CN1617765A - 气凝胶及金属组合物 - Google Patents

气凝胶及金属组合物 Download PDF

Info

Publication number
CN1617765A
CN1617765A CNA028262581A CN02826258A CN1617765A CN 1617765 A CN1617765 A CN 1617765A CN A028262581 A CNA028262581 A CN A028262581A CN 02826258 A CN02826258 A CN 02826258A CN 1617765 A CN1617765 A CN 1617765A
Authority
CN
China
Prior art keywords
aeroge
composition
metallic particles
metal
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA028262581A
Other languages
English (en)
Inventor
肯·Dr·厄克
海洛克·S·哈拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Connecticut
Aerogel Composite LLC
Original Assignee
University of Connecticut
Aerogel Composite LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Connecticut, Aerogel Composite LLC filed Critical University of Connecticut
Publication of CN1617765A publication Critical patent/CN1617765A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/34Metals, e.g. ferro-silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0056Hollow or porous fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Silicon Compounds (AREA)
  • Fuel Cell (AREA)
  • Powder Metallurgy (AREA)

Abstract

公开了含有气凝胶,如RF或碳气凝胶的金属气凝胶组合物,金属颗粒分散于其表面。该气凝胶组合物均一地分布有小的金属颗粒,如平均颗粒直径1纳米。还公开了制备此气凝胶组合物的方法,包括让气凝胶接触含金属化合物的超临界流体。气凝胶组合物非常有用,例如可用于制造燃料电池电极。

Description

气凝胶及金属组合物
本申请要求以下专利申请的优先权:2001年12月27日递交的U.S.S.N 60/343,700;2002年6月19日递交的U.S.S.N.60/390,174以及2002年9月23日递交的U.S.S.N 60/412,755(代理人案卷号24603-503 PRO)。
发明领域
本发明一般地涉及气凝胶组合物,更具体地说,涉及分散有金属颗粒的气凝胶组合物,例如负载铂的碳气凝胶组合物及其制备。
发明背景
气凝胶是一种多孔材料,得自缩聚反应,即专业人士所说的“溶胶—凝胶法”。气凝胶的共同特点是具有连通的小孔。气凝胶的化学组成、微观结构和物理性质可以通过溶胶—凝胶法在纳米水平控制。气凝胶主要有三种类型—无机的、有机的和碳气凝胶。无机气凝胶可以通过金属醇盐缩聚反应生成的高度交联透明水凝胶的超临界干燥得到。硅气凝胶是最著名的无机气凝胶。有机气凝胶可以由单体的溶胶缩聚反应生成的凝胶的超临界干燥得到,单体如水溶液中的间苯二酚与甲醛。碳气凝胶可通过提高温度焙烧有机气凝胶得到。
气凝胶,如碳气凝胶(也被称为碳泡沫)能用多种方法制造,可用于多种用途。这些现有方法的例子如1989年2月21日授权的美国专利号4,806,290;1989年10月10日授权的美国专利号4,873,218;1991年3月5日授权的美国专利号4,997,804;1992年2月4日授权的美国专利号5,086,085和1993年10月12日授权的美国专利号5,252,620。通常目标都集中在开发碳气凝胶用作电极,包括了所有形式的碳气凝胶:单块的、颗粒的和微球的。这样的电极可以用于例如电容、电池等储能设备中,也可用于燃料电池,如质子交换膜(“PEM”)燃料电池和电容去离子装置等。这些尝试例见1993年11月9日授权的美国专利号5,260,855;1996年6月25日授权的美国专利号5,529,971;1995年5月20日授权的美国专利号5,420,168;1996年4月16日授权的美国专利号5,508,341和2000年1月4日授权的美国专利号6,010,798。
气凝胶可以掺入添加剂成为气凝胶组合物(此处也称为“气凝胶合成物”)。添加剂的作用是增强纯气凝胶的性能或根据应用需要增加新的需要的性质。总的来说,气凝胶组合物有两类典型的制备方法。第一种是聚合之前加添加剂至溶胶中;第二种是让已经制成的气凝胶接触含添加剂的液体或气体流。
Ye等人在Can.J.Chem.75:1666-1673(1997)中揭示了聚丙烯腈/铂气凝胶组合物的制备方法:将碳化的聚丙烯腈(“PAN”)气凝胶浸于氯铂酸(H2PtC16)溶液中。前驱物(H2PtC16)在凝胶化过程之前加入。据揭示在凝胶化过程之前掺入铂前驱物,能够产生更均一的铂分布。
Pajonk等人在Preparation of Catalysts VII,1998,167(1997)中揭示了一种制造碳气凝胶及将铂负载到气凝胶的方法,间苯二酚-甲醛(“RF”)气凝胶在丙酮中聚合得到而不是在水中,高氯酸为催化剂。老化处理和超临界抽提丙酮后,焙烧样品。然后,给样品注入H2PtCl6/丙酮。然后,超临界抽提丙酮,煅烧样品,用氢气还原。报道的铂分散度为23%,铂含量为0.44wt%。
1998年12月22日授权的美国专利号5,851,947揭示了一种向无机气凝胶中掺入贵重金属的方法。金属前驱物加入溶胶。凝胶化以后用超临界干燥方法移除乙醇。
Miller等人在J.Electrochem Soc.,144(No.12)(1997);Lanngmuir 15:799-806(1999)中揭示了向碳气凝胶沉积钌纳米颗粒的方法。碳气凝胶制备好后用化学蒸汽注入法以钌2,4 pentanedionate进行注入。
Maldonado-Hodar等人在Carbon 37,1199-1205(1999)中揭示了一系列含Pt,Pd和Ag的碳气凝胶。Pt(NH3)4Cl2,PdCl2和Ag(CH3COO)在制备RF气凝胶的起始溶液中用作聚合催化剂。老化后用丙酮置换水,然后用超临界二氧化碳抽提丙酮。然后气凝胶在氮气流中焙烧。
1998年8月4日授权的美国专利号5,789,027揭示了向基片表面沉积材料薄膜的方法i)将材料前驱物溶解于超临界或近超临界的溶剂形成超临界或近超临界溶液;ii)在前驱物稳定于溶液的条件下,将基片暴露于溶液;iii)在启动一个前驱物参加的化学反应的条件下,将一个反应试剂与此溶液混合,在超临界或近超临界状态下将材料沉积于固体基片上。此专利也揭示了类似的方法将材料颗粒沉积于多孔固体,以及将材料薄膜沉积于基片或已经沉积了材料颗粒的多孔固体上。
上述的这些过程通常不能充分控制金属颗粒掺入的性状,因而得到的气凝胶组合物中金属颗粒大小不均一、金属颗粒大小分布较宽。这目前是一个阻碍气凝胶商品化的因素,特别是用于PEM燃料电池,目前需要大量的铂以得到可用的性能。减少燃料电池中铂的用量将会使基于燃料电池的能源系统具有与内燃机竞争的能力。
因此,我们很需要气凝胶中分布有金属颗粒(如铂等)形成的气凝胶组合物以及制造这种气凝胶的方法。我们希望这样的气凝胶组合物中的金属颗粒有较小的尺寸,如4纳米及以下,颗粒大小分布也较窄。
发明概述
依据本发明,气凝胶组合物由金属颗粒分散于气凝胶表面而形成,即分散于孔中,基于金属颗粒的数目,其平均大小为4纳米或更小。典型的金属颗粒的大小为3纳米或更小,最好是1到2纳米,更优选为1纳米。
本发明很意外地发现气凝胶组合物中的金属颗粒大小分布可以非常窄。典型地,基于金属颗粒的数目,当平均大小约为4纳米或更小时,只有不到20%的金属颗粒的尺寸为5纳米或更大。典型地,当金属颗粒的平均大小约为3纳米或更小时,只有不到20%的金属颗粒的尺寸为4纳米或更大,只有不到20%的金属颗粒的尺寸为2纳米或更小。典型地,当金属颗粒的平均大小约为2纳米或更小时,只有不到20%的金属颗粒的尺寸为3纳米或更大,只有不到20%的金属颗粒的尺寸为1纳米或更小。优选地少于20%的金属颗粒尺寸为3纳米或更大,少于20%的金属颗粒尺寸为1纳米或更小。更优选地,基于金属颗粒的数目,平均大小为约1纳米,少于20%的金属颗粒尺寸为2纳米或更大,少于20%的金属颗粒尺寸小于1纳米。
得益于本发明,与传统气凝胶组合物相比,现在在气凝胶组合物中可以使用较少的金属,如铂,而能提供同等或更强的催化能力,如在PEM燃料电池中。
另外本发明也提供了制造金属气凝胶组合物的方法,包括将气凝胶与含金属化合物的超临界流体接触,例如含有机金属化合物。非常方便的一点是金属化合物可以在制造过程中的不同时间掺入气凝胶。例如,金属化合物可以在超临界抽提老化气凝胶(亦称“老化水凝胶”)中的水等液体聚合媒介之后掺入。而金属化合物也可在焙烧后掺入气凝胶。另外聚合反应可以在金属化合物存在下进行。
发明详述
本发明中的气凝胶并不特别要求是哪一种。例如,气凝胶可以是有机的,如RF气凝胶;或无机的,如硅气凝胶。另外,有机气凝胶可以焙烧形成碳气凝胶。此处“气凝胶”一词包括所有的气凝胶形式,即无机气凝胶、有机气凝胶、碳气凝胶及干凝胶(水凝胶空气干燥而不是超临界干燥形成)。
同样,制造气凝胶的前驱物也不限于哪一种。典型的用于制造硅气凝胶的前驱物包括四甲基正硅酸盐(TMOS,Si(OCH3)4)和四乙基正硅酸盐(TEOS,Si(OCH2CH3)4)。其它的专业人士用来制造无机气凝胶的前驱物有氧化物如二氧化硅、氧化铝、二氧化钛、氧化钒、氧化铌、氧化锆、氧化钽或以上的混合物。制造有机气凝胶的前驱物,即单体有间苯二酚、苯酚、儿茶酚、chloroglucinol及其它能与甲醛或糠醛以适当比例反应的多羟基苯化合物如间苯二酚-糠醛、间苯二酚-甲醛、苯酚-间苯二酚-甲醛、儿茶酚-甲醛和chloroglucinol-甲醛。进一步的选择制造气凝胶的适当前驱物的细节均为专业人士所熟知。材料均是商业化的。
本发明中制造气凝胶的具体方法也不是限定的。有机气凝胶的典型制法如下:该过程通常首先需要将反应物,即单体,与催化剂混合,催化剂中可以含有金属添加物。然后通过一个溶剂交换或抽提步骤将聚合成的凝胶干燥。产生的有机气凝胶然后在惰性气氛中焙烧形成碳气凝胶。特别地,制备凝胶过程如果是通过特定的多功能有机单体的溶胶—凝胶聚合反应在溶剂中,特别是在水中进行时,会形成高度交联的透明凝胶(“水凝胶溶胶”)。例如,在本发明的一个优选方面,1摩尔间苯二酚(1,3-dihydroxybenzene)在碱性催化剂存在下与2摩尔甲醛缩合。温和的碱性催化剂如碳酸钠比较适合。在此聚合反应中,间苯二酚是一个三功能单体,能在2-,4-,和/或6-位加成甲醛。取代的间苯二酚环互相缩合在溶液中形成纳米尺度的簇。这些簇逐渐通过表面基团(如--CH2OH)交联形成水凝胶溶胶。反应的进一步细节是已知的,例如可见于美国专利号4,997,804和4,873,218。其它的描述气凝胶制备的专利包括美国专利号6,432,886、6,364,953、6,307,116、5,908,896、5,879,744、5,851,947和5,306,555。
簇的大小可以通过调整间苯二酚-甲醛(RF)混合物中催化剂的浓度来调节。更明确地说,间苯二酚(R)与催化剂(C)的摩尔比R/C控制着凝胶产物的表面积和电化学性质。优选的,根据本发明,R/C的比例为50到300。其它经常提到的比例包括间苯二酚(R)与甲醛(F)的比R/F以及间苯二酚(R)与水(W)的比例R/W。典型的,R/F和R/W摩尔比范围是0.01到10。
然后,水凝胶溶胶通常是在能够稳定气凝胶结构的温度下老化一段时间形成老化水凝胶。典型的老化时间为2小时到5天或更长。典型的老化温度范围是25℃到150℃。如要减少老化时间可以使用一个大气压以上的压力。老化之后,RF气凝胶通常为暗红色或黑色,基本透明。制备有机气凝胶的下一步是干燥水凝胶溶胶。如果让聚合溶剂简单地从凝胶中挥发,会有强大的毛细作用力作用于孔上,产生结构崩塌,即产生干凝胶。为了保存凝胶骨架减少收缩,最好要在超临界状态下进行干燥(将在下文中描述)。如果需要的话也可进行其他干燥步骤,通常是在超临界抽提步骤之前。例如,通常会进行一步溶剂置换,让老化水凝胶与交换溶剂,如丙酮接触形成干燥的气凝胶,然后超临界抽提此干燥气凝胶,因为水不能与常用的超临界流体--液态二氧化碳混溶。作为交换步骤的一个替代方法或附加方法,表面活性剂也可用来从老化水凝胶中去除水分。移除操作后得到的高度多孔的材料即为有机气凝胶。通过适当控制干燥条件,可以得到一种混合结构,兼有干凝胶和气凝胶的性质。例如,可以先让凝胶溶剂在形成干凝胶的条件下部分挥发,然后让剩余的溶剂在形成气凝胶的条件下挥发,即可得到这种混合结构。该混合结构再在超临界条件下干燥、焙烧。其他干凝胶-气凝胶混合体的制备方法可以是先在形成气凝胶的条件下挥发,然后在形成干凝胶的条件下完成。
如上所述,从水凝胶中去除水分形成有机气凝胶的一个方法是在超临界条件下抽提凝胶。此处“超临界流体”(也被专业人士称为“超临界溶液”或“超临界溶剂”)一词指温度和压力超过了相应的流体的临界温度和压力的流体。一个特定流体的超临界条件指温度和压力分别都超过了相应的流体的临界温度和压力的条件。
“近超临界流体”指对比温度(溶液(或溶剂)的开氏温标(Kelvin)实际温度除以开氏温标临界温度的值)以及对比压力(流体的实际压力除以临界压力)均超过0.8但流体还不是超临界流体。特定流体的近超临界条件指流体的对比温度和对比压力均超过0.8但流体还不是超临界流体的条件。在室温下,流体可以是气体或液体。流体一词也包括了两种或多种不同流体的混合。此处“超临界流体”和“超临界条件”也分别包括了近超临界流体和近超临界条件。
抽提过程的温度和压力依赖于超临界流体的选择。一般来说,温度低于250℃。通常低于100℃。典型的压力在50到500atm。
可以用作超临界流体的溶剂是专业人士所熟知的,有时也被称为稠相气体(Sonntag等,Introduction to Thermodynamics,Classicaland Statistical,2nd ed.,John Wiley & Sons,1982,p.40)。适合用作超临界流体的溶剂包括,例如二氧化碳、乙烷、丙烷、丁烷、戊烷、二甲醚、乙醇、水及以上之混合物。本发明优选使用二氧化碳做超临界流体。例如,在333K和150atm,CO2的密度是0.60g/cm3;因此对CO2的对比温度为1.09,对比压力为2.06,对比密度为1.28。二氧化碳超临界流体是非常好的选择。其临界温度(31.1℃)接近室温因而可以用于温和的处理温度(<80℃)。超临界干燥需要的时间取决于凝胶的厚度。进一步的选择超临界流体的详情和抽提条件是专业人士熟知的,例见Supercritical Fluid Extraction:Principles andPractice;Butterworths:Boston,1986。
在老化水凝胶具有足够高密度的情况下,例如大于40wt%固体,小孔网络有可能有足够的内在强度抵挡超临界干燥条件下的干燥过程。因此,二氧化碳有可能在非超临界条件下从容器中流出。非超临界干燥特别有吸引力因为其处理时间较短。为使交联程度最高并进一步增加凝胶的密度,可能需要一个老化循环。
在溶剂交换/抽提步骤和老化循环之后,有机气凝胶通常是在400℃到2000℃ 的高温下焙烧,通常在传统的氮、氩、氖、氦等惰性气氛下形成焙烧气凝胶,如碳气凝胶。焙烧温度下能够改变被焙烧气凝胶的表面积与结构。具体地,较低温度得到较大的表面积。由于碳网格的吸光性能,产物气凝胶不论焙烧过程均为黑色不透明。
本发明之气凝胶典型的表面积为每克100到2000平方米(“m2/g”),小孔体积为每克0.5到10立方厘米(“cm3/g”),密度为每立方厘米0.01到2.0克(“g/cm3”)。专业人士可以容易地测得这些性质。例如表面积与小孔体积可以用BET法测定,S.Brunauer,P.H.Emmett and E.Teller,J.Am.Chem.Soc.60,309(1938);密度可以用比重瓶测定,详情为专业人士所熟知。
本发明之金属气凝胶组合物中气凝胶的含量典型地为复合物总重量的20到99.9wt%,更典型的为40到99wt%,通常在50到90wt%,总重量指总固体(金属颗粒加气凝胶,不含任何液体)。本发明之金属气凝胶组合物中金属颗粒的含量典型地为复合物总重量的0.1到80wt%,更典型的为1到60wt%,通常在10到50wt%。
本发明之复合物并不限定特定种类的金属颗粒。金属颗粒可以是自由金属,即0价的,或离子,如以金属化合物形式存在。合适金属的例子包括典型的用作催化剂的金属,尽管本发明并不限定特定金属种类。典型的金属有铁、钴、镁、镍、钛、铬、铜、铂、金、银、铑、钌、钯、铱等。首选金属有铂、铑、钯、铱、银、金及其混合物。
首选的金属化合物(前驱物)是有机金属化合物形式的。典型地,有机金属化合物含有一个过渡金属键连接一个或多个有机配基。有用的有机金属化合物的例子包括以下类别的有机配基:beta-diketonates(如Cu(hfac)2或Pd(hfac)2,其中hfac是1,1,1,5,5,5-六氟乙酰基]丙酮盐的缩写),烷基(如Zn(ethyl)2或二甲基(环辛二烯)铂(II)(CODPtMe2)),烯丙基(如二(烯丙基)锌或W(π4-allyl)4),二烯(如CODPtMe2)或金属茂(如Ti(π5-C5H5)2或Ni(π5-C5H5)2)。首选的有机金属化合物包括二甲基(环辛二烯)铂(II)、氯化四胺铂(II)、铂(II)六氟代乙酰丙酮、(三甲基)甲基环戊二烯基铂(IV)、二(环戊二烯基)钌、二(乙烷环戊二烯基)钌(II)、bis(五甲基cyclodienyl)钌、(甲基环戊二烯基)(1,5-环辛二烯)铱(I)及以上之混合物。更多有机金属化合物的清单例见M.J.Hampden-Smith and T.T.Kodas,Chem.Vap.Deposition,1:8(1995)。选择合适的有机金属化合物制备所需气凝胶组合物的有关细节为专业人士所熟知。材料均已商业化。
本发明中根据金属颗粒数目计算的金属颗粒平均大小为约4纳米或更小。典型的金属颗粒平均大小为约3纳米或更小,优选为1到2纳米,最好是1纳米左右。此处“颗粒平均大小”一词指平均直径(本领域也称为“有效直径”)。优选的测量颗粒平均大小的方法是在电子显微照片上测量一定代表性数目颗粒的直径并计算平均值,例如用透射电子显微镜(“TEM”)。另一个方法是氢或CO化学吸收法计算总的金属表面积。此信息可用来计算平均金属直径。测量金属颗粒平均大小方法的进一步细节是专业人士所熟知的。
另外,根据本发明向气凝胶表面沉积金属化合物不需要像化学蒸发沉积或H2,H2S,O2或N2O等化学流体沉积那样需要反应试剂引发。根据本发明金属化合物的沉积是在基本不含(金属化合物的)反应试剂的条件下进行的。基于超临界流体、反应试剂和金属化合物的重量计算,优选的含金属化合物的超临界流体含少于5wt%、更优选是少于1wt%、最优选少于0.1wt%的反应试剂。优选地,根据本发明,金属化合物在向气凝胶表面超临界沉积过程中不发生化学变化。如下文中描述的,当需要化学变化,例如氢气还原时,是在金属化合物沉积于气凝胶之后进行。
依据本发明,很意外的发现是气凝胶组合物中金属颗粒的大小分布可以很窄。典型地,基于金属颗粒的数目计算,当金属颗粒平均大小约4纳米或更小时,只有不到20%的金属颗粒的大小约5纳米或更大。典型地,当金属颗粒平均大小约3纳米或更小时,只有不到20%的金属颗粒的大小约4纳米或更大,只有不到20%的金属颗粒的大小约2纳米或更小。典型地,当金属颗粒平均大小约2纳米或更小时,只有不到20%的金属颗粒的大小约3纳米或更大,只有不到20%的金属颗粒的大小约1纳米或更小。优选地,不到20%的金属颗粒的大小约3纳米或更大,不到20%的金属颗粒的大小约1纳米或更小。更优选地,基于金属颗粒的数目计算,当金属颗粒平均大小约1纳米时,只有不到20%的金属颗粒的大小约2纳米或更大,只有不到20%的金属颗粒的大小小于约1纳米。根据前述的TEM显微照片,颗粒大小分布可以很容易通过作颗粒大小的直方图来确定。
根据本发明的一个优选方面,提供了一个制备金属气凝胶组合物的方法,包括将气凝胶与含金属化合物的超临界流体接触。金属化合物的浓度应该足够提供所需量的金属颗粒分散于气凝胶中。
本发明的另一个方面,金属化合物可以在制备水凝胶溶胶的过程中与反应物,例如单体一起加入。这可以补充或替代气凝胶与含金属化合物的超临界流体的接触过程。本发明的再一个方面,金属颗粒可以通过专业人士熟知的方法注入到气凝胶表面。
金属气凝胶组合物中的金属可以是离子态也可以是自由金属状态。如果需要是自由金属状态,可以用任何专业人士已知的方法还原离子态的金属,例如在温度约50℃至2000℃进行第二步焙烧或让金属气凝胶组合物接触还原性气体,如氢气生成还原金属气凝胶。优选的金属颗粒表面积至少约50m2/g,较优选是至少约100m2/g,更优选是至少约200m2/g,最优选是至少约300m2/g。
本发明的一个优选方面是提供了一种制备金属气凝胶组合物的方法,包括:
将至少两种单体在液体媒介中聚合形成聚合产物,含有水凝胶溶胶和液体媒介;
老化水凝胶溶胶以形成老化水凝胶;
从老化水凝胶中去除至少部分液体媒介形成有机气凝胶;
焙烧有机气凝胶形成焙烧的气凝胶;
让焙烧的气凝胶与含金属化合物的超临界流体接触形成金属气凝胶。
本发明的另一个优选方面是提供了一种制备金属气凝胶组合物的方法,包括:
将至少两种单体在液体媒介中聚合形成聚合产物,含有水凝胶溶胶和液体媒介;
老化水凝胶溶胶以形成老化水凝胶;
可选择地从老化水凝胶中去除至少部分液体媒介形成干燥的气凝胶;
让干燥的气凝胶或老化气凝胶与第一种超临界流体接触形成有机气凝胶;
焙烧有机气凝胶形成焙烧的气凝胶;
可选择地让焙烧的气凝胶与第二种超临界流体接触形成金属气凝胶;
其特征在于第一种超临界流体或第二种超临界流体中至少有一种含有一种金属化合物。
这样,根据本发明的这一方面,或第一种超临界流体或第二种超临界流体,或两者同时含有金属化合物。
如果需要的话,本发明可以包括进一步的步骤。例如,本发明的一个优选的例子还包括进一步让金属气凝胶与一种聚合物电解质,如NafionTM溶液接触,这是一种得自E.I.duPont de Nemours andCompany(Wilmington,DE)的聚合物电解质,为(H+)形式的全氟代磺酸/PTFE共聚物的5%溶液。优选的,这一接触是在给气凝胶注入金属颗粒之后进行。
本发明并不限定复合物的具体形式。典型的形式包括颗粒、压出型材、小球、薄膜、覆膜、纤维等。类似地,本发明之复合物的最终用途也可以是多方面的,如用于燃料电池的电极;化学反应的催化剂如加氢和脱氢、氧化、异构化、重组、氢化裂解、聚合等等。本发明之复合物特别优选作为燃料电池电极,如PEM电极。
本发明的某些优选的方面例见以下。
本发明的一个例证是制造负载铂的碳气凝胶,包括将铂前驱物(例如Pt(NH3)4Cl2)加入间苯二酚、甲醛和碳酸钠的溶液中。间苯二酚和甲醛聚合然后老化。  然后用丙酮将水从中抽提出来。再用超临界二氧化碳抽提掉丙酮得到铂络合物均一地分布于有机间苯二酚-甲醛(RF)气凝胶骨架中。该骨架然后在氮气中进行焙烧得到负载铂的碳气凝胶。
如果在搪玻璃钢容器内在1大气压以上,如1-5个大气压下,50-200℃温度范围内老化,RF气凝胶的老化时间可以减少,优选的温度范围是100-200℃,最好是110-140℃。另外,表面活性剂可以用来直接从RF气凝胶中去除水分而不需要丙酮交换。
本发明的另一个例证是制造负载铂的碳气凝胶,包括让RF气凝胶样品接触溶有铂前驱物(如CODpt(CH3)2)的超临界CO2溶液。铂前驱物被气凝胶吸收。然后用氢气将铂前驱物还原成金属铂。RF气凝胶然后减压、焙烧得到负载铂的碳气凝胶。
在这个例子中不是用氢还原铂前驱物为金属铂,RF气凝胶可以在氮气中减压、然后再氮气下焙烧。金属铂来自铂前驱物的热还原。
本发明的另一个例证包括向碳气凝胶中注入铂前驱物(如CODptMe2)。通过在氮气中焙烧,铂前驱物转化成气凝胶骨架内精细分布的金属铂。气体也可以是氢气与任何惰性气体的混合物。
本发明的另一个例证包括用超临界二氧化碳(scCO2)作溶媒向硅气凝胶中注入含铂的有机金属络合物。
制备条件如反应物(单体)浓度、老化时间和温度、注入条件、焙烧温度与压力均可适当变化以控制产物材料的性质。例如,发现用第二个例子中的方法制造的负载铂的RF气凝胶在200℃除气时变黑。这表明铂在焙烧过程中起催化剂作用。因此,根据本发明,焙烧需要在相对较低的温度下进行。这在气凝胶与其它的通常不能耐受较高焙烧温度的薄膜等材料结合时尤其重要。
下面将用一些具体实施例描述本发明,这些实施例对后文权利要求中的范围没有限制意义。
实施例1
RF气凝胶的制备
RF气凝胶由间苯二酚与甲醛反应生成。每一反应中在试管里将2克(“g”)间苯二酚溶解于2.38g水中。然后加入0.019g碳酸钠和2.95g甲醛溶液。
然后用橡皮塞塞住试管口,将内容物振荡混匀。将试管在室温放1天,50℃,1天,90℃,3天。第一天结束时,管中液体凝结,呈黄色到橙色。在老化期间凝胶颜色逐渐加深,结束时为暗红至黑色。90℃期间结束时,将整个块取出试管浸入约200毫升(“ml”)丙酮中。保持2天,然后超临界抽提丙酮。
超临界二氧化碳抽提在高压容器(内部体积54cm3)中进行,用316不锈钢定制并装有两个蓝宝石窗口(直径=1.25”,厚度=0.5”),两端用聚醚醚酮(“PEEK”)密封。
在典型的实验中,容器中充满丙酮,凝胶块置于其中。用注射泵(ISCO,Lincoln,NE,Model 260D)给容器中缓慢充以CO2。容器与一个反压调节器相连保持系统压力为200巴。两相系统变成单相系统说明丙酮已被液态CO2置换。随后用循环加热/制冷器(Fisher)通过机械加工的内部螺管将容器加热至所需温度50℃。
抽提持续约4小时直至流出物中检测不到丙酮为止。该过程通常消耗约400g的CO2。不同实验间的温度误差控制在0.5℃以内。压力用压力传感器(Omega Engineering,Stamford,CT,Model PX01K1-5KGV)测定。抽提阶段结束后容器在50℃下逐渐减压。减压过程持续约3小时。
减压完成后,打开容器取出凝胶块,此即为RF气凝胶。重量为2.9g(理论得率=3.09g),说明几乎所有的间苯二酚和甲醛都聚合了,而且过程中损失的重量很少。抽提和减压过程中胶块保持了形状和体积。
用BET氮吸附法研究了RF气凝胶的性质。将部分气凝胶粉碎成粉末进行分析。部分打破成大的碎块,取其中一块进行分析。RF及碳气凝胶(CA)的BET表面积(SA)和孔大小分布来自用MicromeriticsASAP 2010所做的至少90点氮吸附/解吸附分析。在吸附/解吸附分析前所有样品均在100℃(RF)和200℃(CA)除气。BET SA从BET方程相对压力0.03至0.30范围上的线性部分计算得出。孔大小分布由内置软件以Barrett,Joyner和Halenda(“BJH”)法算得,细节为专业人士所熟知。
粉状形式
BET表面积:       888m2/g
小孔体积:        1.24cm3/g
平均孔直径:      5.5nm(通过BJH解吸附)
大块状形式
BET表面积:       873m2/g
小孔体积:        1.49cm3/g
平均孔直径:      6.3nm(通过BJH解吸附)
数据表明粉碎后孔结构基本完整。粉碎过程中孔体积和平均孔大小丝略有减少。粉碎的和未粉碎样品的磁滞回线均为E型。
实施例2
丙酮-水交换
为研究在丙酮中浸泡时间的影响,我们根据实施例1中的步骤和反应物配方制作了3个凝胶块。丙酮浴中一个样品放1天、一个放2天、另一个放5天,然后在新鲜丙酮中超声一小时。接下来用实施例1的方法以超临界二氧化碳抽提样品中的丙酮。
减压后,块重范围为2.84至2.90g,说明在丙酮中浸泡的时间对置换水的量没有影响。据信在丙酮中超声样品可以显著加速丙酮-水交换过程。
实施例3
碳气凝胶的制备
用实施例1的方法制备的RF气凝胶在惰性氮气氛下焙烧即转化成碳气凝胶。将单块形式的RF气凝胶置于石英管中。石英管置于管状炉中。管的一端与氮气瓶相连。
用调节器后的针阀调节氮气流量。管的另一端与一个皂膜流量计相连测量氮气流量。将氮气流量调整到100cm3/min,在流动氮气下炉子加热到1000℃。加热速率约5℃/min。炉内温度约6小时达到1020℃。
再将此炉温保持5小时。然后关掉,在氮气流下冷却过夜。从管中取出的材料为黑色,与原来样品相比大小也有所收缩。
大块状:
BET表面积:        741m2/g
孔体积:           0.77cm3/g
平均孔直径:       3.4nm(BJH解吸附)
分析表明焙烧过程中表面积的损失不明显。然而孔体积和平均孔直径均减小,与整体的缩小相一致。
实施例4-11
反应物浓度对气凝胶性质的影响:
为研究反应物及催化剂浓度对气凝胶性质的影响,我们制备了一系列的溶液并进行上述的过程。气凝胶的性质见表1。
表1、反应物组成对气凝胶性质的影响
样品标号     R/C     R/W  BET SA   平均孔直径  孔体积
 m2/g       nm  cm3/g
  BET   BJH
    4-C12RF     99.1     0.08   888.6     5.6     5.5     1.24
    5-C12CA     99.1     0.08   741.2     4.1     4.3     0.78
    6-C13RF     50.0     0.08   864.0     5.3     4.5     1.1
    7-C13CA     50.0     0.08   682.4     3.1     3.2     0.52
    8-C11RF     91.2     0.04   765.4     11.0     9.9     2.10
    9-C11CA     91.2     0.04   723.4     8.6     7.9     1.55
    10-C49RF     200.0     0.02   636.7     16.5     17.1     2.63
    11-C49CA     200.0     0.02   629.2     19.3     20.7     3.03
实施例12
向气凝胶中注入铂
给实施例1法制备的RF气凝胶中注入含铂的有机金属络合物,然后通过焙烧还原成金属铂及碳气凝胶。
0.8g RF气凝胶(2块)置于实施例1所描述的容器中,同时放入的还有研为细末的0.150g二甲基(环辛二烯)铂(II)(CODPtMe2)。将容器加热至80℃,充二氧化碳至2250psig。6小时后系统减压,重量变成0.85g,说明有50毫克(“mg”)的铂络合物被吸附到了RF气凝胶上。RF气凝胶块按实施例3法焙烧得到0.42g负载铂的碳气凝胶。估计的铂含量为7wt%。
对样品的铂含量也进行了测定。样品首先依EPA 3010方法用硝酸和盐酸消化。然后将样品置于热块中约4小时,溶液用InductivelyCoupled Mass Spectrometry(Perkin Elmer,Norwalk,CT,ModelOPTIMA 3300 XL,及AS 91 Autosampler)分析,方法为EPA Method6010B。样品铂含量为5.6wt%,与重量分析结果相近。
实施例13
向溶胶中加入金属化合物
在试管中将2g间苯二酚溶于1.5g水。将0.019g碳酸钠加入此溶液,振荡试管直至得到清亮溶液。在另一管中将0.05g的氯化四胺铂(II)溶于1.18g水,并将溶液加入试管。用橡皮塞密封试管。
试管于室温放置1天,50℃放置1天,90℃三天。第一天结束时,管内溶液凝结,颜色为褐色。90℃三天后,将试管从炉中取出,冷却。胶块为橙色,无重量损失。将胶块浸在丙酮浴中2天。再在新鲜丙酮中超声1小时,然后用前述方法以超临界CO2抽提丙酮。负载铂的RF气凝胶用实施例3法焙烧,得到负载铂的碳气凝胶。BET分析结果与氢化学吸收结果如下:
粉状:
BET表面积:        545m2/g
孔体积:           1.34cm3/g
平均孔直径:       20.5nm
氧化学吸收:
金属分散度:31%,基于加入溶胶的铂原始量。
金属表面积:0.79m2/g样品
实施例14
向溶胶中加入金属化合物
在试管中将2g间苯二酚溶于1.5g水。将0.019g碳酸钠加入此溶液,振荡试管直至得到清亮溶液。在另一管中,将0.05g的四氯铂酸钾溶于1.18g水,并将溶液加入试管。用橡皮塞密封试管。试管于室温放置1天,50℃放置1天,90℃三天。第一天结束时,管内溶液凝结,颜色为褐色。90℃三天后,将试管从炉中取出,冷却。胶块为橙色,无重量损失。将胶块浸在丙酮浴中2天。再在新鲜丙酮中超声1小时,然后用前述方法以超临界CO2抽提丙酮,焙烧样品。
实施例15
在二氧化碳中向气凝胶上沉积铂
将实施例3法制得的碳气凝胶打碎成小块,将1.229g的碳气凝胶小块、250mg研磨成细粉的二甲基(环辛二烯)铂(II)(CODPtMe2)以及一个磁力搅拌棒放入一个50ml的配有一个破裂盘、2个蓝宝石窗和一个压力传感器的高压容器中。将容器置于磁力搅拌器上加热至80℃,充二氧化碳至4000psig。容器保持此条件24小时。24小时后,容器减压,将负载CODPtMe2的碳气凝胶移出容器。重量为1.449g,说明有220mg前驱物被碳气凝胶吸附。
实施例16
铂的还原
将照实施例15制备的负载CODPtMe2的碳气凝胶593.2mg置于石英管中,在氮气流中炉中加热至350℃,如实施例3中焙烧的方法。保持350℃ 6小时。在此期间,CODPtMe2转化为金属铂。然后关掉炉子让石英管在氮气流下冷却。将负载铂的碳气凝胶块移出管外并粉碎成颗粒。颗粒的TEM分析显示:小的铂微晶均一地分布于碳气凝胶骨架,平均大小1nm。
依实施例15及16的方法制备了更多样品,结果见下面表2:
表2、负载铂的碳气凝胶颗粒的性质
  样品   R/C   R/W   R/F  负载Pt wt(%) Pt大小(nm)
  16a-C69B   100   0.08   0.5   13   NA
  16b-C30   100   0.08   0.5   18   2
  16c-C45   100   0.08   0.5   20   2
  16d-C48   100   0.08   0.5   30   3
  16e-C12   100   0.08   0.5   12   1
  16f-C49   200   0.02   0.5   43   NA
铂颗粒大小用透射电子显微镜(TEM)(Model 2010,FAS JEOL)测定。
实施例17
铂的还原
将照实施例15制备的负载CODPtMe2的碳气凝胶614.1mg置于石英管中,在氮气流中炉中加热至500℃,如实施例3中焙烧的方法。保持500℃ 6小时。在此期间,CODPtMe2转化为金属铂。然后关掉炉子让石英管在氮气流下冷却。将负载铂的碳气凝胶块移出管外并粉碎成颗粒。颗粒的TEM分析显示小的铂微晶均一地分布于碳气凝胶骨架,平均大小1.2nm。
实施例18
向硅气凝胶负载铂
随机大小的硅气凝胶购自Marketech国际有限公司,有机前驱物二甲基(环辛二烯)铂(II)(CODPtMe2)购自STREM Chemicals,不经纯化直接使用。硅气凝胶发白、透明。
将一定量的这种气凝胶的单块(842.5mg)与374.6mg研磨成细粉的铂前驱物一起置于高压容器中(内部体积54立方厘米),容器用316不锈钢定制并装有两个蓝宝石窗口(直径=1.25”,厚度=0.5”),两端用聚醚醚酮(“PEEK”)密封。
将容器加热至80℃、充二氧化碳至4000psig。约2.5小时所有的CODPtMe2溶解并被气凝胶吸收。容器保持此条件24小时以保证达到吸收平衡。在60℃下让系统缓慢减压3小时,然后冷却至室温。从容器中取出样品并称重。终重量为1059.3mg,即负载了216.8mg的前驱物(约20wt%)。气凝胶组合物仍保持完整,颜色变黑但仍大致透明,这表明在此条件下有部分前驱物转变成了金属铂。
将一大块此气凝胶组合物(804.4mg)置于石英管中,用Thermolyne管状炉(Model F21125)在100ml/min的氮气流下加热至300℃,6小时。气凝胶冷却至室温并称重。终重量为736.0mg,即负载铂13%,说明前驱物至金属铂的转变已经完成。复合物颜色漆黑通体一致,不透明但完整。
专业人士可以看出本发明具体描述了某些方面,而其它的方面则会包含在后附的权利要求的范围内。例如,在气凝胶制备过程中或形成之后,可以掺入另外的材料以得到所需的性质,如导电性。另外,除非特别指出,此处所使用的所有科技词汇都与本发明相关领域的一般专业人员的理解相同。尽管可以用与此处描述相似或等价的方法来操作或检测本发明,优选的方法和材料仍为以上所述。此处引用的所有的出版物、专利申请、专利及其他文献均以全文引为参考。如有冲突之处,以本说明书及定义为准。

Claims (32)

1.一种含有气凝胶的组合物,气凝胶有孔,孔体积至少为约0.5cm3/g,表面积至少为100m2/g,而且金属颗粒分散于气凝胶表面,根据金属颗粒数目计算的所说金属颗粒的平均颗粒大小约为4纳米或更小。
2.权利要求1的组合物,根据金属颗粒数目计算,其中少于约20%金属颗粒的颗粒大小约为5纳米或更大。
3.权利要求1的组合物,根据金属颗粒数目计算,其中所说金属颗粒的平均颗粒大小约为3纳米或更小,少于约20%金属颗粒的颗粒大小约为4纳米或更大。
4.权利要求1的组合物,根据金属颗粒数目计算,其中所说金属颗粒的平均颗粒大小约为1到2纳米,少于约20%金属颗粒的颗粒大小约为3纳米或更大,而且少于约20%金属颗粒的颗粒大小小于约1纳米。
5.权利要求1的组合物,根据金属颗粒数目计算,其中所说金属颗粒的颗粒平均大小约为1纳米,少于约20%金属颗粒的颗粒大小约为2纳米或更大,而且少于约20%金属颗粒的颗粒大小小于约1纳米。
6.权利要求1的组合物,其含有占组合物总重量约0.1至80wt%的金属颗粒。
7.权利要求1的组合物,其中金属颗粒的表面积至少为50m2/g。
8.权利要求1的组合物,其中金属颗粒为自由金属或金属化合物的形式。
9.权利要求8的组合物,其中金属选自铁、钴、镁、镍、钛、铬、铜、铂、金、银、铑、钌、钯、铱或以上物质之混合。
10.权利要求1的组合物,其中气凝胶的表面积约为100至2000m2/g。
11.权利要求1的组合物,其中气凝胶的孔体积约为0.5至10cm3/g。
12.权利要求1的组合物,其中气凝胶的密度约为0.01至2.0g/cm3
13.权利要求1的组合物,其中气凝胶含碳。
14.权利要求1的组合物,其中气凝胶含有至少一种下列氧化物:二氧化硅、氧化铝、二氧化钛、氧化钒、氧化铌、氧化锆、氧化钽或以上物质的混合。
15.权利要求1的组合物,还含有一种聚合物电解质。
16.权利要求1的组合物,其为颗粒、薄膜或纤维形式。
17.一种制备金属气凝胶组合物的方法,包括使气凝胶接触含有金属化合物的超临界流体。
18.权利要求17的方法,其中金属化合物为有机金属化合物。
19.权利要求17的方法,其中有机金属化合物选自以下:二甲基(环辛二烯)铂(II)、氯化四胺铂(II)、铂(II)六氟乙酰丙酮、(三甲基)甲基环五戊二烯基铂(IV)、二(环戊二烯基)钌、二(乙烷环五戊二烯基)钌(II)、二(五甲基环烯基)钌、(甲基环戊二烯基)(1,5-环辛二烯)铱(I)或以上物质之混合。
20.权利要求17的方法,其中超临界流体选自以下:二氧化碳、乙烷、丙烷、丁烷、戊烷、二甲醚、乙醇、水及以上物质之混合。
21.权利要求17的方法,还包括将金属气凝胶组合物加热至有效温度,使金属化合物还原成自由金属。
22.权利要求21的方法,其中温度约为50至2000℃。
23.一种制备金属气凝胶组合物的方法,包括:
将至少两种单体在液体媒介中聚合,形成含有水凝胶溶胶和液体媒介的聚合产物;
使水凝胶溶胶老化形成老化水凝胶;
从老化水凝胶中去除至少部分液体媒介,形成有机气凝胶;
焙烧有机气凝胶形成焙烧的气凝胶;
让焙烧的气凝胶与含金属化合物的超临界流体接触,形成金属气凝胶。
24.权利要求23的方法,还包括还原金属气凝胶,形成还原的金属气凝胶。
25.权利要求23的方法,其中所说的焙烧在约400-2000℃温度下进行。
26.一种制备金属气凝胶组合物的方法,包括:
(a)将至少两种单体在液体媒介中聚合,形成包含水凝胶溶胶和液体媒介的聚合产物;
(b)使水凝胶溶胶老化形成老化水凝胶;
(c)可选择地从老化水凝胶中去除至少部分液体媒介,形成干燥的气凝胶;
(d)使干燥的气凝胶或老化的气凝胶与第一种超临界流体接触,形成有机气凝胶;
(e)焙烧有机气凝胶形成焙烧的气凝胶;和
(f)可选择地使焙烧的气凝胶与第二种超临界流体接触,形成金属气凝胶;
其特征在于所说的第一种超临界流体或所说的第二种超临界流体中至少有一种含有金属化合物。
27.权利要求26的方法,还包括将金属气凝胶还原,形成还原的金属气凝胶。
28.权利要求26的方法,其中所说的第一种超临界流体含有金属化合物。
29.权利要求26的方法,其中所说的第二种超临界流体含有金属化合物。
30.权利要求26的方法,其中聚合在有金属化合物存在的条件下进行。
31.权利要求26的方法,其中所说的老化在约50至200℃温度下进行。
32.权利要求26的方法,还包括将金属气凝胶与一种聚合物电解质接触。
CNA028262581A 2001-12-27 2002-12-20 气凝胶及金属组合物 Pending CN1617765A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US34370001P 2001-12-27 2001-12-27
US60/343,700 2001-12-27
US39017402P 2002-06-19 2002-06-19
US60/390,174 2002-06-19
US41275502P 2002-09-23 2002-09-23
US60/412,755 2002-09-23

Publications (1)

Publication Number Publication Date
CN1617765A true CN1617765A (zh) 2005-05-18

Family

ID=27407575

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA028262581A Pending CN1617765A (zh) 2001-12-27 2002-12-20 气凝胶及金属组合物

Country Status (9)

Country Link
US (2) US7378450B2 (zh)
EP (1) EP1494807A2 (zh)
JP (1) JP2006504508A (zh)
KR (1) KR100629290B1 (zh)
CN (1) CN1617765A (zh)
AU (1) AU2002358277A1 (zh)
BR (1) BR0215359A (zh)
MX (1) MXPA04006324A (zh)
WO (1) WO2003057367A2 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454621C (zh) * 2005-07-14 2009-01-21 中国科学技术大学 一种固体氧化物燃料电池阳极及制备方法
CN102097620A (zh) * 2011-01-13 2011-06-15 华南师范大学 一种载铅炭气凝胶及其制备方法
CN102294255A (zh) * 2010-06-25 2011-12-28 中国科学院大连化学物理研究所 一种炭凝胶催化剂及其应用
CN101786900B (zh) * 2010-02-05 2012-05-23 河北理工大学 一种四组分干凝胶的制备方法
CN102694182A (zh) * 2011-03-21 2012-09-26 现代自动车株式会社 燃料电池电极
CN102895970A (zh) * 2012-10-18 2013-01-30 岚晟新材料科技(上海)有限公司 一种有机气凝胶负载Pd化合物制备Pd/C催化剂的方法及Pd/C催化剂
CN103055868A (zh) * 2011-10-24 2013-04-24 中国石油化工股份有限公司 镍基催化剂及其制备方法
WO2013075303A1 (zh) * 2011-11-23 2013-05-30 海洋王照明科技股份有限公司 对电极活性材料、其制备方法、使用该对电极活性材料的太阳能电池对电极及其制备方法
US8722228B2 (en) 2011-04-08 2014-05-13 Empire Technology Development Llc Moisture activated battery
US8735001B2 (en) 2011-04-08 2014-05-27 Empire Technology Development Llc Gel formed battery
US8744593B2 (en) 2011-04-08 2014-06-03 Empire Technology Development Llc Gel formed battery
US8828581B2 (en) 2011-04-08 2014-09-09 Empire Technology Development Llc Liquid battery formed from encapsulated components
CN106340726A (zh) * 2016-10-31 2017-01-18 中国工程物理研究院激光聚变研究中心 磁性导电纳米金属/碳气凝胶吸波材料及其制备方法
WO2017045273A1 (zh) * 2015-09-16 2017-03-23 中国科学院化学研究所 一种气凝胶-金属复合材料及其制备方法和应用
CN106920970A (zh) * 2015-12-24 2017-07-04 丰田自动车株式会社 燃料电池用电极催化剂
CN107761124A (zh) * 2017-10-23 2018-03-06 大连理工大学 一种载银碳气凝胶的制备方法及应用
CN108332889A (zh) * 2017-01-20 2018-07-27 中国科学院物理研究所 一种气凝胶压力传感器
CN109126643A (zh) * 2017-06-15 2019-01-04 湖南尚成新材料科技有限责任公司 一种自调光型透明复合气凝胶及其制备方法
CN109433120A (zh) * 2018-10-30 2019-03-08 武汉纺织大学 具备污染物吸附、催化及荧光跟踪协同功能的纳米纤维凝胶材料及其制备方法
CN109702221A (zh) * 2019-02-01 2019-05-03 北京弘微纳金科技有限公司 一种二氧化硅气凝胶负载铜复合材料的制备方法
CN113275582A (zh) * 2021-04-01 2021-08-20 南京工业大学 一种金属气凝胶电催化材料的制备方法
US11258075B2 (en) 2016-12-09 2022-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0215359A (pt) 2001-12-27 2006-06-06 Aerogel Composite Llc composições de aerogel e metálicas
US7771609B2 (en) * 2002-08-16 2010-08-10 Aerogel Technologies, Llc Methods and compositions for preparing silica aerogels
US20040141908A1 (en) * 2002-12-20 2004-07-22 Hara Hiroaki S. Aerogel and metallic composites
FR2851244B1 (fr) * 2003-02-17 2005-06-17 Snecma Propulsion Solide Procede de siliciuration de materiaux composites thermostructuraux et pieces telles qu'obtenues par le procede
KR101188153B1 (ko) 2003-09-19 2012-10-05 데이진 가부시키가이샤 섬유상 활성탄 및 이것으로 이루어지는 부직포
US7410718B2 (en) * 2003-09-30 2008-08-12 Lawrence Livermore National Security, Llc Aerogel and xerogel composites for use as carbon anodes
US7118801B2 (en) * 2003-11-10 2006-10-10 Gore Enterprise Holdings, Inc. Aerogel/PTFE composite insulating material
KR20060130612A (ko) * 2003-12-19 2006-12-19 에스씨에프 테크놀로지스 에이/에스 미세 입자들 및 다른 물질들을 제조하기 위한 시스템
US20080220244A1 (en) * 2004-01-21 2008-09-11 Chien M Wai Supercritical Fluids in the Formation and Modification of Nanostructures and Nanocomposites
US7247259B2 (en) * 2004-04-02 2007-07-24 Aerogel Composite, Llc Processes for making aerogel-electrolyte-metal composites
DE112005001207T5 (de) * 2004-05-27 2007-04-19 E.I. Du Pont De Nemours And Company, Wilmington Verbundwerkstoffe auf Sol-Gel-Basis, umfassend Oxid- oder Oxyhydroxidmatrices mit Edelmetall-Bestandteilen und Kohlenstoff für Brennstoffzellkatalysatoren
EP1769846A4 (en) * 2004-06-10 2012-05-09 Sumitomo Electric Industries METAL CATALYST AND PROCESS FOR PREPARING THE SAME
JP4844865B2 (ja) * 2004-08-31 2011-12-28 株式会社豊田中央研究所 カーボンゲル複合材料
WO2006036702A2 (en) * 2004-09-24 2006-04-06 Kansas State University Research Foundation Aerosol gels
KR100565940B1 (ko) * 2004-12-02 2006-03-30 한국과학기술연구원 바나디아-티타니아 에어로젤 촉매, 그 제조 방법 및 상기촉매를 이용한 염소계 방향족 화합물의 산화분해방법
JP4784727B2 (ja) * 2005-03-10 2011-10-05 独立行政法人産業技術総合研究所 金属超微粒子を担持した多孔質複合体
US7723262B2 (en) 2005-11-21 2010-05-25 Energ2, Llc Activated carbon cryogels and related methods
CA2669223A1 (en) 2006-11-15 2008-05-22 Energ2, Llc Electric double layer capacitance device
FR2911724B1 (fr) * 2007-01-22 2009-03-20 Renault Sas Procede de preparation d'un materiau composite et un procede de preparation d'electrodes pour piles a combustible a membrane et d'electrodes a gaz contenant un tel materiau composite.
US8251969B2 (en) * 2007-08-03 2012-08-28 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US8292862B2 (en) * 2007-08-03 2012-10-23 Kimberly-Clark Worldwide, Inc. Dynamic fitting body adhering absorbent article
US7947027B2 (en) 2007-12-28 2011-05-24 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US8734413B2 (en) 2007-08-03 2014-05-27 Kimberly-Clark Worldwide, Inc. Packaged body adhering absorbent article
US8702672B2 (en) * 2007-08-03 2014-04-22 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US8062275B2 (en) 2007-08-03 2011-11-22 Kimberly Clark Worldwide, Inc. Body adhering absorbent article and method for donning such article
US20090182296A1 (en) * 2007-08-03 2009-07-16 Melissa Jean Dennis Body Adhering Article
US8012137B2 (en) * 2007-08-03 2011-09-06 Kimberly-Clark Worldwide, Inc. Packaged body adhering absorbent article and method of applying such article to a wearer
US8197456B2 (en) * 2007-08-03 2012-06-12 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US8029489B2 (en) * 2007-08-03 2011-10-04 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article and method of adhering such article to a wearer
US8672911B2 (en) 2007-08-03 2014-03-18 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US11147722B2 (en) * 2008-11-10 2021-10-19 Kimberly-Clark Worldwide, Inc. Absorbent article with a multifunctional acrylate skin-adhesive composition
US8157780B2 (en) 2008-12-15 2012-04-17 Kimberly-Clark Worldwide, Inc. Absorbent article having line of weakness for folding the article
US8685287B2 (en) * 2009-01-27 2014-04-01 Lawrence Livermore National Security, Llc Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels
US20110024698A1 (en) * 2009-04-24 2011-02-03 Worsley Marcus A Mechanically Stiff, Electrically Conductive Composites of Polymers and Carbon Nanotubes
US20100190639A1 (en) * 2009-01-28 2010-07-29 Worsley Marcus A High surface area, electrically conductive nanocarbon-supported metal oxide
US10022468B2 (en) 2009-02-02 2018-07-17 Kimberly-Clark Worldwide, Inc. Absorbent articles containing a multifunctional gel
WO2011002536A2 (en) 2009-04-08 2011-01-06 Energ2, Inc. Manufacturing methods for the production of carbon materials
KR20190093679A (ko) 2009-07-01 2019-08-09 바스프 에스이 초고순도의 합성 탄소 물질
JP5625639B2 (ja) * 2009-11-11 2014-11-19 株式会社リコー 触媒担持担体の製造方法及び製造装置
BR112012014092A2 (pt) * 2009-12-11 2016-07-05 Energ2 Technologies Inc materiais de carvão compreendendo um modificador eletroquímico.
US8629076B2 (en) 2010-01-27 2014-01-14 Lawrence Livermore National Security, Llc High surface area silicon carbide-coated carbon aerogel
WO2011112992A1 (en) 2010-03-12 2011-09-15 Energ2, Inc. Mesoporous carbon materials comprising bifunctional catalysts
WO2012045002A1 (en) 2010-09-30 2012-04-05 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
US8906973B2 (en) * 2010-11-30 2014-12-09 Aspen Aerogels, Inc. Modified hybrid silica aerogels
KR102048196B1 (ko) 2010-12-28 2019-11-25 바스프 에스이 향상된 전기화학적 특성을 포함하는 탄소 물질
JP5599522B2 (ja) * 2011-01-10 2014-10-01 コチ・ウニヴェルシテシ 表面開始光重合を介するpegヒドロゲルでの被包化疎水性および親水性エアロゲル
US8758547B2 (en) 2011-02-08 2014-06-24 Kimberly-Clark Worldwide, Inc. Method of manufacturing a body adhering absorbent article orientated in the cross-machine direction with reduced curl
US8764922B2 (en) 2011-02-08 2014-07-01 Kimberly-Clark Worldwide, Inc. Method of manufacturing a body adhering absorbent article orientated in the machine direction with reduced curl
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
ES2366848B8 (es) * 2011-06-02 2012-12-28 Universidad De Granada Método de obtención de geles de carbón dopados, geles obtenidos por dicho método y su aplicación como catalizadores.
WO2012167117A2 (en) 2011-06-03 2012-12-06 Energ2 Technologies, Inc. Carbon-lead blends for use in hybrid energy storage devices
CN102423668A (zh) * 2011-09-09 2012-04-25 中国人民解放军国防科学技术大学 一种酚醛树脂基碳气凝胶的制备方法
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
GB201204420D0 (en) * 2012-03-12 2012-04-25 Imp Innovations Ltd A reinforced material
EP2690693A1 (de) * 2012-07-25 2014-01-29 Paul Scherrer Institut Hochoberflächiger trägerloser Katalysator für elektrochemische Prozesse und Verfahren zu seiner Herstellung
US20140272592A1 (en) 2013-03-14 2014-09-18 Energ2 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
EP3058364B1 (en) 2013-10-14 2021-12-29 Raytheon Technologies Corporation Method of detecting conversion quality of green matrix composite material
TWI565681B (zh) 2013-10-15 2017-01-11 中原大學 多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
WO2015076881A1 (en) * 2013-11-19 2015-05-28 United Technologies Corporation Method for fabricating metal foams having ligament diameters below one micron
CN105377758B (zh) * 2014-02-06 2018-04-03 Lg化学株式会社 疏水二氧化硅气凝胶的制备方法
WO2015137980A1 (en) 2014-03-14 2015-09-17 Energ2 Technologies, Inc. Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
IN2014DE01015A (zh) * 2014-04-10 2015-10-16 Indian Inst Technology Kanpur
US10793450B2 (en) 2014-12-03 2020-10-06 University Of Kentucky Research Foundation Potential of zero charge-based capacitive deionization
KR101789371B1 (ko) 2015-02-13 2017-10-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
CN104637673B (zh) * 2015-03-09 2017-08-25 李光武 大容量电容器的制作方法和电容器电池、电池组件
WO2017031006A1 (en) 2015-08-14 2017-02-23 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
KR102528934B1 (ko) 2015-08-28 2023-05-08 그룹14 테크놀로지스, 인코포레이티드 극도로 내구성이 우수한 리튬 인터칼레이션을 나타내는 신규 물질 및 그의 제조 방법
KR101931569B1 (ko) 2015-11-03 2018-12-21 주식회사 엘지화학 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2017147463A1 (en) * 2016-02-24 2017-08-31 Massachusetts Institute Of Technology Solar thermal aerogel receiver and materials therefor
US11717018B2 (en) 2016-02-24 2023-08-08 R.J. Reynolds Tobacco Company Smoking article comprising aerogel
US11279622B2 (en) 2016-09-12 2022-03-22 Lg Chem, Ltd. Method for producing silica aerogel and silica aerogel produced thereby
CN110582823A (zh) 2017-03-09 2019-12-17 14集团技术公司 含硅前体在多孔支架材料上的分解
CN107162050B (zh) * 2017-06-06 2019-04-16 浙江大学 一种以酸性氨基酸为凝胶促进剂制备块状氧化锆气凝胶的方法
CN107746290A (zh) * 2017-10-31 2018-03-02 南京工业大学 一种发泡水泥增强SiO2‑TiO2复合气凝胶材料的制备方法
CN108380899A (zh) * 2018-04-04 2018-08-10 陕西理工大学 一种钴纳米磁性材料的制备方法
WO2019210051A1 (en) 2018-04-25 2019-10-31 Massachusetts Institute Of Technology Energy efficient soundproofing window retrofits
CN109200955B (zh) * 2018-11-14 2021-06-08 中国科学院兰州化学物理研究所 一种有机无机双网络结构酚醛/氧化铝气凝胶复合材料及其制备方法
CN110170322A (zh) * 2019-06-21 2019-08-27 天津大学 一种负载原子级贵金属的碳气凝胶催化剂的制备方法
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044193A (en) 1971-06-16 1977-08-23 Prototech Company Finely particulated colloidal platinum compound and sol for producing the same, and method of preparation of fuel cell electrodes and the like employing the same
JPS569970A (en) 1979-07-04 1981-01-31 Hitachi Ltd Method for adding catalyst to fuel battery electrode
JPS5679858A (en) 1979-12-04 1981-06-30 Hitachi Ltd Liquid-penetrable electrode for fuel battery
JPS575266A (en) 1980-06-13 1982-01-12 Hitachi Ltd Manufacture of fuel electrode for fuel cell
NL8006774A (nl) 1980-12-13 1982-07-01 Electrochem Energieconversie Brandstofcelelectrode en werkwijze voor het vervaardigen van een brandstofcelelectrode.
JPS5854563A (ja) 1981-09-29 1983-03-31 Toshiba Corp 空気電極の触媒層
JPS5973860A (ja) 1982-10-19 1984-04-26 Toshiba Corp 燃料電池
US4469816A (en) * 1982-12-14 1984-09-04 Allied Corporation Palladium on alumina aerogel catalyst composition and process for making same
JPS59127372A (ja) 1983-01-12 1984-07-23 Hitachi Ltd 燃料電池用電極
JPS6065466A (ja) 1983-09-20 1985-04-15 Fuji Electric Corp Res & Dev Ltd 燃料電池用ガス拡散電極
JPS6070668A (ja) 1983-09-26 1985-04-22 Fuji Electric Corp Res & Dev Ltd 燃料電池用リブ付ガス拡去電極
JPS6077360A (ja) 1983-10-04 1985-05-01 Mitsubishi Electric Corp 燃料電池用電極
JPS60133659A (ja) 1983-12-21 1985-07-16 Fuji Electric Corp Res & Dev Ltd 燃料電池の電極触媒層の製造方法
JPS60133662A (ja) 1983-12-21 1985-07-16 Fuji Electric Corp Res & Dev Ltd 燃料電池のガス拡散電極の製造方法
CA1244873A (en) 1984-04-02 1988-11-15 Hiroshi Kajiyama Fuel cell electrode, process for producing the same and fuel cell using the same
JPS6139367A (ja) 1984-07-28 1986-02-25 Fuji Electric Corp Res & Dev Ltd マトリツクス形燃料電池の電極
JPH0766810B2 (ja) 1985-08-29 1995-07-19 株式会社東芝 燃料電池
JPS62217352A (ja) 1986-03-19 1987-09-24 Fujitsu Ltd 空きパ−ソナルコンピユ−タの探査方式
US4832881A (en) 1988-06-20 1989-05-23 The United States Of America As Represented By The United States Department Of Energy Low density microcellular carbon foams and method of preparation
JPH02226659A (ja) 1989-02-23 1990-09-10 Yamaha Motor Co Ltd 燃料電池の電極構造
US5395705A (en) 1990-08-31 1995-03-07 The Dow Chemical Company Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
JPH04118857A (ja) 1990-09-10 1992-04-20 Fuji Electric Co Ltd リン酸型燃料電池
US5453169A (en) 1991-08-21 1995-09-26 The Ohio State University Glassy carbon containing metal particles and its use on an electrode in an electrochemical cell where the particles are less than 10 nm
US5260855A (en) 1992-01-17 1993-11-09 Kaschmitter James L Supercapacitors based on carbon foams
US5358802A (en) 1993-04-01 1994-10-25 Regents Of The University Of California Doping of carbon foams for use in energy storage devices
US5366828A (en) 1993-11-08 1994-11-22 Struthers Ralph C Metal alloy laded carbon aerogel hydrogen hydride battery
US5601938A (en) 1994-01-21 1997-02-11 Regents Of The University Of California Carbon aerogel electrodes for direct energy conversion
US5419977A (en) 1994-03-09 1995-05-30 Medtronic, Inc. Electrochemical device having operatively combined capacitor
US5855953A (en) 1994-03-31 1999-01-05 The Regents, University Of California Aerogel composites and method of manufacture
US5425858A (en) 1994-05-20 1995-06-20 The Regents Of The University Of California Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes
JPH0822827A (ja) 1994-07-07 1996-01-23 Toshiba Corp 燃料電池用電極とその製造方法
US5476878A (en) 1994-09-16 1995-12-19 Regents Of The University Of California Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures
US5626977A (en) 1995-02-21 1997-05-06 Regents Of The University Of California Composite carbon foam electrode
DE19513292C1 (de) * 1995-04-07 1996-08-22 Siemens Ag Brennstoffzelle
US5744510A (en) 1995-04-25 1998-04-28 Regents Of The University Of California Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures
US5607785A (en) 1995-10-11 1997-03-04 Tanaka Kikinzoku Kogyo K.K. Polymer electrolyte electrochemical cell and process of preparing same
US5837630A (en) * 1995-10-31 1998-11-17 T/J Technologies Inc. High surface area mesopourous desigel materials and methods for their fabrication
US5789027A (en) 1996-11-12 1998-08-04 University Of Massachusetts Method of chemically depositing material onto a substrate
US5851947A (en) * 1996-12-16 1998-12-22 The Regents Of The University Of California Incorporation of noble metals into aerogels
JPH113715A (ja) 1997-06-09 1999-01-06 Japan Storage Battery Co Ltd 燃料電池用ガス拡散電極
ATE453460T1 (de) 1997-10-15 2010-01-15 Univ South Florida Beschichtung von partikelmaterial mittels superkritischer flüssigkeit
US6967183B2 (en) * 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
US6361864B1 (en) 1998-06-02 2002-03-26 Osram Sylvania Inc. Method for making high-efficacy and long life electroluminescent phophor
US7255954B2 (en) 1998-08-27 2007-08-14 Cabot Corporation Energy devices
JP2000106194A (ja) 1998-09-29 2000-04-11 Showa Engineering Co Ltd 燃料電池用触媒組成物及びその製造方法
US6005012A (en) 1998-10-29 1999-12-21 The Regents Of The University Of California Method for producing hydrophobic aerogels
JP3869568B2 (ja) 1998-11-30 2007-01-17 本田技研工業株式会社 燃料電池用電極
JP2002536164A (ja) * 1999-02-09 2002-10-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高表面積ゾル−ゲル経路で製造された水素化触媒
JP3118571B1 (ja) 1999-09-20 2000-12-18 工業技術院長 超臨界含浸を用いたモノリス状金属化合物複合シリカエアロゲルの製造方法
US6440495B1 (en) 2000-08-03 2002-08-27 Applied Materials, Inc. Chemical vapor deposition of ruthenium films for metal electrode applications
JP3911557B2 (ja) * 2001-12-07 2007-05-09 独立行政法人産業技術総合研究所 金属超微粒子を担持した多孔質材料の作製方法
BR0215359A (pt) 2001-12-27 2006-06-06 Aerogel Composite Llc composições de aerogel e metálicas
KR100439854B1 (ko) 2002-03-13 2004-07-12 한국과학기술연구원 에어로젤형 백금-루테늄-탄소 촉매, 그 제조방법 및 상기촉매를 이용한 직접메탄올 연료전지
US20040141908A1 (en) * 2002-12-20 2004-07-22 Hara Hiroaki S. Aerogel and metallic composites
US6958308B2 (en) 2004-03-16 2005-10-25 Columbian Chemicals Company Deposition of dispersed metal particles onto substrates using supercritical fluids
US7247259B2 (en) 2004-04-02 2007-07-24 Aerogel Composite, Llc Processes for making aerogel-electrolyte-metal composites

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454621C (zh) * 2005-07-14 2009-01-21 中国科学技术大学 一种固体氧化物燃料电池阳极及制备方法
CN101786900B (zh) * 2010-02-05 2012-05-23 河北理工大学 一种四组分干凝胶的制备方法
CN102294255B (zh) * 2010-06-25 2014-08-06 中国科学院大连化学物理研究所 一种炭凝胶催化剂及其应用
CN102294255A (zh) * 2010-06-25 2011-12-28 中国科学院大连化学物理研究所 一种炭凝胶催化剂及其应用
CN102097620A (zh) * 2011-01-13 2011-06-15 华南师范大学 一种载铅炭气凝胶及其制备方法
CN102694182A (zh) * 2011-03-21 2012-09-26 现代自动车株式会社 燃料电池电极
CN102694182B (zh) * 2011-03-21 2017-04-12 现代自动车株式会社 燃料电池电极
US9203093B2 (en) 2011-03-21 2015-12-01 Hyundai Motor Company Fuel cell electrode
US8722228B2 (en) 2011-04-08 2014-05-13 Empire Technology Development Llc Moisture activated battery
US8735001B2 (en) 2011-04-08 2014-05-27 Empire Technology Development Llc Gel formed battery
US8744593B2 (en) 2011-04-08 2014-06-03 Empire Technology Development Llc Gel formed battery
US8828581B2 (en) 2011-04-08 2014-09-09 Empire Technology Development Llc Liquid battery formed from encapsulated components
CN103055868A (zh) * 2011-10-24 2013-04-24 中国石油化工股份有限公司 镍基催化剂及其制备方法
WO2013075303A1 (zh) * 2011-11-23 2013-05-30 海洋王照明科技股份有限公司 对电极活性材料、其制备方法、使用该对电极活性材料的太阳能电池对电极及其制备方法
CN102895970A (zh) * 2012-10-18 2013-01-30 岚晟新材料科技(上海)有限公司 一种有机气凝胶负载Pd化合物制备Pd/C催化剂的方法及Pd/C催化剂
WO2017045273A1 (zh) * 2015-09-16 2017-03-23 中国科学院化学研究所 一种气凝胶-金属复合材料及其制备方法和应用
CN106920970B (zh) * 2015-12-24 2020-04-03 丰田自动车株式会社 燃料电池用电极催化剂
CN106920970A (zh) * 2015-12-24 2017-07-04 丰田自动车株式会社 燃料电池用电极催化剂
CN106340726A (zh) * 2016-10-31 2017-01-18 中国工程物理研究院激光聚变研究中心 磁性导电纳米金属/碳气凝胶吸波材料及其制备方法
CN106340726B (zh) * 2016-10-31 2019-01-25 中国工程物理研究院激光聚变研究中心 磁性导电纳米金属/碳气凝胶吸波材料及其制备方法
US11258075B2 (en) 2016-12-09 2022-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst
CN108332889A (zh) * 2017-01-20 2018-07-27 中国科学院物理研究所 一种气凝胶压力传感器
CN109126643A (zh) * 2017-06-15 2019-01-04 湖南尚成新材料科技有限责任公司 一种自调光型透明复合气凝胶及其制备方法
CN109126643B (zh) * 2017-06-15 2020-06-02 湖南尚成新材料科技有限责任公司 一种自调光型透明复合气凝胶及其制备方法
CN107761124B (zh) * 2017-10-23 2019-06-07 大连理工大学 一种载银碳气凝胶的制备方法及应用
CN107761124A (zh) * 2017-10-23 2018-03-06 大连理工大学 一种载银碳气凝胶的制备方法及应用
CN109433120A (zh) * 2018-10-30 2019-03-08 武汉纺织大学 具备污染物吸附、催化及荧光跟踪协同功能的纳米纤维凝胶材料及其制备方法
CN109702221A (zh) * 2019-02-01 2019-05-03 北京弘微纳金科技有限公司 一种二氧化硅气凝胶负载铜复合材料的制备方法
CN113275582A (zh) * 2021-04-01 2021-08-20 南京工业大学 一种金属气凝胶电催化材料的制备方法

Also Published As

Publication number Publication date
MXPA04006324A (es) 2005-03-31
WO2003057367A2 (en) 2003-07-17
KR100629290B1 (ko) 2006-09-28
BR0215359A (pt) 2006-06-06
WO2003057367A3 (en) 2004-10-28
US7378450B2 (en) 2008-05-27
EP1494807A2 (en) 2005-01-12
KR20040077689A (ko) 2004-09-06
JP2006504508A (ja) 2006-02-09
US20040029982A1 (en) 2004-02-12
AU2002358277A1 (en) 2003-07-24
AU2002358277A8 (en) 2003-07-24
US20070142222A1 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
CN1617765A (zh) 气凝胶及金属组合物
Wang et al. Highly active and stable Pt–Pd alloy catalysts synthesized by room‐temperature electron reduction for oxygen reduction reaction
CN1931433B (zh) 担载催化剂、使用它的电极及包含该电极的燃料电池
Qin et al. Porous PdWM (M= Nb, Mo and Ta) trimetallene for high C1 selectivity in alkaline ethanol oxidation reaction
KR101797782B1 (ko) 연료 전지를 위한 금속 산화물 도핑을 갖는 촉매
CN1806921A (zh) 担载催化剂及其制备方法
CN1636634A (zh) 中孔碳分子筛及采用它的载体催化剂
Qiao et al. Preparation of SBA-15 supported Pt/Pd bimetallic catalysts using supercritical fluid reactive deposition: how do solvent effects during material synthesis affect catalytic properties?
CN1781604A (zh) 含碳纳米管的中孔性碳复合物
KR20110060589A (ko) 탄소에 담지된 코어-쉘 나노입자 제조방법
JP6976427B2 (ja) 担持された白金粒子の製造方法
CN105642311A (zh) 碳基非贵金属贵金属核壳纳米催化剂及其以MOFs为模板的制备方法
CN105771972A (zh) 一种原子层沉积修饰的限域催化剂的制备方法及其应用
CN109261146B (zh) 一种负载不同金属的纳米多孔空心笼状钛氧化物的制备方法
CN107199038B (zh) 一种复合光催化剂及其制备方法
JP2008080322A (ja) 白金担持触媒の製造方法
Hu et al. Mechanistic insights into the synthesis of platinum–rare earth metal nanoalloys by a solid-state chemical route
Yun et al. Matching Bidentate Ligand Anchoring: an Accurate Control Strategy for Stable Single‐Atom/ZIF Nanocatalysts
Centomo et al. Novel Pt0 catalysts supported on functional resins for the chemoselective hydrogenation of citral to the α, β-unsaturated alcohols geraniol and nerol
Paperzh et al. UV radiation effect on the microstructure and performance of electrocatalysts based on small Pt nanoparticles synthesized in the liquid phase
Liu et al. Embedding Pd‐Cu Alloy Nanoparticles in Shell of Surface‐Porous N‐Doped Carbon Nanosphere for Selective Hydrogenation of p‐Chloronitrobenzene
Zhang et al. Recent advances in the marriage of catalyst nanoparticles and mesoporous supports
Wang et al. Thermodynamically and Kinetically Stabilized Pt Clusters Against Sintering on CeO2 Nanofibers Through Enclosing CeO2 Nanocubes
Khalily et al. Atomic Layer Deposition of Pd Nanoparticles on N‐Doped Electrospun Carbon Nanofibers: Optimization of ORR Activity of Pd‐Based Nanocatalysts by Tuning Their Nanoparticle Size and Loading
US10668460B2 (en) Composite catalyst, method for manufacturing composite catalyst and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication