CN110950319B - 降低炭气凝胶材料密度的方法和装置 - Google Patents

降低炭气凝胶材料密度的方法和装置 Download PDF

Info

Publication number
CN110950319B
CN110950319B CN201911344445.0A CN201911344445A CN110950319B CN 110950319 B CN110950319 B CN 110950319B CN 201911344445 A CN201911344445 A CN 201911344445A CN 110950319 B CN110950319 B CN 110950319B
Authority
CN
China
Prior art keywords
aerogel
carbon aerogel
density
carbon
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911344445.0A
Other languages
English (en)
Other versions
CN110950319A (zh
Inventor
艾兵
张世超
孙现凯
孙浩然
陈玉峰
方凯
闫达琛
陶柳实
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Building Materials Academy CBMA
Original Assignee
China Building Materials Academy CBMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Building Materials Academy CBMA filed Critical China Building Materials Academy CBMA
Priority to CN201911344445.0A priority Critical patent/CN110950319B/zh
Publication of CN110950319A publication Critical patent/CN110950319A/zh
Application granted granted Critical
Publication of CN110950319B publication Critical patent/CN110950319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Abstract

本发明的主要目的在于提供一种降低炭气凝胶材料密度的方法和装置。所述的方法包括以下步骤:湿凝胶陈化至一定的粘度,得前驱体胶体;将气凝胶颗粒加入所述的前驱体胶体中继续陈化至凝胶化;对凝胶化产物溶剂置换,炭化,得炭气凝胶;强酸腐蚀所述的炭气凝胶,得低密度炭气凝胶材料。所要解决的技术问题是在常压干燥的条件下降低炭气凝胶材料的密度,制备出密度低、气孔率高的气凝胶,从而更加适于实用。

Description

降低炭气凝胶材料密度的方法和装置
技术领域
本发明属于气凝胶材料制造技术领域,特别是涉及一种降低炭气凝胶材料密度的方法和装置。
背景技术
气凝胶是一种新型纳米多孔结构材料,气凝胶由纳米颗粒聚集而成,孔隙率达到99.8%,是目前发现的最轻的凝聚态材料,有“固态烟”之称。气凝胶具有很多优良的性能,如低导热系数,低导电系数低声传播速度,在耐火材料、催化、消音、净化灯方面具有非常广阔的应用前景。炭气凝胶具有很高的热稳定性,在2800℃的惰性气氛下仍能保持介孔结构,隔热温度达到2200℃,是目前惰性气氛下耐温性能最好的隔热材料。
在炭气凝胶的制备过程中,需要对湿凝胶进行干燥,干燥方法有超临界干燥法和常压干燥法。超临界干燥法制备的炭气凝胶收缩率小、气孔率高、比表面积大,然而超临界干燥法对设备要求高、制作成本高、气凝胶尺寸有限制,制备过程存在安全隐患。常压干燥法对设备要求不高、制作成本低,可以大尺寸制备、安全性好,但是常压干燥制备的气凝胶收缩率大,气孔率低,比表面积小。
基于以上背景,亟需要研发一种密度低、气孔率高的炭气凝胶材料的制备方法已解决上述的技术问题。
发明内容
本发明的主要目的在于提供一种降低炭气凝胶材料密度的方法和装置,所要解决的技术问题是在常压干燥的条件下降低炭气凝胶材料的密度,制备出密度低、气孔率高的炭气凝胶,从而更加适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明提出的一种降低炭气凝胶材料密度的方法,其包括以下步骤:
湿凝胶陈化至一定的粘度,得前驱体胶体;
将气凝胶颗粒加入所述的前驱体胶体中继续陈化至凝胶化;
对凝胶化产物溶剂置换,炭化,得炭气凝胶;
强酸腐蚀所述的炭气凝胶,得低密度的炭气凝胶材料。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
优选的,前述的方法,其中所述的前驱体胶体的粘度为0.3~0.6Pa·s。
优选的,前述的方法,其中所述的气凝胶颗粒为氧化物气凝胶颗粒。
优选的,前述的方法,其中所述的气凝胶颗粒的材质选自二氧化硅、氧化铝和二氧化锆中的至少一种。
优选的,前述的方法,其中所述的气凝胶颗粒的添加量为前驱体胶体质量的1.5%~3%。
优选的,前述的方法,其中所述的强酸选自氢氟酸、盐酸、硝酸和硫酸中的至少一种。
优选的,前述的方法,其中所述的溶剂置换包括以下步骤:
将所述的凝胶化产物置于醇类溶剂中浸泡;
按照设定的时间和频次更换溶剂。
优选的,前述的方法,其中所述的炭化包括以下步骤:
以2~5℃/min的速度升温到250℃,保温3~4h;
再以2~4℃/min的速度升温到1050℃,保温4h;
再以2~4℃/min的速度降温到650℃;
随炉冷却到室温。
优选的,前述的方法,其中采用同样的湿凝胶,由该方法制备的低密度炭气凝胶材料的密度降低率≥10%。
本发明的目的及解决其技术问题还采用以下的技术方案来实现。依据本发明提出的一种降低炭气凝胶材料密度的装置,其依次包括:
陈化单元,用于将湿凝胶陈化为前驱体胶体,再将气凝胶颗粒加入其中继续陈化至凝胶化;
溶剂置换单元,用于用醇类溶剂置换湿凝胶中的反应溶剂;
炭化单元,用于将凝胶中的有机化合物炭化,得炭气凝胶;
腐蚀单元,用于使用强酸将气凝胶颗粒腐蚀。
借由上述技术方案,本发明提出的一种降低炭气凝胶材料密度的方法和装置至少具有下列优点:
本发明提出的降低炭气凝胶材料密度的方法和装置,其在湿凝胶陈化至具有适当粘度时加入气凝胶颗粒,再在后期通过强酸将其腐蚀去掉,使炭气凝胶材料中能够保留更多的孔隙,进一步降低其密度,提高其比表面积;解决了现有的常压干燥技术制备的炭气凝胶密度大、比表面积小等问题。进一步的,本发明通过溶胶-凝胶法制备炭气凝胶的过程中掺入氧化物气凝胶颗粒,结合强酸腐蚀炭气凝胶内预留的氧化物气凝胶颗粒,降低了常温干燥法所制备的炭气凝胶的密度,操作简单,效果明显。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例详细说明如后。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合较佳实施例,对依据本发明提出的一种降低炭气凝胶材料密度的方法和装置其具体实施方式、结构、特征及其功效,详细说明如后。
本发明提出一种降低炭气凝胶材料密度的方法,其包括以下步骤:湿凝胶陈化至一定的粘度,得前驱体胶体;将气凝胶颗粒加入所述的前驱体胶体中继续陈化至凝胶化;对凝胶化产物溶剂置换,炭化,得炭气凝胶;强酸腐蚀所述的炭气凝胶,得低密度的炭气凝胶材料。
本发明的技术方案是对现有技术中炭气凝胶材料生产工艺的改进,可以进一步降低炭气凝胶材料的密度,并增大了其比表面积。
现有技术中的炭气凝胶生产时,是先对湿凝胶陈化至凝胶化,然后对凝胶化的产物进行溶剂置换,干燥,炭化,得炭气凝胶。此方法采用常温干燥,得到的炭气凝胶的密度虽然较低,但是还是无法满足有些场合的实际需求,需进一步降低其密度。
不同的湿凝胶以及炭化工艺所制备的炭气凝胶材料,其密度本身具有一定的差异。本发明中对于所述的湿凝胶不作具体限定。无论采用何种湿凝胶和炭化工艺,只要在其生产工艺步骤中引入本发明的技术方案,均可使其制备的产品的密度下降至少10%以上。
为了方便说明,本发明的实施例中采用的湿凝胶是以间苯二酚和甲醛为原料,以无水炭酸钠为催化剂,去离子水为溶剂,经过溶胶凝胶反应得到。配方中各原料间苯二酚、甲醛水溶液、无水炭酸钠和去离子水的摩尔比为:间苯二酚:甲醛=1:2,间苯二酚:催化剂=(50~2000):1,水:间苯二酚=(60~300):1,充分搅拌均匀后,得到炭气凝胶的前驱体溶液,也即湿凝胶。
在湿凝胶的凝胶化过程中,在其陈化为具有一定粘度的前驱体胶体时,向其中加入气凝胶颗粒。所述的气凝胶又称为干凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状。
所述的气凝胶颗粒均匀分散于酚醛凝胶中,再进一步室温条件下陈化至凝胶化。经过溶剂置换,干燥和炭化后,得到炭气凝胶。再对炭气凝胶进行强酸腐蚀,去除其中的气凝胶颗粒,增加气凝胶的气孔率,降低了气凝胶的密度,得到一种密度更低的炭气凝胶材料。
本发明的技术方案,在常压干燥的基础上降低了炭气凝胶的密度,应用前景广阔。
优选的,所述的前驱体胶体的粘度为0.3~0.6Pa·s。
所述的气凝胶颗粒在湿凝胶陈化至规定的粘度后才能加入其中,一方面可以使气凝胶颗粒易于活动,使其能够分散均匀;另一方面又可以避免由于湿凝胶粘度不够而使气凝胶颗粒沉降或聚集而导致其分布不均匀。
优选的,所述的气凝胶颗粒为氧化物气凝胶颗粒。
优选的,所述的气凝胶颗粒的材质选自二氧化硅、氧化铝和二氧化锆中的至少一种。
优选的,所述的气凝胶颗粒的添加量为前驱体胶体质量的1.5%~3%。
优选的,所述的强酸选自氢氟酸、盐酸、硝酸和硫酸中的至少一种。
需要说明的是,这里对所述的强酸的摩尔浓度不作具体限定,稀酸、浓酸均可对其进行腐蚀。
对于腐蚀的时间也不作具体限定,腐蚀的终点是通过监测凝胶质量的变化进行判定。当腐蚀至一定的时间后,将凝胶捞出来于50℃下干燥12h后称重。当凝胶质量不再发生变化时,则视为腐蚀达到终点。
优选的,所述的溶剂置换包括以下步骤:将所述的凝胶化产物置于醇类溶剂中浸泡;按照设定的时间和频次更换溶剂。
所述的溶剂置换的目的是使用表面张力小的醇类溶剂置换掉湿凝胶制造过程中的表面张力大的反应溶剂,从而降低干燥过程中凝胶的收缩,以使最终所得到的凝胶能够保持低密度、高孔隙率。
优选的,所述的炭化包括以下步骤:以2~5℃/min的速度升温到250℃,保温3~4h;再以2~4℃/min的速度升温到1050℃,保温4h;再以2~4℃/min的速度降温到650℃;随炉冷却到室温。
所述的炭化目的在于将凝胶中的有机化合物分解为炭和其他组分,其他组分成气体形式挥发后仅保留了炭的多孔结构;控制炭化的温度制度,目的在于通过缓慢阶段性升温,从而防止样品在制造过程发生开裂。
优选的,采用同样的湿凝胶,由该方法制备的低密度炭气凝胶材料的密度降低率≥10%。
所述的密度降低率计算方法如下:基于相同的湿凝胶以及炭化工艺条件进行比较,采用实施例产品的密度减去对比例产品的密度,再以差值除以对比例产品的密度,以百分比表示。
本发明还提出一种降低炭气凝胶材料密度的装置,其依次包括:陈化单元,用于将湿凝胶陈化为前驱体胶体,再将气凝胶颗粒加入其中继续陈化至凝胶化;溶剂置换单元,用于用醇类溶剂置换湿凝胶中的反应溶剂;炭化单元,用于将凝胶中的有机化合物炭化,得炭气凝胶;腐蚀单元,用于使用强酸将气凝胶颗粒腐蚀,得低密度炭气凝胶材料。
下面通过更具体的实施例作进一步说明,但本发明的内容不仅仅局限于下面的实施例。
将间苯二酚、甲醛水溶液、无水炭酸钠和去离子水按比例混合均匀,得到均匀的溶液;将所述的溶液置于25~90℃的环境中,保温1~3天后,得到粘度为0.3~0.6Pa·s的湿凝胶,在湿凝胶中加入氧化物气凝胶颗粒,继续凝胶化反应,得到最终湿凝胶;对所得到的湿凝胶先进行溶剂置换再经过干燥和炭化,得到炭/氧化物复合气凝胶;对炭/氧化物复合气凝胶进行强酸腐蚀,腐蚀掉其中的氧化物气凝胶颗粒,干燥后得到了密度更低的炭气凝胶。
实施例1
将间苯二酚、甲醛、水和炭酸钠按照摩尔比例,间苯二酚:甲醛=1:2,间苯二酚:催化剂=500:1,水:间苯二酚=300:1,混合并充分搅拌均匀后,得到炭气凝胶前驱体溶液。将前驱体溶液置于25℃的环境中,陈化2天后,溶液具有一定粘度(0.3Pa·s),向溶液中加入3wt%的二氧化硅气凝胶颗粒,继续陈化至完全凝胶化后,将凝胶完全浸润在乙醇中,12h后更换乙醇溶液,反复更换3次后,完成溶剂置换。将此湿凝胶在常温下进行干燥。
将干燥后的凝胶进行炭化:炭化处理的参数设置为:以2℃/min升温到250℃,保温4h,再以3℃/min升温到1050℃,保温4h,再以4℃/min降温到650℃,最后随炉冷却到室温,得到炭/二氧化硅复合气凝胶。
将炭化后的炭/二氧化硅复合气凝胶置于HF溶液中,去除其中的二氧化硅气凝胶颗粒,得到低密度的炭气凝胶。
对比例1
将间苯二酚、甲醛、水和炭酸钠按照摩尔比例,间苯二酚:甲醛=1:2,间苯二酚:催化剂=500:1,水:间苯二酚=300:1,混合并充分搅拌均匀后,得到炭气凝胶前驱体溶液。将前驱体溶液置于25℃的环境中,陈化至完全凝胶化后,将凝胶完全浸润在乙醇中,12h后更换乙醇溶液,反复更换3次后,完成溶剂置换。将此湿凝胶在常温下进行干燥。
将干燥后的凝胶进行炭化:炭化处理的参数设置为:以2℃/min升温到250℃,保温4h,再以3℃/min升温到1050℃,保温4h,再以4℃/min降温到650℃,最后随炉冷却到室温,得到炭气凝胶。
使用本领域常规方法检测,上述的实施例1所制备的炭气凝胶材料的密度为0.53g/cm3,比表面积350.6m2/g;对比例1所制备的炭气凝胶材料的密度为0.62g/cm3,比表面积302.5m2/g。实施例1比对比例1的产品密度下降率为16.98%,比表面积增加13.72%。
实施例2
将间苯二酚、甲醛、水和炭酸钠按照摩尔比例,间苯二酚:甲醛=1:2,间苯二酚:催化剂=700:1,水:间苯二酚=400:1,混合并充分搅拌均匀后,得到炭气凝胶前驱体溶液。将前驱体溶液置于25℃的环境中,陈化2天后,溶液具有一定粘度(0.6Pa·s),向溶液中加入1.5wt%的氧化铝气凝胶颗粒,继续陈化至完全凝胶化后,将凝胶完全浸润在乙醇中,12h后更换乙醇溶液,反复更换3次后,完成溶剂置换。将此湿凝胶在常温下进行干燥。将此湿凝胶在常温下进行干燥。
将干燥后的凝胶进行炭化:炭化处理的参数设置为:以5℃/min升温到250℃,保温3h,再以4℃/min升温到1050℃,保温4h,再以2℃/min降温到650℃,最后随炉冷却到室温,得到炭/二氧化硅复合气凝胶。
将炭化后的凝胶置于盐酸溶液中,去除其中的氧化铝气凝胶颗粒,得到低密度的炭气凝胶。
对比例2:
将间苯二酚、甲醛、水和炭酸钠按照摩尔比例,间苯二酚:甲醛=1:2,间苯二酚:催化剂=700:1,水:间苯二酚=400:1,混合并充分搅拌均匀后,得到炭气凝胶前驱体溶液。将前驱体溶液置于25℃的环境中,陈化至完全凝胶化后,将凝胶完全浸润在乙醇中,12h后更换乙醇溶液,反复更换3次后,完成溶剂置换。将此湿凝胶在常温下进行干燥。将此湿凝胶在常温下进行干燥。
将干燥后的凝胶进行炭化:炭化处理的参数设置为:以5℃/min升温到250℃,保温3h,再以4℃/min升温到1050℃,保温4h,再以2℃/min降温到650℃,最后随炉冷却到室温,得到炭气凝胶。
使用本领域常规方法检测,上述的实施例2所制备的炭气凝胶材料的密度为0.51g/cm3,比表面积379.6m2/g;对比例2所制备的炭气凝胶材料的密度为0.57g/cm3,比表面积324.8m2/g。实施例2比对比例2的产品密度下降率为11.76%,比表面积增加14.44%。
实施例3
将间苯二酚、甲醛、水和炭酸钠按照摩尔比例,间苯二酚:甲醛=1:2,间苯二酚:催化剂=1000:1,水:间苯二酚=350:1,混合并充分搅拌均匀后,得到炭气凝胶前驱体溶液。将前驱体溶液置于25℃的环境中,陈化2天后,溶液具有一定粘度(0.4Pa·s),向溶液中加入2.5wt%的二氧化锆气凝胶颗粒,继续陈化至完全凝胶化后,将凝胶完全浸润在乙醇中,12h后更换乙醇溶液,反复更换3次后,完成溶剂置换。将此湿凝胶在常温下进行干燥。
将干燥后的凝胶进行炭化:炭化处理的参数设置为:以4℃/min升温到250℃,保温3h,再以2℃/min升温到1050℃,保温4h,再以2℃/min降温到650℃,最后随炉冷却到室温,得到炭/二氧化硅复合气凝胶。
将炭化后的凝胶置于氢氟酸溶液中,去除其中的二氧化锆气凝胶颗粒,得到低密度的炭气凝胶。
对比例3:
将间苯二酚、甲醛、水和炭酸钠按照摩尔比例,间苯二酚:甲醛=1:2,间苯二酚:催化剂=1000:1,水:间苯二酚=350:1,混合并充分搅拌均匀后,得到炭气凝胶前驱体溶液。将前驱体溶液置于25℃的环境中,陈化至完全凝胶化后,将凝胶完全浸润在乙醇中,12h后更换乙醇溶液,反复更换3次后,完成溶剂置换。将此湿凝胶在常温下进行干燥。
将干燥后的凝胶进行炭化:炭化处理的参数设置为:以4℃/min升温到250℃,保温3h,再以2℃/min升温到1050℃,保温4h,再以2℃/min降温到650℃,最后随炉冷却到室温,得到炭气凝胶。
使用本领域常规方法检测,上述的实施例3所制备的炭气凝胶材料的密度为0.44g/cm3,比表面积435.8m2/g;对比例3所制备的炭气凝胶材料的密度为0.49g/cm3,比表面积403.4m2/g。实施例3比对比例3的产品密度下降率为11.36%,比表面积增加7.43%。
实施例4
将间苯二酚、甲醛、水和炭酸钠按照摩尔比例,间苯二酚:甲醛=1:2,间苯二酚:催化剂=1500:1,水:间苯二酚=450:1,混合并充分搅拌均匀后,得到炭气凝胶前驱体溶液。将前驱体溶液置于25℃的环境中,陈化2天后,溶液具有一定粘度(0.5Pa·s),向溶液中加入1.8wt%的氧化铝气凝胶颗粒,继续陈化至完全凝胶化后,将凝胶完全浸润在乙醇中,12h后更换乙醇溶液,反复更换3次后,完成溶剂置换。将此湿凝胶在常温下进行干燥。
将干燥后的凝胶进行炭化:炭化处理的参数设置为:以3℃/min升温到250℃,保温4h,再以4℃/min升温到1050℃,保温4h,再以3℃/min降温到650℃,最后随炉冷却到室温,得到炭/二氧化硅复合气凝胶。
将炭化后的凝胶置于硝酸溶液中,去除其中的氧化铝气凝胶颗粒,得到低密度的炭气凝胶。
对比例4:
将间苯二酚、甲醛、水和炭酸钠按照摩尔比例,间苯二酚:甲醛=1:2,间苯二酚:催化剂=1500:1,水:间苯二酚=450:1,混合并充分搅拌均匀后,得到炭气凝胶前驱体溶液。将前驱体溶液置于25℃的环境中,陈化至完全凝胶化后,将凝胶完全浸润在乙醇中,12h后更换乙醇溶液,反复更换3次后,完成溶剂置换。将此湿凝胶在常温下进行干燥。
将干燥后的凝胶进行炭化:炭化处理的参数设置为:以3℃/min升温到250℃,保温4h,再以4℃/min升温到1050℃,保温4h,再以3℃/min降温到650℃,最后随炉冷却到室温,得到炭气凝胶。
使用本领域常规方法检测,上述的实施例4所制备的炭气凝胶材料的密度为0.42g/cm3,比表面积460.5m2/g;对比例4所制备的炭气凝胶材料的密度为0.47g/cm3,比表面积418.3m2/g。实施例4比对比例4的产品密度下降率为11.90%,比表面积增加9.16%。
本发明权利要求和/或说明书中的技术特征可以进行组合,其组合方式不限于权利要求中通过引用关系得到的组合。通过权利要求和/或说明书中的技术特征进行组合得到的技术方案,也是本发明的保护范围。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (7)

1.一种降低炭气凝胶材料密度的方法,其特征在于,其包括以下步骤:
湿凝胶陈化至一定的粘度,得前驱体胶体;所述的前驱体胶体的粘度为0.3~0.6Pa·s;
将气凝胶颗粒加入所述的前驱体胶体中继续陈化至凝胶化;所述的气凝胶颗粒的添加量为前驱体胶体质量的1.5%~3%;
对凝胶化产物溶剂置换,炭化,得炭气凝胶;
强酸腐蚀所述的炭气凝胶,得低密度的炭气凝胶材料。
2.根据权利要求1所述的方法,其特征在于,所述的气凝胶颗粒为氧化物气凝胶颗粒。
3.根据权利要求1所述的方法,其特征在于,所述的气凝胶颗粒的材质选自二氧化硅、氧化铝和二氧化锆中的至少一种。
4.根据权利要求1所述的方法,其特征在于,所述的强酸选自氢氟酸、盐酸、硝酸和硫酸中的至少一种。
5.根据权利要求1所述的方法,其特征在于,所述的溶剂置换包括以下步骤:
将所述的凝胶化产物置于醇类溶剂中浸泡;
按照设定的时间和频次更换溶剂。
6.根据权利要求1所述的方法,其特征在于,所述的炭化包括以下步骤:
以2~5℃/min的速度升温到250℃,保温3~4h;
再以2~4℃/min的速度升温到1050℃,保温4h;
再以2~4℃/min的速度降温到650℃;
随炉冷却到室温。
7.根据权利要求1所述的方法,其特征在于,采用同样的湿凝胶,由该方法制备的低密度炭气凝胶材料的密度降低率≥10%。
CN201911344445.0A 2019-12-24 2019-12-24 降低炭气凝胶材料密度的方法和装置 Active CN110950319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911344445.0A CN110950319B (zh) 2019-12-24 2019-12-24 降低炭气凝胶材料密度的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911344445.0A CN110950319B (zh) 2019-12-24 2019-12-24 降低炭气凝胶材料密度的方法和装置

Publications (2)

Publication Number Publication Date
CN110950319A CN110950319A (zh) 2020-04-03
CN110950319B true CN110950319B (zh) 2021-09-14

Family

ID=69983759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911344445.0A Active CN110950319B (zh) 2019-12-24 2019-12-24 降低炭气凝胶材料密度的方法和装置

Country Status (1)

Country Link
CN (1) CN110950319B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114408895B (zh) * 2022-02-17 2023-09-29 福州大学 一种基于聚合物气凝胶的多功能高孔隙高热导碳气凝胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1891622A (zh) * 2005-07-06 2007-01-10 同济大学 一种高比表面积碳气凝胶的制备方法
CN101288837A (zh) * 2008-05-26 2008-10-22 华东理工大学 一种炭-硅复合气凝胶的制备方法
CN102091595A (zh) * 2011-01-12 2011-06-15 华东理工大学 对低密度脂蛋白有特异性吸附的球状炭气凝胶的制备方法
CN106044740A (zh) * 2016-05-25 2016-10-26 天津晨祥丰凯新材料科技有限公司 一种纳米多孔碳材料及其制备方法
WO2017045273A1 (zh) * 2015-09-16 2017-03-23 中国科学院化学研究所 一种气凝胶-金属复合材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB607427A (en) * 1945-02-10 1948-08-31 British Thomson Houston Co Ltd Improvements in and relating to organo-silica sols and gels
WO2004028966A1 (ja) * 2002-09-30 2004-04-08 Matsushita Electric Industrial Co., Ltd. 多孔体とその製造方法、およびその多孔体を用いた電気化学素子
US8178155B2 (en) * 2009-01-27 2012-05-15 Applied Materials, Inc. Carbon-based ultracapacitor
CN108329046B (zh) * 2018-02-26 2020-09-11 中国人民解放军国防科技大学 一种炭气凝胶隔热复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1891622A (zh) * 2005-07-06 2007-01-10 同济大学 一种高比表面积碳气凝胶的制备方法
CN101288837A (zh) * 2008-05-26 2008-10-22 华东理工大学 一种炭-硅复合气凝胶的制备方法
CN102091595A (zh) * 2011-01-12 2011-06-15 华东理工大学 对低密度脂蛋白有特异性吸附的球状炭气凝胶的制备方法
WO2017045273A1 (zh) * 2015-09-16 2017-03-23 中国科学院化学研究所 一种气凝胶-金属复合材料及其制备方法和应用
CN106044740A (zh) * 2016-05-25 2016-10-26 天津晨祥丰凯新材料科技有限公司 一种纳米多孔碳材料及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Advances in carbon nanostructure–silica aerogel composites: a review;Alyne Lamy-Mendes et al;《Journal of Materials Chemistry A》;20171220;全文 *
Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent;Yongxu Du et al;《Journal of Powers Sources》;20180203;全文 *
SiO2/C杂化气凝胶的合成及结构研究;杨双喜;《中国优秀博硕士学位论文全文数据库(硕士)•工程科技I辑》;20061115;图2-1、第2.3.1-2.3.4节、3.5.2节 *
Synthesis and Characterization of Silica/Carbon Composite Aerogels;Li Ye et al;《J.Am.Ceram.Soc》;20100430;全文 *
具有气凝胶结构特征的C/SiO2和C/SiC复合材料研究进展;何飞等;《无机材料学报》;20170531;第32卷(第5期);全文 *
同步合成模板法制备热解炭及其电化学电容性能研究;候朝辉等;《无机化学学报》;20030930;全文 *
炭气凝胶的常压干燥制备研究;朱志斌等;《现代技术陶瓷》;20141231;全文 *

Also Published As

Publication number Publication date
CN110950319A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN106189066B (zh) 一种酚醛树脂/二氧化硅复合气凝胶材料及其制备方法
CN103204666A (zh) 一种水性条件下低成本制备气凝胶或气凝胶纤维复合材料的方法
CN108383128B (zh) 一种稻壳基微纳结构多孔二氧化硅的制备方法
CN109251005B (zh) 一种增强二氧化硅气凝胶材料的制备方法
CN110510617B (zh) 一种大尺寸氧化铝-二氧化硅气凝胶的常压干燥制备方法
WO2014110891A1 (zh) 一种二氧化硅气凝胶的制备方法
US9869422B2 (en) Method for preparing bulk C—AlN composite aerogel with high strength and high temperature resistance
CN113663611B (zh) 一种耐高温复合纳米纤维气凝胶材料及其制备方法
CN110950319B (zh) 降低炭气凝胶材料密度的方法和装置
CN111892420B (zh) 块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法
CN112830761B (zh) 耐高温、高强度Al2O3气凝胶复合材料及其制备方法
CN104478475A (zh) 一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法
JP2015533384A (ja) 有機モノリスゲル用の断熱性組成物、その使用およびそれを調製する方法
CN102092708A (zh) 一种低碱下制备苯酚-甲醛炭气凝胶的方法
CN107043224A (zh) 一种泡沫玻璃‑SiO2气凝胶的制备方法
CN107746285B (zh) 一种三维多孔氮化物纳米陶瓷及其制备方法
CN112709075A (zh) 一种高强度气凝胶改性的隔热毡及其制备方法
KR20100125798A (ko) 기공 크기 조절이 가능한 메조다공성 탄소 제조용 조성물 및 이의 제조방법
US20220209234A1 (en) Fibrous carbon aerogels coated with nano-thin silicon as lithium battery anodes
CN108774072B (zh) 一种刚性隔热瓦及其制备方法
JP5988075B2 (ja) 炭素材料の製造方法
CN114394612A (zh) 一种耐高温、低密度氧化铝纳米棒气凝胶及其制备方法
CN102826534A (zh) 一种有机气凝胶及炭气凝胶的制备方法
CN105016766A (zh) 一种炭/二氧化硅气凝胶的制备方法
CN107459028B (zh) 一种杂原子掺杂的碳气凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant