WO2013105340A1 - 炭素繊維強化ポリプロピレンシートおよびその成形品 - Google Patents

炭素繊維強化ポリプロピレンシートおよびその成形品 Download PDF

Info

Publication number
WO2013105340A1
WO2013105340A1 PCT/JP2012/079731 JP2012079731W WO2013105340A1 WO 2013105340 A1 WO2013105340 A1 WO 2013105340A1 JP 2012079731 W JP2012079731 W JP 2012079731W WO 2013105340 A1 WO2013105340 A1 WO 2013105340A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
mass
polypropylene sheet
reinforced polypropylene
carbon
Prior art date
Application number
PCT/JP2012/079731
Other languages
English (en)
French (fr)
Inventor
村松秀隆
平野啓之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP12865486.0A priority Critical patent/EP2803693B1/en
Priority to KR1020147018358A priority patent/KR101925822B1/ko
Priority to ES12865486T priority patent/ES2781831T3/es
Priority to CN201280066385.0A priority patent/CN104039873B/zh
Priority to US14/371,247 priority patent/US9475920B2/en
Publication of WO2013105340A1 publication Critical patent/WO2013105340A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • the present invention relates to a carbon fiber reinforced polypropylene sheet and a molded product thereof.
  • Carbon fiber reinforced plastic CFRP: Carbon Fiber Reinforced Plastic
  • CFRP Carbon Fiber Reinforced Plastic
  • thermosetting resins such as epoxy resins have been mainly used for CFRP due to demands for high mechanical properties.
  • CFRP using a thermoplastic resin having a fast processing cycle and excellent productivity has been actively researched.
  • CFRP (hereinafter referred to as thermoplastic CFRP) using polypropylene as a matrix resin, which is lightweight and inexpensive and excellent in water resistance and chemical resistance, is expected to be widely applied to industrial applications.
  • Thermoplastic CFRP generally takes the form of a compound pellet for injection molding or the shape of a sheet for stamping molding.
  • a thermoplastic CFRP sheet using discontinuous fibers is excellent in productivity and formability, and is a material form that attracts attention mainly in industrial applications.
  • Patent Document 1 discloses a sheet material in which a sheet made of discontinuous reinforcing fibers having a specific fiber length distribution is impregnated with a thermoplastic resin.
  • Patent Document 2 discloses a sheet-like material obtained by impregnating a randomly oriented chopped strand with a thermoplastic resin. Molded articles using the thermoplastic CFRP sheet shown in these documents exhibit excellent mechanical properties.
  • Patent Document 3 discloses a material for press molding that enhances the adhesion between discontinuous carbon fibers and a thermoplastic resin and achieves both mechanical properties and impact resistance.
  • JP 2010-235777 A International Publication No. 2007/020910 JP 2008-169344 A JP 2010-150358 A Japanese Patent Laid-Open No. 2002-3616
  • thermoplastic CFRP sheet described in Patent Document 1 or Patent Document 2 shows brittle fracture behavior, and improvement in impact resistance is desired.
  • Patent Document 3 The material for press molding described in Patent Document 3 is not sufficient in impact resistance.
  • An object of the present invention is to provide a discontinuous carbon fiber reinforced polypropylene sheet excellent in balance between excellent impact resistance and mechanical properties. Specifically, an object of the present invention is to provide a discontinuous carbon fiber reinforced polypropylene sheet having high mechanical properties and high impact resistance, and a molded product thereof.
  • the carbon fiber reinforced polypropylene sheet of the present invention has the following configuration. That is, A carbon fiber reinforced polypropylene sheet comprising carbon fibers having a mass average fiber length of 1.5 mm to 20 mm and a matrix resin made of polypropylene and acid-modified polypropylene, wherein the carbon fibers are dispersed in a single fiber form, and the carbon fibers And a carbon fiber reinforced polypropylene sheet in which the interfacial shear strength of the matrix resin is 5.50 to 10.5 MPa.
  • the molded product of the present invention has the following configuration. That is, A molded product obtained by molding the carbon fiber reinforced polypropylene sheet.
  • the carbon fiber reinforced polypropylene sheet of the present invention preferably contains 0.1 to 5% by mass of acid-modified polypropylene in the matrix resin.
  • carbon fibers having a fiber length of more than 5 mm are 20% by mass or more and 75% by mass or less, and carbon fibers having a fiber length of less than 2 mm are 1. It is preferable that it is 0 mass% or more and 25 mass% or less.
  • the carbon fiber having a fiber length of more than 5 mm is 50% by mass or more and 70% by mass or less, and the carbon fiber having a fiber length of less than 2 mm is 1. It is preferable that it is 0 mass% or more and 10 mass% or less.
  • the maximum value of the relative frequency in increments of 30 ° defined in this specification is 0.25 or less, and the minimum value of the relative frequency Is preferably 0.090 or more.
  • the carbon fiber reinforced polypropylene sheet of the present invention preferably has a carbon fiber volume content of 10 to 40%.
  • the molded product of the present invention preferably has a void ratio of 3% or less as defined herein in the molded product.
  • the carbon fiber reinforced polypropylene sheet of the present invention has high mechanical properties because the fiber length of the carbon fiber and the adhesion between the carbon fiber and the polypropylene interface are in a specific range, so that the energy absorption associated with the pulling out of the fiber increases. Although it shows, it has the characteristic which was not known conventionally that it shows very excellent impact resistance.
  • a molded article using the carbon fiber reinforced polypropylene sheet is suitably used for a housing of an electric / electronic device or a shock absorbing member of an automobile.
  • the carbon fiber reinforced polypropylene sheet of the present invention is a carbon fiber reinforced polypropylene sheet composed of carbon fibers having a mass average fiber length of 1.5 mm to 20 mm, polypropylene and acid-modified polypropylene, and the carbon fibers are dispersed in a single fiber form.
  • the interfacial shear strength between the carbon fiber and the matrix resin is 5.50 to 10.5 MPa.
  • Patent Documents 3, 4, 5, and Non-Patent Documents a technique for improving mechanical properties and impact resistance by improving adhesion between carbon fibers and a matrix resin has been common (Patent Documents 3, 4, 5, and Non-Patent Documents). 1).
  • the discontinuous fiber having a certain fiber length by providing a specific range of interfacial adhesion, the energy absorption accompanying the pulling out of the fiber is increased, and the mechanical properties are very excellent while exhibiting high mechanical properties. It has been clarified by the present inventors to exhibit impact resistance performance.
  • the fiber length is too long, not only the shapeability to a complicated shape is lowered, but also the mechanical properties are lowered due to the bending or entanglement of the fiber.
  • the present invention was conceived by finding that a carbon fiber reinforced polypropylene sheet having a specified fiber length and interfacial shear strength has both mechanical properties and impact resistance while maintaining high formability. is there.
  • the mechanical properties described in the present invention refer to physical properties of materials obtained from static mechanical tests such as elastic modulus, strength, and fracture strain, and are distinguished from impact resistance obtained from dynamic mechanical tests. Is done.
  • the carbon fiber reinforced polypropylene sheet of the present invention needs to have a mass average fiber length of 1.5 mm or more and 20 mm or less.
  • the mass average fiber length represents the fiber length in mass average when the mass of the carbon fiber is 100%.
  • a mass average fiber length can represent the average of the fiber length of the carbon fiber contained in a carbon fiber reinforced polypropylene sheet.
  • the mass average fiber length of the carbon fiber is less than 1.5 mm, the reinforcing effect of the carbon fiber is low, sufficient mechanical properties cannot be obtained, and the impact resistance is reduced because the area of the interface between the carbon fiber and the matrix resin is small. To do.
  • the mass average fiber length exceeds 20 mm, the thickness expansion is increased in the laminating process or the molding process, and the handleability is impaired. Further, since the dispersibility of the carbon fiber is low, it becomes a bundle and the molded product contains voids. In addition, the mechanical properties and impact resistance of the molded product may deteriorate due to factors such as fiber bending or entanglement.
  • the carbon fiber having a fiber length of more than 5 mm is 20% by mass to 75% by mass, and the carbon fiber having a fiber length of less than 2 mm is 1.0% by mass. It is preferable that it is 25 mass% or less.
  • a sheet having an excellent balance between mechanical properties and impact resistance can be obtained.
  • it is 75 mass% or less the expansion
  • the carbon fiber having a fiber length of less than 2 mm is contained in an amount of 1.0% by mass or more, the fluidity at the time of shaping is improved. Moreover, if it is 25 mass% or less, it will be excellent in the balance of a mechanical characteristic and impact resistance.
  • the mass ratio of the carbon fiber here represents the ratio of the fiber length in mass average when the carbon fiber is 100%.
  • the carbon fiber preferably having a fiber length of more than 5 mm is 50% by mass to 70% by mass, and the carbon fiber having a fiber length of less than 2 mm is 1.0% by mass. It is 10 mass% or less. When the fiber length distribution falls within this range, the mechanical properties and impact resistance are superior.
  • the method for measuring the fiber length of the carbon fiber is not particularly limited.
  • the method of measuring the fiber length of the carbon fiber polypropylene sheet by observing the surface of the carbon fiber polypropylene sheet or the matrix resin of the carbon fiber polypropylene sheet is dissolved.
  • There is a method (dissolution method) in which the remaining carbon fiber is filtered and measured by microscopic observation.
  • a method (burn-off method) in which only the matrix resin is burned off in a temperature range in which the carbon fibers are not oxidatively reduced, and the carbon fibers are separated and measured by microscopic observation.
  • Measurement can be made by randomly selecting 400 carbon fibers, measuring the length of the carbon fibers up to 1 ⁇ m with an optical microscope, and measuring the fiber length and its ratio.
  • the cut length is appropriately selected in consideration of the mass average fiber length of the carbon fiber polypropylene sheet.
  • the cutting method include a method using a cartridge cutter and a method using a guillotine cutter, but are not particularly limited, and are appropriately selected in consideration of a dimensional system, workability, productivity, and the like.
  • the carbon fibers in the carbon fiber reinforced polypropylene sheet of the present invention are dispersed in a single fiber form.
  • a plurality of adjacent carbon fiber single yarns are not parallel to or in contact with each other in the length direction.
  • a plurality of adjacent carbon fiber single yarns are parallel to and in contact with each other, they are bundled.
  • the area of the carbon fiber / matrix resin interface decreases, resulting in a decrease in mechanical properties and impact resistance. Further, the impregnation efficiency of the matrix resin is reduced, voids are generated, and the mechanical properties are deteriorated.
  • the carbon fiber dispersion state is substantially evaluated by the fiber dispersion rate.
  • the fiber dispersion rate refers to a two-dimensional contact angle formed between the carbon fiber monofilament (a) and the carbon fiber monofilament (b) in contact with the carbon fiber monofilament (a) from 0 ° to 90 °. It is the number ratio of the carbon fiber monofilament (b) that is 1 ° or more when measured on the acute angle side.
  • being dispersed in the form of a single fiber means that the fiber dispersion ratio is 90% or more.
  • the fiber dispersion rate is 96% or more.
  • the two-dimensional contact angle of the carbon fiber used for obtaining the fiber dispersion rate is calculated by the following method. 100 carbon fiber single fibers (a) are selected at random, and the two-dimensional contact angle is measured for all the carbon fiber single fibers (b) in contact with the carbon fiber single fibers (a). The ratio of the carbon fiber monofilament (b) having a contact angle of less than 1 ° from the total number of carbon fiber monofilaments (b) measured at an acute angle from 0 ° to 90 ° and measuring the two-dimensional contact angle. Is calculated.
  • the part for measuring the two-dimensional contact angle of carbon fiber there are no particular restrictions on the part for measuring the two-dimensional contact angle of carbon fiber, but avoid the end of the molded product, use the part where the thickness of the boss, rib, and molded product does not change as much as possible near the center. Is preferably measured.
  • the method of observing carbon fiber from the surface of a carbon fiber polypropylene sheet can be illustrated.
  • the method of observing the orientation of carbon fiber using transmitted light to a carbon fiber reinforced polypropylene sheet can be exemplified. In this case, it is preferable to slice the carbon fiber reinforced polypropylene sheet thinly because it becomes easier to observe the carbon fibers.
  • a method of photographing a carbon fiber orientation image by observing a carbon fiber reinforced polypropylene sheet through X-ray CT transmission can be exemplified.
  • carbon fibers with high X-ray permeability it is easier to observe carbon fibers by mixing tracer fibers with carbon fibers or applying tracer chemicals to carbon fibers. preferable.
  • the method of dispersing the carbon fibers into a single fiber includes a method of obtaining a non-woven carbon fiber substrate by a papermaking method such as dry or wet, or a dry spraying method.
  • organic fibers, organic compounds and inorganic compounds are mixed in this carbon fiber base material, carbon fibers are bound together with other components, or carbon fibers are bonded to matrix resin components. Also good.
  • the dry method includes a method of providing a fiber opening bar, a method of vibrating the fiber opening bar, a method of finer card eyes, and a method of adjusting the rotation speed of the card. It can be illustrated.
  • the wet method include a method of increasing the rotational speed of the stirrer when dispersing the carbon fiber, a method of reducing the amount of carbon fiber charged at a time, and a method of suppressing eddy current when transferring the dispersion.
  • position planarly the method of using static electricity, the method of using the rectified air, the method of adjusting the taking-up speed of a conveyor, etc.
  • Examples of the wet method include a method for preventing reaggregation of carbon fibers dispersed by ultrasonic waves, a method for adjusting a filtration rate, and the like. These methods are not particularly limited, and can also be achieved by controlling other production conditions while confirming the state of the carbon fiber substrate.
  • the maximum value of the relative frequency in increments of 30 ° in the two-dimensional orientation angle frequency distribution of the carbon fiber is 0.25 or less, and the orientation angle frequency distribution
  • the minimum value of the relative frequency in steps of 30 ° is preferably 0.090 or more.
  • the relative frequency in increments of 30 ° in the two-dimensional orientation angle frequency distribution of the carbon fiber is an index representing the two-dimensional orientation angle distribution of the carbon fiber on the surface of the molded product.
  • the maximum value and the minimum value of the relative frequency in increments of 30 ° in the two-dimensional orientation angle frequency distribution of the carbon fiber are calculated by the following method. Randomly select 400 carbon fibers, arbitrarily set one reference straight line as an angle reference, and an angle formed by the orientation direction of the selected carbon fiber with respect to the reference straight line (hereinafter abbreviated as two-dimensional orientation angle ⁇ i). )).
  • the two-dimensional orientation angle ⁇ i is an angle of 0 ° or more and less than 180 ° obtained by measuring an angle in a counterclockwise direction with respect to the reference straight line.
  • a two-dimensional orientation angle relative frequency distribution of the carbon fiber in increments of 30 ° is created, and the maximum value and the minimum value of the carbon fiber are expressed as the maximum value and the minimum value.
  • the maximum value and the minimum value of the relative frequency in increments of 30 ° in the two-dimensional orientation angle frequency distribution were used.
  • the maximum value and the minimum value of the relative frequency in increments of 30 ° in the two-dimensional orientation angle frequency distribution of the carbon fiber are almost unchanged. Further, there is no particular limitation on the portion for measuring the maximum and minimum relative frequencies in increments of 30 ° in the two-dimensional orientation angle frequency distribution of the carbon fiber, but avoid the end of the molded product, and as much as possible near the center, the boss, It is preferable to measure using the rib and the portion where the thickness of the molded product does not change. When the maximum value and the minimum value of the relative frequency in increments of 30 ° in the two-dimensional orientation angle frequency distribution of the carbon fiber is 0.17, it means that the carbon fibers of the carbon fiber reinforced polypropylene sheet are completely arranged randomly. .
  • the method of measuring the two-dimensional orientation angle from the carbon fiber polypropylene sheet include a method of observing the orientation of the carbon fiber from the surface of the carbon fiber polypropylene sheet. In this case, it is preferable to expose the fiber by polishing the surface of the carbon fiber reinforced polypropylene sheet because the carbon fiber can be more easily observed. Moreover, the method of observing the orientation of carbon fiber using transmitted light to a carbon fiber reinforced polypropylene sheet can be exemplified. In this case, it is preferable to slice the carbon fiber reinforced polypropylene sheet thinly because it becomes easier to observe the carbon fibers.
  • a method of photographing a carbon fiber orientation image by observing a carbon fiber reinforced polypropylene sheet through X-ray CT transmission can be exemplified.
  • carbon fibers with high X-ray permeability it is easier to observe carbon fibers by mixing tracer fibers with carbon fibers or applying tracer chemicals to carbon fibers. preferable.
  • a method of observing the orientation of the carbon fiber after removing the matrix resin so as not to destroy the structure of the carbon fiber can be exemplified.
  • a carbon fiber reinforced polypropylene sheet is sandwiched between two stainless steel meshes, fixed with screws so that the carbon fiber reinforced polypropylene sheet does not move, and then the matrix resin component is burned off.
  • it can measure by observing with an electron microscope.
  • the carbon fiber used in the present invention can be made from polyacrylonitrile (hereinafter referred to as PAN) -based fiber, pitch, rayon, etc., but carbon fiber manufactured from PAN-based fiber mainly composed of acrylonitrile, so-called PAN-based carbon fibers have excellent industrial productivity and excellent mechanical properties.
  • PAN-based fibers a monomer component that promotes a flameproofing reaction is usually copolymerized. Examples of the monomer component include itaconic acid, acrylic acid, methacrylic acid and their methyl esters, ethyl esters, propyl esters, and alkali metal salts.
  • the spinning method it is preferable to apply a wet spinning method or a dry wet spinning method.
  • the PAN-based carbon fiber includes a flameproofing step in which a PAN-based fiber obtained by polymerizing acrylonitrile as a main component is heated in an air atmosphere at 200 to 400 ° C. to convert it to an oxidized fiber, and nitrogen, helium, argon, etc. It is obtained by passing through a carbonization step of carbonizing by heating at a higher temperature in an inert atmosphere (the flameproofing step and the carbonization step may be collectively referred to as a firing step). In the present invention, it is preferable to employ 1,200 to 2,200 ° C. as the carbonization temperature.
  • the carbon fiber used in the present invention is one to which at least one sizing agent selected from the group consisting of urethane resin, acrylic resin, epoxy resin, polyamide resin and surfactant is attached. May be. As described above, by attaching the sizing agent to the carbon fiber, the carbon fiber bundle can be handled easily, and in particular, fluffing at the time of cutting the bundle can be suppressed.
  • the sizing agent When the sizing agent is applied to the carbon fiber, the sizing agent may be immersed in a solution obtained by dissolving the sizing agent in the solvent or a dispersion liquid dispersed in the dispersion medium, so-called sizing liquid, and then dried.
  • a solution obtained by dissolving the sizing agent in the solvent or a dispersion liquid dispersed in the dispersion medium so-called sizing liquid
  • the amount of the sizing agent attached to the carbon fiber is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass with respect to the carbon fiber. By being within this range, a carbon fiber bundle excellent in the balance between the processability at the time of cutting and the drapeability of the fiber bundle can be obtained.
  • metal fibers such as aluminum, brass and stainless steel, inorganic fibers made of glass fiber, silicon carbide, silicon nitride, etc., aramid, PBO, polyphenylene sulfide, polyester
  • the above-described carbon fiber may be used in combination with an organic fiber made of acrylic, nylon, polyethylene, or the like.
  • the adhesion between the carbon fiber and the matrix resin is represented by interfacial shear strength (hereinafter referred to as IFSS), and IFSS shows a high value when the adhesion is high.
  • IFSS interfacial shear strength
  • IFSS is less than 5.50 MPa, the mechanical properties are insufficient.
  • IFSS exceeds 10.5 MPa, brittle fracture behavior is exhibited, and impact resistance is insufficient.
  • Non-Patent Document 2 was referred to.
  • a single 20 cm long single fiber is taken out from the carbon fiber bundle.
  • two polypropylene films having a thickness of 150 ⁇ m are produced with a size of 20 ⁇ 20 cm square, and the taken out single fibers are linearly arranged on the first polypropylene film.
  • Another polypropylene film is placed so as to sandwich the single fiber, and press-pressed at a pressure of 0.5 MPa at 200 ° C. for 3 minutes to produce a sample in which the single fiber is embedded in polypropylene.
  • test piece having a thickness of 0.2 mm, a width of 10 mm, and a length of 70 mm in which short fibers are buried in the center.
  • Ten pieces of test pieces are produced in the same manner as described above.
  • the test piece is set to a test length of 25 mm using a normal tensile test jig, and a tensile test is performed at a strain rate of 0.5 mm / min.
  • a tensile test is performed at a strain rate of 0.5 mm / min.
  • the length of all the pieces of the single fiber is measured with a transmission microscope and averaged to obtain an average break fiber length l.
  • IFSS ( ⁇ ) is obtained from the following equation.
  • L the above average breaking fiber length (unit: ⁇ m)
  • ⁇ ⁇ f tensile strength of single fiber (unit: MPa)
  • D Diameter of carbon fiber single fiber (unit: ⁇ m) ⁇ f is determined by the following method assuming that the tensile strength distribution of the carbon fiber follows the Weibull distribution.
  • a relational expression between the sample length and the average tensile strength is obtained by the least square method from the average tensile strength obtained when the sample length is 5 mm, 25 mm, and 50 mm, respectively.
  • the average tensile strength at the sample length l c is calculated.
  • the matrix resin used for the carbon fiber reinforced polypropylene sheet of the present invention is made of polypropylene and acid-modified polypropylene.
  • the polypropylene is not particularly limited as long as it is a so-called unmodified polypropylene, and is not limited to homotype polypropylene, and block type polypropylene obtained by block copolymerization of polyethylene and other polyolefins with polypropylene is also used in the present invention.
  • the content of acid-modified polypropylene in the matrix resin is preferably 0.1% by mass or more and 5% by mass or less from the viewpoint of interfacial adhesion.
  • the acid-modified polypropylene content is 0.1% by mass or more, the mechanical properties are excellent. Further, when the content of the acid-modified polypropylene is 5% by mass or less, the brittle fracture behavior is not exhibited and the impact resistance is excellent.
  • the acid-modified polypropylene is not particularly limited, and examples thereof include acrylic acid-modified polypropylene and maleic anhydride-modified polypropylene.
  • acrylic acid-modified polypropylene examples include POLYBOND-1001, POLYBOND-1002 (manufactured by CROMPTON), and the like.
  • maleic anhydride-modified polypropylene examples include maleic anhydride-modified polypropylene QE510 (manufactured by Mitsui Chemicals).
  • the carbon fiber reinforced polypropylene sheet of the present invention preferably has a fiber volume content (V f ) of 10 to 40%, more preferably 20 to 30%.
  • V f fiber volume content
  • the carbon fiber reinforced polypropylene sheet of the present invention may further comprise mica, talc, kaolin, sericite, bentonite, zonotlite, sepiolite, smectite, montmorillonite, wollastonite, silica, calcium carbonate, glass beads, glass flakes.
  • Glass microballoon, clay, molybdenum disulfide, titanium oxide, zinc oxide, antimony oxide, calcium polyphosphate, graphite, barium sulfate, magnesium sulfate, zinc borate, calcium borate, aluminum borate whisker, potassium titanate whisker and Fillers such as polymer compounds, metal-based, metal oxide-based, conductivity imparting materials such as carbon black and graphite powder, halogenated flame retardants such as brominated resins, antimony trioxide and ammonium pentoxide Antimony flame retardants such as mon, phosphorus flame retardants such as ammonium polyphosphate, aromatic phosphate and red phosphorus, organic acid metal salt flames such as borate metal salts, carboxylic acid metal salts and aromatic sulfonimide metal salts Flame retardants, inorganic flame retardants such as zinc borate, zinc, zinc oxide and zirconium compounds, nitrogen flame retardants such as cyanuric acid, isocyanuric acid, melamine, melamine mel
  • the molded product is obtained by molding the carbon fiber reinforced polypropylene sheet of the present invention.
  • the void ratio of the molded product in the present invention is preferably 3% or less from the viewpoint of mechanical properties.
  • the void ratio of the molded product is measured by the following method. A part of the molded product is cut out, and the density ( ⁇ c ) of the molded product is measured in accordance with Method A (submersion method) described in 5 of JIS K 7112 (1999). Using the density ( ⁇ c ) of the molded product and the density ( ⁇ r ) of the matrix resin, the void ratio (V v ) of the molded product is obtained by the following equation.
  • V v (1 ⁇ c / ⁇ r ) ⁇ 100 (unit: volume%)
  • V v (1 ⁇ c / ⁇ r ) ⁇ 100 (unit: volume%)
  • press molding is preferred.
  • the type of press molding can be selected according to the molded product to be obtained.
  • press molding means that a molded product is formed by applying deformation such as bending, shearing, compression, etc. to a laminate of carbon fiber polypropylene sheets using a processing machine and a die, a tool, or other molding jigs and auxiliary materials.
  • deformation such as bending, shearing, compression, etc.
  • it is a method to obtain, as a shaping
  • molding form, drawing, deep drawing, a flange, a call gate, edge curling, stamping etc. are illustrated.
  • a press molding method among various existing press molding methods, an autoclave method often used for producing a molded product member such as a large aircraft, or a mold having a relatively simple process.
  • the pressing method is preferred, but from the viewpoint of energy consumption in equipment and molding process, simplification of jigs and auxiliary materials used, molding pressure, and flexibility of temperature, a metal mold is used. It is more preferable to use a die press method in which molding is performed.
  • a carbon fiber reinforced polypropylene sheet is placed in a mold in advance, pressed and heated together with mold clamping, and then the mold is cooled while cooling the mold.
  • a hot press method for cooling a sheet to obtain a molded product or a heating apparatus exemplified by a far-infrared heater, a heating plate, a high-temperature oven, a dielectric heating, etc., in which the carbon fiber reinforced polypropylene sheet is preliminarily higher than the melting temperature of the matrix resin.
  • the press molding method is not particularly limited, but stamping molding is preferred from the viewpoint of increasing the productivity by increasing the molding cycle.
  • the pressurizing force is preferably 1 MPa or more from the viewpoint of satisfactorily shaping the carbon fiber reinforced polypropylene sheet. More preferably, it is 3 MPa or more.
  • the pressurizing force is preferably 1 MPa or more from the viewpoint of satisfactorily shaping the carbon fiber reinforced polypropylene sheet. More preferably, it is 3 MPa or more.
  • the pressurizing force is preferably 1 MPa or more from the viewpoint of satisfactorily shaping the carbon fiber reinforced polypropylene sheet. More preferably, it is 3 MPa or more.
  • limiting in particular about the upper limit of applied pressure From a viewpoint of suppressing breakage of the carbon fiber at the time of shaping
  • the surface temperature of the mold is preferably set to be equal to or lower than the melting point or softening point of the matrix resin. From the viewpoint of expediting demolding and shortening the molding cycle, it is preferable to lower the mold temperature by 30 ° C. or more than the melting point or softening point of the matrix resin. More preferably, it is lowered by 50 ° C. or more.
  • Applications of the molded article of the present invention include, for example, personal computers, displays, OA equipment, mobile phones, portable information terminals, facsimile machines, compact discs, portable MDs, portable radio cassettes, PDAs (mobile information terminals such as electronic notebooks), Enclosures such as video cameras, digital video cameras, optical equipment, audio, air conditioners, lighting equipment, recreational goods, toy goods, and other household appliances, electrical and electronic equipment parts such as trays, chassis, interior parts, or cases, and props Civil engineering such as panels and reinforcements, parts for building materials, various members, various frames, various hinges, various arms, various axles, various wheel bearings, various beams, propeller shafts, wheels, gearboxes, suspensions, accelerators, Or steering parts, hoods, roofs, doors, fenders, Crust, side panel, rear end panel, upper back panel, front body, underbody, various pillars, various members, various frames, various beams, various supports, various rails, various hinges, etc.
  • Exterior parts such as bumper beams, moldings, under covers, engine covers, current plates, spoilers, cowl louvers, aero parts, interior parts such as instrument panels, seat frames, door trims, pillar trims, handles, various modules, or motor parts,
  • CNG Fuel system such as tank, gasoline tank, fuel pump, air intake, intake manifold, carburetor main body, carburetor spacer, various pipes, various valves, exhaust system, or intake Automobiles such as parts, motorcycle structural parts, etc., alternator terminal, alternator connector, IC regulator, potentiometer base for light weather, engine cooling water joint, thermostat base for air conditioner, heating hot air flow control valve, brush holder for radiator motor , Turbine vane, wiper motor related parts, distributor, starter switch, starter relay, window washer nozzle, air conditioner panel switch board, coil for fuel related electromagnetic valve, battery tray, AT bracket, headlamp support, pedal housing, protector, Horn terminal, step motor rotor, lamp socket, lamp reflector, lamp housing, brace Landing gear pods, winglets, spoil
  • Elevators failings, ribs, etc.
  • it is preferably used for electrical and electronic equipment casings, civil engineering, building material panels, automotive structural parts, and aircraft parts.
  • structural parts for automobiles and motorcycles from the viewpoints of mechanical properties and impact resistance.
  • Carbon fiber (A)] A-1 PAN-based carbon fiber
  • the carbon fiber bundle A-1 was produced as follows.
  • an acrylic fiber bundle having a single fiber fineness of 1.1 dtex and a filament number of 24,000 is obtained by a dry and wet spinning method. It was.
  • the obtained PAN-based fiber bundle was heated in air at a temperature of 240 to 280 ° C. at a draw ratio of 1.05 to convert to a flame-resistant fiber.
  • the rate of temperature increase was set to 200 ° C./min, and after 10% stretching in a temperature range of 300 to 900 ° C. in a nitrogen atmosphere, the temperature was increased to 1,300 ° C. and fired to obtain a carbon fiber bundle. It was.
  • This carbon fiber bundle is an aqueous solution containing sulfuric acid as an electrolyte, and is subjected to an electrolytic surface treatment of 3 coulombs per gram of carbon fiber, further provided with a sizing agent by an immersion method, and dried in heated air at a temperature of 120 ° C. A fiber bundle was obtained.
  • the physical properties of the carbon fiber bundle A-1 are shown below.
  • B-3 Maleic anhydride-modified polypropylene “Admer” (registered trademark) QE510, manufactured by Mitsui Chemicals, Inc. [Binder (C)]
  • C-1 Poly (ethylene glycol) bis (3-aminopropyl) terminated by Sigma Aldrich Japan Number average molecular weight 1,500 Total amine value 75mgKOH / g (Reference Example 1) The blending ratio was 100% by mass with respect to 100% by mass, so that maleic anhydride-modified polypropylene (B-2) was 0.1% by mass and unmodified polypropylene (B-1) was 99.9% by mass.
  • the matrix resin was obtained by melt-kneading under the following conditions.
  • a twin-screw extruder TEX.30 ⁇ type manufactured by Nippon Steel Co., Ltd. was used and kneaded by setting the barrel temperature to 220 ° C., the screw diameter to 30 mm, and the rotation speed to 150 rpm.
  • Reference Example 2 A predetermined amount of the matrix resin prepared in Reference Example 1 was placed on a stainless steel plate, and another stainless steel plate was stacked thereon, and a 0.10 mm spacer was placed between the plates.
  • the pressing temperature was 220 ° C.
  • the pressure was 1 MPa
  • the pressure was maintained for 5 minutes
  • the film was processed into a film having a thickness of 0.10 mm ⁇ 200 mm ⁇ 200 mm to obtain a resin sheet.
  • Reference Example 3 The same as in Reference Example 1, except that the blending ratio was set to 3% by mass of maleic anhydride-modified polypropylene (B-2) and 97% by mass of unmodified polypropylene (B-1) with respect to 100% by mass as a whole. And kneaded to obtain a matrix resin.
  • Reference Example 4 A resin sheet was obtained in the same manner as in Reference Example 2 except that the matrix resin prepared in Reference Example 3 was used.
  • Reference Example 5 The same as in Reference Example 1 except that the blending ratio was set to 5% by mass for maleic anhydride-modified polypropylene (B-2) and 95% by mass for unmodified polypropylene (B-1) with respect to 100% by mass as a whole.
  • the evaluation criteria obtained in each example are as follows. (1) Measurement of mass average fiber length (L w ) of carbon fibers contained in carbon fiber reinforced polypropylene sheet A part of a molded product is cut out, and after sufficiently dissolving the matrix resin with a solvent that dissolves the matrix resin, filtration or the like The carbon fiber was separated by a known operation. When there was no solvent for dissolving the matrix resin, a part of the molded product was cut out and heated at a temperature of 500 ° C. for 30 minutes to burn off the matrix resin and separate the carbon fibers. 400 pieces of separated carbon fibers are randomly extracted, and the length is measured to the 1 ⁇ m unit with an optical microscope or an operation electron microscope. The fiber length is obtained, and the mass average fiber length (L w ) is obtained by the following formula. It was.
  • the specimen for observation of the carbon fiber reinforced polypropylene sheet is observed with an optical microscope, 100 carbon fiber single fibers (a) are selected at random, and the carbon fiber single fibers (a) in contact with the carbon fiber single fibers (a) ( b) Measure the two-dimensional contact angle for all.
  • the proportion of carbon fiber single fibers having a two-dimensional contact angle of less than 1 ° from the total number of carbon fiber single fibers measured on the acute angle side from 0 ° to 90 ° and measuring the two-dimensional contact angle. was calculated.
  • P n / N ⁇ 100 (unit:%) -P: Fiber dispersion rate-n: Number of carbon fiber single fibers whose contact angle is less than 1 °-N: Total number of carbon fiber single fibers whose contact angle was measured Based on the fiber dispersion rate (P), the following criteria Judged. A and B are acceptable and C is unacceptable.
  • the fiber dispersion ratio is 96% or more
  • B The fiber dispersion ratio is 90% or more and less than 96%
  • C The fiber dispersion ratio is less than 90%
  • Evaluation of IFSS Non-patent document 2 was referred to for evaluation details.
  • One single fiber having a length of 20 cm was taken out from the carbon fiber bundle to which the (meth) acrylic polymer was adhered.
  • Two resin films prepared in the reference example were prepared, and the taken out single fibers were arranged linearly on the first resin film. Another resin film was placed so as to sandwich the single fiber, and pressed at 200 ° C. for 3 minutes at a pressure of 0.5 MPa to prepare a sample in which the single fiber was embedded in the resin.
  • test piece having a thickness of 0.2 mm, a width of 10 mm, and a length of 70 mm in which a single fiber was buried in the center.
  • Ten test pieces were produced in the same manner as described above.
  • the test piece was set to a test length of 25 mm using a normal tensile test jig, and a tensile test was performed at a strain rate of 0.5 mm / min.
  • a tensile test was performed at a strain rate of 0.5 mm / min.
  • L the above average breaking fiber length (unit: ⁇ m)
  • ⁇ ⁇ f tensile strength of single fiber (unit: MPa)
  • D Diameter of carbon fiber single fiber (unit: ⁇ m) ⁇ f was determined by the following method assuming that the tensile strength distribution of the carbon fiber follows the Weibull distribution.
  • the single fiber before adhesion of the (meth) acrylic polymer was used, and the tensile strength of the single fiber when the sample length was 5 mm, 25 mm, and 50 mm, respectively, was determined based on JIS R 7606.
  • the carbon fiber bundle was divided into approximately four equal parts, and 100 single fibers were sampled in order from the four bundles. At this time, the entire bundle was sampled as evenly as possible.
  • the sampled single fiber was fixed to a perforated mount using an adhesive. A mount on which a single fiber was fixed was attached to a tensile tester, and a tensile test was performed at a strain rate of 1 mm / min and a sample number of 100.
  • a relational expression between the sample length and the average tensile strength was obtained from the obtained average tensile strength by the least square method, and the average tensile strength at the sample length lc was calculated.
  • (4) Orientation angle distribution evaluation method A part of the carbon fiber reinforced polypropylene sheet was cut out, the cut specimen was embedded in an epoxy resin, and the surface of the carbon fiber reinforced polypropylene sheet was polished to a depth of 100 ⁇ m from the surface. An observation specimen is prepared.
  • the specimen for observation of the carbon fiber reinforced polypropylene sheet is observed with an optical microscope, and 400 carbon fibers are selected at random.
  • one reference straight line as an angle reference is arbitrarily set, and all angles formed by the orientation directions of the selected carbon fibers with respect to the reference straight line (hereinafter, abbreviated as an orientation angle ⁇ i ) are measured.
  • the orientation angle ⁇ i is an angle of 0 ° or more and less than 180 ° obtained by measuring an angle in a counterclockwise direction with respect to the reference straight line.
  • the relative frequency in increments of 30 ° of this orientation angle ⁇ i is obtained by the following equation.
  • the maximum value of the relative frequency of the orientation angle distribution of the carbon fiber reinforced polypropylene sheet or molded product was measured as an index of the random orientation of the fiber and evaluated according to the following criteria. A is the best, followed by B and C in that order.
  • the maximum relative frequency is 0.17 or more and less than 0.22.
  • the maximum relative frequency is 0.22 or more and less than 0.25.
  • the maximum relative frequency is 0.25 or more.
  • the minimum value of the relative frequency of the orientation angle distribution of the carbon fiber reinforced polypropylene sheet was measured and evaluated according to the following criteria. A is the best, followed by B and C in that order.
  • A The minimum value of the relative frequency is 0.12 or more and 0.17 or less.
  • the minimum value of relative frequency is 0.090 or more and less than 0.12.
  • the minimum relative frequency is less than 0.090.
  • (5) Measuring method of mass content of carbon fiber A test piece of 1 cm ⁇ 1 cm is cut out from a molded product and put into a quartz glass container. This container was vacuum-dried at a temperature of 60 ° C. for 24 hours, cooled to room temperature in a desiccator, and weighed the total mass W 1 (g) of the test piece and the quartz glass container and the mass W 0 (g) of the quartz glass container. To do. The test piece is put in a container, heated in air at a temperature of 500 ° C. for 30 minutes, burned off the matrix resin, cooled to room temperature in a nitrogen atmosphere, and the total mass W of the carbon fiber and the quartz glass container 2. Weigh (g).
  • the mass content (W f ) of the carbon fiber of the molded product is obtained by the following equation.
  • Vf Wf * (rho) c / (rho) f (unit: volume%)
  • V r (100 ⁇ W f ) ⁇ ⁇ c / ⁇ r (unit: volume%)
  • V v 100 ⁇ (V f + V r ) (unit: volume%)
  • ⁇ ⁇ c Density of molded product (unit: g / m 3 )
  • ⁇ f Carbon fiber density (unit: g / m 3 )
  • ⁇ r density of the matrix resin (unit: g / m 3 )
  • Wf Mass content of carbon fiber in the molded product (unit: mass%) Based on the void ratio (V v ) of the molded product, the determination was made according to the following criteria. A is the best, followed by B and C in that order.
  • Void ratio is less than 3%
  • B Void ratio is 3% or more and less than 10%
  • C Void ratio is 10% or more
  • bending test pieces each having a length of 80 ⁇ 1 mm and a width of 25 ⁇ 0.2 mm were set to 0 ° and + 45 ° when an arbitrary direction was set to 0 °. , -45 ° and 90 ° directions were cut out to produce test pieces.
  • Instron registered trademark
  • Instron registered trademark
  • a support span is set to 51.2 mm using a three-point bending test jig (indenter diameter 10 mm, fulcrum diameter 10 mm).
  • the bending strength was measured at a crosshead speed of 1.37 mm / min. The test was performed under the conditions that the moisture content of the test piece was 0.1% by mass or less, the ambient temperature was 23 ° C., and the humidity was 50% by mass.
  • Evaluation was made according to the following criteria based on the bending strength of the molded product.
  • Criteria were set according to the CF volume content.
  • A: Bending strength of 250 MPa or more B: Bending strength of 200 MPa or more and less than 250 MPa C: Bending strength of 150 MPa or more and less than 200 MPa D: Bending strength of 100 MPa or more and less than 150 MPa E: Bending strength of less than 100 MPa V f 20% based on bending strength The following criteria were determined, and D or lower was determined to be unacceptable.
  • A: Bending strength of 300 MPa or more B: Bending strength of 250 MPa or more and less than 300 MPa C: Bending strength of 200 MPa or more and less than 250 MPa D: Bending strength of 150 MPa or more and less than 200 MPa E: Bending strength of less than 150 MPa V f 30% based on bending strength The following criteria were determined, and D or lower was determined to be unacceptable.
  • A: Bending strength 350 MPa or more B: Bending strength 300 MPa or more and less than 350 MPa C: Bending strength 250 MPa or more and less than 300 MPa D: Bending strength 200 MPa or more and less than 250 MPa E: Bending strength 200 MPa or less V f 40% based on the bending strength of a molded product The following criteria were determined, and D or lower was determined to be unacceptable.
  • Bending strength 350 MPa or more B: Bending strength 300 MPa or more and less than 350 MPa
  • C Bending strength 250 MPa or more and less than 300 MPa
  • D Bending strength 200 MPa or more and less than 250 MPa
  • E Bending strength 200 MPa or less
  • Bending strength variation coefficient determination Bending strength ( ⁇ b ) And its standard deviation (s b ), the coefficient of variation (CV b ) in bending strength is obtained by the following equation.
  • CV b s b / ⁇ b ⁇ 100 (unit:%) Based on the bending strength coefficient of variation (CV b ), the following criteria were used. A is the best, followed by B and C in that order.
  • the length 62 ⁇ 1 mm, the width 12.7 ⁇ 0.15 mm, the notch angles 22.5 ° ⁇ 0.5 °, and 0.25 ⁇ 0.05 R were cut out in four directions of 0 °, + 45 °, ⁇ 45 °, and 90 ° when an arbitrary direction was set to 0 °, to prepare test pieces.
  • the test was performed under the conditions that the moisture content of the test piece was 0.1% by mass or less, the ambient temperature was 23 ° C., and the humidity was 50% by mass.
  • Criteria were set according to the CF volume content.
  • Izod impact strength (with notch) 400 J / m or more B: Izod impact strength (with notch) 300 J / m or more and less than 400 J / m C: Izod impact strength (with notch) 200 J / m or more and less than 300 J / m D: Izod Impact strength (with notch) 100 J / m or more and less than 200 J / m E: Izod impact strength (with notch) less than 100 J / m
  • V f 20% And D or less was rejected.
  • Izod impact strength (with notch) 400 J / m or more B: Izod impact strength (with notch) 300 J / m or more and less than 400 J / m
  • C Izod impact strength (with notch) 200 J / m or more and less than 300 J / m
  • E Izod impact strength (with notch) less than 100 J / m
  • the following criteria based on Izod impact strength (with notch) of a molded product with V f 30% And D or less was rejected.
  • Izod impact strength (with notch) 600 J / m or more B: Izod impact strength (with notch) 500 J / m or more and less than 600 J / m
  • C Izod impact strength (with notch) 400 J / m or more and less than 500 J / m
  • E Izod impact strength (with notch) less than 300 J / m
  • the following criteria based on Izod impact strength (with notch) of a molded product with V f 40% And D or less was rejected.
  • Izod impact strength (with notch) 600 J / m or more B: Izod impact strength (with notch) 500 J / m or more and less than 600 J / m
  • C Izod impact strength (with notch) 400 J / m or more and less than 500 J / m
  • E Izod impact strength (with notch) less than 300 J / m (11) Determination of coefficient of variation of Izod impact strength Izod impact strength (E) and its standard deviation (s e ), The coefficient of variation (CV i ) of Izod intensity is obtained by the following equation.
  • CV i s e / E ⁇ 100 (unit:%) Based on the coefficient of variation (CV i ) of Izod impact strength, the following criteria were used. A is the best, followed by B and C in that order.
  • Variation coefficient of Izod impact strength is less than 4%
  • Variation coefficient of Izod impact strength is 4% or more and less than 10%
  • Variation coefficient of Izod impact strength is 10% or more
  • the obtained carbon fiber reinforced polypropylene sheet was cut into 200 mm ⁇ 200 mm, and a laminate of 12 sheets was set in a flat plate mold for pressing (200 mm ⁇ 200 mm), and the pressing temperature was 220 ° C., the pressure was 5 MPa, After press molding with a press for a minute, the molded product was obtained by naturally cooling to a room temperature of 25 ° C. while being pressed with the press. At this time, the thickness of the molded product was adjusted to 3.2 mm by using a 3.2 mm spacer. The obtained molded product was cut into a predetermined size and subjected to evaluation.
  • Example 2 In Example 1, a carbon fiber reinforced polypropylene sheet and a molded article were obtained in the same manner as in Example 1 except that the resin sheet prepared in Reference Example 2 was used instead of the resin sheet prepared in Reference Example 4. And used for evaluation.
  • Example 3 In Example 1, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the resin sheet prepared in Reference Example 6 was used instead of the resin sheet prepared in Reference Example 4. And used for evaluation.
  • Example 4 A carbon fiber reinforced polypropylene sheet and a molded article were obtained in the same manner as in Example 1 except that the carbon fiber (A-1) was cut to a length of 5.5 mm instead of being cut to a length of 6 mm. And obtained for evaluation.
  • Example 5 In Example 1, instead of cutting the carbon fiber (A-1) to a length of 6 mm, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the carbon fiber (A-1) was cut to a length of 5 mm. Obtained and used for evaluation.
  • Example 6 In Example 1, instead of cutting the carbon fiber (A-1) to a length of 6 mm, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the carbon fiber (A-1) was cut to a length of 2 mm. Obtained and used for evaluation.
  • Example 7 In Example 1, instead of cutting the carbon fiber (A-1) to a length of 6 mm, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the carbon fiber (A-1) was cut to a length of 20 mm. Obtained and used for evaluation. (Example 8) In Example 1, a carbon fiber reinforced polypropylene sheet and a molded product were obtained and used for evaluation in the same manner as in Example 1 except that the resin sheet was adjusted so that the volume content of carbon fiber was 10%. did.
  • Example 9 In Example 1, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the resin sheet was adjusted to have a volume content of carbon fiber of 30%, and was used for evaluation. did. (Example 10) In Example 1, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the resin sheet was adjusted so that the volume content of carbon fiber was 40%, and was used for evaluation. did. (Example 11) In Example 1, the surfactant aqueous solution charged with the cut carbon fiber (A-1) was stirred for 10 minutes with a uniaxial stirrer, and then dehydrated as it was, so that the carbon fiber was concentrically oriented.
  • Example 12 In Example 1, a molded product was obtained in the same manner as in Example 1 except that the carbon fiber-reinforced polypropylene sheet was press-molded at a pressure of 0.8 MPa instead of being press-molded at a pressure of 5 MPa.
  • Example 13 In Example 1, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that 6 liters was used instead of 8 liters of the 0.1% by weight surfactant aqueous solution. It used for evaluation.
  • Example 14 In Example 1, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the resin sheet prepared in Reference Example 12 was used instead of the resin sheet prepared in Reference Example 4. And used for evaluation.
  • Example 15 A carbon fiber reinforced polypropylene sheet and a molded article were obtained in the same manner as in Example 2 except that instead of cutting the carbon fiber (A-1) to a length of 6 mm in Example 2, it was cut to a length of 5.5 mm. And obtained for evaluation.
  • Example 16 In Example 2, instead of using 8 liters of a 0.1% by weight surfactant aqueous solution, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 2 except that 6 liters were used. It used for evaluation.
  • Comparative Example 1 In Example 1, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the resin sheet prepared in Reference Example 7 was used instead of the resin sheet prepared in Reference Example 2. And used for evaluation.
  • Comparative Example 2 In Example 1, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the resin sheet prepared in Reference Example 9 was used instead of the resin sheet prepared in Reference Example 2.
  • Example 3 In Example 1, instead of cutting the carbon fiber (A-1) to a length of 6 mm, a carbon fiber reinforced polypropylene sheet and a molding were formed in the same manner as in Example 1 except that the carbon fiber (A-1) was cut to a length of 1.3 mm. A product was obtained for evaluation.
  • Comparative Example 4 In Example 1, instead of cutting the carbon fiber (A-1) to a length of 6 mm, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 1 except that the carbon fiber (A-1) was cut to a length of 30 mm. Obtained and used for evaluation.
  • Example 5 a carbon fiber reinforced polypropylene sheet and a molded article were obtained in the same manner as in Example 1 except that 5 liters was used instead of 8 liters of a 0.1% by weight surfactant aqueous solution. It used for evaluation.
  • Comparative Example 6 Into a cylindrical container having an inner diameter of 200 mm, 5 g of a surfactant (manufactured by Nacalai Tesque Co., Ltd., polyethylene glycol lauryl ether) was added, and tap water was poured into the cylindrical container to make a total of 5 liters. A surfactant aqueous solution was obtained.
  • a surfactant manufactured by Nacalai Tesque Co., Ltd., polyethylene glycol lauryl ether
  • the carbon fiber paper produced as described above was immersed for 1 minute in a liquid tank containing 50 cc of the emulsion of (C-1) prepared in advance to a 5 mass% solution.
  • the carbon fiber paper product was taken out from the liquid cake, dehydrated, and further dried at a temperature of 140 ° C. for 10 minutes. Further, the mass W 2 ′ (g) of the carbon fiber paper product at this time is measured, and the added amount W 3 ′ (g) of (C-1) is expressed by the formula (W 2 ′ ⁇ W 1 ′). Was 0.8 g.
  • a resin sheet prepared in Reference Example 10 one sheet each, and a total of two sandwiches were placed on a stainless steel tool plate. Then, pressing was performed at a pressing temperature of 220 ° C. and a pressure of 5 MPa for 5 minutes to obtain a carbon fiber reinforced polypropylene sheet. The resin sheet was adjusted so that the carbon fiber volume content was 30%. Moreover, the thickness of the sheet-like molding material was adjusted to 1.1 mm by using a 1.1 mm spacer.
  • the obtained carbon fiber reinforced polypropylene sheet was cut into 150 mm ⁇ 150 mm, and a laminate of three sheets was set in a flat plate mold for pressing (150 mm ⁇ 150 mm), and the pressing temperature was 220 ° C., the pressure was 5 MPa, After press molding with a press for a minute, the molded product was obtained by naturally cooling to a room temperature of 25 ° C. while being pressed with the press. At this time, the thickness of the molded product was adjusted to 3.2 mm by using a 3.2 mm spacer. The obtained molded product was cut into a predetermined size and subjected to evaluation.
  • Example 7 In Example 1, a carbon fiber reinforced polypropylene sheet and a molded article were obtained in the same manner as in Example 1 except that the resin sheet prepared in Reference Example 10 was used instead of the resin sheet prepared in Reference Example 4. And used for evaluation.
  • Example 8 In Example 7, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 7 except that the resin sheet prepared in Reference Example 10 was used instead of the resin sheet prepared in Reference Example 4. And used for evaluation.
  • Comparative Example 9 In Example 6, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 6 except that the resin sheet prepared in Reference Example 10 was used instead of the resin sheet prepared in Reference Example 4. And used for evaluation.
  • Example 10 In Example 2, instead of cutting the carbon fiber (A-1) to a length of 6 mm, a carbon fiber reinforced polypropylene sheet and a molding were formed in the same manner as in Example 2 except that the carbon fiber (A-1) was cut to a length of 1.3 mm. A product was obtained for evaluation.
  • Example 11 In Example 3, instead of cutting the carbon fiber (A-1) to a length of 6 mm, a carbon fiber reinforced polypropylene sheet and a molding were formed in the same manner as in Example 3 except that the carbon fiber (A-1) was cut to a length of 1.3 mm. A product was obtained for evaluation.
  • Example 12 In Example 2, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 2 except that 5 liters was used instead of using 8 liters of a 0.1% by weight surfactant aqueous solution. It used for evaluation.
  • Example 13 In Example 3, a carbon fiber reinforced polypropylene sheet and a molded product were obtained in the same manner as in Example 3 except that 5 liters was used instead of using 8 liters of a 0.1% by weight surfactant aqueous solution. It used for evaluation.
  • Examples 1, 2, 3, and 14 have an excellent balance between bending strength and Izod impact strength. Among them, Example 1 obtained a molded product excellent in the bending strength and Izod balance. In addition, Examples 2 and 14 were molded products having better Izod impact strength, and Example 3 was a molded product having better bending strength.
  • Example 1 is superior to Examples 4, 5, and 6 and Example 2 is more excellent in balance between bending strength and Izod impact strength than Example 15. This is because the mass distribution of the fiber length has a low mass ratio of less than 2 mm and a high mass ratio of 5 mm or more.
  • Example 1 is more excellent in the balance between bending strength and Izod impact strength than Example 7.
  • the mass ratio of the fiber length of less than 2 mm was particularly low, and the mass ratio of 5 mm or more was particularly high. Therefore, the volume expansion during overheating was large, and the void ratio in the molded product was large. As a result, the bending strength and Izod impact strength were reduced.
  • Examples 1, 8, 9, and 10 have an excellent balance between bending strength and Izod impact strength at any level regardless of V f .
  • V f is 10%
  • the absolute values of bending strength and Izod impact strength are low, and the application is limited.
  • the absolute values of the bending strength and Izod impact strength obtained with respect to the V f are low, and the application is limited.
  • Example 1 has a smaller coefficient of variation in bending strength and Izod impact strength than Example 11. This is because the relative frequency of the orientation angle of the carbon fiber is 0.90 or more and 0.25 or less. In Example 1, since the orientation angle of the carbon fibers was random, the bending strength and Izod strength were almost constant regardless of the position where the test piece was cut out from the molded product.
  • Example 1 has a better balance between bending strength and Izod impact strength than Example 12. This is because the void ratio in the molded product is low. Since there are few voids as starting points at the time of fracture, a molded product having high bending strength and Izod impact strength was obtained.
  • Example 1 is superior in balance between bending strength and Izod impact strength as compared with Example 13 and Comparative Example 5. This is due to the high fiber dispersion rate of the carbon fibers. Dispersion of carbon fibers in the form of single fibers in the molded product resulted in a wide interface area between the carbon fibers and polypropylene, and excellent Izod impact strength was obtained.
  • Example 2 is superior to Example 15 due to the balance between bending strength and Izod impact strength. This is because the mass distribution of the fiber length has a low mass ratio of less than 2 mm and a high mass ratio of 5 mm or more.
  • Example 2 is superior to Example 16 in terms of the balance between bending strength and Izod impact strength. This is due to the high fiber dispersion rate of the carbon fibers.
  • a molded product having a wide interface area between the carbon fiber and polypropylene and excellent Izod impact strength was obtained.
  • Examples 1, 2, 3, and 14 are superior in balance between bending strength and Izod impact strength as compared with Comparative Examples 1, 2, and 7. This is because IFSS is not too high and not too low and is an appropriate value.
  • Comparative Example 1 since the IFSS was as low as 5.20 MPa, a molded product having high impact resistance but extremely low bending strength was obtained. Since Comparative Example 2 had a high IFSS of 13.3 MPa and Comparative Example 7 had a high IFSS of 16.6 MPa, a molded article having high bending strength but low Izod impact strength was obtained.
  • Example 1 and Examples 4 to 7 are superior to Comparative Examples 3 and 4 in that the balance between bending strength and Izod impact strength is excellent.
  • This has a high bending strength and a high Izod impact strength by having a mass average fiber length in a range that does not impair the formability while maintaining the reinforcing effect by the carbon fiber.
  • Comparative Example 3 since the mass average fiber length of the carbon fibers was short, a sufficient reinforcing effect could not be obtained, and the bending strength and Izod impact strength were lowered.
  • the comparative example 4 had a long mass average fiber length, the volume expansion at the time of overheating was large and the void ratio in the molded product was large. As a result, the bending strength and Izod impact strength were reduced.
  • Example 1 has a better balance between bending strength and Izod impact strength than Comparative Example 6. This is because in Comparative Example 6, the carbon fibers in the molded product are bundled and IFSS is a high value of 16.6 MPa.
  • Example 7 has a better balance between bending strength and Izod impact strength than Comparative Example 8. Since Comparative Example 8 had a high IFSS of 16.6 MPa, a molded product having a high bending strength but a low Izod impact strength was obtained.
  • Example 6 is superior in balance between bending strength and Izod impact strength as compared with Comparative Example 9. Since Comparative Example 9 had a high IFSS of 16.6 MPa, a molded product having a high bending strength but a low Izod impact strength was obtained.
  • Examples 1, 2, 3, and 14 are superior in balance between bending strength and Izod impact strength as compared with Comparative Examples 3, 10, and 11. This is because the mass average fiber length is an appropriate value. Since Comparative Examples 3, 10, and 11 were as short as 1.10 mm, a sufficient fiber reinforcement effect was not obtained, and molded articles having low bending strength and Izod impact strength were obtained.
  • Example 2 is superior to Comparative Example 12 and Example 3 is superior to Comparative Example 13 in terms of a balance between bending strength and Izod impact strength. This is due to the high fiber dispersion rate of the carbon fibers. By dispersing the carbon fibers in the form of single fibers in the molded product, a molded product having a wide interface area between the carbon fiber and polypropylene and a low Izod impact strength was obtained.
  • the carbon fiber polypropylene sheet of the present invention is suitable for obtaining an excellent molded product having both strength and impact resistance. Furthermore, because the carbon fibers are oriented isotropically two-dimensionally, it has an excellent reinforcing effect in the plane direction, and since there are few variations in mechanical properties, molded products using this carbon fiber polypropylene sheet are used for electrical and electronic equipment, It can be applied to a wide range of industrial fields such as robots, motorcycles, automobiles, aircraft parts, parts and housings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 質量平均繊維長1.5mm~20mmの炭素繊維と、ポリプロピレンおよび酸変性ポリプロピレンからなるマトリックス樹脂とを含む炭素繊維強化ポリプロピレンシートであって、炭素繊維が単繊維状に分散しており、かつ炭素繊維とマトリックス樹脂の界面せん断強度が5.50~10.5MPaである炭素繊維強化ポリプロピレンシート。 不連続炭素繊維とポリプロピレンとの含む炭素繊維強化ポリプロピレンシートであって、複雑な形状を成形可能であり、力学特性が等方的であり、力学特性と耐衝撃性に優れた成形品を得るための炭素繊維強化ポリプロピレンシートを提供する。

Description

炭素繊維強化ポリプロピレンシートおよびその成形品
 本発明は、炭素繊維強化ポリプロピレンシートおよびその成形品に関する。
 炭素繊維強化プラスチック(以下、CFRP:Carbon Fiber Reinforced Plastic)は、軽量で優れた機械特性を有するため、ゴルフシャフト、釣竿、ラケット等のスポーツ材料や、航空機用途で高い実績を上げており、近年では、風車ブレード、圧力容器、建築補強材料などの産業分野でも適用が進んでいる。また、電気自動車の開発が活発化し、軽量化の要求が高まっている自動車用途では、特に注目を集めている。
 従来CFRPは、高い力学特性への要求からエポキシ樹脂等の熱硬化樹脂が主流であった。しかし、近年では加工サイクルが早く生産性に優れる熱可塑性樹脂を用いたCFRPも活発に研究されている。特に軽量かつ安価で、耐水性および耐薬品性にも優れるポリプロピレンをマトリックス樹脂に用いたCFRP(以下熱可塑CFRP)は、産業用途への幅広い適用が期待されている。
 熱可塑CFRPは、一般に射出成形用のコンパウンドペレット形状や、スタンピング成形用のシート形状などを取る。特に、不連続繊維を使用した熱可塑CFRPシートは、生産性および賦形性に優れ、産業用途を中心に注目される材料形態である。
 特許文献1では、特定の繊維長分布を有する不連続の強化繊維からなるシートに熱可塑性樹脂を含浸させたシート状材料が開示されている。また、特許文献2では、ランダム配向したチョップドストランドに熱可塑性樹脂を含浸させたシート状材料が開示されている。これら文献で示された熱可塑CFRPシートを用いた成形品は、優れた力学特性を示す。
 特許文献3では、不連続の炭素繊維と熱可塑性樹脂の接着性を高め、力学特性と耐衝撃性を両立させたプレス成形向け材料が開示されている。
特開2010-235779号公報 国際公開第2007/020910号 特開2008-169344号公報 特開2010-150358号公報 特開2002-3616号公報
Chiang W.Y. And Huang C.Y., Composites Polymer,4(1991),251. Drzal, L.T., Mater. Sci. Eng. A126(1990), 289
 特許文献1や特許文献2に記載された熱可塑CFRPシートを用いた成形品は、脆性的な破壊挙動を示し、耐衝撃性の向上が望まれている。
 特許文献3に記載されたプレス成形向け材料も、耐衝撃性は充分といえない。
 本発明の課題は、優れた耐衝撃性と力学特性のバランスに優れた不連続炭素繊維強化ポリプロピレンシートを提供することにある。具体的には、本発明の課題は、高い力学特性を有しながら、高い耐衝撃性を併せ持つ不連続炭素繊維強化ポリプロピレンシートおよびその成形品を提供することにある。
 上記課題を解決するために本発明の炭素繊維強化ポリプロピレンシートは次の構成を有する。すなわち、
 質量平均繊維長1.5mm~20mmの炭素繊維と、ポリプロピレンおよび酸変性ポリプロピレンからなるマトリックス樹脂とを含む炭素繊維強化ポリプロピレンシートであって、炭素繊維が単繊維状に分散しており、かつ炭素繊維とマトリックス樹脂の界面せん断強度が5.50~10.5MPaである炭素繊維強化ポリプロピレンシート、である。
 また、本発明の成形品は次の構成を有する。すなわち、
 上記炭素繊維強化ポリプロピレンシートを成形して得られる成形品、である。
 本発明の炭素繊維強化ポリプロピレンシートは、マトリックス樹脂中に、酸変性ポリプロピレンを0.1~5質量%を含むことが好ましい。
 本発明の炭素繊維強化ポリプロピレンシートは、炭素繊維強化ポリプロピレンシートに含まれる炭素繊維のうち、繊維長5mmを超える炭素繊維が20質量%以上75質量%以下、繊維長2mm未満の炭素繊維が1.0質量%以上25質量%以下であることが好ましい。
 本発明の炭素繊維強化ポリプロピレンシートは、炭素繊維強化ポリプロピレンシートに含まれる炭素繊維のうち、繊維長5mmを超える炭素繊維が50質量%以上70質量%以下、繊維長2mm未満の炭素繊維が1.0質量%以上10質量%以下であることが好ましい。
 本発明の炭素繊維強化ポリプロピレンシートは、前記炭素繊維の二次元配向角度度数分布において、本明細書中で定義される30°刻みの相対度数の最大値が0.25以下、相対度数の最小値が0.090以上であることが好ましい。
 本発明の炭素繊維強化ポリプロピレンシートは、炭素繊維の体積含有率が10~40%であることが好ましい。
 本発明の成形品は、成形品中の本明細書中で定義されるボイド率が3%以下であることが好ましい。
 本発明の炭素繊維強化ポリプロピレンシートは、炭素繊維の繊維長と、炭素繊維とポリプロピレン界面の接着性を特定の範囲とすることで、繊維の引き抜けに伴うエネルギー吸収が大きくなり、高い力学特性を示しながら、非常に優れた耐衝撃性を示すという従来知られていなかった特徴を有する。この炭素繊維強化ポリプロピレンシートを用いた成形品は、電気・電子機器の筐体または自動車の衝撃吸収部材に好適に用いられる。
 本発明の炭素繊維強化ポリプロピレンシートは、質量平均繊維長1.5mm~20mmの炭素繊維とポリプロピレンおよび酸変性ポリプロピレンからなる炭素繊維強化ポリプロピレンシートであって、炭素繊維が単繊維状に分散しており、かつ炭素繊維とマトリックス樹脂の界面せん断強度が5.50~10.5MPaである。これらの条件を満たすことで、力学特性と耐衝撃性の両方に優れる成形品のための炭素繊維強化プロピレンシートを創出した。
 不連続繊維で強化したCFRPでは、炭素繊維とマトリックス樹脂の接着を向上させることで、力学特性と耐衝撃性を向上させる技術が一般的であった(特許文献3、4、5、非特許文献1)。
 しかしながら、一定の繊維長を有する不連続繊維においては、特定の範囲の界面接着性を付与することで、繊維の引き抜けに伴うエネルギー吸収が大きくなり、高い力学特性を示しながら、非常に優れた耐衝撃性能を示すことが本発明者らによって明らかとなった。一方で、繊維長を長くしすぎると、複雑形状への賦形性が低下するばかりでなく、繊維の屈曲や絡まりにより力学特性も低下する。本発明は、繊維長および界面せん断強度が特定された炭素繊維強化ポリプロピレンシートが、高い賦形性を維持しながら、力学特性と耐衝撃性を両立することを見出すことにより、想達したものである。
 ここで本発明に記載の力学特性とは、弾性率や強度、破断ひずみなど静的な力学試験から得られる材料の物性値のことを指し、動的な力学試験から得られる耐衝撃性と区別される。
 以下、更に詳しく本発明の炭素繊維強化ポリプロピレンシートおよびその成形品について説明する。
 本発明の炭素繊維強化ポリプロピレンシートは、質量平均繊維長を1.5mm以上20mm以下とする必要がある。ここで、質量平均繊維長とは、炭素繊維の質量を100%としたときの、質量平均での繊維長を表す。これにより、質量平均繊維長は炭素繊維強化ポリプロピレンシートに含まれる炭素繊維の繊維長の平均を表すことができる。質量平均繊維長(L)は、次式で表される。
=Σ(L×W
・L:測定した繊維長(i=1,2,3,・・・400)(単位:mm)
・W:繊維長Lの炭素繊維の質量分率(i=1,2,3,・・・400)(単位:質量%)
 炭素繊維の質量平均繊維長が1.5mm未満では、炭素繊維の補強効果が低く、十分な力学特性が得られず、また、炭素繊維とマトリックス樹脂界面の面積が小さいため、耐衝撃性が低下する。質量平均繊維長が20mmを超える場合、積層工程ないし成形工程で厚み膨張が大きくなり取扱い性が損なわれる。さらに、炭素繊維の分散性が低いために束状となり、成形品にボイドを含む。また繊維が屈曲する、絡まるなどの要因により、成形品の力学特性および耐衝撃性が低下する場合がある。
 また、本発明の炭素繊維強化ポリプロピレンシートに含まれる炭素繊維のうち、繊維長5mmを超える炭素繊維が20質量%以上75質量%以下であり、繊維長2mm未満の炭素繊維が1.0質量%以上25質量%以下であることが好ましい。繊維長5mmを超える炭素繊維を20質量%以上含むことで、力学特性と耐衝撃性のバランスに優れたシートが得られる。また、75質量%以下であれば、厚み方向の膨張が抑えられ、生産性の向上とボイド低減が達成できる。繊維長が2mm未満の炭素繊維を1.0質量%以上含むと、賦形時の流動性が改善される。また、25質量%以下であれば、力学特性と耐衝撃性のバランスに優れる。ここでの炭素繊維の質量割合は、炭素繊維を100%としたときの、質量平均での繊維長の割合を表す。
 本発明の炭素繊維強化ポリプロピレンシートに含まれる炭素繊維のうち、好ましくは繊維長5mmを超える炭素繊維が50質量%以上70質量%以下であり、繊維長2mm未満の炭素繊維が1.0質量%以上10質量%以下である。繊維長分布がこの範囲となることで、力学特性と耐衝撃性により優れる。
 炭素繊維の繊維長の測定方法としては特に制限は無いが、例えば、炭素繊維ポリプロピレンシートの表面を顕微鏡観察し炭素繊維の繊維長を計測する方法や、または炭素繊維ポリプロピレンシートのマトリックス樹脂のみを溶解する溶剤を用いて溶解させ、残った炭素繊維を濾別して顕微鏡観察により測定する方法(溶解法)がある。マトリックス樹脂を溶解する溶剤がない場合には、炭素繊維が酸化減量しない温度範囲においてマトリックス樹脂のみを焼き飛ばし、炭素繊維を分別して顕微鏡観察により測定する方法(焼き飛ばし法)などがある。測定は炭素繊維を無作為に400本選び出し、その長さを1μm単位まで光学顕微鏡にて測定し、繊維長とその割合を測定することができる。
 また、本発明で用いられる炭素繊維をあらかじめカットして用いる場合、カット長は炭素繊維ポリプロピレンシートの質量平均繊維長を考慮し、適宜選択される。カット方法としては、カートリッジカッターを用いる方法やギロチンカッターを用いる方法などが挙げられるが、特に制限は無く、寸法制度、作業性、生産性などを考慮し、適宜選択される。
 本発明の炭素繊維強化ポリプロピレンシートにおける炭素繊維は、単繊維状に分散していることが重要である。単繊維状に分散している場合、近接する複数の炭素繊維単糸が、その長さ方向に互いに並行でないまたは接触していない状態を言う。近接する複数の炭素繊維単糸が、互いに並行でありかつ接触している場合、それらは束状である。束状の炭素繊維が多数存在する場合、炭素繊維とマトリックス樹脂界面の面積が減少することにより、力学特性および耐衝撃性が低下する。また、マトリックス樹脂の含浸効率が低下してボイドが発生し、力学特性が低下する。
 炭素繊維の分散状態については、実質的に繊維分散率で評価する。繊維分散率とは、炭素繊維単繊維(a)と該炭素繊維単繊維(a)と接触する炭素繊維単繊維(b)とで形成される二次元接触角度を、0°から90°までの鋭角側で計測した際に、1°以上である該炭素繊維単繊維(b)の数割合である。
 本発明において単繊維状に分散しているとは、この繊維分散率が90%以上であることを示す。単繊維状に分散していないと、すなわち、炭素繊維分散率が90%未満の場合、束状の炭素繊維が多数存在し、炭素繊維とマトリックス樹脂界面の面積が減少することにより、力学特性および耐衝撃性が低下する。また、マトリックス樹脂の含浸効率が低下してボイドが発生し、力学特性が低下する。より好ましい炭素繊維の分散状態としては、繊維分散率が96%以上である。
 ここで、繊維分散率を求めるのに用いる炭素繊維の二次元接触角度は、次の方法で算出する。無作為に100本の炭素繊維単繊維(a)を選び出し、該炭素繊維単繊維(a)と接触する炭素繊維単繊維(b)すべてについて、二次元接触角度を計測する。接触角度は0°から90°までの鋭角側で計測し、二次元接触角度を計測した炭素繊維単繊維(b)の総数から接触角度が1°未満である炭素繊維単繊維(b)の割合を算出する。
 また、炭素繊維の二次元接触角度を測定する部分としては、特に制限はないが、成形品端部を避け、できるだけ中央近辺で、さらにボス、リブ、および成形品の厚み変化がない部分を用いて測定することが好ましい。
 具体的に炭素繊維ポリプロピレンシートから炭素繊維の二次元接触角度を測定する方法に制限はないが、例えば、炭素繊維ポリプロピレンシートの表面から炭素繊維を観察する方法が例示できる。この場合炭素繊維強化ポリプロピレンシート表面を研磨して繊維を露出させると、より炭素繊維を観察しやすくなるため好ましい。また、炭素繊維強化ポリプロピレンシートに透過光を利用して炭素繊維の配向を観察する方法が例示できる。この場合炭素繊維強化ポリプロピレンシートを薄くスライスすると、より炭素繊維を観察しやすくなるため好ましい。さらに、炭素繊維強化ポリプロピレンシートをX線CT透過観察して炭素繊維の配向画像を撮影する方法も例示できる。X線透過性の高い炭素繊維の場合には、炭素繊維にトレーサ用の繊維を混合しておく、あるいは炭素繊維にトレーサ用の薬剤を塗布しておくと、より炭素繊維を観察しやすくなるため好ましい。
 炭素繊維を単繊維状に分散させる手法に特に制限は無く、例えば、乾式や湿式などの抄紙法や、乾式吹き付け法などで不織布状の炭素繊維基材を得る方法が挙げられる。また、この炭素繊維基材に、有機繊維、有機化合物や無機化合物が混合されていたり、炭素繊維同士が他の成分で目留めされていたり、炭素繊維がマトリックス樹脂成分と接着されていたりしてもよい。
 炭素繊維の分散を高めるために、乾式法では、開繊バーを設ける方法やさらに開繊バーを振動させる方法、さらにカードの目をファインにする方法や、カードの回転速度を調整する方法などが例示できる。湿式法でも、炭素繊維を分散させる際の攪拌機の回転数を高くする方法、一度に投入する炭素繊維量を減少させる方法、分散液を移送させる際に渦流を抑制する方法などが例示できる。また平面的に配置するために、乾式法では、炭素繊維を集積する際に静電気を用いる方法、整流化したエアを用いる方法、コンベアの引取速度を調整する方法などが例示できる。湿式法でも、超音波などで分散した炭素繊維の再凝集を防止する方法、濾過速度を調整する方法などが例示できる。これらの方法は、特に限定されるものではなく、炭素繊維基材の状態を確認しながら、その他の製造条件を制御することでも達成できる。
 本発明の炭素繊維ポリプロピレンシートは、力学特性の等方性の観点から、炭素繊維の二次元配向角度度数分布における30°刻みの相対度数の最大値が0.25以下であり、配向角度度数分布における30°刻みの相対度数の最小値は0.090以上であることが好ましい。炭素繊維の二次元配向角度度数分布における30°刻みの相対度数とは、成形品表面の炭素繊維の二次元配向角度分布を表す指標である。
 本発明において、炭素繊維の二次元配向角度度数分布における30°刻みの相対度数の最大値および最小値は、次の方法で算出する。無作為に400本の炭素繊維を選び出し、角度の基準とする基準直線を任意に1本設定し、基準直線に対する選び出した炭素繊維の配向方向のなす角度(以下、二次元配向角度αと略す。)を全て測定する。二次元配向角度αは、基準直線に対して反時計回りの方向の角度を測定した、0°以上180°未満の角度のこととする。400本の炭素繊維のある基準線からの二次元配向角度αを用いて、30°刻みの炭素繊維の二次元配向角度相対度数分布を作成し、その最大値および最小値を、炭素繊維の二次元配向角度度数分布における30°刻みの相対度数の最大値および最小値とした。
 無作為に選び出す炭素繊維本数を400本以上とすれば、炭素繊維の二次元配向角度度数分布における30°刻みの相対度数の最大値および最小値は、ほぼ変化がなくなる。また、炭素繊維の二次元配向角度度数分布における30°刻みの相対度数の最大値および最小値を測定する部分に特に制限はないが、成形品端部を避け、できるだけ中央近辺で、さらにボス、リブ、および成形品の厚み変化がない部分を用いて測定することが好ましい。炭素繊維の二次元配向角度度数分布における30°刻みの相対度数の最大値および最小値が0.17であると、炭素繊維強化ポリプロピレンシートの炭素繊維が完全にランダム配置していることを意味する。
 具体的に炭素繊維ポリプロピレンシートから二次元配向角度を測定する方法は、例えば、炭素繊維ポリプロピレンシートの表面から炭素繊維の配向を観察する方法が例示できる。この場合炭素繊維強化ポリプロピレンシート表面を研磨して繊維を露出させることで、より炭素繊維を観察しやすくなるため好ましい。また、炭素繊維強化ポリプロピレンシートに透過光を利用して炭素繊維の配向を観察する方法が例示できる。この場合炭素繊維強化ポリプロピレンシートを薄くスライスすることで、より炭素繊維を観察しやすくなるため好ましい。さらに、炭素繊維強化ポリプロピレンシートをX線CT透過観察して炭素繊維の配向画像を撮影する方法も例示できる。X線透過性の高い炭素繊維の場合には、炭素繊維にトレーサ用の繊維を混合しておく、あるいは炭素繊維にトレーサ用の薬剤を塗布しておくと、より炭素繊維を観察しやすくなるため好ましい。
 また、上記方法で測定が困難な場合には、炭素繊維の構造を崩さないようにマトリックス樹脂を除去した後に炭素繊維の配向を観察する方法が例示できる。例えば、炭素繊維強化ポリプロピレンシートを2枚のステンレス製メッシュに挟み、炭素繊維強化ポリプロピレンシートが動かないようにネジなどで固定してからマトリックス樹脂成分を焼き飛ばし、得られる炭素繊維基材を光学顕微鏡または電子顕微鏡で観察して測定することができる。
 本発明で用いられる炭素繊維は、ポリアクリロニトリル(以下、PAN)系繊維、ピッチおよびレーヨン等を原料とすることができるが、特にアクリロニトリルを主成分としたPAN系繊維から製造された炭素繊維、いわゆるPAN系炭素繊維が工業的な生産性に優れ、かつ力学特性にも優れている。PAN系繊維は、耐炎化反応を促進するモノマー成分が通常共重合されており、かかるモノマー成分としては、イタコン酸、アクリル酸、メタクリル酸およびそれらのメチルエステル、エチルエステル、プロピルエステル、アルカリ金属塩、アンモニウム塩、あるいはアリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、およびそれらのアルカリ金属塩等を挙げることができる。紡糸方法は、湿式紡糸法や乾湿式紡糸法を適用することが好ましい。
 PAN系炭素繊維は、アクリロニトリルを主成分として重合して得られたPAN系繊維を200~400℃の空気雰囲気中で加熱して酸化繊維に転換する耐炎化工程と、窒素、ヘリウムおよびアルゴン等の不活性雰囲気中でさらに高温で加熱して炭化する炭化工程を経ることで得られる(耐炎化工程と炭化工程をあわせて焼成工程と呼ぶことがある。)。本発明では、炭化する温度としては1,200~2,200℃を採用することが好ましい。
 また、本発明で用いられる炭素繊維は、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂、ポリアミド系樹脂および界面活性剤からなる群から選択された少なくとも1種の集束剤が付着されたものであってもよい。このように、炭素繊維に集束剤を付着させることにより、炭素繊維束の取り扱い性が優れ、特に束カット時における毛羽立ちを抑えることができる。
 集束剤を炭素繊維に付与するに際しては、集束剤をその溶媒に溶解した溶液またはその分散媒に分散した分散液、いわゆるサイジング液に浸漬して後乾燥して行うことができる。炭素繊維における単繊維間の集束剤付着量のムラを押さえるためには、束状の炭素繊維が拡幅された状態の炭素繊維トウを、サイジング液に浸漬することが好ましい。
 炭素繊維に付着させる集束剤の付着量は、炭素繊維に対して0.1~5質量%であることが好ましく、より好ましくは、0.5~3質量%である。この範囲に収めることで、カット時のプロセス性と繊維束のドレープ性のバランスに優れる炭素繊維束が得られる。
 さらに、本発明の効果を損なわない範囲であれば、アルミニウム、黄銅およびステンレスなどの金属繊維や、ガラス繊維、シリコンカーバイトやシリコンナイトライドなどからなる無機繊維や、アラミド、PBO、ポリフェニレンスルフィド、ポリエステル、アクリル、ナイロンおよびポリエチレンなどからなる有機繊維などと、上記の炭素繊維とを併用してもよい。
 本発明の炭素繊維強化ポリプロピレンシートにおける、炭素繊維とマトリックス樹脂の接着性は界面せん断強度(以下、IFSS)で表され、接着性が高い場合、IFSSは高い値を示す。力学特性と耐衝撃性を両立させるために、IFSSは5.50MPa以上、10.5MPa以下であることが重要である。IFSSが5.50MPa未満の場合、力学特性が不足する。また、IFSSが10.5MPaを超える場合、脆性的な破壊挙動を示し、耐衝撃性が不足する。
 以下、IFSSの評価詳細について説明する。評価にあたっては非特許文献2を参考にした。炭素繊維束より、長さ20cmの単繊維1本を取り出す。続いて厚み150μmのポリプロピレンフィルムを20×20cm角の大きさで2枚作製し、前記取り出した単繊維を1枚目のポリプロピレンフィルム上に直線状に配置する。もう1枚のポリプロピレンフィルムを、前記単繊維を挟むように重ねて配置し、200℃で3分間、0.5MPaの圧力で加圧プレスし、単繊維がポリプロピレンに埋め込まれたサンプルを作製する。得られたサンプルを切り出し、短繊維が中央に埋没した厚さ0.2mm、幅10mm、長さ70mmの試験片を得る。前記と同様にして試験片を10ピース作製する。
 この試験片を通常の引張試験治具を用いて、試験長25mmに設定し、歪速度0.5mm/minで引張試験を行う。単繊維の破断がもはや起こらなくなった時の、単繊維の全ての断片の長さを透過型顕微鏡で測定し、それを平均することにより平均破断繊維長lを得る。IFSS(τ)は下式より求める。
 τ=(σ・d)/(2・l
 l=(4/3)・l
・τ:IFSS(界面せん断強度)(単位:MPa)
・l:上記の平均破断繊維長(単位:μm)
・σ:単繊維の引張強さ(単位:MPa)
・d:炭素繊維単繊維の直径である(単位:μm)
 σは、炭素繊維の引張強度分布がワイブル分布に従うとして次の方法により求める。即ち、ポリプロピレンに埋め込まずに単繊維のみの引張試験を用い、試料長がそれぞれ5mm、25mm、50mmで得られた平均引張強度から最小2乗法により、試料長と平均引張強度との関係式を求め、試料長lの時の平均引張強度を算出する。
 本発明の炭素繊維強化ポリプロピレンシートに用いられるマトリックス樹脂はポリプロピレンおよび酸変性ポリプロピレンからなる。ポリプロピレンとしては、いわゆる未変性のポリプロピレンであれば特に制限は無く、ホモタイプポリプロピレンに限らず、ポリプロピレンにポリエチレンや他のポリオレフィンがブロック共重合されたブロックタイプポリプロピレンも本発明に使用される。
 本発明の炭素繊維強化ポリプロピレンシートは界面接着性の観点から、マトリックス樹脂中の酸変性ポリプロピレンの含有率は0.1質量%以上5質量%以下であることが好ましい。酸変性ポリプロピレン含有率が0.1質量%以上であると、力学特性に優れる。また、酸変性ポリプロピレンの含有率が5質量%以下であると、脆性的な破壊挙動を示すことはなく、耐衝撃性に優れる。
 酸変性ポリプロピレンとしては特に制限は無く、例えばアクリル酸変性ポリプロピレンおよび無水マレイン酸変性ポリプロピレン等が挙げられる。
 酸変性ポリプロピレンの市販品を例に挙げると、アクリル酸変性ポリプロピレンの市販品としては、POLYBOND 1001、POLYBOND 1002(CROMPTON社製)等が挙げられる。また、無水マレイン酸変性ポリプロピレンの市販品としては、無水マレイン酸変性ポリプロピレンQE510(三井化学(株)製)等が挙げられる。
 本発明の炭素繊維強化ポリプロピレンシートは、繊維体積含有率(V)が10~40%であることが好ましく、さらに好ましくは20~30%である。この範囲内に調節することで、ボイドが少なく、力学特性と耐衝撃性のバランスに優れたシートが得られる。また、この範囲では繊維の強度利用率に優れ、価格見合いの軽量化効果にも優れる。
 本発明の炭素繊維強化ポリプロピレンシートは、その用途に応じて、更に、マイカ、タルク、カオリン、セリサイト、ベントナイト、ゾノトライト、セピオライト、スメクタイト、モンモリロナイト、ワラステナイト、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、クレー、二硫化モリブデン、酸化チタン、酸化亜鉛、酸化アンチモン、ポリリン酸カルシウム、グラファイト、硫酸バリウム、硫酸マグネシウム、ホウ酸亜鉛、ホウ酸亜カルシウム、ホウ酸アルミニウムウィスカ、チタン酸カリウムウィスカおよび高分子化合物などの充填材、金属系、金属酸化物系、カーボンブラックおよびグラファイト粉末などの導電性付与材、臭素化樹脂などのハロゲン系難燃剤、三酸化アンチモンや五酸化アンチモンなどのアンチモン系難燃剤、ポリリン酸アンモニウム、芳香族ホスフェートおよび赤燐などのリン系難燃剤、有ホウ酸金属塩、カルボン酸金属塩および芳香族スルホンイミド金属塩などの有機酸金属塩系難燃剤、硼酸亜鉛、亜鉛、酸化亜鉛およびジルコニウム化合物などの無機系難燃剤、シアヌル酸、イソシアヌル酸、メラミン、メラミンシアヌレート、メラミンホスフェートおよび窒素化グアニジンなどの窒素系難燃剤、PTFEなどのフッ素系難燃剤、ポリオルガノシロキサンなどのシリコーン系難燃剤、水酸化アルミニウムや水酸化マグネシウムなどの金属水酸化物系難燃剤、またその他の難燃剤、酸化カドミウム、酸化亜鉛、酸化第一銅、酸化第二銅、酸化第一鉄、酸化第二鉄、酸化コバルト、酸化マンガン、酸化モリブデン、酸化スズおよび酸化チタンなどの難燃助剤、顔料、染料、滑剤、離型剤、相溶化剤、分散剤、マイカ、タルクおよびカオリンなどの結晶核剤、リン酸エステルなどの可塑剤、熱安定剤、酸化防止剤、着色防止剤、紫外線吸収剤、流動性改質剤、発泡剤、抗菌剤、制振剤、防臭剤、摺動性改質剤、およびポリエーテルエステルアミドなどの帯電防止剤等を添加しても良い。
 本発明の炭素繊維強化ポリプロピレンシートを成形して成形品を得る。
 本発明における成形品のボイド率は、力学特性の観点から、好ましくは3%以下である。成形品のボイド率は、次の方法により測定する。成形品の一部を切り出し、JIS K 7112 (1999)の5に記載のA法(水中置換法)に従い、成形品の密度(ρ)を測定する。この成形品の密度(ρ)およびマトリックス樹脂の密度(ρ)を用いて、次式により成形品のボイド率(V)を求める。
 V=(1-ρ/ρ)×100(単位:体積%)
 成形品のボイド率(V)を測定する部分としては、特に制限はないが、成形品端部を避け、できるだけ中央近辺で、さらにボス、リブ、および成形品の厚み変化がない部分を用いて測定することが好ましい。
 成形方法について特に制限は無いが、プレス成形が好ましい。また、プレス成形の種類は得られる成形品に応じ選択が可能である。ここで、プレス成形とは、加工機械および型、工具その他成形用の治具や副資材等を用いて、炭素繊維ポリプロピレンシートの積層体に曲げ、せん断、圧縮等の変形を与えて成形品を得る方法であるが、その成形形態として絞り、深絞り、フランジ、コールゲート、エッジカーリング、型打ちなどが例示される。また、プレス成形の方法としては、各種存在するプレス成形の方法のなかでも、大型の航空機などの成形品部材を作製する際によく使用されるオートクレーブ法や、工程が比較的簡便である金型プレス法が好ましく挙げられるが、設備や成形工程でのエネルギー使用量、使用する成形用の治具や副資材等の簡略化、成形圧力、温度の自由度の観点から、金属製の型を用いて成形をおこなう金型プレス法を用いることがより好ましい。
 金型プレス法には、炭素繊維強化ポリプロピレンシートを型内に予め配置しておき、型締とともに加圧、加熱をおこない、次いで型締をおこなったまま、金型の冷却により該炭素繊維強化ポリプロピレンシートの冷却をおこない成形品を得るホットプレス法や、予め該炭素繊維強化ポリプロピレンシートを、マトリックス樹脂の溶融温度以上に、遠赤外線ヒーター、加熱板、高温オーブン、誘電加熱などに例示される加熱装置で加熱し、マトリックス樹脂を溶融、軟化させた状態で、前記成形型の下面となる型の上に配置し、次いで型を閉じて型締を行い、その後加圧冷却する方法であるスタンピング成形を採用することができる。プレス成形方法については、特に制限はないが、成形サイクルを早めて生産性を高める観点からは、スタンピング成形であることが好ましい。
 プレス金型での加圧については特に制限されることはないが、炭素繊維強化ポリプロピレンシートを良好に賦形させる観点からは、加圧力は1MPa以上であることが好ましい。より好ましくは3MPa以上である。加圧力の上限については特に制限はないが、成形時の炭素繊維の折損を抑える観点からは100MPa以下であることが好ましい範囲である。
 予熱した炭素繊維ポリプロピレンシートの積層体を十分に冷却させる観点から、金型の表面温度をマトリックス樹脂の融点または軟化点以下とすることが好ましい。また脱型を早めて成形サイクルを短くする観点からは、金型温度をマトリックス樹脂の融点または軟化点よりも30℃以上低くすることが好ましい。より好ましくは50℃以上低くすることである。
 本発明の成形品の用途としては、例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルビデオカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの筐体、トレイ、シャーシ、内装部材、またはそのケースなどの電気、電子機器部品、支柱、パネル、補強材などの土木、建材用部品、各種メンバ、各種フレーム、各種ヒンジ、各種アーム、各種車軸、各種車輪用軸受、各種ビーム、プロペラシャフト、ホイール、ギアボックスなどの、サスペンション、アクセル、またはステアリング部品、フード、ルーフ、ドア、フェンダ、トランクリッド、サイドパネル、リアエンドパネル、アッパーバックパネル、フロントボディー、アンダーボディー、各種ピラー、各種メンバ、各種フレーム、各種ビーム、各種サポート、各種レール、各種ヒンジなどの、外板、またはボディー部品、バンパー、バンパービーム、モール、アンダーカバー、エンジンカバー、整流板、スポイラー、カウルルーバー、エアロパーツなど外装部品、インストルメントパネル、シートフレーム、ドアトリム、ピラートリム、ハンドル、各種モジュールなどの内装部品、またはモーター部品、CNGタンク、ガソリンタンク、燃料ポンプ、エアーインテーク、インテークマニホールド、キャブレターメインボディー、キャブレタースペーサー、各種配管、各種バルブなどの燃料系、排気系、または吸気系部品などの自動車、二輪車用構造部品、その他、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、エンジン冷却水ジョイント、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、タービンベイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、プロテクター、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、スペアタイヤカバー、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、スカッフプレート、フェイシャー、などの自動車、二輪車用部品、航空機用部品であるランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどが挙げられる。力学特性の観点より、電気、電子機器用の筐体、土木、建材用のパネル、自動車用の構造部品、航空機用の部品に好ましく用いられる。とりわけ、力学特性および耐衝撃性の観点より、自動車、二輪車用構造部品に好ましく用いられる。
[炭素繊維(A)]
 A-1:PAN系炭素繊維
 炭素繊維束A-1は、下記のようにして製造した。
 アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維繊度1.1dtex、フィラメント数24,000のアクリル系繊維束を得た。得られたPAN系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換した。次いで、昇温速度を200℃/minとし、窒素雰囲気中300~900℃の温度領域で10%の延伸を行った後、1,300℃の温度まで昇温し焼成し、炭素繊維束を得た。この炭素繊維束に硫酸を電解質とした水溶液で、炭素繊維1gあたり3クーロンの電解表面処理を行い、さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥しPAN系炭素繊維束を得た。炭素繊維束A-1の物性を下記に示す。
 総フィラメント数:24,000本
 単繊維直径:7μm
 単位長さ当たりの質量:0.8g/m
 比重:1.8g/cm
 引張強度:4.2GPa
 引張弾性率:230GPa
 O/C:0.10
 サイジング剤種類:ポリオキシエチレンオレイルエーテル
 サイジング剤付着量:1.5質量%。
[マトリックス樹脂に用いる樹脂(B)]
B-1:未変性ポリプロピレン
       プライムポリマー(株)製、“プライムポリプロ”(登録商標)J106MG
B-2:無水マレイン酸変性ポリプロピレン
       三井化学(株)製、“アドマー”(登録商標)QE800
B-3:無水マレイン酸変性ポリプロピレン
       三井化学(株)製、“アドマー”(登録商標)QE510
[バインダー(C)]
C-1:シグマ アルドリッチ ジャパン(株)製Poly(ethylene glycol)bis (3-aminopropyl)terminated
 数平均分子量1,500
 全アミン価75mgKOH/g
(参考例1)
 配合率を、全体100質量%に対し、無水マレイン酸変性ポリプロピレン(B-2)を0.1質量%、未変性ポリプロピレン(B-1)を99.9質量%となるように配合し、次の条件で溶融混練してマトリックス樹脂を得た。溶融混練に関しては、(株)日本製鋼所製二軸押出機TEX・30α型を用い、バレル温度220℃、スクリュー直径30mm、回転数150rpmとなるように設定し、混練した。
(参考例2)
 参考例1で作製したマトリックス樹脂を所定量、ステンレス製の板上に配置し、その上からもう一枚のステンレス製板を重ね、板間には0.10mmのスペーサーを入れた。プレス温度は220℃とし、圧力を1MPaとして5分間保持し、厚さ0.10mm×200mm×200mmのフィルム状に加工し樹脂シートを得た。
(参考例3)
 配合率を、全体100質量%に対し、無水マレイン酸変性ポリプロピレン(B-2)を3質量%、未変性ポリプロピレン(B-1)を97質量%とした以外は、参考例1と同様にして、混練してマトリックス樹脂を得た。
(参考例4)
 参考例3で作製したマトリックス樹脂を用いた以外は参考例2と同様にして、樹脂シートを得た。
(参考例5)
 配合率を、全体100質量%に対し、無水マレイン酸変性ポリプロピレン(B-2)を5質量%、未変性ポリプロピレン(B-1)を95質量%とした以外は、参考例1と同様にして、混練してマトリックス樹脂を得た。
(参考例6)
 参考例5で作製したマトリックス樹脂を用いた以外は参考例2と同様にして、樹脂シートを得た。
(参考例7)
 未変性ポリプロピレン(B-1)をマトリックス樹脂として用いた以外は参考例2と同様にして、樹脂シートを得た。
(参考例8)
 配合率を、全体100質量%に対し、無水マレイン酸変性ポリプロピレン(B-2)を10質量%、未変性ポリプロピレン樹脂(B-1)を90質量%とした以外は、参考例1と同様にして、混練してマトリックス樹脂を得た。
(参考例9)
 参考例8で作製したマトリックス樹脂を用いた以外は参考例2と同様にして、樹脂シートを得た。
(参考例10)
 無水マレイン酸変性ポリプロピレン(B-3)をマトリックス樹脂として用いた以外は参考例2と同様にして、樹脂シートを得た。
(参考例11)
 配合率を、全体100質量%に対し、無水マレイン酸変性ポリプロピレン(B-2)を1質量%、未変性ポリプロピレン(B-1)を99質量%とした以外は、参考例1と同様にして、混練してマトリックス樹脂を得た。
(参考例12)
 参考例11で作製したマトリックス樹脂を用いた以外は参考例2と同様にして、樹脂シートを得た。
[評価・測定方法]
 各実施例で得られる評価基準は次の通りである。
(1)炭素繊維強化ポリプロピレンシートに含まれる炭素繊維の質量平均繊維長(L)の測定
 成形品の一部を切り出し、マトリックス樹脂を溶解させる溶媒によりマトリックス樹脂を十分溶解させた後、ろ過などの公知の操作により炭素繊維と分離した。マトリックス樹脂を溶解させる溶媒がない場合は、成形品の一部を切り出し、500℃の温度で30分間加熱し、マトリックス樹脂を焼飛ばして炭素繊維を分離した。分離した炭素繊維を、無作為に400本抽出し、光学顕微鏡もしくは操作型電子顕微鏡にてその長さを1μm単位まで測定し、繊維長とし、次式により質量平均繊維長(L)を求めた。
 L=Σ(L×W
・L:測定した繊維長(i=1,2,3,・・・400)(単位:mm)
・W:繊維長Lの炭素繊維の質量分率(i=1,2,3,・・・400)(単位:質量%)
 さらに、2mm未満、2mm以上5mm未満、5mm以上の炭素繊維の度数をカウントし、質量分率をかけることにより、繊維長の質量分布を評価した。
(2)繊維分散率の算出
 炭素繊維強化ポリプロピレンシートの一部を切り出し、切り出した試験片をエポキシ樹脂中に包埋し、炭素繊維強化ポリプロピレンシートの表面を、表面から100μmの深さまで研磨し観察用試験片を作製する。
 炭素繊維強化ポリプロピレンシートの観察用試験片を光学顕微鏡にて観察し、無作為に100本の炭素繊維単繊維(a)を選び出し、該炭素繊維単繊維(a)と接触する炭素繊維単繊維(b)すべてについて、二次元接触角度を計測する。二次元接触角度を、0°から90°までの鋭角側で計測し、二次元接触角度を計測した炭素繊維単繊維の総数から、二次元接触角度が1°未満である炭素繊維単繊維の割合を算出した。
 P=n/N×100(単位:%)
・P:繊維分散率
・n:接触角度が1°未満である炭素繊維単繊維数
・N:接触角度を計測した炭素繊維単繊維の総数
 繊維分散率(P)をもとに以下の基準で判定した。A、Bが合格であり、Cが不合格である。
 A:繊維分散率が96%以上
 B:繊維分散率が90%以上96%未満
 C:繊維分散率が90%未満
(3)IFSSの評価
 評価詳細については非特許文献2を参考にした。(メタ)アクリル系重合体が付着した炭素繊維束より長さ20cmの単繊維1本を取り出した。参考例で作製した樹脂フィルムを2枚用意し、前記取り出した単繊維を1枚目の樹脂フィルム上に直線状に配置した。もう1枚の樹脂フィルムを、前記単繊維を挟むように重ねて配置し、200℃で3分間、0.5MPaの圧力で加圧プレスし、単繊維が樹脂に埋め込まれたサンプルを作製した。得られたサンプルを切り出し、単繊維が中央に埋没した厚さ0.2mm、幅10mm、長さ70mmの試験片を得た。上記と同様にして試験片を10ピース作製した。
 この試験片を通常の引張試験治具を用いて、試験長25mmに設定し、歪速度0.5mm/minで引張試験を行った。単繊維の破断がもはや起こらなくなった時の、単繊維の全ての断片の長さを透過型顕微鏡で測定し、それを平均することにより平均破断繊維長lを得た。
 IFSS(τ)を下式より求めた。
 τ=(σ・d)/(2・l
 l=(4/3)・l
・τ:IFSS(界面せん断強度)(単位:MPa)
・l:上記の平均破断繊維長(単位:μm)
・σ:単繊維の引張強さ(単位:MPa)
・d:炭素繊維単繊維の直径である(単位:μm)
 σは、炭素繊維の引張強度分布がワイブル分布に従うとして次の方法により求めた。即ち、(メタ)アクリル系重合体を付着させる前の単繊維を用い、試料長がそれぞれ5mm、25mm、50mmにおける単繊維の引張り強度をJIS R 7606に基づいて求めた。具体的には、炭素繊維束をほぼ4等分し、4つの束から順番に単繊維を100本サンプリングした。このとき、束全体からできるだけまんべんなくサンプリングした。サンプリングした単繊維は、穴あき台紙に接着剤を用いて固定した。単繊維を固定した台紙を引張り試験機に取り付け、歪速度1mm/min、試料数100で引張り試験を行った。得られた平均引張り強度から最小2乗法により、試料長と平均引張り強度との関係式を求め、試料長lcの時の平均引張り強度を算出した。
(4)配向角度分布の評価方法
 炭素繊維強化ポリプロピレンシートの一部を切り出し、切り出した試験片をエポキシ樹脂中に包埋し、炭素繊維強化ポリプロピレンシートの表面を、表面から100μmの深さまで研磨し観察用試験片を作製する。
 炭素繊維強化ポリプロピレンシートの観察用試験片を光学顕微鏡にて観察し、無作為に400本の炭素繊維を選び出す。次に、角度の基準とする基準直線を任意に1本設定し、基準直線に対する選び出した炭素繊維の配向方向のなす角度(以下、配向角度αと略す。)を全て測定する。配向角度αは、基準直線に対して反時計回りの方向の角度を測定した、0°以上180°未満の角度のこととする。この配向角度αの30°刻みの相対度数は、次式により求める。
・α:測定した配向角度(i=1、2、・・、400)
・N0~30:0≦配向角度α<30の炭素繊維の本数(i=1、2、・・、400)
・N30~60:30≦配向角度α<60の炭素繊維の本数(i=1、2、・・、400)
・N60~90:60≦配向角度α<90の炭素繊維の本数(i=1、2、・・、400)
・N90~120:90≦配向角度α<120の炭素繊維の本数(i=1、2、・・、400)
・N120~150:120≦配向角度α<150の炭素繊維の本数(i=1、2、・・、400)
・N150~180:150≦配向角度α<180の炭素繊維の本数(i=1、2、・・、400)
・相対度数の最大値=MAX(N0~30、N30~60、N60~90、N90~120、N120~150、N150~180)/400
・相対度数の最小値=MIN(N0~30、N30~60、N60~90、N90~120、N120~150、N150~180)/400
 また、炭素繊維強化ポリプロピレンシートの配向角度分布の測定用試験片としては、炭素繊維強化ポリプロピレンシートあるいは成形品の端部を避け、できるだけ中央近辺で、ボス、リブ、および成形品の厚み変化がない部分を用いた。
 繊維のランダム配向性の指標として、炭素繊維強化ポリプロピレンシートあるいは成形品の配向角度分布の相対度数の最大値を測定し、以下の基準で評価した。Aが最も優れ、B,Cの順でこれに続く。
 A:相対度数の最大値が0.17以上0.22未満である。
 B:相対度数の最大値が0.22以上0.25未満である。
 C:相対度数の最大値が0.25以上である。
 また、繊維のランダム配向性の指標として、炭素繊維強化ポリプロピレンシートの配向角度分布の相対度数の最小値を測定し、以下の基準で評価した。Aが最も優れ、B,Cの順でこれに続く。
 A:相対度数の最小値が0.12以上0.17以下である。
 B:相対度数の最小値が0.090以上0.12未満である。
 C:相対度数の最小値が0.090未満である。
(5)炭素繊維の質量含有率の測定方法
 成形品から1cm×1cmの試験片を切り出し、石英ガラス容器に投入する。この容器を60℃の温度で24時間真空乾燥し、デシケータ内で室温まで冷却後、試験片と石英ガラス容器の合計質量W(g)、および石英ガラス容器の質量W(g)を秤量する。容器に試験片を入れた状態で、空気中、500℃の温度で30分加熱し、マトリックス樹脂を焼き飛ばした後、窒素雰囲気中で室温まで冷却し、炭素繊維と石英ガラス容器の合計質量W(g)を秤量する。
 以上の処理を経て、成形品の炭素繊維の質量含有率(W)を、次式により求める。
 W=100×(W-W)/(W-W)(単位:質量%)
 測定数はn=5とし、平均値を炭素繊維の質量含有率(W)とした。
(6)成形品の密度測定方法
 成形品の密度(ρ)は、JIS K 7112(1999)の5に記載のA法(水中置換法)に従い測定した。成形品から1cm×1cmの試験片を切り出し、60℃の温度で24時間真空乾燥し、デシケータ内で室温まで冷却したものを試験片とした。浸積液には、エタノールを用いた。測定数はn=5とし、平均値を成形品の密度(ρ)とした。
(7)成形品の炭素繊維の体積含有率およびボイド率の評価方法
 (4)で測定した成形品の炭素繊維の質量含有率(W)と、(5)で測定した成形品の密度(ρ)を用いて、成形品の炭素繊維の体積含有率(V)、マトリックス樹脂の体積含有率(V)、およびボイド率(V)を次式により求める。
 V=W×ρ/ρ(単位:体積%)
 V=(100-W)×ρ/ρ(単位:体積%)
 V=100-(V+V)(単位:体積%)
・ρ:成形品の密度(単位:g/m
・ρ:炭素繊維の密度(単位:g/m
・ρ:マトリックス樹脂の密度(単位:g/m
・W:成形品の炭素繊維の質量含有率(単位:質量%)
 成形品のボイド率(V)をもとに以下の基準で判定した。Aが最も優れ、B,Cの順でこれに続く。
 A:ボイド率が3%未満
 B:ボイド率が3%以上10%未満
 C:ボイド率が10%以上
(8)成形品の曲げ強度の評価
 ASTM D-790の規格に従い、成形品の曲げ強度の評価を行った。
 実施例または比較例により得られた成形品から、それぞれ、長さ80±1mm、幅25±0.2mmの曲げ試験片を、任意の方向を0°方向とした場合に、0°、+45°、-45°、90°方向の4方向について切り出して試験片を作製した。それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値を曲げ強度とした。
 試験機として“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用い、3点曲げ試験冶具(圧子直径10mm、支点直径10mm)を用いて支持スパンを51.2mmに設定し、クロスヘッド速度1.37mm/minで曲げ強度を測定した。試験片の水分率0.1質量%以下、雰囲気温度23℃、および湿度50質量%の条件下において、試験を行った。
 評価は成形品の曲げ強度をもとに、以下の基準で判定した。
 CF体積含有率に応じて、それぞれ判定基準を設けた。
 V=10%の成形品の曲げ強度をもとに以下の基準で判定し、D以下を不合格とした。
 A:曲げ強度250MPa以上
 B:曲げ強度200MPa以上250MPa未満
 C:曲げ強度150MPa以上200MPa未満
 D:曲げ強度100MPa以上150MPa未満
 E:曲げ強度100MPa未満
 V=20%の成形品の曲げ強度をもとに以下の基準で判定し、D以下を不合格とした。
 A:曲げ強度300MPa以上
 B:曲げ強度250MPa以上300MPa未満
 C:曲げ強度200MPa以上250MPa未満
 D:曲げ強度150MPa以上200MPa未満
 E:曲げ強度150MPa未満
 V=30%の成形品の曲げ強度をもとに以下の基準で判定し、D以下を不合格とした。
 A:曲げ強度350MPa以上
 B:曲げ強度300MPa以上350MPa未満
 C:曲げ強度250MPa以上300MPa未満
 D:曲げ強度200MPa以上250MPa未満
 E:曲げ強度200MPa未満
 V=40%の成形品の曲げ強度をもとに以下の基準で判定し、D以下を不合格とした。
 A:曲げ強度350MPa以上
 B:曲げ強度300MPa以上350MPa未満
 C:曲げ強度250MPa以上300MPa未満
 D:曲げ強度200MPa以上250MPa未満
 E:曲げ強度200MPa未満
(9)曲げ強度の変動係数判定
 曲げ強度(σ)およびその標準偏差(s)を用いて、曲げ強度の変動係数(CV)は次式により求める。
 CV=s/σ×100(単位:%)
 曲げ強度の変動係数(CV)をもとに以下の基準で判定した。Aが最も優れ、B,Cの順でこれに続く。
 A:曲げ強度の変動係数が4%未満
 B:曲げ強度の変動係数が4%以上10%未満
 C:曲げ強度の変動係数が10%以上
(10)成形品のIzod衝撃強度(ノッチ有)の評価
 ASTM D256規格に従い、成形品のIzod衝撃強度(ノッチ有)の評価を行った。
 実施例または比較例により得られた成形品から、それぞれ、長さ62±1mm、幅12.7±0.15mm、ノッチ角度22.5°±0.5°、0.25±0.05RのIzod衝撃強度試験片を、任意の方向を0°方向とした場合に、0°、+45°、-45°、90°方向の4方向について切り出して試験片を作製した。それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値をIzod衝撃強度(ノッチ有)とした。試験片の水分率0.1質量%以下、雰囲気温度23℃、および湿度50質量%の条件下において、試験を行った。
 CF体積含有率に応じて、それぞれ判定基準を設けた。
 V=10%の成形品のIzod衝撃強度(ノッチ有)をもとに以下の基準で判定し、D以下を不合格とした。
 A:Izod衝撃強度(ノッチ有)400J/m以上
 B:Izod衝撃強度(ノッチ有)300J/m以上400J/m未満
 C:Izod衝撃強度(ノッチ有)200J/m以上300J/m未満
 D:Izod衝撃強度(ノッチ有)100J/m以上200J/m未満
 E:Izod衝撃強度(ノッチ有)100J/m未満
 V=20%の成形品のIzod衝撃強度(ノッチ有)をもとに以下の基準で判定し、D以下を不合格とした。
 A:Izod衝撃強度(ノッチ有)400J/m以上
 B:Izod衝撃強度(ノッチ有)300J/m以上400J/m未満
 C:Izod衝撃強度(ノッチ有)200J/m以上300J/m未満
 D:Izod衝撃強度(ノッチ有)100J/m以上200J/m未満
 E:Izod衝撃強度(ノッチ有)100J/m未満
 V=30%の成形品のIzod衝撃強度(ノッチ有)をもとに以下の基準で判定し、D以下を不合格とした。
 A:Izod衝撃強度(ノッチ有)600J/m以上
 B:Izod衝撃強度(ノッチ有)500J/m以上600J/m未満
 C:Izod衝撃強度(ノッチ有)400J/m以上500J/m未満
 D:Izod衝撃強度(ノッチ有)300J/m以上400J/m未満
 E:Izod衝撃強度(ノッチ有)300J/m未満
 V=40%の成形品のIzod衝撃強度(ノッチ有)をもとに以下の基準で判定し、D以下を不合格とした。
 A:Izod衝撃強度(ノッチ有)600J/m以上
 B:Izod衝撃強度(ノッチ有)500J/m以上600J/m未満
 C:Izod衝撃強度(ノッチ有)400J/m以上500J/m未満
 D:Izod衝撃強度(ノッチ有)300J/m以上400J/m未満
 E:Izod衝撃強度(ノッチ有)300J/m未満
(11)Izod衝撃強度の変動係数判定
 Izod衝撃強度(E)およびその標準偏差(s)を用いて、Izod強度の変動係数(CV)は次式により求める。
 CV=s/E×100(単位:%)
 Izod衝撃強度の変動係数(CV)をもとに以下の基準で判定した。Aが最も優れ、B,Cの順でこれに続く。
 A:Izod衝撃強度の変動係数が4%未満
 B:Izod衝撃強度の変動係数が4%以上10%未満
 C:Izod衝撃強度の変動係数が10%以上
(実施例1)
 内径300mmの円筒形容器に、界面活性剤(ナカライテスク(株)製、ポリエチレングリコールラウリルエーテル)を8g投入し、合わせて8リットルになるよう円筒容器に水道水を注ぎ、0.1質量%の界面活性剤水溶液を得た。その中に、カートリッジカッターで長さ6mmにカットした炭素繊維(A-1)を6.87g投入し、一軸の攪拌機で10分間撹拌した。炭素繊維が十分に分散したことを確認した後、攪拌機の回転により同心円状に配向した繊維を、繊維配向がランダムになるよう金属メッシュをトップに備える攪拌棒を水溶液中で3回ほど上下させた。脱水処理を行い、140℃の温度で10分間乾燥させて炭素繊維の抄造物を得た。抄造物は、直径300mmの円、目付けは100g/mであった。
 次に、得られた炭素繊維の抄造物の上下面に、参考例4で調整した樹脂シートを各1枚ずつ、計2枚重ね合わせサンドイッチ状としたものを、ステンレス製のツール板にセットして、プレス温度220℃、圧力5MPaで5分間プレス加工して、炭素繊維強化ポリプロピレンシートを得た。前記樹脂シートを、炭素繊維の体積含有率が20%となるように調整した。また、シート状の成形材料の厚みは、0.27mmのスペーサーを用いることにより0.27mmに調整した。
 得られた炭素繊維強化ポリプロピレンシートを、200mm×200mmにカットし、これを12枚積層したものを、プレス用平板金型(200mm×200mm)にセットして、プレス温度220℃、圧力5MPa、5分間プレス機でプレス成形後、プレス機でプレスした状態のまま、25℃の室温になるまで自然冷却して成形品を得た。この際、成形品の厚みは、3.2mmのスペーサーを用いることにより、3.2mmに調整した。得られた成形品を所定サイズに切り出し、評価に供した。
(実施例2)
 実施例1において、参考例4で調整した樹脂シートの代わりに参考例2で調整した樹脂シートを用いたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例3)
 実施例1において、参考例4で調整した樹脂シートの代わりに参考例6で調整した樹脂シートを用いたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例4)
 実施例1において、炭素繊維(A-1)を長さ6mmにカットするのに代わり、長さ5.5mmにカットしたこと以外は、実施例1と同様にして炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例5)
 実施例1において、炭素繊維(A-1)を長さ6mmにカットするのに代わり、長さ5mmにカットしたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例6)
 実施例1において、炭素繊維(A-1)を長さ6mmにカットするのに代わり、長さ2mmにカットしたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例7)
 実施例1において、炭素繊維(A-1)を長さ6mmにカットするのに代わり、長さ20mmにカットしたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例8)
 実施例1において、樹脂シートを、炭素繊維の体積含有率が10%となるよう調整したこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例9)
 実施例1において、樹脂シートを、炭素繊維の体積含有率が30%となるよう調整したこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例10)
 実施例1において、樹脂シートを、炭素繊維の体積含有率が40%となるよう調整したこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例11)
 実施例1において、カットした炭素繊維(A-1)を投入した界面活性剤水溶液を一軸の攪拌機で10分間撹拌した後、そのまま脱水し処理することで、炭素繊維が同心円状に配向した抄造物を得たこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得た。
(実施例12)
 実施例1において、炭素繊維強化ポリプロピレンシートを、圧力5MPaでプレス成形する代わりに、圧力0.8MPaでプレス成形したこと以外は、実施例1と同様にして、成形品を得た。
(実施例13)
 実施例1において、0.1質量%の界面活性剤水溶液を8リットル用いる代わりに、6リットル用いたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(実施例14)
 実施例1において、参考例4で調整した樹脂シートの代わりに参考例12で調整した樹脂シートを用いたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例15)
 実施例2において、炭素繊維(A-1)を長さ6mmにカットするのに代わり、長さ5.5mmにカットしたこと以外は、実施例2と同様にして炭素繊維強化ポリプロピレンシートおよび成形品を得て、評価に供した。
(実施例16)
 実施例2において、0.1質量%の界面活性剤水溶液を8リットル用いる代わりに、6リットル用いたこと以外は、実施例2と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例1)
 実施例1において、参考例2で調整した樹脂シートの代わりに参考例7で調整した樹脂シートを用いたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例2)
 実施例1において、参考例2で調整した樹脂シートの代わりに参考例9で調整した樹脂シートを用いたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例3)
 実施例1において、炭素繊維(A-1)を長さ6mmにカットするのに代わり、長さ1.3mmにカットしたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例4)
 実施例1において、炭素繊維(A-1)を長さ6mmにカットするのに代わり、長さ30mmにカットしたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例5)
 実施例1において、0.1質量%の界面活性剤水溶液を8リットル用いる代わりに、5リットル用いたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例6)
 内径200mmの円筒形容器に、界面活性剤(ナカライテスク(株)製、ポリエチレングリコールラウリルエーテル)を5g投入し、合わせて5リットルになるよう円筒容器に水道水を注ぎ、0.1質量%の界面活性剤水溶液を得た。その中に、カートリッジカッターで長さ6mmにカットした炭素繊維(A-1)を19g投入し、一軸の攪拌機で10分間撹拌した。炭素繊維が十分に分散したことを確認した後、繊維配向がランダムになるよう界面活性剤水溶液を上下方向に2、3度混ぜ、脱水処理を行い、140℃の温度で10分間乾燥させて炭素繊維の抄造物を得た。抄造物は、直径200mmの円形、目付けは600g/mであった。また、このときの炭素繊維の抄造物の質量W’(g)を測定しておく。
 次に、上記により作製された炭素繊維の抄造物を、予め5質量%溶液に調整された(C-1)のエマルジョン50ccの入った液漕に1分間浸漬させた。炭素繊維の抄造物を液漕から取り出し、脱水処理を行い、さらに140℃の温度で10分間乾燥させた。また、このときの炭素繊維の抄造物の質量W’(g)を測定しておき、(C-1)の添加量W’(g)を、式(W’-W’)で算出したところ、0.8gであった。
 次に、得られた炭素繊維の抄造物の上下面に、参考例10で調整した樹脂シートを各1枚ずつ、計2枚重ね合わせサンドイッチ状としたものを、ステンレス製のツール板にセットして、プレス温度220℃、圧力5MPaで5分間プレス加工して、炭素繊維強化ポリプロピレンシートを得た。前記樹脂シートを、炭素繊維の体積含有率が30%となるように調整した。また、シート状の成形材料の厚みは、1.1mmのスペーサーを用いることにより1.1mmに調整した。
 得られた炭素繊維強化ポリプロピレンシートを、150mm×150mmにカットし、これを3枚積層したものを、プレス用平板金型(150mm×150mm)にセットして、プレス温度220℃、圧力5MPa、5分間プレス機でプレス成形後、プレス機でプレスした状態のまま、25℃の室温になるまで自然冷却して成形品を得た。この際、成形品の厚みは、3.2mmのスペーサーを用いることにより、3.2mmに調整した。得られた成形品を所定サイズに切り出し、評価に供した。
(比較例7)
 実施例1において、参考例4で調整した樹脂シートの代わりに参考例10で調整した樹脂シートを用いたこと以外は、実施例1と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例8)
 実施例7において、参考例4で調整した樹脂シートの代わりに参考例10で調整した樹脂シートを用いたこと以外は、実施例7と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例9)
 実施例6において、参考例4で調整した樹脂シートの代わりに参考例10で調整した樹脂シートを用いたこと以外は、実施例6と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例10)
 実施例2において、炭素繊維(A-1)を長さ6mmにカットするのに代わり、長さ1.3mmにカットしたこと以外は、実施例2と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例11)
 実施例3において、炭素繊維(A-1)を長さ6mmにカットするのに代わり、長さ1.3mmにカットしたこと以外は、実施例3と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例12)
 実施例2において、0.1質量%の界面活性剤水溶液を8リットル用いる代わりに、5リットル用いたこと以外は、実施例2と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
(比較例13)
 実施例3において、0.1質量%の界面活性剤水溶液を8リットル用いる代わりに、5リットル用いたこと以外は、実施例3と同様にして、炭素繊維強化ポリプロピレンシートと成形品を得て、評価に供した。
 実施例1から16および比較例1から13の各特性を、表1~表3にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3から、下記のことが明らかである。
 実施例1,2,3,14は、曲げ強度とIzod衝撃強度のバランスに優れる。その中でも、実施例1は曲げ強度、Izodのバランスにより優れる成形品を得た。また、実施例2,14はIzod衝撃強度がより優れる成形品、実施例3は曲げ強度がより優れる成形品を得た。
 実施例1は実施例4,5,6と比較し、実施例2は実施例15と比較し、より曲げ強度とIzod衝撃強度のバランスに優れることが分かる。このことは、繊維長の質量分布で、繊維長2mm未満の質量割合が低く、5mm以上の質量割合が高いことによる。
 実施例1は実施例7と比較し、より曲げ強度とIzod衝撃強度のバランスに優れることが分かる。実施例7は、維長2mm未満の質量割合が特に低く、5mm以上の質量割合が特に高いため、過熱時の体積膨張が大きく成形品内のボイド率が大きくなった。結果、曲げ強度およびIzod衝撃強度の低下を招いた。
 実施例1,8,9,10は、Vによらずどの水準も曲げ強度とIzod衝撃強度のバランスに優れる。しかし、実施例8はVが10%であるため、曲げ強度とIzod衝撃強度の絶対値は低く、用途が限定される。また、実施例10はそのVに対し、得られる曲げ強度とIzod衝撃強度の絶対値が低く、用途が限定される。
 実施例1は実施例11と比較して、曲げ強度およびIzod衝撃強度の変動係数が小さいことが分かる。このことは、炭素繊維の配向角の相対度数が0.90以上0.25以下であることによる。実施例1は、炭素繊維の配向角がランダムであることから、成形品より試験片を切り出す位置によらず、曲げ強度およびIzod強度がほぼ一定となった。
 実施例1は実施例12と比較して、曲げ強度とIzod衝撃強度のバランスに優れることが分かる。このことは、成形品中のボイド率が低いことによる。破断時の起点となるボイドが少ないことから、曲げ強度およびIzod衝撃強度の高い成形品を得た。
 実施例1は、実施例13や比較例5と比較し、曲げ強度とIzod衝撃強度のバランスに優れることが分かる。このことは、炭素繊維の繊維分散率が高いことによる。成形品内に炭素繊維が単繊維状に分散されることで、炭素繊維とポリプロピレンの界面面積が広く、優れたIzod衝撃強度が得られた。
 実施例2は実施例15と比較し、曲げ強度とIzod衝撃強度のバランスにより優れることが分かる。このことは、繊維長の質量分布で、繊維長2mm未満の質量割合が低く、5mm以上の質量割合が高いことによる。
 実施例2は実施例16と比較し、曲げ強度とIzod衝撃強度のバランスにより優れることが分かる。このことは、炭素繊維の繊維分散率が高いことによる。成形品内に炭素繊維が単繊維状に分散されることで、炭素繊維とポリプロピレンの界面面積が広く、Izod衝撃強度に優れる成形品を得た。
 実施例1,2,3,14は、比較例1,2,7と比較し、曲げ強度とIzod衝撃強度のバランスに優れることが分かる。このことは、IFSSが高すぎず低すぎず適切な値であることによる。比較例1は、IFSSが5.20MPaと低いため、耐衝撃性は高いが、曲げ強度が著しく低い成形品が得られた。比較例2はIFSSが13.3MPa、比較例7はIFSSが16.6MPaと高いため、曲げ強度は高いが、Izod衝撃強度が低い成形品が得られた。
 実施例1,実施例4~7は比較例3,4と比較し、曲げ強度とIzod衝撃強度のバランスに優れることが分かる。このことは、炭素繊維による補強効果を保ちつつ、賦形性を損なわない範囲の質量平均繊維長を有することにより、高い曲げ強度と高いIzod衝撃強度を有したものである。比較例3は、炭素繊維の質量平均繊維長が短いため十分な補強効果を得られず、曲げ強度およびIzod衝撃強度が低下した。また、比較例4は、質量平均繊維長が長いため、過熱時の体積膨張が大きく成形品内のボイド率大きくなった。結果、曲げ強度およびIzod衝撃強度の低下を招いた。
 実施例1は比較例6と比較して、曲げ強度とIzod衝撃強度のバランスに優れることが分かる。このことは、比較例6は成形品中の炭素繊維が束状であり、IFSSが16.6MPaと高い値であることによる。
 実施例7は、比較例8と比較し、曲げ強度とIzod衝撃強度のバランスに優れることが分かる。比較例8はIFSSが16.6MPaと高いため、曲げ強度は高いが、Izod衝撃強度が低い成形品を得た。
 実施例6は、比較例9と比較し、曲げ強度とIzod衝撃強度のバランスに優れることが分かる。比較例9はIFSSが16.6MPaと高いため、曲げ強度は高いが、Izod衝撃強度が低い成形品を得た。
 実施例1,2,3,14は、比較例3,10,11と比較し、曲げ強度とIzod衝撃強度のバランスに優れることが分かる。これは、質量平均繊維長が適切な値であることによる。比較例3,10,11は、1.10mmと短いために、十分な繊維補強効果が得られず、曲げ強度およびIzod衝撃強度が低い成形品を得た。
 実施例2は比較例12と比較し、実施例3は比較例13と比較し、曲げ強度とIzod衝撃強度のバランスに優れることが分かる。このことは、炭素繊維の繊維分散率が高いことによる。成形品内に炭素繊維が単繊維状に分散されることで、炭素繊維とポリプロピレンの界面面積が広く、優れたIzod衝撃強度が低い成形品を得た。
 本発明の炭素繊維ポリプロピレンシートは、強度と耐衝撃性を両立する優れた成形品を得るために好適である。さらに、炭素繊維が二次元的に等方に配向されているため面方向の補強効果に優れ、力学特性にばらつきが少ないため、この炭素繊維ポリプロピレンシートを用いた成形品は、電気・電子機器、ロボット、二輪車、自動車、航空機の部材、部品および筐体など幅広い産業分野に適用できる。

Claims (8)

  1.  質量平均繊維長1.5mm~20mmの炭素繊維と、ポリプロピレンおよび酸変性ポリプロピレンからなるマトリックス樹脂とを含む炭素繊維強化ポリプロピレンシートであって、炭素繊維が単繊維状に分散しており、かつ炭素繊維とマトリックス樹脂の界面せん断強度が5.50~10.5MPaである炭素繊維強化ポリプロピレンシート。
  2.  マトリックス樹脂中に、酸変性ポリプロピレンを0.1~5質量%を含む請求項1に記載の炭素繊維強化ポリプロピレンシート。
  3.  炭素繊維強化ポリプロピレンシートに含まれる炭素繊維のうち、繊維長5mmを超える炭素繊維が20質量%以上75質量%以下、繊維長2mm未満の炭素繊維が1.0質量%以上25質量%以下である請求項1または2に記載の炭素繊維強化ポリプロピレンシート。
  4.  炭素繊維強化ポリプロピレンシートに含まれる炭素繊維のうち、繊維長5mmを超える炭素繊維が50質量%以上70質量%以下、繊維長2mm未満の炭素繊維が1.0質量%以上10質量%以下である請求項1または2に記載の炭素繊維強化ポリプロピレンシート。
  5.  前記炭素繊維の配向角度度数分布において、本明細書中で定義される30°刻みの相対度数の最大値が0.25以下、相対度数の最小値が0.090以上である請求項1~4のいずれかに記載の炭素繊維強化ポリプロピレンシート。
  6.  炭素繊維の体積含有率が10~40%である請求項1~5のいずれかに記載の炭素繊維強化ポリプロピレンシート。
  7.  請求項1~6のいずれかに記載の炭素繊維強化ポリプロピレンシートを成形して得られる成形品。
  8.  成形品中の本明細書中で定義されるボイド率が3%以下である請求項7に記載の成形品。
PCT/JP2012/079731 2012-01-10 2012-11-16 炭素繊維強化ポリプロピレンシートおよびその成形品 WO2013105340A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12865486.0A EP2803693B1 (en) 2012-01-10 2012-11-16 Carbon fiber-reinforced polypropylene sheet and molded article thereof
KR1020147018358A KR101925822B1 (ko) 2012-01-10 2012-11-16 탄소 섬유 강화 폴리프로필렌 시트 및 그 성형품
ES12865486T ES2781831T3 (es) 2012-01-10 2012-11-16 Lámina de polipropileno reforzada con fibra de carbono y artículo moldeado con la misma
CN201280066385.0A CN104039873B (zh) 2012-01-10 2012-11-16 碳纤维增强聚丙烯片材及其成型品
US14/371,247 US9475920B2 (en) 2012-01-10 2012-11-16 Carbon fiber-reinforced polypropylene sheet and molded article thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012001810 2012-01-10
JP2012-001810 2012-01-10

Publications (1)

Publication Number Publication Date
WO2013105340A1 true WO2013105340A1 (ja) 2013-07-18

Family

ID=48781304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079731 WO2013105340A1 (ja) 2012-01-10 2012-11-16 炭素繊維強化ポリプロピレンシートおよびその成形品

Country Status (9)

Country Link
US (1) US9475920B2 (ja)
EP (1) EP2803693B1 (ja)
JP (1) JP6064564B2 (ja)
KR (1) KR101925822B1 (ja)
CN (1) CN104039873B (ja)
ES (1) ES2781831T3 (ja)
PT (1) PT2803693T (ja)
TW (1) TWI554556B (ja)
WO (1) WO2013105340A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173420A (ja) * 2018-06-15 2018-11-08 卯 石井 放射線透過低減構成基材

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870531B (zh) 2012-12-21 2017-05-31 东丽株式会社 纤维增强热塑性树脂成型品、纤维增强热塑性树脂成型材料及纤维增强热塑性树脂成型材料的制造方法
CN103571036A (zh) * 2013-11-13 2014-02-12 上海交通大学 回收碳纤维增强聚丙烯复合材料及其制备方法
FR3027546B1 (fr) * 2014-10-24 2017-07-21 Porcher Ind Meches poudrees par procede electrostatique
KR20170087481A (ko) * 2014-11-26 2017-07-28 도레이 카부시키가이샤 탄소 섬유 매트, 프리폼, 시트 재료 및 성형품
PL3095818T3 (pl) * 2015-05-22 2019-09-30 Borealis Ag Kompozyt polipropylen-włókno węglowe
EP3095819B1 (en) * 2015-05-22 2018-12-05 Borealis AG Low density carbon fibers filled materials
CN105197754A (zh) * 2015-10-19 2015-12-30 江苏海迅铁路器材集团股份有限公司 一种复合材料电梯梯级
CN105482247A (zh) * 2015-12-04 2016-04-13 福建海源新材料科技有限公司 一种具有导电性能的玻璃纤维聚丙烯电池盒及其制备方法
EP3184586B1 (en) * 2015-12-23 2019-04-10 Borealis AG Light weight fiber reinforced polypropylene composition
CN105754193A (zh) * 2016-04-25 2016-07-13 宁波伯乐智能装备有限公司 一种热塑性复合材料产品
CN106015334B (zh) * 2016-05-18 2019-05-07 西安爱德华测量设备股份有限公司 一种气浮导轨材料及其制造方法和气浮导轨
JP6648299B2 (ja) 2016-10-27 2020-02-14 リンテック株式会社 誘電加熱接着フィルム、及び誘電加熱接着フィルムを用いた接着方法
JP6939004B2 (ja) * 2017-03-24 2021-09-22 富士フイルムビジネスイノベーション株式会社 樹脂成形体用樹脂組成物、及び樹脂成形体
WO2018218423A1 (zh) * 2017-05-27 2018-12-06 江苏莘翔机电有限公司 混杂纤维增强的聚丙烯复合材料
PL3434728T3 (pl) * 2017-07-28 2021-06-14 Borealis Ag Kompozycja polipropylenowa wzmocniona długimi włóknami węglowymi
TWI665241B (zh) * 2017-11-16 2019-07-11 上緯企業股份有限公司 積層體及成形體
JP7211701B2 (ja) * 2017-12-13 2023-01-24 三菱製紙株式会社 炭素短繊維湿式不織布及び炭素繊維強化樹脂
JPWO2019235299A1 (ja) * 2018-06-07 2021-06-17 東レ株式会社 一体化成形体及びその製造方法
CN109852045B (zh) * 2018-12-24 2022-03-25 余姚中国塑料城塑料研究院 一种微孔发泡长碳纤维增强pa11材料及其制备方法
CN110734603A (zh) * 2019-09-03 2020-01-31 会通新材料股份有限公司 一种碳纤维增强聚丙烯复合材料预浸润碳纤维布及其制备方法
CN110862607B (zh) * 2019-11-25 2022-07-26 南通复源新材料科技有限公司 一种基于超声波技术的再生碳纤维增强pp材料及其制备方法
JP7422637B2 (ja) * 2020-03-30 2024-01-26 住友化学株式会社 炭素繊維含有ポリプロピレン組成物
CN113619168A (zh) * 2020-05-06 2021-11-09 天津金锐宏升科技发展有限公司 一种碳纤维织物增强热塑性复合材料的制备方法
KR102563914B1 (ko) * 2021-06-15 2023-08-08 지에스칼텍스 주식회사 섬유강화 복합재 조성물, 섬유강화 복합재 및 이의 성형품
CN113997591B (zh) * 2021-11-16 2023-04-25 航天特种材料及工艺技术研究所 一种立体网状结构树脂基防热层及其制备方法和应用
KR20230101426A (ko) 2021-12-29 2023-07-06 전한용 재활용 탄소 섬유 강화 폴리프로필렌 시트의 제조방법 및 그 시트

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139850A (ja) * 1987-11-25 1989-06-01 Toho Rayon Co Ltd 導電性材料成形用シート
JP2002003616A (ja) 2000-06-19 2002-01-09 Asahi Kasei Corp 長繊維含有樹脂ペレツト
JP2005213478A (ja) * 2004-02-02 2005-08-11 Idemitsu Kosan Co Ltd ポリオレフィン系炭素繊維強化樹脂組成物及びそれからなる成形品
WO2007020910A1 (ja) 2005-08-18 2007-02-22 Teijin Techno Products Limited 等方性の繊維強化熱可塑性樹脂シートとその製造方法並びに成形板
WO2007097436A1 (ja) * 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法
JP2008169344A (ja) 2007-01-15 2008-07-24 Toray Ind Inc 熱可塑性樹脂組成物
JP2010150358A (ja) 2008-12-25 2010-07-08 Toray Ind Inc 成形材料
JP2010235779A (ja) 2009-03-31 2010-10-21 Toray Ind Inc プリプレグ、プリフォームおよび成形品
JP2011178891A (ja) * 2010-03-01 2011-09-15 Teijin Ltd 炭素繊維複合材料
JP2012149170A (ja) * 2011-01-19 2012-08-09 Teijin Ltd 炭素繊維強化ポリオレフィン系樹脂複合材料およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803694B1 (en) * 2008-07-31 2019-09-18 Toray Industries, Inc. Prepreg, preform, molded product, and method for manufacturing prepreg
JP2010150359A (ja) * 2008-12-25 2010-07-08 Toray Ind Inc 繊維強化成形品
EP2371505B1 (en) * 2008-12-25 2018-04-25 Toray Industries, Inc. Molding material, and resin-adhered reinforced fiber bundle
DE102009011137A1 (de) * 2009-03-03 2010-09-09 Seleon Gmbh Verdunstungskammer, Zwischenkammer sowie Verfahren
TWI495672B (zh) * 2010-01-29 2015-08-11 Toray Industries 纖維強化熱塑性樹脂組成物、強化繊維束、及纖維強化熱塑性樹脂組成物之製造方法
JP5620694B2 (ja) * 2010-03-03 2014-11-05 三菱レイヨン株式会社 炭素繊維強化ポリプロピレン樹脂組成物を製造する方法および樹脂組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139850A (ja) * 1987-11-25 1989-06-01 Toho Rayon Co Ltd 導電性材料成形用シート
JP2002003616A (ja) 2000-06-19 2002-01-09 Asahi Kasei Corp 長繊維含有樹脂ペレツト
JP2005213478A (ja) * 2004-02-02 2005-08-11 Idemitsu Kosan Co Ltd ポリオレフィン系炭素繊維強化樹脂組成物及びそれからなる成形品
WO2007020910A1 (ja) 2005-08-18 2007-02-22 Teijin Techno Products Limited 等方性の繊維強化熱可塑性樹脂シートとその製造方法並びに成形板
WO2007097436A1 (ja) * 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法
JP2008169344A (ja) 2007-01-15 2008-07-24 Toray Ind Inc 熱可塑性樹脂組成物
JP2010150358A (ja) 2008-12-25 2010-07-08 Toray Ind Inc 成形材料
JP2010235779A (ja) 2009-03-31 2010-10-21 Toray Ind Inc プリプレグ、プリフォームおよび成形品
JP2011178891A (ja) * 2010-03-01 2011-09-15 Teijin Ltd 炭素繊維複合材料
JP2012149170A (ja) * 2011-01-19 2012-08-09 Teijin Ltd 炭素繊維強化ポリオレフィン系樹脂複合材料およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHIANG W.Y.; HUANG C.Y., COMPOSITES POLYMER, vol. 4, 1991, pages 251
DRZAL, L.T., MATER. SCI. ENG., vol. A126, 1990, pages 289

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173420A (ja) * 2018-06-15 2018-11-08 卯 石井 放射線透過低減構成基材

Also Published As

Publication number Publication date
TWI554556B (zh) 2016-10-21
ES2781831T3 (es) 2020-09-08
KR20140116393A (ko) 2014-10-02
JP6064564B2 (ja) 2017-01-25
EP2803693B1 (en) 2020-03-04
CN104039873B (zh) 2017-02-08
KR101925822B1 (ko) 2018-12-06
TW201339217A (zh) 2013-10-01
EP2803693A4 (en) 2015-09-16
CN104039873A (zh) 2014-09-10
JP2013163805A (ja) 2013-08-22
US9475920B2 (en) 2016-10-25
EP2803693A1 (en) 2014-11-19
PT2803693T (pt) 2020-04-08
US20140357777A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
JP6064564B2 (ja) 炭素繊維強化ポリプロピレンシートおよびその成形品
JP5309563B2 (ja) 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法
JP4862913B2 (ja) プリプレグおよびプリフォーム
JP6406011B2 (ja) サンドイッチ構造体、それを用いた一体化成形品およびそれらの製造方法
JP4807477B2 (ja) プレス成形品の製造方法
US10093777B2 (en) Fiber-reinforced resin sheet, integrated molded product and process for producing same
JP5626330B2 (ja) 繊維強化樹脂シート、成形体、一体化成形品およびそれらの製造方法、ならびに実装部材
WO2013108811A1 (ja) 繊維強化ポリプロピレン樹脂組成物、成形材料ならびにプリプレグ
JP6822147B2 (ja) 構造体
JP6197968B1 (ja) 構造体の製造方法
JP5641080B2 (ja) 繊維強化樹脂シート、一体化成形品およびその製造方法、並びに実装部材
WO2017110532A1 (ja) 構造体
JP2014095034A (ja) 成形品及び成形品の製造方法
JP6107154B2 (ja) プリプレグ
WO2019189384A1 (ja) 成形品の製造方法
JP2014028511A (ja) プレス成形用中間基材、プリフォーム、および成形品の製造方法
JP6123965B1 (ja) 構造体
WO2022202512A1 (ja) 繊維強化樹脂、多孔質構造体、成形部材
JP2013203833A (ja) 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法
JP2018024762A (ja) プリプレグ
JP2019178450A (ja) 繊維基材の製造方法および成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012865486

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147018358

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371247

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE