WO2013189247A1 - 一种高强度耐高温块状C-AlN复合气凝胶的制备方法 - Google Patents

一种高强度耐高温块状C-AlN复合气凝胶的制备方法 Download PDF

Info

Publication number
WO2013189247A1
WO2013189247A1 PCT/CN2013/077009 CN2013077009W WO2013189247A1 WO 2013189247 A1 WO2013189247 A1 WO 2013189247A1 CN 2013077009 W CN2013077009 W CN 2013077009W WO 2013189247 A1 WO2013189247 A1 WO 2013189247A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite aerogel
sol solution
strength
aging
temperature
Prior art date
Application number
PCT/CN2013/077009
Other languages
English (en)
French (fr)
Inventor
沈晓冬
仲亚
崔升
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to US14/406,685 priority Critical patent/US9869422B2/en
Publication of WO2013189247A1 publication Critical patent/WO2013189247A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/76Use at unusual temperatures, e.g. sub-zero
    • C04B2111/763High temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins

Definitions

  • the invention belongs to the technical field of preparation of inorganic nano-materials with high-temperature heat insulation characteristics, and relates to a preparation method of high-strength bulk C-A1N composite aerogel, in particular to prepare high-strength bulk C- by a C0 2 supercritical method.
  • A1N composite aerogel method Background technique
  • Aerogel is a nanoporous network structure composed of colloidal particles or polymer molecules, and is a novel porous material. Aerogel materials have high specific surface area, high porosity, low refractive index, low density, strong adsorption, and exhibit unique properties in terms of thermal, optical, electrical, and acoustic properties. In particular, in terms of thermal conductivity, the nanoporous structure of aerogel can effectively suppress solid heat conduction and gas heat transfer, has excellent heat insulating properties, and is currently recognized as the lowest thermal conductivity solid material, therefore, aerogel as a light Thermal insulation materials have broad application prospects in aerospace, chemical, metallurgical, energy-saving buildings and other fields.
  • aerogel materials have many excellent properties, their own brittleness problems and high temperature resistance (greater than 100 CTC) greatly limit their working conditions.
  • Aluminum nitride (A1N) is a diamond-like nitride that is stable up to 2200 ° C, has a high room temperature strength, and has a slower strength drop with increasing temperature.
  • the A1N material is also an electrical insulator with good dielectric properties and is also promising for use as an electrical component.
  • the C-A1N composite aerogel maintains the original excellent characteristics of the aerogel, and the inclusion of the A1N material greatly enhances the strength and high temperature resistance of the overall aerogel, further improving the application field of the aerogel material. Summary of the invention
  • the object of the present invention is to provide a high-strength block C with high strength and high temperature resistance of 1500 ° C or higher in order to improve the shortcomings of low aerogel strength and poor thermal stability of a composite system such as silicon and aluminum. - A1N composite aerogel preparation method.
  • the technical scheme of the invention is: a preparation method of a high-strength and high-temperature resistant bulk C-A1N composite aerogel, the specific steps of which are as follows:
  • step (3) pouring the RF/A1 2 0 3 composite aerogel sol solution in step (2) into a mold to react to the gel;
  • step (4) Place the wet gel that has been aged and replaced in step (4) in an oven at 60 ⁇ 75 ° C for 5 to 10 days, take it out; and then dry it;
  • the time of reacting to the gel in the step (3) is 2 to 10 h ; preferably, the aging liquid described in the step (4) is at least one of anhydrous ethanol or deionized water; the number of replacement times of the aging liquid during the aging replacement treatment is 3 ⁇ 5 times, each replacement time is 12 ⁇ 24h ; preferably the drying treatment described in step (5) is C0 2 supercritical drying method; wherein C0 2 supercritical drying method is protected by C0 2 gas, the reaction temperature is 45 ⁇ 50 ° C, the pressure of the high pressure reactor is controlled at 8 ⁇ 12MP, the reaction time is 2 ⁇ 3d; the heat treatment temperature described in the preferred step (6) is between 1500 ⁇ 1700 °C, and the heat treatment time is 11! ⁇ 10h.
  • the drying treatment described in step (5) is C0 2 supercritical drying method; wherein C0 2 supercritical drying method is protected by C0 2 gas, the reaction temperature is 45 ⁇ 50 ° C, the pressure of the high pressure reactor is controlled at 8 ⁇ 12MP, the reaction time is
  • the invention adopts supercritical drying technology to prepare RF/A1 2 0 3 composite agglomerate, and obtains high strength and high temperature resistant bulk C-A1N composite aerogel after high temperature heat treatment.
  • the RF/A1 2 3 3 composite aerogel wet gel system was prepared by sol-gel method, and the pore homogenous hook was prepared by supercritical drying technique.
  • the high-strength high-temperature block C-A1N prepared by Example 1 was prepared.
  • the SEM photograph of the composite aerogel can be seen, and then the high-temperature heat treatment of the sample is carried out to obtain a high-strength and high-temperature resistant bulk C-A1N composite aerogel with a large specific surface area (taking a molar ratio of Al to R of 1:1). , specific surface area is 500 ⁇ 600m 2 /g), high strength (in the case of A1, C molar ratio of 1:1, heat treatment time is 2h, density is 0.16g/cm 3 , compressive strength is as high as 4-6MPa, far exceeds The compressive strength of Si, A1 system and fiber-reinforced aerogel).
  • the high-strength and high-temperature resistant bulk C-A1N composite aerogel prepared by the method does not require redundant and cumbersome steps, and the preparation process is simple and easy to operate.
  • the high-strength and high-temperature resistant bulk C-A1N composite aerogel prepared by the invention adopts an inexpensive inorganic salt as an aluminum source, and is combined with the good mechanical properties of the carbon aerogel for composite preparation.
  • aluminum and carbon systems There is no relevant report on the composite preparation of aerogel at home and abroad, because the high-strength and high-temperature resistant bulk C-A1N composite aerogel not only has all the characteristics of aerogel, but more importantly, it has high strength and good high temperature heat stability. Sex, the aerogel prepared by the traditional method can not be surpassed, so this invention is very meaningful and will have better application prospects in various fields.
  • Example 1 is a SEM photograph of a high-strength, high-temperature resistant bulk C-A1N composite aerogel prepared in Example 1. Detailed description of the specification
  • a high-strength, high-temperature resistant bulk C-A1N composite aerogel was prepared by disposing aluminum chloride crystals, resorcinol, and formaldehyde in a molar ratio of 1: 1:2.
  • Step 2 Add 0.1 mol of resorcinol (white needle crystal) and 15 ml of formaldehyde to the first step alumina sol solution, and stir well until the solution is completely light red clear sol solution.
  • an RF/A1 2 0 3 composite aerogel sol solution was obtained and poured into a mold gel.
  • the gel time at room temperature was about 8 h.
  • ethanol was used as the aging solution, and the impurity ions in the wet gel were replaced and replaced three times for 24 h each time.
  • the wet gel in the mold was placed in a 75 ° C oven for high temperature aging for 10 d to fully react.
  • the RF/A1 2 0 3 composite wet gel was placed in a high temperature autoclave, and the sample was dried by C0 2 supercritical drying method, wherein the C0 2 pressure was controlled at 10 MPa, the control temperature was 50 ° C, and the supercritical drying time was It is 48h. Finally, the sample was subjected to high temperature heat treatment at 1500 °C for 2 h under nitrogen conditions to obtain a high-strength and high-temperature resistant bulk C-A1N composite aerogel.
  • the SEM photograph of the prepared high-strength and high-temperature resistant bulk C-A1N composite aerogel was characterized. The aerogel had a specific surface area of 596 m 2 /g and a compressive strength of 5.22 MPa.
  • a high-strength and high-temperature block-like C-A1N composite aerogel was prepared by disposing aluminum chloride crystals, resorcinol, and formaldehyde in a molar ratio of 2:1.
  • Step 2 Add 0.1 mol of resorcinol (white needle crystal) and 15 ml of formaldehyde to the first step alumina sol solution, and stir well until the solution is completely light red clear sol solution.
  • an RF/A1 2 0 3 composite aerogel sol solution was obtained and poured into a mold gel.
  • the gel time at room temperature was about 6 h.
  • the mixed solution of ethanol and deionized water was used as the aging solution, and the impurity ions in the wet gel were replaced and replaced 5 times for 12 h each time.
  • the wet gel in the mold was placed in a 60 ° C oven for high temperature aging for 7 d to fully react.
  • the RF/A1 2 0 3 composite wet gel was placed in a high temperature autoclave, and the sample was dried by C0 2 supercritical drying method, wherein the C0 2 pressure was controlled at 12 MPa, the control temperature was 45 ° C, and the supercritical drying time was It is 72h. Finally, the sample was subjected to argon gas protection at 1650 °C for 1 h, and a high-strength and high-temperature resistant bulk C-A1N composite aerogel was obtained. It was characterized that the aerogel had a specific surface area of 503 m 2 /g and a compressive strength of 5.95 MPa.
  • Step 2 Add 0.1 mol of resorcinol (white needle crystal) and 15 ml of formaldehyde to the first step alumina sol solution, and stir well until the solution is completely light red clear sol solution.
  • an RF/A1 2 0 3 composite aerogel sol solution was obtained and poured into a mold gel.
  • the gel time at room temperature was about 2 h.
  • deionized water was used as the aging solution, and the impurity ions in the wet gel were replaced and replaced three times for 18 h each time.
  • the wet gel in the mold was placed in a 65 ° C oven for high temperature aging for 5 d to fully react.
  • the RF/A1 2 0 3 composite wet gel was placed in a high temperature autoclave, and the sample was dried by C0 2 supercritical drying method, wherein the C0 2 pressure was controlled at 8 MPa, the control temperature was 50 ° C, and the supercritical drying time was It is 60h. Finally, the sample was subjected to high temperature heat treatment at 1550 ° C for 5 h under nitrogen conditions to obtain a high strength and high temperature resistant bulk C-A1N composite aerogel.
  • the aerogel has a specific surface area of 526 m 2 /g and a compressive strength of 4.14 MPa.
  • a high-strength, high-temperature resistant bulk C-A1N composite aerogel was prepared by disposing aluminum chloride crystals, resorcinol, and formaldehyde in a molar ratio of 1: 1:2.
  • Step 2 Add 0.1 mol of resorcinol (white needle crystal) and 15 ml of formaldehyde to the first step alumina sol solution, and stir well until the solution is completely light red clear sol solution.
  • an RF/A1 2 0 3 composite aerogel sol solution was obtained and poured into a mold gel.
  • the gel time at room temperature was about 9 h.
  • ethanol was used as the aging solution, and the impurity ions in the wet gel were replaced and replaced four times for 15 h each time.
  • the wet gel in the mold was placed in a 70 ° C oven for high temperature aging for 10 d to fully react.
  • the RF/A1 2 0 3 composite wet gel was placed in a high temperature autoclave, and the sample was dried by C0 2 supercritical drying method, wherein the C0 2 pressure was controlled at 10 MPa, the control temperature was 45 ° C, and the supercritical drying time was It is 48h. Finally, the sample was subjected to high temperature heat treatment at 1600 °C for 3 h under nitrogen conditions to obtain a high-strength and high-temperature resistant bulk C-A1N composite aerogel.
  • the aerogel has a specific surface area of 555 m 2 /g and a compressive strength of 5.17 MPa.
  • a high-strength and high-temperature block-like C-A1N composite aerogel was prepared by disposing aluminum chloride crystals, resorcinol, and formaldehyde in a molar ratio of 4:1.
  • Step 11 Stir thoroughly until a clear alumina sol solution is obtained.
  • Step 2 Add 0.1 mol of resorcinol (white needle crystal), 15 ml of formic acid to the first step alumina sol solution, and stir well until the solution is completely present. Description Book light red clear sol solution.
  • an RF/A1 2 0 3 composite aerogel sol solution was obtained and poured into a mold gel. The gel time at room temperature was about 7 h. After the gel, deionized water was used as the aging solution, and the impurity ions in the wet gel were replaced and replaced 4 times for 20 h each time. Finally, the wet gel in the mold was placed in a 70 ° C oven for high temperature aging for 10 d to fully react.
  • the RF/A1 2 0 3 composite wet gel was placed in a high temperature autoclave, and the sample was dried by C0 2 supercritical drying method, wherein the C0 2 pressure was controlled at ll MPa, the control temperature was 45 ° C, and the supercritical drying time was It is 60h. Finally, the sample was subjected to high temperature heat treatment at 1550 °C for 4 h under nitrogen conditions to obtain a high strength and high temperature resistant bulk C-A1N composite aerogel.
  • the aerogel has a specific surface area of 506 m 2 /g and a compressive strength of 4.57 MPa.
  • a high-strength and high-temperature block-like C-A1N composite aerogel was prepared by disposing aluminum chloride crystals, resorcinol, and formaldehyde in a molar ratio of 2:1.
  • Step 2 Add 0.1 mol of resorcinol (white needle crystal) to the first step of the alumina sol solution, and 15 ml of formaldehyde, stir well until the solution is completely light red clear sol solution.
  • an RF/A1 2 0 3 composite aerogel sol solution was obtained and poured into a mold gel.
  • the gel time at room temperature was about 5 h.
  • the mixed solution of ethanol and deionized water was used as the aging solution, and the impurity ions in the wet gel were replaced and replaced four times for 18 h each time.
  • the wet gel in the mold was placed in a 60 ° C oven for high temperature aging for 7 d to fully react.
  • the RF/A1 2 0 3 composite wet gel was placed in a high temperature autoclave, and the sample was dried by C0 2 supercritical drying method, wherein the C0 2 pressure was controlled at 10 MPa, the control temperature was at 50 ° C, and the supercritical drying time was It is 48h. Finally, the sample was subjected to high temperature heat treatment at 1700 °C for 5 h under nitrogen conditions to obtain a high-strength and high-temperature resistant bulk C-A1N composite aerogel.
  • the aerogel has a specific surface area of 525 m 2 /g and a compressive strength of 5.88 MPa.
  • a high-strength, high-temperature block-like C-A1N composite aerogel was prepared by disposing aluminum chloride crystals, resorcinol, and formaldehyde in a molar ratio of 3:1.
  • Step 2 Add 0.1 mol of resorcinol (white needle crystal) and 15 ml of formaldehyde to the first step alumina sol solution, and stir well until the solution is completely light red clear sol solution.
  • an RF/A1 2 0 3 composite aerogel sol solution was obtained and poured into a mold gel.
  • the gel time at room temperature was about 6 h.
  • the impurity ions in the wet gel were replaced with ethanol, and replaced with 5 times for 12 h each time.
  • the wet gel in the mold was placed in a 70 ° C oven for high temperature aging for 10 d to fully react.
  • the RF/A1 2 0 3 composite wet gel was placed in a high temperature autoclave, and the sample was dried by a C0 2 supercritical drying method, in which the C0 2 pressure was controlled. Description
  • control temperature is 50 °C
  • supercritical drying time is 72h.
  • the sample was subjected to high temperature heat treatment at 1600 ° C for 5 h under nitrogen to obtain a bulk carbon supported A1 2 0 3 -A1 4 C 3 composite aerogel. It was characterized that the aerogel had a specific surface area of 508 m 2 /g and a compressive strength of 5.18 MPa.
  • a high-strength and high-temperature block-like C-A1N composite aerogel was prepared by disposing aluminum chloride crystals, resorcinol, and formaldehyde in a molar ratio of 3:1.
  • Step 2 Add 0.1 mol of resorcinol (white needle crystal) to the first step of the alumina sol solution, and 15 ml of formaldehyde, stir well until the solution is completely light red clear sol solution.
  • resorcinol white needle crystal
  • formaldehyde 15 ml
  • an RF/A1 2 0 3 composite aerogel sol solution was obtained and poured into a mold gel.
  • the gel time at room temperature was about 4 h.
  • deionized water was used as the aging solution, and the impurity ions in the wet gel were replaced and replaced three times for 20 h each time.
  • the wet gel in the mold was placed in a 75 ° C oven for high temperature aging for 5 d to fully react.
  • the RF/A1 2 0 3 composite wet gel was placed in a high temperature autoclave, and the sample was dried by C0 2 supercritical drying method, wherein the C0 2 pressure was controlled at 10 MPa, the control temperature was 45 ° C, and the supercritical drying time was It is 60h. Finally, the sample was subjected to high temperature heat treatment at 1650 °C for 10 h under nitrogen conditions to obtain a high strength and high temperature resistant bulk C-A1N composite aerogel. It was characterized that the aerogel had a specific surface area of 426 m 2 /g and a compressive strength of 5.31 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

提供了一种高强度耐高温块状C-AlN复合气凝胶的制备方法,包括:将氯化铝结晶体、水、乙醇、环氧丙垸均匀搅拌,得到澄清的氧化铝溶胶溶液,再向溶液中加入甲醛、间苯二酚,搅拌均匀,得到RF/Al2O3复合气凝胶溶胶溶液,静置凝胶。再利用CO2超临界干燥法对样品进行处理,最后对样品进行氮气条件下高温热处理,最终得到高强度耐高温块状C-AlN复合气凝胶。该方法制备的复合气凝胶具有高完整性、高比表面积、结构完整、低热导率、低密度、高强度的优点。

Description

说 明 书
一种高强度耐高温块状 C-A1N复合气凝胶的制备方法 技术领域
本发明属于具有高温隔热特征无机纳米材料制备的技术领域, 涉及一种高强度块状 C-A1N复合气凝胶的制备方法, 尤其采用一种 C02超临界法制备高强度块状 C-A1N复合气凝 胶的方法。 背景技术
气凝胶是由胶体粒子或高聚物分子相互聚结构成的一种纳米孔网络结构, 是一种新型的 多孔材料。 气凝胶材料具有高的比表面积、 高孔隙率、 低折射率、 低密度、 强吸附性, 而且 在热学、 光学、 电学、 声学等方面都表现出独特的性质。 尤其, 在热学方面, 气凝胶的纳米 多孔结构能够有效抑制固态热传导和气体传热, 具有优异的隔热特性, 是目前公认热导率最 低的固态材料, 因此, 气凝胶作为一种轻质保温隔热材料在航天航空、 化工、 冶金、 节能建 筑等领域具有广阔的应用前景。
虽然气凝胶材料具有诸多的优良性能,但本身的脆性问题以及耐高温性能(大于 100CTC ) 大大限制了其工作条件。 氮化铝 (A1N) 类属金刚石氮化物, 最高可稳定在 2200°C, 室温强 度高, 而且随温度的升高强度下降较慢。 A1N材料还是电绝缘体, 介电性能良好, 用作电器 元件也很有希望。 C-A1N复合气凝胶保持了气凝胶原有的优良特性, 而且 A1N材料的参杂大 大提高了整体气凝胶的强度和耐高温性能, 进一步提高了气凝胶材料的应用领域。 发明内容
本发明的目的是为了改善目前所研究的硅、 铝等复合体系气凝胶强度较低、 高温热稳定 性差等缺点而提供一种具有高强度、耐高温 1500°C以上的高强度块状 C-A1N复合气凝胶的制 备方法。
本发明的技术方案为: 一种高强度耐高温块状 C-A1N复合气凝胶的制备方法, 其具体步 骤如下:
( 1 ) 将结晶氯化铝、 蒸馏水、 无水乙醇、 环氧丙烷均勾搅拌, 得到澄清的氧化铝溶胶溶液;
(2) 向步骤 (1 ) 制得的氧化铝溶胶溶液中加入甲醛, 简称 R、 间苯二酚, 简称 F, 搅拌均 勾, 得到 RF/A1203复合气凝胶溶胶溶液;
(3 ) 将步骤 (2) 中的 RF/A1203复合气凝胶溶胶溶液倒入模具中反应至凝胶; 说 明 书
(4) 向步骤 (3 ) 制得的凝胶中加入老化液, 进行老化置换处理;
(5 ) 将步骤 (4) 中老化置换处理好的湿凝胶放置 60〜75°C烘箱老化 5〜10d, 取出; 再进 行干燥处理;
(6) 将步骤 (5 ) 中干燥处理好的样品在氮气条件下进行热处理, 得到高强度耐高温块状 C-A1N复合气凝胶;
其中: 步骤 (1 ) 中, 结晶氯化铝、 蒸馏水、 无水乙醇、 环氧丙烷摩尔比为 =1 : (50〜 70): (20〜30): (8〜13); 步骤 (2) 中, 按结晶氯化铝: 间苯二酚: 甲醛摩尔比为: (1〜5): 1: 2。
优选步骤 (3 ) 中反应至凝胶的时间为 2〜10h; 优选步骤 (4) 中所述的老化液至少为无 水乙醇或去离子水中一种; 老化置换处理过程中老化液置换次数为 3〜5次, 每次置换时间为 12〜24h; 优选步骤 (5 ) 中所述的干燥处理为 C02超临界干燥法; 其中 C02超临界干燥法采 用 C02气体保护, 反应温度为 45〜50°C, 高压反应釜压力控制在 8〜12MP, 反应时间为 2〜 3d; 优选步骤 (6) 中所述的热处理温度在 1500〜1700°C之间, 热处理时间为 11!〜 10h。
有益效果:
1、 本发明采用超临界干燥技术制备出 RF/A1203复合块状气凝胶, 在经过高温热处理得 到高强度耐高温块状 C-A1N复合气凝胶。首先通过溶胶凝胶法制备出 RF/A1203复合气凝胶湿 凝胶体系, 再利用超临界干燥技术制备出孔隙均勾 (通过例 1 所制备的高强度耐高温块状 C-A1N复合气凝胶的 SEM照片可以看出), 再进行样品的高温热处理得到高强度耐高温块状 C-A1N复合气凝胶,其比表面积较大(以 Al、 R摩尔比 1 : 1为例,比表面积为 500〜600m2/g)、 强度高(以 A1、C摩尔比 1 : 1为例,热处理时间为 2h,密度为 0.16g/cm3,压缩强度高达 4-6MPa, 远远超过了 Si、 A1体系以及纤维增强气凝胶的压缩强度)。 此方法制备的高强度耐高温块状 C-A1N复合气凝胶不需要多余的繁琐步骤, 制备过程简单容易操作。
2、 本发明制备的高强度耐高温块状 C-A1N复合气凝胶, 采用的是廉价的无机盐作为铝 源, 再结合碳气凝胶良好的机械性能进行复合制备, 目前铝、 碳体系复合制备气凝胶国内外 还没有相关报道, 由于高强度耐高温块状 C-A1N复合气凝胶不仅具备气凝胶的所有特征, 更 重要的是其具有高的强度和良好的高温热稳定性, 是传统方法制备的气凝胶无法超越的, 所 以此发明非常具有意义, 将会在各个领域有更好的应用前景。 附图说明
图 1是实施例 1所制备的高强度耐高温块状 C-A1N复合气凝胶的 SEM照片。 说 明 书 具体实施方式
实例 1
将氯化铝结晶体、 间苯二酚、 甲醛按摩尔比 1 : 1: 2配置制备高强度耐高温块状 C-A1N 复合气凝胶。第一步:称取 O.lmol的结晶氯化铝倒入 500ml烧杯中,再向烧杯中加入 151.4ml 乙醇 (Al/EtOH=l : 26), 90ml去离子水 (A1/H20=1 : 50), 63ml环氧丙烷 (Α1/ΡΟ=9), 充分 均勾搅拌, 直至得到澄清的氧化铝溶胶溶液。 第二步: 再向第一步氧化铝溶胶溶液中加入 O.lmol的间苯二酚 (白色针状结晶), 15ml 甲醛, 充分均勾搅拌, 直至溶液完全呈现浅红色 澄清溶胶溶液。, 从而得到 RF/A1203复合气凝胶溶胶溶液, 倒入模具凝胶。 室温凝胶时间大 约 8h, 凝胶后, 采用乙醇作为老化液, 置换湿凝胶中的杂质离子, 置换 3次, 每次 24h。 最 后, 再将模具中的湿凝胶放入 75°C烘箱进行高温老化 10d, 使其充分反应。 再将 RF/A1203复 合湿凝胶放入高温高压釜中, 利用 C02超临界干燥法对样品进行干燥, 其中 C02压力控制在 lOMPa, 控制温度在 50°C, 超临界干燥时间为 48h。 最后, 对样品进行氮气条件下 1500°C高 温热处理 2h, 得到高强度耐高温块状 C-A1N复合气凝胶。所制备的高强度耐高温块状 C-A1N 复合气凝胶的 SEM 照片; 经过表征发现, 该气凝胶的比表面积为 596 m2/g, 压缩强度为 5.22MPa。
实例 2
将氯化铝结晶体、 间苯二酚、 甲醛按摩尔比 2: 1: 2配置制备高强度耐高温块状 C-A1N 复合气凝胶。第一步:称取 0.2mol的结晶氯化铝倒入 1000ml烧杯中,再向烧杯中加入 349.9ml 乙醇 (Al/EtOH=l : 30), 252ml去离子水 (A1/H20=1 : 70), 环氧丙烷 126ml (Α1/ΡΟ=9) 充 分均勾搅拌, 直至溶液直至得到澄清的氧化铝溶胶溶液。 第二步: 再向第一步氧化铝溶胶溶 液中加入 O.lmol的间苯二酚 (白色针状结晶), 15ml甲醛, 充分均勾搅拌, 直至溶液完全呈 现浅红色澄清溶胶溶液。 从而得到 RF/A1203复合气凝胶溶胶溶液, 倒入模具凝胶。 室温凝胶 时间大约 6h,凝胶后,采用乙醇与去离子水混合溶液作为老化液, 置换湿凝胶中的杂质离子, 置换 5次, 每次 12h。 最后, 再将模具中的湿凝胶放入 60°C烘箱进行高温老化 7d, 使其充分 反应。再将 RF/A1203复合湿凝胶放入高温高压釜中,利用 C02超临界干燥法对样品进行干燥, 其中 C02压力控制在 12MPa, 控制温度在 45°C, 超临界干燥时间为 72h。 最后, 对样品进行 氩气保护 1650°C高温热处理 lh, 得到高强度耐高温块状 C-A1N复合气凝胶。 经过表征发现, 该气凝胶热的比表面积为 503m2/g, 压缩强度为 5.95MPa。
实例 3
将氯化铝结晶体、 间苯二酚、 甲醛按摩尔比 5: 1: 2配置制备高强度耐高温块状 C-A1N 说 明 书 复合气凝胶。第一步:称取 0.5mol的结晶氯化铝倒入 2000ml烧杯中,再向烧杯中加入 583.16ml 乙醇 (Al/EtOH=l : 20), 450ml去离子水 (A1/H20=1 : 50), 345ml环氧丙烷 (Al/POl : 10) 充分均勾搅拌, 直至得到澄清的氧化铝溶胶溶液。 第二步: 再向第一步氧化铝溶胶溶液中加 入 O.lmol的间苯二酚 (白色针状结晶), 15ml甲醛, 充分均勾搅拌, 直至溶液完全呈现浅红 色澄清溶胶溶液。 从而得到 RF/A1203复合气凝胶溶胶溶液, 倒入模具凝胶。 室温凝胶时间大 约 2h, 凝胶后, 利用去离子水作为老化液, 置换湿凝胶中的杂质离子, 置换 3次, 每次 18h。 最后, 再将模具中的湿凝胶放入 65°C烘箱进行高温老化 5d, 使其充分反应。 再将 RF/A1203 复合湿凝胶放入高温高压釜中, 利用 C02超临界干燥法对样品进行干燥, 其中 C02压力控制 在 8MPa, 控制温度在 50°C, 超临界干燥时间为 60h。 最后, 对样品进行氮气条件下 1550°C 高温热处理 5h, 得到高强度耐高温块状 C-A1N复合气凝胶。 经过表征发现, 该气凝胶的比表 面积为 526 m2/g, 压缩强度为 4.14MPa。
实例 4
将氯化铝结晶体、 间苯二酚、 甲醛按摩尔比 1 : 1: 2配置制备高强度耐高温块状 C-A1N 复合气凝胶。 第一步: 称取 O.lmol的结晶氯化铝倒入 500ml烧杯中, 再向烧杯中加入 151ml 乙醇 (Al/EtOH=l : 26), 126ml去离子水 (A1/H20=1 : 70), 91ml环氧丙烷 (Al/POl : 13 ), 充分均勾搅拌, 直至得到澄清的氧化铝溶胶溶液。 第二步: 再向第一步氧化铝溶胶溶液中加 入 O.lmol的间苯二酚 (白色针状结晶), 15ml甲醛, 充分均勾搅拌, 直至溶液完全呈现浅红 色澄清溶胶溶液。 从而得到 RF/A1203复合气凝胶溶胶溶液, 倒入模具凝胶。 室温凝胶时间大 约 9h, 凝胶后, 利用乙醇作为老化液, 置换湿凝胶中的杂质离子, 置换 4次, 每次 15h。 最 后, 再将模具中的湿凝胶放入 70°C烘箱进行高温老化 10d, 使其充分反应。 再将 RF/A1203复 合湿凝胶放入高温高压釜中, 利用 C02超临界干燥法对样品进行干燥, 其中 C02压力控制在 lOMPa, 控制温度在 45°C, 超临界干燥时间为 48h。 最后, 对样品进行氮气条件下 1600°C高 温热处理 3h, 得到高强度耐高温块状 C-A1N复合气凝胶。 经过表征发现, 该气凝胶的比表面 积为 555 m2/g, 压缩强度为 5.17MPa。
实例 5
将氯化铝结晶体、 间苯二酚、 甲醛按摩尔比 4: 1: 2配置制备高强度耐高温块状 C-A1N 复合气凝胶。第一步:称取 0.4mol的结晶氯化铝倒入 2000ml烧杯中,再向烧杯中加入 699.8ml 乙醇 (Al/EtOH=l : 30), 504ml去离子水 (A1/H20=1 : 70), 307.9ml环氧丙烷 (Al/POl :
11 ) 充分均勾搅拌, 直至得到澄清的氧化铝溶胶溶液。 第二步: 再向第一步氧化铝溶胶溶液 中加入 O.lmol的间苯二酚(白色针状结晶), 15ml甲酸、, 充分均勾搅拌, 直至溶液完全呈现 说 明 书 浅红色澄清溶胶溶液。 从而得到 RF/A1203复合气凝胶溶胶溶液, 倒入模具凝胶。 室温凝胶时 间大约 7h, 凝胶后, 利用去离子水作为老化液, 置换湿凝胶中的杂质离子, 置换 4次, 每次 20h。 最后, 再将模具中的湿凝胶放入 70°C烘箱进行高温老化 10d, 使其充分反应。 再将 RF/A1203复合湿凝胶放入高温高压釜中, 利用 C02超临界干燥法对样品进行干燥, 其中 C02 压力控制在 llMPa, 控制温度在 45°C, 超临界干燥时间为 60h。 最后, 对样品进行氮气条件 下 1550°C高温热处理 4h, 得到高强度耐高温块状 C-A1N复合气凝胶。 经过表征发现, 该气 凝胶的比表面积为 506 m2/g, 压缩强度为 4.57MPa。
实例 6
将氯化铝结晶体、 间苯二酚、 甲醛按摩尔比 2: 1: 2配置制备高强度耐高温块状 C-A1N 复合气凝胶。第一步:称取 0.2mol的结晶氯化铝倒入 1000ml烧杯中,再向烧杯中加入 233.27ml 乙醇 (Al/EtOH=l : 20), 216ml去离子水 (A1/H20=1 : 60), 84ml环氧丙烷 (Al/PO=l : 12) 充分均勾搅拌, 直至得到澄清的氧化铝溶胶溶液。 第二步: 再向第一步氧化铝溶胶溶液中加 入 O.lmol的间苯二酚 (白色针状结晶), 甲醛 15ml, 充分均勾搅拌, 直至溶液完全呈现浅红 色澄清溶胶溶液。 从而得到 RF/A1203复合气凝胶溶胶溶液, 倒入模具凝胶。 室温凝胶时间大 约 5h, 凝胶后, 利用乙醇与去离子水混合溶液作为老化液, 置换湿凝胶中的杂质离子, 置换 4次, 每次 18h。 最后, 再将模具中的湿凝胶放入 60°C烘箱进行高温老化 7d, 使其充分反应。 再将 RF/A1203复合湿凝胶放入高温高压釜中, 利用 C02超临界干燥法对样品进行干燥, 其中 C02压力控制在 10MPa, 控制温度在 50°C, 超临界干燥时间为 48h。 最后, 对样品进行氮气 条件下 1700°C高温热处理 5h, 得到高强度耐高温块状 C-A1N复合气凝胶。 经过表征发现, 该气凝胶的比表面积为 525 m2/g, 压缩强度为 5.88MPa。
实例 7
将氯化铝结晶体、 间苯二酚、 甲醛按摩尔比 3: 1: 2配置制备高强度耐高温块状 C-A1N 复合气凝胶。第一步:称取 0.3mol的结晶氯化铝倒入 1000ml烧杯中,再向烧杯中加入 454.2ml 乙醇(Al/EtOH=l : 26), 去 324ml离子水 (A1/H20=1 : 60), 207ml环氧丙烷 (Al/POl : 10), 充分均勾搅拌, 直至得到澄清的氧化铝溶胶溶液。 第二步: 再向第一步氧化铝溶胶溶液中加 入 O.lmol的间苯二酚 (白色针状结晶), 15ml甲醛, 充分均勾搅拌, 直至溶液完全呈现浅红 色澄清溶胶溶液。 从而得到 RF/A1203复合气凝胶溶胶溶液, 倒入模具凝胶。 室温凝胶时间大 约 6h, 凝胶后, 利用乙醇作为老化液, 置换湿凝胶中的杂质离子, 置换 5次, 每次 12h。 最 后, 再将模具中的湿凝胶放入 70°C烘箱进行高温老化 10d, 使其充分反应。 再将 RF/A1203复 合湿凝胶放入高温高压釜中, 利用 C02超临界干燥法对样品进行干燥, 其中 C02压力控制在 说 明 书
8MPa, 控制温度在 50°C, 超临界干燥时间为 72h。最后, 对样品进行氮气条件下 1600°C高温 热处理 5h, 得到块状碳支撑 A1203-A14C3复合气凝胶。 经过表征发现, 该气凝胶的比表面积 为 508 m2/g, 压缩强度为 5.18MPa。
实例 8
将氯化铝结晶体、 间苯二酚、 甲醛按摩尔比 3: 1: 1配置制备高强度耐高温块状 C-A1N 复合气凝胶。第一步:称取 0.3mol的结晶氯化铝倒入 1000ml烧杯中,再向烧杯中加入 524.85ml 乙醇 (Al/EtOH=l : 30), 270ml去离子水 (A1/H20=1 : 50), 252ml环氧丙烷 (Al/POl : 12), 充分均勾搅拌, 直至得到澄清的氧化铝溶胶溶液。 第二步: 再向第一步氧化铝溶胶溶液中加 入 O.lmol的间苯二酚 (白色针状结晶), 甲醛 15ml, 充分均勾搅拌, 直至溶液完全呈现浅红 色澄清溶胶溶液。 从而得到 RF/A1203复合气凝胶溶胶溶液, 倒入模具凝胶。 室温凝胶时间大 约 4h, 凝胶后, 利用去离子水作为老化液, 置换湿凝胶中的杂质离子, 置换 3次, 每次 20h。 最后, 再将模具中的湿凝胶放入 75°C烘箱进行高温老化 5d, 使其充分反应。 再将 RF/A1203 复合湿凝胶放入高温高压釜中, 利用 C02超临界干燥法对样品进行干燥, 其中 C02压力控制 在 10MPa, 控制温度在 45°C, 超临界干燥时间为 60h。 最后, 对样品进行氮气条件下 1650°C 高温热处理 10h, 得到高强度耐高温块状 C-A1N复合气凝胶。 经过表征发现, 该气凝胶热的 比表面积为 426 m2/g, 压缩强度为 5.31MPa。

Claims

权利要求书
1、 一种高强度耐高温块状 C-A1N复合气凝胶的制备方法, 其具体步骤如下:
( 1 ) 将结晶氯化铝、 蒸馏水、 无水乙醇、 环氧丙烷均勾搅拌, 得到澄清的氧化铝溶胶溶液;
(2) 向步骤 (1 ) 制得的氧化铝溶胶溶液中加入甲醛, 简称 R、 间苯二酚, 简称 F, 搅拌均 勾, 得到 RF/A1203复合气凝胶溶胶溶液;
(3 ) 将步骤 (2) 中的 RF/A1203复合气凝胶溶胶溶液倒入模具中反应至凝胶;
(4) 向步骤 (3 ) 制得的凝胶中加入老化液, 进行老化置换处理;
(5 ) 将步骤 (4) 中老化置换处理好的湿凝胶放置 60〜75°C烘箱老化 5〜10d, 取出; 再进 行干燥处理;
(6) 将步骤 (5 ) 中干燥处理好的样品在氮气条件下进行热处理, 得到高强度耐高温块状 C-A1N复合气凝胶;
其中: 步骤 (1 ) 中, 结晶氯化铝、 蒸馏水、 无水乙醇、 环氧丙烷摩尔比为 =1 : (50〜 70): (20〜30): (8〜13); 步骤 (2) 中, 按结晶氯化铝: 间苯二酚: 甲醛摩尔比为: (1〜5 ): 1: 2。
2、根据权利要求 1所述的制备方法, 其特征在于, 步骤(3 )中反应至凝胶的时间为 2〜10h。
3、 根据权利要求 1所述的制备方法, 其特征在于, 步骤 (4) 中所述的老化液至少为无水乙 醇或去离子水中一种;老化置换处理过程中老化液置换次数为 3〜5次,每次置换时间为 12〜 24h。
4、 根据权利要求 1所述的制备方法, 其特征在于, 步骤 (5 ) 中所述的干燥处理为 C02超临 界干燥法; 其中 C02超临界干燥法采用 C02气体保护, 反应温度为 45〜50°C, 高压反应釜压 力控制在 8〜12MP, 反应时间为 2〜3d。
5、 根据权利要求 1所述的制备方法, 其特征在于, 步骤(6) 中所述的热处理温度在 1500〜 1700°C之间, 热处理时间为 11!〜 10h。
PCT/CN2013/077009 2012-06-18 2013-06-17 一种高强度耐高温块状C-AlN复合气凝胶的制备方法 WO2013189247A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/406,685 US9869422B2 (en) 2012-06-18 2013-06-17 Method for preparing bulk C—AlN composite aerogel with high strength and high temperature resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210201085.0 2012-06-18
CN201210201085.0A CN102716700B (zh) 2012-06-18 2012-06-18 一种高强度耐高温块状C-AlN复合气凝胶的制备方法

Publications (1)

Publication Number Publication Date
WO2013189247A1 true WO2013189247A1 (zh) 2013-12-27

Family

ID=46942645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077009 WO2013189247A1 (zh) 2012-06-18 2013-06-17 一种高强度耐高温块状C-AlN复合气凝胶的制备方法

Country Status (3)

Country Link
US (1) US9869422B2 (zh)
CN (1) CN102716700B (zh)
WO (1) WO2013189247A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417620A (zh) * 2022-08-24 2022-12-02 南通大学 一种连续SiO2气凝胶复合纤维及其制备方法与应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716700B (zh) * 2012-06-18 2014-07-16 南京工业大学 一种高强度耐高温块状C-AlN复合气凝胶的制备方法
CN103285789B (zh) * 2013-05-27 2015-05-13 东华大学 一种三维纤维基气凝胶材料的制备方法及其制品
CN105709669A (zh) * 2016-01-29 2016-06-29 卓达新材料科技集团有限公司 一种氧化锗和氧化铝杂化气凝胶复合材料的制备方法
CN106145999B (zh) * 2016-07-05 2019-02-26 南京工业大学 一种块状La2O3-Al2O3复合气凝胶的制备方法
CN113842843B (zh) * 2021-09-29 2022-07-29 同济大学 以聚酰亚胺为模板衍生的氧化铝气凝胶材料的制备方法
CN114394612B (zh) * 2022-01-28 2024-01-16 中国人民解放军国防科技大学 一种耐高温、低密度氧化铝纳米棒气凝胶及其制备方法
CN116041036A (zh) * 2022-12-15 2023-05-02 中国科学院工程热物理研究所 一种制备微米级耐热纤维增强氧化铝气凝胶的方法
CN116102298A (zh) * 2022-12-30 2023-05-12 南昌宝弘新材料技术有限公司 一种高强度耐高温氧化铝气凝胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1149030A (zh) * 1996-09-06 1997-05-07 华东理工大学 制备氮化铝粉末的径向反应器
CN1403409A (zh) * 2001-09-07 2003-03-19 北京航空材料研究院 一种制备氮化铝陶瓷基片的方法
CN102302917A (zh) * 2011-07-18 2012-01-04 南京工业大学 一种块状C-Al2O3复合气凝胶的制备方法
CN102343285A (zh) * 2011-07-18 2012-02-08 南京工业大学 一种块状硅-炭复合气凝胶的制备方法
CN102716700A (zh) * 2012-06-18 2012-10-10 南京工业大学 一种高强度耐高温块状C-AlN复合气凝胶的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855264A (en) * 1986-11-20 1989-08-08 Minnesota Mining And Manufacturing Company Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
US7560062B2 (en) * 2004-07-12 2009-07-14 Aspen Aerogels, Inc. High strength, nanoporous bodies reinforced with fibrous materials
CN101362969B (zh) * 2008-10-06 2011-09-28 华东理工大学 一种含氮炭气凝胶脱硫剂的制备方法
CN101985358B (zh) * 2010-11-09 2012-05-23 同济大学 一种快速制备碳-二氧化硅复合气凝胶的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1149030A (zh) * 1996-09-06 1997-05-07 华东理工大学 制备氮化铝粉末的径向反应器
CN1403409A (zh) * 2001-09-07 2003-03-19 北京航空材料研究院 一种制备氮化铝陶瓷基片的方法
CN102302917A (zh) * 2011-07-18 2012-01-04 南京工业大学 一种块状C-Al2O3复合气凝胶的制备方法
CN102343285A (zh) * 2011-07-18 2012-02-08 南京工业大学 一种块状硅-炭复合气凝胶的制备方法
CN102716700A (zh) * 2012-06-18 2012-10-10 南京工业大学 一种高强度耐高温块状C-AlN复合气凝胶的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417620A (zh) * 2022-08-24 2022-12-02 南通大学 一种连续SiO2气凝胶复合纤维及其制备方法与应用
CN115417620B (zh) * 2022-08-24 2023-09-15 南通大学 一种连续SiO2气凝胶复合纤维及其制备方法与应用

Also Published As

Publication number Publication date
CN102716700B (zh) 2014-07-16
CN102716700A (zh) 2012-10-10
US20150108389A1 (en) 2015-04-23
US9869422B2 (en) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2013189247A1 (zh) 一种高强度耐高温块状C-AlN复合气凝胶的制备方法
CN103086692B (zh) 一种块状SiO2-Y2O3复合气凝胶的制备方法
CN102276236B (zh) 一种耐高温Si-C-O气凝胶隔热复合材料及其制备方法
CN109251005B (zh) 一种增强二氧化硅气凝胶材料的制备方法
CN101792299A (zh) 耐高温氧化铝-氧化硅气凝胶隔热复合材料的制备方法
CN102731060A (zh) 一种碳纤维毡增强C-Al2O3复合气凝胶的制备方法
CN104402397A (zh) 耐高温块状SiO2-Al2O3复合气凝胶隔热材料的制备方法
CN102351506B (zh) 一种块状耐高温硅-炭复合气凝胶材料的制备方法
CN109095883B (zh) 一种纤维增强氧化铝-氧化硅二元气凝胶复合材料及其制备方法
CN104478475B (zh) 一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法
CN108689679A (zh) 一种耐高温梯度纤维复合气凝胶隔热材料的制备方法
CN109758988B (zh) 一种C-Al2O3-B4C复合气凝胶的制备方法
CN106608730A (zh) 碳基Si-C-O气凝胶隔热复合材料及其制备方法
CN108380144A (zh) 一种Al2O3-SiO2复合气凝胶的制备方法
CN106431186B (zh) 一种纤维负载金红石型TiO2复合SiO2气凝胶的制备方法
CN107986744B (zh) 一种耐高温气凝胶复合绝热毡及其制备方法
CN107746285B (zh) 一种三维多孔氮化物纳米陶瓷及其制备方法
Xia et al. Synthesis of Al2O3-SiO2 aerogel from water glass with high thermal stability and low thermal conductivity
WO2018170772A1 (zh) 常压制备二氧化硅气凝胶的方法及制得的二氧化硅气凝胶
CN108484097B (zh) 一种木质素增强二氧化硅气凝胶毡的制备方法
CN102503482B (zh) 一种低热导率改性蛭石复合隔热材料及其制备方法
CN103114352A (zh) 一种氧化铝纤维的溶胶凝胶制备方法
CN102503202B (zh) 一种Al2O3插层膨胀蛭石隔热材料及其制备方法
CN102513041B (zh) 高强度耐高温碳支撑Al2O3-Al4C3复合块状气凝胶的制备方法
CN110711543A (zh) 一种纤维复合碳化硼-氧化铝气凝胶材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14406685

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806168

Country of ref document: EP

Kind code of ref document: A1