CN102716700B - 一种高强度耐高温块状C-AlN复合气凝胶的制备方法 - Google Patents

一种高强度耐高温块状C-AlN复合气凝胶的制备方法 Download PDF

Info

Publication number
CN102716700B
CN102716700B CN201210201085.0A CN201210201085A CN102716700B CN 102716700 B CN102716700 B CN 102716700B CN 201210201085 A CN201210201085 A CN 201210201085A CN 102716700 B CN102716700 B CN 102716700B
Authority
CN
China
Prior art keywords
sol solution
preparation
gel
composite aerogel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210201085.0A
Other languages
English (en)
Other versions
CN102716700A (zh
Inventor
沈晓冬
仲亚
崔升
孔勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201210201085.0A priority Critical patent/CN102716700B/zh
Publication of CN102716700A publication Critical patent/CN102716700A/zh
Priority to US14/406,685 priority patent/US9869422B2/en
Priority to PCT/CN2013/077009 priority patent/WO2013189247A1/zh
Application granted granted Critical
Publication of CN102716700B publication Critical patent/CN102716700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/76Use at unusual temperatures, e.g. sub-zero
    • C04B2111/763High temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及高强度耐高温块状C-AlN复合气凝胶的制备方法,通过将氯化铝结晶体、水、乙醇、环氧丙烷均匀搅拌,得到澄清的氧化铝溶胶溶液,再向溶液中加入甲醛、间苯二酚,搅拌均匀,得到RF/Al2O3复合气凝胶溶胶溶液,静置凝胶。再利用CO2超临界干燥法对样品进行处理,最后对样品进行氮气条件下高温热处理,最终得到高强度耐高温块状C-AlN复合气凝胶。本发明制备工艺过程简单,制备出的复合气凝胶具有高完整性、高比表面积、结构完整、低热导率、低密度、高强度等优点,该体系在1500℃以上高温隔热材料方面将具有很好的应用价值。

Description

一种高强度耐高温块状C-AlN复合气凝胶的制备方法
技术领域
本发明属于具有高温隔热特征无机纳米材料制备的技术领域,涉及一种高强度块状C-AlN复合气凝胶的制备方法,尤其采用一种CO2超临界法制备高强度块状C-AlN复合气凝胶的方法。
背景技术
气凝胶是由胶体粒子或高聚物分子相互聚结构成的一种纳米孔网络结构,是一种新型的多孔材料。气凝胶材料具有高的比表面积、高孔隙率、低折射率、低密度、强吸附性,而且在热学、光学、电学、声学等方面都表现出独特的性质。尤其,在热学方面,气凝胶的纳米多孔结构能够有效抑制固态热传导和气体传热,具有优异的隔热特性,是目前公认热导率最低的固态材料,因此,气凝胶作为一种轻质保温隔热材料在航天航空、化工、冶金、节能建筑等领域具有广阔的应用前景。
虽然气凝胶材料具有诸多的优良性能,但本身的脆性问题以及耐高温性能(大于1000℃)大大限制了其工作条件。氮化铝(AlN)类属金刚石氮化物,最高可稳定在2200℃,室温强度高,而且随温度的升高强度下降较慢。AlN材料还是电绝缘体,介电性能良好,用作电器元件也很有希望。C-AlN复合气凝胶保持了气凝胶原有的优良特性,而且AlN材料的参杂大大提高了整体气凝胶的强度和耐高温性能,进一步提高了气凝胶材料的应用领域。
发明内容
本发明的目的是为了改善目前所研究的硅、铝等复合体系气凝胶强度较低、高温热稳定性差等缺点而提供一种具有高强度、耐高温1500℃以上的高强度块状C-AlN复合气凝胶的制备方法。
本发明的技术方案为:一种高强度耐高温块状C-AlN复合气凝胶的制备方法,其具体步骤如下:
(1)将结晶氯化铝、蒸馏水、无水乙醇、环氧丙烷均匀搅拌,得到澄清的氧化铝溶胶溶液;
(2)向步骤(1)制得的氧化铝溶胶溶液中加入甲醛,简称R、间苯二酚,简称F,搅拌均匀,得到RF/Al2O3复合气凝胶溶胶溶液;
(3)将步骤(2)中的RF/Al2O3复合气凝胶溶胶溶液倒入模具中反应至凝胶;
(4)向步骤(3)制得的凝胶中加入老化液,进行老化置换处理;
(5)将步骤(4)中老化置换处理好的湿凝胶放置60~75℃烘箱老化5~10d,取出;再进行干燥处理;
(6)将步骤(5)中干燥处理好的样品在氮气条件下进行热处理,得到高强度耐高温块状C-AlN复合气凝胶;
其中:步骤(1)中,结晶氯化铝、蒸馏水、无水乙醇、环氧丙烷摩尔比为=1:(50~70):(20~30):(8~13);步骤(2)中,按结晶氯化铝:间苯二酚:甲醛摩尔比为:(1~5):1:2。
优选步骤(3)中反应至凝胶的时间为2~10h;优选步骤(4)中所述的老化液至少为无水乙醇或去离子水中一种;老化置换处理过程中老化液置换次数为3~5次,每次置换时间为12~24h;优选步骤(5)中所述的干燥处理为CO2超临界干燥法;其中CO2超临界干燥法采用CO2气体保护,反应温度为45~50℃,高压反应釜压力控制在8~12MP,反应时间为2~3d;优选步骤(6)中所述的热处理温度在1500~1700℃之间,热处理时间为1h~10h。
有益效果:
1、本发明采用超临界干燥技术制备出RF/Al2O3复合块状气凝胶,在经过高温热处理得到高强度耐高温块状C-AlN复合气凝胶。首先通过溶胶凝胶法制备出RF/Al2O3复合气凝胶湿凝胶体系,再利用超临界干燥技术制备出孔隙均匀(通过例1所制备的高强度耐高温块状C-AlN复合气凝胶的SEM照片可以看出),再进行样品的高温热处理得到高强度耐高温块状C-AlN复合气凝胶,其比表面积较大(以Al、R摩尔比1:1为例,比表面积为500~600m2/g)、强度高(以Al、C摩尔比1:1为例,热处理时间为2h,密度为0.16g/cm3,压缩强度高达4-6MPa,远远超过了Si、Al体系以及纤维增强气凝胶的压缩强度)。此方法制备的高强度耐高温块状C-AlN复合气凝胶不需要多余的繁琐步骤,制备过程简单容易操作。
2、本发明制备的高强度耐高温块状C-AlN复合气凝胶,采用的是廉价的无机盐作为铝源,再结合碳气凝胶良好的机械性能进行复合制备,目前铝、碳体系复合制备气凝胶国内外还没有相关报道,由于高强度耐高温块状C-AlN复合气凝胶不仅具备气凝胶的所有特征,更重要的是其具有高的强度和良好的高温热稳定性,是传统方法制备的气凝胶无法超越的,所以此发明非常具有意义,将会在各个领域有更好的应用前景。
附图说明
图1是实施例1所制备的高强度耐高温块状C-AlN复合气凝胶的SEM照片。
具体实施方式
实例1
将氯化铝结晶体、间苯二酚、甲醛按摩尔比1:1:2配置制备高强度耐高温块状C-AlN复合气凝胶。第一步:称取0.1mol的结晶氯化铝倒入500ml烧杯中,再向烧杯中加入151.4ml乙醇(Al/EtOH=1:26),90ml去离子水(Al/H2O=1:50),63ml环氧丙烷(Al/PO=9),充分均匀搅拌,直至得到澄清的氧化铝溶胶溶液。第二步:再向第一步氧化铝溶胶溶液中加入0.1mol的间苯二酚(白色针状结晶),15ml甲醛,充分均匀搅拌,直至溶液完全呈现浅红色澄清溶胶溶液。,从而得到RF/Al2O3复合气凝胶溶胶溶液,倒入模具凝胶。室温凝胶时间大约8h,凝胶后,采用乙醇作为老化液,置换湿凝胶中的杂质离子,置换3次,每次24h。最后,再将模具中的湿凝胶放入75℃烘箱进行高温老化10d,使其充分反应。再将RF/Al2O3复合湿凝胶放入高温高压釜中,利用CO2超临界干燥法对样品进行干燥,其中CO2压力控制在10MPa,控制温度在50℃,超临界干燥时间为48h。最后,对样品进行氮气条件下1500℃高温热处理2h,得到高强度耐高温块状C-AlN复合气凝胶。所制备的高强度耐高温块状C-AlN复合气凝胶的SEM照片;经过表征发现,该气凝胶的比表面积为596m2/g,压缩强度为5.22MPa。
实例2
将氯化铝结晶体、间苯二酚、甲醛按摩尔比2:1:2配置制备高强度耐高温块状C-AlN复合气凝胶。第一步:称取0.2mol的结晶氯化铝倒入1000ml烧杯中,再向烧杯中加入349.9ml乙醇(Al/EtOH=1:30),252ml去离子水(Al/H2O=1:70),环氧丙烷126ml(Al/PO=9)充分均匀搅拌,直至溶液直至得到澄清的氧化铝溶胶溶液。第二步:再向第一步氧化铝溶胶溶液中加入0.1mol的间苯二酚(白色针状结晶),15ml甲醛,充分均匀搅拌,直至溶液完全呈现浅红色澄清溶胶溶液。从而得到RF/Al2O3复合气凝胶溶胶溶液,倒入模具凝胶。室温凝胶时间大约6h,凝胶后,采用乙醇与去离子水混合溶液作为老化液,置换湿凝胶中的杂质离子,置换5次,每次12h。最后,再将模具中的湿凝胶放入60℃烘箱进行高温老化7d,使其充分反应。再将RF/Al2O3复合湿凝胶放入高温高压釜中,利用CO2超临界干燥法对样品进行干燥,其中CO2压力控制在12MPa,控制温度在45℃,超临界干燥时间为72h。最后,对样品进行氩气保护1650℃高温热处理1h,得到高强度耐高温块状C-AlN复合气凝胶。经过表征发现,该气凝胶热的比表面积为503m2/g,压缩强度为5.95MPa。
实例3
将氯化铝结晶体、间苯二酚、甲醛按摩尔比5:1:2配置制备高强度耐高温块状C-AlN复合气凝胶。第一步:称取0.5mol的结晶氯化铝倒入2000ml烧杯中,再向烧杯中加入583.16ml乙醇(Al/EtOH=1:20),450ml去离子水(Al/H2O=1:50),345ml环氧丙烷(Al/PO=1:10)充分均匀搅拌,直至得到澄清的氧化铝溶胶溶液。第二步:再向第一步氧化铝溶胶溶液中加入0.1mol的间苯二酚(白色针状结晶),15ml甲醛,充分均匀搅拌,直至溶液完全呈现浅红色澄清溶胶溶液。从而得到RF/Al2O3复合气凝胶溶胶溶液,倒入模具凝胶。室温凝胶时间大约2h,凝胶后,利用去离子水作为老化液,置换湿凝胶中的杂质离子,置换3次,每次18h。最后,再将模具中的湿凝胶放入65℃烘箱进行高温老化5d,使其充分反应。再将RF/Al2O3复合湿凝胶放入高温高压釜中,利用CO2超临界干燥法对样品进行干燥,其中CO2压力控制在8MPa,控制温度在50℃,超临界干燥时间为60h。最后,对样品进行氮气条件下1550℃高温热处理5h,得到高强度耐高温块状C-AlN复合气凝胶。经过表征发现,该气凝胶的比表面积为526m2/g,压缩强度为4.14MPa。
实例4
将氯化铝结晶体、间苯二酚、甲醛按摩尔比1:1:2配置制备高强度耐高温块状C-AlN复合气凝胶。第一步:称取0.1mol的结晶氯化铝倒入500ml烧杯中,再向烧杯中加入151ml乙醇(Al/EtOH=1:26),126ml去离子水(Al/H2O=1:70),91ml环氧丙烷(Al/PO=1:13),充分均匀搅拌,直至得到澄清的氧化铝溶胶溶液。第二步:再向第一步氧化铝溶胶溶液中加入0.1mol的间苯二酚(白色针状结晶),15ml甲醛,充分均匀搅拌,直至溶液完全呈现浅红色澄清溶胶溶液。从而得到RF/Al2O3复合气凝胶溶胶溶液,倒入模具凝胶。室温凝胶时间大约9h,凝胶后,利用乙醇作为老化液,置换湿凝胶中的杂质离子,置换4次,每次15h。最后,再将模具中的湿凝胶放入70℃烘箱进行高温老化10d,使其充分反应。再将RF/Al2O3复合湿凝胶放入高温高压釜中,利用CO2超临界干燥法对样品进行干燥,其中CO2压力控制在10MPa,控制温度在45℃,超临界干燥时间为48h。最后,对样品进行氮气条件下1600℃高温热处理3h,得到高强度耐高温块状C-AlN复合气凝胶。经过表征发现,该气凝胶的比表面积为555m2/g,压缩强度为5.17MPa。
实例5
将氯化铝结晶体、间苯二酚、甲醛按摩尔比4:1:2配置制备高强度耐高温块状C-AlN复合气凝胶。第一步:称取0.4mol的结晶氯化铝倒入2000ml烧杯中,再向烧杯中加入699.8ml乙醇(Al/EtOH=1:30),504ml去离子水(Al/H2O=1:70),307.9ml环氧丙烷(Al/PO=1:11)充分均匀搅拌,直至得到澄清的氧化铝溶胶溶液。第二步:再向第一步氧化铝溶胶溶液中加入0.1mol的间苯二酚(白色针状结晶),15ml甲醛、,充分均匀搅拌,直至溶液完全呈现浅红色澄清溶胶溶液。从而得到RF/Al2O3复合气凝胶溶胶溶液,倒入模具凝胶。室温凝胶时间大约7h,凝胶后,利用去离子水作为老化液,置换湿凝胶中的杂质离子,置换4次,每次20h。最后,再将模具中的湿凝胶放入70℃烘箱进行高温老化10d,使其充分反应。再将RF/Al2O3复合湿凝胶放入高温高压釜中,利用CO2超临界干燥法对样品进行干燥,其中CO2压力控制在11MPa,控制温度在45℃,超临界干燥时间为60h。最后,对样品进行氮气条件下1550℃高温热处理4h,得到高强度耐高温块状C-AlN复合气凝胶。经过表征发现,该气凝胶的比表面积为506m2/g,压缩强度为4.57MPa。
实例6
将氯化铝结晶体、间苯二酚、甲醛按摩尔比2:1:2配置制备高强度耐高温块状C-AlN复合气凝胶。第一步:称取0.2mol的结晶氯化铝倒入1000ml烧杯中,再向烧杯中加入233.27ml乙醇(Al/EtOH=1:20),216ml去离子水(Al/H2O=1:60),84ml环氧丙烷(Al/PO=1:12)充分均匀搅拌,直至得到澄清的氧化铝溶胶溶液。第二步:再向第一步氧化铝溶胶溶液中加入0.1mol的间苯二酚(白色针状结晶),甲醛15ml,充分均匀搅拌,直至溶液完全呈现浅红色澄清溶胶溶液。从而得到RF/Al2O3复合气凝胶溶胶溶液,倒入模具凝胶。室温凝胶时间大约5h,凝胶后,利用乙醇与去离子水混合溶液作为老化液,置换湿凝胶中的杂质离子,置换4次,每次18h。最后,再将模具中的湿凝胶放入60℃烘箱进行高温老化7d,使其充分反应。再将RF/Al2O3复合湿凝胶放入高温高压釜中,利用CO2超临界干燥法对样品进行干燥,其中CO2压力控制在10MPa,控制温度在50℃,超临界干燥时间为48h。最后,对样品进行氮气条件下1700℃高温热处理5h,得到高强度耐高温块状C-AlN复合气凝胶。经过表征发现,该气凝胶的比表面积为525m2/g,压缩强度为5.88MPa。
实例7
将氯化铝结晶体、间苯二酚、甲醛按摩尔比3:1:2配置制备高强度耐高温块状C-AlN复合气凝胶。第一步:称取0.3mol的结晶氯化铝倒入1000ml烧杯中,再向烧杯中加入454.2ml乙醇(Al/EtOH=1:26),去324ml离子水(Al/H2O=1:60),207ml环氧丙烷(Al/PO=1:10),充分均匀搅拌,直至得到澄清的氧化铝溶胶溶液。第二步:再向第一步氧化铝溶胶溶液中加入0.1mol的间苯二酚(白色针状结晶),15ml甲醛,充分均匀搅拌,直至溶液完全呈现浅红色澄清溶胶溶液。从而得到RF/Al2O3复合气凝胶溶胶溶液,倒入模具凝胶。室温凝胶时间大约6h,凝胶后,利用乙醇作为老化液,置换湿凝胶中的杂质离子,置换5次,每次12h。最后,再将模具中的湿凝胶放入70℃烘箱进行高温老化10d,使其充分反应。再将RF/Al2O3复合湿凝胶放入高温高压釜中,利用CO2超临界干燥法对样品进行干燥,其中CO2压力控制在8MPa,控制温度在50℃,超临界干燥时间为72h。最后,对样品进行氮气条件下1600℃高温热处理5h,得到块状碳支撑Al2O3-Al4C3复合气凝胶。经过表征发现,该气凝胶的比表面积为508m2/g,压缩强度为5.18MPa。
实例8
将氯化铝结晶体、间苯二酚、甲醛按摩尔比3:1:1配置制备高强度耐高温块状C-AlN复合气凝胶。第一步:称取0.3mol的结晶氯化铝倒入1000ml烧杯中,再向烧杯中加入524.85ml乙醇(Al/EtOH=1:30),270ml去离子水(Al/H2O=1:50),252ml环氧丙烷(Al/PO=1:12),充分均匀搅拌,直至得到澄清的氧化铝溶胶溶液。第二步:再向第一步氧化铝溶胶溶液中加入0.1mol的间苯二酚(白色针状结晶),甲醛15ml,充分均匀搅拌,直至溶液完全呈现浅红色澄清溶胶溶液。从而得到RF/Al2O3复合气凝胶溶胶溶液,倒入模具凝胶。室温凝胶时间大约4h,凝胶后,利用去离子水作为老化液,置换湿凝胶中的杂质离子,置换3次,每次20h。最后,再将模具中的湿凝胶放入75℃烘箱进行高温老化5d,使其充分反应。再将RF/Al2O3复合湿凝胶放入高温高压釜中,利用CO2超临界干燥法对样品进行干燥,其中CO2压力控制在10MPa,控制温度在45℃,超临界干燥时间为60h。最后,对样品进行氮气条件下1650℃高温热处理10h,得到高强度耐高温块状C-AlN复合气凝胶。经过表征发现,该气凝胶热的比表面积为426m2/g,压缩强度为5.31MPa。

Claims (3)

1.一种高强度耐高温块状C-AlN复合气凝胶的制备方法,其具体步骤如下:
(1)将结晶氯化铝、蒸馏水、无水乙醇、环氧丙烷均匀搅拌,得到澄清的氧化铝溶胶溶液;
(2)向步骤(1)制得的氧化铝溶胶溶液中加入甲醛,简称R、间苯二酚,简称F,搅拌均匀,得到RF/Al2O3复合气凝胶溶胶溶液;
(3)将步骤(2)中的RF/Al2O3复合气凝胶溶胶溶液倒入模具中反应至凝胶;
(4)向步骤(3)制得的凝胶中加入老化液,进行老化置换处理;
(5)将步骤(4)中老化置换处理好的湿凝胶放置60~75℃烘箱老化5~10d,取出;再进行干燥处理;其中所述的干燥处理为CO2超临界干燥法;其中CO2超临界干燥法采用CO2气体保护,反应温度为45~50℃,高压反应釜压力控制在8~12MPa,反应时间为2~3d。
(6)将步骤(5)中干燥处理好的样品在氮气条件下进行热处理,得到高强度耐高温块状C-AlN复合气凝胶;所述的热处理温度在1500~1700℃之间,热处理时间为1h~10h;其中:步骤(1)中,结晶氯化铝、蒸馏水、无水乙醇、环氧丙烷摩尔比为=1:(50~70):(20~30):(8~13);步骤(2)中,按结晶氯化铝:间苯二酚:甲醛摩尔比为:(1~5):1:2。
2.根据权利要求1所述的制备方法,其特征在于,步骤(3)中反应至凝胶的时间为2~10h。
3.根据权利要求1所述的制备方法,其特征在于,步骤(4)中所述的老化液至少为无水乙醇或去离子水中一种;老化置换处理过程中老化液置换次数为3~5次,每次置换时间为12~24h。
CN201210201085.0A 2012-06-18 2012-06-18 一种高强度耐高温块状C-AlN复合气凝胶的制备方法 Active CN102716700B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210201085.0A CN102716700B (zh) 2012-06-18 2012-06-18 一种高强度耐高温块状C-AlN复合气凝胶的制备方法
US14/406,685 US9869422B2 (en) 2012-06-18 2013-06-17 Method for preparing bulk C—AlN composite aerogel with high strength and high temperature resistance
PCT/CN2013/077009 WO2013189247A1 (zh) 2012-06-18 2013-06-17 一种高强度耐高温块状C-AlN复合气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210201085.0A CN102716700B (zh) 2012-06-18 2012-06-18 一种高强度耐高温块状C-AlN复合气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN102716700A CN102716700A (zh) 2012-10-10
CN102716700B true CN102716700B (zh) 2014-07-16

Family

ID=46942645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210201085.0A Active CN102716700B (zh) 2012-06-18 2012-06-18 一种高强度耐高温块状C-AlN复合气凝胶的制备方法

Country Status (3)

Country Link
US (1) US9869422B2 (zh)
CN (1) CN102716700B (zh)
WO (1) WO2013189247A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716700B (zh) 2012-06-18 2014-07-16 南京工业大学 一种高强度耐高温块状C-AlN复合气凝胶的制备方法
CN103285789B (zh) * 2013-05-27 2015-05-13 东华大学 一种三维纤维基气凝胶材料的制备方法及其制品
CN105709669A (zh) * 2016-01-29 2016-06-29 卓达新材料科技集团有限公司 一种氧化锗和氧化铝杂化气凝胶复合材料的制备方法
CN106145999B (zh) * 2016-07-05 2019-02-26 南京工业大学 一种块状La2O3-Al2O3复合气凝胶的制备方法
CN113842843B (zh) * 2021-09-29 2022-07-29 同济大学 以聚酰亚胺为模板衍生的氧化铝气凝胶材料的制备方法
CN114394612B (zh) * 2022-01-28 2024-01-16 中国人民解放军国防科技大学 一种耐高温、低密度氧化铝纳米棒气凝胶及其制备方法
CN115417620B (zh) * 2022-08-24 2023-09-15 南通大学 一种连续SiO2气凝胶复合纤维及其制备方法与应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855264A (en) * 1986-11-20 1989-08-08 Minnesota Mining And Manufacturing Company Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
CN1149030A (zh) * 1996-09-06 1997-05-07 华东理工大学 制备氮化铝粉末的径向反应器
CN1207247C (zh) 2001-09-07 2005-06-22 北京航空材料研究院 一种制备氮化铝陶瓷基片的方法
US7560062B2 (en) * 2004-07-12 2009-07-14 Aspen Aerogels, Inc. High strength, nanoporous bodies reinforced with fibrous materials
CN101362969B (zh) * 2008-10-06 2011-09-28 华东理工大学 一种含氮炭气凝胶脱硫剂的制备方法
CN101985358B (zh) * 2010-11-09 2012-05-23 同济大学 一种快速制备碳-二氧化硅复合气凝胶的方法
CN102343285B (zh) * 2011-07-18 2013-04-10 南京工业大学 一种块状硅-炭复合气凝胶的制备方法
CN102302917B (zh) * 2011-07-18 2013-09-04 南京工业大学 一种块状C-Al2O3复合气凝胶的制备方法
CN102716700B (zh) * 2012-06-18 2014-07-16 南京工业大学 一种高强度耐高温块状C-AlN复合气凝胶的制备方法

Also Published As

Publication number Publication date
WO2013189247A1 (zh) 2013-12-27
CN102716700A (zh) 2012-10-10
US9869422B2 (en) 2018-01-16
US20150108389A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
CN102716700B (zh) 一种高强度耐高温块状C-AlN复合气凝胶的制备方法
CN103086692B (zh) 一种块状SiO2-Y2O3复合气凝胶的制备方法
CN102731060A (zh) 一种碳纤维毡增强C-Al2O3复合气凝胶的制备方法
CN108328635B (zh) 一种制备氧化铝气凝胶的方法
CN104478475B (zh) 一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法
CN103896620B (zh) 分级多孔La2Zr2O7陶瓷及其制备方法
CN107805064A (zh) 一种纤维增强耐高温镁铝尖晶石气凝胶的制备方法
CN106431186B (zh) 一种纤维负载金红石型TiO2复合SiO2气凝胶的制备方法
CN108689679A (zh) 一种耐高温梯度纤维复合气凝胶隔热材料的制备方法
CN102351506A (zh) 一种块状耐高温硅-炭复合气凝胶材料的制备方法
CN106186035A (zh) 一种块状La2O3‑SiO2复合气凝胶的制备方法
CN104986994A (zh) 一种块状锆-碳复合气凝胶材料的制备方法
CN103551091A (zh) 一种气凝胶的干燥方法
CN109251005A (zh) 一种增强二氧化硅气凝胶材料的制备方法
CN106145999B (zh) 一种块状La2O3-Al2O3复合气凝胶的制备方法
CN105967668A (zh) 一种基于稻壳堇青石-莫来石多孔陶瓷的制备方法
CN104774009B (zh) 一种前驱体浸渍工艺制备氧化铈陶瓷纤维板的方法
CN108774072B (zh) 一种刚性隔热瓦及其制备方法
CN109758988A (zh) 一种C-Al2O3-B4C复合气凝胶的制备方法
CN108689680A (zh) 一种高效隔热保温气凝胶毡的制备方法
CN103922794B (zh) 三维氧化铝纤维织物增强多孔莫来石陶瓷及其制备方法
CN102513041B (zh) 高强度耐高温碳支撑Al2O3-Al4C3复合块状气凝胶的制备方法
CN104494225A (zh) 可加工氧化硅气凝胶复合刚性隔热瓦及其制备方法
Wu et al. Preparation and performance study of mullite/Al2O3 composite ceramics for solar thermal transmission pipeline
CN103114352A (zh) 一种氧化铝纤维的溶胶凝胶制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant