WO2004028966A1 - 多孔体とその製造方法、およびその多孔体を用いた電気化学素子 - Google Patents

多孔体とその製造方法、およびその多孔体を用いた電気化学素子 Download PDF

Info

Publication number
WO2004028966A1
WO2004028966A1 PCT/JP2003/012468 JP0312468W WO2004028966A1 WO 2004028966 A1 WO2004028966 A1 WO 2004028966A1 JP 0312468 W JP0312468 W JP 0312468W WO 2004028966 A1 WO2004028966 A1 WO 2004028966A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
gel
porous body
inorganic oxide
precursor
Prior art date
Application number
PCT/JP2003/012468
Other languages
English (en)
French (fr)
Inventor
Masa-Aki Suzuki
Hidehiro Sasaki
Yasunori Morinaga
Masahiro Deguchi
Yuka Yamada
Nobuyasu Suzuki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2003266700A priority Critical patent/AU2003266700A1/en
Priority to JP2004539575A priority patent/JP3750024B2/ja
Publication of WO2004028966A1 publication Critical patent/WO2004028966A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention relates to a carbon-based porous material used for an electrode material such as a battery or a capacitor, a wake-up book and the like, and a $ i method thereof.
  • an electrode material such as a battery or a capacitor, a wake-up book and the like
  • electrochemical devices such as fuel cells, air cells, 7_ 7 devices, gas sensors, and pollutant gas removal devices that use the porous body as electrodes.
  • Fuel cells include: a) a fuel electrode that generates electrons and protons by reacting fuel such as ⁇ element, b) a solid electrolyte that transmits the generated protons, c) electrons supplied through an external circuit, and oxygen and protons. And oxygen for reacting with.
  • the reaction at the electrode is as follows. First, in fuels, liquid or gaseous fluid fuel reacts with the finest,
  • the reaction reacts as H 2 ⁇ 2 H + ⁇ + 2 e _ ⁇ , and the charge-separated electrons travel from the electrode to the external circuit, and the protons travel to the proton-conductive electrolyte.
  • a material that has a role of transmitting only the proton and that has a small decrease in efficiency due to diffusion of fuel or the like is used.
  • a carbon material is widely used.
  • a carbon material such as carbon black, active '1', graphite, conductive '14 ⁇ element, etc. is used as an electrode after being immersed in a porous body.
  • a method of carbonizing an organic gel Specifically, a step of synthesizing a wet gel having a high carbon precursor by a sol-gel method; a step of drying the obtained wet gel having a carbon precursor height of ⁇ ?; This is a method having a step of carbonizing the body by firing.
  • ⁇ i method a porous body having a low density and a large specific surface area can be obtained.
  • materials such as porous materials are also required to have further improved performance. In order to achieve such a high performance, it is necessary to reduce the density of the porous material with a low specific density and a large specific surface area.
  • the method for carbonizing an organic gel has the following problems.
  • Precursor of carbon fiber In the process of carbonizing an organic gel with a high ⁇ by firing, the porous body of the precursor is carbonized; The density tends to be higher and the specific surface area tends to be lower than at the time.
  • a further object of the present invention is to provide a use of a high-quality carbon-based porous material efficiently produced by the S method of the present invention.
  • the present invention relates to the following porous body, its method, and an electrochemical coil using the porous body.
  • the structural skeleton is composed of an inner part and a surface part.
  • the surface portion contains a carbon material
  • a porous body whose inside is occupied by a) an inorganic oxide, b) a space or c) an inorganic oxide and a space.
  • a method for forming a porous body according to ff head 1 from an inorganic oxide gel having a network structure skeleton wherein at least (1) a step of applying a carbon material to the gel to obtain a carbon-containing material A or (2) a multiple-body process including a step B of applying a carbon precursor to the gel and carbonizing the obtained gel containing the carbon precursor to obtain a carbon-containing material.
  • a wet gel is used as the gel, and in step B, a force-bon precursor is applied to the wet gel, and the resultant gel containing the carbon precursor is removed to form a gel containing the force-bon precursor.
  • the method according to the preceding statement 5 wherein a step of obtaining a porous body as a carbon-containing material by performing carbonization treatment of the male gel after the obtaining is performed. 8.
  • Step B After the wet gel is used as the gel, and in Step B, a carbon precursor is applied to the wet gel and a part of the inorganic oxide or ⁇ is deposited from the obtained gel containing the carbon precursor.
  • An electrochemical element in which a fuel "electrode that produces protons from fuel” and oxygen that makes protons co-core are opposed to each other with a proton-conductive solid in between, and the fuel electrode and the elemental electrode 2.
  • An electrochemical device wherein at least one of the above is the porous body according to the above item 1.
  • FIG. 1 is a schematic diagram for explaining a network structure skeleton in the porous body of the present invention.
  • FIG. 2 is a cross-sectional view for explaining a network structure skeleton of the carbon composite porous body of the present invention.
  • FIG. 3 is a cross-sectional view for explaining a network structure skeleton in the porous carbon material of the present invention.
  • FIG. 4 is a schematic diagram for explaining another example of the porous body of the present invention.
  • FIG. 5 illustrates an example of a method for a porous composite porous body obtained by the present invention.
  • FIG. 6 is a process chart for explaining another U of the $ 3 ⁇ 4i method of the porous carbon composite obtained by the present invention.
  • FIG. 7 is a flowchart illustrating an example of a method for producing a porous carbon material obtained by the present invention.
  • FIG. 8 is a process chart for explaining another example of the method for forming a porous carbon material obtained by the present invention.
  • FIG. 9 is a diagram for explaining the general principle of a fuel cell.
  • Porous body of the present invention will be described with reference to the drawings. -1.
  • the porous body of the present invention is a porous body having a network structure skeleton, wherein (1) the network structure skeleton is composed of an inner portion and a surface portion; (2) the surface portion includes a carbon fiber material; The interior is occupied by a) inorganic oxide, b) space or c) inorganic oxide and space.
  • the network skeleton of the porous body of the present invention may have a three-dimensional network structure.
  • the skeleton is composed of an inner part and a surface part.
  • the surface portion includes a carbon material (preferably substantially consisting of a carbon fiber).
  • the carbon material is not particularly limited as long as it is carbon or a material containing carbon.
  • power pump racks acetylene black, Ketjen black, etc.
  • activated carbon artificial graphite, natural graphite, carbon fiber ⁇ , mm, glassy carbon, non-carbon, specialty carbon, coke and the like can be mentioned.
  • the crystal structure is not limited, and may have any of a diamond structure, a graphite structure, and the like. It is also Rikikawa Noh that can produce carbon nanotubes, carbon nanohorns, carbon nanoribbons, carbon nanocoils, and carbon nanocapsules.
  • 1 ax can be used in two or more kinds.
  • the carbon material may be either crystalline or amorphous. In the present invention, a combination of these may be used depending on the use and usage of the porous body.
  • a carbon material produced by carbonization from a raw material of a carbon material and a carbon material obtained by carbonizing an organic polymer which is a z or a carbon precursor can be used.
  • These have the advantage that they can be easily formed on the skeleton surface of the gel, and that the structure, characteristics, etc. of the carbon fiber can be arbitrarily controlled depending on the condition of the raw material and the carbonization conditions.
  • the thickness of the surface portion is not limited, and can be set according to the purpose of the porous body, the purpose of use, and the like. Further, the thickness can be controlled by providing conditions in the S method described later.
  • the ratio between the inorganic oxide and the carbon material can be determined according to the type of the inorganic oxide and the use of the porous body.
  • the interior of the porous body is occupied by a) an inorganic oxide, b) a space or c) an inorganic oxide and a space. That is, in the porous body of the present invention, the content (occupancy) of the inorganic oxide in the porous body has a range of 0% by volume or more and 100% by volume or less. Therefore, the present invention relates to the case where (i) the inside of the porous body is substantially entirely formed of an inorganic oxide, or (ii) the inside of the porous body is substantially all space voids.
  • the type of the inorganic oxide is not particularly limited, and may be determined according to the use and the specific purpose of the porous body.
  • the bulk density, the BET specific surface, and the average pore diameter of the porous body of the present invention can be set depending on the type of the fiber oxide, the use of the porous body, and the usage restrictions.
  • Bulk density is usually 10 ⁇ 500k Especially 5 0 ⁇ 4 0 0 kg / m 3 range may be determined 3 ⁇ 4Y.
  • the specific surface area can usually be set within a range of about 50 to 150 m 2 / g, particularly 100 to 1000 m 3 Zg.
  • the specific surface area is a value measured by the Karenauer-Emmet Terra method (hereinafter abbreviated as the BET method), which is a nitrogen adsorption method.
  • the average pore diameter of the porous body of the present invention can be M: T within a range of usually 1 to 100 nm, particularly 5 to 50 nm.
  • the shape and size of the porous body of the present invention are not limited, and may be determined according to the use, purpose, and the like of the multi-piece body.
  • Embodiment 1 is a porous body of the present invention in which the inside is occupied by an inorganic oxide. That is, a porous body having a network structure skeleton, (1) the network structure skeleton is composed of an inside and a surface portion, (2) the surface portion contains a carbon material, and (3) the inside is substantially all It is a porous body occupied by inorganic oxide. In other words, it is a porous body having a network structure skeleton composed of an inorganic oxide coated with a carbon material (hereinafter also referred to as a “carbon composite porous body”).
  • FIG. 1 shows a schematic diagram of the entire carbon composite porous body.
  • FIG. 2 shows a cross-sectional view of the network skeleton.
  • the skeleton as shown in FIG. 1 forms a network in a three-dimensional network.
  • a nucleus can be made, for example, from the process of obtaining a gel placement via a wet gel.
  • the above skeleton forms a network structure due to fine particles, and can be represented as shown in FIG.
  • the skeleton has a porous structure composed of a body of fine particles and having voids between the fine particles.
  • pores are formed by skeletons (skeletons) formed from fine particles having a particle size of 100 nm or less. So The pore size is as small as about lim or less. As a result, a porosity of 50% or more can be reduced, so that a porous body having a high specific surface area can be provided.
  • the fine particles are as small as 1 nm or more and 50 nm or less, and the size of the pores is as small as 100 nm or less. is there. This makes it possible to obtain a porous body having a porosity of at least 80% and a high specific surface area of at least 100 m 2 / g.
  • the internal structure 3 of the network structure skeleton 1 is made of an inorganic oxide.
  • This inorganic oxide constitutes the inner part (core part), and four carbon materials are cultivated on the surface part.
  • the carbon composite porous body 2 of the present invention has a large specific surface area because the dried gel 3 of the inorganic oxide is covered with the force-sensitive material 4. Accordingly, it is possible to use the above porous body as an electrifying material, a material, or the like.
  • the inorganic oxide occupying the inside of the network structure skeleton 1 has better heat resistance than the organic material.
  • the above skeleton plays a role as a carbon material separation in the carbonization process of the carbon precursor, for example, whereby the contraction of the porous body at the time of forming the carbon fiber can be suppressed.
  • the porous carbon composite has a low density and can exhibit a high specific surface area.
  • a second embodiment of the porous body according to the present invention is a porous porous body having a network skeleton as shown in FIG. As shown in Fig. 3, the surface of the skeleton is made up of six carbon materials, and the interior is substantially entirely occupied by hollows 7 (spaces).
  • the inside of the skeleton is a hollow portion 7.
  • This porous body has a higher specific surface area than the above-described carbon composite porous body 2 due to the hollow portion. This allows the porous body to be solidified as a more active electrode material, catalyst material, or the like.
  • a catalyst 9 (catalytic active component) is provided on the surface thereof.
  • »Have been.
  • the catalyst 8 may exist in any state as long as it is in contact with the carbon material.
  • the age, the surface of the carbon material, or the level in the carbon material of the carbon composite material of the first embodiment may be used.
  • the porous carbon material according to the second embodiment either the surface of the carbon material or the inner side of the carbon material may be used. It is desirable that the surface of the carbon material be raised or covered in that the ⁇ to the reactant is K.
  • the method for producing the porous body of the present invention includes the following first invention to third invention.
  • the first invention is a method of hardening a porous body from a gel of an inorganic oxide having a network structure skeleton; at least (1) a step A or (A) of applying carbon fiber to the gel to obtain a carbon-containing material. 2) A method of obtaining a carbon-containing material by applying a carbon precursor to the gel and carbonizing the obtained carbon precursor-containing gel to obtain a carbon-containing material.
  • a second invention is a method according to the first invention, further comprising a step of removing a part or all of the inorganic oxide from the material containing carbon or the material containing carbon precursor.
  • the third invention is the method according to the first invention or the second invention, further comprising a step of sulking a bandit.
  • a step A of obtaining a carbon-containing material by applying a carbon material to the gel or (2) applying a carbon precursor to the gel This is a porous S3 ⁇ 4i method including a step B of obtaining a carbon-containing material by carbonization.
  • the porous body of the present invention the porous body whose inside is substantially entirely occupied by the inorganic oxide can be suitably reduced.
  • either step A or step B can be selectively performed.
  • Step A is a step in which carbon is applied to the disgusting gel to obtain a raw material.
  • a gel of an inorganic oxide having a network structure skeleton is not particularly p-armed as long as it has a network structure skeleton. Further, depending on whether or not a liquid is contained, there are two types of wet gels c, a gel containing a solvent in the gaps between the network skeletons, and a placement gel (a gel having substantially no solvent in the gaps between the network skeletons). However, any of them can be adopted in the present invention.
  • the type of the inorganic oxide can be selected from various metal oxides according to the use of the porous body and the constraints.
  • those which can be formed by a sol-gel method in order to form a network structure skeleton are preferable.
  • Oxides, composite oxides and the like are also included. Of these, at least one of silylation and alumina is more preferred because a wet gel can be easily formed by the sol-gel method.
  • gels prepared by the sol-gel method can be suitably used in that the network skeleton can be formed more reliably as described in Volume 3.
  • the case where the sol-gel method is difficult will be described as a typical example.
  • Raw materials are not specified as long as they form a wet gel by a sol-gel reaction.
  • Raw materials used in a known sol-gel method can also be used.
  • inorganic materials such as sodium silicate and aluminum hydroxide
  • organic materials of organic metal alkoxides such as tetramethoxysilane, tetraethoxysilane, aluminum isopropoxide, and aluminum sec-butoxide can be used. . These may be selected according to the type of the desired inorganic oxide.
  • the sol-gel method may be carried out according to the following conditions.
  • HIS a solution is prepared by dissolving the above raw materials in a solvent, and the reaction is carried out in a heated room to form a gel.
  • Raw materials for silica include, for example, alkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, trimethoxymethylsilane and dimethoxydimethylsilane, oligomers thereof, and sodium silicate (such as sodium silicate and potassium silicate).
  • Examples include water glass compounds and colloidal silicides, etc. These can be used as a worm or as a mixture.
  • the solvent is not specified as long as the raw material dissolves and the generated silica does not dissolve.
  • methanol, ethanol, propanol, acetone, toluene, hexane and the like can be mentioned. These can be used alone or in combination of two or more.
  • catalysts and additives for controlling viscosity can also be blended.
  • acids such as sulfuric acid and acetic acid, and bases such as ammonia, pyridine, sodium hydroxide, and 7_ ⁇ potassium oxide can be used.
  • the viscosity adjustment 11 may be ethylene glycol, glycerin, polyvinyl alcohol, silicone oil, or the like, but is not limited as long as the wet gel can be formed into a predetermined shape.
  • the above raw materials are dissolved in a solvent to prepare Nada.
  • the key to the solution in this case depends on the type of raw material or solvent used, the desired gel properties, etc., but in terms of HIS, solid components that form the skeleton are difficult to lit, or about tens of weight percent. It is good.
  • the above-mentioned solution may be added to the above-mentioned additives as needed, stirred, and then put into a desired use form by liquor, coating or the like. After a certain period of time in this state, the solution gels and a predetermined wet gel can be obtained. Specifically, the raw materials react in a solvent to form silica fine particles, and the fine particles gather to form a network skeleton, thereby producing a wet gel.
  • the night time ® is not 1 » and ⁇ may be heated.
  • the temperature can be set within the range of the temperature below the boiling point of the solvent used.
  • Mi may be used when gelling.
  • the resulting wet gel may be subjected to a surface treatment, if necessary, for the purpose of enhancing the affinity of soot in a subsequent step such as formation of a carbon precursor.
  • a surface treatment agent include octogen silane treatments such as trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, and phenyltrichlorosilane; trimethylmethoxysilane, trimethylethoxysilane, and dimethyl.
  • Alkoxy-based silane treating agents such as dimethoxysilane, methyltriethoxysilane, and phenyltriethoxysilane; silicone-based silane treating agents such as hexmethyldisiloxane and dimethylsiloxane oligomer; amine-based agents such as hexamethylresilazane Silane treating agents; alcohol-based treating agents such as propyl alcohol, butyl alcohol, hexyl alcohol, octanol and decanol can be used.
  • 1 SX may be selected from two or more types according to the use of the porous body.
  • carbon or a material containing carbon can be used, as if it were unpleasant.
  • Examples include carbon black (acetylene black, Ketjen black, etc.), activated carbon, artificial graphite, natural graphite, carbon fiber, wmm, glassy carbon, non-carbon, specialty carbon, coix, and the like.
  • the crystal structure is not limited, and any of a diamond structure, a graphite structure, and the like may be used. It is also a T ability to use nanocarbon materials such as carbon nanotubes, carbon nanohorns, carbon nanoribbons, carbon nanocoils, and carbon nanocapsules. These can be used in 2 or more types of 1SX. These can be selected according to the type of porous material used. For example, when the porous body of the present invention is used as an electrode, one having excellent conductivity is preferable.
  • the method for applying the carbon material is not particularly limited, and any of a visual method, a liquid phase method, and a solid phase method can be applied.
  • Examples of the raw materials include: saturated hydrocarbon compounds such as methane, ethane, propane, and butane; unsaturated hydrocarbon compounds such as ethylene, acetylene, and propylene; hydrogenated compounds such as benzene and xylene; and methanol and ethanol. Alcohols; hydrocarbons such as acrylonitrile; and carbon-containing gases such as a mixed gas of carbon monoxide and hydrogen, and a mixed gas of carbon dioxide and hydrogen. As for these, 1®X can be used in two or more kinds.
  • Energy such as heat, plasma, ions, light, and bandits can be used to convert these materials into carbon.
  • the method using calorific heat is preferred because of its controllability.
  • the eye method should be performed according to normal conditions.
  • a gel may be placed in a reaction vessel, the above-mentioned raw material may be made into a vapor in the reaction atmosphere, and carbon may be deposited on the skeleton surface of the gel under the heat of calo.
  • the conditions in this case can be adjusted according to the use of the porous body, desired characteristics, and the like.
  • the method (b) preferably uses a wet gel, disperses carbon in a solvent contained in the gel, and then performs a drying treatment to obtain a carbon-containing material.
  • the carbon material to be dispersed is ultrafine particles having an average particle diameter of In nm or more and 10 nm or less.
  • the amount of the carbon material used to coat the gel with the carbon material is not particularly limited, and depends on the use of the porous material, the method of use, the type of the carbon material used, and the like. You can.
  • the raw material obtained in step A may be used as it is as the porous body of the present invention.
  • the solvent process mn) may be performed for the purpose of removing the residual solvent in the gel.
  • a wet gel is used as the gel, it is desirable to carry out a solvent iron process.
  • the brute force process may be the same as that described below.
  • Step B is a step in which a carbon precursor is applied to the disgusting gel and the resulting carbon precursor-containing gel is carbonized to obtain a carbon-containing material.
  • the gel it is possible to shelf the gel shown in the step A. Therefore, the gel can be either wet gel or fiber gel.
  • carbon precursor As a carbon precursor, if it is finally carbonized into carbon, it is not particularly p-armed. Therefore, any material that contains carbon can be used, and organic materials can be used for the purpose.
  • organic preference can be used.
  • polymers or copolymers such as polyacrylonitrile, polyfurfuryl alcohol, polyimide, polyamide, polyurethane, polyurea, polyphenol (phenol resin), polyaniline, polyparaphenylene, polyetherimide, polyamideimide, acrylic copolymer, etc.
  • polymers or copolymers such as polyacrylonitrile, polyfurfuryl alcohol, polyimide, polyamide, polyurethane, polyurea, polyphenol (phenol resin), polyaniline, polyparaphenylene, polyetherimide, polyamideimide, acrylic copolymer, etc.
  • an organic polymer having a carbon-carbon unsaturated bond is preferable. That is, it is possible to suitably use an organic molecule having at least one kind of carbon-carbon double yarn and carbon-carbon triple bond. By using such an organic polymer, carbonization can be performed more easily and reliably, and a carbon material having a predetermined bow daughter can be formed.
  • phenolic resins, epoxy resins, polyimides, polystyrenes, polysulfones, polyphenylene ethers, melamine resins, aromatic polyamides and the like can be mentioned. These can be used alone or in combination of two or more. Also, it can be used in combination with other organic compounds.
  • an organic compound having an aromatic ring is particularly preferable. For example, at least one of phenol resin, polyimide and the like can be suitably used.
  • organic compounds having no aromatic ring for example, polyacrylonitrile, acryl copolymer, etc.
  • it can.
  • it does not have a carbon-carbon unsaturated bond, but can be used for an organic compound capable of forming a carbon-carbon unsaturated bond by cyclization by carbonization.
  • polyacrylonitrile is particularly preferred.
  • a method for preparing a gel containing a force-pong precursor by applying a force-pong precursor to the gel a method in which the force-pong precursor can be formed on a network skeleton of a metal oxide serving as a support material If it is, there is no particular limitation.
  • (a) carbon precursor In addition to the method of impregnating the wet gel of oxides, (b) using a monomer or oligomer that can form an organic polymer, impregnating the wet gel and then polymerizing it to form a carbon precursor (C) a method of applying a monomer capable of forming an organic high liver in an inorganic oxide gel by an eye method, followed by polymerization to generate an organic high as a carbon precursor, etc. Can be suitably adopted.
  • a wet gel is immersed in a solution in which a carbon precursor is dissolved in a solvent or in a solution dispersed in a solvent (emulsion, etc.).
  • the carbon precursor adheres to the surface of the network skeleton and is coated.
  • the organic precursor is used as the precursor of the carbon, and the solvent X carries the mist and the moist gel:
  • the moist gel contains ⁇ or moist inside, and Remain in the network skeleton structure.
  • the dissolved high liver may be physically adsorbed to the network skeletal structure.
  • the organic polymer precipitates on the network skeleton structure to form a surface portion. Become.
  • the solvent may be selected from among solvents according to the type of organic material.
  • solvents for example, in addition to water, alcohols such as methanol, ethanol, propanol and butanol, and glycols such as ethylene glycol and propylene glycol can be mentioned. These can be used alone or in combination of two or more.
  • the amount of the carbon precursor in the dispersion liquid is not particularly limited, and may be determined according to the desired application amount of the carbon precursor, the type of the carbon precursor, and the like. In monkey.
  • a wet gel is added to a solution in which an organic conjugate (including oligomers) capable of forming an organic polymer by polymerization is dissolved in a solvent or a dispersion liquid dispersed in a solvent.
  • an organic conjugate including oligomers
  • polymerization increase in temperature
  • an organic hight that is a carbon precursor can be generated.
  • the organic polymer grows inside the network structure skeleton, it is possible to obtain a wet gel containing the lipopolycarbonate precursor which is hardly physically eluted.
  • a monomer for the target organic liver use a monomer for the target organic liver.
  • acrylonitrile can be used to obtain polyacrylonitrile
  • furfuryl alcohol can be used to obtain polyfurfuryl alcohol
  • aniline can be used to obtain polyaniline.
  • polyimide when it is produced by a polycondensation reaction for forming an imide ring, tetracarboxylic anhydride compounds and diamine compounds can be used as H-substances.
  • a dicarboxylic acid compound, a dicarboxylic acid chloride compound, and a diamine compound can be used as primary ones.
  • a diisocyanate compound such as a polyol and a diisocyanate compound are obtained.To obtain a polyurea, a diisocyanate compound and a polyphenol are obtained. .
  • organic high liver of the present invention those which supply a carbon-carbon unsaturated yarn are preferable, and an arsenic compound which produces such an organic high liver can be suitably used.
  • phenolic compounds include phenol, cresol, resorcinol (1,3-benzenediol), catechol, phloroglicinol, salicylic acid, and oxybenzoic acid.
  • formaldehyde, acetoaldehyde, furfural, paraformaldehyde which generates formaldehyde by heating, hexamethylenetetramine, etc. are also used as aldehyde compounds as condensing agents.
  • a base catalyst and / or an acid catalyst can be used as the condensed M medium.
  • the base catalyst may cause a reaction such as a methyl group to proceed mainly, and a polyaddition condensation reaction such as a methylene bond to a hidden medium.
  • Examples of the base catalyst include hydroxides of alkali metals such as sodium hydroxide and potassium heptaoxide, carbonates of alkali metals such as sodium carbonate and potassium carbonate, amines, ammonia, and the like. Catalyst can be used. For example, sulfuric acid, male, phosphoric acid, oxalic acid, acetic acid, trifluoroacetic acid and the like can be used.
  • the solvent for dissolving or dispersing the compound is not particularly limited, and may be selected from known solvents according to the type of the compound used.
  • solvents for example, in addition to water, methanol, ethanol, propanol, Examples include alcohols, glycols such as ethylene glycol and propylene glycol. These can be used in two or more of 1 ®x.
  • the concentration of the organic compound in the dispersion is not particularly limited, and may be determined according to the type of the organic compound to be used and the like.
  • the method of polymerization is not particularly limited, and can be carried out by a known method such as thermal polymerization, heat polymerization, or photopolymerization.
  • the method (C) is a method in which a monomer capable of forming an organic liver, which is a carbon precursor, is formed in an inorganic oxide gel by an eye method, followed by polymerization.
  • a method is used in which the above-mentioned high-organic liver monomers such as polyacrylonitrile, polyfurfuryl alcohol, and polyaniline are vaporized, filled into a gel, and then polymerized.
  • a phenolic compound can be charged and then a condensation agent such as formaldehyde can be charged as vapor for condensation polymerization.
  • a condensation agent such as formaldehyde
  • the carboxylic acid compound and the diamine compound as raw materials can be evaporated, filled in a gel, and polycondensed.
  • the eye method is not particularly limited, and it is possible to adopt the method described in.
  • a method of vaporizing or evaporating a polymer or its monomer by heating or the like by using a unique method such as a chemical vapor deposition method (CVD) or a physical eye growth method (PVD) may be used. can do.
  • CVD chemical vapor deposition method
  • PVD physical eye growth method
  • the method of polymerization is the same as that of hater (b); Is included.
  • the carbonization treatment is performed by heat-treating the obtained gel containing the carbon precursor.
  • the wet gel when the wet gel is converted as the gel, it is preferable to prepare the gel before the carbonization treatment.
  • the shrinkage of the gel at the time of reciting can be suppressed by using a high-boiling solvent for slowing down the evaporation rate or controlling the evaporation temperature.
  • shrinkage of the gel at the time of sickle can also be suppressed by applying a water-repellent treatment or the like to the surface of the solid component of the gel to the wet gel to control the emergence power.
  • the solvent can be changed from a liquid state to a phase state, thereby eliminating the gas-liquid interface and drying without applying stress to the guerrilla skeleton due to surface tension. For this reason, shrinkage of the gel at the time of drying can be prevented, and a low-density porous carbon fiber gel can be obtained.
  • the solvent used for the supercritical thigh the solvent held by the wet gel can be used. Further, if necessary, the force of substituting a solvent that is easy to handle in the supercritical condition is preferable.
  • the solvent to be replaced include alcohols such as methanol, ethanol, and isopropyl alcohol that directly make the solvent a supercritical fluid, as well as carbon dioxide and water. Alternatively, it may be replaced with a preservative such as acetone, isoamyl acetate, or hexane which is easily eluted with these supercritical fluids.
  • Supercritical storage can be performed in a pressure vessel such as an autoclave.
  • the critical pressure which is the critical condition
  • the critical temperature is 23.9.4 ° C or more, and the pressure is gradually released while maintaining the constant ⁇ t.
  • the critical pressure should be 7.38MPa
  • the temperature should be higher than 31.1C
  • the pressure should be released from the supercritical state to the gaseous state in the same manner.
  • 3 ⁇ 4 ⁇ For example, when the solvent is water, the fiber is processed at a critical pressure of 22.4 MPa and a temperature of at least 374.2 ° C.
  • the time required for drying may be ⁇ which is longer than the time required for the solvent in the wet gel to be replaced at least once by the supercritical fluid.
  • the carbonization treatment is preferably performed at a temperature of 300 T or more, since carbonization of the carbon precursor starts to advance at 300 ° C. MS or more. From the viewpoint of working time efficiency, 40 o ° c or more is more preferable.
  • the upper limit of the calorific heat as is lower than the melting point of the inorganic oxide of the network structure skeleton, and thus can be set.
  • the carbonization treatment may be selected depending on its effect of suppressing shrinkage. In the present invention, it is particularly desirable to carry out the carbonization treatment at a temperature lower than 100 ° C. (further, not more than 8 oo ° C.).
  • the atmosphere of the carbonization treatment is not particularly limited, and may be any of air, an oxidizing atmosphere, an atmosphere like reducing I ', an inert gas atmosphere, or a vacuum. However, in consideration of burning, it is preferable that the step is performed in a low key oxygen atmosphere when the step is set high. In the low oxygen separation atmosphere in the present invention, the oxygen iijt of the atmosphere is
  • Carbonization can also be performed by the dry distillation method, heating in an atmosphere of an inert gas such as nitrogen or argon, or heating in a vacuum.
  • an inert gas such as nitrogen or argon
  • the second invention is the method according to the first invention, further comprising a step of removing a part or all of the inorganic oxide from the carbon-containing material or the carbon precursor-containing material.
  • a porous body whose inside is occupied by an inorganic oxide and a space or a porous body whose inside is occupied by a space can be suitably obtained. That is, if a part of the inorganic oxide is used, a porous body whose inside is occupied by the inorganic oxide and the space can be obtained. If all of the inorganic oxide is P-threaded, a porous body whose interior is substantially entirely occupied by space can be obtained.
  • the present invention relates to a method for removing a part of inorganic oxide or carbon from the carbon-containing material obtained in step A, and a method for removing a part or oxide of carbon oxide from the carbon precursor-containing material formed in step B. And the method of carbonizing the obtained material after carbonizing iron, and the method of removing part or all of the inorganic oxide from the carbon-containing material obtained by carbonizing in the step B.
  • the method for producing inorganic oxides is not limited. For example, evaporation, sublimation, Any known method such as elution can be used. In particular, in the present invention, mild conditions that have little effect on the gel skeleton are preferable. ⁇ Is more preferred.
  • the elution may be performed by immersing in a solution in which the inorganic oxide is dissolved.
  • a solution of an acid or a base can be preferably used for the nighttime at which ffl occurs.
  • gels of inorganic oxides formed by the sol-gel method often have low crystallinity and are amorphous. Therefore, it has high solubility and solubility in bases.
  • the property that the gel of the network structure skeleton that the fine particles are gathered loosens
  • the acid or the ⁇ group can be selected according to the type of the inorganic oxide.
  • the inorganic oxide is silica
  • hydrofluoric acid alkali hydroxide, sodium hydroxide, potassium hydroxide, alkali carbonate (sodium carbonate, sodium hydrogen carbonate), etc.
  • alkali carbonate sodium carbonate, sodium hydrogen carbonate
  • the acid or base may be determined depending on the type of acid or base used, the type of inorganic oxide, and the like.
  • a porous body having a larger specific surface area than the carbon composite porous body obtained in the first invention can be obtained.
  • the network structure skeleton made of this carbon material hollows are often observed by electron microscopy. Even if a clear hollow structure is not observed by electron microscopy, a carbon porous body having a large specific surface area can be obtained.
  • the third invention is the method according to the first invention or the second invention, further comprising a step of carrying (removed).
  • the above steps may be performed at the stage of the first and second inventions.
  • a method of imparting an inorganic oxide during wet formation a method of forming a wet gel of a male oxide, and then applying a catalyst to the surface of the gel, and a method of forming a catalyst after forming a carbon precursor.
  • a method of applying and a method of applying after forming the porous carbon material.
  • a treatment heat treatment, reduction, and the like
  • encasing the oat barley may be performed. These methods are used It can be selected depending on the type of catalyst.
  • 3 ⁇ 4g can be set according to the application and method of the porous body.
  • metals such as platinum, palladium, ruthenium, gold, copper, tin, and zinc, alloys such as platinum palladium, platinum ruthenium, and platinum iron, nickel-based, and manganese-based
  • a general catalyst such as an oxide of the catalyst can be used.
  • a catalyst suitable for each application may be supported.
  • the means for giving « is not particularly limited, and may be implemented according to the method of ⁇ .
  • a method of loading using a colloid 2) a method of loading a precursor such as a metal salt and then reducing it with a ⁇ agent such as hydrogen, and 3) a firing of a precursor such as a metal salt or the like.
  • a precursor such as a metal salt and then reducing it with a ⁇ agent such as hydrogen
  • a firing of a precursor such as a metal salt or the like.
  • the amount of the supported metal can be determined according to the properties, type, and use of the porous body.
  • the first St method of the porous material containing carbon according to the present invention comprises the steps shown in FIG.
  • a typical process is to form a network skeleton of an inorganic oxide, then form a carbon precursor in the wet gel, and carbonize the carbon precursor to carbon.
  • this difficult form is based on a wet gel of a carbon precursor containing a carbon precursor coated with a carbon precursor on the surface of an inorganic oxide by providing a wet precursor of an inorganic oxide with a network structure skeleton.
  • It is a method that includes a step of obtaining a body. These steps are typical, and other processes such as solvent substitution, formation, and surface treatment may be appropriately performed as necessary.
  • the network structure skeleton made of an inorganic oxide serves as a support book for suppressing shrinkage due to carbonization and retaining the carbon when carbonizing the carbon precursor. That is, it is possible to prevent the precursor porous body from shrinking as it is carbonized. As a result, it is possible to suppress the increase in density when the precursor is turned into a force. Can be controlled or prevented, and the effect of suppressing a decrease in specific surface area can be obtained.
  • the second method for producing a porous material containing carbon according to the present invention comprises the following steps as shown in FIG.
  • a carbon material is mainly applied to a gel obtained by forming a network structure skeleton of an inorganic oxide by a gas phase method. That is, in this embodiment, the wet gel of the inorganic oxide having the network structure skeleton is fibered to obtain a fiber gel, and the carbon material is applied to the surface of the inorganic oxide by applying the carbon material to the hard gel.
  • This is a method including a step of obtaining a carbon-containing porous body coated with a carbonaceous material. Since these steps are performed, known processes such as solvent substitution, synthesis, and surface treatment may be performed as necessary to perform this method.
  • the first SS method for a porous carbon material according to the present invention comprises a 3 ⁇ 4 ⁇ -like process shown in FIG.
  • this step after forming a network structure skeleton of the inorganic oxide, the wet gel is subjected to a force—the inorganic oxide serving as the core of the skeleton is formed from the carbon composite porous body formed with the carbon precursor!
  • This is a method in which a gel of a carbon precursor is obtained, and then the carbon precursor of the network skeleton is carbonized into a carbon.
  • this method provides a carbon precursor-containing wet gel in which the carbon precursor is coated on the surface of the inorganic oxide by applying a carbon precursor to the inorganic oxide wet gel having a network structure skeleton.
  • a porous carbon material having a large specific surface area can be formed since the network structure skeleton is formed from a carbon material. Furthermore, the surface area can be improved because the force of the hollow portion is cultivated T inside the network structure skeleton. Thereby, a porous carbon material having a low density and a large specific surface area can be obtained. This Thus, it can be applied to high anti- ⁇ rate specimens and electrode materials.
  • the second St method for the porous carbon material according to the present invention comprises the steps shown in FIG.
  • the carbon porous body is formed by removing the inorganic oxide as a network skeleton (core material) from the porous body formed in the fifth or sixth embodiment. How to get.
  • the network structure skeleton is formed by the carbon material, a carbon porous body having a large specific surface area can be formed. Further, since a hollow portion is formed inside the network structure skeleton, the surface area can be improved. As a result, a porous carbon material having a low density and a large specific surface area can be obtained, and it can be applied to a high refraction rate electrode material.
  • the porous body obtained by each of the methods of ⁇ can be subjected to a heat treatment at 100 ° C. or more, if necessary, to obtain a graphite by graphitizing the carbon material.
  • the specific surface area can be further increased by performing an activation treatment using water vapor or the like performed by the activated carbonization treatment.
  • the method of graphitization may be selected from the methods and conditions according to the purpose of use of the porous body of the present invention.
  • the electrochemical eave of the present invention is an electrochemical device in which a fuel electrode that generates protons from a fuel and an oxygen electrode that reacts protons with oxygen are opposed to each other with a proton-conductive solid material in between. At least one of the fuel electrode and the raw material is the porous body of the present invention which is disgusting. Therefore, in addition to using the porous body of the present invention as an electrode, a component m of an electrochemical element (fuel cell) of ⁇ , a container, a separator, etc. can be used.
  • the porous body of the present invention carrying a catalyst is used as an electrode.
  • a known molding method such as shrink molding, injection molding, foam molding, printing, or coating can be used.
  • the resulting electrode can be combined with other components, such as an electrolyte.
  • the solid electrolyte used together with the electrode the material may be an electrolyte having proton conductivity.
  • a fluorine-based high molecular weight film having a sulfonic acid group as a side chain; a hydrated oxide such as tungsten oxide and molybdenum oxide; and a solid body such as polyphosphoric acid and polytandastanoic acid can be suitably used. These can be formed into a film or a sheet if necessary.
  • porous electrode In order to combine the porous electrode with the electrolyte, a method such as sticking to this material, printing or coating may be employed.
  • the fuel may be, for example, hydrogen, alcohols such as methanol and ethanol; ethers such as dimethyl ether and dimethyl ether, methane, ethane, propane, and butane.
  • alcohols such as methanol and ethanol
  • ethers such as dimethyl ether and dimethyl ether, methane, ethane, propane, and butane.
  • gasoline and the like can be used. Among them, hydrogen is the most desirable.
  • These fuels may be used by directly reacting them in a porous cage, or may be reformed once to generate hydrogen and react it.
  • an electrochemical element composed of a fuel cell because of the anti-filtration rate that generates methanol ⁇ j.
  • the electrochemical device of the present invention will be described.
  • the porous body of the present invention Since the porous body of the present invention has a high specific surface area, many active sites that contribute to the reaction can be formed. Therefore, the porous body of the present invention is suitable for a battery which is a device causing a reaction at an interface, an electrode material such as a capacitor, a catalyst carrying book, and the like. In particular, excellent characteristics can be obtained in an electrochemical device using an electrode in contact with an electrolyte.
  • the present invention can be applied to a fuel cell, an air cell, an electrolyzer, an electric double layer capacity, a gas sensor, a pollutant gas!
  • the porous body of the present invention may be arranged to face the electrolyte so that the electrolyte made of the proton conductive solid is sandwiched therebetween.
  • the catalyst is supported on a porous electrode that reacts with a gas such as ⁇ -element or oxygen or a liquid fluid such as methanol. Therefore, when a porous body having a large specific surface area is used, the amount of supported catalyst can be reduced, and the chance of contact between the reaction fluid and the catalyst can be increased, thereby increasing the impeachment rate.
  • a wet gel using silica as an inorganic oxide was synthesized.
  • a raw material solution prepared by mixing tetramethoxysilane, ethanol, and an aqueous ammonia solution (0.1N) at a molar ratio of 1: 3: 4 was put into a container, gelled and solidified to obtain a wet gel of silica. .
  • a composite wet gel of a carbon precursor was formed in a wet gel of an inorganic oxide (silica).
  • the silica wet gel was immersed in an aqueous solution of raw material prepared so that the molar ratio of resorcinol (0.3mo1 / L), formaldehyde and sodium carbonate was 1: 2 to 0.01 using water as a solvent. And put it in the gel skeleton. Room temperature and about 80. (: Respectively for 2 days.)
  • a composite wet gel of a carbon precursor was obtained in which the polyphenol-based high-molecular material was coated on the skeleton of the wet gel having a strong siliency.
  • the above composite wet gel having a carbon precursor formed inside the gel was obtained.
  • the difficult method was to replace the solvent inside the wet gel with acetone and then carry out the treatment with a supercritical fluid to obtain a composite gel of a carbon precursor from which the solvent was removed.
  • carbon dioxide was used as a grass (with a pressure of 12 MPa and 50 ° C) after 4 hours, the pressure was gradually released, the temperature was reduced, and the temperature was lowered. to obtain a vehicle gel size after. car ⁇ is substantially the same, was scarcely shrink.
  • the composite fiber gel of carbon fiber precursor was carbonized to obtain a carbon fiber composite porous material.
  • the temperature was lowered at 400 ° C. for 1 hour, 300 ° C. for 1 hour, 200 ° C. for 1 hour, and 100 ° C. for 1 hour, and then gradually cooled to room temperature.
  • the size of the carbonized sickle gel was about 90% in length.
  • the apparent density was about 300 kgZm 3 and the porosity was about 80%.
  • the specific surface area measured by the BET method which is a nitrogen adsorption method, was a high specific surface area of about 450 m 2 / g, and the average pore size was about 20 nm.
  • Example 2 For comparison, a wet gel of a polyphenol-based high liver alone was obtained under the conditions described in Example 1.
  • the fiber was also processed under the same conditions as in Difficult Example 1 to obtain a carbon precursor Kirada gel.
  • the size of the barley was about 95% in length.
  • the value of the specific surface area measured by the BET method which is a nitrogen adsorption method, was a high specific surface area of about 80 O m 2 / g, and the average pore size was about 15 ⁇ m.
  • Example 2 this was carbonized under the same conditions as in Example 1 to obtain a porous carbon material.
  • the dimensions of the carbon fiber gel before and after carbonization were about 70% in length. According to the view, it shrank to about 65%.
  • the apparent density is about 550 kgZm 3 , empty?
  • the removal rate was about 40%.
  • the value of the specific surface area measured by the BET method, which is a nitrogen adsorption method, was about 150 m 2 Zg.
  • Example 1 For comparison, a wet gel of silica was obtained under the conditions described in Example 1. The car was washed with ethanol to remove silica wet gel (solvent equilibration, followed by supercritical carbon fiber with carbon dioxide to obtain silica fiber gel. The supercritical condition was the same as that of ⁇ M Example 1). The dried silica gel obtained had an apparent density of about 200 kg / m 3 and a porosity of about 92%.
  • the specific surface area measured by the nitrogen adsorption method, the BET method was a high specific surface area of about 600 m 2 / g, and the average pore size was about 20 nm.
  • Example 2 This was heated under the same carbonizing conditions as in Example 1. At this time, the size of the gel before and after heating was about 93% in length. The apparent density was about 250 kg / m 3 and the porosity was about 90%.
  • silica fiber gel of silica was obtained as an inorganic oxide.
  • the dried silica gel was placed in a quartz tube furnace, and propylene was flowed at about 800 ° C. to form carbon by eyes.
  • a force was formed inside the skeleton of the gel.
  • the size of the gel before and after carbon formation was about 85% in length, indicating that the shelf was kept small.
  • the apparent density was about 350 kgZm 3 and the specific surface area was a high value of about 450 m 2 / g.
  • a composite wet gel of a carbon precursor produced under the same conditions as in Example 1 was obtained. This composite wet gel was immersed in hydrofluoric acid at room temperature for 30 minutes to obtain a wet gel of a carbon precursor. The wet gel was combined under the same conditions as in the example to obtain a table precursor fcl gel of a carbon precursor. The size before and after this Fu Fiber was almost the same.
  • the thigh gel was carbonized under the same conditions as in Example 1 to obtain a porous carbon material.
  • Longitudinal size of carbonization had shrunk about 70% in length, its apparent density is as small as about 1 0 0 k gZm 3, specific surface area of about 8 0 0 m 2 Zg a high value obtained was.
  • Observation with an electron microscope confirmed that the porous porous material had a hollow structure.
  • the carbon composite porous body produced in Example 2 was immersed in hydrofluoric acid at room temperature for 30 minutes to remove silica, thereby obtaining a carbon porous body.
  • the apparent density was as small as about 10 O kg / m 3, and the specific surface area was as high as 900 m 2 Zkg.
  • This carbon porous body was also observed by electron microscopy, and was confirmed to have a hollow structure. It is considered that a high specific surface area was achieved by this effect.
  • Example 5 Polyacrylonitrile was used as a carbon precursor.
  • the wet gel of silica prepared in Example 1 was immersed in an acetonitrile solution containing 5% by weight of polyacrylonitrile to obtain a wet gel in which a carbon precursor was substantially coated. This was accomplished by the method described in Example 1.
  • the obtained carbon fiber precursor composite fiber gel was treated at 200 ° C. for 2 hours, and then treated at 400 ° C. for 2 hours, and then heated to 600 ° C. and then 100 ° C. The temperature was lowered to C to obtain a carbon composite porous body.
  • the size of the gel in this simple case was about 85% in length, indicating that the shelf was kept small.
  • the apparent density was about 350 kgZm 3 , and the specific surface area was as high as about 450 m 2 Zg.
  • Example 5 The carbon composite porous material prepared in Example 5 was immersed in sodium hydroxide water adjusted to pH 10 or higher, silica was converted to P iron, and the solvent was replaced with acetone, and then supercritical under the conditions of Example 1. «Was carried out to obtain a porous material.
  • the size at the processing ornament was about 90%.
  • the apparent density was as small as about 120 kg / m 3, and the specific surface area was as high as 80 Om 2 / kg.
  • the wet gel of silica prepared in Example 1 was immersed in a 1% by weight N-methylpyrrolidone solution of a polyamic acid synthesized from pyromellitic anhydride and 4,4'-one-year-old xidianiline to obtain a polyamic acid. A composite wet gel was obtained.
  • This polyamide acid composite wet gel was used to obtain a carbon precursor polyimide composite gel by the following two methods.
  • a polyamic acid composite wet gel was immersed in a solution of acetic anhydride and pyridine to perform chemical imidization.
  • This polyimide composite wet gel was crane to obtain a polyimide composite sickle gel A.
  • a composite sickle gel was prepared by observing a polyamic acid composite wet gel. This gel was subjected to thermal imidization at 300 in a nitrogen atmosphere to obtain a polyimide composite dry gel B.
  • the obtained polyimide composite dry gels A and B were carbonized at 600 ° C. under a nitrogen atmosphere to obtain a carbonized composite porous body.
  • the composite porous body is further heated at 1200 ° C., and then the silica skeleton is evaporated and graphitized at 2000 ° C. or higher. Was promoted to obtain a porous carbon material.
  • a porous carbon material could be obtained.
  • Sodium silicate was subjected to electrodeposition to prepare an aqueous solution of silicate of pH 9 to 10 (concentration of silica component in aqueous solution: 14% by weight). After adjusting the pH of the aqueous solution of citric acid to 5.5, it was filled into a container. Thereafter, the gel was gelled at room temperature to obtain a solidified silica wet gel. Subsequently, the silica wet gel was subjected to a hydrotreating treatment in a 5% by weight solution of dimethyldimethoxysilane in isopropyl alcohol, and then subjected to a conventional method to obtain a silica gel.
  • the resulting dried gel of silica had an apparent density of about 200 kgZm 3 and a porosity of about 92%.
  • the value of the specific surface area measured by the BET method, which is a nitrogen adsorption method, was about 600 m 2 Zg.
  • the average pore diameter was about 15 nm.
  • a carbon material was formed in a network structure skeleton on the obtained silica fiber gel.
  • the dried silica gel was placed in a vacuum film-forming apparatus, and benzene gas was plasma-formed with high frequency of 13.56 MHz and power of 200 W, and the silica grass was adjusted to a temperature of 200 ° C.
  • Carbon was formed in the fiber gel to obtain a carbon composite porous body. X-ray diffraction confirmed that the produced carbon material was amorphous. In addition, it was confirmed that the diamond-like carbon had many diamond-like bonds according to the surface determined by Raman spectroscopy. The apparent density of this carbon composite porous material was about 220 kgZm 3 , and the shrinkage was small.
  • the specific surface area by the BET method was about 600 m 2 Zg, and a high value was obtained. «Example 9»
  • the carbon composite porous body A produced in Example 1 and the carbon porous body B produced in Example 3 were whitened by the following method.
  • the platinum salts were carried by impregnating the porous materials A and B with a 3 mm o 1 ZL ethanol solution of chloroplatinic acid. To this, sodium borohydride was added at room temperature, and the thigh composed of platinum particles was inserted. Catalyst ⁇ were approximately 0. 2 mg / cm 3, from about 0. 3 5mg / cm 3, towards the large porous body B of a specific surface area There was much power compensation.
  • the porous body B obtained in Example 9 was coated with a perfluoropolymer having a sulfonic acid group as a binder and molded to form a porous electrode.
  • An electrochemical device was constructed by combining these electrodes with naphion, a solid electrolyte polymer.
  • the i3 ⁇ 4i method can provide a new process capable of producing a porous body made of a carbon material having a high specific surface area so that the porous body exhibits good characteristics. A high manufacturing process.
  • the electrochemical device using the porous body of the present invention as an electrode can provide a chemical eaves application such as a fuel cell that can efficiently react.
  • the present invention is an industrially valuable method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)

Abstract

従来の有機ゲルを炭化するカーボン多孔体は、その製造方法において収縮しやすい傾向があり、その工程において密度が上がり、比表面積が低くなることがあった。また、予め有機ゲルを形成した後に、それら密度や比表面積の制御が難しいという課題があった。無機酸化物の乾燥ゲルからなる網目構造骨格を有する複合多孔体を形成し、その無機酸化物の乾燥ゲルの構造支持体としての働きを活かして、高い比表面積のカーボン材料を形成する。1つの方法は、比表面積の大きな無機酸化物の乾燥ゲルの特性を保持した状態でその網目構造骨格にカーボン材料を形成する。もう1つの方法は、さらにカーボン材料を形成した網目構造骨格の無機酸化物を除去することによって、カーボン材料の比表面積をさらに高める。

Description

明 細 書 多孔体とその製造方法、 およびその多孔体を用いた電気化学素子 翻分野
本発明は、電池やキャパシ夕などの電極材料、醒の應本などに用いられ るカーボン系の多孔体およびその $¾i方法に関する。特に、 その多孔体を電極 として用いる燃料電池、 空気電池、 7_Κ¾ 装置、 ガスセンサ、 汚染ガス除去装 置などの電気化学^?に関する。
背景謹
地球難問題への関心の高まりから、 省資源化 .省エネルギーィ匕の進がな されている。 エネルギー資源として、 再生可能なクリーンエネルギーを禾翻す るエネルギー源とそのシステムの開発が進められている。特に、水素をエネル ギ一源とした燃料電池システムは、 自動車のエンジンの代替 i¾i、 分 ¾ 電源、 コジェネレーション漏などの幅広い用途がある。 また、携帯 TOなどの個人 情報 βの普及によって、その電源として大容量の電池の開発が進められてい る。 その ίΤ術の翻として、 水素、 メタノール等の燃料を翻する燃料電池が ある。
燃料電池の 的な構成を図 9に示す。 燃料電池は、 a) τΚ素などの燃料を 反応させて電子とプロトンを生成する燃料電極、 b) 生成したプロトンを伝達 する固体電解質、 c)外部回路を通して供給された電子と、 酸素及びプロトン とを反応させる酸素 とから構成される。
電極部での反応は、 それぞ l¾下のとおりとなる。 まず、 燃料 では、 液 体または気体の流体燃料が極上の謹と反応して、 たとえば
H2→2 H+† + 2 e _†のように反応し、 電荷分離した電子は電極から外部 回路へ伝わり、 プロトンはプロトン伝導性の電解質へ伝わる。 鏰军質は、 プロ 卜ンのみを伝達する役割をもち、燃料等の拡散による効率低下の少ないものが 用いられる。
燃料電極に対向する酸素電極では、燃料癒で生成した電子とプロトンが J 達し、 において空気中の酸素または酸素ガスと反応し、 〇2+ 4H+† + 4 e †→2 H20の反応によって水を生成する。
このように、 上記反応によれば、 再生可能なエネルギー源である水素または メタノ一ルなどのエネルギーから電力を供給することができる上に、反応生成 物も水であり 上の問題が少ない。
上記の電極材料としては、 カーボン材料が広く使用されている。たとえば、 カーボンブラック、 活 '1'银、 グラフアイト、 導電' 14 ^素などの力一ボン材料は、 これを多孔質体に i«されて電極として用いられる。
これら電極の性能を向上させるために、多孔質なカーボンの形]^法が検討 されている。例えば、 電極反応を効率的にするために比表面積を大きくし、 低 密度で微小な孔を多く有するカーボンの前駆体であるフエノール高分子の有 機エア口ゲルを炭化する方法などが驗されている (例えば、 W0 9 4/2 2 9 4 3 )。
また、低密度で微小な孔を多く有するカーボンの前駆体であるポリイミド高 好の有機ゲルを炭化する方法などが驗されている (例えば、 特開 2 0 0 0 — 1 5 4 2 7 3)。
発明の開示
多孔質なカーボンの難方法として、 有機ゲルを炭化する方法がある。 具体 的には、力一ボン前駆体高好の湿潤ゲルをゾルゲル法により合成する工程、 得られたカーボン前駆体高:^?の湿潤ゲルを乾燥する工程及び得られた力一 ボン前駆体高分子の多孔体を焼成によって炭化する工程を有する方法である。 この^ i方法によれば、低密度で比表面積の大きな多孔体を得ることができる。 しかしながら、 電娜用分野などでは、 電子デバイスの性能向上が日々求め られており、 これら力一ボン多孔体などの材料においてもさらなる性能向上が 求められている。 かカゝる性能向上を実現するためには、 さらに低密度で比表面 積の大きな力一ボンの多孔体を S¾iすることが必要である。
有機ゲルを炭化する方法においては、 特に以下のような問題点がある。
( 1 )力一ボンの前駆体高^^の有機ゲルを焼成によって炭化する工程におい て、 前駆体の多孔体が炭化するに; g て収縮し、 得られる力一ボンの多孔体で は前駆体の時よりも密度が上がり、 比表面積が低くなる傾向がある。
( 2)網目構造骨格を有している有機ゲルを焼成するため、 その有機ゲルから 炭化して得られるカーボン多孔体の密度や比表面積は、有機ゲルの構造に依存 し、 予め有機ゲルを得てからはそれらを制御することは困難である。
したがって、 本発明の主な目的は、 効率的な電蔽応、触媒反応などを生じ させることができる多孔体を提供することにある。本発明の他の目的は、 その 多孔体を s¾tする方法において、それら良好な特性を得られるためカーボン材 料からなる多孔体を得るための生産効率が高い製造プロセスを提供すること にある。本発明のさらなる目的は、本発明の S 方法で効率的に作られた良質 なカーボン系の多孔体の用途を提供することにある。
すなわち、 本発明は、下記の多孔体とその^ t方法、 およびその多孔体を用 いた電気化学舒に係る。
1. 網目構造骨格を有する多孔体であって、
( 1 ) 当翻目構造骨格が内部と表面部から構成され
(2) 表面部が、 カーボン材料を含み、
( 3) 内部が、 a) 無機酸化物、 b) 空間又は c ) 無機酸化物及び空間で占め られている多孔体。
2. 内部が実質的にすべて無機酸化物で占められている前記項 1記載の多 孔体。
3. 内部が実質的にすべて空間で占められている前 頃 1記載の多孔体。
4. 網目構造骨格上に触媒が担持されてなる前記項 1記載の多孔体。
5. 網目構造骨格を有する無機酸化物のゲルから前 ff頭 1記載の多孔体を S する方法であって、 少なくとも ( 1 ) 当該ゲルにカーボン材料を付与して 力一ボン含有材料を得る工程 A又は(2) 当該ゲルに力一ボン前駆体を付与し、 得られた力一ボン前駆体含有ゲルを炭化処理することにより力一ボン含有材 料を得る工程 Bを含む多し体の!^方法。
6. 力一ボン含有材料又はカーボン前駆体含有ゲルから無機酸化物の一部 又は全音 15を!^する工程をさらに含む前記項 5記載の $¾t方法。
7. ゲルとして湿潤ゲルを用い、 かつ、 工程 Bとして、 当該湿潤ゲルに力 —ボン前駆体を付与し、得られた力一ボン前駆体含有ゲルを草 して力一ボン 前駆体含有 ゲルを得た後、 当該雄ゲルを炭化処理することにより、 カー ボン含有材料として多孔体を得る工程を実施する前議 5記載の 方法。 8. ゲルとして鎌ゲルを用い、 カゝつ、 工程 Aとして、 当該車纖ゲルに力 一ボン材料を付与することにより、カーボン含有材料として多孔体を得る工程 を実; Tる前言 B¾ 5記載の^ t方法。
9. ゲルとして湿潤ゲルを用い、 かつ、 工程 Bとして、 当該湿潤ゲルに力 一ボン前駆体を付与し、得られたカーボン前駆体含有ゲルから無機酸化物の一 部又は^^を駐した後、得られた材料を炭化処理することにより、 カーボン 含有材料として多孔体を得る工程を実施する Iff!己項 6記載の製造方法。
1 0. 力一ボン前駆体が、有機高分子を含む前記項 5または 6に記載の製 造方法。
1 1. 有機高^が、 炭素—炭素不飽和結合を^ る前記項 1 0記載の製 造方法。
1 2. 有機高^^が、 芳香環を有する前記項 1 0記載の i¾t方法。
1 3. 有機高、子が、 フエノール樹脂、 ポリイミド及びポリアクリロエト リルの少なくとも 1種である嫌己項 1 0記載の製造方法。
1 4. «を担持する工程をさらに含む前記項 5又は 6に記載の製造方法。
1 5. 燃料からプロトン生成する燃料"電極と、 プロトンを酸素と 芯させ る酸素 とが、 プロトン伝導性固体 質を間にして対向してなる電気化学 素子であって、 当該燃料電極及び 素電極の少なくとも一方が前記項 1記載の 多孔体である電気化学素子。
1 6. 当該燃料が水素またはメタノールである嫌 3項 1 5記載の電気化学 図面の簡単な説明
図 1は、本発明の多孔体における網目構造骨格を説明するための模式図で ある。
図 2は、本発明の力一ボン複合多孔体における網目構造骨格を説明するた めの断面図である。
図 3は、本発明のカーボン多孔体における網目構造骨格を説明するための 断面図である。
図 4は、本発明の多孔体における他の一例を説明するための模式図である。 図 5は、本発明で得られる力一ボン複合多孔体の 法の一例を説明す る工程図である。
図 6は、本発明で得られる力一ボン複合多孔体の $¾i方法の他の Uを説 明する工程図である。
図 7は、本発明で得られる力一ボン多孔体の 方法の一例を説明するェ 程図である。
図 8は、本発明で得られる力一ボン多孔体の^ i方法の他の一例を説明す る工程図である。
図 9は、 燃料電池の一般的な原理を説明するための図である。
符号の説明
1 網目構造骨格
2 カーボン複合多孔体
3 無機酸化物の觀ゲル
4 力一ボン材料
5 カーボン多孔体
6 力一ボン材料
7 中空部
8 網目構造骨格
9 触媒 発明を実施するための最良の形態
以下に、 本発明の実施の形態について説明する。 まず、 本発明の多孔体の構 成について、 図を用いて説明する。 - 1. 多孔体
本発明の多孔体は、 網目構造骨格を有する多孔体であって、 ( 1 ) 当該網目 構造骨格が内部と表面部から構成され (2)表面部が、 力一ボン材料を含み、 ( 3) 内部が、 a) 無機酸化物、 b) 空間又は c ) 無機酸化物及び空間で占め られている。
本発明多孔体の網目構造骨格は、三^網目状の構造を有するものであれば 良い。 そして、 かかる骨格は、 内部および表面部から構成される。
表面部は、 カーボン材料を含む (好ましくは実質的に力一ボンからなる)。 力一ボン材料としては、炭素又は炭素を 分とする材料であれば特に P腕さ れない。 たとえば、 力一ポンプラック (アセチレンブラック、 ケッチェンブラ ック等)、 活性炭、 人造黒鉛、 天然黒鉛、 炭素繊隹、 mm, ガラス状炭 素、 不羅炭素、 特殊炭素、 コークス等を挙げることができる。 また、 結晶構 造も限定されず、 たとえばダイヤモンド構造、 黒鉛構造等のいずれあっても良 い。 また、 力一ボンナノチューブ、 カーボンナノホーン、 カーボンナノリポン、 カーボンナノコイル、カーボンナノカプセル等も すること力河能である。 これらは、 1 axは 2種以上で用いることができる。 また、 カーボン材料は、 結晶質又は非晶質のいずれであっても良い。本発明では、 多孔体の用途、 使用 方 ¾ ^に応じてこれらの中から 組み合わせて删すれば良い。
好ましくは、力一ボン材料の原料から炭化生成された力一ボン材料及び z又 は力一ボン前駆体である有機高分子を炭化処理して得られた力一ボン材料を 用いることができる。 これらは、 ゲルの骨格表面上に雄に形成されやすい上 に、 生祿件、 炭化処理条件等によって力一ボンの構造、 特性等を任意に制御 できるという利点がある。
表面部の厚みは限定的でなく、 多孔体の用途、使用目的等に応じて ¾g設定 することができる。 また、 上記厚みは、 後記の S 方法において条件を颜す ることによって制御することができる。
また、 上記 a) および c ) の場合、 無機酸化物とカーボン材料の割合は、 無 機酸ィ匕物の種類、 多孔体の用 に応じて 決定することができる。
多孔体の内部は、 a) 無機酸化物、 b) 空間又は c ) 無機酸化物及び空間で 占められている。 すなわち、 本発明多孔体は、 多孔体内部における無機酸化物 の含有率(占有率) が 0容量%以上 1 0 0容量%以下の範囲を有する。 したが つて、 本発明は、 ( i ) 多孔体内部が実質的にすべて無機酸化物で形成されて いる場合、 ( i i )多孔体内部が実質的にすべて空間 冲空部) である場合、
( i i i )多孔体内部の一部が無機酸化物であり、残りが空間になっている場 合などのいずれの形態も包含する。
無機酸化物の種類は、 特に制限されず、 多孔体の用途、 細目的等に応じて 航決^ Tれば良い。 例えば、 酸化ケィ素、 酸化アルミニウム、 酸化チタン、 酸化バナジウム、 酸化鉄、 酸化ジルコニウム等のほか、 これらの混合物 (混合 酸化物)、 複合酸化物等が挙げられる。 これらは、 1種又は2種以上を採用す ること力 ?きる。
本発明多孔体のかさ密度、 B ET比表面概び平均細孔径は、 纖酸化物の 種類、 多孔体の用途、 使用方?縛によって «:設定し得る。 かさ密度は、 通常 1 0〜5 0 0 k
Figure imgf000008_0001
特に 5 0〜4 0 0 k g/m3の範囲から ¾ϋ決定 すれば良い。 比表面積は、 通常 5 0 ~ 1 5 0 0 m2/g程度、 特に 1 0 0〜1 0 0 0 m3Zgの範囲内から菌設 ¾Tることができる。 比表面積は、 窒素吸 着法であるカレナウア一 'エメット'テラ一法 (以下、 B ET法と略す) で測 定した値である。 また、 本発明多孔体の平均細孔径は、 通常 l〜1 0 0 0 nm、 特に 5〜 5 0 nmの範囲から M:決 ¾Tることができる。
また、 本発明多孔体の形状及び大きさも!^されず、 多 7し体の用途、 目 的等に応じて献決 ¾ ~れば良い。
以下、 本発明多孔体の好ましい態様について、 図を用いながら説明する。
( 1 ) 難の形態 1
実施の形態 1は、 本発明多孔体のうち、 内部が無機酸化物で占められている 多孔体である。 すなわち、 網目構造骨格を有する多孔体であって、 (1 ) 当該 網目構造骨格が内部と表面部から構成され、 (2 ) 表面部が、 カーボン材料を 含み、 ( 3)内部が実質的にすべて無機酸化物で占められている多孔体である。 換 ¾Τれば、 力一ボン材料で被覆された無機酸化物から構成される網目構造骨 格を有する多孔体 (以下 「力一ボン複合多孔体」 ともいう。) である。
カーボン複合多孔体全体の模式図を図 1に示す。 図 2には、網目構造骨格の 断面図を示す。
網目構造骨格 1の構成は、図 1に示すような骨格が三次元網目状にネットヮ ークを形成している。 このようなネ髓は、 例えば湿潤ゲルを経由して置ゲル を得るプロセスから作ることができる。 このプロセスによる場合、 上記骨格は 微粒子の «による網目構造を形]^ ることから、 図 1のように表わすことが できる。実際に上記骨格を電子腿繊写真等で! ると、 微粒子の纏体か らなり、その微粒子間に空隙を有する多孔質構造となっていることが 認でき る。 上記プロセスから得られた構造では、 H¾的には、 粒径 1 0 0 nm以下の 微粒子から作られた骨格(骨格どうし) が形成する間隙が細孔を構成する。 そ の細孔のサイズは約 l im以下と微小である。 これにより、 5 0 %以上の空孔 率を難できる結果、 高い比表面積をもつ多孔体を提供すること力 きる。特 に、 本発明のようにゲルを経由して形成される網目構造骨格では、 その微粒子 が 1 nm以上 5 0 nm以下と小さく、それによる細孔のサイズも 1 0 0 nm以 下と微小である。 これによつて、 空孔率 8 0 %以上となり、 比表面積 1 0 0m 2/g以上の高い比表面積をもつ多孔体を得ることもできる。
また、 網目構造骨格 1は、 図 2に示すように、 内部 3が無機酸化物からなる。 この無機酸化物が内部(コア部) を構成し、 その表面部にカーボン材料 4力培 る。本発明のカーボン複合多孔体 2は、 無機酸化物の草燥ゲル 3に力一ポ ン材料 4が被覆されているために、大きな比表面積を有する。それによつて上 記多孔体を電和材料、 材料などとして利用することが ^能である。
網目構造骨格 1の内部を占める無機酸化物が有機材料に比べて耐熱性に優 れる。 このため、 上記骨格は、 たとえばカーボン前駆体の炭化過程においては カーボン材料 支離としての役割を果し、 これにより力一ボン形成時の多孔 体の収縮を抑制することができる。その結果として、 力一ボン複合多孔体は、 低密度であり、 高い比表面積を発現することができる。
(2) の形態 2
本発明に係わる多孔体の第二の態様は、 図 1に示すような網目構造骨格を有 する力一ボン多孔体である。 この骨格は、 図 3に示すように、 表面部がカーボ ン材料 6力 なり、 その内部が実質的にすべて中空部 7 (空間) により占めら れている。
上記構造においては、飄ゲル構造である網目構造骨格による高い比表面積 に加え、 その骨格内部が中空部 7になっている。 この多孔体は、 中空部になつ ている分、 前述のカーボン複合多孔体 2よりも高い比表面積を る。 これに よって、 上記多孔体は、 より活性の高い電極材料、 触媒材料などとしての禾固 が可能になる。
(3) の形態 3
本発明に関わる多孔体の第三の態様では、 図 4に示すように、 網目構造骨格 8を有する力一ボン複合多孔体またはカーボン多孔体において、その表面部に 触媒 9 (触媒活性成分) が、 »されている。 この H様では、 実施の形態 1また は 2で示した比表面積の大きな多孔体が担持体となっているために、 より多く の触媒を担持でき、 また反応活性点が増えるなどの特徴を有する。 それによつ て、 より活性の高い β材料、 涵某材料などを提供すること力何能である。 このときに、 触媒 8は、 カーボン材料と接してレゝればどのような状態で存在 していてもよい。 たとえば、 実施の形態 1の力一ボン複合多孔体の齢、 力一 ボン材料表面またはカーボン材料中のレ^ rれであってもよい。 また、 実施の形 態 2の力一ボン多孔体の場合では、力一ボン材料の表面又はカーボン材料の内 部側のどちらでもよい。被反応物との する^^が Kなるという点におい て、 カーボン材料の表面に騰か被していることが望ましい。
2. 多孔体の織方法
本発明多孔体の製 ^法は、 下記の第 1発明〜第 3発明を包含する。
第 1発明は、網目構造骨格を; る無機酸化物のゲルから多孔体を難する 方法であって、 少なくとも ( 1 ) 当該ゲルに力一ボンを付与してカーボン含有 材料を得る工程 A又は(2) 当該ゲルにカーボン前駆体を付与し、 得られた力 —ボン前駆体含有ゲルを炭化処理することによりカーボン含有材料を得るェ 程 Bを含む多孔体の 法である。
第 2発明は、 第 1発明の方法において、 力一ポ 有材料又はカーボン前駆 体含有材料から無機酸化物の一部又は全部を除去する工程をさらに含む方法 である。 '
第 3発明は、 第 1発明又は第 2発明において、匪を膽する工程をさらに 含む方法である。
第 1発明
第 1発明は、 少なくとも ( 1 ) 当該ゲルに力一ボン材料を付与してカーボン 含有材料を得る工程 A又は(2) 当該ゲルにカーボン前駆体を付与し、 得られ たカーボン前駆体含有ゲリレを炭化処理することにより力一ボン含有材料を得 る工程 Bを含む多孔体の S¾i方法である。
第 1発明によれば、本発明多孔体のうち、 内部が実質的にすべて無機酸化物 で占められている多孔体を好適に l¾iすることができる。第 1発明では、 工程 Aまたは工程 Bのいずれかを選択的に実施することができる。
工程 A 工程 Aは、嫌己ゲルにカーボンを付与して力一ポ^有材料を得る工程であ る。
出発材料である網目構造骨格を る無機酸化物のゲルは、網目構造骨格を 有するものであれば特に p腕されない。 また、 液体 を含^ るか否か によって、湿潤ゲル c網目構造骨格の隙間に溶媒を含むゲル)又は置ゲル(網 目構造骨格の隙間に溶媒が実質的に存在しないゲル) の 2つのタイプがあるが、 本発明ではいずれも採用することができる。
また、 無機酸化物の種類は、 多孔体の用途、 删方?縛に応じて各種の金属 酸化物の中から ¾¾ϋ択できる。特に、 網目構造骨格を形成させるためにゾル ゲル法で形成できるものが好ましい。 例えば、 酸化ケィ素 (シリカ)、 酸化ァ ルミニゥム (アルミナ)、 酸化チタン、 酸化バナジウム、 酸化タンタル、 酸化 鉄、 酸化マグネシウム、 酸化ジルコニウム、 酸化亜鉛、 酸化スズ、 酸化コバル ト等のほか、 これらの混合酸化物、複合酸化物等も挙げられる。 これらのうち、 ゾルゲル法による湿潤ゲルの形成が容易であることから、 シリ力およびアルミ ナの少なくとも 1種がより好ましい。
ゲルは、 の方法で觀されたものを使用できる。 特に、 編 3のとおり、 網目職骨格をより確実に形成できるという点で、 ゾルゲル法で調製されたゲ ルを好適に用いることが きる。以下、 ゾルゲル法により難する場合を代表 例として説明する。
原料としては、 ゾルゲル反応により湿潤ゲルを形成するものであれば艮定さ れない。公知のゾルゲル法で使用されている原料を使用することもできる。例 えば、 ケィ酸ナトリウム、 水酸化アルミニウム等の無機材料、 テトラメトキシ シラン、 テトラエトキシシラン、 アルミニウムイソプロポキシド、 アルミニゥ ム一 s e c—ブトキシドなどの有機金属アルコキシドの有機材料などを用い ることが、できる。 これらは、 目的とする無機酸化物の種類に応じて選択すれば よい。
ゾルゲル法は、 の条件に従って実 M "れば良い。 HIS的には、 上記の原 料を溶媒に溶解させて溶液を調製し、 室 ί¾Χは加温下で反応させ、 ゲル化すれ ば良い。 たとえば、 シリカ (S i 02) の湿潤ゲルをつくる場合は、 以下のよ うに実 ればよい。 シリカの原料としては、 たとえばテトラメトキシシラン、 テトラエトキシシ ラン、 卜リメトキシメチルシラン、 ジメトキシジメチルシランなどのアルコキ シシラン化合物、 これらのオリゴマー、 ケィ酸ナトリウム (ケィ酸ソ一 、 ケィ酸力リゥムなどの水ガラス化合物、 コロイダルシリ力などが挙げられる。 これは、 稱虫または混合して用いることが、できる。
溶媒としては、 原料が溶解し、 生成したシリカ力 $溶解しないものであれば娘 定されない。 例えば、 水のほか、 メタノール、 エタノール、 プロパノール、 ァ セトン、 トルエン、 へキサンなどが挙げられる。 これらは 1種または 2種以上 で用いることが、できる。
また、 必要に応じて、 触媒、 粘度調觀嘮の各難加剤も配合することがで きる。 脈某としては、 τΚのほか、 Ά 硫酸、 酢酸などの酸、 アンモニア、 ピ リジン、水酸化ナトリウム、 7_κ酸化カリウムなどの塩基を用いること力 きる。 粘度調觀 11としては、 エチレングリコ一ル、 グリセリン、 ポリビニルアルコ一 ル、 シリコーン油などを用いることができるが、 湿潤ゲルを所定の麵形態に できるのであれば限定されない。
上記原料を溶媒に溶解して灘を調製する。 この場合の溶液の鍵は、 用い る原料又は溶媒の種類、 所望のゲルの性状などによって異なるが、 HIS的には 骨格を形^ τる固体成分? litが難量%〜数十重量%程度とすれば良い。上記 溶液は、 必要に応じて上記添加剤を加え、 攪拌した後、 酒、 塗布などによつ て所望の使用形態にすれば良い。 この状態で一定時間経過すれば、溶液はゲル 化して所定の湿潤ゲルを得ることが きる。具体的には、 溶媒中で原料が反応 しながらシリカの微粒子を形成し、その微粒子が集まって網目構造骨格を形成 して湿潤ゲルが生成する。
この 、 溜夜の ® は 1»的でなく、 ∞は加熱下とすれば良い。カロ熱 する場合は、用いる溶媒の沸点未満の温度の範囲内で 設定すること力 き る。 なお、 原 の組合せによっては、 ゲル化する際に Miしても良い。
また、 生成した湿潤ゲルを後の力一ボン前駆体形成などの工程において、 溶 煤の親和性を高めること等を目的として、必要に応じて表面処理を行うことも できる。 この:!^、 湿潤ゲルの忧態で溶媒中でその固体成分の表面に表面処理 剤を化学反応させて処理することもできる。 表面処理剤としては、 例えばトリメチルクロルシラン、 ジメチルジクロルシ ラン、 メチルトリクロルシラン、 ェチルトリクロルシラン、 フヱニルトリクロ ルシランなどの八ロゲン系シラン処理斉 !ί; トリメチルメ卜シシシラン、 卜リ メチルエトキシシラン、 ジメチルジメトキシシラン、 メチルトリエトキシシラ ン、 フエニルトリヱトキシシランなどのアルコキシ系シラン処理剤; へキサ メチルジシロキサン、 ジメチルシロキサンオリゴマ一などのシリコーン系シラ ン処理剤; へキサメチリレジシラザンなどのアミン系シラン処理剤; プロピ ルアルコール、 ブチルアルコール、 へキシルアルコール、 ォクタノール、 デカ ノールなどのアルコール系処理剤などを用いることができる。 これらは、 多孔 体の用 に応じて 1 SXは 2種以上を選^ればよい。
ゲルに付与するカーボン材料としては、嫌己のとおり炭素又は炭素を 分 とする材料を^することができる。 例えば、 カーボンブラック (アセチレン ブラック、 ケッチェンブラック等)、 活性炭、 人造黒鉛、 天然黒鉛、 炭素繊維、 wmm, ガラス状炭素、不 炭素、 特殊炭素、 コ一クス等を挙げること ができる。 また、 結晶構造も されず、 ダイヤモンド構造、 黒鉛構造等のい ずれでも良い。 また、 カーボンナノチューブ、 カーボンナノホーン、 カーボン ナノリポン、 カーボンナノコイル、 カーボンナノカプセル等のナノカーボン材 料も使用することが T能である。 これらは、 1SXは 2種以上で用いることが できる。 これらは、 多孔体の用藤に応じて 択することができる。 例え ば、 本発明多孔体を電極として用いる場合には、 導電性に優れているものが好 ましい。
力一ボン材料を付与する方法は特に限定されず、 目法、液相法又は固相法 のいずれも適用することができる。 たとえば、 a) 力一ボン材料を 目法にて ゲル(好ましくは車纖ゲル) の骨格表面上に堆積させる方法、 ) 力一ポン材 料 (たとえば、 平均粒径 1 O nm以下のカーボン含有超微粒子) の分謝夜をゲ ル (好ましくは湿潤ゲル) に付与する方法などを挙げることができる。
上記 a) の方法として、 カーボン材料を餅目法により付与する工程について 説明する。
この方法は、 カーボン材料を生成し得る原料にエネルギーを加え、 それによ り生成したカーボン材料をゲルの骨格表面上に堆積させる方法である。 この方 法によれば、 カーボン材料をゲル上に形成できる。そのため、別途に炭化処理 する必要がなぐ 効率的である。
上記原料としては、 メタン、 ェタン、 プロパン、 ブタンなどの飽和炭化水素 化合物; エチレン、 アセチレン、 プロピレンなどの不飽和炭化水素化合物; ベンゼン、 キシレンなどの芳« ^化水素化合物; メタノール、 エタノー ルなどのアルコール類; ァクリロニトリルなどの窒餘有炭化水素; 一酸 化炭素と水素の混合気体、二酸ィ匕炭素と水素の混合気体などの炭素含有ガスな どが挙げられる。 これらは、 1 ®Xは 2種以上で用いることができる。
これらの原料をカーボンに変えるためのエネルギーとしては、たとえば熱、 プラズマ、 イオン、 光、 匪などを採用することが きる。腿ゲルの中で力 —ボン化を進めるには、 カロ熱による方法が制御性が ぃので好ましい。
目法は、 通常の条件に従って実 れば良い。 たとえば、 反応溶器中にゲ ルを配置し、その反応雰囲気中に上記原料を蒸気とし、 これをカロ熱下でゲルの 骨格表面上にカーボンを堆積させれば良い。 この場合の条件は、 多孔体の用途、 所望の特性等に応じて ¾ 調節することができる。
上記 b) の方法は、好ましくは湿潤ゲルを用い、 そのゲル中に含まれる溶媒 にカーボンを分散させ、その後に乾燥処理を施すことによって力一ボン含有材 料を得ること力 きる。 この場合、 分散させるカーボン材料は、 平均粒径 I n m以上 1 0 nm以下の超微粒子であることが望ましい。
ゲルを力一ボン材料で被覆する際における力一ボン材料の使用量 (被覆量) は、 特に制限されず、 多孔体の用途、 使用方法、 用いるカーボン材料の種類等 に応じて ¾!:設^ることができる。
工程 Aで得られた力一ポ ^有材料は、そのまま本発明多孔体として使用し ても良い。 また、 必要に応じてゲル中の残存溶媒を取り除くこと等を目的とし て溶媒 ェ程 mn ) を実施しても良い。 特に、 ゲルとして湿潤ゲルを 使用する場合には、 溶媒 P鉄工程を実施することが望ましい。力かる工程は、 後記の車 理と同様にすれば良い。
工程 B
工程 Bは、 嫌己ゲルに力一ボン前駆体を付与し、得られたカーボン前駆体含 有ゲルを炭化処理することによりカーポ^有材料を得る工程である。 前記ゲルとしては、 工程 Aで示したものを棚すること力 きる。 したがつ て、 ゲルとして湿潤ゲル又は纖ゲルのいずれも翻することができる。
力一ボン前駆体としては、最終的に炭化してカーボンとなるものであれば特 に p腕されない。従って、 炭素を含 る材料であればいずれの材料も使用す ること力 き、 "^的には有機材料を使用することができる。
このうち、 本発明では、 有機高好を議に用いることができる。例えば、 ポリアクリロニトリル、 ポリフルフリルアルコール、 ポリイミド、 ポリアミド、 ポリウレタン、 ポリウレア、 ポリフエノール (フエノール樹脂)、 ポリアニリ ン、 ポリパラフエ二レン、 ポリエーテルイミド、 ポリアミドイミド、 アクリル 共重合体等の重合体又は共重合体を挙げることができる。
この中でも、 炭素一炭素不飽和結合を有する有機高分子が好ましい。すなわ ち、炭素一炭素二重糸給および炭素—炭素三重結合の少なくとも 1種を る 有機高 子を好適に用いること力 ?きる。 このような有機高 子を用いること によって、 より容易かつ確実に炭化させることができ、 しかも所定の弓娘をも つカーボン材料を形^ ることができる。 たとえば、 フエノール樹脂、 ェポキ シ樹脂、 ポリイミド、 ポリスチレン、 ポリサルホン、 ポリフヱニレンエーテル、 メラミン樹脂、 芳¾¾ポリアミドなどを挙げることができる。 これらは、 1種 又は 2種以上で用いることができる。 また、 他の有機高^と併用することも 可能である。 本発明では、 特に、 芳香環を有する有機高^が好ましい。 たと えば、 フエノール樹脂、 ポリイミド等の少なくとも 1種を好適に用いることが できる。
また、 芳香環を有しない有機高奸(例えば、 ポリアクリロニトリル、 ァク リル共重合体など) であっても、 炭化の進行によって環化し、 不飽和結合を生 成するものも好適に用いることができる。換 れば、 炭化前は炭素一炭素不 飽和結合を有していないが、炭化によって環化を起こして炭素一炭素不飽和結 合を生成し得る有機高 も に用いることができる。 このような有機高分 子のうち、 特にポリアクリロニトリルが好ましい。
力一ポン前駆体をゲルに付与して力一ポン前駆含有ゲルを調製する方法と しては、力一ボン前駆体を支謝本となる謹酸化物の網目構造骨格上に形成で きる方法であれば特に限定されない。 たとえば、 (a) カーボン前駆体を無機 酸化物の湿潤ゲルに含浸する方法のほか、 (b) 有機高奸を形成し得るモノ マ一又はオリゴマーを用い、 これを湿潤ゲルに含浸させた後、 重合させ、 力一 ボン前駆体である有機高^ ΐを生成させる方法、 (c) 無機酸化物の ゲル 中で有機高肝を形成し得るモノマーを 目法により付与し、次いで重合させ、 カーボン前駆体である有機高 を生成させる方法などを好適に採用するこ とができる。
上記(a) の方法は、 具体的には、 カーボン前駆体を溶媒に溶解させた溶液 又は溶媒に分散させた分賺 (ェマルジヨンなど) に湿潤ゲルを浸漬する。 こ れによって、 力一ボン前駆体が網目構造骨格の表面に付着して被覆される。 力 一ボン前駆体として有機高奸を用い、その溶 ¾Xは分霞と湿潤ゲルを搬 させる: ^には、 湿潤ゲルはその内部に赚または分霞を麟し、 阜纖後は 有機高奸が網目骨格構造中に残る。 この場合、 溶解している高肝は、 網目 骨格構造に物理的に吸着されていてもよい。 また、 有機高^ ΐが溶解している 溶液を含む湿潤ゲルを、 その有機高肝に対して貧溶媒に浸漬すると、有機高 好が網目骨格構造上に析出し、 表面部を形成することになる。
上記の溜奴は分撒夜に用いる溶媒としては、有機高好の種類等に応じて の溶媒の中から 択すればよい。 たとえば、 水のほか、 メタノール、 エタノール、 プロパノール、 ブタノールなどのアルコール類、 エチレングリコ —ル、 プロピレングリコールなどのグリコール類などが挙げられる。 これらは 1種又は 2種以上で用いることができる。
溶' «は分散液中のカーボン前駆体の?艇は、特に制限されず、 力一ボン前 駆体の所望の付与量、 力一ボン前駆体の種類等に応じて Μ:決定することがで さる。
上記 (b) の方法は、 具体的には、 重合により有機高好を形成し得る有機 ィ匕合物 (オリゴマーも含む。) を溶媒に溶解した溶液又は溶媒に分散した分散 液に湿潤ゲルを浸漬して、 そのゲル内部で重合 (高^ ΐ化) を行わせ、 カーボ ン前駆体である有機高 を生成させることができる。 この方法によると、 網 目構造骨格内部で有機高分子が成長するために、物理的に溶出しにくい力一ポ ン前駆体含有湿潤ゲルを得ることが 能である。
上記有衞匕合物としては、 目的の有機高肝に対 るモノマ一を使用すれ ばよい。 たとえば、 ポリアクリロニトリルを得る はアクリロニトリル、 ポ リフルフリルアルコールを得る場合はフルフリルアルコール、ポリア二リンを 得る場合はァニリンなとを使用することができる。 また、 ポリイミドを生成さ せる場合は、 イミド環を形成させる縮重合反応で生成させる場合、 H¾的なも のとして無水テトラカルボン酸化合物およびジァミン化合物を用いることが できる。 ポリアミドを得る齢は、 アミド結合を形成させる縮重合反応で生成 させる場合、ー«的なものとしてジカルボン酸化合物ゃジカルボン酸クロリド 化合物と、 ジァミン化合物を用いることができる。 ポリウレタンを生成させる 場合は、 ポリオールなどのジォ一ル化合物とジイソシァネート化合物、 ポリウ レアを得る場合は、 ジイソシァネート化合物、 ポリフエノールを得る: t胎には、 フエノール化合物とアルデヒド化合物などを使用すればよい。
本発明の有機高肝としては、炭素一炭素不飽和糸給を るものが好まし いので、そのような有機高肝を生成させる有衞匕合物を好適に用いることが できる。例えば、 有機高肝がフエノール樹脂である場合は、 フエノール化合 物としてフエノール、 クレゾ一ル、 レゾルシノール ( 1, 3—ベンゼンジォー ル)、 カテコール、 フロログリシノール、 サリチル酸、 ォキシ安息香酸などが 挙げられる。 この場合には、 縮合剤であるアルデヒド化合物としてホルムアル デヒド、 ァセトアルデヒド、 フルフラール、 加熱によってホルムアルデヒドを 生成するパラホルムアルデヒド、へキサメチレンテトラミンなども使用する。 縮^ M媒としては、 塩基触媒および/または酸触媒を用いることができる。塩 基触媒は主にメチ口一ル基などの働 Π反応を進行させ、 隱媒 にメチレン 結合などの重付加縮合反応を進行させればよい。塩基触媒としては、 たとえば 水酸化ナトリウム、 7酸化カリウムなどのアルカリ金属の水酸化物、 炭酸ナト リウム、 炭酸カリウムなどのァレカリ金属の炭酸ィ匕物、 ァミン、 アンモニアな ど、 ^的なフエノール樹脂難用の触媒を用いることが きる。隱某とし ては、 たとえば硫酸、 雄、 リン酸、 シユウ酸、 酢酸、 トリフルォロ酢酸など を用いることができる。
有衞匕合物を溶解又は分散させるための溶媒としては特に限定されず、用い る有衞匕合物の種類等に応じて公知の溶媒の中から 採択すればよい。たと えば、 水のほか、 メタノール、 エタノール、 プロパノール、 ブ夕ノールなどの アルコール類、 エチレングリコ一ル、 プロピレングリコールなどのグリコール 類などカ举げられる。 これらは 1 ®xは 2種以上で用いること力 きる。
溶 ¾xは分散液中における有機化合物の濃度は特に限定されず、用いる有機 化合物の種類等に応じて魏決 れば良い。
重合させる方法としては、 特に跪されず、 たとえば熱重合、 ½S合、 光 重合などの公知の方法により実施することができる。
上記(C ) の方法では、 無機酸化物の ¾ ^ゲル中でカーボン前駆体である有 機高肝を形成し得るモノマーを 目法により付与し、次いで重合する方法で ある。具体的には、 前述のポリアクリロニトリル、 ポリフルフリルアルコール、 ポリァニリンなどの有機高肝のモノマーを蒸気とし、ゲルの中に充填してか ら重合させる方法である。 また、 ポリフエノールなどではフエノール化合物を 充填しておいてから縮合剤のホルムアルデヒドなどを蒸気として充填して縮 重合させることができる。 また、 ポリイミド、 ポリアミドなどにおいては、 原 料のカルボン酸化合物とジアミン化合物を蒸発させ、それをゲルの中に充填し、 重縮合させること力 sできる。
目法は、 特に限定されず、 の方法を採用すること力 ?きる。 たとえば、 ィ匕学気相成長法 (CVD)、 物理的 目成長法 (P VD) 等の ~«的な方法を 用い、ポリマ一又はそのモノマーを加熱等により気化または蒸発させる方法な どを Sfflすることが'できる。
重合させる方法としては、 嫌己(b) の と同様にして実;! ることがで 含る。
次の炭ィ [^理工程では、得られたカーボン前駆体含有ゲルを熱処理すること によって炭化処理を行う。
この場合、 ゲルとして湿潤ゲルを翻する場合には、 炭化処理に先立って予 め讓して觀ゲルとしておくことが好ましい。
草燥処理には、 自然車 、 カロ熱卓纖、 E車纖の通常謹法のほか、超臨界 誦法、 凍結車纖?縛も用いることができる。 HISに、 懇ゲルの表麵を高 く、 力つ、 低密度化を図るため湿潤ゲル中の固体成分量を少なくすれば、 ゲル 弓嫉が低下する。 また、 単に誦するだけでは、 溶媒蒸発時のストレスによつ てゲルが収縮してしまうことが多い。湿潤ゲルから優れた多孔質性能を有する 纖ゲルを得るためには、纖手段として超臨界車燥又は凍結置を好ましく 用いることができる。 これによつて、 B寺のゲレの収縮、 すなわち高密度化 を効果的に回避すること力 きる。通常の溶媒蒸発させる麵手段においても、 蒸発速度をゆつくりさせるための高沸点溶媒を使用したり、蒸発温度を制御す ることによって、 誦時のゲルの収縮を抑制することができる。 また、湿潤ゲ ルに対し、ゲルの固体成分の表面を撥水処理等を施して表醒カを制御するこ とによっても、 鎌時のゲルの収縮を抑制することができる。
超臨界置法又は凍結車腿では、溶媒を液体 態から相状態を変えること によって、気液界面を無くして表面張力によるゲリレ骨格へのストレスを与える ことなく乾 できる。 このため、 乾燥時のゲルの収縮を防ぐことができ、 低密 度の車纖ゲルの多孔質体を得ることができる。本発明では、 特に、超臨界車燥 法を用いることがより好ましい。
超臨界腿に用いる溶媒は、湿潤ゲルの保持している溶媒を用いることがで きる。 また、 必要に応じて、超臨界観において扱いやすい溶媒に置換してお くの力 S好ましい。置換する溶媒としては、 直接その溶媒を超臨界流体にするメ タノール、 エタノール、 ィソプロピルアルコールなどのアルコール類のほか、 二酸化炭素、 水などが挙げられる。 または、 これらの超臨界流体で溶出しやす いアセトン、 酢酸イソァミル、 へキサンなどの有猶剤に置換しておいてもよ い。
超臨界置は、 オートクレープなどの圧力容器中で行うことができる。たと えば、 溶媒がメタノールではその臨界条件である臨界圧力 8. 0 9 MP a、 臨 術显度2 3 9. 4°C以上にし、 ¾t一定の状態で圧力を徐々に開方 することに より行う。 たとえば、 溶媒が二酸化炭素の には、 臨界圧力 7. 3 8MP a、 臨^ ¾3 1. C以上にして、 同じように 一定の 態で超臨荆ぇ態から 圧力を開放して気体优態にして ¾ ^を行う。 たとえば、 溶媒が水の場合には、 臨界圧力 2 2. 0 4 M P a、 臨^ 3 7 4. 2 °C以上にして車纖を行う。 乾 燥に必要な時間としては、超臨界流体によって湿潤ゲル中の溶媒が 1回以上入 れ替わる時間以上を βすればよい。
炭化処理は、 力一ボン前駆体が 3 0 0°C禾 MS以上で炭化が進行しはじめるた め、 3 0 0T:以上で行うことが好ましい。作業時間の効率性の観 から、 4 0 o°c以上の、 がより好ましい。 また、 カロ熱 asの上限は、 網目構造骨格の無 機酸化物の融点未満の で«:設定できる。 たとえば、 無機酸化物にシリカ を用いた場合には、 その車燥ゲルは、 6 0 0 °C禾體でやや収縮するが、 1 0 0 o°c以上では大きく輔宿する。 したがって、 炭化処理 は、 その収縮抑制の 効果の離で選択すればよい。本発明では、 特に 1 0 0 0°C未満(さらには 8 o o°c以下) で炭化処理を行うことが望ましい。
炭化処理の雰囲気は、 特に P跪されず、 大気中、 酸化性雰囲気中、 還元 I'樣 囲気中、 不活性ガス雰囲気中、 真空中等のいずれであっても良い。 ただし、 燃 騰を考 れば、 ί踏を高く設¾ ~るときには、低鍵酸素雰囲気下で行う のが好ましい。本発明における低離酸素雰囲気下とは、雰囲気の酸素 iijtが
0〜1 0 %であることをいう。乾留法、 窒素、 アルゴンなどの不活性ガス雰囲 気中での加熱、 または真空中での加熱でも炭化処理を行うこと力 きる。
第 2発明
第 2発明は、 第 1発明において、 カーボン含有材料又はカーボン前駆体含有 材料から無機酸化物の一部又は全部を除去する工程をさらに有する方法であ る。
第 2発明では、本発明多孔体のうち、 内部が無機酸化物及び空間で占められ ている多孔体又は内部が空間で占められている多孔体を好適に得ることがで きる。すなわち、 無機酸化物の一部を すれば、 内部が無機酸化物及び空間 で占められている多孔体が得られる。無機酸化物の全部を P絲すれば、 内部が 実質的にすべて空間で占められている多孔体が得られる。
無機酸化物を P絲する工程について説明する。第 2発明では、 力一ポ ^有 材料又はカーボン前駆体含有材料から無機酸化物の一部又は ik¾を P鉄する。 これらの^ ¾ェ程は、 第 1発明のどの段階で実施しても良い。 すなわち、 本発 明は、工程 Aで得られるカーボン含有材料から無機酸化物の一部又は^ ¾を除 去する方法、工程 Bでつくられるカーボン前駆体含有材料から «酸化物の一 部又は^ を P鉄した後、 得られた材料を炭化する方法、 工程 Bで炭化して得 られる力一ボン含有材料から無機酸化物の一部又は全部を除去する方法等の いずれも包含する。
無機酸化物を!^する方法としては限定的でない。 たとえば、 蒸発、 昇華、 溶出などの公知の方法をいずれも用いることができる。特に、 本発明では、 ゲ ル骨格への影響が少ない温和な条件が好ましいことから、溶出による!^がよ り好ましい。
溶出する方法としては、無機酸化物を溶解する溶液に浸漬して行えばよい。 このときに^ fflする溜夜は、酸または塩基の溶液を好ましく用いることができ る。 ~«にゾルゲル法によって形成される無機酸化物のゲルは結晶性が低く、 非晶質である が多い。 そのため、強レ«や塩基に対しての溶解性カ搞い。 また、微粒子が纏している網目構造骨格のゲルがほぐれてしまうという性質
(解こう性) も高い。
酸また « ^基は、 無機酸化物の種類に応じて 択することができる。例 えば、 無機酸化物がシリカである は、 フッ化水素酸のほか、 水酸化アル カリ 冰酸化ナトリウム、 水酸化カリウム)、 炭酸アルカリ (炭酸ナトリウム、 炭酸水素ナトリウム) などを謹に用いることができる。 これらは、 水溶液、 アルコール激夜などの形態で使用することができる。なお、 酸又は塩基の? lit は、用いる酸又は塩基の種類、 無機酸化物の種類等に応じて難決 ば良 い。
無機酸化物を!^する第 2発明では、第 1発明で得られるカーボン複合多孔 体よりも比表面積が大きい多孔体が得られる。 このカーボン材料からなる網目 構造骨格は、 電子顕 ^の観察で中空ォ髓が観察されることが多い。電子顕 観察で明確な中空構造が観察されないものであつても、比表面積の大きな カーボン多孔体も得られる。
第 3発明
第 3発明は、 第 1発明又は第 2発明において、 (賺活 f滅分) を担持 する工程をさらに含む方法である。
上記工程は、 第 1発明及び第 2発明のレ fれの段階で実施しても良い。 たと えば、 無機酸化物の湿潤 成の際に賺を付与する方法、 雄酸化物の湿 潤ゲルを形成した後、 そのゲル表面に触媒を付与する方法、 カーボン前駆体を 形成した後に触 «を付与する方法、 力一ボン多孔体を形成した後に を付与 する方法などがある。触媒を前駆体として担持した際には、 担擀麦に臓匕す る処理 (熱処理、 還 理など) を実施すればよい。 これらの方法は、 用いる 触媒の種類などによって 択することができる。
触媒としては、 多孔体の用途、 麵方 に応じて ¾g設 ¾τることが き る。 たとえば多孔体を燃料電池の€Sに用いる場合には、 白金、 パラジウム、 ルテニウム、 金、 銅、 スズ、 亜鉛などの金属、 白金パラジウム、 白金ルテニゥ ム、 白金鉄などの合金、 ニッケル系、 マンガン系の酸化物などの一般的な触媒 を用いることができる。多孔体を脱臭などの電極 の用途に用いる には それぞれの用途に適した触媒を担持すれば良い。
«を付与する手段としては特に限定されず、么^ Πの方法に従って実施すれ ば良い。 たとえば、 1 ) コロイドを用いて担持する方法、 2) 金属塩などの前 駆体を担持した後、 水素などの ^剤によって還元する方法、 3)金属塩など の前駆体の焼成などによって多孔体に触媒を担持する方^がある。
«の担持量は、 多孔体の性状、 の種類、 用 に応じて ¾ 決^る ことができる。
以下、 本発明多孔体の SSi方法の好ましい形態を図示しながら説明する。 (4) 実施の形態 4
本発明に係わる力一ボン含有多孔体の第一の St方法は、 図 5に示す ¾Φ的 な工程からなる。
的な工程としては、 無機酸化物の網目構造骨格を形成した後に、その湿 潤ゲルにカーボン前駆体を形成し、その力一ボン前駆体を炭化して力一ボンに する方法である。すなわち、 この難形態は、 網目構造骨格を: Tる無機酸化 物の湿潤ゲルに力一ボン前駆体を付与して無機酸化物の表面にカーボン前駆 体が被覆されているカーボン前駆体含有湿潤ゲルを得る工程、 当該湿潤ゲルを 難して纖ゲルを得る工程、および当該鎌ゲルを炭化して力一ボン含有多 ?し体を得る工程を含む方法である。 これらの工程 的なものであり、 その 他にも必要に応じて溶媒置換、 «形成、表面処理などの処理が適宜なされて もよい。
この^ i方法では、無機酸化物からなる網目構造骨格がカーボン前駆体を炭 ィ匕する際に、炭化に伴う収縮を抑制して «を保持する支謝本としての役割を 果たす。すなわち、 前駆体の多孔体が炭化するに連れて収縮するのを押さえる ことができる。それによつて、 前駆体から力一ボンになる際の密度の増加を抑 制ないしは防止することができ、比表面積の低下を抑えるという効果が得られ る。
( 5 ) の形態 5
本発明に係わる力一ボン含有多孔体の第二の $¾ 方法は、 図 6に示す 的 な工程からなる。
この工程は、 無機酸化物の網目構造骨格を形成して得た ゲルに、 主とし て気相法によりカーボン材料を付与する方法である。すなわち、 この実施形態 は、網目構造骨格を る無機酸化物の湿潤ゲルを纖して纖ゲルを得るェ 程、および当該難ゲルにカーボン材料を付与することにより無機酸化物の表 面にカーボン材料が被覆されているカーボン含有多孔体を得る工程を含む方 法である。 これらの工程 的なものであり、 この方法を行うのため、 溶媒 置換、 成、 表面処理などの公知の処理が必要に応じてなされてもよい。
( 6) 難の形態 6
本発明に係わるカーボン多孔体の第一の SS 方法は、 図 7に示す ¾φ的なェ 程からなる。
この工程は、 無機酸化物の網目構造骨格を形成した後に、 その湿潤ゲルに力 —ボン前駆体を形成したカーボン複合多孔体から、骨格の芯として る無 機酸化物を!^ ¾することによって力一ボン前駆体の ゲルを得てから、その 網目構造骨格の力一ボン前駆体を炭化して力一ボンにする方法である。すなわ ち、 この方法は、 網目構造骨格を衬る無機酸化物の湿潤ゲルに力一ボン前駆 体を付与して無機酸化物の表面にカーボン前駆体が被覆されているカーボン 前駆体含有湿潤ゲルを得る工程、 当該カーボン前駆体含有湿潤ゲルから無機酸 化物を Ρ鉄する工程、 当該カーボン前駆ィ極潤ゲルを纖して纖ゲルを得る 工程、および当該 ゲルを炭化してカーボン多孔体を得る工程を含む方法で ある。 これらの工程 的なものであり、 必要に応じて溶媒置換、 謹形成、 表面処理などの の処理が ¾ϋなされてもよい。
この ¾i方法では、力一ボン材料から網目構造骨格が形成されているために、 比表面積が大きなカーボン多孔体を形成できる。 さらに、 その網目構造骨格の 内部に中空部力培 ¾Tるために表面積の向上を図ることができる。それによつ て、 密度が低く、 比表面積の大きなカーボン多孔体を得ることができる。 これ により、反 β率の高レ触 本や電極材料への応用力河能になるものであ る。
(7) 難の形態 7
本発明に係わるカーボン多孔体の第二の S¾t方法は、 図 8に示す 的なェ 程からなる。
この工程は、実施の形態 5または 6で形成された力一ポ ^有多孔体などか ら、 その網目構造骨格(芯材) として存 る無機酸化物を除去することによ つてカーボン多孔体を得る方法である。 この 方法では、 カーボン材料によ り網目構造骨格が形成されているために、比表面積が大きなカーボン多孔体を 形成できる。 さらに、 その網目構造骨格の内部に中空部が^ るために表面 積の向上を図ることができる。それによつて、 密度が低く、 比表面積の大きな 力一ボン多孔体を得て、反 ϋ率の高レ ^や電極材料への応用が 能 になる。
( 8) 実施の形態 8
¾βした各方法で得られた多孔体は、必要に応じて 1 0 0 0 以上で加熱処 理をし、カーボン材料の黒鉛化を «してグラフアイトとすることも可能であ る。活性炭化処理で行う水蒸^囲気などによる赋活処理を施してやればさら に比表面積を高めることができる。黒鉛化の方法は、 本発明の多孔体の使用目 的に合わせて の方法 .条件から 択すればよい。
3. 電気化学素子
本発明の電気化学軒は、 燃料からプロトン生 i¾Tる燃料電極と、 プロトン を酸素と反応させる酸素電極とが、 プロトン伝導性固体^?質を間にして対向 してなる電気化学素子であって、 当該燃料電極及び 素廳の少なくとも一方 が嫌己の本発明多孔体である。 したがって、電極として本発明多孔体を用いる ほかは、 πの電気化学素子(燃料電池) の構成要素 m, 容器、 セパレ 一夕など) を することが きる。
本発明では、本発明多孔体に触媒を担持したものを電極として用いる。電極 を形成する手段は、 縮成型、 射出成型、 発泡成型、 印刷、 塗布などの公知の 成型方法を用いることができる。得られた電極を電解質などの他の構成要素と i s且み合わせることができる。 電極と共に用いる固体電解質としては、材料はプロトン伝導性を有する電解 質であればよい。 例えば、 スルホン酸基を側鎖に るフッ素系高^?膜;酸 化タングステン、 酸化モリブデンなどの水和酸化物;ポリリン酸、 ポリタンダ ステン酸などの固体 体などを好適に用いることができる。 これらは、 必要 に応じて膜状またはシート状に成型することもできる。
多孔電極を電解質に組み合わせるためには、 この^!質に貼り^ ±たり、 印 刷や塗布したりするなどの方法を採用すればよい。
この電気化学素子を燃料電池として用いる場合、 その燃料としては、 たとえ ば水素のほか、 メタノール、 エタノールなどのアルコール系;ジメチルエーテ ル、 ジェチルェ一テルなどのエーテル系、 メタン、 ェタン、 プロパン、 ブタン などの炭化水素系のほか、 ガソリンなどを用いることができる。 これらの中で も、 水素を好ましく すること力 ?きる。
これらの燃料は、直接多孔籠で反応させて用いたり、一旦改質して水素を 発生させてそれを反応させたりしてもよい。特に、 直接多孔電極で反応させる 場合には、 メ夕ノール《j素を発生する反繊率カ缟レため燃料電池からなる 電気化学素子には好ましい。
以下に、 本発明の多孔体を用いた電気化学素子の実施の態様について、 図を 用いて説明する。
( 9 ) 実施の形態 9
本発明の電気化学素子について説明する。
本発明の多孔体は、 高い比表面積を有するため、 反応に寄与する活性サイ卜 を多く形成できる。 したがって、 本発明多孔体は、 界面で反応を生じさせる素 子である電池、 キャパシ夕などの電極材、 触媒の担掛本などに適している。特 に、電極を電解質と接して用いる電気化学素子においては優れた特性を得るこ とができる。 例えば、 燃料電池、 空気電池、 電解装置、 電気二重層キャパシ 夕、 ガスセンサ、 汚染ガス!^ ¾装置などに適用することができる。
特に、 図 9に示す燃料電池のように、 プロトン伝導性固体からなる電解質が 挟持されるように、本発明の多孔体からなる多孔 «を対向して配置すればよ レ。燃料の供給と外部回路との接続を行う驗には、 τΚ素や酸素などの気体ま たはメタノールなどの液体の流体と反応する多孔電極に触媒が担持されてい るために、 比表面積の大きな多孔体を用いると触媒の担持量を: すことができ るとともに、 反応流体と触媒との接触機会を増加させ、 その反 劾率を高める ことが、できる。
実施例
以下に、 実施例および比較^ Jを示し、 本発明の糊敷をより詳細に説明する。 ただし、 本発明の範囲は、 実施例に限定されるものではない。
〈く実施例 1》
まず、 無機酸化物としてシリカを用いた湿潤ゲルを合成した。 テトラメトキ シシランとエタノ一ルとアンモニア水溶液 (0. 1規定) をモル比で 1対 3対 4になるように調製した原料液を容器に入れてゲル化して固体化し、 シリカの 湿潤ゲルを得た。
続いて、 無機酸化物 (シリカ) の湿潤ゲル中で、 カーボン前駆体の複合湿潤 ゲルを形成した。 水を溶媒として用いてレゾルシノール ( 0. 3mo 1 /L) とホルムアルデヒドと炭酸ナトリウムをモル比で 1対 2対 0. 0 1になるよう に調製した原料水溶液に、先のシリカ湿潤ゲルを浸漬してゲルの骨格内に 曼 した。室温および約 8 0。(:でそれぞれ 2日間放置した。 これにより、 ポリフエ ノ一ル系高好がシリ力の湿潤ゲルの骨格に被覆された、カーボン前駆体の複 合湿潤ゲルを得た。
続いて、 カーボン前駆体をゲル内部に形成した上記複合湿潤ゲルを した。 難方法は、湿潤ゲルの内部の溶媒をアセトンに置換してから、超臨界帳に て行い、 内部の溶媒を除去した力一ボン前駆体の複合纏ゲルを得た。超臨界 難の条件は、二酸化炭素を草 (本として用い、圧力 1 2 MP a、 « 5 0 の条件で 4時間経過後に、 圧力を徐々に開放し大赃にしてから降温した。 こ れにより車 ゲルを得た。車纖前後の大きさはほぼ同じであり、 ほとんど収縮 していなかった。 みかけ密度が約 2 2 0 k g/m3であり、 空孔率は約 9 0 % であった。 また、 窒素吸着法である B E T法で測定した比表面積の値は約 8 0 OmVgの高比表面積、 平域田孔サイズは約 1 5 n mであつた。
最後に、 力一ボン前駆体の複合纖ゲルを炭化して力一ボン複合多孔体を得 た。 複合観ゲルを窒素雰囲気中、 1 0 0°Cで 1時間放置、 2 0 0°(で1時間 放置、 3 0 0 °Cで 1時間放置、 4 0 0°Cで 1時間放置、 5 0 0°Cで 1時間放置 してから逆に 4 0 0°C 1時間、 3 0 0°C 1時間、 2 0 0 °C 1時間、 1 0 0°C 1 時間で降温した後に室温まで徐冷した。 このとき、 炭化碰の鎌ゲルの寸法 は、 長さで約 9 0 %になっていた。 みかけ密度が約 3 0 0 k gZm3であり、 空孔率は約 8 0 %であった。 また、 窒素吸着法である B ET法で測定した比表 面積の値は約 4 5 0m2/gの高比表面積、 平均細孔サイズは約 2 0 nmであ つた。
《比麵 1》
比較のため、実施例 1に記した条件で力一ボン前駆体のポリフエノール系高 肝の単体での湿潤ゲルを得た。纖も難例 1と同じ条件で行い、 カーボン 前駆体の聿灘ゲルを得た。 このとき、 謝麦の大きさは長さで約 9 5 %にな つていた。 みかけ密度が約 1 5 0 k gZm3であり、 空孔率は約 9 0 %であつ た。 また、 窒素吸着法である B ET法で測定した比表面積の値は約 8 0 O m2 /gの高比表面積、 平均細孔サイズは約 1 5謹であった。
さらに、 これを実施例 1と同条件で炭化して力一ボン多孔体を得た。 このと き、 炭化前後の車纖ゲルの寸法は、 長さで約 7 0 %になっていた。觀と合わ せると約 6 5 %に収縮していた。 みかけ密度は約 5 5 0 k gZm3であり、 空 ?し率は約 4 0 %であった。 また、窒素吸着法である B ET法で測定した比表面 積の値は約 1 5 0m2Zgであった。
《比棚 2》
比較のため、 実施例 1に記した条件でシリカの湿潤ゲルを得た。車 は、 シ リカ湿潤ゲルをエタノールで洗浄処理(溶媒置衡 した後に、 二酸化炭素によ る超臨界車纖を行い、 シリカの車纖ゲルを得た。超臨界 の条件も^ M例 1 と同条件とした。車纖前後の大きさはほぼ同じであった。得られたシリカの乾 燥ゲルは、 みかけ密度が約 2 0 0 k g/m3であり、 空孔率は約 9 2 %であつ た。 また、 窒素吸着法である B E T法で測定した比表面積の値は約 6 0 0 m2 /gの高比表面積、 平均細孔サイズは約 2 0 nmであった。
さらに、 これを実施例 1の炭化条件と同じ条件で加熱を行った。 このとき加 熱前後の觀ゲルの大きさは、 長さで約 9 3 %になっていた。 みかけ密度は約 2 5 0 k g/m3であり、 空孔率は約 9 0 %であった。
以上のように、比較ィ列 1のように の力一ボン前駆体の高 ^^湿潤ゲルで は、 纖時の収縮は小さいが炭化処理時の収縮が大きい。 それに対して、 実施 例 1のようにシリカ湿潤ゲルとの複合化を図ることによって炭化時の収縮を 抑えることができ、 力つ比表面積も大きいものが得られた。 この効果は、 比較 例 2に示すようにシリ力 «ゲルでは収縮が小さぐ シリカの網目構造骨格が カーボン前駆体の構造支街本として働いているためと考えられる。
〈く実施例 2》
比較 2の条件で無機酸化物としてシリカの車纖ゲルを得た。 このシリ力乾 燥ゲルを石英管状炉の中に入れ、約 8 0 0°Cでプロピレンを流して 目でカー ボン形成を行った。 シリ力 ¾ ^ゲルの骨格内部まで力一ボン形成が行われてい た。 このカーボン形成前後での観ゲルの大きさは、長さで約 8 5 %になって おり、 棚が小さく押さえられていることがわかった。 みかけ密度は約 3 5 0 k gZm3であり、 比表面積は約 4 5 0m2/gの高い値であった。
《実施例 3》
実施例 1と同じ条件で作製したカーボン前駆体の複合湿潤ゲルを得た。 この 複合湿潤ゲルをふつ化水素酸に室温で 3 0分間浸漬することにより、力一ボン 前駆体の湿潤ゲルを得た。 この湿潤ゲルを実施例と同じ条件で纏することに よってカーボン前駆体の卓 fclゲルを得た。 この阜纖前後での大きさはほぼ同じ であった。
さらに、 この腿ゲルを実施例 1と同じ条件で炭化を行い、 カーボン多孔体 を得た。炭化の前後で大きさは長さで約 7 0 %に収縮していたが、 そのみかけ 密度は約 1 0 0 k gZm3と小さく、比表面積も約 8 0 0m2Zgと高い値が得 られた。 この力一ボン多孔体は電子顕微鏡観察で、 中空構造であることが ϋ認 された。
《実施例 4》
実施例 2で作製した力一ボン複合多孔体を、ふつ化水素酸に室温で 3 0分間 浸潰してシリカを除去することで、 カーボン多孔体を得た。 このみかけ密度は 約 1 0 O k g/m3と小さく、その比表面積は 9 0 0m2Zk gと高い値が得ら れた。 このカーボン多孔体も電子顕 で、 中空構造であること力 萑認さ れ その効果によつて高比表面積が達成されたものと考えられる。
《実施例 5》 力一ボン前駆体としてポリァクリロニトリルを用いた。ポリァクリロニトリ ル 5重量%のァセトニトリル溶液に、実施例 1で作製したシリカの湿潤ゲルを 浸漬して力一ボン前駆体をゲ i/ 格に被覆した湿潤ゲルを得た。 これを実施例 1に記載の方法で卓^した。
得られた力一ボン前駆体複合聿纖ゲルを 2 0 0°Cで 2時間処理、 4 0 0°Cで 2時間処理した後に、 6 0 0°Cまで昇温してから 1 0 0 °Cまで降温してカーボ ン複合多孔体を得た。 この簡 でのゲルの大きさは、長さで約 8 5 %になって おり、 棚が小さく押さえられていることがわかった。 みかけ密度は約 3 5 0 k gZm3であり、 比表麵は約 4 5 0m2Zgの高レ 直であった。
《実施例 6》
実施例 5で作製したカーボン複合多孔体を p H 1 0以上に調整した水酸化 ナトリゥム水賺に浸潰してシリカを P鉄した後に、 ァセトンに溶媒置換して から実施例 1の条件で超臨界 «を行って力一ボン多孔体を得た。処理飾菱で の大きさは約 9 0 %であった。 このみかけ密度は約 1 2 0 k g/m3と小さく、 その比表面積は 8 0 Om2/ k gと高い値が得られた。
く〈実施例 7》
無水ピロメリット酸と 4, 4 '一才キシジァニリンから合成されたポリアミド 酸の 1重量%の N—メチルピロリドン溶液に、実施例 1で作製したシリカの湿 潤ゲルを浸漬してポリアミド酸を 曼した複合湿潤ゲルを得た。
このポリアミド酸複合湿潤ゲルを以下の 2つの方法でカーボン前駆体のポ リイミド複合誦ゲルを得た。
第一の方法は、 ポリアミド酸複合湿潤ゲルを無水酢酸とピリジン溶液に浸漬 して、化学イミド化を行った。 このポリイミド複合湿潤ゲルを鶴してポリイ ミド複合鎌ゲル Aを得た。
第二の方法は、 ポリアミド酸複合湿潤ゲルを觀して複合鎌ゲルとした。 この ゲルを窒素雰囲気下 3 0 0 で熱イミド化を行い、ポリイミド複合乾 燥ゲル Bを得た。
得られたポリイミド複合乾燥ゲル Aおよび Bを窒素雰囲気下 6 0 0 °Cで炭 化を進めて、 炭化した複合多孔体を得た。 この複合多孔体をさらに 1 2 0 0°C で加熱し、その後 2 0 0 0°C以上でシリカの骨格を蒸発させるとともに黒鉛化 を促進させて、 カーボン多孔体を得た。複合乾燥ゲル Aおよび Bのどちらも同 じょうにカーボン多孔体を得ることができた。
《実施例 8》
ケィ酸ソーダの電^ S析を行い、 p H 9〜 1 0のケィ酸水溶液(水溶液中の シリカ成分濃度 1 4重量%) を調製した。 そのケィ酸水溶液の pHを 5. 5に 調整したのちに、 容器に充填した。 その後、 室温にてゲル化して固体化したシ リカ湿潤ゲルを得た。続いて、 このシリカ湿潤ゲルをジメチルジメトキシシラ ンの 5重量%ィソプロピルアルコール溶液中で ¾ Κ化処理を行つた後に、通常 麵法である 謹を行って、 シリカ觀ゲルを得た。 ¾»件は、 圧力 0. 0 5 MP a、 5 0°Cで 3時間 »後に、圧力を;^ Hしてから降温した。 得られたシリカの乾燥ゲルは、 みかけ密度が約 2 0 0 k gZm3であり、 空孔 率は約 9 2 %であった。 また、 窒素吸着法である B ET法で測定した比表面積 の値は約 6 0 0m2Zgであった。 なお、 その平均細孔直径は約 1 5 nmであ つた。
次に、得られたシリカ車纖ゲルにカーボン材料を網目構造骨格に形成した。 シリカ乾燥ゲルを、 真空成膜装置に設置して周波数 1 3. 5 6 MH z、 電力 2 0 0Wの高周波によってベンゼンガスを方嫣プラズマ形成し、 2 0 0°Cに温 度調整したシリカ草纖ゲル中に炭素を形成し、 カーボン複合多孔体を得た。作 製した炭素材料は X線回折法にて非晶質であることを確認した。 また、 ラマン 分光法による 面によってダイャモンド状の結合が多いダイャモンドライク カーボンであることを確認した。 このカーボン複合多孔体のみかけ密度は約 2 2 0 k gZm3で収縮が少なく、 B ET法による比表面積は約 6 0 0 m2Zgで 高い値が得られた。 . 《実施例 9》
実施例 1で作製した力一ボン複合多孔体 Aおよび実施例 3で作製したカー ボン多孔体 Bに以下の方法で白^ «を した。
塩化白金酸の 3 mm o 1 ZLのエタノ一ル溶液に多孔体 Aおよび Bを含浸 することにより白金塩の担持を行つた。 これに室温で水素化ホウ素ナトリウム を加えて白金粒子からなる腿を賺した。触媒膽量は、 それぞれ約 0. 2 mg/c m3、 約 0. 3 5mg/ c m3であり、 比表面積の大きな多孔体 Bの方 力補量が多かった。
《実施例 1 0》
実施例 9で作製した讓據した多孔体 Bに、スルホン酸基を有するパ一フ ルォロポリマ一をバインダ一として塗布して成形して多孔電極を形成した。 こ の電極を対として固体電解質ポリマーであるナフイオンと組み合わせて電気 化学素子を構成した。
この電気化学軒の片面に水素を導入し、対向する面に空気を導入して燃料 電池とした。 出力慨を測定したところ 0. 8 Vの値が得られ、 電気化学素子 として効率的に動作していることが明らかになった。 このことによって、 本発 明の多孔体のカーボン材料が、電極として動作し得ることが明らかになるとと もに、多孔体に担持した難がその機能を発揮できるという効果が 認できた。 以上のように、 本発明では、 低密度であり比表麵の高レカーボン系の多孔 体を得る方法であり、その効果によって効率的な電極反応や腿叛応を生じさ せる目的に適した力一ボン材料からなる力一ボン複合多孔体またはカーボン 多孔体を提供できる。
また、その i¾iする方法においては、多孔体が良好な特性を発揮するための 高い比表面積のカーボン材料からなる多孔体を作ることのできる新たな工程 を提供することができたために、生^率が高い製造プロセスを提供すること ができる。
さらに、本発明の多孔体を電極として用いた電気化学素子は、効率的に反応 を行わせることのできる燃料電池などの 化学軒の用途を提供できる。以 上のように、 本発明は工業的に価値の高い方法である。

Claims

請求の範囲
1. 網目構造骨格を有する多孔体であって、
(1) 当翻目構造骨格が内部と表面部から構成され
(2) 表面部が、 力一ボン材料を含み、
(3) 内部が、 a) 無機酸化物、 b) 空間又は c) 無機酸化物及び空間で占め られている多孔体。
2. 内部が実質的にすべて無機酸化物で占められている請求項 1記載の多 孔体。
3. 内部が実質的にすべて空間で占められている請求項 1記載の多孔体。 . 網目 骨格上に ¾が ί磨されてなる請求項 1記載の多孔体。
5. 網目構造骨格を有する多孔体であって、
(1) 当翻目構造骨格が内部と表面部から構成され
(2) 表面部が、 カーボン材料を含み、
(3) 内部が、 a) 無機酸化物、 b) 空間又は c) 無機酸化物及び空間で占め られている多孔体の S¾i方法であって、
少なくとも (1)網目構造骨格を有する無機酸化物のゲルにカーボン材料を 付与してカーボン含有材料を得る工程 A又は (2) 当該ゲルに力一ボン前駆体 を付与し、得られた力一ボン前駆体含有ゲルを炭化処理することによりカーボ ン含有材料を得る工程 Bを含む多孔体の^ t方法。
6. カーボン含有材料又は力一ボン前駆体含有ゲルから無機酸化物の"^ 又は^ ¾を除去する工程をさらに含む請求項 5記載の i ^法。
7. ゲルとして湿潤ゲルを用い、 かつ、 工程 Bとして、 当該湿潤ゲルに力 —ボン前駆体を付与し、得られた力一ボン前駆体含有ゲルを車燥して力一ボン 前駆体含有鎌ゲルを得た後、 当露燥ゲルを炭化処理することにより、 力一 ボン含有材料として多孔体を得る工程を する請求項 5記載の製造方法。
8. ゲルとして ゲルを用い、 かつ、 工程 Aとして、 当該誦ゲルに力 —ボン材料を付与することにより、力一ボン含有材料として多孔体を得る工程 を実施する冑求項 5記載の St方法。
9. ゲルとして湿潤ゲルを用い、 かつ、 工程 Bとして、 当該湿潤ゲルに力 —ボン前駆体を付与し、得られた力一ボン前駆体含有ゲルから «酸化物の一 部又は^^を P鉄した後、 得られた材料を炭化処理することにより、 カーボン 含有材料として多孔体を得る I程を実施する請求項 6記載の^ 法。
1 0. 力一ボン前駆体が、 有機高 を含む請求項 5に記載の I ^法。
1 1. カーボン前駆体が、 有機高^?を含む請求項 6に記載の 法。
1 2. 有機高^?が、 炭素一炭素不飽和結合を ¾ る請求項 1 0記載の製 去。
1 3 · 有機高 が、、 芳香環を有する請求項 1 0記載の^ t方法。
1 4. 有機高^?が、 フエノール樹脂、 ポリイミド及びポリアクリロニト リルの少なくとも 1種である請求項 1 0記載の製 法。
1 5. 触媒を担持する工程をさらに含む請求項 5に記載の製造方法。
1 6. 触媒を担持する工程をさらに含む請求項 6に記載の製造方法。
1 7. 燃料からプロトン生成する燃料電極と、 プロトンを酸素と反応させ る酸素電極とが、 プロトン伝導性固体電解質を間にして対向してなる電気化学 素子であって、 当該燃料電極及び酸素電極の少なくとも一方が請求項 1記載の 多孔体である電気化学素子。
8. 当該燃料が水素またはメタノールである請求項 1 7記載の電気化学
PCT/JP2003/012468 2002-09-30 2003-09-30 多孔体とその製造方法、およびその多孔体を用いた電気化学素子 WO2004028966A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003266700A AU2003266700A1 (en) 2002-09-30 2003-09-30 Porous article and method for production thereof and electrochemical element using the porous article
JP2004539575A JP3750024B2 (ja) 2002-09-30 2003-09-30 多孔体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-286769 2002-09-30
JP2002286769 2002-09-30

Publications (1)

Publication Number Publication Date
WO2004028966A1 true WO2004028966A1 (ja) 2004-04-08

Family

ID=32040613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012468 WO2004028966A1 (ja) 2002-09-30 2003-09-30 多孔体とその製造方法、およびその多孔体を用いた電気化学素子

Country Status (4)

Country Link
US (1) US7390474B2 (ja)
JP (1) JP3750024B2 (ja)
AU (1) AU2003266700A1 (ja)
WO (1) WO2004028966A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128118A (ja) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd 燃料電池用触媒、その製造方法、及びそれを含む燃料電池システム
JP2006147200A (ja) * 2004-11-16 2006-06-08 Equos Research Co Ltd 触媒担持混合伝導体
JP2006286268A (ja) * 2005-03-31 2006-10-19 Equos Research Co Ltd 電子伝導性及びプロトン伝導性を併せ持つ混合伝導体並びにその製造方法
JP2006335596A (ja) * 2005-06-01 2006-12-14 Tohoku Univ 規則性のある大表面積ミクロポーラス炭素の簡便な合成方法
JP2007273107A (ja) * 2006-03-30 2007-10-18 Toyota Motor Corp 燃料電池用燃料極およびそれを備えた燃料電池
JP2008016792A (ja) * 2006-06-08 2008-01-24 Showa Denko Kk 多孔体及びその製造方法並びにその用途
JP2008047450A (ja) * 2006-08-18 2008-02-28 Sony Corp 電気化学発光素子、及び電気化学発光装置
WO2009008558A1 (ja) * 2007-07-12 2009-01-15 Sumitomo Chemical Company, Limited 電気化学的蓄電デバイス用電極
JP2009107898A (ja) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology 多孔質炭素膜およびその製造方法
JP2009132607A (ja) * 2007-11-28 2009-06-18 Samsung Sdi Co Ltd 中空のカプセル構造体およびその製造方法
JP2011184749A (ja) * 2010-03-09 2011-09-22 Shinshu Univ 電気化学用電極とその製造方法
JP2014146421A (ja) * 2013-01-25 2014-08-14 Riken Corp 固体酸化物型燃料電池の支持体を兼ねる燃料極およびその製造方法
JP2014523806A (ja) * 2011-06-30 2014-09-18 ウニヴェルシタ’ デリ ストゥディ ディ ミラノ 酸素の電気化学的還元に適した、貴金属を含まない触媒
JP2016121043A (ja) * 2014-12-25 2016-07-07 Dic株式会社 2相共連続型シリカ−炭素複合構造体および2相共連続型炭素構造体、並びにこれらの製造方法
KR20170132302A (ko) * 2015-03-30 2017-12-01 인두스트리에 데 노라 에스.피.에이. 알칼리수 전해조에서 사용하기 위한 다이어프램-전극 조립체
JP6274355B1 (ja) * 2016-03-09 2018-02-07 東レ株式会社 表面処理グラフェン、表面処理グラフェン/有機溶媒分散液、表面処理グラフェン−電極活物質複合体粒子および電極ペースト
CN109824049A (zh) * 2019-03-29 2019-05-31 平罗县国宁活性炭有限公司 一种溶剂回收用活性炭制备方法
JP2021038127A (ja) * 2019-09-05 2021-03-11 株式会社神戸製鋼所 多孔質炭素の製造方法及び多孔質炭素成型体の製造方法
JP2021086696A (ja) * 2019-11-27 2021-06-03 アイオン株式会社 蓄電デバイスの電極及びその製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771609B2 (en) 2002-08-16 2010-08-10 Aerogel Technologies, Llc Methods and compositions for preparing silica aerogels
CN101219401A (zh) * 2003-06-20 2008-07-16 松下电器产业株式会社 多孔体及其制造方法
US7410718B2 (en) * 2003-09-30 2008-08-12 Lawrence Livermore National Security, Llc Aerogel and xerogel composites for use as carbon anodes
JP4958395B2 (ja) * 2005-01-13 2012-06-20 国立大学法人大阪大学 プロトン伝導性膜、これを用いた燃料電池およびその製造方法
US9394179B2 (en) * 2006-03-31 2016-07-19 Philip Morris Usa Inc. Method of making modified activated carbon
WO2008074352A1 (en) * 2006-12-21 2008-06-26 Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften A method of filling a component with an anhydrous material and a component made by the method
WO2009134425A1 (en) * 2008-05-02 2009-11-05 Industrial Science & Technology Network, Inc. Superinsulation with nanopores
JP5342804B2 (ja) * 2008-05-07 2013-11-13 出光興産株式会社 芳香族ポリカーボネート樹脂組成物およびその成形体
JP5463772B2 (ja) * 2008-07-30 2014-04-09 住友化学株式会社 ナトリウム二次電池
US8629076B2 (en) * 2010-01-27 2014-01-14 Lawrence Livermore National Security, Llc High surface area silicon carbide-coated carbon aerogel
US20110250428A1 (en) * 2010-02-07 2011-10-13 Aerogel Technologies, Llc Preparation of cross-linked aerogels and derivatives thereof
JP5841125B2 (ja) 2010-03-26 2016-01-13 ユニバーシティ オブ ハワイ ナノ材料で強化された樹脂および関連材料
DE102012213595A1 (de) 2012-08-01 2014-05-15 Technische Universität Dresden Verfahren zur Herstellung von porösem Kohlenstoff
JP6159585B2 (ja) 2013-06-14 2017-07-05 日清紡ホールディングス株式会社 多孔質炭素触媒及びその製造方法並びに電極及び電池
KR101754489B1 (ko) 2015-11-04 2017-07-11 인스엘이디 주식회사 폴리머를 이용하여 제작된 히트싱크
CN105780196A (zh) * 2016-04-01 2016-07-20 浙江理工大学 一种蚕丝衍生的氮掺杂碳纤维电催化析氢材料
CN111099917B (zh) * 2018-10-29 2022-01-04 中国石油化工股份有限公司 一种微波中产生电弧的多孔复合材料及制备方法
CN110357068B (zh) * 2019-08-15 2021-08-13 中国科学技术大学 一种分级多孔碳纳米材料的合成方法
CN111017902A (zh) * 2019-12-17 2020-04-17 陕西师范大学 一种三维连续多孔碳材料的制备方法
CN110950319B (zh) * 2019-12-24 2021-09-14 中国建筑材料科学研究总院有限公司 降低炭气凝胶材料密度的方法和装置
CN114057178B (zh) * 2020-08-05 2024-03-29 中国科学院广州能源研究所 纳米复合碳球的制备方法与应用
CN114314763B (zh) * 2021-12-14 2023-05-02 安徽元琛环保科技股份有限公司 一种环保型三维粒子电极的制备方法及制备的电极
CN114628684B (zh) * 2022-04-17 2022-09-09 晖阳(贵州)新能源材料有限公司 一种高能量密度快充石墨复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876142A (ja) * 1981-10-28 1983-05-09 スロベンスカ・アカデミエ・ビエド 炭素を主成分とする多孔質吸着剤の製造方法
JPH05105513A (ja) * 1991-10-16 1993-04-27 Tosoh Corp 炭素質無機酸化物複合体の製法
WO2000021905A1 (en) * 1998-10-13 2000-04-20 Alliedsignal Inc. Three dimensionally periodic structural assemblies on nanometer and longer scales
JP2001233674A (ja) * 2000-02-24 2001-08-28 Fine Seru:Kk 無機質鋳型粒子を利用したナノ細孔を持つ炭素材料の製造方法
JP2001354406A (ja) * 2000-06-12 2001-12-25 Hirobe:Kk 高表面積物質の製造方法
JP2002029860A (ja) * 2000-07-10 2002-01-29 Tosoh Corp 多孔質炭素材料およびその製造方法
JP2003034516A (ja) * 2001-04-30 2003-02-07 Korea Advanced Inst Of Science & Technology 炭素分子体及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2912719B2 (ja) 1991-02-25 1999-06-28 松下電工株式会社 透明性無機多孔体
JP2912718B2 (ja) 1991-02-25 1999-06-28 松下電工株式会社 透明性無機多孔体の製造方法
JPH0678169B2 (ja) 1991-08-27 1994-10-05 株式会社コロイドリサーチ 屈折率分布を有するシリカ系ガラスの製造方法
JPH10324579A (ja) 1997-05-22 1998-12-08 Kobe Steel Ltd 断熱用透明多孔体とその製造方法及び製造装置
JP4338264B2 (ja) * 1998-09-17 2009-10-07 パナソニック株式会社 多孔質体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876142A (ja) * 1981-10-28 1983-05-09 スロベンスカ・アカデミエ・ビエド 炭素を主成分とする多孔質吸着剤の製造方法
JPH05105513A (ja) * 1991-10-16 1993-04-27 Tosoh Corp 炭素質無機酸化物複合体の製法
WO2000021905A1 (en) * 1998-10-13 2000-04-20 Alliedsignal Inc. Three dimensionally periodic structural assemblies on nanometer and longer scales
JP2001233674A (ja) * 2000-02-24 2001-08-28 Fine Seru:Kk 無機質鋳型粒子を利用したナノ細孔を持つ炭素材料の製造方法
JP2001354406A (ja) * 2000-06-12 2001-12-25 Hirobe:Kk 高表面積物質の製造方法
JP2002029860A (ja) * 2000-07-10 2002-01-29 Tosoh Corp 多孔質炭素材料およびその製造方法
JP2003034516A (ja) * 2001-04-30 2003-02-07 Korea Advanced Inst Of Science & Technology 炭素分子体及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JONG-SUNG YU, ET AL: "FABRICATION OF ORDERED UNIFORM POROUS CARBON NETWORKS AND THEIR APPLICATION TO CATALYST SUPPORTER", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 124, no. 32, 14 August 2002 (2002-08-14), pages 9382 - 9383, XP002974637 *
SANG HOON JOO, ET AL: "ORDERD NANOPOROUS ARRAYS OF CARBON SUPPORTING HIGH DISPERSION OF PLATINUM NANOPARTICLES", NATURE, vol. 413, 2001, pages 169 - 172, XP002974638 *
SHINAE JUN, ET AL: "SYNTHESIS OF NEW NANOPOROUS CARBON WITH HEXAGONALLY ORDERED MESOSTRUCTURE", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 122, no. 43, 2000, pages 10712 - 10713, XP002974639 *
ZUOJIANG LI, ET AL: "SILICA GEL-TEMPLATED MESOPOROUS CARBONS PREPARED FROM MESOPHASE PITCH AND POLYACRYLONITRILE", CARBON, vol. 39, 2001, pages 2080 - 2082, XP004305015 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346674B2 (en) 2004-10-28 2016-05-24 Samsung Sdi Co., Ltd. Catalyst for a fuel cell, a method of preparing the same, and a fuel cell system comprising the same
JP2006128118A (ja) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd 燃料電池用触媒、その製造方法、及びそれを含む燃料電池システム
JP2006147200A (ja) * 2004-11-16 2006-06-08 Equos Research Co Ltd 触媒担持混合伝導体
JP2006286268A (ja) * 2005-03-31 2006-10-19 Equos Research Co Ltd 電子伝導性及びプロトン伝導性を併せ持つ混合伝導体並びにその製造方法
JP2006335596A (ja) * 2005-06-01 2006-12-14 Tohoku Univ 規則性のある大表面積ミクロポーラス炭素の簡便な合成方法
JP2007273107A (ja) * 2006-03-30 2007-10-18 Toyota Motor Corp 燃料電池用燃料極およびそれを備えた燃料電池
JP2008016792A (ja) * 2006-06-08 2008-01-24 Showa Denko Kk 多孔体及びその製造方法並びにその用途
JP2008047450A (ja) * 2006-08-18 2008-02-28 Sony Corp 電気化学発光素子、及び電気化学発光装置
JP2009038023A (ja) * 2007-07-12 2009-02-19 Sumitomo Chemical Co Ltd 電気化学的蓄電デバイス用電極
WO2009008558A1 (ja) * 2007-07-12 2009-01-15 Sumitomo Chemical Company, Limited 電気化学的蓄電デバイス用電極
JP2009107898A (ja) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology 多孔質炭素膜およびその製造方法
JP2009132607A (ja) * 2007-11-28 2009-06-18 Samsung Sdi Co Ltd 中空のカプセル構造体およびその製造方法
JP2011184749A (ja) * 2010-03-09 2011-09-22 Shinshu Univ 電気化学用電極とその製造方法
US8338323B2 (en) 2010-03-09 2012-12-25 Permelec Electrode Ltd. Electrode for electrochemical reaction and production process thereof
JP2014523806A (ja) * 2011-06-30 2014-09-18 ウニヴェルシタ’ デリ ストゥディ ディ ミラノ 酸素の電気化学的還元に適した、貴金属を含まない触媒
JP2014146421A (ja) * 2013-01-25 2014-08-14 Riken Corp 固体酸化物型燃料電池の支持体を兼ねる燃料極およびその製造方法
JP2016121043A (ja) * 2014-12-25 2016-07-07 Dic株式会社 2相共連続型シリカ−炭素複合構造体および2相共連続型炭素構造体、並びにこれらの製造方法
KR20170132302A (ko) * 2015-03-30 2017-12-01 인두스트리에 데 노라 에스.피.에이. 알칼리수 전해조에서 사용하기 위한 다이어프램-전극 조립체
KR102475005B1 (ko) 2015-03-30 2022-12-07 인두스트리에 데 노라 에스.피.에이. 알칼리수 전해조에서 사용하기 위한 다이어프램-전극 조립체
JP2018513272A (ja) * 2015-03-30 2018-05-24 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ アルカリ水電気分解装置において使用されるダイアフラム電極アセンブリ
US10714754B2 (en) 2016-03-09 2020-07-14 Toray Industries, Inc. Surface-treated graphene, surface-treated graphene/organic solvent dispersion liquid, surface-treated graphene/electrode active material composite particles and electrode paste
JP6274355B1 (ja) * 2016-03-09 2018-02-07 東レ株式会社 表面処理グラフェン、表面処理グラフェン/有機溶媒分散液、表面処理グラフェン−電極活物質複合体粒子および電極ペースト
CN109824049A (zh) * 2019-03-29 2019-05-31 平罗县国宁活性炭有限公司 一种溶剂回收用活性炭制备方法
CN109824049B (zh) * 2019-03-29 2022-06-10 平罗县国宁活性炭有限公司 一种溶剂回收用活性炭制备方法
JP2021038127A (ja) * 2019-09-05 2021-03-11 株式会社神戸製鋼所 多孔質炭素の製造方法及び多孔質炭素成型体の製造方法
JP7276771B2 (ja) 2019-09-05 2023-05-18 株式会社神戸製鋼所 多孔質炭素の製造方法及び多孔質炭素成型体の製造方法
JP2021086696A (ja) * 2019-11-27 2021-06-03 アイオン株式会社 蓄電デバイスの電極及びその製造方法
JP7383214B2 (ja) 2019-11-27 2023-11-20 アイオン株式会社 蓄電デバイスの電極及びその製造方法

Also Published As

Publication number Publication date
JP3750024B2 (ja) 2006-03-01
JPWO2004028966A1 (ja) 2006-01-26
AU2003266700A1 (en) 2004-04-19
US7390474B2 (en) 2008-06-24
US20040202602A1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
WO2004028966A1 (ja) 多孔体とその製造方法、およびその多孔体を用いた電気化学素子
US20220127148A1 (en) Preparation of cross-linked aerogels and derivatives thereof
Shcherban Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide
CN1970443B (zh) 中孔碳、其制备方法以及使用该中孔碳的燃料电池
JP6305348B2 (ja) 電気化学的用途のためのメソ多孔性黒鉛粒子の使用
JP4410775B2 (ja) メソ多孔性炭素複合体、その製造方法、それを含む担持触媒及びそれを利用した燃料電池
KR100866311B1 (ko) 질소 풍부한 나노다공성 그라파이트 탄소 질화물 구조체의 제조방법
WO2014015709A1 (zh) 高密度高硬度石墨烯多孔炭材料及其制备方法和应用
JP3763077B2 (ja) 多孔体及びその製造方法
US20060057355A1 (en) Nanoparticles-containing composite porous body and method of making the porous body
JP7153005B2 (ja) メソ多孔カーボン及びその製造方法、並びに、固体高分子形燃料電池
KR20050037557A (ko) 폴리이미드 에어로겔, 탄소 에어로겔 및 금속 카바이드에어로겔, 및 이들의 제조방법
CN101759178B (zh) 一种空心碳半球的制备方法
KR101954067B1 (ko) 촉매 금속이 담지된 다공질 탄화규소 구조체의 제조방법
KR101485867B1 (ko) 내재적 기공성 고분자를 포함하는 다공성 탄소 구조체 및 이의 제조방법
JP4157791B2 (ja) カーボンナノファイバの製造方法
CN113663611B (zh) 一种耐高温复合纳米纤维气凝胶材料及其制备方法
JP2008280203A (ja) 窒素ドープメソポーラスカーボン(n−kit−6)およびその製造方法
JP2003201108A (ja) カーボン材料
US9840420B2 (en) Silicon carbide powder, method for manufacturing the same and silicon carbide sintered body, method for manufacturing the same
Hasegawa et al. Porous polymer‐derived ceramics: Flexible morphological and compositional controls through sol–gel chemistry
Lei et al. Novel Gram‐Scale Synthesis of Carbon Nano‐Onions from Heavy Oil for Supercapacitors
JP2007237170A (ja) 化学気相蒸着法によるカーボンナノチューブ担持白金触媒の製造方法
JP3981565B2 (ja) 触媒金属を担持した気相成長法による炭素繊維
JP2004241307A (ja) ヘテロポリ酸を坦持した電極およびそれを用いた電気化学素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10834078

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004539575

Country of ref document: JP

122 Ep: pct application non-entry in european phase