WO2017045273A1 - 一种气凝胶-金属复合材料及其制备方法和应用 - Google Patents

一种气凝胶-金属复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2017045273A1
WO2017045273A1 PCT/CN2015/095828 CN2015095828W WO2017045273A1 WO 2017045273 A1 WO2017045273 A1 WO 2017045273A1 CN 2015095828 W CN2015095828 W CN 2015095828W WO 2017045273 A1 WO2017045273 A1 WO 2017045273A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerogel
metal
composite
metal composite
composite material
Prior art date
Application number
PCT/CN2015/095828
Other languages
English (en)
French (fr)
Inventor
杨国强
张涛
王双青
李光武
Original Assignee
中国科学院化学研究所
弘大科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院化学研究所, 弘大科技(北京)有限公司 filed Critical 中国科学院化学研究所
Publication of WO2017045273A1 publication Critical patent/WO2017045273A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols

Definitions

  • the invention relates to a porous metal material and a preparation method thereof, in particular to an aerogel-metal porous composite material and a preparation method thereof.
  • metal porous materials are a new type of engineering materials with both functional and structural properties.
  • This lightweight material not only retains the weldability, electrical conductivity and good mechanical stability of the metal, but also has low density, large specific surface area, high porosity, electromagnetic shielding, good permeability, low thermal conductivity, and energy absorption.
  • Characteristics of porous materials such as shock absorption, noise reduction and noise reduction.
  • Porous metal materials have important significance in the fields of filtration and separation, fluid distribution and control, heat exchange, energy absorption and damping, noise reduction and noise reduction, electrode material manufacturing, catalyst and carrier preparation, fluid storage and exchange, etc. Increasing is the focus and hotspot of the international materials industry.
  • the traditional porous metal preparation methods include powder metallurgy, fiber sintering, hollow sphere sintering, melt foaming, melt blowing, seepage casting, metal deposition, solid-gas eutectic solidification, and investment. Casting method, self-propagating high-temperature synthesis method, etc.
  • the above methods generally have the disadvantages of complicated equipment and processes, high energy consumption, and low yield, and it is difficult to control the final pore structure, and in particular, it is difficult to effectively control the microstructure.
  • Aerogel as an ultra-light material with a density comparable to air, with an oversized surface area Product and porosity, with a variety of specific properties such as super insulation, super adsorption capacity and good stability.
  • the main research directions of aerogels in recent years have focused on their preparation studies, and the comprehensive utilization of aerogels still lacks in-depth development.
  • the invention utilizes the ultra-low density of the aerogel and the super-adsorption and restriction of the mesopores to the gas, thereby obtaining a novel aerogel-metal lightweight composite material having a multi-stage micro-nano structure.
  • An aerogel-metal composite characterized in that the aerogel is dispersed in a metal material.
  • the particle size of the aerogel in the composite material is preferably from 0.1 ⁇ m to 10 cm, more preferably from 0.5 ⁇ m to 1 cm, for example from 1 to 800 ⁇ m, or from 5 to 500 ⁇ m.
  • the particle size distribution of the aerogel dispersed in the metal material may be distributed over a wide range, for example, in the range of 0.1 ⁇ m to 10 cm, or 0.5 ⁇ m to 1 cm, or 1 to 800 ⁇ m, or 5 to 500 ⁇ m. It is also possible to distribute in a relatively narrow range, for example, in the range of 0.1-3 ⁇ m, 2-50 ⁇ m, 4-10 ⁇ m, 60-100 ⁇ m, and the like.
  • the shape of the aerogel may be spherical, flaky, and irregular granules.
  • the particle size refers to the diameter of the aerogel.
  • the particle size refers to the size at the maximum radial extent of the aerogel.
  • the aerogel has pores, and the size of the pores is preferably from 3 to 100 nm, more preferably 5-50nm.
  • the aerogel preferably has a density of from 0.001 to 0.5 g/cm 3 , more preferably from 0.005 to 0.4 g/cm 3 , still more preferably from 0.01 to 0.3 g/cm 3 .
  • the volume ratio of the aerogel to the metal is preferably from 1:0.25 to 1:25.
  • the aerogel is preferably stable at a high temperature (for example, not easily softened or oxidized, etc.) and is capable of retaining its own micro/nanoporous properties.
  • the aerogels can be inorganic aerogels, organic and carbon aerogels, composite aerogels, and hybrid aerogels.
  • the inorganic aerogel preferably comprises at least one of silica, titania, zirconia, alumina, cerium oxide, copper oxide, iron oxide aerogel, and mixtures thereof.
  • the organic and carbon aerogel is preferably melamine-formaldehyde aerogel, resorcinol-formaldehyde aerogel, polyimide aerogel, carbon fiber aerogel, carbon nanotube aerogel, graphene gas At least one of the gels and mixtures thereof, but excluding polystyrene aerogels, cellulose aerogels, chitosan aerogels.
  • the composite aerogel preferably comprises an inorganic-inorganic composite aerogel and an organic-organic composite aerogel.
  • the hybrid aerogel comprises an alkyl hybrid silica aerogel, an aryl hybrid silica aerogel, and a silsesquioxane aerogel.
  • the aerogel further comprises a doped aerogel obtained by doping the aerogel described above, and the doping component can be various catalytically active metal particles, metal oxides, metal salts, and having photoelectricity. , semiconductor particles of electromagnetic properties, and one or more of carbon, graphene, and carbon nanotubes.
  • the metal in the aerogel-metal composite material is preferably at least one of gold, silver, platinum, palladium, rhodium, copper, iron, magnesium, aluminum, titanium, tin, lead, manganese or Mixtures and alloys, but are not limited to the above metal materials.
  • the aerogel-metal composite of the present invention may be in a variety of shapes, such as a block or ribbon, the shape of which may vary depending on the shape of the mold.
  • the composite density may range from 0.10 to 19.0g / cm 3, preferably 0.2-15g / cm 3, and more preferably 0.5-10g / cm 3, a density of 99% to 5% of the pure metal. It is preferably 98% to 10%, more preferably 95% to 30%.
  • the aerogel powder acts as a reinforcing agent to chemically interact with the metal through its surface to bond firmly with the metal.
  • the nanopores inside the aerogel are maintained due to better stability, forming an aerogel-metal porous composite material with a certain strength.
  • the aerogel serves as a forming template to impart a porous structure to the composite.
  • the aerogel has a much lower density than the metal, and the aerogel occupies a part of the space of the composite, which can effectively reduce the overall density of the composite. Aerogel-metal porous composite materials having different pore structures, different overall densities, and different strengths can be obtained according to the type, particle size, and amount of aerogel powder.
  • the aerogel-metal composite material of the invention has the characteristics of low density and high strength, and can be applied to aerospace, military, construction, machinery and the like.
  • the invention also provides a preparation method of an aerogel-metal composite material, comprising the steps of: mixing an aerogel with a metal, heating to melt the metal, or mixing the aerogel with the metal melt, and then mixing the mixture The mold was cooled to obtain the aerogel-metal composite.
  • the particle diameter of the aerogel is preferably between 0.1 ⁇ m and 10 cm, more preferably from 0.5 ⁇ m to 1 cm, for example from 1 to 800 ⁇ m, or from 5 to 500 ⁇ m.
  • the aerogel may be an aerogel of uniform particle size or a mixture of aerogels of various particle sizes.
  • the shape of the aerogel may be spherical, flaky, and irregular granules.
  • the aerogel has pores, and the pores preferably have a size of from 3 to 100 nm, more preferably from 5 to 50 nm.
  • the aerogel preferably has a density of from 0.001 to 0.5 g/cm 3 , more preferably from 0.005 to 0.4 g/cm 3 , still more preferably from 0.01 to 0.3 g/cm 3 .
  • the aerogel material is pulverized and sieved by a pulverizer (for example, a high speed pulverizer).
  • a pulverizer for example, a high speed pulverizer
  • the metal used in the method may be in any form, for example it may be one of a block, a granule or a powder or a mixture thereof.
  • the volume ratio of the aerogel to the metal used to prepare the aerogel-metal composite is preferably from 1:0.25 to 1:25.
  • the aerogel is sufficiently mixed (for example, stirred) with the molten metal.
  • the above operating temperature at the time of thorough mixing is 0 to 500 ° C higher than the melting point of the corresponding metal, but does not include 0 ° C.
  • the operating temperature is preferably 660.3 to 160.3 ° C.
  • the temperature is gradually increased from room temperature to the desired operating temperature, and the rate of temperature rise is from 0 to 200 ° C/min, but does not include 0 ° C / min; preferably from 10 to 100 ° C / min.
  • the mixture is incubated at the operating temperature for 0-4 hours, preferably 1-3 hours.
  • the mixture is cooled and formed in a mold, for example to room temperature, at a cooling temperature of 0-100 ° C / min, but excluding 0 ° C / min; preferably 5 - 40 ° C / min, for example 10-30 °C.
  • metal melting, material mixing, and cooling forming are operated under a gas atmosphere including one of air, oxygen, nitrogen, argon, hydrogen, carbon monoxide, and the like, or a mixture thereof.
  • the aerogel component in the aerogel-metal composite can be selectively removed to obtain a pure metal micro-nano porous material.
  • Silica aerogel-metal In the case of a composite material, silica aerogel can be selectively removed by HF.
  • the present invention further provides a method for producing a porous metal material comprising: selectively removing an aerogel in the aerogel-metal composite according to the present invention to obtain a porous metal material.
  • the method of selectively removing aerogel can be removed using known methods disclosed in the prior art, such as by etching.
  • the silica aerogel therein can be selectively removed using HF.
  • the aerogel-metal composite material of the invention uses an aerogel as a reinforcing phase and a porogen, and can adjust the microstructure of the composite material according to the type, shape, size and usage amount of the aerogel, thereby adjusting The overall density and strength of the composite.
  • the composite material of the invention has the characteristics of low density and high strength, and can be used as a novel structural material in the fields of aerospace, military, construction, machinery and the like.
  • the preparation method of the aerogel-metal composite material of the invention has the advantages of simple process and convenient operation, and can realize rapid and large-scale preparation of such new materials. Moreover, the preparation method has wide adaptability and can be applied to preparation of various aerogel-metal composite materials.
  • Example 1 is a scanning electron micrograph of a silica aerogel powder prepared in Example 1.
  • 2 is a graph showing the relationship between the amount of silica aerogel-aluminum metal composite aerogel added (volume percent) prepared in Example 1 and the density of the composite.
  • 3 is a real shot view of a silica aerogel-aluminum metal composite prepared in Example 2.
  • a silica aerogel having a density of 0.01 g/cm 3 was placed in a high-speed pulverizer, and pulverized at 2000-0000 rpm for 1 to 200 minutes to obtain a silica aerogel powder.
  • the above-mentioned powder was passed through a mesh of 100 mesh, 1000 mesh, and 2500 mesh in this order to obtain an aerogel powder having a particle diameter of about 5 ⁇ m.
  • the silica aerogel powder and the aluminum powder are uniformly mixed in a certain ratio, and the volume ratio of the aerogel powder to the aluminum powder is 1:1 to 1:25.
  • the aluminum powder used had a particle size of 300 mesh.
  • the mixture of the above aerogel and aluminum powder was placed in a closed vessel and heated from room temperature to 660-800 ° C under a nitrogen atmosphere at a temperature increase rate of 5-200 ° C / min. After the aluminum is melted, a certain intensity of agitation is applied to further mix the system. The holding time is 0-4 hours. After the impurities such as the upper oxidized slag are removed, the mixture of the aluminum liquid and the silica aerogel is transferred into a mold and cooled to form a cooling temperature of 5 to 100 ° C / min. After the mixture is cooled to a certain temperature and then demolded, a silica aerogel-aluminum micro/nano porous composite material having a certain shape is obtained. The resulting composite had a density of from 1.73 to 2.62 g/cm 3 .
  • a uniform silica aerogel powder having a particle diameter of about 5 ⁇ m was obtained.
  • the aluminum particles of a certain particle size are melted under the protection of nitrogen, and the aluminum particles used have a particle diameter of 0.1 to 20 mm and a heating rate of 5 to 200 ° C / min.
  • the aerogel powder is added, and the volume ratio of the aerogel powder to the aluminum liquid is 1:1 to 1:25, and the system is uniformly mixed by applying a certain intensity of stirring.
  • a silica aerogel-aluminum porous composite having a certain shape was obtained, and the obtained composite had a density of 1.82-2.64 g/cm 3 .
  • an alumina aerogel having a density of 0.030 g/cm 3 was pulverized and sieved to obtain a uniform alumina aerogel powder.
  • the above alumina aerogel powder and the copper powder are uniformly mixed in a certain ratio, and the volume ratio of the aerogel powder to the copper powder is 1:1 to 1:25.
  • the particle diameter of the copper powder used is preferably from 300 mesh to 10 mesh.
  • the aerogel and copper powder mixture was placed in a closed vessel and heated from room temperature to 1100-1300 ° C under argon atmosphere at a rate of 5 to 200 ° C/min. After the copper is melted, a certain intensity of agitation is applied to further mix the system. The holding time is 0-4 hours.
  • the mixture of the copper liquid and the alumina aerogel is transferred into a mold and cooled to form a cooling temperature of 5 to 100 ° C / min. After the mixture is cooled to a certain temperature and then demolded, an alumina aerogel-copper porous composite material having a certain shape is obtained. The resulting composite has a density of from 6.07 to 8.90 g/cm 3 .

Abstract

一种气凝胶-金属复合材料及其制备方法和应用。该气凝胶-金属复合材料中,所述气凝胶分散在金属材料中。所述气凝胶的粒径优选为0.1μm-10cm。所述气凝胶具有孔洞,所述孔洞的尺寸优选为3-100nm。所述气凝胶-金属复合材料的制备方法,包括以下步骤:将气凝胶与金属混合后加热使金属熔融,或者将气凝胶与金属熔融液混合,再将上述混合物于模具中冷却即可获得。该复合材料具有密度低、强度高的特点,可作为一种新型结构材料应用于航天、军事、建筑、机械等领域。

Description

一种气凝胶-金属复合材料及其制备方法和应用 技术领域
本发明涉及一种多孔金属材料及其制备方法,具体涉及一种气凝胶-金属多孔复合材料及其制备方法。
背景技术
金属多孔材料作为一种重要的多孔材料,是一种兼具功能和结构双重属性的新型工程材料。这种轻质材料不仅保留了金属的可焊性、导电性以及良好的机械稳定性,而且具有密度低、比表面积大、高孔隙率、电磁屏蔽、良好的渗透能力、低热导率、吸能减震、消音降噪等多孔材料的特性。多孔金属材料在过滤与分离、流体分布与控制、热量交换、吸能减震和消音降噪、电极材料制造、催化剂及载体制备、流体存储与交换等领域有重要的意义,其研究与应用在不断增加,是国际材料界的重点与热点方向。
传统的多孔金属制备方法有粉末冶金法、纤维烧结法、中空球烧结法、熔体发泡法、熔体吹气法、渗流铸造法、金属沉积法、固-气共晶凝固法、熔模铸造法、自蔓延高温合成法等。但是上述方法一般具有设备及工艺复杂、能耗大、成品率不高等缺点,且难以控制获得最终的孔结构,特别是难以对微观结构进行有效调控。
气凝胶作为一种密度可与空气相当的超轻材料,具有超大的比表面 积与孔隙率,具有超强隔热能力、超强吸附能力以及良好的稳定性等多种特异性质。但是近些年来关于气凝胶的主要研究方向都集中于其制备研究,对气凝胶的综合利用还缺少深度的开发。
发明内容
本发明的目的在于提供一种气凝胶-金属复合材料及其制备方法和用途。本发明利用气凝胶具有超低密度以及其介孔对气体的超强吸附与限制作用,从而获得一种新型的具有多级微纳结构的气凝胶-金属轻质复合材料。
本发明通过以下技术方案实现:
一种气凝胶-金属复合材料,其特征在于,所述气凝胶分散在金属材料中。
根据本发明,所述复合材料中的气凝胶的粒径优选为0.1μm-10cm,更优选为0.5μm-1cm,例如为1-800μm,或5-500μm。所述分散于金属材料中的气凝胶的粒径分布,可以在较宽的范围内分布,例如在0.1μm-10cm,或0.5μm-1cm,或1-800μm,或5-500μm范围内分布,也可以在相对较窄的范围内分布,例如在0.1-3μm、2-50μm、4-10μm、60-100μm等范围内分布。
所述气凝胶的形状可为球状、片状及不规则的颗粒状。对于球状的气凝胶,其粒径是指气凝胶的直径。对于非球状的气凝胶,其粒径是指气凝胶最大径向处的尺寸。
所述气凝胶具有孔洞,所述孔洞的尺寸优选为3-100nm,更优选为 5-50nm。
所述气凝胶的密度优选为0.001-0.5g/cm3,更优选为0.005-0.4g/cm3,又优选0.01-0.3g/cm3。根据本发明,所述气凝胶与金属的体积比优选为1:0.25至1:25。
根据本发明,所述气凝胶优选在高温下性质稳定(例如不易软化变形或氧化变质等),能够保持其本身的微纳多孔特性。所述气凝胶可为无机气凝胶、有机及碳气凝胶、复合气凝胶以及杂化气凝胶。所述无机气凝胶优选包括二氧化硅、二氧化钛、氧化锆、氧化铝、氧化矾、氧化铜、铁的氧化物气凝胶中的至少一种以及它们的混合物。所述有机及碳气凝胶优选为三聚氰胺-甲醛气凝胶、间苯二酚-甲醛气凝胶、聚酰亚胺气凝胶、碳纤维气凝胶、碳纳米管气凝胶、石墨烯气凝胶中的至少一种以及它们的混合物,但不包括聚苯乙烯气凝胶、纤维素气凝胶、壳聚糖气凝胶。所述复合气凝胶优选包括无机-无机复合气凝胶以及有机-有机复合气凝胶。所述杂化气凝胶包括烷基杂化的二氧化硅气凝胶、芳基杂化的二氧化硅气凝胶以及倍半硅氧烷气凝胶。
根据本发明,所述气凝胶还包括上述气凝胶经掺杂后得到的掺杂气凝胶,掺杂成分可为各种具有催化活性的金属粒子、金属氧化物、金属盐,具有光电、电磁性质的半导体粒子,以及炭、石墨烯、碳纳米管中的一种或多种。
根据本发明,所述气凝胶-金属复合材料中的金属优选为金、银、铂、钯、铱、铜、铁、镁、铝、钛、锡、铅、锰中的至少一种或其混合物及合金,但不限于上述金属材料。
本发明所述气凝胶-金属复合材料可为多种形状,例如块体或带状,其形状可依据模具的形状而变化。所述复合材料密度范围可为0.10至19.0g/cm3,优选0.2-15g/cm3,更优选0.5-10g/cm3,密度为纯金属的99%-5%。优选为98%-10%,更优选为95%-30%。
在高温下,所述气凝胶粉末作为补强剂通过其表面与金属发生化学作用,从而与金属牢固结合。同时气凝胶内部的纳米孔洞由于较好的稳定性而得以保持,形成具有一定强度的气凝胶-金属多孔复合材料。气凝胶作为成型模板,赋予复合材料多孔结构。此外,气凝胶的密度远小于金属,气凝胶占据复合材料的一部分空间,可有效降低复合材料的总体密度。可根据气凝胶粉末的种类、粒径大小及使用量获得具有不同孔结构、不同总体密度以及不同强度的气凝胶-金属多孔复合材料。
本发明所述的气凝胶-金属复合材料具有密度低、强度高的特点,可应用于航天、军事、建筑、机械等领域。
本发明还提供一种气凝胶-金属复合材料的制备方法,包括以下步骤:将气凝胶与金属混合后加热使金属熔融,或者将气凝胶与金属熔融液混合,再将上述混合物于模具中冷却,得到所述气凝胶-金属复合材料。
根据本发明,在上述方法中,所述气凝胶的粒径优选介于0.1μm至10cm之间,更优选为:0.5μm-1cm,例如为1-800μm,或5-500μm。所述气凝胶可为粒径均一的气凝胶或者各种粒径气凝胶的混合物。
所述气凝胶的形状可为球状、片状及不规则的颗粒状。
所述气凝胶具有孔洞,所述孔洞的尺寸优选为:3-100nm,更优选:5-50nm。
所述气凝胶的密度优选为0.001-0.5g/cm3,更优选为0.005-0.4g/cm3,又优选0.01-0.3g/cm3
根据本发明,优选的,以粉碎机(例如高速粉碎机)对气凝胶材料进行粉碎并筛分。
根据本发明,所述方法中使用的金属可以为任意形态,例如其可为块状、颗粒状或粉末状中的一种或其混合物。
根据本发明,所述用于制备气凝胶-金属复合材料的气凝胶与金属的体积比优选为1:0.25至1:25。
根据本发明,在上述制备方法中,优选的,在金属熔融后,使气凝胶与金属熔融液充分混合(例如搅拌)。上述充分混合时的操作温度比相应金属的熔点高0-500℃,但不包括0℃,以铝为例,操作温度优选为660.3-1160.3℃。温度由室温逐渐升至所需操作温度,升温速率为0-200℃/min,但不包括0℃/min;优选10-100℃/min。所述混合物在操作温度下保温0-4小时,优选1-3小时。
根据本发明,所述混合物在模具中冷却成型,例如冷却至室温,冷却温度速率为0-100℃/min,但不包括0℃/min;优选5-40℃/min,例如为10-30℃。
根据本发明,金属融化、物料混合及冷却成型在一定的气体气氛下操作,所述气体包括空气、氧气、氮气、氩气、氢气、一氧化碳等中的一种或其混合物。
根据本发明,所述气凝胶-金属复合材料中的气凝胶成分可以被选择性的去除,从而得到纯金属微纳多孔材料。以二氧化硅气凝胶-金属 复合材料为例,可以用HF选择性的去除二氧化硅气凝胶。
本发明进一步还提供一种金属多孔材料的制备方法,包括:将本发明所述的气凝胶-金属复合材料中的气凝胶选择性的除去,得到金属多孔材料。
根据本发明,所述选择性去除气凝胶的方法可以使用现有技术中公开的已知方法,例如通过腐蚀去除。
在一个实施方式中,对于二氧化硅气凝胶-金属复合材料,可以使用HF选择性地去除其中的二氧化硅气凝胶。
本发明所述的气凝胶-金属复合材料以气凝胶作为增强相以及致孔剂,可根据气凝胶的种类、形状、大小以及使用量来调节所述复合材料的微观结构,从而调节所述复合材料的总体密度以及强度。本发明的复合材料具有密度低、强度高的特点,可作为一种新型结构材料应用于航天、军事、建筑、机械等领域。本发明所述的气凝胶-金属复合材料的制备方法,工艺简单,操作方便,可实现这类新材料的快速大量制备。并且该制备方法适应性广,可适于多种气凝胶-金属复合材料制备。
附图说明
图1为实施例1中制备的二氧化硅气凝胶粉末的扫描电镜图。图2为实施例1中制备的二氧化硅气凝胶-铝金属复合材料气凝胶加入量(体积百分比)与复合材料密度的对应关系图。图3为实施例2中制备的二氧化硅气凝胶-铝金属复合材料的实拍图。
具体实施方式
本发明通过下述实施例和附图对本发明进行详细说明。但本领域技术人员了解,下述实施例不是对本发明保护范围的限制,任何在本发明基础上做出的改进和变化,都在本发明的保护范围之内。
实施例1
将密度为0.01g/cm3的二氧化硅气凝胶加入高速粉碎机,在2000-50000r/min的转速下粉碎1-200min,即获得二氧化硅气凝胶粉末。将上述粉末依次通过100目、1000目、2500目的筛网,可获得粒径为5μm左右的气凝胶粉末。将上述二氧化硅气凝胶粉末与铝粉以一定比例混合均匀,气凝胶粉末与铝粉的体积比为1:1至1:25。所用铝粉的粒径为300目。将上述气凝胶与铝粉的混合物置于密闭容器中,在氮气保护下由室温加热至660-800℃,升温速率5-200℃/min。待铝融化后,施以一定强度的搅拌,使体系进一步混合均匀。保温时间为0-4小时。撇去上层的氧化渣等杂质后,将铝液与二氧化硅气凝胶的混合物转入模具中,冷却成型,冷却温度为5-100℃/min。待混合物冷却至一定温度后脱模,即得具有一定外形的二氧化硅气凝胶-铝微纳多孔复合材料。所得复合材料的密度为1.73-2.62g/cm3
实施例2
根据实施例1中所述方法,制得粒径为5μm左右的均匀的二氧化硅气凝胶粉末。将一定粒度的铝颗粒在氮气保护下融化,所用铝颗粒的粒 径为0.1-20mm,升温速率为5-200℃/min。待铝粒完全融化后加入上述气凝胶粉末,气凝胶粉末与铝液的体积比为1:1至1:25,施以一定强度的搅拌使体系混合均匀。采用实施例1中所述冷却成型及脱模方法,即得具有一定外形的二氧化硅气凝胶-铝多孔复合材料,所得复合材料密度为1.82-2.64g/cm3
实施例3
根据实施例1中所述方法,将密度为0.030g/cm3的氧化铝气凝胶粉碎筛分得到均匀的氧化铝气凝胶粉末。将上述氧化铝气凝胶粉末与铜粉以一定比例混合均匀,气凝胶粉末与铜粉的体积比为1:1至1:25。所用铜粉的粒径优选为300目至10目。将上述气凝胶与铜粉的混合物置于密闭容器中,在氩气保护下由室温加热至1100-1300℃,升温速率为5-200℃/min。待铜融化后,施以一定强度的搅拌,使体系进一步混合均匀。保温时间为0-4小时。撇去上层的氧化渣等杂质后,将铜液与氧化铝气凝胶的混合物转入模具中,冷却成型,冷却温度为5-100℃/min。待混合物冷却至一定温度后脱模,即得具有一定外形的氧化铝气凝胶-铜多孔复合材料。所得复合材料的密度为6.07-8.90g/cm3

Claims (10)

  1. 一种气凝胶-金属复合材料,其特征在于,所述气凝胶分散在金属材料中。
  2. 如权利要求1所述的气凝胶-金属复合材料,其中,所述气凝胶的粒径为0.1μm至10cm,优选为0.5μm-1cm,例如为1-800μm,或5-500μm。
  3. 如权利要求1或2所述的气凝胶-金属复合材料,所述气凝胶的形状可为球状、片状及不规则的颗粒状;优选的,所述分散于金属材料中的气凝胶的粒径分布,可以在较宽的范围内分布,例如在0.1μm-10cm,或0.5μm-1cm,或1-800μm,或5-500μm范围内分布,也可以在相对较窄的范围内分布,例如在0.1-3μm、2-50μm、4-10μm、或60-100μm等范围内分布。
  4. 如权利要求1-3任一项所述的气凝胶-金属复合材料,其中,所述气凝胶具有孔洞,所述孔洞的尺寸优选为:3-100nm,更优选5-50nm;优选的,所述气凝胶的密度为0.001-0.5g/cm3,更优选为0.005-0.4g/cm3,又优选0.01-0.3g/cm3
  5. 如权利要求1-4任一项所述的气凝胶-金属复合材料,其中,所述气凝胶可为无机气凝胶、有机及碳气凝胶、复合气凝胶以及杂化气凝胶。所述无机气凝胶优选包括二氧化硅、二氧化钛、氧化锆、氧化铝、氧化矾、氧化铜、铁的氧化物气凝胶中的至少一种以及它们的混合物。所述有机及碳气凝胶优选为三聚氰胺-甲醛气凝胶、间苯二酚-甲醛气凝胶、聚 酰亚胺气凝胶、碳纤维气凝胶、碳纳米管气凝胶、石墨烯气凝胶中的至少一种以及它们的混合物,但不包括聚苯乙烯气凝胶、纤维素气凝胶、壳聚糖气凝胶。所述复合气凝胶优选包括无机-无机复合气凝胶以及有机-有机复合气凝胶。所述杂化气凝胶包括烷基杂化的二氧化硅气凝胶、芳基杂化的二氧化硅气凝胶以及倍半硅氧烷气凝胶。
    优选的,所述气凝胶还包括上述气凝胶经掺杂后得到的掺杂气凝胶,掺杂成分可为各种具有催化活性的金属粒子、金属氧化物、金属盐,具有光电、电磁性质的半导体粒子,以及炭、石墨烯、碳纳米管中的一种或多种。
  6. 如权利要求1所述的气凝胶-金属复合材料,其中,所述气凝胶-金属复合材料中的金属为金、银、铂、钯、铱、铜、铁、镁、铝、钛、锡、铅、锰中的至少一种或其混合物及合金,优选的,所述气凝胶与金属的体积比为1:0.25至1:25。
  7. 如权利要求1所述的气凝胶-金属复合材料,所述复合材料的密度范围可为0.10至19.0g/cm3,优选0.2-15g/cm3,更优选0.5-10g/cm3,优选的,所述复合材料的密度为纯金属的99%-5%;优选为98%-10%,更优选为95%-30%。
  8. 一种权利要求1-7任一项所述的气凝胶-金属复合材料的制备方法,包括以下步骤:将气凝胶与金属混合后加热使金属熔融,或者将气凝胶与金属熔融液混合,再将上述混合物于模具中冷却,得到所述气凝胶-金属复合材料;
    优选的,以粉碎机(例如高速粉碎机)对所述气凝胶材料进行粉碎 并筛分;
    优选的,所述用于制备气凝胶-金属复合材料的气凝胶与金属的体积比为1:0.25至1:25;
    优选的,在金属熔融后,使气凝胶与金属熔融液充分混合;上述充分混合时的操作温度比相应金属的熔点高0-500℃,但不包括0℃,以铝为例,操作温度优选为660.3-1160.3℃;温度由室温逐渐升至所需操作温度,升温速率为0-200℃/min,但不包括0℃/min;优选10-100℃/min;所述混合物在操作温度下保温0-4小时,优选1-3小时;
    优选的,所述混合物在模具中冷却成型,例如冷却至室温,冷却温度速率为0-100℃/min,但不包括0℃/min;优选5-40℃/min。
    优选的,金属融化、物料混合及冷却成型在一定的气体气氛下操作,所述气体包括空气、氧气、氮气、氩气、氢气、一氧化碳等中的一种或其混合物。
  9. 权利要求1-7任一项所述的气凝胶-金属复合材料的用途,其可用于航天、军事、建筑、机械等。
  10. 一种金属多孔材料的制备方法,包括:将权利要求1-7任一项所述的气凝胶-金属复合材料中的气凝胶选择性的除去,得到金属多孔材料;所述除去气凝胶的方法例如通过腐蚀去除。
PCT/CN2015/095828 2015-09-16 2015-11-27 一种气凝胶-金属复合材料及其制备方法和应用 WO2017045273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510591288.9 2015-09-16
CN201510591288.9A CN106544539A (zh) 2015-09-16 2015-09-16 一种气凝胶-金属复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2017045273A1 true WO2017045273A1 (zh) 2017-03-23

Family

ID=58288093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095828 WO2017045273A1 (zh) 2015-09-16 2015-11-27 一种气凝胶-金属复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN106544539A (zh)
WO (1) WO2017045273A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734448A (zh) * 2019-03-19 2019-05-10 电子科技大学 一种碳气凝胶基电磁屏蔽材料的制备方法
CN110950319A (zh) * 2019-12-24 2020-04-03 中国建筑材料科学研究总院有限公司 降低炭气凝胶材料密度的方法和装置
CN111662478A (zh) * 2020-05-28 2020-09-15 杭州电子科技大学 一种结构稳定的石墨烯气凝胶制备方法
CN114210276A (zh) * 2021-11-18 2022-03-22 中国安全生产科学研究院 兼具火灾预警与阻燃功能磁性碳基复合气凝胶及制备方法
CN115093611A (zh) * 2022-05-17 2022-09-23 上海大学 一种轻质高性能电磁屏蔽材料及其制备方法
CN115341297A (zh) * 2022-07-01 2022-11-15 东华大学 一种具有光热转换功能保暖纤维的制备方法
CN115341292A (zh) * 2022-07-01 2022-11-15 东华大学 一种光热转换-蓄热调温保暖纤维的制备方法
CN115418029A (zh) * 2022-08-19 2022-12-02 东华大学 一种宽波段电磁波管理的气凝胶基材料及其制备和应用
CN115557822A (zh) * 2022-09-15 2023-01-03 中国工程物理研究院激光聚变研究中心 一种金属气凝胶原位复合飞片
CN116322007A (zh) * 2023-02-23 2023-06-23 之江实验室 三维互联孔隙结构的NiFe -CNTs-RGO复合气凝胶材料及其制备方法和应用

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107286491B (zh) * 2017-06-16 2020-02-07 青岛大学 一种高导电性碳纳米管/石墨烯气凝胶/聚苯乙烯复合材料及其制备方法
CN107354348A (zh) * 2017-06-22 2017-11-17 何新桥 改性复合金属货车载重板及其制造方法
CN107354347A (zh) * 2017-06-22 2017-11-17 何新桥 轻质高强度的金属桥板及其制造方法
CN107326224A (zh) * 2017-07-10 2017-11-07 何新桥 适用于高速公路或沼泽地的抗压防陷板及其制造方法
CN107641728B (zh) * 2017-09-29 2019-10-29 河北乾昊佳德建材有限公司 一种用硅酸钙纤维前驱体制备高强泡沫金属的方法
CN108299207B (zh) * 2018-02-12 2019-06-18 中国科学院化学研究所 一种多相催化加氢还原不饱和化合物的方法
CN108355713B (zh) * 2018-02-22 2020-09-04 山东师范大学 一种负载金属纳米颗粒的共价有机骨架—壳聚糖复合气凝胶材料、制备方法及应用
CN108597891B (zh) * 2018-04-27 2020-02-07 湘潭大学 一种二氧化硅@金属氧化物/石墨烯气凝胶双负载双包覆复合材料及其制备方法和应用
CN108732213A (zh) * 2018-06-10 2018-11-02 叶建民 一种常温高性能酒敏材料的制备方法
CN109225160A (zh) * 2018-10-29 2019-01-18 西南交通大学 一种具有光催化降解活性的纤维素基多孔气凝胶及其制备方法
CN109369975B (zh) * 2018-11-12 2021-04-20 南京工业大学 一种磁性壳聚糖-二氧化硅复合气凝胶的制备方法
CN111979453A (zh) * 2019-05-23 2020-11-24 北京弘微纳金科技有限公司 一种高强高导铝基复合材料及其制备方法
CN109702221A (zh) * 2019-02-01 2019-05-03 北京弘微纳金科技有限公司 一种二氧化硅气凝胶负载铜复合材料的制备方法
WO2020135582A1 (zh) * 2018-12-26 2020-07-02 北京弘微纳金科技有限公司 气凝胶增强金属基复合材料及其制备方法和应用
CN109628801A (zh) * 2019-02-01 2019-04-16 北京弘微纳金科技有限公司 碳化硅气凝胶增强型铝基复合材料及其熔铸成型制备方法
CN110283361A (zh) * 2018-12-26 2019-09-27 山东大学 一种负载镧锆双金属的石墨烯纤维素气凝胶的制备方法
CN111378863B (zh) * 2018-12-27 2021-09-03 有研工程技术研究院有限公司 一种二氧化硅气凝胶增强铜基复合材料及其制备方法
CN110317977B (zh) * 2019-01-17 2021-04-20 杭州电缆股份有限公司 一种石墨烯气凝胶铝复合材料的制备方法
CN109718771B (zh) * 2019-01-25 2022-04-12 东南大学 一种双金属掺杂型氧化铝气凝胶及其制备和使用方法
CN110104636B (zh) * 2019-05-16 2021-04-13 宁波石墨烯创新中心有限公司 石墨烯气凝胶的制备方法、Fe3O4/石墨烯气凝胶及其制备方法
CN110983492B (zh) * 2019-12-09 2022-03-11 东南大学 一种FeCoNi@C/碳纤维气凝胶复合吸波材料及其制备方法
CN111041426B (zh) * 2019-12-31 2022-06-07 新疆烯金石墨烯科技有限公司 石墨烯铝复合材料及其制备方法
CN111440516A (zh) * 2020-04-16 2020-07-24 江苏斯迪克新材料科技股份有限公司 具有抗菌功能的保护膜
CN113088747A (zh) * 2021-03-29 2021-07-09 宇荣(江苏)新材料科技有限公司 一种碳气凝胶增强铜基复合材料及其制备方法
CN115893973B (zh) * 2021-08-03 2024-04-26 深圳大学 一种氧化钛纤维掺杂硅石气凝胶隔热材料及其制备方法
CN114035630A (zh) * 2021-11-02 2022-02-11 上海海尔医疗科技有限公司 一种制氧机控制方法
CN114561192B (zh) * 2022-01-21 2022-09-23 贵州大学 一种镀镍泡沫和MXene协同支撑的多功能相变复合材料及其制备方法
CN114790335B (zh) * 2022-06-02 2023-06-30 埃肯有机硅(广东)有限公司 一种耐热性加成型液体硅橡胶组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650312A (en) * 1970-09-14 1972-03-21 Lloyd R Allen Hybrid casting-hot working process for shaping magnesium, aluminum, zinc and other die casting metals
CN1617765A (zh) * 2001-12-27 2005-05-18 气凝胶合成物有限公司 气凝胶及金属组合物
CN101780398A (zh) * 2010-03-05 2010-07-21 华东理工大学 一种吸附co2用多孔炭复合材料及其制备方法和应用
CN103864076A (zh) * 2012-12-11 2014-06-18 河南工业大学 基于SiO2气凝胶为模板的碳化硅气凝胶制备方法
CN104183835A (zh) * 2014-08-22 2014-12-03 南京中储新能源有限公司 一种铝碳气凝胶复合材料及以此为负极的二次电池
CN104600249A (zh) * 2014-09-18 2015-05-06 四川省有色冶金研究院有限公司 纳米多孔金属及纳米多孔金属锂硫电池正极材料制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009917B4 (de) * 2006-03-03 2014-04-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Metall-Aerogel-Metallschaum-Verbundwerkstoff
CN104250070B (zh) * 2013-06-28 2016-09-28 深圳光启高等理工研究院 吸波材料及其制备方法
CN103788520B (zh) * 2013-06-28 2016-06-29 深圳光启创新技术有限公司 吸波超材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650312A (en) * 1970-09-14 1972-03-21 Lloyd R Allen Hybrid casting-hot working process for shaping magnesium, aluminum, zinc and other die casting metals
CN1617765A (zh) * 2001-12-27 2005-05-18 气凝胶合成物有限公司 气凝胶及金属组合物
CN101780398A (zh) * 2010-03-05 2010-07-21 华东理工大学 一种吸附co2用多孔炭复合材料及其制备方法和应用
CN103864076A (zh) * 2012-12-11 2014-06-18 河南工业大学 基于SiO2气凝胶为模板的碳化硅气凝胶制备方法
CN104183835A (zh) * 2014-08-22 2014-12-03 南京中储新能源有限公司 一种铝碳气凝胶复合材料及以此为负极的二次电池
CN104600249A (zh) * 2014-09-18 2015-05-06 四川省有色冶金研究院有限公司 纳米多孔金属及纳米多孔金属锂硫电池正极材料制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734448A (zh) * 2019-03-19 2019-05-10 电子科技大学 一种碳气凝胶基电磁屏蔽材料的制备方法
CN110950319A (zh) * 2019-12-24 2020-04-03 中国建筑材料科学研究总院有限公司 降低炭气凝胶材料密度的方法和装置
CN110950319B (zh) * 2019-12-24 2021-09-14 中国建筑材料科学研究总院有限公司 降低炭气凝胶材料密度的方法和装置
CN111662478A (zh) * 2020-05-28 2020-09-15 杭州电子科技大学 一种结构稳定的石墨烯气凝胶制备方法
CN114210276A (zh) * 2021-11-18 2022-03-22 中国安全生产科学研究院 兼具火灾预警与阻燃功能磁性碳基复合气凝胶及制备方法
CN115093611A (zh) * 2022-05-17 2022-09-23 上海大学 一种轻质高性能电磁屏蔽材料及其制备方法
CN115341297A (zh) * 2022-07-01 2022-11-15 东华大学 一种具有光热转换功能保暖纤维的制备方法
CN115341292A (zh) * 2022-07-01 2022-11-15 东华大学 一种光热转换-蓄热调温保暖纤维的制备方法
CN115341297B (zh) * 2022-07-01 2024-02-27 东华大学 一种具有光热转换功能保暖纤维的制备方法
CN115341292B (zh) * 2022-07-01 2024-02-27 东华大学 一种光热转换-蓄热调温保暖纤维的制备方法
CN115418029A (zh) * 2022-08-19 2022-12-02 东华大学 一种宽波段电磁波管理的气凝胶基材料及其制备和应用
CN115557822A (zh) * 2022-09-15 2023-01-03 中国工程物理研究院激光聚变研究中心 一种金属气凝胶原位复合飞片
CN115557822B (zh) * 2022-09-15 2023-04-18 中国工程物理研究院激光聚变研究中心 一种金属气凝胶原位复合飞片
CN116322007A (zh) * 2023-02-23 2023-06-23 之江实验室 三维互联孔隙结构的NiFe -CNTs-RGO复合气凝胶材料及其制备方法和应用
CN116322007B (zh) * 2023-02-23 2023-12-29 之江实验室 三维互联孔隙结构的NiFe-CNTs-RGO复合气凝胶材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106544539A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2017045273A1 (zh) 一种气凝胶-金属复合材料及其制备方法和应用
CN105624445A (zh) 一种石墨烯增强铜基复合材料的制备方法
CN110265225B (zh) 制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法
JP2014507365A (ja) 多孔質グラフェン材料、その製造方法、及び電極材料としての応用
CN106399880B (zh) 一种涂覆氧化铝晶须碳纳米管增强铝基复合材料的制备方法
Cheng et al. Preparation and characterization of monodisperse, micrometer-sized, hierarchically porous carbon spheres as catalyst support
CN109650935B (zh) 一种孔形可调的氧化铝多孔陶瓷膜的制备方法
CN103924172B (zh) 一种增强铝基复合材料的制备方法
Dong et al. A general and eco-friendly self-etching route to prepare highly active and stable Au@ metal silicate yolk-shell nanoreactors for catalytic reduction of 4-nitrophenol
CN104942300B (zh) 空心或实心球形金属粉体的制备方法
CN107385269A (zh) 一种利用微波制备碳纳米管增强铜基复合材料的方法
CN104439276B (zh) 一种快速制备中空多孔二氧化硅/银纳米复合材料的方法及产品
Jiang et al. Preparation of mesoporous spherical magnesium hydroxide particles via the static self-assembled method
CN108202145A (zh) 一种纳米氧化铝/铜复合增强相的制备方法
CN106799500B (zh) 超细钨粉的制备方法
Wu et al. High performance zeolitic imidazolate framework-8 (ZIF-8) based suspension: Improving the shear thickening effect by controlling the morphological particle-particle interaction
CN111807817A (zh) 一种高比表面积莫来石晶须-凹凸棒多孔陶瓷及其制备方法
CN108149160B (zh) 一种基于a356铝合金的高冲击韧性泡沫铝及其生产工艺
CN108405848B (zh) 一种多孔镍骨架材料及其制备方法
CN101748349B (zh) 一种挤压铸造法制备碳纳米管增强铝合金复合材料的方法
CN108017047B (zh) 一种类红毛丹型氮杂中空介孔碳球纳米材料及其制备方法
CN102618744B (zh) 一种用于仿生领域的清洁泡沫镁的制备方法
CN109553111B (zh) 一种核壳结构的二氧化硅微球及其制备方法
KR100957128B1 (ko) 니켈―질화탄소 구체의 제조방법 및 그 방법에 의해 제조된 니켈―질화탄소 구체
Umegaki et al. Influence of swelling agents on pore size distributions of porous silica-alumina hollow sphere particles in acid-promoted hydrolytic generation of hydrogen from ammonia borane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903960

Country of ref document: EP

Kind code of ref document: A1