the intermediate layer is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, and even more preferably 750 ⁇ m or less.
  • the high-frequency dielectric heating adhesive sheet can easily prevent an increase in the amount of protrusion.
  • the thickness of the intermediate layer is 1000 ⁇ m or less, the high-frequency dielectric heating adhesive sheet can easily obtain processability.
  • the ratio of the average particle diameter D F1 of the first dielectric filler to the thickness Tx1 of the first adhesive layer Tx1 / D F1 and the average particle diameter of the second dielectric filler is preferably 0.8 or more, more preferably 1 or more, further to be 2 or more It is preferable, and more preferably 3 or more.
  • At least one of the ratio Tx1 / D F1 and the ratio Tx2 / D F2 is preferably 2500 or less, preferably 2000 or less, preferably 1750 or less, more preferably 1000 or less, and 500.
  • the ratio Tx1 / D F1 is 0.8 or more, it is possible to prevent a decrease in adhesive strength due to contact between the first dielectric filler and the adherend during adhesion.
  • the ratio Tx2 / D F2 is 0.8 or more, it is possible to prevent a decrease in adhesive strength due to contact between the second dielectric filler and the adherend during adhesion.
  • the ratio Tx1 / D F1 is 2500 or less, the load on the sheet manufacturing apparatus can be suppressed at the time of producing the first adhesive layer.
  • the load on the sheet manufacturing apparatus can be suppressed at the time of producing the second adhesive layer.
  • the ratio Tx1 / D F1 and the ratio Tx2 / D F2 are both 0.8 or more (preferably 1 or more)
  • the dielectric filler and the adherend come into contact with each other on both sides of the high-frequency dielectric heating adhesive sheet during bonding. It is possible to prevent a decrease in adhesive strength due to this.
  • both the ratio Tx1 / D F1 and the ratio Tx2 / D F2 are 2500 or less, the load on the sheet manufacturing apparatus can be suppressed at the time of producing the high-frequency dielectric heating adhesive sheet.
  • the ratio Tx1 / D F1 and the ratio Tx2 / D F2 are the same as or different from each other.
  • At least one of the MVR ratio MVRr1 represented by the following mathematical formula (Equation 2) and the MVR ratio MVRr2 represented by the following mathematical formula (Equation 3) is 0. It is preferably 01 or more, more preferably 0.05 or more, and 0. It is more preferably l0 or more. At least one of the ratio MVRr1 and the ratio MVRr2 is preferably 20 or less, more preferably 10 or less, and further preferably 5 or less.
  • MVRr1 MVRx1 / MVRy ... (Equation 2)
  • MVRr2 MVRx2 / MVRy ...
  • the second adhesive layer is likely to melt during high-frequency dielectric heating, and the adhesiveness between the second adhesive layer and the adherend is improved.
  • the ratio MVRr1 is 20 or less, it is easy to reduce the amount of resin protruding from the first adhesive layer at the time of adhesion.
  • the ratio MVRr2 is 20 or less, it is easy to reduce the amount of resin protruding from the second adhesive layer at the time of adhesion.
  • both the ratio MVRr1 and the ratio MVRr2 are 0.01 or more, the adhesiveness of the first adhesive layer and the second adhesive layer located on the outermost layer of the high-frequency dielectric heating adhesive sheet is improved, and both sides of the adhesive layer and the adherend are improved.
  • Adhesiveness is improved.
  • both the ratio MVRr1 and the ratio MVRr2 are 20 or less, it is easy to reduce the amount of resin protruding from the first adhesive layer and the second adhesive layer at the time of bonding.
  • the ratio MVRr1 and the ratio MVRr2 are the same as or different from each other.
  • the MVR of the thermoplastic resin, the adhesive layer and the intermediate layer can be measured by the method described in the item of Examples described later.
  • At least one of MVRx1 which is an MVR at 230 ° C. of the first adhesive layer and MVRx2 which is an MVR at 230 ° C. of the second adhesive layer is 0.5 cm. it is preferably 3 / 10min or more, more preferably 1 cm 3 / 10min or more, more preferably 3 cm 3 / 10min or more, more further preferably 5 cm 3 / 10min or more, 10 cm 3 / It is even more preferable that it is 10 minutes or more. It is preferable that at least one of the first an MVR at 230 ° C. of the adhesive layer MVRx1 and a MVR at 230 ° C.
  • MVRx2 is less 200cm 3 / 10min, 175cm 3 / 10min more preferably less, more preferably at most 150 cm 3 / 10min, more preferably more is at 100 cm 3 / 10min or less, yet more preferably at 50 cm 3 / 10min or less. If MVRx1 the first adhesive layer is 0.5 cm 3 / 10min or more, the first adhesive layer is easily melted during the high-frequency dielectric heating, adhesion between the first adhesive layer and the adherend is improved. If MVRx2 the second adhesive layer is 0.5 cm 3 / 10min or more, the second adhesive layer is easily melted during the high-frequency dielectric heating, adhesion between the second adhesive layer and the adherend is improved.
  • MVRx1 the first adhesive layer is 200 cm 3 / 10min or less, easily reduce the amount of resin protruding from the first adhesive layer at the time of bonding, it is easy to process the first adhesive layer.
  • MVRx2 the second adhesive layer is 200 cm 3 / 10min or less, easily reduce the amount of resin protruding from the second adhesive layer at the time of bonding, it is easy to process the second adhesive layer.
  • MVRx2 of MVRx1 and the second adhesive layer of the first adhesive layer are both 0.5 cm 3 / 10min or more, the first adhesive layer and second adhesive layer located on the outermost layer of the high-frequency dielectric heating the adhesive sheet The adhesiveness of the material is improved, and the adhesiveness to the adherend is improved on both sides.
  • the first adhesive layer both 200 cm 3 / 10min or less is MVRx2 of MVRx1 and the second adhesive layer, it is easy to reduce the amount of resin protruding from the first adhesive layer and second adhesive layer at the time of bonding, radio frequency Easy to process dielectric heating adhesive sheets.
  • the MVRx1 of the first adhesive layer and the MVRx2 of the second adhesive layer are the same as or different from each other.
  • the thickness reduction rate before and after applying a high frequency to the high-frequency dielectric heating adhesive sheet is preferably 50% or less, more preferably 40% or less. It is preferably 30% or less, and even more preferably 20% or less. If the thickness reduction rate is 50% or less, it becomes difficult for the resin to squeeze out, and as a result, the resin squeezed out from the adhesive portion may adhere to other than the adhesive portion of the adherend, or a dielectric heating device (for example, an electrode, etc.). It is easy to prevent it from adhering to.
  • the thickness reduction rate is usually 0% or more. The thickness reduction rate is a value measured by the following measuring method.
  • a pair of adherends (size: 25 mm x 12.5 mm, thickness: 1.5 mm) sandwiched between the electrodes of the high-frequency dielectric heating device and a high-frequency dielectric heating adhesive sheet (large) sandwiched between the pair of adherends.
  • S: 25 mm x 12.5 mm, thickness: D1) is fixed.
  • the thickness D2 of the high-frequency dielectric heating adhesive sheet after applying a high frequency for 10 seconds under the conditions of a frequency of 40.68 MHz, an output of 200 W, and a pressure of 0.5 MPa is measured.
  • the thickness reduction rate is calculated by the following mathematical formula (Equation 4). ⁇ (D1-D2) / D1 ⁇ x 100 ... (Equation 4)
  • the unit of D1 and D2 is ⁇ m.
  • Interlayer adhesion The ratio of the number of lattices attached to any of the layers of the high-frequency dielectric heating adhesive sheet according to the present embodiment without peeling from the layer in contact with the layer after the cross-cut test conforming to JIS K5600-5-6: 1999. Is preferably 50% or more, more preferably 80% or more, and even more preferably 100%. If it has such interlayer adhesion, it becomes more difficult to peel off between the layers of the sheet. After the cross-cut test, the ratio of the number of lattices adhering to the layer in contact with the layer without peeling is usually 100% or less. For example, as shown in FIG.
  • the ratio of the number of lattices to which the first adhesive layer 10 is attached without peeling from the intermediate layer 30 after the cross-cut test conforming to JIS K5600-5-6: 1999 is 50% or more.
  • the ratio of the number of lattices to which the second adhesive layer 20 is attached without peeling from the intermediate layer 30 is preferably 50% or more, more preferably 80% or more, and 100%. Is even more preferable.
  • the thickness of the high-frequency dielectric heating adhesive sheet is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, and further preferably 50 ⁇ m or more.
  • the upper limit of the thickness of the high-frequency dielectric heating adhesive sheet is not particularly limited. As the thickness of the high-frequency dielectric heating adhesive sheet increases, the weight of the entire bonded body obtained by bonding the first adherend and the second adherend also increases. Therefore, the high-frequency dielectric heating adhesive sheet is actually used.
  • the method for producing the high-frequency dielectric heating adhesive sheet according to the present embodiment is not particularly limited as long as it can produce a laminated high-frequency dielectric heating adhesive sheet including the first adhesive layer, the intermediate layer and the second adhesive layer.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment can be produced, for example, by a coextrusion method using a multi-layer extruder by premixing each of the above components.
  • a single-layer sheet of each layer (for example, a first adhesive layer, an intermediate layer, and a second adhesive layer) constituting the high-frequency dielectric heating adhesive sheet according to the present embodiment is individually produced, and a plurality of single-layer sheets are formed.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment can also be produced by laminating and laminating.
  • the single-layer sheet is prepared by premixing each of the above components and kneading using a known kneading device such as an extruder and a heat roll, and known molding such as extrusion molding, calendar molding, injection molding, and casting molding. It can be manufactured by the method.
  • a thermal laminator is used.
  • the first adherend and the second adherend can be adhered to each other.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment is preferably a sheet for adhering the first adherend and the second adherend made of a material different from that of the first adherend.
  • the shape of the first adherend and the shape of the second adherend are not particularly limited, but are preferably sheet-like.
  • the shape of the first adherend and the second adherend may be made of the same materials as described above, and the shape of the first adherend and the shape and dimensions of the second adherend are the same as each other. But it can be different.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment is sandwiched between the first adherend and the second adherend, for example.
  • a high-frequency voltage of 3 MHz or more and 300 MHz or less can be applied to produce a bonded body in which the first adherend and the second adherend are adhered to each other.
  • the first adherend and the second adherend are bonded using the high-frequency dielectric heating adhesive sheet according to the present embodiment.
  • the bonding method according to this embodiment preferably includes the following steps P1 and P2.
  • Step P1 A step of bringing the first adhesive layer of the high-frequency dielectric heating adhesive sheet into contact with the first adherend, and abutting the second adhesive layer with the second adherend.
  • Step P2 A step of applying a high frequency to a high-frequency dielectric heating adhesive sheet to bond the first adherend and the second adherend.
  • Step P1 is a step of sandwiching the high-frequency dielectric heating adhesive sheet according to the present embodiment between the first adherend and the second adherend.
  • the first adherend is brought into contact with the first adhesive layer of the high-frequency dielectric heating adhesive sheet.
  • the second adherend is brought into contact with the second adhesive layer of the high-frequency dielectric heating adhesive sheet.
  • the high-frequency dielectric heating adhesive sheet may be sandwiched between the first adherend and the second adherend so that the first adherend and the second adherend can be adhered to each other.
  • the high-frequency dielectric heating adhesive sheet may be sandwiched in a part between the first adherend and the second adherend, at a plurality of places or on the entire surface. From the viewpoint of improving the adhesive strength between the first adherend and the second adherend, a high-frequency dielectric heating adhesive sheet is applied over the entire adhesive surface between the first adherend and the second adherend. It is preferable to hold it. Further, as one aspect of sandwiching the high-frequency dielectric heating adhesive sheet in a part between the first adherend and the second adherend, the first adherend and the second adherend are used.
  • a high-frequency dielectric heating adhesive sheet is arranged in a frame shape along the outer periphery of the adhesive surface and is sandwiched between the first adherend and the second adherend.
  • the size of the high-frequency dielectric heating adhesive sheet to be used can be reduced, so that the adhesive can be adhered.
  • the high-frequency dielectric heating treatment time can be shortened as compared with the case where the high-frequency dielectric heating adhesive sheet is arranged over the entire surface.
  • step P2 a high frequency voltage of 3 MHz or more and 300 MHz or less is applied to the high frequency dielectric heating adhesive sheet sandwiched between the first adherend and the second adherend in step P1 to perform the first step.
  • This is a step of adhering the adherend to the second adherend with a high-frequency dielectric heating adhesive sheet.
  • a high frequency voltage can be applied to the high frequency dielectric heating adhesive sheet.
  • FIG. 2 shows a schematic diagram illustrating a high-frequency dielectric heating treatment using the high-frequency dielectric heating adhesive sheet and the dielectric heating device according to the present embodiment.
  • the first high frequency application electrode 51 and the second high frequency application electrode 52 form a pair of flat plate electrodes parallel to each other, such an electrode arrangement type may be referred to as a parallel flat plate type. It is also preferable to use a parallel plate type high frequency dielectric heating device for applying a high frequency. In the case of a parallel plate type high-frequency dielectric heating device, since the high frequency penetrates the high-frequency dielectric heating adhesive sheet located between the electrodes, the entire high-frequency dielectric heating adhesive sheet can be heated, and the adherend and the high-frequency dielectric heating adhesive sheet can be heated. Can be bonded in a short time.
  • a high frequency power supply 53 for applying a high frequency voltage of, for example, a frequency of about 13.56 MHz, a frequency of about 27.12 MHz, or a frequency of about 40.68 MHz is connected to each of the first high frequency application electrode 51 and the second high frequency application electrode 52.
  • the dielectric heating adhesive device 50 performs a dielectric heating treatment via a high-frequency dielectric heating adhesive sheet 1 sandwiched between a first adherend 110 and a second adherend 120.
  • the first high-frequency application electrode 51 and the second high-frequency application electrode 52 pressurize the first adherend 110 and the second adherend 120. And glue.
  • the first adherend 110 and the second adherend 120 may be adhered to each other without performing the pressure treatment.
  • the first high frequency application electrode 51 and the second high frequency application electrode 52 have a press mechanism, they also function as a press device. Therefore, the first adherend 110 and the second adherend 120 are formed by pressurizing the first high-frequency application electrode 51 and the second high-frequency application electrode 52 in the compression direction and heating and melting the high-frequency dielectric heating adhesive sheet 1. Can be adhered more firmly.
  • the high-frequency dielectric heating bonding conditions can be changed as appropriate, but the following conditions are preferable.
  • the high frequency output is preferably 10 W or more, more preferably 30 W or more, further preferably 50 W or more, and even more preferably 80 W or more.
  • the high frequency output is preferably 50,000 W or less, more preferably 20,000 W or less, further preferably 15,000 W or less, further preferably 10,000 W or less, and 1, It is even more preferable that it is 000 W or less.
  • the high frequency output is 10 W or more, it is possible to prevent the problem that the temperature does not easily rise during the dielectric heating treatment, so that it is easy to obtain a good adhesive force.
  • the high frequency output is 50,000 W or less, it is easy to prevent a problem that temperature control by dielectric heating treatment becomes difficult.
  • the high frequency application time is preferably 1 second or longer.
  • the application time of the high frequency is preferably 60 seconds or less, more preferably 45 seconds or less, further preferably 35 seconds or less, further preferably 25 seconds or less, still more preferably 10 seconds or less. .. If the high frequency application time is 1 second or more, it is possible to prevent the problem that the temperature does not easily rise during the dielectric heating treatment, so that good adhesive strength can be easily obtained. If the application time of the high frequency is 60 seconds or less, the manufacturing efficiency of the bonded body in which the first adherend and the second adherend are adhered is lowered, or the manufacturing cost of the joined body is increased. Furthermore, it is easy to prevent problems such as thermal deterioration of the adherend.
  • the frequency of the high frequency to be applied is preferably 1 kHz or higher, more preferably 1 MHz or higher, further preferably 5 MHz or higher, and even more preferably 10 MHz or higher.
  • the frequency of the high frequency to be applied is preferably 300 MHz or less, more preferably 100 MHz or less, further preferably 80 MHz or less, and even more preferably 50 MHz or less.
  • the industrial frequency bands 13.56 MHz, 27.12 MHz or 40.68 MHz assigned by the International Telecommunication Union are also used in the high-frequency dielectric heating bonding method (bonding method) of the present embodiment.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment includes a first adhesive layer and a second adhesive layer as the outermost layer, and includes an intermediate layer between the first adhesive layer and the second adhesive layer. It is a composition.
  • the first adhesive layer and the second adhesive layer independently contain a dielectric filler that generates heat at a high frequency, and the intermediate layer does not contain a dielectric filler that generates heat at a high frequency. Therefore, even if the high-frequency dielectric heating adhesive sheet according to the present embodiment is pressed between the adherends when the adherends are dielectrically heat-bonded to each other, the high-frequency dielectric heat-bonding is performed from the bonded portion between the adherends.
  • the thermoplastic resin does not easily stick out from the sheet.
  • the first adhesive layer and the second adhesive layer each contain a dielectric filler, and generate heat and melt even when a high frequency is applied for a short time. Therefore, before the intermediate layer containing no dielectric filler melts and protrudes.
  • the adherends can be adhered to each other by the high frequency dielectric heating adhesive sheet.
  • the high-frequency dielectric heating adhesive sheet according to this embodiment has excellent water resistance and moisture resistance as compared with general adhesives.
  • the high-frequency dielectric heating adhesive sheet according to the present embodiment does not contain a solvent, the problem of VOC (Volatile Organic Compounds) caused by the adhesive used for adhesion to the adherend is unlikely to occur.
  • VOC Volatile Organic Compounds
  • the bonding method using the high-frequency dielectric heating adhesive sheet according to the present embodiment only a predetermined portion can be locally heated from the outside by the dielectric heating bonding device. Therefore, even when the adherend is a large and complicated three-dimensional structure or a large and complicated three-dimensional structure and higher dimensional accuracy is required, the high-frequency dielectric heating adhesive sheet according to the present embodiment can be used.
  • the bonding method used is effective.
  • the thickness of the high-frequency dielectric heating adhesive sheet can be appropriately controlled. Therefore, the high-frequency dielectric heating adhesive sheet according to the present embodiment can be applied to the roll-to-roll method, and can be adjusted to the adhesion area with the adherend and the shape of the adherend by punching or the like. , High frequency dielectric heating adhesive sheet can be processed into any area and shape. Therefore, the high-frequency dielectric heating adhesive sheet according to the present embodiment has a great advantage from the viewpoint of the manufacturing process.
  • the present invention is not limited to the above embodiment.
  • the present invention can include modifications and improvements to the extent that the object of the present invention can be achieved.
  • the high-frequency dielectric heating adhesive sheet may have an adhesive portion.
  • the adhesive portion may be provided on one surface of the high-frequency dielectric heating adhesive sheet or may be provided on both sides. Further, the adhesive portion may be partially provided with respect to the surface of the high-frequency dielectric heating adhesive sheet. The high-frequency dielectric heating adhesive sheet can firmly bond the first adherend and the second adherend even when it does not have an adhesive portion.
  • the high-frequency dielectric heating treatment is not limited to the dielectric heating and bonding apparatus in which the electrodes described in the above embodiment are arranged to face each other, and a lattice electrode type high-frequency dielectric heating apparatus may be used.
  • the lattice electrode type high-frequency dielectric heating device has lattice electrodes in which electrodes of the first polarity and electrodes of the second polarity opposite to the electrodes of the first polarity are alternately arranged on the same plane at regular intervals. ..
  • the end portion of the first adherend is placed on the first adherend side or the second adherend side.
  • a lattice electrode type high frequency dielectric heating device is arranged to apply high frequency.
  • the first lattice electrode is arranged on the first adherend side, and the second lattice electrode is arranged.
  • a second lattice electrode is arranged on the adherend side, and the first adherend, the high-frequency dielectric heating adhesive sheet and the second adherend are placed between the first lattice electrode and the second lattice electrode.
  • a high frequency may be applied at the same time by sandwiching the mixture.
  • the first adherend and the second adherend are adhered to each other by using a lattice electrode type high-frequency dielectric heating device
  • the first adherend and the second adherend are subjected to one surface side.
  • a lattice electrode may be arranged and a high frequency may be applied, and then a lattice electrode may be arranged on the other surface side of the first adherend and the second adherend and the high frequency may be applied.
  • a lattice electrode type high frequency dielectric heating device for applying high frequency.
  • a lattice electrode type high-frequency dielectric heating device By using a lattice electrode type high-frequency dielectric heating device, the surface layer of the first adherend and the second adherend is not affected by the thickness of the first adherend and the second adherend.
  • the adherends can be bonded to each other by dielectric heating from the side, for example, the adherend side where the distance to the high-frequency dielectric heating adhesive sheet is short. Further, by using a lattice electrode type high frequency dielectric heating device, it is possible to realize energy saving in the production of the bonded body.
  • Example 1 [Method for manufacturing high-frequency dielectric heating adhesive sheet] (Example 1) Each of the material for forming the first adhesive layer and the material for forming the second adhesive layer were premixed in individual containers having the compositions (volume%) shown in Table 1. Granular pellets of the types of resins shown in Table 1 were prepared as materials for forming the intermediate layer. Zinc oxide was mixed as a dielectric filler in the material for forming the first adhesive layer and the second adhesive layer, but the material for forming the intermediate layer did not contain the dielectric filler.
  • PP shown in Table 1 is an abbreviation for polypropylene. PP: Made by Prime Polymer Co., Ltd., product name "Prime Polypro F-744NP"
  • the premixed material was supplied to the hopper of a 30 mm ⁇ twin-screw extruder, the cylinder set temperature was set to 180 ° C. or higher and 220 ° C. or lower, the die temperature was set to 220 ° C., and the premixed material was melt-kneaded. After cooling the melt-kneaded material, the material was cut to prepare granular pellets. Granular pellets for the first adhesive layer and granular pellets for the second adhesive layer were prepared. Next, the granular pellets for the first adhesive layer, the second adhesive layer, and the intermediate layer were put into the hopper of the single-screw multi-layer extruder equipped with the T-die having the feed block, and the cylinder temperature was 220 ° C.
  • Example 2 to 16 The high-frequency dielectric heating adhesive sheet according to Examples 2 to 16 was changed to the composition and thickness of the first adhesive layer, the second adhesive layer and the intermediate layer shown in Table 1, and further, at the time of premixing and It was produced in the same manner as in Example 1 except that the temperature at the time of extrusion molding was appropriately set according to the type of resin contained in each layer of the high-frequency dielectric heating adhesive sheet.
  • Example 15 m-PP was used as the first thermoplastic resin, and PP was used as the second thermoplastic resin. Table 1 also shows the total thickness of the produced high-frequency dielectric heating adhesive sheet.
  • Comparative Example 1 and Comparative Example 2 As the sheets according to Comparative Example 1 and Comparative Example 2, a sheet composed of only an intermediate layer having the composition and thickness shown in Table 1 was prepared. The temperatures at the time of premixing and extrusion molding were appropriately set according to the type of resin contained in the sheet.
  • EVA shown in Table 1 is an abbreviation for ethylene-vinyl acetate copolymer
  • PE is an abbreviation for polyethylene
  • m-PP is an abbreviation for maleic anhydride-modified polypropylene
  • m-PE is maleic anhydride.
  • EVA1 Made by Tosoh Corporation, product name "Ultrasen 510"
  • EVA2 Mitsui DuPont Polychemical Co., Ltd., product name "Evaflex EV550" m-PP: Mitsubishi Chemical Corporation, product name "Modic P565" m-PE: Mitsubishi Chemical Corporation, product name "Modic M545"
  • MVR Melt Volume Flow Rate
  • the produced high-frequency dielectric heating adhesive sheet or the like was cut into a size of 25 mm ⁇ 12.5 mm.
  • a first adherend and a second adherend made of glass fiber reinforced polypropylene resin were prepared (glass fiber reinforced polypropylene may be abbreviated as GFRPP).
  • the sizes of the first adherend and the second adherend were 25 mm ⁇ 100 mm ⁇ 1.5 mm (thickness).
  • a high-frequency dielectric heating adhesive sheet cut to the above-mentioned size was sandwiched between the first adherend and the second adherend.
  • the first adherend, the high-frequency dielectric heating adhesive sheet and the second adherend were fixed between the electrodes of the high-frequency dielectric heating device (“YRP-400TA” manufactured by Yamamoto Vinita Co., Ltd.).
  • YRP-400TA manufactured by Yamamoto Vinita Co., Ltd.
  • a high frequency was applied under the following high frequency application conditions to bond the high frequency dielectric heating adhesive sheet and the adherend to prepare a test piece for high frequency adhesiveness evaluation.
  • FIG. 3 shows a schematic plan view of the test piece TP1 used for the protrusion property evaluation
  • FIG. 4 shows a schematic cross-sectional view of the test piece TP1.
  • the bonded portion LM of the adherend WK1 located on the lower side and the adherend WK2 located on the upper side is formed from the plane direction (the adherend WK2 side located on the upper side).
  • thermoplastic resin RE protruding outward from the end WE of the adherend WK2 located on the upper side
  • adherend of the thermoplastic resin RE protruding above the adherend WK1 located on the lower side.
  • the maximum length LS of a straight line parallel to the long side of WK1 was measured.
  • the protrusion property of the high-frequency dielectric heating adhesive sheet was evaluated according to the following evaluation criteria. A: Maximum length LS of the protruding resin is less than 1.5 mm
  • F Maximum length LS of the protruding resin is 1.5 mm or more In the test piece prepared using the high-frequency dielectric heating adhesive sheet of Comparative Example 1, the protruding resin is projected.
  • the maximum length LS of the resin was 3.1 mm.
  • the high-frequency dielectric heating adhesive sheet and the adherend were adhered to prepare a test piece for evaluation of the thickness reduction rate.
  • the thickness D1 of the produced high-frequency dielectric heating adhesive sheet before high-frequency application and the thickness D2 of the high-frequency dielectric heating adhesive sheet portion in the test piece for evaluating the thickness reduction rate were measured.
  • the thickness of the high-frequency dielectric heating adhesive sheet was measured using a "constant pressure thickness measuring instrument PG02J" manufactured by Teclock Co., Ltd.
  • the thickness D2 is a value obtained by measuring the thickness including the adherend at the joint portion of the test piece for evaluating the thickness reduction rate, and subtracting the value of the thickness of the adherend from the value.
  • the thickness was measured at the center of the test piece in a plan view, and the number of measurements was 5. When the number of measurements was 5, the thickness was the average of 5 measurements.
  • the thickness reduction rate was calculated by the following formula (Equation 4). ⁇ (D1-D2) / D1 ⁇ x 100 ... (Equation 4) In the above mathematical formula (Equation 4), the unit of D1 and D2 is ⁇ m.
  • the tensile shear force as the adhesive force was measured for the test piece for high frequency adhesive evaluation obtained by the high frequency adhesive evaluation.
  • a universal tensile tester (Instron 5581, manufactured by Instron) was used to measure the tensile shear force.
  • the tensile speed in the measurement of the tensile shear force was set to 100 mm / min.
  • the tensile shear force was measured according to JIS K 6850: 1999.
  • the adhesive strength of the high-frequency dielectric heating adhesive sheet was evaluated according to the following evaluation criteria.
  • B The tensile shear force exceeded 2 MPa.
  • F The tensile shear force was 2 MPa or less.
  • the produced high-frequency dielectric heating adhesive sheet was subjected to a cross-cut test in accordance with JIS K5600-5-6: 1999 to evaluate the interlayer adhesion. Specifically, the surface of the high-frequency dielectric heating adhesive sheet is subjected to corona treatment (200 W ⁇ min / m 2 ), and the corona-treated surface of the sheet is double-sided adhesive sheet (TL-52BM-05 manufactured by Lintec Corporation). A PET film (manufactured by Toyobo Co., Ltd., product name "Cosmo Shine A4300”) was attached to the adhesive layer, and cuts were made at intervals of 2 mm to the pressure-sensitive adhesive layer.
  • volume average particle size of dielectric filler The particle size distribution of the dielectric filler was measured by the laser diffraction / scattering method. From the result of particle size distribution measurement, the volume average particle size was calculated according to JIS Z 8819-2: 2001. The calculated average particle size (volume average particle size) of the dielectric filler (ZnO: zinc oxide) was 11 ⁇ m.
  • the sheet thickness ratio Trx shown by * 1 in Table 2 is a value calculated by ⁇ (Tx1 + Tx2) / (Tx1 + Tx2 + Ty) ⁇ ⁇ 100.
  • the high-frequency dielectric heating adhesive sheets according to Examples 1 to 16 have an intermediate layer containing no dielectric filler between the first adhesive layer and the second adhesive layer, even if they are pressurized during dielectric heating adhesion, they may be pressed. The amount of the thermoplastic resin protruding from the bonded portion between the adherends was small.
  • the high-frequency dielectric heating adhesive sheet according to Comparative Example 1 had a large amount of protrusion because it was a sheet composed of a single layer containing a dielectric filler without having an intermediate layer.
  • the sheet according to Comparative Example 2 did not contain a dielectric filler and had low adhesiveness to an adherend.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

第1の接着層(10)と、第2の接着層(20)と、第1の接着層(10)及び第2の接着層(20)の間に配置された中間層(30)と、を有し、第1の接着層(10)は、第1の熱可塑性樹脂及び高周波で発熱する第1の誘電フィラーを含有し、第2の接着層(20)は、第2の熱可塑性樹脂及び高周波で発熱する第2の誘電フィラーを含有し、中間層(30)は、高周波で発熱する誘電フィラーを含有しない、高周波誘電加熱接着シート(1)。

Description

高周波誘電加熱接着シート
 本発明は、高周波誘電加熱接着シートに関する。
 近年、一般的に接着することが困難な被着体同士を接着する方法として、例えば、所定の樹脂中に発熱材料を配合してなる接着剤を被着体の間に介在させ、誘電加熱処理、誘導加熱処理、超音波溶着処理、又はレーザー溶着処理等を行う方法が提案されている。
 例えば、特許文献1には、カーボンブラック、酸化ケイ素、金属及び金属酸化物からなる群から選択される少なくとも1種の微粉末を配合してなるシート状の熱接着剤が記載されている。
特開昭58-174474号公報
 特許文献1に記載の熱接着剤は、誘電加熱によって溶融する単層のシートである。当該単層シートを被着体間に配置して加圧しながら誘電加熱接着する際、溶融した当該単層シート中の樹脂が被着体同士の貼り合せ部からはみ出すおそれがある。はみ出した樹脂は、被着体の接着面以外の表面に付着したり、誘電加熱装置(例えば、電極等)に付着したりするおそれがある。
 本発明の目的は、被着体を誘電加熱接着する際に加圧されても、被着体同士の貼り合せ部から樹脂がはみ出し難い高周波誘電加熱接着シートを提供することである。
 本発明の一態様によれば、第1の接着層と、第2の接着層と、前記第1の接着層及び前記第2の接着層の間に配置された中間層と、を有し、前記第1の接着層は、第1の熱可塑性樹脂及び高周波で発熱する第1の誘電フィラーを含有し、前記第2の接着層は、第2の熱可塑性樹脂及び高周波で発熱する第2の誘電フィラーを含有し、前記中間層は、高周波で発熱する誘電フィラーを含有しない、高周波誘電加熱接着シートが提供される。
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、下記数式(数1)で表されるシート厚さ比Trxが、5以上、80以下であることが好ましい。
 Trx={(Tx1+Tx2)/(Tx1+Tx2+Ty)}×100…(数1)
(前記数式(数1)において、Tx1は、前記第1の接着層の厚さであり、Tx2は、前記第2の接着層の厚さであり、Tyは、前記中間層の厚さである。)
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、下記数式(数2)で表されるMVRの比MVRr1及び下記数式(数3)で表されるMVRの比MVRr2の少なくともいずれかが、0.01以上であることが好ましい。
 MVRr1=MVRx1/MVRy…(数2)
 MVRr2=MVRx2/MVRy…(数3)
(前記数式(数2)又は数式(数3)において、
  MVRx1は、前記第1の接着層の230℃でのMVRであり、
  MVRx2は、前記第2の接着層の230℃でのMVRであり、
  MVRyは、前記中間層の230℃でのMVRである。)
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、前記中間層の230℃でのMVRであるMVRyは、60cm/10min以下であることが好ましい。
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、前記第1の接着層の230℃でのMVRであるMVRx1及び前記第2の接着層の230℃でのMVRであるMVRx2の少なくともいずれかが、0.5cm/10min以上であることが好ましい。
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、前記第1の接着層中の前記第1の誘電フィラーの体積含有率及び前記第2の接着層中の前記第2の誘電フィラーの体積含有率の少なくともいずれかが、3体積%以上、60体積%以下であることが好ましい。
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、前記第1の誘電フィラー及び前記第2の誘電フィラーの少なくともいずれかは、酸化亜鉛、炭化ケイ素、チタン酸バリウム及び酸化チタンからなる群から選択される少なくとも1種を含むことが好ましい。
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、前記第1の熱可塑性樹脂及び前記第2の熱可塑性樹脂の少なくともいずれかは、ポリオレフィン系樹脂であることが好ましい。
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、前記高周波誘電加熱接着シートに対して高周波を印加する前後での厚さ減少率が50%以下であることが好ましい。
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、前記第1の接着層及び前記第2の接着層の少なくともいずれかが、前記中間層と直接接していることが好ましい。
 本発明の一態様に係る高周波誘電加熱接着シートにおいて、前記高周波誘電加熱接着シートが有するいずれの層も、JIS K5600-5-6:1999に準拠するクロスカット試験後に当該層と接する層から剥離せずに付着している格子数の割合が50%以上であることが好ましい。
 本発明の一態様によれば、被着体を誘電加熱接着する際に加圧されても、被着体同士の貼り合せ部から樹脂がはみ出し難い高周波誘電加熱接着シートを提供できる。
一実施形態に係る高周波誘電加熱接着シートの概略図である。 一実施形態に係る高周波誘電加熱接着シート及び誘電加熱装置を用いた高周波誘電加熱処理を説明する概略図である。 はみだし性評価に用いた試験片の概略平面図である。 はみだし性評価に用いた試験片の概略断面図である。
〔第1実施形態〕
[高周波誘電加熱接着シート]
 本実施形態に係る高周波誘電加熱接着シートは、第1の接着層と、第2の接着層と、前記第1の接着層及び前記第2の接着層の間に配置された中間層と、を有する。前記第1の接着層は、第1の熱可塑性樹脂及び高周波で発熱する第1の誘電フィラーを含有する。前記第2の接着層は、第2の熱可塑性樹脂及び高周波で発熱する第2の誘電フィラーを含有する。前記中間層は、高周波で発熱する誘電フィラーを含有しない。
 以下において、本実施形態に係る高周波誘電加熱接着シートの詳細が説明される。
 本実施形態に係る高周波誘電加熱接着シートにおいて、前記第1の接着層及び前記第2の接着層の少なくともいずれかが、前記中間層と直接接していることが好ましい。また、前記第1の接着層及び前記第2の接着層の両方が、前記中間層と直接接していることも好ましい。
 本実施形態に係る高周波誘電加熱接着シートにおいて、中間層は、1種又は複数種の熱可塑性樹脂を含有することが好ましい。中間層は、密着性の観点から、第1の熱可塑性樹脂及び第2の熱可塑性樹脂の少なくともいずれかを含有することがより好ましい。中間層が含有する熱可塑性樹脂の主たる組成と、第1の熱可塑性樹脂の主たる組成及び第2の熱可塑性樹脂の主たる組成の少なくともいずれかとが同一であることも好ましい。また、中間層が含有する熱可塑性樹脂の主たる組成と、第1の熱可塑性樹脂の主たる組成及び第2の熱可塑性樹脂の主たる組成とが同一であることも好ましい。
 「熱可塑性樹脂の主たる組成」とは、例えば、熱可塑性樹脂が重合体である場合は、当該重合体が含む繰り返し単位の内、当該重合体中でも最も多く含まれる繰り返し単位である。熱可塑性樹脂が単独のモノマー由来の重合体であれば、当該モノマー単位(繰り返し単位)が「熱可塑性樹脂の主たる組成」である。熱可塑性樹脂が共重合体である場合は、当該重合体中でも最も多く含まれる繰り返し単位が「熱可塑性樹脂の主たる組成」である。熱可塑性樹脂が共重合体である場合、当該共重合体中、「熱可塑性樹脂の主たる組成」は、30質量%以上含まれる繰り返し単位(モノマー単位)であり、一態様においては、30質量%超含まれる繰り返し単位であり、別の一態様においては、40質量%以上含まれる繰り返し単位であり、さらに別の一態様においては、50質量%以上含まれる繰り返し単位である。また、熱可塑性樹脂が共重合体である場合、最も多く含まれる繰り返し単位が、2種以上であってもよい。
 図1には、本実施形態に係る高周波誘電加熱接着シートの一例の概略断面図が示されている。高周波誘電加熱接着シート1は、最外層として、第1の接着層10と、第1の接着層10とは反対表面側に位置する第2の接着層20と、第1の接着層10及び第2の接着層20の間に配置された中間層30と、を有する。図1に示す高周波誘電加熱接着シート1において、第1の接着層10及び中間層30が直接接し、第2の接着層20及び中間層30が直接接している。高周波誘電加熱接着シート1は、第1の表面11及び第1の表面11とは反対側の第2の表面21を有する。
(熱可塑性樹脂)
 本実施形態に係る高周波誘電加熱接着シートにおいて、第1の熱可塑性樹脂と前記第2の熱可塑性樹脂とは、互いに同じ樹脂であっても、異なる樹脂であってもよい。本実施形態に係る高周波誘電加熱接着シートにおいて、中間層が含有する熱可塑性樹脂も、後述する第1の熱可塑性樹脂と前記第2の熱可塑性樹脂の説明と同様の樹脂から適宜選択して用いることが好ましい。
 第1の熱可塑性樹脂と第2の熱可塑性樹脂とが同じ樹脂である場合、高周波誘電加熱接着シートの製造コストを低減し易く、製造された高周波誘電加熱接着シートは、層間剥離し難い。
 第1の熱可塑性樹脂と第2の熱可塑性樹脂とが異なる樹脂であれば、本実施形態に係る高周波誘電加熱接着シートは、材質が互いに異なる被着体を接着し易い。例えば、第1の接着層と接する第1の被着体と、第2の接着層と接する第2の被着体とが互いに異なる材質の場合、第1の熱可塑性樹脂として第1の被着体と接着し易い樹脂を用い、第2の熱可塑性樹脂として第2の被着体と接着し易い樹脂を用いることができる。
 第1の熱可塑性樹脂及び第2の熱可塑性樹脂の種類は、特に制限されない。
 第1の熱可塑性樹脂及び第2の熱可塑性樹脂は、例えば、融解し易いとともに、所定の耐熱性を有する等の観点から、ポリオレフィン系樹脂、スチレン系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリアクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリ酢酸ビニル系樹脂、フェノキシ系樹脂及びポリエステル系樹脂からなる群から選択される少なくとも一種であることが好ましい。
 本実施形態に係る高周波誘電加熱接着シート1において、第1の熱可塑性樹脂及び第2の熱可塑性樹脂の少なくともいずれかは、ポリオレフィン系樹脂であることが好ましい。
 本明細書において、ポリオレフィン系樹脂は、極性部位を有するポリオレフィン系樹脂及び極性部位を有さないポリオレフィン系樹脂を含み、極性部位の有無を特定する場合に、極性部位を有するポリオレフィン系樹脂又は極性部位を有さないポリオレフィン系樹脂のように記載される。
 第1の熱可塑性樹脂及び第2の熱可塑性樹脂の少なくともいずれかが、極性部位を有するポリオレフィン系樹脂であることも好ましい。第1の熱可塑性樹脂及び第2の熱可塑性樹脂の少なくともいずれかが、極性部位を有さないポリオレフィン系樹脂でもよい。
(ポリオレフィン系樹脂)
 熱可塑性樹脂としてのポリオレフィン系樹脂は、例えば、ポリエチレン、ポリプロピレン、ポリブテン及びポリメチルペンテン等のホモポリマーからなる樹脂、並びにエチレン、プロピレン、ブテン、ヘキセン、オクテン及び4-メチルペンテン等からなる群から選択されるモノマーの共重合体からなるα-オレフィン樹脂等が挙げられる。熱可塑性樹脂としてのポリオレフィン系樹脂は、一種単独の樹脂でもよいし、二種以上の樹脂の組み合わせでもよい。
(極性部位を有するポリオレフィン系樹脂)
 極性部位を有するポリオレフィン系樹脂における極性部位は、ポリオレフィン系樹脂に対して極性を付与できる部位であれば特に限定されない。極性部位を有するポリオレフィン系樹脂は、被着体に対して高い接着力を示すので好ましい。
 熱可塑性樹脂は、オレフィン系モノマーと極性部位を有するモノマーとの共重合体であってもよい。また、熱可塑性樹脂は、オレフィン系モノマーの重合によって得られたオレフィン系ポリマーに極性部位を付加反応等の変性により導入させた樹脂でもよい。
 熱可塑性樹脂としての極性部位を有するポリオレフィン系樹脂を構成するオレフィン系モノマーの種類については、特に制限されない。オレフィン系モノマーとしては、例えば、エチレン、プロピレン、ブテン、ヘキセン、オクテン及び4-メチル-1-ペンテン等が挙げられる。オレフィン系モノマーは、これらの一種単独で用いられてもよく、二種以上の組み合わせで用いられてもよい。
 オレフィン系モノマーは、機械的強度に優れ、安定した接着特性が得られるという観点から、エチレン及びプロピレンが好ましい。
 極性部位を有するポリオレフィン系樹脂におけるオレフィン由来の構成単位は、エチレン又はプロピレンに由来する構成単位であることが好ましい。
 極性部位としては、例えば、水酸基、カルボキシ基、酢酸ビニル構造、酸無水物構造及び酸変性によってポリオレフィン系樹脂に導入される酸変性構造等が挙げられる。
 極性部位としての酸変性構造は、熱可塑性樹脂(例えば、ポリオレフィン系樹脂)を酸変性することによって導入される部位である。熱可塑性樹脂(例えば、ポリオレフィン系樹脂)をグラフト変性する際に用いる化合物としては、不飽和カルボン酸、不飽和カルボン酸の酸無水物及び不飽和カルボン酸のエステルのいずれかから導かれる不飽和カルボン酸誘導体成分が挙げられる。
 不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸及びシトラコン酸などが挙げられる。
 不飽和カルボン酸の酸無水物としては、例えば、無水マレイン酸、無水イタコン酸及び無水シトラコン酸等の不飽和カルボン酸の酸無水物などが挙げられる。
 不飽和カルボン酸のエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、マレイン酸ジメチル、マレイン酸モノメチル、フマル酸ジメチル、フマル酸ジエチル、イタコン酸ジメチル、イタコン酸ジエチル、シトラコン酸ジメチル、シトラコン酸ジエチル及びテトラヒドロ無水フタル酸ジメチル等の不飽和カルボン酸のエステルなどが挙げられる。
 熱可塑性樹脂がオレフィン系モノマーと極性部位を有するモノマーとの共重合体である場合、当該共重合体は、極性部位を有するモノマー由来の構成単位を2質量%以上含むことが好ましく、4質量%以上含むことがより好ましく、5質量%以上含むことがさらに好ましく、6質量%以上含むことがよりさらに好ましい。また、当該共重合体は、極性部位を有するモノマー由来の構成単位を30質量%以下含むことが好ましく、25質量%以下含むことがより好ましく、20質量%以下含むことがさらに好ましく、15質量%以下含むことが特に好ましい。
 当該共重合体が極性部位を有するモノマー由来の構成単位を2質量%以上含むことで、高周波誘電加熱接着シートの接着強度が向上する。また、当該共重合体が極性部位を有するモノマー由来の構成単位を30質量%以下含むことで、熱可塑性樹脂のタックが強くなり過ぎることを抑制できる。その結果、高周波誘電加熱接着シートの成形加工が困難になるのを防止し易くなる。
 熱可塑性樹脂としてのポリオレフィン系樹脂が酸変性構造を有する場合、酸による変性率は、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることがさらに好ましい。
 熱可塑性樹脂としてのポリオレフィン系樹脂が酸変性構造を有する場合、酸による変性率は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 熱可塑性樹脂が酸変性構造を有する場合、酸による変性率が、0.01質量%以上であることで、高周波誘電加熱接着シートの接着強度が向上する。また、酸による変性率が30質量%以下であることで、熱可塑性樹脂のタックが強くなり過ぎることを抑制できる。その結果、高周波誘電加熱接着シートの成形加工が困難になるのを防止し易くなる。
 本明細書において、変性率は、酸変性ポリオレフィンの総質量に対する酸に由来する部分の質量の百分率である。
(無水マレイン酸変性ポリオレフィン)
 熱可塑性樹脂としてのポリオレフィン系樹脂は、酸変性構造として、酸無水物構造を有することがより好ましい。酸無水物構造は、無水マレイン酸によってポリオレフィン系樹脂を変性した際に導入される構造であることが好ましい。
 無水マレイン酸変性ポリオレフィンにおいて、無水マレイン酸による変性率は、熱可塑性樹脂としてのポリオレフィン系樹脂が酸変性構造を有する場合の変性率と同様の範囲であることが好ましく、当該範囲内であることで得られる効果も、熱可塑性樹脂としてのポリオレフィン系樹脂が酸変性構造を有する場合と同様である。
 無水マレイン酸変性ポリオレフィンにおけるオレフィン由来の構成単位は、エチレン又はプロピレンに由来する構成単位であることが好ましい。すなわち、無水マレイン酸変性ポリオレフィンは、無水マレイン酸変性ポリエチレン樹脂又は無水マレイン酸変性ポリプロピレン樹脂であることが好ましい。
(オレフィン-酢酸ビニル共重合樹脂)
 本実施形態に係る熱可塑性樹脂は、オレフィン由来の構成単位と、酢酸ビニル由来の構成単位とを含む共重合体(オレフィン-酢酸ビニル共重合樹脂)であることも好ましい。
 熱可塑性樹脂としてのオレフィン-酢酸ビニル共重合樹脂は、酢酸ビニル由来の構成単位を、熱可塑性樹脂がオレフィン系モノマーと極性部位を有するモノマーとの共重合体における極性部位を有するモノマー由来の構成単位と同様の範囲で有することが好ましく、当該範囲内で得られる効果も、熱可塑性樹脂がオレフィン系モノマーと極性部位を有するモノマーとの共重合体である場合と同様である。
 オレフィン-酢酸ビニル共重合樹脂におけるオレフィン由来の構成単位は、機械的強度に優れ、安定した接着性を得られるという観点から、エチレン又はプロピレンに由来する構成単位であることが好ましい。
 したがって、熱可塑性樹脂は、エチレン-酢酸ビニル共重合樹脂及びプロピレン-酢酸ビニル共重合樹脂の少なくとも一種であることが好ましく、エチレン-酢酸ビニル共重合樹脂であることがより好ましい。エチレン-酢酸ビニル共重合樹脂及びプロピレン-酢酸ビニル共重合樹脂における酢酸ビニル由来の構成単位についても、オレフィン-酢酸ビニル共重合樹脂について説明した百分率(質量%)と同様の範囲であることが好ましい。
(誘電フィラー)
 第1の誘電フィラー及び第2の誘電フィラーは、高周波で発熱するフィラーである。
 第1の誘電フィラー及び第2の誘電フィラーは、周波数域が3MHz以上、300MHz以下の高周波電圧を印加した時に発熱するフィラーであることが好ましい。第1の誘電フィラー及び第2の誘電フィラーは、周波数域3MHz以上、300MHz以下のうち、例えば、周波数13.56MHz、27.12MHz又は40.68MHz等の高周波電圧の印加により発熱するフィラーであることが好ましい。
・種類
 第1の誘電フィラー及び第2の誘電フィラーは、それぞれ独立に、酸化亜鉛、炭化ケイ素(SiC)、酸化チタン、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸鉛、ニオブ酸カリウム、水和ケイ酸アルミニウム、アルカリ金属の水和アルミノケイ酸塩等の結晶水を有する無機材料又はアルカリ土類金属の水和アルミノケイ酸塩等の結晶水を有する無機材料等の一種単独又は二種以上の組み合わせが好適である。第1の誘電フィラー及び第2の誘電フィラーの種類は、互いに同一であるか又は異なる。
 第1の誘電フィラー及び第2の誘電フィラーの少なくともいずれかは、酸化亜鉛、炭化ケイ素、チタン酸バリウム及び酸化チタンからなる群から選択される少なくとも1種を含むことが好ましい。
 第1の誘電フィラー及び第2の誘電フィラーは、それぞれ独立に、酸化亜鉛、炭化ケイ素、酸化チタン及びチタン酸バリウムからなる群から選択される少なくとも1種であることが好ましい。
 例示した誘電フィラーの中でも、種類が豊富であり、様々な形状及びサイズから選択でき、高周波誘電加熱接着シートの接着特性及び機械特性を用途に合わせて改良できるため、第1の誘電フィラー及び第2の誘電フィラーの少なくともいずれかが、酸化亜鉛であることがさらに好ましい。誘電フィラーとして酸化亜鉛を用いることで、無色の高周波誘電加熱接着シートを得ることができる。酸化亜鉛は、誘電フィラーの中でも密度が小さいため、誘電フィラーとして酸化亜鉛を含有する高周波誘電加熱接着シートを用いて被着体を接合した場合、他の誘電フィラーを含有するシートを用いた場合と比べて、接合体の総重量が増大し難い。酸化亜鉛は、セラミックの中でも硬度が高過ぎないため、高周波誘電加熱接着シートの製造装置を傷つけ難い。酸化亜鉛は、不活性な酸化物であるため、熱可塑性樹脂と配合しても、熱可塑性樹脂に与えるダメージが少ない。
 また、誘電フィラーとしての酸化チタンは、アナターゼ型酸化チタン及びルチル型酸化チタンの少なくともいずれかであることが好ましく、誘電特性に優れるという観点から、アナターゼ型酸化チタンであることがより好ましい。
・体積含有率
 第1の接着層中の第1の誘電フィラーの体積含有率及び第2の接着層中の第2の誘電フィラーの体積含有率の少なくともいずれかが、3体積%以上であることが好ましく、5体積%以上であることがより好ましく、8体積%以上であることがさらに好ましい。
 第1の接着層中の第1の誘電フィラーの体積含有率及び第2の接着層中の第2の誘電フィラーの体積含有率の少なくともいずれかが、60体積%以下、50体積%以下であることが好ましく、40体積%以下であることがより好ましく、35体積%以下であることがさらに好ましい。
 第1の誘電フィラーの体積含有率が3体積%以上であれば、第1の接着層と第1の被着体とを強固に接着しやすい。
 第2の誘電フィラーの体積含有率が3体積%以上であれば、第2の接着層と第2の被着体とを強固に接着しやすい。
 第1の誘電フィラーの体積含有率が60体積%以下であれば、第1の接着層を加工しやすい。
 第2の誘電フィラーの体積含有率が60体積%以下であれば、第2の接着層を加工しやすい。
 第1の誘電フィラーの体積含有率及び第2の誘電フィラーの体積含有率が共に3体積%以上であれば、本実施形態に係る高周波誘電加熱接着シートは、第1の被着体と第2の被着体とを強固に接着しやすい。
 第1の誘電フィラー及び第2の誘電フィラーの体積含有率が共に60体積%以下であれば、第1の接着層及び第2の接着層のフレキシブル性を得やすく、靱性の低下も防止しやすい。中間層は誘電フィラーを含有しないため、高周波誘電加熱接着シート全体としてもフレキシブル性を得やすく、靱性の低下も防止しやすくなり、後工程で高周波誘電加熱接着シートを所望の形状に加工しやすい。
 第1の接着層中の第1の誘電フィラーの体積含有率及び第2の接着層中の第2の誘電フィラーの体積含有率は、互いに同一であるか又は異なる。
・体積平均粒子径
 第1の誘電フィラーの体積平均粒子径及び第2の誘電フィラーの体積平均粒子径の少なくともいずれかは、1μm以上であることが好ましく、2μm以上であることがより好ましく、3μm以上であることがさらに好ましい。
 第1の誘電フィラーの体積平均粒子径及び第2の誘電フィラーの体積平均粒子径の少なくともいずれかは、30μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることがさらに好ましい。
 第1の接着層中の第1の誘電フィラーの体積平均粒子径が1μm以上であれば、第1の接着層は、高周波印加時に高い発熱性能を発現できる。
 第1の接着層中の第1の誘電フィラーの体積平均粒子径が30μm以下であれば、第1の接着層の強度低下を防止でき、また高周波印加時に高い発熱性能を発現できる。
 第2の接着層中の第2の誘電フィラーの体積平均粒子径が1μm以上であれば、第2の接着層は、高周波印加時に高い発熱性能を発現できる。
 第2の接着層中の第2の誘電フィラーの体積平均粒子径が30μm以下であれば、第2の接着層の強度低下を防止でき、また高周波印加時に高い発熱性能を発現できる。
 第1の誘電フィラーの体積平均粒子径及び第2の誘電フィラーの体積平均粒子径が共に1μm以上であれば、本実施形態に係る高周波誘電加熱接着シートは、シート全体としても高周波印加時に高い発熱性能を発現し、第1の被着体と第2の被着体とをより短時間で強固に接着できる。
 第1の誘電フィラーの体積平均粒子径及び第2の誘電フィラーの体積平均粒子径が共に30μm以下であることで、高周波誘電加熱接着シートの強度低下を防止でき、またシート全体としても高周波印加時に高い発熱性を発現できる。
 第1の誘電フィラーの体積平均粒子径及び第2の誘電フィラーの体積平均粒子径は、互いに同一であるか又は異なる。
 誘電フィラーの体積平均粒子径は、次のような方法によって測定される。レーザー回折・散乱法により、誘電フィラーの粒度分布測定を行い、粒度分布測定の結果からJIS Z 8819-2:2001に準じて体積平均粒子径を算出する。
(添加剤)
 本実施形態に係る高周波誘電加熱接着シートは、添加剤を含んでいてもよいし、添加剤を含んでいなくてもよい。本実施形態に係る高周波誘電加熱接着シートが添加剤を含む場合、第1の接着層、第2の接着層及び中間層の少なくともいずれかが添加剤を含むことが好ましい。
 本実施形態に係る高周波誘電加熱接着シートが添加剤を含む場合、添加剤としては、例えば、粘着付与剤、可塑剤、ワックス、着色剤、酸化防止剤、紫外線吸収剤、抗菌剤、カップリング剤、粘度調整剤、有機充填剤、及び無機充填剤等が挙げられる。添加剤としての有機充填剤、及び無機充填剤は、誘電フィラーとは異なる。
 粘着付与剤及び可塑剤は、高周波誘電加熱接着シートの溶融特性、及び接着特性を改良できる。
 粘着付与剤としては、例えば、ロジン誘導体、ポリテルペン樹脂、芳香族変性テルペン樹脂、芳香族変性テルペン樹脂の水素化物、テルペンフェノール樹脂、クマロン・インデン樹脂、脂肪族石油樹脂、芳香族石油樹脂、及び芳香族石油樹脂の水素化物が挙げられる。
 可塑剤としては、例えば、石油系プロセスオイル、天然油、二塩基酸ジアルキル、及び低分子量液状ポリマーが挙げられる。石油系プロセスオイルとしては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、及び芳香族系プロセスオイル等が挙げられる。天然油としては、例えば、ひまし油、及びトール油等が挙げられる。二塩基酸ジアルキルとしては、例えば、フタル酸ジブチル、フタル酸ジオクチル、及びアジピン酸ジブチル等が挙げられる。低分子量液状ポリマーとしては、例えば、液状ポリブテン、及び液状ポリイソプレン等が挙げられる。
 本実施形態に係る高周波誘電加熱接着シートが添加剤を含む場合、高周波誘電加熱接着シート中の添加剤の含有率は、通常、高周波誘電加熱接着シートの全体量基準で、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。また、高周波誘電加熱接着シート中の添加剤の含有率は、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 本実施形態に係る高周波誘電加熱接着シートは、炭素又は炭素を主成分とする炭素化合物(例えば、カーボンブラック等)及び金属等の導電性物質を含有しないことが好ましい。導電性物質の含有率は、それぞれ独立に、高周波誘電加熱接着シートの全体量基準で、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましく、0質量%であることがよりさらに好ましい。
 高周波誘電加熱接着シート中の導電性物質の含有率が5質量%以下であれば、誘電加熱処理した際に電気絶縁破壊して接着部及び被着体の炭化という不具合を防止し易くなる。
 本実施形態に係る高周波誘電加熱接着シートにおいて、第1の接着層の全体質量に対する熱可塑性樹脂及び誘電フィラーの合計質量、並びに第2の接着層の全体質量に対する熱可塑性樹脂及び誘電フィラーの合計質量の少なくともいずれかが、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。
 本実施形態に係る高周波誘電加熱接着シートの全体質量に対して、熱可塑性樹脂及び誘電フィラーの合計質量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。
 本実施形態に係る高周波誘電加熱接着シートにおいて、第1の接着層中のすべての熱可塑性樹脂に対する第1の熱可塑性樹脂の体積含有率は、50体積%以上であることが好ましく、60体積%以上であることがより好ましく、70体積%以上であることがさらに好ましく、80体積%以上であることがよりさらに好ましく、90体積%以上であることがさらになお好ましい。
 本実施形態に係る高周波誘電加熱接着シートにおいて、第2の接着層中のすべての熱可塑性樹脂に対する第2の熱可塑性樹脂の体積含有率は、50体積%以上であることが好ましく、60体積%以上であることがより好ましく、70体積%以上であることがさらに好ましく、80体積%以上であることがよりさらに好ましく、90体積%以上であることがさらになお好ましい。
[高周波誘電加熱接着シートの形態及び特性]
(シート厚さ比)
 高周波誘電加熱接着シートにおいて、下記数式(数1)で表されるシート厚さ比Trxは、5以上であることが好ましく、10以上であることがより好ましく、15以上であることがさらに好ましい。
 下記数式(数1)で表されるシート厚さ比Trxは、80以下であることが好ましく、70以下であることがより好ましく、60以下であることがさらに好ましい。
 Trx={(Tx1+Tx2)/(Tx1+Tx2+Ty)}×100…(数1)
 Tx1は、第1の接着層の厚さであり、Tx2は、第2の接着層の厚さであり、Tyは、中間層の厚さである。
 シート厚さ比Trxが5以上であれば、高周波誘電加熱接着シート全体の厚さに占める接着層の厚さの割合が小さくなり過ぎず、被着体との接着性の低下を抑制できる。
 シート厚さ比Trxが80以下であれば、高周波誘電加熱接着シート全体の厚さに占める接着層の厚さの割合が大きくなり過ぎず、被着体同士の貼り合せ部からの樹脂のはみ出しをさらに抑制できる。
 第1の接着層及び第2の接着層の厚さの少なくともいずれかは、5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることがさらに好ましい。
 第1の接着層及び第2の接着層の厚さの少なくともいずれかは、800μm以下であることが好ましく、600μm以下であることがより好ましく、400μm以下であることがさらに好ましい。
 第1の接着層の厚さが5μm以上であれば、第1の接着層は、発熱性が良くなるので、接着強度が得られ易い。
 第2の接着層の厚さが5μm以上であれば、第2の接着層は、発熱性が良くなるので、接着強度が得られ易い。
 第1の接着層の厚さが800μm以下であれば、第1の接着層は、接着時にはみ出る樹脂の量を低減しやすく、また発熱量が上がりすぎないので、中間層の溶融も防ぎ易い。
 第2の接着層の厚さが800μm以下であれば、第2の接着層は、接着時にはみ出る樹脂の量を低減しやすく、また発熱量が上がりすぎないので、中間層の溶融も防ぎ易い。
 第1の接着層及び第2の接着層の厚さが共に5μm以上であれば、高周波誘電加熱接着シートは、発熱性が良くなるので、接着強度が得られ易い。
 第1の接着層及び第2の接着層の厚さが共に800μm以下であれば、高周波誘電加熱接着シートは、接着時にはみ出る樹脂の量を低減しやすく、また発熱量が上がりすぎないので、中間層の溶融も防ぎ易い。
 中間層の厚さは、10μm以上であることが好ましく、25μm以上であることがより好ましく、50μm以上であることがさらに好ましく、75μm以上であることがよりさらに好ましく、100μm以上であることがさらになお好ましい。
 中間層の厚さは、1000μm以下であることが好ましく、800μm以下であることがより好ましく、750μm以下であることがさらに好ましい。
 中間層の厚さが10μm以上であれば、高周波誘電加熱接着シートは、はみ出し量の増加を防ぎ易い。
 中間層の厚さが1000μm以下であれば、高周波誘電加熱接着シートは、加工適性が得られ易い。
 本実施形態に係る高周波誘電加熱接着シートにおいて、第1の誘電フィラーの平均粒子径DF1と第1の接着層の厚さTx1との比Tx1/DF1及び第2の誘電フィラーの平均粒子径DF2と第2の接着層の厚さTx2との比Tx2/DF2の少なくとも一方が、0.8以上であることが好ましく、1以上であることがより好ましく、2以上であることがさらに好ましく、3以上であることがよりさらに好ましい。
 比Tx1/DF1及び比Tx2/DF2の少なくとも一方が、2500以下であることが好ましく、2000以下であることが好ましく、1750以下であることが好ましく、1000以下であることがより好ましく、500以下であることがさらに好ましく、100以下であることがよりさらに好ましく、50以下であることがさらになお好ましい。
 比Tx1/DF1が0.8以上であれば、接着時に第1の誘電フィラーと被着体とが接触することに起因する接着強度の低下を防止できる。
 比Tx2/DF2が0.8以上であれば、接着時に第2の誘電フィラーと被着体とが接触することに起因する接着強度の低下を防止できる。
 比Tx1/DF1が2500以下であれば、第1の接着層の作製時に、シート製造装置への負荷を抑制できる。
 比Tx2/DF2が2500以下であれば、第2の接着層の作製時に、シート製造装置への負荷を抑制できる。
 比Tx1/DF1及び比Tx2/DF2が共に0.8以上(好ましくは、1以上)であれば、接着時に高周波誘電加熱接着シートの両面において誘電フィラーと被着体とが接触することに起因する接着強度の低下を防止できる。
 比Tx1/DF1及び比Tx2/DF2が共に2500以下であれば、高周波誘電加熱接着シートの作製時に、シート製造装置への負荷を抑制できる。
 比Tx1/DF1と比Tx2/DF2とは、互いに同一であるか又は異なる。
 本実施形態に係る高周波誘電加熱接着シート1において、下記数式(数2)で表されるMVRの比MVRr1及び下記数式(数3)で表されるMVRの比MVRr2の少なくともいずれかが、0.01以上であることが好ましく、0.05以上であることがより好ましく、0.l0以上であることがさらに好ましい。
 比MVRr1及び比MVRr2の少なくともいずれかが、20以下であることが好ましく、10以下であることがより好ましく、5以下であることがさらに好ましい。
 MVRr1=MVRx1/MVRy…(数2)
 MVRr2=MVRx2/MVRy…(数3)
 前記数式(数2)又は数式(数3)において、MVRx1は、第1の接着層の230℃でのMVRであり、MVRx2は、第2の接着層の230℃でのMVRであり、MVRyは、中間層30の230℃でのMVRである。MVRは、メルトボリュームフローレイト(melt volume-flow rate)の略称であり、単位は、cm/10minである。
 比MVRr1が0.01以上であれば、第1の接着層が高周波誘電加熱時に溶融し易く、第1の接着層と被着体との接着性が向上する。
 比MVRr2が0.01以上であれば、第2の接着層が高周波誘電加熱時に溶融し易く、第2の接着層と被着体との接着性が向上する。
 比MVRr1が20以下であれば、接着時に第1の接着層からはみ出る樹脂の量を低減し易い。
 比MVRr2が20以下であれば、接着時に第2の接着層からはみ出る樹脂の量を低減し易い。
 比MVRr1及び比MVRr2が共に0.01以上であれば、高周波誘電加熱接着シートの最外層に位置する第1の接着層及び第2の接着層の接着性が向上し、両面において被着体との接着性が向上する。
 比MVRr1及び比MVRr2が共に20以下であれば、接着時に第1の接着層及び第2の接着層からはみ出る樹脂の量を低減し易い。
 比MVRr1及び比MVRr2は、互いに同一であるか又は異なる。
 熱可塑性樹脂、接着層及び中間層のMVRは、後述する実施例の項目において説明する方法により測定できる。
 本実施形態に係る高周波誘電加熱接着シートにおいて、中間層の230℃でのMVRであるMVRyは、60cm/10min以下であることが好ましく、50cm/10min以下であることがより好ましく、40cm/10min以下であることがさらに好ましい。
 MVRyが60cm/10min以下であれば、高周波誘電加熱時に第1の接着層及び第2の接着層の少なくともいずれかの接着層からの熱伝導による中間層の溶融、並びに当該中間層の溶融による樹脂のはみ出しを抑制し易い。
 MVRyは、中間層の成形し易さの観点から、0.5cm/10min以上であることが好ましく、1cm/10min以上であることがより好ましく、3cm/10min以上であることがさらに好ましい。
 本実施形態に係る高周波誘電加熱接着シートにおいて、第1の接着層の230℃でのMVRであるMVRx1及び第2の接着層の230℃でのMVRであるMVRx2の少なくともいずれかが、0.5cm/10min以上であることが好ましく、1cm/10min以上であることがより好ましく、3cm/10min以上であることがさらに好ましく、5cm/10min以上であることがよりさらに好ましく、10cm/10min以上であることがさらになお好ましい。
 第1の接着層の230℃でのMVRであるMVRx1及び第2の接着層の230℃でのMVRであるMVRx2の少なくともいずれかが、200cm/10min以下であることが好ましく、175cm/10min以下であることがより好ましく、150cm/10min以下であることがさらに好ましく、100cm/10min以下であることがよりさらに好ましく、50cm/10min以下であることがさらになお好ましい。
 第1の接着層のMVRx1が0.5cm/10min以上であれば、第1の接着層が高周波誘電加熱時に溶融し易く、第1の接着層と被着体との接着性が向上する。
 第2の接着層のMVRx2が0.5cm/10min以上であれば、第2の接着層が高周波誘電加熱時に溶融し易く、第2の接着層と被着体との接着性が向上する。
 第1の接着層のMVRx1が200cm/10min以下であれば、接着時に第1の接着層からはみ出る樹脂の量を低減し易く、第1の接着層を加工し易い。
 第2の接着層のMVRx2が200cm/10min以下であれば、接着時に第2の接着層からはみ出る樹脂の量を低減し易く、第2の接着層を加工し易い。
 第1の接着層のMVRx1及び第2の接着層のMVRx2が共に0.5cm/10min以上であれば、高周波誘電加熱接着シートの最外層に位置する第1の接着層及び第2の接着層の接着性が向上し、両面において被着体との接着性が向上する。
 第1の接着層のMVRx1及び第2の接着層のMVRx2が共に200cm/10min以下であれば、接着時に第1の接着層及び第2の接着層からはみ出る樹脂の量を低減し易く、高周波誘電加熱接着シートを加工し易い。
 第1の接着層のMVRx1及び第2の接着層のMVRx2は、互いに同一であるか又は異なる。
 本実施形態に係る高周波誘電加熱接着シートにおいて、当該高周波誘電加熱接着シートに対して高周波を印加する前後での厚さ減少率が50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましく、20%以下であることがさらになお好ましい。
 厚さ減少率が50%以下であれば、樹脂がはみ出し難くなり、その結果、接着部分からはみ出した樹脂が、被着体の接着部分以外に付着したり、誘電加熱装置(例えば、電極等)に付着したりすることを防ぎやすい。
 厚さ減少率は、通常0%以上である。
 厚さ減少率は、次の測定方法で測定された値である。高周波誘電加熱装置の電極間に、一対の被着体(大きさ:25mm×12.5mm、厚さ:1.5mm)並びに当該一対の被着体の間に挟んだ高周波誘電加熱接着シート(大きさ:25mm×12.5mm、厚さ:D1)を固定する。次に、周波数40.68MHz、出力200W、圧力0.5MPaの条件下で、高周波を10秒印加した後の高周波誘電加熱接着シートの厚さD2を測定する。厚さ減少率は、下記数式(数4)にて算出される。
 {(D1-D2)/D1}×100…(数4)
 前記数式(数4)において、D1及びD2の単位は、μmである。
(層間密着性)
 本実施形態に係る高周波誘電加熱接着シートが有するいずれの層も、JIS K5600-5-6:1999に準拠するクロスカット試験後に当該層と接する層から剥離せずに付着している格子数の割合が50%以上であることが好ましく、80%以上であることがより好ましく、100%であることがさらに好ましい。このような層間密着性を有していれば、シートの層間でさらに剥離し難くなる。
 クロスカット試験後に当該層と接する層から剥離せずに付着している格子数の割合は通常100%以下である。
 例えば、図1のように、高周波誘電加熱接着シート1が、第1の接着層10、中間層30及び第2の接着層20からなる場合、第1の接着層と中間層30とが接し、第2の接着層と中間層30とが接している。このような場合に、JIS K5600-5-6:1999に準拠するクロスカット試験後に第1の接着層10が中間層30から剥離せずに付着している格子数の割合が50%以上であり、かつ、第2の接着層20が中間層30から剥離せずに付着している格子数の割合が50%以上であることが好ましく、80%以上であることがより好ましく、100%であることがさらに好ましい。
(高周波誘電加熱接着シートの厚さ)
 高周波誘電加熱接着シートの厚さは、10μm以上であることが好ましく、30μm以上であることがより好ましく、50μm以上であることがさらに好ましい。
 高周波誘電加熱接着シートの厚さが10μm以上であれば、当該シートに含まれる高周波で発熱する物質の絶対量が少なくならないので、当該シートは、発熱し易くなる。
 高周波誘電加熱接着シートの厚さの上限は、特に限定されない。高周波誘電加熱接着シートの厚さが増すほど、第1の被着体と第2の被着体とを接着して得られる接合体全体の重量も増加するため、高周波誘電加熱接着シートは、実使用上問題ない範囲の厚さであることが好ましい。高周波誘電加熱接着シートの実用性及び成形性も考慮すると、高周波誘電加熱接着シートの厚さは、2000μm以下であることが好ましく、1000μm以下であることがより好ましく、600μm以下であることがさらに好ましい。
[高周波誘電加熱接着シートの製造方法]
 本実施形態に係る高周波誘電加熱接着シートの製造方法は、第1の接着層、中間層及び第2の接着層を含む積層型の高周波誘電加熱接着シートを製造できれば、特に限定されない。
 本実施形態に係る高周波誘電加熱接着シートは、例えば、上述の各成分を予備混合し、多層押出機を用いた共押出し法によって製造できる。また、本実施形態に係る高周波誘電加熱接着シートを構成する各層(例えば、第1の接着層、中間層及び第2の接着層)の単層シートを個別に作製し、複数の単層シートをラミネート処理して積層させることによっても、本実施形態に係る高周波誘電加熱接着シートを製造できる。単層シートは、上述の各成分を予備混合し、押出機、及び熱ロール等の公知の混練装置を用いて混錬し、押出成形、カレンダー成形、インジェクション成形、及びキャスティング成形等の公知の成形方法により製造できる。複数の単層シートをラミネート処理する際には、例えば、熱ラミネーターを使用する。
[高周波誘電加熱接着シートの使用方法]
 本実施形態に係る高周波誘電加熱接着シートを用いることにより、例えば、第1の被着体と第2の被着体とを接着できる。
 本実施形態に係る高周波誘電加熱接着シートは、第1の被着体と、第1の被着体とは異なる材質の第2の被着体とを接着するためのシートであることが好ましい。
 第1の被着体の形状及び第2の被着体の形状は、特に限定されないが、シート状であることが好ましい。第1の被着体の形状及び第2の被着体は、前述の通りの材質であればよく、第1の被着体の形状及び第2の被着体の形状及び寸法は、互いに同じでも異なっていてもよい。
 本実施形態に係る高周波誘電加熱接着シートの使用方法として、第1の被着体と第2の被着体との間に、本実施形態に係る高周波誘電加熱接着シートを挟持して、例えば、3MHz以上、300MHz以下の高周波電圧を印加して、前記第1の被着体と前記第2の被着体とが接着された接合体を作製できる。
[接着方法]
 本実施形態に係る接着方法は、本実施形態に係る高周波誘電加熱接着シートを用いて、例えば、第1の被着体と第2の被着体とを接着する。
 本実施形態に係る接着方法は、以下の工程P1及び工程P2を含むことが好ましい。
 工程P1:高周波誘電加熱接着シートの第1の接着層と第1の被着体とを当接させ、第2の接着層と第2の被着体とを当接させる工程。
 工程P2:高周波誘電加熱接着シートに高周波を印加して、第1の被着体と第2の被着体とを接着する工程。
・工程P1
 工程P1は、第1の被着体と第2の被着体との間で本実施形態に係る高周波誘電加熱接着シートを挟持する工程である。工程P1では、第1の被着体を高周波誘電加熱接着シートの第1の接着層に接触させる。また、工程P1では、第2の被着体を高周波誘電加熱接着シートの第2の接着層に接触させる。
 高周波誘電加熱接着シートは、第1の被着体と第2の被着体とを接着できるように、第1の被着体と第2の被着体の間に挟持すればよい。高周波誘電加熱接着シートは、第1の被着体と第2の被着体との間の一部において、複数箇所において又は全面において挟持すればよい。第1の被着体と第2の被着体との接着強度を向上させる観点から、第1の被着体と第2の被着体との接着面全体に亘って高周波誘電加熱接着シートを挟持することが好ましい。また、第1の被着体と第2の被着体との間の一部において高周波誘電加熱接着シートを挟持する一態様としては、第1の被着体と第2の被着体との接着面の外周に沿って高周波誘電加熱接着シートを枠状に配置して、第1の被着体と第2の被着体との間で挟持する態様が挙げられる。このように高周波誘電加熱接着シートを枠状に配置することで、第1の被着体と第2の被着体との接着強度を得るとともに、接着面全体に亘って高周波誘電加熱接着シートを配置した場合に比べて接合体を軽量化できる。また、第1の被着体と第2の被着体との間の一部に高周波誘電加熱接着シートを挟持する一態様によれば、用いる高周波誘電加熱接着シートのサイズを小さくできるため、接着面全体に亘って高周波誘電加熱接着シートを配置した場合に比べて高周波誘電加熱処理時間を短縮できる。
・工程P2
 工程P2は、工程P1において第1の被着体と第2の被着体との間で挟持した高周波誘電加熱接着シートに対して、3MHz以上、300MHz以下の高周波電圧を印加して、第1の被着体と第2の被着体とを高周波誘電加熱接着シートにより接着する工程である。
 例えば、誘電加熱接着装置を用いることにより、高周波誘電加熱接着シートに対して高周波電圧を印加できる。
 図2には、本実施形態に係る高周波誘電加熱接着シート及び誘電加熱装置を用いた高周波誘電加熱処理を説明する概略図が示されている。
(誘電加熱接着装置)
 図2には、誘電加熱接着装置50の概略図が示されている。
 誘電加熱接着装置50は、第1高周波印加電極51と、第2高周波印加電極52と、高周波電源53と、を備えている。
 第1高周波印加電極51と、第2高周波印加電極52とは、互いに対向配置されている。第1高周波印加電極51及び第2高周波印加電極52は、プレス機構を有している。このプレス機構により、第1の被着体110、高周波誘電加熱接着シート1及び第2の被着体120を、第1高周波印加電極51と第2高周波印加電極52との間で加圧処理できる。
 第1高周波印加電極51と第2高周波印加電極52とが互いに平行な1対の平板電極を構成している場合、このような電極配置の形式を平行平板タイプと称する場合がある。
 高周波の印加には平行平板タイプの高周波誘電加熱装置を用いることも好ましい。平行平板タイプの高周波誘電加熱装置であれば、高周波が電極間に位置する高周波誘電加熱接着シートを貫通するので、高周波誘電加熱接着シート全体を温めることができ、被着体と高周波誘電加熱接着シートとを短時間で接着できる。
 第1高周波印加電極51及び第2高周波印加電極52のそれぞれに、例えば、周波数13.56MHz程度、27.12MHz程度又は周波数40.68MHz程度の高周波電圧を印加するための高周波電源53が接続されている。
 誘電加熱接着装置50は、図2に示すように、第1の被着体110及び第2の被着体120との間に挟持した高周波誘電加熱接着シート1を介して、誘電加熱処理する。さらに、誘電加熱接着装置50は、誘電加熱処理に加えて、第1高周波印加電極51及び第2高周波印加電極52による加圧処理によって、第1の被着体110と第2の被着体120とを接着する。なお、加圧処理を行わずに第1の被着体110と第2の被着体120とを接着してもよい。
 第1高周波印加電極51及び第2高周波印加電極52の間に、高周波電界を印加すると、高周波誘電加熱接着シート1における第1の接着層及び第2の接着層中に分散された誘電フィラー(図示せず)が、高周波エネルギーを吸収する。
 そして、誘電フィラーは、発熱源として機能し、誘電フィラーの発熱によって、第1の接着層及び第2の接着層中の熱可塑性樹脂成分を溶融させ、短時間処理であっても、最終的には、第1の被着体110と第2の被着体120とを強固に接着できる。
 第1高周波印加電極51及び第2高周波印加電極52は、プレス機構を有することから、プレス装置としても機能する。そのため、第1高周波印加電極51及び第2高周波印加電極52による圧縮方向への加圧及び高周波誘電加熱接着シート1の加熱溶融によって、第1の被着体110と第2の被着体120とをより強固に接着できる。
(高周波誘電加熱接着条件)
 高周波誘電加熱接着条件は、適宜変更できるが、以下の条件であることが好ましい。
 高周波出力は、10W以上であることが好ましく、30W以上であることがより好ましく、50W以上であることがさらに好ましく、80W以上であることがよりさらに好ましい。
 高周波出力は、50,000W以下であることが好ましく、20,000W以下であることがより好ましく、15,000W以下であることがさらに好ましく、10,000W以下であることがよりさらに好ましく、1,000W以下であることがさらになお好ましい。
 高周波出力が10W以上であれば、誘電加熱処理時に温度が上昇し難いという不具合を防止できるので、良好な接着力を得やすい。
 高周波出力が50,000W以下であれば、誘電加熱処理による温度制御が困難となる不具合を防ぎ易い。
 高周波の印加時間は、1秒以上であることが好ましい。
 高周波の印加時間は、60秒以下が好ましく、45秒以下がより好ましく、35秒以下であることがさらに好ましく、25秒以下であることがよりさらに好ましく、10秒以下であることがさらになお好ましい。
 高周波の印加時間が1秒以上であれば、誘電加熱処理時に温度が上昇し難いという不具合を防止できるので、良好な接着力を得やすい。
 高周波の印加時間が60秒以下であれば、第1の被着体と第2の被着体とを接着させた接合体の製造効率が低下したり、接合体の製造コストが高くなったり、さらには、被着体が熱劣化するといった不具合を防ぎ易い。
 印加する高周波の周波数は、1kHz以上であることが好ましく、1MHz以上であることがより好ましく、5MHz以上であることがさらに好ましく、10MHz以上であることがよりさらに好ましい。
 印加する高周波の周波数は、300MHz以下であることが好ましく、100MHz以下であることがより好ましく、80MHz以下であることがさらに好ましく、50MHz以下であることがよりさらに好ましい。具体的には、国際電気通信連合により割り当てられた工業用周波数帯13.56MHz、27.12MHz又は40.68MHzが、本実施形態の高周波誘電加熱接着方法(接着方法)にも利用される。
 本実施形態に係る高周波誘電加熱接着シートは、最外層として、第1の接着層及び第2の接着層を含み、第1の接着層と第2の接着層との間に中間層を含む多層構成である。
 第1の接着層及び第2の接着層は、それぞれ独立に、高周波で発熱する誘電フィラーを含有し、かつ中間層は、高周波で発熱する誘電フィラーを含有しない。そのため、被着体同士を誘電加熱接着する際に、被着体間で本実施形態に係る高周波誘電加熱接着シートが加圧されても、被着体同士の貼り合せ部から当該高周波誘電加熱接着シートから熱可塑性樹脂がはみ出し難い。第1の接着層及び第2の接着層は、それぞれ、誘電フィラーを含有しており、短時間の高周波の印加でも発熱及び溶融するため、誘電フィラーを含有しない中間層が溶融してはみ出す前に高周波誘電加熱接着シートによって被着体同士を接着できる。被着体と接する第1の接着層と第2の接着層との間に、誘電フィラーを含有しない中間層を配置したことで、高周波を印加した際に、最外層の第1の接着層及び第2の接着層が局所的に加熱される。その結果、本実施形態に係る高周波誘電加熱接着シートによれば、第1の接着層及び第2の接着層中の熱可塑性樹脂のはみ出しを抑制しつつ、被着体との接着時に被着体全体が溶融するという不具合を防ぎやすい。
 本実施形態に係る高周波誘電加熱接着シートは、塗布が必要な接着剤を用いる場合と比べて、取り扱い易く、第1の被着体と第2の被着体との接着時の作業性も向上する。本実施形態に係る高周波誘電加熱接着シートによれば、短時間の高周波印加により被着体と接着できる。
 本実施形態に係る高周波誘電加熱接着シートは、一般的な粘着剤に比べて、耐水性及び耐湿性が優れる。
 本実施形態に係る高周波誘電加熱接着シートは、溶剤を含有しないため、被着体との接着に用いる接着剤に起因するVOC(Volatile Organic Compounds)の問題が発生し難い。
 本実施形態に係る高周波誘電加熱接着シートを用いた接着方法によれば、誘電加熱接着装置によって、外部から、所定箇所のみを局所的に加熱することができる。そのため、被着体が、大型で且つ複雑な立体構造体又は厚さが大きく且つ複雑な立体構造等であり、さらに高い寸法精度を求められる場合でも、本実施形態に係る高周波誘電加熱接着シートを用いた接着方法は、有効である。
 また、本実施形態に係る高周波誘電加熱接着シートによれば、高周波誘電加熱接着シートの厚さなどを適宜制御できる。そのため、本実施形態に係る高周波誘電加熱接着シートをロール・ツー・ロール方式に適用することもでき、かつ、抜き加工等により、被着体との接着面積、並びに被着体の形状に合わせて、高周波誘電加熱接着シートを任意の面積及び形状に加工できる。そのため、本実施形態に係る高周波誘電加熱接着シートは、製造工程の観点からも、利点が大きい。
〔実施形態の変形〕
 本発明は、前記実施形態に限定されない。本発明は、本発明の目的を達成できる範囲での変形及び改良等を含むことができる。
 前記実施形態では、第1の接着層、第2の接着層及び中間層の3層のみからなる高周波誘電加熱接着シートを例に挙げて説明したが、本発明は、このような例に限定されない。
本発明の一態様として、例えば、第1の接着層及び第2の接着層をそれぞれ最外層として有し、第1の接着層、第2の接着層及び中間層以外の層を有する高周波誘電加熱接着シートも挙げられる。本発明の一態様として、合計4層以上からなる高周波誘電加熱接着シートも含まれる。
 高周波誘電加熱接着シートは、粘着部を有していてもよい。粘着部を有することで、被着体と被着体との間に高周波誘電加熱接着シートを挟持する際に、位置ずれを防止して、正確な位置に配置できる。粘着部は、高周波誘電加熱接着シートの一方の面に設けてもよいし、両面に設けてもよい。また、粘着部は、高周波誘電加熱接着シートの面に対して、部分的に設けられていてもよい。高周波誘電加熱接着シートは、粘着部を有していない場合でも、第1の被着体と第2の被着体とを強固に接着できる。
 高周波誘電加熱処理は、前記実施形態で説明した電極を対向配置させた誘電加熱接着装置に限定されず、格子電極タイプの高周波誘電加熱装置を用いてもよい。格子電極タイプの高周波誘電加熱装置は、一定間隔ごとに第1極性の電極と、第1極性の電極とは反対極性の第2極性の電極とを同一平面上に交互に配列した格子電極を有する。
 例えば、第1の被着体の端部と第2の被着体の端部とを重ね合わせて接着した接合体を製造する場合は、第1の被着体側又は第2の被着体側に格子電極タイプの高周波誘電加熱装置を配置して高周波を印加する。
 格子電極タイプの高周波誘電加熱装置を用いて第1の被着体と第2の被着体とを接着させる場合に、第1の被着体側に第1の格子電極を配置し、第2の被着体側に第2の格子電極を配置して、第1の被着体、高周波誘電加熱接着シート及び第2の被着体を、第1の格子電極と第2の格子電極との間に挟んで同時に高周波を印加してもよい。
 格子電極タイプの高周波誘電加熱装置を用いて第1の被着体と第2の被着体とを接着させる場合に、第1の被着体及び第2の被着体の一方の面側に格子電極を配置し、高周波を印加し、その後、第1の被着体及び第2の被着体の他方の面側に格子電極を配置し、高周波を印加してもよい。
 高周波の印加には格子電極タイプの高周波誘電加熱装置を用いることも好ましい。格子電極タイプの高周波誘電加熱装置を用いることで、第1の被着体及び第2の被着体の厚さの影響を受けず、第1の被着体及び第2の被着体の表層側、例えば、高周波誘電加熱接着シートまでの距離が近い被着体側から誘電加熱することにより、被着体同士を接着できる。また、格子電極タイプの高周波誘電加熱装置を用いることで、接合体の製造の省エネルギー化を実現できる。
 なお、図においては、簡略化のために電極を対向配置させた誘電加熱接着装置を用いた態様を例示した。
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
〔高周波誘電加熱接着シート作製方法〕
(実施例1)
 第1の接着層を形成するための材料及び第2の接着層を形成するための材料のそれぞれを、表1に示す組成(体積%)で、個別の容器内にて予備混合した。中間層を形成するための材料として、表1に示す種類の樹脂の粒状ペレットを準備した。第1の接着層及び第2の接着層を形成するための材料には、誘電フィラーとして酸化亜鉛を混合したが、中間層を形成するための材料には、誘電フィラーを含有させなかった。表1に示すPPは、ポリプロピレンの略称である。
 PP:株式会社プライムポリマー製、製品名「プライムポリプロF-744NP」
 予備混合した材料を30mmφ二軸押出機のホッパーに供給し、シリンダー設定温度を180℃以上220℃以下、ダイス温度を220℃に設定し、予備混合した材料を溶融混練した。溶融混練した材料を冷却した後に、当該材料をカットすることにより、粒状のペレットを作製した。第1の接着層用の粒状ペレット及び第2の接着層用の粒状ペレットそれぞれを作製した。次いで、第1の接着層用、第2の接着層用及び中間層用の粒状ペレットを、フィードブロックを有するTダイを設置した単軸多層押出機のホッパーにそれぞれ投入し、シリンダー温度を220℃、ダイス温度を220℃の条件として、Tダイから、フィルム状溶融混練物を押出し、冷却ロールにて冷却させることにより、第1の接着層、中間層及び第2の接着層がこの順で積層された多層構成の厚さ400μmの高周波誘電加熱接着シートを作製した。
(実施例2~実施例16)
 実施例2~実施例16に係る高周波誘電加熱接着シートは、表1に示す、第1の接着層、第2の接着層及び中間層の組成及び厚さに変更し、さらに、予備混合時及び押出成形時の温度を高周波誘電加熱接着シートの各層に含まれる樹脂の種類に応じて適宜設定したこと以外、実施例1と同様にして作製した。実施例15においては、第1の熱可塑性樹脂として、m-PPを用い、第2の熱可塑性樹脂としてPPを用いた。表1には、作製した高周波誘電加熱接着シートの総厚も示した。
(比較例1及び比較例2)
 比較例1及び比較例2に係るシートとして、表1に示す組成及び厚さの中間層のみからなるシートを作製した。予備混合時及び押出成形時の温度をシートに含まれる樹脂の種類に応じて適宜設定した。
 表1に示すEVAは、エチレン-酢酸ビニル共重合体の略称であり、PEは、ポリエチレンの略称であり、m-PPは、無水マレイン酸変性ポリプロピレンの略称であり、m-PEは、無水マレイン酸変性ポリエチレンの略称である。
 EVA1 :東ソー株式会社製、製品名「ウルトラセン510」
 EVA2 :三井・デュポンポリケミカル株式会社製、製品名「エバフレックスEV550」
 m-PP:三菱ケミカル株式会社製、製品名「モディックP565」
 m-PE:三菱ケミカル株式会社製、製品名「モディックM545」
Figure JPOXMLDOC01-appb-T000001
〔高周波誘電加熱接着シートの評価〕
 以下に示すとおり高周波誘電加熱接着シートを評価し、評価結果を表2に示す。
[MVR(メルトボリュームフローレイト)]
 測定試料(熱可塑性樹脂、接着層又は中間層)のMVRは、JIS K 7210-1:2014に記載の試験条件を下記のとおり変更して測定した。
 ・試験温度:230℃
 ・荷重:5kg
 ・ダイ:穴形状φ2.0mm、長さ5.0mm
 ・シリンダー径:11.329mm
 なお、表1中の実施例15の「19.4/19.2」は、MVRx1が19.4cm/10minであり、MVRx2が19.4cm/10minであることを示す。
[高周波接着性]
 作製した高周波誘電加熱接着シート等を25mm×12.5mmの大きさに切断した。ガラス繊維強化ポリプロピレン樹脂製の第1の被着体及び第2の被着体を準備した(ガラス繊維強化ポリプロピレンをGFRPPと略記する場合がある。)。第1の被着体及び第2の被着体の大きさは、いずれも25mm×100mm×1.5mm(厚さ)とした。第1の被着体と第2の被着体との間に、前述の大きさに切断した高周波誘電加熱接着シートを挟んだ。第1の被着体、高周波誘電加熱接着シート及び第2の被着体を、高周波誘電加熱装置(山本ビニター株式会社製“YRP-400T-A”)の電極間に固定した。固定した状態で、下記高周波印加条件で高周波を印加して、高周波誘電加熱接着シートと被着体を接着させて、高周波接着性評価用の試験片を作製した。
 ・高周波印加条件
  周波数  :40.68MHz
  出力   :200W
  印加時間 :10秒
  押し圧:0.5MPa
 高周波印加時の押し圧は、第1の被着体と第2の被着体との接合部に加えた圧力である。
[はみ出し性]
 前記[高周波接着性評価]における高周波接着性評価用の試験片の作製において、ガラス繊維強化エポキシ樹脂製の第1の被着体および第2の被着体を用い、高周波印加条件を下記の通り変更したこと以外は、前記[高周波接着性評価]と同様にして、高周波誘電加熱接着シートと被着体を接着させて、はみだし性評価用の試験片を作製した。第1の被着体及び第2の被着体の大きさは、いずれも25mm×100mm×1.5mmとした。
 ・高周波印加条件
  周波数  :40.68MHz
  出力   :100W
  印加時間 :10秒
  押し圧:0.5MPa
 高周波印加時の押し圧は、第1の被着体と第2の被着体との接合部に加えた圧力である。
 図3には、はみだし性評価に用いた試験片TP1の概略平面図が示され、図4には、試験片TP1の概略断面図が示されている。作製したはみだし性評価用の試験片TP1において、下側に位置する被着体WK1と上側に位置する被着体WK2の貼り合せ部LMを平面方向(上側に位置する被着体WK2側)から観察し、上側に位置する被着体WK2の端部WEから外側へ、はみ出た熱可塑性樹脂REのうち、下側に位置する被着体WK1の上にはみ出た熱可塑性樹脂REの被着体WK1の長辺に平行な直線の最大長さLSを測定した。
 下記評価基準に沿って、高周波誘電加熱接着シートのはみ出し性を評価した。
 A:はみ出た樹脂の最大長さLSが1.5mm未満
 F:はみ出た樹脂の最大長さLSが1.5mm以上
 比較例1の高周波誘電加熱接着シートを用いて作製した試験片においては、はみ出た樹脂の最大長さLSが3.1mmであった。
[厚さ減少率]
 前記[はみだし性評価]における試験片の作製と同様にして、高周波誘電加熱接着シートと被着体を接着させて、厚さ減少率評価用の試験片を作製した。
 作製した高周波誘電加熱接着シートの高周波印加前の厚さD1及び厚さ減少率評価用試験片における高周波誘電加熱接着シート部分の厚さD2を測定した。高周波誘電加熱接着シートの厚さは、株式会社テクロック社製の「定圧厚さ測定器PG02J」を用いて測定した。
 厚さD2は、厚さ減少率評価用の試験片の接合部位の被着体を含んだ厚さを測り、その値から、被着体の厚さの値を除いた値である。厚さ測定場所は、試験片の平面視の中央部で、測定数は、5とした。測定数が5の場合、厚さは5回の測定値の平均値とした。厚さ減少率は、下記数式(数4)にて算出した。
 {(D1-D2)/D1}×100…(数4)
 前記数式(数4)において、D1及びD2の単位は、μmである。
[接着力(引張せん断力)]
 高周波接着性評価で得られた高周波接着性評価用の試験片につき、接着力としての引張せん断力を測定した。引張せん断力の測定には、万能引張試験機(インストロン社製、インストロン5581)を用いた。引張せん断力の測定における引張速度は、100mm/分の条件とした。引張せん断力は、JIS K 6850:1999に準拠して測定した。
 下記評価基準に沿って、高周波誘電加熱接着シートの接着力を評価した。
 A:引張せん断力が4MPaを超えた。
 B:引張せん断力が2MPaを超えた。
 F:引張せん断力が2MPa以下であった。
[層間密着性]
 作製した高周波誘電加熱接着シートについて、JIS K5600-5-6:1999に準拠するクロスカット試験を実施して、層間密着性を評価した。具体的には、高周波誘電加熱接着シートの表面にコロナ処理(200W・min/m)を施し、当該シートのコロナ処理済みの面に、両面粘着シート(リンテック株式会社製TL-52BM-05)を用いて、PETフィルム(東洋紡株式会社製、製品名「コスモシャインA4300」)を貼りつけて、2mmの間隔で切り込みを粘着剤層まで入れた。なお、第1の接着層側にPETフィルムを貼りつけた試験片に対しては、第2の接着層側から切り込みを入れ、第2の接着層側にPETフィルムを貼りつけた試験片に対しては、第1の接着層側から切り込みを入れた。
 高周波誘電加熱接着シートの各層が、クロスカット試験後に、当該層と接する層から剥離せずに付着している格子数の割合を観察して、下記評価基準に沿って、層間密着性を評価した。層間密着性の評価結果を表2に示す。
 ・評価基準
  評価A:第1の接着層が接する中間層から剥離せずに付着している格子数の割合、及び第2の接着層が接する中間層から剥離せずに付着している格子数の割合が50%以上であった。
  評価F:第1の接着層が接する中間層から剥離せずに付着している格子数の割合、及び第2の接着層が接する中間層から剥離せずに付着している格子数の割合の少なくともいずれかが50%未満であった。
 なお、実施例1~16の高周波誘電加熱接着シートについては、評価Aであり、かつ、残存格子数は100%であった。
[誘電フィラーの体積平均粒子径]
 レーザー回折・散乱法により、誘電フィラーの粒度分布を測定した。粒度分布測定の結果からJIS Z 8819-2:2001に準じて体積平均粒子径を算出した。算出した誘電フィラー(ZnO:酸化亜鉛)の平均粒子径(体積平均粒子径)は、11μmであった。
Figure JPOXMLDOC01-appb-T000002
 表2中の※1で示したシート厚さ比Trxは、{(Tx1+Tx2)/(Tx1+Tx2+Ty)}×100で算出された値である。
 実施例1~16に係る高周波誘電加熱接着シートは、第1の接着層と第2の接着層との間に誘電フィラーを含有しない中間層を有するため、誘電加熱接着時に加圧されても、被着体同士の貼り合せ部から熱可塑性樹脂のはみ出し量が少なかった。
 一方、比較例1に係る高周波誘電加熱接着シートは、中間層を有さず、誘電フィラーを含有する単層からなるシートであったため、はみ出し量が多かった。比較例2に係るシートは、誘電フィラーを含有しておらず、被着体に対する接着性が低かった。
 1…高周波誘電加熱接着シート、10…第1の接着層、11…第1の表面、110…第1の被着体、120…第2の被着体、20…第2の接着層、21…第2の表面、30…中間層、50…誘電加熱接着装置、51…第1高周波印加電極、52…第2高周波印加電極、53…高周波電源。

Claims (11)

  1.  第1の接着層と、第2の接着層と、前記第1の接着層及び前記第2の接着層の間に配置された中間層と、を有し、
     前記第1の接着層は、第1の熱可塑性樹脂及び高周波で発熱する第1の誘電フィラーを含有し、
     前記第2の接着層は、第2の熱可塑性樹脂及び高周波で発熱する第2の誘電フィラーを含有し、
     前記中間層は、高周波で発熱する誘電フィラーを含有しない、
     高周波誘電加熱接着シート。
  2.  請求項1に記載の高周波誘電加熱接着シートにおいて、
     下記数式(数1)で表されるシート厚さ比Trxが、5以上、80以下である、
     高周波誘電加熱接着シート。
     Trx={(Tx1+Tx2)/(Tx1+Tx2+Ty)}×100…(数1)
    (前記数式(数1)において、
      Tx1は、前記第1の接着層の厚さであり、
      Tx2は、前記第2の接着層の厚さであり、
      Tyは、前記中間層の厚さである。)
  3.  請求項1又は請求項2に記載の高周波誘電加熱接着シートにおいて、
     下記数式(数2)で表されるMVRの比MVRr1及び下記数式(数3)で表されるMVRの比MVRr2の少なくともいずれかが、0.01以上である、
     高周波誘電加熱接着シート。
     MVRr1=MVRx1/MVRy…(数2)
     MVRr2=MVRx2/MVRy…(数3)
    (前記数式(数2)又は数式(数3)において、
      MVRx1は、前記第1の接着層の230℃でのMVRであり、
      MVRx2は、前記第2の接着層の230℃でのMVRであり、
      MVRyは、前記中間層の230℃でのMVRである。)
  4.  請求項1から請求項3のいずれか一項に記載の高周波誘電加熱接着シートにおいて、
     前記中間層の230℃でのMVRであるMVRyは、60cm/10min以下である、
     高周波誘電加熱接着シート。
  5.  請求項1から請求項4のいずれか一項に記載の高周波誘電加熱接着シートにおいて、
     前記第1の接着層の230℃でのMVRであるMVRx1及び前記第2の接着層の230℃でのMVRであるMVRx2の少なくともいずれかが、0.5cm/10min以上である、
     高周波誘電加熱接着シート。
  6.  請求項1から請求項5のいずれか一項に記載の高周波誘電加熱接着シートにおいて、
     前記第1の接着層中の前記第1の誘電フィラーの体積含有率及び前記第2の接着層中の前記第2の誘電フィラーの体積含有率の少なくともいずれかが、3体積%以上、60体積%以下である、
     高周波誘電加熱接着シート。
  7.  請求項1から請求項6のいずれか一項に記載の高周波誘電加熱接着シートにおいて、
     前記第1の誘電フィラー及び前記第2の誘電フィラーの少なくともいずれかは、酸化亜鉛、炭化ケイ素、チタン酸バリウム及び酸化チタンからなる群から選択される少なくとも1種を含む、
     高周波誘電加熱接着シート。
  8.  請求項1から請求項7のいずれか一項に記載の高周波誘電加熱接着シートにおいて、
     前記第1の熱可塑性樹脂及び前記第2の熱可塑性樹脂の少なくともいずれかは、ポリオレフィン系樹脂である、
     高周波誘電加熱接着シート。
  9.  請求項1から請求項8のいずれか一項に記載の高周波誘電加熱接着シートにおいて、
     前記高周波誘電加熱接着シートに対して高周波を印加する前後での厚さ減少率が50%以下である、
     高周波誘電加熱接着シート。
  10.  請求項1から請求項9のいずれか一項に記載の高周波誘電加熱接着シートにおいて、
     前記第1の接着層及び前記第2の接着層の少なくともいずれかが、前記中間層と直接接している、
     高周波誘電加熱接着シート。
  11.  請求項1から請求項10のいずれか一項に記載の高周波誘電加熱接着シートにおいて、
     前記高周波誘電加熱接着シートが有するいずれの層も、JIS K5600-5-6:1999に準拠するクロスカット試験後に当該層と接する層から剥離せずに付着している格子数の割合が50%以上である、
     高周波誘電加熱接着シート。
PCT/JP2021/012956 2020-03-31 2021-03-26 高周波誘電加熱接着シート WO2021200684A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/915,042 US20230159795A1 (en) 2020-03-31 2021-03-26 High-frequency dielectric heating adhesive sheet
JP2022512129A JPWO2021200684A1 (ja) 2020-03-31 2021-03-26
CN202180026523.1A CN115380090A (zh) 2020-03-31 2021-03-26 高频介电加热粘接片
EP21782219.6A EP4129663A4 (en) 2020-03-31 2021-03-26 DIELECTRIC HIGH FREQUENCY HEATING ADHESIVE FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020063518 2020-03-31
JP2020-063518 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200684A1 true WO2021200684A1 (ja) 2021-10-07

Family

ID=77928878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012956 WO2021200684A1 (ja) 2020-03-31 2021-03-26 高周波誘電加熱接着シート

Country Status (5)

Country Link
US (1) US20230159795A1 (ja)
EP (1) EP4129663A4 (ja)
JP (1) JPWO2021200684A1 (ja)
CN (1) CN115380090A (ja)
WO (1) WO2021200684A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200686A1 (ja) * 2020-03-31 2021-10-07

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029738B2 (ja) * 1971-08-06 1975-09-26
JPS58174474A (ja) 1982-04-07 1983-10-13 Mitsui Toatsu Chem Inc 熱接着剤
JPH08258173A (ja) * 1995-03-24 1996-10-08 Oji Yuka Synthetic Paper Co Ltd 筐 体
JPH08281873A (ja) * 1995-04-12 1996-10-29 Nitto Denzai Kk 板状複合材
JPH1017837A (ja) * 1996-06-28 1998-01-20 Ikeda Bussan Co Ltd 誘導加熱接着用シート
JP2009538971A (ja) * 2006-05-31 2009-11-12 ダウ グローバル テクノロジーズ インコーポレイティド 熱可塑性ポリマー系を選択的に加熱するためにマイクロ波エネルギーを使用するための添加剤
JP2011514852A (ja) * 2008-02-18 2011-05-12 ウーペーエム キュンメネ ウッド オサケ ユキチュア 二次成形可能な合板製品及びその製造方法
JP2014037489A (ja) * 2012-08-17 2014-02-27 Saitama Prefecture 接着剤及び樹脂接合方法
JP2017088764A (ja) * 2015-11-12 2017-05-25 東洋インキScホールディングス株式会社 電磁誘導加熱用ホットメルト接着シート、それを用いた接着構造物、及び接着構造物の製造方法
WO2018186297A1 (ja) * 2017-04-03 2018-10-11 リンテック株式会社 高周波誘電加熱接着シート、及び高周波誘電加熱接着シートを用いてなる接着方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043674B2 (en) * 2001-02-22 2011-10-25 Exxonmobil Oil Corporation Sealable packaging structures and applications related thereto
WO2007105602A1 (ja) * 2006-03-10 2007-09-20 Mitsubishi Plastics, Inc. ホットメルト接着シート、ディスプレー材、および、積層体の製造方法
EP3075772B1 (de) * 2015-04-02 2020-08-26 tesa SE Wiederablösbarer haftklebestreifen
US20190352546A1 (en) * 2017-02-09 2019-11-21 Lintec Corporation Dielectric heating adhesive film and adhesion method using dielectric heating adhesive film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029738B2 (ja) * 1971-08-06 1975-09-26
JPS58174474A (ja) 1982-04-07 1983-10-13 Mitsui Toatsu Chem Inc 熱接着剤
JPH08258173A (ja) * 1995-03-24 1996-10-08 Oji Yuka Synthetic Paper Co Ltd 筐 体
JPH08281873A (ja) * 1995-04-12 1996-10-29 Nitto Denzai Kk 板状複合材
JPH1017837A (ja) * 1996-06-28 1998-01-20 Ikeda Bussan Co Ltd 誘導加熱接着用シート
JP2009538971A (ja) * 2006-05-31 2009-11-12 ダウ グローバル テクノロジーズ インコーポレイティド 熱可塑性ポリマー系を選択的に加熱するためにマイクロ波エネルギーを使用するための添加剤
JP2011514852A (ja) * 2008-02-18 2011-05-12 ウーペーエム キュンメネ ウッド オサケ ユキチュア 二次成形可能な合板製品及びその製造方法
JP2014037489A (ja) * 2012-08-17 2014-02-27 Saitama Prefecture 接着剤及び樹脂接合方法
JP2017088764A (ja) * 2015-11-12 2017-05-25 東洋インキScホールディングス株式会社 電磁誘導加熱用ホットメルト接着シート、それを用いた接着構造物、及び接着構造物の製造方法
WO2018186297A1 (ja) * 2017-04-03 2018-10-11 リンテック株式会社 高周波誘電加熱接着シート、及び高周波誘電加熱接着シートを用いてなる接着方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129663A4

Also Published As

Publication number Publication date
US20230159795A1 (en) 2023-05-25
CN115380090A (zh) 2022-11-22
EP4129663A4 (en) 2024-04-10
EP4129663A1 (en) 2023-02-08
JPWO2021200684A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2018147352A1 (ja) 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いた接着方法
JP6648300B2 (ja) 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いた接着方法
WO2021200686A1 (ja) 高周波誘電加熱接着シート
WO2021200684A1 (ja) 高周波誘電加熱接着シート
JP2020070365A (ja) 高周波誘電加熱接着シート及び断熱構造体
WO2021200685A1 (ja) 高周波誘電加熱接着シート
WO2021200687A1 (ja) 高周波誘電加熱接着シートを用いた接着方法
WO2022118826A1 (ja) 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2022118825A1 (ja) 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
JP7312539B2 (ja) 高周波誘電加熱接着シート
WO2022004604A1 (ja) 高周波誘電加熱接着シート
WO2022004606A1 (ja) 高周波誘電加熱用接着剤
WO2021201173A1 (ja) 高周波誘電加熱用接着剤、構造体及び構造体の製造方法
WO2023013651A1 (ja) 接合方法
CN116547145A (zh) 高频介电加热用粘接剂、结构体及结构体的制造方法
JP6961858B1 (ja) 高周波誘電加熱接着シート、高周波誘電加熱接着シートの使用方法及び高周波誘電加熱接着シートを用いた接着方法
JP2022045334A (ja) 接着方法
WO2022004605A1 (ja) 高周波誘電加熱接着シート、接合方法及び接合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021782219

Country of ref document: EP

Effective date: 20221031