WO2016127786A1 - 一种全固态聚合物电解质及其制备和应用 - Google Patents

一种全固态聚合物电解质及其制备和应用 Download PDF

Info

Publication number
WO2016127786A1
WO2016127786A1 PCT/CN2016/072104 CN2016072104W WO2016127786A1 WO 2016127786 A1 WO2016127786 A1 WO 2016127786A1 CN 2016072104 W CN2016072104 W CN 2016072104W WO 2016127786 A1 WO2016127786 A1 WO 2016127786A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
sodium
electrolyte
polymer
battery
Prior art date
Application number
PCT/CN2016/072104
Other languages
English (en)
French (fr)
Inventor
崔光磊
张建军
赵江辉
柴敬超
岳丽萍
刘志宏
王晓刚
徐红霞
Original Assignee
中国科学院青岛生物能源与过程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510076973.8A external-priority patent/CN105633468B/zh
Priority claimed from CN201510078309.7A external-priority patent/CN105591154B/zh
Application filed by 中国科学院青岛生物能源与过程研究所 filed Critical 中国科学院青岛生物能源与过程研究所
Priority to EP16748587.9A priority Critical patent/EP3258532B1/en
Publication of WO2016127786A1 publication Critical patent/WO2016127786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to battery technology, and more particularly to an all solid polymer electrolyte and its preparation and use.
  • a sodium ion battery refers to a device in which sodium ions can be transferred between battery electrodes and embedded and discharged to achieve charge and discharge.
  • the positive electrode material of the sodium battery is usually sodium vanadium phosphate, sodium iron phosphate, sodium ion fluorophosphate, sodium vanadium fluorophosphate, sodium iron fluorophosphate, sodium manganese oxide, sodium cobalt oxide.
  • the negative electrode material often uses metal sodium, hard carbon, sodium titanium oxide, nickel cobalt oxide, cerium oxide, cerium carbon composite material, tin antimony composite material, sodium terephthalate, lithium titanium oxide, sodium lithium titanium oxide, etc.
  • the electrolyte is mainly composed of a liquid electrolyte.
  • sodium salts used in sodium batteries include: sodium hexafluorophosphate, sodium perchlorate, sodium bis(oxalate), sodium difluorooxalate or sodium triflate, carbonate solvents for liquid sodium batteries, such as propylene carbonate. Ester, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and their mixed solvents.
  • the liquid electrolyte is volatile, and it is easy to decompose and generate gas during the operation of the sodium battery, which easily causes the burning and explosion of the sodium battery.
  • the liquid electrolyte battery has certain requirements on the outer casing. Solving the problem of sodium battery electrolyte can not only solve the safety problem of sodium battery, but also make sodium ion battery replace lithium battery and get widely used.
  • CN103715449A discloses a sodium ion battery system
  • the negative active material is an active material having a crystalline phase of Na 2 Ti 6 O 13
  • the negative active material layer contains a carbon material which is a conductive material
  • the charge control unit The potential of the negative active material is controlled to be higher than the potential at which the Na ions are irreversibly inserted into the carbon material.
  • CN103985851A discloses a cathode material for a sodium ion battery and a sodium ion battery comprising the cathode material.
  • a cathode material for a sodium ion battery comprising a conductive additive and Na 3-x M 2 LO 6 , wherein 0 ⁇ x ⁇ 2; M is one of Fe, Co, Ni, Cu, Zn, Mg, V, Cr or Several; L is one or more of Sb, Te, Nb, Bi, P.
  • M is one of Fe, Co, Ni, Cu, Zn, Mg, V, Cr or Several; L is one or more of Sb, Te, Nb, Bi, P.
  • CN103123981A discloses a non-aqueous organic electrolyte containing sodium bisfluorosulfonimide, comprising: an electrolyte salt and an organic solvent, wherein the electrolyte salt is sodium bisfluorosulfonimide.
  • Lithium batteries are regarded as the most competitive electrochemical storage due to their light weight, high specific energy/specific power and long life.
  • Lithium-ion battery is mainly in structure There are five major blocks: positive, negative, electrolyte, diaphragm, housing and electrode leads.
  • Electrolyte is one of the important components of the battery, and its performance directly affects the optimization and improvement of the performance of the lithium ion battery. As an electrolyte with excellent performance, it should have at least three conditions: (1) high ionic conductivity; (2) good electrochemical stability, ie good compatibility and stability with electrode materials; (3) heat resistance Excellent. Studies have shown that the composition, stoichiometry and structure of the electrolyte determine the performance of the electrolyte, which ultimately affects the performance of the lithium-ion battery. Therefore, studying electrolytes is critical to improving the overall performance of the battery.
  • Existing electrochemical energy storage lithium ion battery electrolytes include liquid organic solvents, lithium salts, and polyolefin separators.
  • the electrolyte is easily leaked and volatilized, causing the “dry zone” phenomenon of the battery, thereby limiting and affecting the performance of the battery and shortening its service life.
  • the size of the polyolefin membrane is poor in thermal stability, and when the battery is heated or in extreme cases, the membrane is shunted or melted to cause a short circuit, thereby exploding.
  • An all-solid-state lithium battery that replaces an organic liquid electrolyte with a solid electrolyte solves the two key problems of low energy density and short service life of a conventional lithium ion battery, and is expected to completely solve the safety problem of the battery and meet the future large capacity.
  • the direction of the development of new chemical energy storage technologies. Compared with a liquid electrolyte, the use of an all-solid polymer as an electrolyte in a battery has the following advantages: an all-solid polymer electrolyte can inhibit the growth of dendrites; it can avoid liquid leakage, improve safety; and the shape adaptability of the battery is enhanced. It can adapt to the personalized development of the battery in the future, and can manufacture the whole battery by coating process, lamination process, etc.
  • electrolytes For the study of all-solid lithium secondary batteries, there are two main categories according to electrolytes: one is a lithium-ion battery composed of an organic polymer electrolyte, also known as a polymer all-solid lithium battery; the other is an inorganic solid.
  • a lithium ion battery composed of an electrolyte is also referred to as an inorganic all solid lithium battery.
  • useful polymers for forming a matrix of a polymer include polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, and polyvinylidene chloride.
  • US 4 792 504 describes a polymer electrolyte which contains polyethylene glycol dimethacrylate/polyethylene oxide but which has low mechanical properties.
  • CN200710144760 describes an electrolyte in which an ultrafine powder filler is added to polyethylene oxide, which has good mechanical properties, but its ionic conductivity is not very high.
  • CN1411475 describes a polymer electrolyte comprising an amphiphilic graft copolymer.
  • CN1428363A describes a nanoporous polymer electrolyte membrane which has superior charge and discharge performance and cycle performance, and the two membranes are relatively good in properties, but are all gel polymer electrolytes.
  • Polyethylene oxide (PEO)/lithium salt electrolytes have been used in all-solid lithium polymer batteries, but there are still some problems to be solved from the practical point of view: linear and graft polymers have poor mechanical properties and are not easy to produce. A polymer film that is independently supported, while the network polymer has too little conductivity. Therefore, such an electrolyte system is only suitable for working under high temperature or micro current conditions, and is difficult to be practically used in a lithium battery operating at normal temperature.
  • An all-solid polymer electrolyte is a carbonate polymer, a metal salt and a porous support material; the thickness is 20-800 ⁇ m; the ionic conductivity is 1 ⁇ 10 -5 S/cm-1 ⁇ 10 -3 S/ Cm; electrochemical window greater than 3.6V; metal salt is sodium or lithium salt.
  • Sodium battery electrolyte, electrolyte is carbonate polymer, sodium salt and porous support material; its thickness is 20-600 ⁇ m; ionic conductivity is 1 ⁇ 10 -5 S/cm-1 ⁇ 10 -3 S/cm; The window is larger than 3.6V.
  • the sodium salt is sodium hexafluorophosphate, sodium perchlorate, sodium bis(oxalate)borate, sodium difluorooxalate borate, trifluoromethanesulfonate One or more of sodium; the mass fraction of sodium salt in the electrolyte is 5%-50%;
  • the carbonate-based polymer has a structure as shown in Formula 1:
  • the value of a is 1-1000, and the value of b is 1-1000.
  • R1 is:
  • R2 is:
  • X is fluorine, phenyl, hydroxy or sodium sulfonate, wherein m1 is 0-2, n1 is 0-2, and m1 is different from n1; m2 is 0-2, the value of n2 is 0-2, and when m2 is different from n2, it is 0; the value of m3 is 0-2, the value of n3 is 0-2, and when m3 is different from n3, it is 0; The mass fraction of the ester polymer in the electrolyte is 5% to 90%;
  • the porous support material is one or more of a cellulose nonwoven film, a glass fiber, a polyethylene terephthalate film (PET film), and a polyimide nonwoven film.
  • the carbonate polymer is polypropylene carbonate or polyethylene carbonate; the preferred mass fraction of the carbonate polymer in the electrolyte is: 40% - 90%;
  • the sodium salt is sodium perchlorate or sodium triflate; the preferred mass fraction of the sodium salt in the electrolyte is 5% to 30%;
  • the porous support material is a cellulose nonwoven film or glass fiber.
  • the carbonate polymer is polypropylene carbonate; the preferred mass fraction of the carbonate polymer in the electrolyte is: 60% - 80%;
  • the sodium salt is sodium perchlorate; the preferred mass fraction of the sodium salt in the electrolyte is 15%-30%;
  • the porous support material is a cellulose nonwoven film.
  • the solvent is N,N-dimethylformamide, N,N-dimethylacetamide, acetone, acetonitrile, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate. , tetrahydrofuran, dimethyl sulfoxide, sulfolane, dimethyl sulfite or diethyl sulfite;
  • the carbonate-based polymer has a structure as shown in Formula 1:
  • the value of a is 1-1000, and the value of b is 1-1000.
  • R1 is:
  • R2 is:
  • X is fluorine, phenyl, hydroxy or sodium sulfonate, wherein m1 is 0-2, n1 is 0-2, and m1 is different from n1; m2 is 0-2, the value of n2 is 0-2, and when m2 is different from n2, it is 0; the value of m3 is 0-2, the value of n3 is 0-2, and when m3 is different from n3, it is 0; The mass fraction of the ester polymer in the electrolyte is 5% to 90%;
  • the porous support material is one or more of a cellulose nonwoven film, a glass fiber, a polyethylene terephthalate film (PET film), and a polyimide nonwoven film.
  • the carbonate polymer is polypropylene carbonate or polyethylene carbonate; the preferred mass fraction of the carbonate polymer in the electrolyte is: 40% - 90%;
  • the sodium salt is sodium perchlorate or sodium triflate; the preferred mass fraction of the sodium salt in the electrolyte is 5% to 30%;
  • the porous support material is a cellulose nonwoven film or glass fiber.
  • the carbonate polymer is polypropylene carbonate; the preferred mass fraction of the carbonate polymer in the electrolyte is: 60% - 80%;
  • the sodium salt is sodium perchlorate; the preferred mass fraction of the sodium salt in the electrolyte is 15%-30%;
  • the porous support material is a cellulose nonwoven film.
  • a solid sodium battery comprising a positive electrode, a negative electrode, and an electrolyte interposed between the positive and negative electrodes, wherein the electrolyte is a solid polymer electrolyte; the electrolyte is a carbonate polymer, a sodium salt and a support material thereof;
  • the thickness is 20-600 mm ⁇ m; the ionic conductivity is 1 ⁇ 10 -5 S/cm-1 ⁇ 10 -3 S/cm; and the electrochemical window is larger than 3.6V.
  • the active material of the positive electrode is sodium vanadium phosphate, sodium iron sulfate, sodium ion fluorophosphate, sodium vanadium fluorophosphate, sodium iron fluorophosphate, sodium manganese oxide or sodium cobalt oxide.
  • the active material of the negative electrode is sodium metal, hard carbon, molybdenum disulfide, sodium titanium oxide, nickel cobalt oxide, cerium oxide, cerium carbon composite material, tin antimony composite material, sodium terephthalate, lithium titanium oxide or sodium lithium Titanium oxide.
  • a solid sodium battery is prepared by separating the positive and negative pole pieces with the above electrolyte, loading into a metal shell, and sealing the solid sodium battery.
  • the above solid sodium battery is assembled into a button type or a soft pack square battery.
  • Lithium battery electrolyte includes carbonate polymer, lithium salt and porous support material; its thickness is 20-800 ⁇ m; mechanical strength is 10-80MPa, room temperature ionic conductivity is 2 ⁇ 10 -5 S/cm-1 ⁇ 10 -3 S/cm, the electrochemical window is greater than 4V.
  • the electrolyte also includes an additive.
  • the electrolyte suitable for the lithium-sulfur battery has a thickness of 20-500 ⁇ m; the mechanical strength is 30-80 MPa, and the room temperature ionic conductivity is 2 ⁇ 10 -4 S/cm-1 ⁇ 10 -3 S/cm, the electrochemical window More than 4V.
  • the carbonate-based polymer has a structure as shown in Formula 2:
  • the value of a is 1-1000, and the value of b is 1-1000.
  • R1 is:
  • R2 is:
  • X is fluorine, phenyl, hydroxy or lithium sulfonate; wherein m1 is 0-2, n1 is 0-2, and m1 is different from n1; m2 is 0-2, the value of n2 is 0-2, and when m2 is different from n2, it is 0; the value of m3 is 0-2, the value of n3 is 0-2, and when m3 is different from n3, it is 0; The mass fraction of the ester polymer in the electrolyte is 5% to 90%;
  • the lithium salt is one or more of lithium perchlorate, lithium hexafluorophosphate, lithium dioxalate borate, lithium hexafluoroarsenate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium bisfluoromethanesulfonimide.
  • the lithium salt has a mass fraction of 5-40% in the polymer electrolyte;
  • the porous support material is one or more of a cellulose nonwoven film, a glass fiber, a polyethylene terephthalate film (PET film), and a polyimide nonwoven film;
  • the additive is a polymer or inorganic particle; wherein the polymer is one or more of polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol and polyvinylidene chloride;
  • the inorganic particles are one or more of silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, nickel oxide, silicon nitride, magnesium hydroxide, diatomaceous earth, montmorillonite and kaolin, and the additive is in the polymer electrolyte.
  • the mass fraction in the range is 0.5-50%.
  • the carbonate polymer is polypropylene carbonate or polyethylene carbonate; the carbonate polymer is added in the electrolyte in an amount of 40% to 90%;
  • the lithium salt is lithium perchlorate or lithium bisfluoromethane sulfonimide; the lithium salt is added in the electrolyte in an amount of 5% to 30%;
  • the mass fraction of the additive in the polymer electrolyte is 0.5-50%:
  • the porous support material is a cellulose nonwoven film or glass fiber.
  • the carbonate polymer is polypropylene carbonate; the carbonate polymer is added in the electrolyte in an amount of 60% to 80%;
  • the lithium salt is lithium bisfluoromethane sulfonimide; the lithium salt is added in the electrolyte in an amount of 9% to 30%;
  • the additive is silica; the mass fraction of the additive in the polymer electrolyte is 0.5-30%:
  • the solvent is N,N-dimethylformamide
  • the porous support material is a cellulose nonwoven film.
  • a lithium salt and an additive are added to the above homogeneous carbonate-based polymer solution, and after the addition, stirring is continued until complete dissolution.
  • the carbonate-based polymer has a structure as shown in Formula 2:
  • the value of a is 1-1000, and the value of b is 1-1000.
  • R1 is:
  • R2 is:
  • X is fluorine, phenyl, hydroxy or lithium sulfonate.
  • the value of m1 is 0-2, the value of n1 is 0-2, the value of m2 is 0-2, the value of n2 is 0-2, and the value of m3 is 0-2, the value of n3. Is 0-2; the mass fraction of the carbonate polymer in the electrolyte is 5%-90%;
  • the lithium salt is one or more of lithium perchlorate, lithium hexafluorophosphate, lithium dioxalate borate, lithium hexafluoroarsenate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium bisfluoromethanesulfonimide.
  • the lithium salt has a mass fraction of 5-40% in the polymer electrolyte;
  • the porous support material is one or more of a cellulose nonwoven film, a glass fiber, a polyethylene terephthalate film (PET film), and a polyimide nonwoven film;
  • the additive is a polymer or inorganic particle; wherein the polymer is one or more of polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol and polyvinylidene chloride;
  • the inorganic particles are one or more of silica, titania, alumina, zirconia, nickel oxide, silicon nitride, magnesium hydroxide, diatomaceous earth, montmorillonite and kaolin; additives are in the polymer electrolyte The mass fraction in the range is 0.5-50%.
  • the solvent is acetonitrile, dimethyl sulfoxide, sulfolane, dimethyl sulfite, diethyl sulfite, acetone, tetrahydrofuran, chloroform, ethyl acetate, N,N-dimethylformamide and N, One or more of N-dimethylacetamide.
  • the carbonate polymer is polypropylene carbonate or polyethylene carbonate; the carbonate polymer is added in the electrolyte in an amount of 40% to 90%;
  • the lithium salt is lithium perchlorate or lithium bisfluoromethane sulfonimide; the lithium salt is added in the electrolyte in an amount of 5% to 30%;
  • the additive is silica or alumina; the mass fraction of the additive in the polymer electrolyte is 0.5-50%:
  • the solvent is N,N-dimethylformamide or acetonitrile
  • the porous support material is a cellulose nonwoven film or glass fiber.
  • the carbonate polymer is polypropylene carbonate; the carbonate polymer is added in the electrolyte in an amount of 60% to 80%;
  • the lithium salt is lithium bisfluoromethane sulfonimide; the lithium salt is added in the electrolyte in an amount of 9% to 30%;
  • the additive is silica; the mass fraction of the additive in the polymer electrolyte is 0.5-30%:
  • the solvent is N,N-dimethylformamide
  • the porous support material is a cellulose nonwoven film.
  • the all-solid polymer electrolyte is used in the preparation of an all-solid lithium metal battery, an all-solid lithium ion battery or an all-solid lithium-sulfur battery.
  • An all-solid secondary lithium battery comprising a positive electrode, a negative electrode, an electrolyte interposed between positive and negative electrodes, the electrolyte being a polycarbonate-based all-solid polymer electrolyte;
  • the active material of the positive electrode is lithium cobaltate, lithium iron phosphate, lithium manganese iron phosphate, lithium manganate, lithium nickel manganese oxide, ternary material, sulfur, sulfur complex, lithium iron sulfate, lithium ion fluorophosphate, lithium Vanadium fluorophosphate, lithium iron fluorophosphate or lithium manganese oxide.
  • the active material of the negative electrode is metallic lithium, metallic lithium alloy, graphite, hard carbon, molybdenum disulfide, lithium titanate, graphene, cerium oxide, cerium carbon composite material, tin antimony composite material or lithium titanium oxide.
  • the positive electrode suitable for the all-solid secondary lithium-sulfur battery is a sulfur and sulfur composite
  • the negative electrode is a metallic lithium and a metallic lithium alloy.
  • An all-solid secondary lithium battery is prepared by separating the positive and negative pole pieces with the above electrolyte, and sealing the all-solid secondary lithium battery.
  • the invention adopts the amorphous polymer matrix to obtain the solid sodium battery electrolyte, the room temperature ionic conductivity is high, and the post-assembled solid sodium battery has good rate performance and excellent long cycle stability; the electrolyte main material is carbonate polymerization.
  • the material is cheap and low in cost; and the solid polymer electrolyte material is simple to prepare, specifically:
  • the prepared sodium battery polymer electrolyte is excellent in mechanical properties and high in ionic conductivity.
  • the positive and negative electrodes are simple to prepare, the materials are easy to obtain, the price is cheap, the safety is good, and the environment is friendly.
  • the electrode material can charge and discharge with a large current, which can realize rapid charge and discharge of the battery.
  • the technical scheme of the invention is simple, easy to operate, easy to be industrialized on a large scale, high in yield and low in cost.
  • the carbonate polymer in the all-solid electrolyte of the lithium battery of the present invention is selected from the group consisting of polypropylene carbonate, also known as polymethylethylene carbonate, which is based on the main gas carbon dioxide which causes the "greenhouse effect".
  • polypropylene carbonate also known as polymethylethylene carbonate
  • a fully degradable, environmentally friendly polymer that is synthesized Because of its photodegradation and biodegradability, it also has excellent oxygen and water barrier properties. It can be used as engineering plastics, biodegradable non-polluting materials, disposable pharmaceutical and food packaging materials, adhesives and composite materials. .
  • the glass transition temperature is between 10 and 39.5 °C.
  • the segment is easier to move, and the room temperature has higher ionic conductivity than polyethylene oxide.
  • the polymer electrolyte of polypropylene carbonate can be in good contact with the electrode interface. Coating propylene carbonate on a non-woven fabric supporting film such as non-woven cellulose can provide better mechanical properties.
  • the electrolyte obtained by the present invention is easy to prepare, simple in molding, mechanical strength is 10-80 MPa, room temperature ion conductivity is 2 ⁇ 10 -5 S/cm-1 ⁇ 10 -3 S/cm, and electrochemical window is larger than 3.6V.
  • the solid electrolyte effectively suppresses the growth of lithium dendrites of the negative electrode, and improves the interface stability and long cycle performance.
  • the flammable and explosive organic solvent is not used in the electrolyte of the invention, thereby eliminating the safety hazard and greatly improving the safe use performance of the lithium battery. It can be applied to all solid state lithium batteries (including lithium-sulfur batteries), all solid state lithium ion batteries and other secondary high energy lithium batteries.
  • Example 1 is a graph showing charge and discharge curves of a sodium vanadium phosphate/sodium metal half-cell assembled with a poly(propylene carbonate) solid-state polymer electrolyte according to Example 1 of the present invention.
  • Example 2 is a long cycle performance of a sodium vanadium sulfate/hard carbon sodium ion full battery assembled with a polyethylene carbonate all solid polymer electrolyte provided in Example 3 of the present invention.
  • Example 3 is a rate performance of a sodium vanadium phosphate/molybdenum disulfide sodium ion integrated battery assembled with a polybutylene carbonate all solid polymer electrolyte provided in Example 3 of the present invention.
  • Example 4 is a charge and discharge curve of a lithium battery assembled with a polypropylene carbonate all solid polymer electrolyte provided in Example 5 of the present invention
  • Example 5 is a charge and discharge curve of a 5V lithium battery assembled by a polyethylene carbonate all solid polymer electrolyte provided in Example 6 of the present invention.
  • Example 6 is a charge and discharge curve of a lithium-sulfur battery assembled with a polybutylene carbonate all-solid polymer electrolyte provided in Example 7 of the present invention.
  • the preparation method of the electrolyte of the present invention will be described in detail in conjunction with the following examples.
  • the present invention provides a polycarbonate-based all-solid polymer electrolyte to improve the safety performance of existing batteries.
  • the ionic conductivity of the solid polymer electrolyte produced was tested: the electrolyte was sandwiched between two pieces of stainless steel and placed in a 2032 type battery case.
  • the solid polymer electrolyte was tested to have an ionic conductivity of 4 x 10 -4 S/cm at 25 °C.
  • the electrochemical window of the solid polymer electrolyte produced by the test the electrolyte is sandwiched between a stainless steel sheet and a sodium sheet. Placed in a 2032 battery case.
  • the electrochemical window was measured by a linear voltammetric scan of an electrochemical workstation with a starting potential of 2.5 V, a maximum potential of 5.5 V, and a scanning speed of 1 mV/s.
  • the solid polymer electrolyte electrochemical window was tested to be 4.5V.
  • PVdF Polyvinylidene fluoride
  • N,N-2-methylpyrrolidone at a concentration of 0.1 mol/L.
  • C The slurry obtained in the previous step was uniformly coated on an aluminum foil to a thickness of 100 to 120 mm. D is cropped by size.
  • the negative electrode is sodium
  • the above-mentioned sodium metal was used as a negative electrode, sodium vanadium phosphate was used as a positive electrode, and the polymer electrolyte was assembled into a sodium battery.
  • the charge and discharge curves of this example at room temperature were measured by a LAND battery charger, as shown in FIG.
  • the solid sodium battery assembled with the solid polymer electrolyte was tested to have a discharge specific capacity of 106 mAh g -1 .
  • the ionic conductivity of the solid polymer electrolyte produced was tested: the electrolyte was sandwiched between two pieces of stainless steel and placed in a 2032 type battery case.
  • the solid polymer electrolyte was tested to have an ionic conductivity of 8 x 10 -4 S/cm at 25 °C.
  • the electrochemical window of the solid polymer electrolyte produced was tested: the electrolyte was sandwiched between stainless steel sheets and sodium sheets and placed in a 2032 type battery can.
  • the electrochemical window was measured by a linear voltammetric scan of an electrochemical workstation with a starting potential of 2.5 V, a maximum potential of 5.5 V, and a scanning speed of 1 mV/s.
  • the solid polymer electrolyte electrochemical window was tested to be 4.0V.
  • PVdF Polyvinylidene fluoride
  • N,N-2-methylpyrrolidone concentration of 0.1 mol/L.
  • B The PVdF, sodium iron sulfate, and conductive carbon black were mixed at a mass ratio of 10:80:10, and then ground for at least one hour.
  • C The slurry obtained in the previous step was uniformly coated on an aluminum foil to a thickness of 100 to 120 mm. D is cropped by size.
  • PVdF Polyvinylidene fluoride
  • B The PVdF, the hard carbon, and the conductive carbon black were mixed at a mass ratio of 10:80:10, and then ground for at least one hour.
  • C The slurry obtained in the previous step was uniformly coated on a copper foil to a thickness of 100 to 120 mm.
  • D is cropped by size.
  • the cement electrolyte was assembled into a sodium battery using hard carbon as a negative electrode and sodium iron sulfate as a positive electrode, and this example was measured with a LAND battery charger, as shown in FIG.
  • the solid state sodium ion full cell assembled with the solid polymer electrolyte was tested to have a capacity retention rate of 97% after circulating 100 cycles at a current of 600 mA/g.
  • the ionic conductivity of the solid polymer electrolyte produced was tested: the electrolyte was sandwiched between two pieces of stainless steel and placed in a 2032 type battery case.
  • the solid polymer electrolyte was tested to have an ionic conductivity of 6 x 10 -4 S/cm at 25 °C.
  • the electrochemical window of the solid polymer electrolyte produced was tested: the electrolyte was sandwiched between stainless steel sheets and sodium sheets and placed in a 2032 type battery can.
  • the electrochemical window was measured by a linear voltammetric scan of an electrochemical workstation with a starting potential of 2.5 V, a maximum potential of 5.5 V, and a scanning speed of 1 mV/s.
  • the solid polymer electrolyte was tested to have an electrochemical window of 4.9V.
  • PVdF Polyvinylidene fluoride
  • N,N-2-methylpyrrolidone at a concentration of 0.1 mol/L.
  • C The slurry obtained in the previous step was uniformly coated on an aluminum foil to a thickness of 100 to 120 mm. D is cropped by size.
  • PVdF Polyvinylidene fluoride
  • N,N-2-methylpyrrolidone at a concentration of 0.1 mol/L.
  • B The PVdF, molybdenum disulfide, and conductive carbon black were mixed at a mass ratio of 10:80:10, and then ground for at least one hour.
  • C The slurry obtained in the previous step was uniformly coated on a copper foil to a thickness of 100 to 120 mm.
  • D is cropped by size.
  • the embodiment was measured using a LAND battery charger, using molybdenum disulfide as the negative electrode, sodium vanadium phosphate as the positive electrode, and a polymer electrolyte as shown in Fig. 3.
  • the solid sodium ion assembled with the solid polymer electrolyte was tested to have a good full cell rate performance, and the discharge capacity was 103 mAh g -1 at a current density of 2 A/g.
  • the ionic conductivity of the solid polymer electrolyte produced was tested: the electrolyte was sandwiched between two pieces of stainless steel and placed in a 2032 type battery case.
  • the solid polymer electrolyte was tested to have an ionic conductivity of 1 ⁇ 10 -4 S/cm at 25 °C.
  • the electrochemical window of the solid polymer electrolyte produced was tested: the electrolyte was sandwiched between stainless steel sheets and sodium sheets and placed in a 2032 type battery can.
  • the electrochemical window was measured by a linear voltammetric scan of an electrochemical workstation with a starting potential of 2.5 V, a maximum potential of 5.5 V, and a scanning speed of 1 mV/s.
  • the solid polymer electrolyte was tested to have an electrochemical window of 4V.
  • PVdF Polyvinylidene fluoride
  • PVdF Polyvinylidene fluoride
  • B The PVdF, the hard carbon, and the conductive carbon black were mixed at a mass ratio of 10:80:10, and then ground for at least one hour.
  • C The slurry obtained in the previous step was uniformly coated on a copper foil to a thickness of 100 to 120 mm.
  • D is cropped by size.
  • the hard carbon was used as a negative electrode and the sodium manganese oxide was used as a positive electrode.
  • the polymer electrolyte was assembled into a sodium battery, and this example was measured with a LAND battery charger.
  • Film thickness The thickness of the polycarbonate all-solid polymer electrolyte was measured using a micrometer (accuracy of 0.01 mm), and 5 points on the sample were arbitrarily removed and averaged.
  • Ionic conductivity The electrolyte was sandwiched between two pieces of stainless steel and placed in a 2032 battery case.
  • Electrochemical window The electrolyte is sandwiched between stainless steel and sodium, and placed in a 2032 battery case.
  • the electrochemical window was measured by a linear voltammetric scan of an electrochemical workstation with a starting potential of 2.5 V, a maximum potential of 5.5 V, and a scanning speed of 1 mV/s. (See Table 1).
  • the results obtained are shown in Table 1. It can be seen from the results of Table 1 that the polycarbonate-based all-solid polymer electrolyte provided by the present invention has a mechanical strength higher than 10 Mpa; the ion conductivity range at room temperature is 2 ⁇ 10 -5 S/cm - 1 ⁇ 10 -3 S/cm, which can charge and discharge at a large rate; the electrochemical window is larger than 4V, which can be charged and discharged at a higher voltage, thereby increasing the energy density.
  • PVdF Polyvinylidene fluoride
  • the PVdF, the positive electrode active material, and the conductive carbon black were mixed at a mass ratio of 10:80:10, and then ground for at least one hour.
  • the slurry obtained in the previous step is uniformly coated on the aluminum foil, the thickness is 100-120 mm, first dried at 60 ° C, then dried in a vacuum oven at 120 ° C, rolled, punched, and weighed. It was dried in a vacuum oven at 120 ° C and placed in a glove box for later use.
  • D is cropped by size.
  • the PVdF, the negative electrode active material, and the conductive carbon black were mixed at a mass ratio of 10:80:10, and then ground for at least one hour.
  • the slurry obtained in the previous step is uniformly coated on the copper foil to a thickness of 100-120 mm, first dried at 60 ° C, then dried in a vacuum oven at 120 ° C, rolled, punched, and weighed. Continue to dry in a vacuum oven at 120 ° C and place in a glove box for later use.
  • D is cropped by size.
  • the test method is as follows: The LAND battery charger is used to test the charge-discharge curve, rate and long-cycle performance of the all-solid secondary lithium battery at different temperatures. (See Figures 1 and 2).
  • the charge and discharge voltage of lithium nickel manganese oxide/lithium metal battery assembled by using polyethylene carbonate solid polymer electrolyte can reach 5V at 60 ° C and 10 mA g -1 , and the discharge specific capacity can reach 120mAh g -1 , which shows extremely excellent high voltage charge and discharge performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及电池技术,具体的说是一种固态钠电池电解质及其制备和应用。电解质为碳酸酯类聚合物,金属盐及多孔支撑材料;其厚度为20-800μm;离子电导率为2×10-5S/cm-1×10-3S/cm;电化学窗口大于4-3.6V;金属盐为钠盐或锂盐。制备为将聚合物、金属盐按照一定比例溶于溶剂中,在多孔支撑材料上制膜,再经真空干燥,得到固态电解质材料。本发明所组装的固态电池倍率性能良好,具有优异的长循环稳定性能;不添加任何电解液,安全性高;主体材料为聚合物,价格便宜,成本低廉;且该固态聚合物电解质材料制备简单。

Description

一种全固态聚合物电解质及其制备和应用 技术领域
本发明涉及电池技术,具体的说是一种全固态聚合物电解质及其制备和应用。
背景技术
在储能行业,锂离子电池在过去的二十年中取得了突飞猛进的发展。然而,有限的锂资源将成为制约锂离子电池发展的因素之一。相比于稀缺的锂元素,含量丰富的钠元素使钠电池(包括钠离子电池)成为研究的热点。同锂离子电池相比,钠离子电池是指钠离子能够在电池电极之间传递并发生嵌入脱出实现充放电的装置。钠电池的正极材料常用磷酸钒钠,磷酸铁钠,钠离子氟磷酸盐,钠钒氟磷酸盐,钠铁氟磷酸盐,钠锰氧化物,钠钴氧化物。负极材料常常采用金属钠,硬碳,钠钛氧化物,镍钴氧化物,氧化锑,锑碳复合材料,锡锑复合材料,对苯二甲酸钠,锂钛氧化物,钠锂钛氧化物等,电解液以液态电解液为主。
到目前为止,钠电池所用钠盐包括:六氟磷酸钠、高氯酸钠、双草酸硼酸钠、二氟草酸硼酸钠或三氟甲磺酸钠,液态钠电池所用碳酸酯溶剂,如碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯以及他们的混合溶剂。可是,液态电解液易挥发,在钠电池工作过程中易分解产生气体,容易引发钠电池的燃烧、爆炸。并且液态电解质电池对外壳有一定的要求。解决钠电池电解液问题,不仅可以解决钠电池的安全性问题,还可以使钠离子电池取代锂电池而得到广泛使用。
CN103715449A公开了一种钠离子电池系统,所述负极活性物质是具有Na2Ti6O13结晶相的活性物质,所述负极活性物质层含有为导电材料的碳材料,所述充电控制部将所述负极活性物质的电位控制得高于将Na离子不可逆地插入到所述碳材料的电位。CN103985851A公开了一类钠离子电池正极材料及包括该正极材料的钠离子电池。一种钠离子电池正极材料,包括导电添加剂和Na3-xM2LO6,其中0≤x<2;M为Fe、Co、Ni、Cu、Zn、Mg、V、Cr中的一种或几种;L为Sb、Te、Nb、Bi、P中的一种或几种。其优点是:储钠容量高,稳定性好和倍率性能优良,具有很高的能量密度和功率密度;所组装的钠离子电池具有十分优异的循环稳定性,而且绿色清洁,安全环保,成本低廉,是一种十分优异的电化学储能体系;且正极材料的制备方法十分简单,原料廉价易得。CN103123981A发明公开了一种含有双氟磺酰亚胺钠的非水有机电解质,包括:电解质盐和有机溶剂,其中,所述电解质盐为双氟磺酰亚胺钠。
以上专利对钠离子电池负极材料、正极材料和液态电解质做出了相关报道,可是,关于安全性能更加优异的固态聚合物钠电池的专利却不多。常用的锂离子电池用的聚合物电解质基体主要为聚氧化乙烯、聚偏氟乙烯、聚甲基丙烯酸甲酯和聚丙烯腈,而上述基体因为离子电导率低、放电比容量低等问题,难以在钠电池中得到推广。
另外,大规模储能系统已经成为未来智能电网的重要组成部分,开发高效储能技术对于提高现有发电系统的利用效率、电力质量和促进可再生能源广泛应用具有重大社会与经济效益。储能技术中最具有工业化推广前景的技术之一是电化学储能技术,锂系电池因其重量轻、比能量/比功率高、寿命长等特点被视为最具竞争力的电化学储能技术之一,而且在储能各环节中的应用也越来越广泛。锂离子电池在结构上主要 有五大块:正极、负极、电解液、隔膜、外壳与电极引线。电解质作为电池的重要组成部分之一,它的性能的好坏直接影响锂离子电池的性能的优化和提高。作为一个性能优良的电解质至少应具备三个条件:(1)离子电导率高;(2)电化学稳定性好,即与电极材料有好的相容性和稳定性;(3)耐热性能优异。研究表明,电解质的组成、化学配比和结构决定着电解质的性能,从而最终影响锂离子电池的性能。所以,研究电解液对提高电池的综合性能至关重要。
现有电化学储能锂离子电池电解质包含液态有机溶剂、锂盐和聚烯烃隔膜。使用中电解液易泄露挥发,造成电池“干区”现象,进而限制和影响电池的性能,缩短其使用寿命。同时聚烯烃隔膜尺寸热稳定性差,当电池因为受热或极端情况下,因隔膜收缩或融化而导致短路,从而发生爆炸。以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。与液体电解质相比,在电池中使用全固体聚合物做电解质,具有以下优点:全固态聚合物电解质可抑制枝晶的生长;因可避免液体泄露,提高安全性;电池的形状适应性增强,可适应未来电池的个性化发展,并可通过涂布工艺、层压工艺等进行电池的整体制造。
对于全固态锂二次电池的研究,按电解质区分主要包括两大类:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池。在聚合物电解质中,形成聚合物的基体的有用聚合物包括聚氧化乙烯、聚偏氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯和聚偏氯乙烯。公开的聚合物电解质实例如下:US 4 792 504描述了一种聚合物电解质,它含有聚二甲基丙烯酸乙二醇/聚环氧乙烷,但其机械性能不高。CN200710144760描述了一种添加超细粉填料于聚环氧乙烷的电解质,机械性能良好,但其离子电导率不是很高。CN1411475描述了一种包含两亲性接枝共聚物的聚合物电解质。CN1428363A描述了一种纳米孔聚合物电解质膜,有较优良的充放电性能和循环性能,这两种膜性质较为不错,但都是其凝胶聚合物电解质。
聚氧化乙烯(PEO)/锂盐型电解质在全固态锂聚合物电池中已有应用,但从实用化角度来看仍然有些问题需要解决:线形和接枝聚合物机械性能较差,不易制得独立支撑的聚合物薄膜,而网状聚合物电导率又太小。因此这类电解质体系只适合在高温或微电流条件下工作,而难于在常温下工作的锂电池中得到实际应用。
发明内容
本发明目的在于提供一种全固态聚合物电解质及其制备和应用。
为实现上述目的,本发明采用的技术方案为:
一种全固态聚合物电解质,电解质为碳酸酯类聚合物,金属盐及多孔支撑材料;其厚度为20-800μm;离子电导率为1×10-5S/cm-1×10-3S/cm;电化学窗口大于3.6V;金属盐为钠盐或锂盐。
钠电池电解质,电解质为碳酸酯类聚合物,钠盐及多孔支撑材料;其厚度为20-600μm;离子电导率为1×10-5S/cm-1×10-3S/cm;电化学窗口大于3.6V。
所述钠盐为六氟磷酸钠、高氯酸钠、双草酸硼酸钠、二氟草酸硼酸钠、三氟甲磺 酸钠中的一种或几种;钠盐在电解质中的质量分数为5%-50%;
所述碳酸酯类聚合物具有如通式1所示的结构:
Figure PCTCN2016072104-appb-000001
其中,a的取值是1-10000,b的取值是1-10000。
R1为:
Figure PCTCN2016072104-appb-000002
R2为:
上述取代基中X为氟,苯基,羟基或磺酸钠,其中m1的取值是0-2,n1的取值是0-2,且m1与n1不同时为0;m2的取值是0-2,n2的取值是0-2,且m2与n2不同时为0;m3的取值是0-2,n3的取值是0-2,且m3与n3不同时为0;碳酸酯类聚合物在电解质中的质量分数为5%-90%;
多孔支撑材料为纤维素无纺膜、玻璃纤维、聚对苯二甲酸乙二醇酯薄膜(PET薄膜)、聚酰亚胺无纺膜中的一种或几种。
优选的技术方案为:
碳酸酯类聚合物为聚碳酸亚丙酯或聚碳酸亚乙酯;碳酸酯类聚合物在电解质中的优选质量分数为:40%-90%;
钠盐为高氯酸钠或三氟甲磺酸钠;钠盐在电解质中的优选质量分数为5%-30%;
多孔支撑材料为纤维素无纺膜或玻璃纤维。
更优选的技术方案为:
碳酸酯类聚合物为聚碳酸亚丙酯;碳酸酯类聚合物在电解质中的优选质量分数为:60%-80%;
钠盐为高氯酸钠;钠盐在电解质中的优选质量分数为15%-30%;
多孔支撑材料为纤维素无纺膜。
一种钠电池电解质的制备方法:
1)取碳酸酯类聚合物溶于溶剂中搅拌;
2)将钠盐溶于上述溶液中,而后密封、搅拌直至形成均匀溶液;
3)取上述溶液均匀浇筑在多孔支撑材料上,在60-80℃环境中干燥,即得钠电池固态电解质。
所述溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丙酮、乙腈、碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、四氢呋喃、二甲基亚砜、环丁砜、亚硫酸二甲酯或亚硫酸二乙酯;
所述碳酸酯类聚合物具有如通式1所示的结构:
Figure PCTCN2016072104-appb-000004
其中,a的取值是1-10000,b的取值是1-10000。
R1为:
Figure PCTCN2016072104-appb-000005
R2为:
Figure PCTCN2016072104-appb-000006
上述取代基中X为氟,苯基,羟基或磺酸钠,其中m1的取值是0-2,n1的取值是0-2,且m1与n1不同时为0;m2的取值是0-2,n2的取值是0-2,且m2与n2不同时为0;m3的取值是0-2,n3的取值是0-2,且m3与n3不同时为0;碳酸酯类聚合物在电解质中的质量分数为5%-90%;
多孔支撑材料为纤维素无纺膜、玻璃纤维、聚对苯二甲酸乙二醇酯薄膜(PET薄膜)、聚酰亚胺无纺膜中的一种或几种。
优选的技术方案为:
碳酸酯类聚合物为聚碳酸亚丙酯或聚碳酸亚乙酯;碳酸酯类聚合物在电解质中的优选质量分数为:40%-90%;
钠盐为高氯酸钠或三氟甲磺酸钠;钠盐在电解质中的优选质量分数为5%-30%;
多孔支撑材料为纤维素无纺膜或玻璃纤维。
更优选的技术方案为:
碳酸酯类聚合物为聚碳酸亚丙酯;碳酸酯类聚合物在电解质中的优选质量分数为:60%-80%;
钠盐为高氯酸钠;钠盐在电解质中的优选质量分数为15%-30%;
多孔支撑材料为纤维素无纺膜。
一种固态钠电池电解质的应用,所述固态钠电池电解质在制备固态钠电池中的应用。
一种固态钠电池,包括正极,负极,介于正负极之间的电解质,其特征在于:所述电解质为固体聚合物电解质;电解质为碳酸酯类聚合物,钠盐及其支撑材料;其厚度为20-600mmμm;离子电导率为1×10-5S/cm-1×10-3S/cm;电化学窗口大于3.6V。
所述正极的活性材料为磷酸钒钠,硫酸铁钠,钠离子氟磷酸盐,钠钒氟磷酸盐,钠铁氟磷酸盐,钠锰氧化物或钠钴氧化物。
负极的活性材料为金属钠,硬碳,二硫化钼,钠钛氧化物,镍钴氧化物,氧化锑,锑碳复合材料,锡锑复合材料,对苯二甲酸钠,锂钛氧化物或钠锂钛氧化物。
一种固态钠电池的制备,用上述电解质将正负极极片分隔开,装进金属壳中,密封得固态钠电池。将上述固态钠电池装成纽扣型或软包方形电池。
锂电池电解质,电解质包括碳酸酯类聚合物、锂盐及多孔支撑材料;其厚度为 20-800μm;机械强度为10-80MPa,室温离子电导率为2×10-5S/cm-1×10-3S/cm,电化学窗口大于4V。
所述电解质还包括添加剂。
其中,适用于锂-硫电池的电解质为厚度为20-500μm;机械强度为30-80MPa,室温离子电导率为2×10-4S/cm-1×10-3S/cm,电化学窗口大于4V。
所述碳酸酯类聚合物具有如通式2所示的结构:
Figure PCTCN2016072104-appb-000007
其中,a的取值是1-10000,b的取值是1-10000。
R1为:
Figure PCTCN2016072104-appb-000008
R2为:
Figure PCTCN2016072104-appb-000009
上述取代基中X为氟,苯基,羟基或磺酸锂;其中m1的取值是0-2,n1的取值是0-2,且m1与n1不同时为0;m2的取值是0-2,n2的取值是0-2,且m2与n2不同时为0;m3的取值是0-2,n3的取值是0-2,且m3与n3不同时为0;碳酸酯类聚合物在电解质中的质量分数为5%-90%;
所述锂盐为高氯酸锂、六氟磷酸锂、二草酸硼酸锂、六氟砷酸锂、四氟硼酸锂、三氟甲基磺酸锂、双氟甲烷磺酰亚胺锂的一种或者几种;锂盐在聚合物电解质中的质量分数为5-40%;
所述多孔支撑材料为纤维素无纺膜、玻璃纤维、聚对苯二甲酸乙二醇酯薄膜(PET薄膜)、聚酰亚胺无纺膜中的一种或几种;
所述添加剂为高分子或无机颗粒;其中,高分子为聚氧化乙烯、聚偏氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯醇和聚偏氯乙烯中的一种或几种;无机颗粒为二氧化硅、二氧化钛、三氧化二铝、氧化锆、氧化镍、氮化硅、氢氧化镁、硅藻土、蒙脱土和高岭土中的一种或几种,添加剂在聚合物电解质中的质量分数为0.5-50%。
优选的技术方案为:
碳酸酯类聚合物为聚碳酸亚丙酯或聚碳酸亚乙酯;碳酸酯类聚合物在电解质中的添加量为40%-90%;
锂盐为高氯酸锂或双氟甲烷磺酰亚胺锂;锂盐在电解质中的添加量为5%-30%;
添加剂在聚合物电解质中的质量分数为0.5-50%:
多孔支撑材料为纤维素无纺膜或玻璃纤维。
更优选的技术方案为:
碳酸酯类聚合物为聚碳酸亚丙酯;碳酸酯类聚合物在电解质中的添加量为60%-80%;
锂盐为双氟甲烷磺酰亚胺锂;锂盐在电解质中的添加量为9%-30%;
添加剂为二氧化硅;添加剂在聚合物电解质中的质量分数为0.5-30%:
溶剂为N,N-二甲基甲酰胺;
多孔支撑材料为纤维素无纺膜。
一种锂电池电解质的制备方法:
1)将碳酸酯类聚合物和溶剂混匀得均一的碳酸酯类聚合物溶液;
2)向上述均一的碳酸酯类聚合物溶液中加入锂盐,加入后继续搅拌至完全溶解;
或,向上述均一的碳酸酯类聚合物溶液中加入锂盐和添加剂,加入后继续搅拌至完全溶解。
3)将上述完全溶解的溶液在多孔支撑材料上制膜,真空干燥,得到锂电池全固态聚合物电解质。
所述碳酸酯类聚合物具有如通式2所示的结构:
Figure PCTCN2016072104-appb-000010
其中,a的取值是1-10000,b的取值是1-10000。
R1为:
Figure PCTCN2016072104-appb-000011
R2为:
Figure PCTCN2016072104-appb-000012
上述取代基中X为氟,苯基,羟基或磺酸锂。其中m1的取值是0-2,n1的取值是0-2;m2的取值是0-2,n2的取值是0-2;m3的取值是0-2,n3的取值是0-2;碳酸酯类聚合物在电解质中的质量分数为5%-90%;
所述锂盐为高氯酸锂、六氟磷酸锂、二草酸硼酸锂、六氟砷酸锂、四氟硼酸锂、三氟甲基磺酸锂、双氟甲烷磺酰亚胺锂的一种或者几种;锂盐在聚合物电解质中的质量分数为5-40%;
所述多孔支撑材料为纤维素无纺膜、玻璃纤维、聚对苯二甲酸乙二醇酯薄膜(PET薄膜)、聚酰亚胺无纺膜中的一种或几种;
所述添加剂为高分子或无机颗粒;其中,高分子为聚氧化乙烯、聚偏氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯醇和聚偏氯乙烯中的一种或几种;无机颗粒为二氧化硅、二氧化钛、三氧化二铝、氧化锆、氧化镍、氮化硅、氢氧化镁、硅藻土、蒙脱土和高岭土中的一种或几种;添加剂在聚合物电解质中的质量分数为0.5-50%。
所述溶剂为乙腈、二甲基亚砜、环丁砜、亚硫酸二甲酯、亚硫酸二乙酯、丙酮、四氢呋喃、三氯甲烷、乙酸乙酯、N,N-二甲基甲酰胺和N,N-二甲基乙酰胺之中的一种或几种。
优选的技术方案为:
碳酸酯类聚合物为聚碳酸亚丙酯或聚碳酸亚乙酯;碳酸酯类聚合物在电解质中的添加量为40%-90%;
锂盐为高氯酸锂或双氟甲烷磺酰亚胺锂;锂盐在电解质中的添加量为5%-30%;
添加剂为二氧化硅或三氧化二铝;添加剂在聚合物电解质中的质量分数为0.5-50%:
溶剂为N,N-二甲基甲酰胺或乙腈;
多孔支撑材料为纤维素无纺膜或玻璃纤维。
更优选的技术方案为:
碳酸酯类聚合物为聚碳酸亚丙酯;碳酸酯类聚合物在电解质中的添加量为60%-80%;
锂盐为双氟甲烷磺酰亚胺锂;锂盐在电解质中的添加量为9%-30%;
添加剂为二氧化硅;添加剂在聚合物电解质中的质量分数为0.5-30%:
溶剂为N,N-二甲基甲酰胺;
多孔支撑材料为纤维素无纺膜。
一种聚碳酸酯类全固态聚合物电解质的应用,所述全固态聚合物电解质在制备全固态锂电池中的应用。
进一步的说,所述全固态聚合物电解质在制备全固态锂金属电池、全固态锂离子电池或全固态锂-硫电池中的应用。
一种全固态二次锂电池,包括正极,负极,介于正负极之间的电解质,所述电解质为聚碳酸酯类全固体聚合物电解质;
所述正极的活性材料为钴酸锂、磷酸铁锂、磷酸锰铁锂、锰酸锂、镍锰酸锂、三元材料、硫、硫复合物、硫酸铁锂、锂离子氟磷酸盐、锂钒氟磷酸盐、锂铁氟磷酸盐或锂锰氧化物。
负极的活性材料为金属锂、金属锂合金、石墨、硬碳、二硫化钼、钛酸锂、石墨烯、氧化锑、锑碳复合材料、锡锑复合材料或锂钛氧化物。
其中,适用于全固态二次锂-硫电池的正极为硫和硫复合物,负极为金属锂和金属锂合金。
一种全固态二次锂电池的制备,用上述电解质将正负极极片分隔开,密封得全固态二次锂电池。
本发明所具有的优点:
本发明采用无定型态的聚合物基体获得固态钠电池电解质,室温离子电导率较高,而后组装的固态钠电池倍率性能良好,具有优异的长循环稳定性能;电解质主体材料为碳酸酯类聚合物,价格便宜,成本低廉;且该固态聚合物电解质材料制备简单,具体为:
1.制备的钠电池聚合物电解质机械性优异、离子电导率高。
2.正负极制备简单,材料易得,价格便宜,安全性好,环境友好。
3.电极材料能够大电流充放电,可以实现电池的快速充放电。
4.本发明技术方案简单,便于操作,容易大规模产业化,成品率高,成本低廉。
另外,本发明的锂电池全固态电解质中的碳酸酯类聚合物选用聚碳酸亚丙酯,又称为聚甲基乙撑碳酸酯,其是以引起“温室效应”的主要气体二氧化碳为原料所合成的一种完全可降解的环保型聚合物。因其具有光降解和生物降解性,同时还具有优良的阻隔氧气和水的性能,可用作工程塑料、生物降解的无污染材料、一次性医药和食品包装材料、胶黏剂以及复合材料等。其与聚氧化乙烯相比,聚碳酸亚丙酯材料价格 便宜,与锂盐具有良好的相容性,聚玻璃态转化温度在10~39.5℃之间,属于无定形结构,链段更容易运动,室温具有比聚氧化乙烯更高的离子电导率,基于聚碳酸亚丙酯的聚合物电解质可以较好地与电极界面接触。将聚碳酸亚丙酯涂层在无纺布纤维素等无纺布支撑膜上,可以提供更好的机械性能。
进而本发明获得的电解质制备容易,成型简单,机械强度为10-80MPa,室温离子电导率为2×10-5S/cm-1×10-3S/cm,电化学窗口大于3.6V。与此同时该固态电解质有效抑制负极锂枝晶的生长,提高了界面稳定性能和长循环性能。并且本发明电解质中不使用易燃易爆的有机溶剂,消除了该安全隐患,大大提升了锂电池的安全使用性能。可应用到全固态锂电池(包括锂-硫电池)、全固态锂离子电池以及其他二次高能锂电池中。
附图说明
图1为本发明实施例1提供的聚碳酸亚丙酯全固态聚合物电解质组装的磷酸钒钠/钠金属半电池在室温下的充放电曲线。
图2为本发明实施例3提供的聚碳酸亚乙酯全固态聚合物电解质组装的硫酸钒钠/硬碳钠离子全电池的长循环性能。
图3为本发明实施例3提供的聚碳酸亚丁酯全固态聚合物电解质组装的磷酸钒钠/二硫化钼钠离子全电池的倍率性能。
图4是本发明实施例5提供的聚碳酸亚丙酯全固态聚合物电解质组装的锂电池的充放电曲线;
图5是本发明实施例6提供的聚碳酸亚乙酯全固态聚合物电解质组装的5V锂电池充放电曲线。
图6是本发明实施例7提供的聚碳酸亚丁酯全固态聚合物电解质组装的锂硫电池充放电曲线。
具体实施方式
结合一下实施例对本发明的电解质的制备方法作详细说明。其中,为了解决现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、具有安全隐患的问题,或者凝胶电解质本身的机械性能较差和难成型的问题。本发明提供了一种聚碳酸酯类全固态聚合物电解质,来提高现有电池的安全性能。
实施例1:
钠离子聚合物电解质
将1.0g聚碳酸亚丙酯和0.2g六氟磷酸钠溶于13g N,N-二甲基甲酰胺中,室温下搅拌直至呈均一溶液状态,取3克上述溶液,在纤维素无纺膜(4cm×4cm)上涂覆,将得到的聚合物电解质在60℃真空干燥。按尺寸裁剪。
测试所制成的固态聚合物电解质的离子电导率:用两片不锈钢夹住电解质,放在2032型电池壳中。钠离子电导率采用电化学交流阻抗谱来测量,采用公式:σ=L/ARb,其中,L为电解质的厚度,A为不锈钢片室温面积,Rb为测量得出的阻抗。经测试,该固态聚合物电解质在25℃时离子电导率为4×10-4S/cm。
测试所制成的固态聚合物电解质的电化学窗口:以不锈钢片和钠片夹住电解质, 放在2032型电池壳中。电化学窗口以电化学工作站进行线性伏安扫描测量,起始电位为2.5V,最高电位为5.5V,扫描速度为1mV/s。经测试,该固态聚合物电解质电化学窗口为4.5V。
测量聚合物电解质在钠电池中的放电比容量:
(1)正极片的制备
A将聚偏氟乙烯(PVdF)溶于N,N-2-甲基吡咯烷酮中,浓度为0.1mol/L。B将PVdF、磷酸钒钠、导电炭黑以10:80:10的质量比混合后,研磨至少1小时。C将上步所得的浆料均匀地涂敷在铝箔上,厚度为100-120mm。D按尺寸裁剪。
(2)负极片的制备
负极为钠片
利用上述钠金属为负极,磷酸钒钠为正极,将聚合物电解质组装成钠电池,用LAND电池充放仪测量该实施例在室温下的充放电曲线,如附图1。经测试,以该固态聚合物电解质组装的固态钠电池的放电比容量为106mAh g-1
实施例2:
钠离子聚合物电解质
将1.5g聚碳酸亚乙酯和0.3g三氟甲基磺酸钠溶于18g乙腈中,室温下搅拌直至呈均一溶液状态,取5克上述溶液,在聚对苯二甲酸乙二醇酯无纺布(5cm×5cm)上涂覆,将得到的聚合物电解质在80℃真空干燥。按尺寸裁剪。
测试所制成的固态聚合物电解质的离子电导率:用两片不锈钢夹住电解质,放在2032型电池壳中。钠离子电导率采用电化学交流阻抗谱来测量,采用公式:σ=L/ARb,其中,L为电解质的厚度,A为不锈钢片室温面积,Rb为测量得出的阻抗。经测试,该固态聚合物电解质在25℃时离子电导率为8×10-4S/cm。
测试所制成的固态聚合物电解质的电化学窗口:以不锈钢片和钠片夹住电解质,放在2032型电池壳中。电化学窗口以电化学工作站进行线性伏安扫描测量,起始电位为2.5V,最高电位为5.5V,扫描速度为1mV/s。经测试,该固态聚合物电解质电化学窗口为4.0V。
测量聚合物电解质在钠电池中的长循环性能:
(1)正极片的制备
A将聚偏氟乙烯(PVdF)溶于N,N-2-甲基吡咯烷酮中,浓度为0.1mol/L。B将PVdF、硫酸铁钠、导电炭黑以10:80:10的质量比混合后,研磨至少1小时。C将上步所得的浆料均匀地涂敷在铝箔上,厚度为100-120mm。D按尺寸裁剪。
(2)负极片的制备
A将聚偏氟乙烯(PVdF)溶于N,N-2-甲基吡咯烷酮中,浓度为0.1mol/L。B将PVdF、硬碳、导电炭黑以10:80:10的质量比混合后,研磨至少1小时。C将上步所得的浆料均匀地涂敷在铜箔上,厚度为100-120mm。D按尺寸裁剪。
以硬碳为负极,硫酸铁钠为正极,将聚合物电解质组装成钠电池,用LAND电池充放仪测量该实施例,如附图2。经测试,以该固态聚合物电解质组装的固态钠离子全电池在600mA/g电流下循环100圈后容量保持率为97%。
实施例3:
钠离子聚合物电解质
将2g聚碳酸亚丁酯和0.4g高氯酸钠溶于20g四氢呋喃中,室温下搅拌直至呈均一溶液状态,取6克上述溶液,在玻璃纤维无纺膜(6cm×6cm)上涂覆,将得到的聚合物电解质在70℃真空干燥。按尺寸裁剪。
测试所制成的固态聚合物电解质的离子电导率:用两片不锈钢夹住电解质,放在2032型电池壳中。钠离子电导率采用电化学交流阻抗谱来测量,采用公式:σ=L/ARb,其中,L为电解质的厚度,A为不锈钢片室温面积,Rb为测量得出的阻抗。经测试,该固态聚合物电解质在25℃时离子电导率为6×10-4S/cm。
测试所制成的固态聚合物电解质的电化学窗口:以不锈钢片和钠片夹住电解质,放在2032型电池壳中。电化学窗口以电化学工作站进行线性伏安扫描测量,起始电位为2.5V,最高电位为5.5V,扫描速度为1mV/s。经测试,该固态聚合物电解质电化学窗口为4.9V。
测量聚合物电解质在钠电池中的倍率性能:
(1)正极片的制备
A将聚偏氟乙烯(PVdF)溶于N,N-2-甲基吡咯烷酮中,浓度为0.1mol/L。B将PVdF、磷酸钒钠、导电炭黑以10:80:10的质量比混合后,研磨至少1小时。C将上步所得的浆料均匀地涂敷在铝箔上,厚度为100-120mm。D按尺寸裁剪。
(2)负极片的制备
A将聚偏氟乙烯(PVdF)溶于N,N-2-甲基吡咯烷酮中,浓度为0.1mol/L。B将PVdF、二硫化钼、导电炭黑以10:80:10的质量比混合后,研磨至少1小时。C将上步所得的浆料均匀地涂敷在铜箔上,厚度为100-120mm。D按尺寸裁剪。
以二硫化钼为负极,磷酸钒钠为正极,将聚合物电解质组装成钠电池,用LAND电池充放仪测量该实施例,如附图3。经测试,以该固态聚合物电解质组装的固态钠离子全电池倍率性能良好,在2A/g的电流密度下,放电容量为103mAh g-1
实施例4:
钠离子聚合物电解质
将1.3g聚碳酸亚丙酯和0.25g双草酸硼酸钠溶于14g N,N-二甲基甲酰胺中,室温下搅拌直至呈均一溶液状态,取5克上述溶液,在聚酰亚胺无纺膜(3cm×3cm)上涂覆,将得到的聚合物电解质在90℃真空干燥。按尺寸裁剪。
测试所制成的固态聚合物电解质的离子电导率:用两片不锈钢夹住电解质,放在2032型电池壳中。钠离子电导率采用电化学交流阻抗谱来测量,采用公式:σ=L/ARb,其中,L为电解质的厚度,A为不锈钢片室温面积,Rb为测量得出的阻抗。经测试,该固态聚合物电解质在25℃时离子电导率为1×10-4S/cm。
测试所制成的固态聚合物电解质的电化学窗口:以不锈钢片和钠片夹住电解质,放在2032型电池壳中。电化学窗口以电化学工作站进行线性伏安扫描测量,起始电位为2.5V,最高电位为5.5V,扫描速度为1mV/s。经测试,该固态聚合物电解质电化学窗口为4V。
测量聚合物电解质在钠电池中的放电比容量:
(1)正极片的制备
A将聚偏氟乙烯(PVdF)溶于N,N-2-甲基吡咯烷酮中,浓度为0.1mol/L。B将PVdF、钠锰氧化物、导电炭黑以10:80:10的质量比混合后,研磨至少1小时。C 将上步所得的浆料均匀地涂敷在铝箔上,厚度为100-120mm。D按尺寸裁剪。
(2)负极片的制备
A将聚偏氟乙烯(PVdF)溶于N,N-2-甲基吡咯烷酮中,浓度为0.1mol/L。B将PVdF、硬碳、导电炭黑以10:80:10的质量比混合后,研磨至少1小时。C将上步所得的浆料均匀地涂敷在铜箔上,厚度为100-120mm。D按尺寸裁剪。
以硬碳为负极,钠锰氧化物为正极,将聚合物电解质组装成钠电池,用LAND电池充放仪测量该实施例。
实施例5
将2g聚碳酸亚丙酯、18g N,N-二甲基乙酰胺加入到100ml的试剂瓶中,然后在常温下搅拌6h,得到均一的聚碳酸亚丙酯溶液。然后将0.2g二草酸硼酸锂入到上述均一的溶液当中,在常温下搅拌1天,得到均匀混合溶液。将溶液均匀浇注到培养皿上,在60℃真空烘箱条件下干燥1天,干燥,得到聚碳酸亚丙酯的全固态聚合物电解质。
实施例6
将4g聚碳酸亚乙酯、36g N,N-二甲基甲酰胺加入到250ml的试剂瓶中,然后在常温下搅拌8h,得到均一的聚碳酸亚乙酯溶液。然后将0.4g高氯酸锂和0.5g聚氧化乙烯加入到上述均一的溶液当中,在常温下搅拌15h,得到均匀混合溶液。将溶液均匀浇注无纺布纤维素上,在60℃真空烘箱条件下干燥1天,干燥,得到聚碳酸亚乙酯/聚氧化乙烯全固态聚合物电解质(参见图4)。
实施例7
将3g聚碳酸亚丁酯、0.6g聚环氧乙烷、20g丙酮加入到100ml的试剂瓶中,然后在常温下搅拌6h,得到均一的聚碳酸亚丁酯溶液。然后将0.6g六氟磷酸锂和0.4g聚丙烯腈加入到上述均一的溶液当中,在常温下搅拌15h,得到均匀混合溶液。将溶液均匀浇注到PET无纺膜上,在80℃真空烘箱条件下干燥1天,干燥,得到聚碳酸亚丁酯/聚丙烯腈全固态聚合物电解质(参见图6)。
实施例8
将2g聚碳酸亚丙酯、0.5g聚环氧乙烷、16g四氢呋喃加入到100ml的试剂瓶中,然后在常温下搅拌6h,得到均一的聚碳酸亚丙酯溶液。然后将0.2g六氟砷酸锂和0.2g纳米二氧化硅加入到上述均一的溶液当中,在常温下搅拌12h,得到均匀混合溶液。将溶液均匀浇注到无纺布纤维素膜上,在100℃真空烘箱条件下干燥1天,干燥,得到全固态聚合物电解质。
实施例9
将4g聚碳酸亚乙酯、1.6g聚偏氟乙烯、36g乙腈加入到250ml的试剂瓶中,然后在常温下搅拌8h,得到均一的聚碳酸亚乙酯溶液。然后将0.8g四氟硼酸锂和0.6g聚甲基丙烯酸甲酯加入到上述均一的溶液当中,在常温下搅拌5h,得到均匀混合溶液。将溶液均匀浇注到玻璃纤维上,在80℃真空烘箱条件下干燥1天,干燥,得到聚碳酸亚乙酯的全固态聚合物电解质。
实施例10
将3g聚碳酸亚丁酯、1.0聚丙烯腈、24g丙酮加入到100ml的试剂瓶中,然后在常温下搅拌7h,得到均一的聚碳酸亚丁酯溶液。然后将0.5g二草酸硼酸锂和0.7g 蒙脱土加入到上述均一的溶液当中,在常温下搅拌1天,得到均匀混合溶液。将溶液均匀浇注到静电纺丝的聚酰亚胺膜上,在40℃真空烘箱条件下干燥1天,干燥,得到聚碳酸亚丁酯的全固态聚合物电解质。
电解质性能进行表征:
膜厚度:采用千分尺(精度0.01毫米)测试聚碳酸酯类全固态聚合物电解质的厚度,任意去样品上的5个点,并取平均值。
离子电导率:用两片不锈钢夹住电解质,放在2032型电池壳中。钠离子电导率采用电化学交流阻抗谱来测量,采用公式:σ=L/ARb,其中,L为电解质的厚度,A为不锈钢片室温面积,Rb为测量得出的阻抗。
电化学窗口:以不锈钢片和钠片夹住电解质,放在2032型电池壳中。电化学窗口以电化学工作站进行线性伏安扫描测量,起始电位为2.5V,最高电位为5.5V,扫描速度为1mV/s。(参见表1)。
所得结果列于表1。从表1的结果可以看出,采用本发明提供的聚碳酸酯类全固态聚合物电解质,机械强度较高大于10Mpa;室温下离子电导率范围是2×10-5S/cm-1×10-3S/cm,可以大倍率充放电;电化学窗口大于4V,可以在较高的电压下进行充放电,进而提升能量密度。
测试电池性能包括以下步骤:
(1)正极片的制备
A将聚偏氟乙烯(PVdF)溶于N,N-2-甲基吡咯烷酮中,浓度为0.1mol/L。
B将PVdF、正极活性材料、导电炭黑以10:80:10的质量比混合后,研磨至少1小时。
C将上步所得的浆料均匀地涂敷在铝箔上,厚度为100-120mm,先在60℃下烘干,再于120℃真空烘箱下烘干,辊压,冲片,称重后继续在120℃真空烘箱中烘干,放于手套箱中备用。
D按尺寸裁剪。
(2)负极片的制备
A将PVdF溶于N,N-2-甲基吡咯烷酮中,浓度为0.1mol/L。
B将PVdF、负极活性材料、导电炭黑以10:80:10的质量比混合后,研磨至少1小时。
C将上步所得的浆料均匀地涂敷在铜箔上,厚度为100-120mm,先在60℃下烘干,再于120℃真空烘箱下烘干,辊压,冲片,称重后继续在120℃真空烘箱中烘干,放于手套箱中备用。
D按尺寸裁剪。
(3)电池组装
(4)电池充放电性能测试
测试方式如下:用LAND电池充放仪测试全固态二次锂电池在不同温度下的充放电曲线、倍率和长循环性能。(参见图1和图2)。
由图4可见:在80℃和15mA g-1条件下,采用聚碳酸亚丙酯全固态聚合物电解质组装的磷酸铁锂/锂金属电池的充放电曲线比较稳定,放电比容量可以达到166mAh g-1
由图5可见:在60℃和10mA g-1条件下,采用聚碳酸亚乙酯全固态聚合物电解质组装的镍锰酸锂/锂金属电池的充放电电压可以达到5V,放电比容量可以达到120mAh g-1,显示出极其优越的高电压充放电性能。
由图6可见:在60℃和100mA g-1条件下,采用聚碳酸亚丁酯全固态聚合物电解质组装的锂-硫电池的充放电曲线比较平稳,放电比容量可以达到1150mAh g-1
表1
Figure PCTCN2016072104-appb-000013

Claims (17)

  1. 一种全固态聚合物电解质,其特征在于:电解质为聚合物,金属盐及多孔支撑材料;其厚度为20-800μm;离子电导率为1×10-5S/cm-1×10-3S/cm;电化学窗口大于3.6V;金属盐为钠盐或锂盐。
  2. 按权利要求1所述的全固态聚合物电解质,其特征在于:所述钠电池电解质为碳酸酯类聚合物,钠盐及多孔支撑材料;其厚度为20-600μm;离子电导率为1×10-5S/cm-1×10-3S/cm;电化学窗口大于3.6V;
    锂电池电解质包括碳酸酯类聚合物、锂盐及多孔支撑材料;其厚度为20-800μm;机械强度为10-80MPa,室温离子电导率为2×10-5S/cm-1×10-3S/cm,电化学窗口大于4V。
  3. 按权利要求2所述的全固态聚合物电解质,其特征在于:所述锂电池电解质还包括添加剂。
  4. 按权利要求1所述的全固态聚合物电解质,其特征在于:所述钠电池电解质中钠盐为六氟磷酸钠、高氯酸钠、双草酸硼酸钠、二氟草酸硼酸钠、三氟甲磺酸钠中的一种或几种;钠盐在电解质中的质量分数为5%-50%;
    所述碳酸酯类聚合物具有如通式1所示的结构:
    Figure PCTCN2016072104-appb-100001
    其中,a的取值是1-10000,b的取值是1-10000;
    R1为:
    Figure PCTCN2016072104-appb-100002
    R2为:
    Figure PCTCN2016072104-appb-100003
    上述取代基中X为氟,苯基,羟基或磺酸钠,其中m1的取值是0-2,n1的取值是0-2,且m1与n1不同时为0;m2的取值是0-2,n2的取值是0-2,且m2与n2不同时为0;m3的取值是0-2,n3的取值是0-2,且m3与n3不同时为0;碳酸酯类聚合物在电解质中的质量分数为5%-90%;
    多孔支撑材料为纤维素无纺膜、玻璃纤维、聚对苯二甲酸乙二醇酯薄膜(PET薄膜)、聚酰亚胺无纺膜中的一种或几种;
    所述锂电池电解质中锂盐为高氯酸锂、六氟磷酸锂、二草酸硼酸锂、六氟砷酸锂、四氟硼酸锂、三氟甲基磺酸锂、双氟甲烷磺酰亚胺锂的一种或者几种;锂盐在聚合物电解质中的质量分数为5-40%;
    所述碳酸酯类聚合物具有如通式2所示的结构:
    Figure PCTCN2016072104-appb-100004
    其中,a的取值是1-10000,b的取值是1-10000;
    R1为:
    Figure PCTCN2016072104-appb-100005
    R2为:
    Figure PCTCN2016072104-appb-100006
    上述取代基中X为氟,苯基,羟基或磺酸锂;其中m1的取值是0-2,n1的取值是0-2,且m1与n1不同时为0;m2的取值是0-2,n2的取值是0-2,且m2与n2不同时为0;m3的取值是0-2,n3的取值是0-2,且m3与n3不同时为0;碳酸酯类聚合物在电解质中的质量分数为5%-90%;
    所述多孔支撑材料为纤维素无纺膜、玻璃纤维、聚对苯二甲酸乙二醇酯薄膜(PET薄膜)、聚酰亚胺无纺膜中的一种或几种;
    所述添加剂为高分子或无机颗粒;其中,高分子为聚氧化乙烯、聚偏氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯醇和聚偏氯乙烯中的一种或几种;无机颗粒为二氧化硅、二氧化钛、三氧化二铝、氧化锆、氧化镍、氮化硅、氢氧化镁、硅藻土、蒙脱土和高岭土中的一种或几种,添加剂在聚合物电解质中的质量分数为0.5-50%。
  5. 一种权利要求1所述的全固态聚合物电解质的制备方法,其特征在于:所述钠电池电解质的制备为:
    1)取碳酸酯类聚合物溶于溶剂中搅拌;
    2)将钠盐溶于上述溶液中,而后密封、搅拌直至形成均匀溶液;
    3)取上述溶液均匀浇筑在多孔支撑材料上,在60-80℃环境中干燥,即得钠电池固态电解质。
  6. 按权利要求5所述的全固态聚合物电解质的制备方法,其特征在于:
    所述溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丙酮、乙腈、碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、四氢呋喃、二甲基亚砜、环丁砜、亚硫酸二甲酯或亚硫酸二乙酯;
    所述碳酸酯类聚合物具有如通式1所示的结构:
    Figure PCTCN2016072104-appb-100007
    其中,a的取值是1-10000,b的取值是1-10000;
    R1为:
    Figure PCTCN2016072104-appb-100008
    R2为:
    Figure PCTCN2016072104-appb-100009
    上述取代基中X为氟,苯基,羟基或磺酸钠,其中m1的取值是0-2,n1的取值是0-2,且m1与n1不同时为0;m2的取值是0-2,n2的取值是0-2,且m2与n2不同时为0;m3的取值是0-2,n3的取值是0-2,且m3与n3不同时为0;碳酸酯类聚合物在电解质中的质量分数为5%-90%;
    所述钠盐为六氟磷酸钠、高氯酸钠、双草酸硼酸钠、二氟草酸硼酸钠或三氟甲磺酸钠;钠盐在电解质中的质量分数为5%-50%。
  7. 一种权利要求1所述的全固态聚合物电解质的制备方法,其特征在于:所述锂电池电解质的制备为:
    1)将碳酸酯类聚合物和溶剂混匀得均一的碳酸酯类聚合物溶液;
    2)向上述均一的碳酸酯类聚合物溶液中加入锂盐,加入后继续搅拌至完全溶解;
    3)将上述完全溶解的溶液在多孔支撑材料上制膜,真空干燥,得到锂电池全固态聚合物电解质。
  8. 按权利要求7所述的全固态聚合物电解质的制备方法,其特征在于:所述步骤2)中向上述均一的碳酸酯类聚合物溶液中加入锂盐和添加剂,加入后继续搅拌至完全溶解。
  9. 按权利要求7所述的全固态聚合物电解质的制备方法,其特征在于:所述碳酸酯类聚合物具有如通式2所示的结构:
    Figure PCTCN2016072104-appb-100010
    其中,a的取值是1-10000,b的取值是1-10000;
    R1为:
    Figure PCTCN2016072104-appb-100011
    R2为:
    Figure PCTCN2016072104-appb-100012
    上述取代基中X为氟,苯基,羟基或磺酸锂;其中m1的取值是0-2,n1的取值是0-2,且m1与n1不同时为0;m2的取值是0-2,n2的取值是0-2,且m2与n2不同时为0;m3的取值是0-2,n3的取值是0-2,且m3与n3不同时为0;碳酸酯类聚合物在电解质中的质量分数为5%-90%;
    所述锂盐为高氯酸锂、六氟磷酸锂、二草酸硼酸锂、六氟砷酸锂、四氟硼酸锂、三氟甲基磺酸锂、双氟甲烷磺酰亚胺锂的一种或者几种;锂盐在聚合物电解质中的质量分数为5-40%;
    所述多孔支撑材料为纤维素无纺膜、玻璃纤维、聚对苯二甲酸乙二醇酯薄膜(PET薄膜)、聚酰亚胺无纺膜中的一种或几种;
    所述添加剂为高分子或无机颗粒;其中,高分子为聚氧化乙烯、聚偏氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯醇和聚偏氯乙烯中的一种或几种;无机颗粒为二氧化硅、二氧化钛、三氧化二铝、氧化锆、氧化镍、氮化硅、氢氧化镁、硅藻土、蒙脱土和高岭土中的一种或几种;添加剂在聚合物电解质中的质量分数为0.5-50%。
  10. 按权利要求7所述的全固态聚合物电解质的制备方法,其特征在于:所述溶剂为乙腈、二甲基亚砜、环丁砜、亚硫酸二甲酯、亚硫酸二乙酯、丙酮、四氢呋喃、三氯甲烷、乙酸乙酯、N,N-二甲基甲酰胺和N,N-二甲基乙酰胺之中的一种或几种。
  11. 一种权利要求1所述的全固态聚合物电解质的应用,其特征在于:所述钠电池电解质在制备固态钠电池中的应用;
    所述锂电池电解质在制备全固态二次锂电池中的应用。
  12. 一种固态钠电池,包括正极,负极,介于正负极之间的电解质,其特征在于:所述电解质为固体聚合物电解质;电解质为碳酸酯类聚合物,钠盐及其支撑材料;其厚度为20-600μmμm;离子电导率为1×10-5S/cm-1×10-3S/cm;电化学窗口大于3.6V。
  13. 按权利要求12所述的固态钠电池,其特征在于:所述正极的活性材料为磷酸钒钠,硫酸铁钠,钠离子氟磷酸盐,钠钒氟磷酸盐,钠铁氟磷酸盐,钠锰氧化物或钠钴氧化物;
    负极的活性材料为金属钠,硬碳,二硫化钼,钠钛氧化物,镍钴氧化物,氧化锑,锑碳复合材料,锡锑复合材料,对苯二甲酸钠,锂钛氧化物或钠锂钛氧化物。
  14. 一种固态钠电池的制备,其特征在于:用上述电解质将正负极极片分隔开,装进金属壳中,密封得固态钠电池。
  15. 按权利要求14所述的固态钠电池的制备,其特征在于:将上述固态钠电池装成纽扣型或软包方形电池。
  16. 一种全固态二次锂电池,包括正极,负极,介于正负极之间的电解质,其特征在于:所述电解质为聚碳酸酯类全固体聚合物电解质;
    所述正极的活性材料为钴酸锂、磷酸铁锂、磷酸锰铁锂、锰酸锂、镍锰酸锂、三元材料、硫、硫复合物、硫酸铁锂、锂离子氟磷酸盐、锂钒氟磷酸盐、锂铁氟磷酸盐、锂锰氧化物中的一种;
    负极的活性材料为金属锂、金属锂合金、石墨、硬碳、二硫化钼、钛酸锂、石墨烯、氧化锑、锑碳复合材料、锡锑复合材料、锂钛氧化物中的一种。
  17. 一种全固态二次锂电池的制备,其特征在于:用上述电解质将正负极极片分隔开,密封得全固态二次锂电池。
PCT/CN2016/072104 2015-02-13 2016-01-26 一种全固态聚合物电解质及其制备和应用 WO2016127786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16748587.9A EP3258532B1 (en) 2015-02-13 2016-01-26 All-solid-state polymer electrolyte, and preparation and application thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510076973.8A CN105633468B (zh) 2015-02-13 2015-02-13 一种固态钠电池电解质及其制备和应用
CN201510076973.8 2015-02-13
CN201510078309.7 2015-02-13
CN201510078309.7A CN105591154B (zh) 2015-02-13 2015-02-13 聚碳酸酯类全固态聚合物电解质及其构成的全固态二次锂电池及其制备和应用

Publications (1)

Publication Number Publication Date
WO2016127786A1 true WO2016127786A1 (zh) 2016-08-18

Family

ID=56614124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072104 WO2016127786A1 (zh) 2015-02-13 2016-01-26 一种全固态聚合物电解质及其制备和应用

Country Status (2)

Country Link
EP (1) EP3258532B1 (zh)
WO (1) WO2016127786A1 (zh)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110326136A (zh) * 2017-09-13 2019-10-11 辽宁星空钠电电池有限公司 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法
CN110690496A (zh) * 2019-10-24 2020-01-14 西南大学 一种pfsa-k固态复合电解质隔膜及其制备方法和应用
CN112271401A (zh) * 2020-10-23 2021-01-26 光鼎铷业(广州)集团有限公司 一种铷掺杂的无机-有机的锂电池复合涂覆型隔膜的制备方法
CN112341546A (zh) * 2020-10-27 2021-02-09 北京化工大学 一种氟化生物质膜材料的制备方法
CN112490587A (zh) * 2020-11-17 2021-03-12 欣旺达电动汽车电池有限公司 复合电解质隔膜及其制备方法和固态电池
CN112952190A (zh) * 2019-11-26 2021-06-11 恒大新能源技术(深圳)有限公司 复合电解质及其制备方法、固态电池
CN112952192A (zh) * 2021-03-12 2021-06-11 上海交通大学 一种掺杂聚氨基薁的有机聚合物电解质薄膜的制备方法及其应用
CN113130981A (zh) * 2019-12-30 2021-07-16 北京卫蓝新能源科技有限公司 一种聚硫酸酯类固态聚合物电解质及其在锂电池中的应用
CN113206291A (zh) * 2021-04-16 2021-08-03 华南理工大学 一种聚酰亚胺/聚氧化乙烯固态电解质复合膜、制备方法及应用
CN113451643A (zh) * 2021-06-15 2021-09-28 上海大学 酰胺基复合固态电解质的原位制备方法及其应用
CN113471530A (zh) * 2021-07-28 2021-10-01 西安交通大学 一种无机粘土阵列的制备方法及应用
CN113471529A (zh) * 2021-06-29 2021-10-01 江西瑞马新能源材料技术有限公司 一种使用寿命长的固态硅锂电池制备方法
CN113471542A (zh) * 2021-05-17 2021-10-01 香港科技大学 一种固态锂电池及其制备方法
CN113517469A (zh) * 2021-04-20 2021-10-19 中国科学院宁波材料技术与工程研究所 一种单一相致密聚合物电解质的制备方法、产品及应用
CN113583243A (zh) * 2021-06-10 2021-11-02 深圳市贝特瑞新能源技术研究院有限公司 聚合物电解质、聚合物电解质膜的制备方法及锂离子电池
CN113603937A (zh) * 2021-08-10 2021-11-05 复旦大学 纤维素气凝胶-明胶固态电解质薄膜材料、超组装方法、瞬态Zn-MnO2二次电池系统
CN113725445A (zh) * 2021-08-17 2021-11-30 中国科学院上海微系统与信息技术研究所 一种高效能的全固态钠-氧-水电池
CN113745653A (zh) * 2021-08-31 2021-12-03 西安交通大学 一种基于pvdf-hfp聚合物固体电解质的原位固态电池制备方法
CN114069032A (zh) * 2020-07-30 2022-02-18 广汽埃安新能源汽车有限公司 聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用
CN114335437A (zh) * 2021-12-17 2022-04-12 双登集团股份有限公司 一种固态锂离子电池极片的制备方法
CN114335700A (zh) * 2022-01-13 2022-04-12 湖南立方新能源科技有限责任公司 一种固态电解质膜及其制备方法、二次电池以及制备方法
CN114447417A (zh) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 改性无机快离子导体及其制备方法和应用
CN114539513A (zh) * 2021-06-11 2022-05-27 电子科技大学 一种锂电池固体电解质及其制备方法、锂电池结构
CN114539451A (zh) * 2022-03-09 2022-05-27 中国地质大学(武汉) 富含羟基的单离子导体聚合物SPVA-Li及其制备方法和应用
CN114566622A (zh) * 2022-02-28 2022-05-31 郑州大学 一种柔性可充电准固态镍-铁电池的制备方法
CN114628778A (zh) * 2022-03-15 2022-06-14 北京理工大学 一种实现全固态锂电池室温运行的固态电解质、其制备及应用
CN114634648A (zh) * 2022-03-11 2022-06-17 安徽大学 一种固态聚合物电解质薄膜的制备方法
CN114976231A (zh) * 2022-06-06 2022-08-30 中南大学 提升锂离子电池聚合物固态电解质离子电导率的方法及其制备的固态电解质、电池
CN115000499A (zh) * 2022-05-24 2022-09-02 福州大学 一种氟化物复合的固态电解质膜及其制备方法和应用其的固态钠电池
CN115058002A (zh) * 2022-06-14 2022-09-16 温州大学 一种羧基化的衣康酸聚乙二酯类固态电解质材料及其应用
CN115818611A (zh) * 2022-12-13 2023-03-21 大连融科储能集团股份有限公司 一种掺Mg磷酸钒钠、掺Mg氟磷酸钒钠、其制备方法及用途
CN116525926A (zh) * 2023-07-04 2023-08-01 北京卫蓝新能源科技有限公司 氧化物固态电解质分散液及其制备方法和应用
CN117096439A (zh) * 2023-08-15 2023-11-21 湖南法恩莱特新能源科技有限公司 一种高安全锂电池电解液及其制备方法
CN117558976A (zh) * 2024-01-11 2024-02-13 安徽盟维新能源科技有限公司 全浓度梯度复合固态电解质膜及其制备方法和应用
CN117577930A (zh) * 2023-12-29 2024-02-20 国联汽车动力电池研究院有限责任公司 一种固态电解质膜及其制备方法
CN117720132A (zh) * 2024-02-07 2024-03-19 四川易纳能新能源科技有限公司 一种硫酸铁钠及其制备方法与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451639A (zh) * 2020-03-25 2021-09-28 深圳格林德能源集团有限公司 一种固态电解质膜及其制备方法
CN113161605A (zh) * 2021-04-26 2021-07-23 华南师范大学 有机无机复合固态电解质材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421190A (zh) * 2013-07-23 2013-12-04 中南大学 一种梳形聚硅氧烷及其固体电解质、制备方法和应用
CN103500845A (zh) * 2013-10-08 2014-01-08 中南大学 一种交联聚合物基全固态电解质材料及交联聚氧乙烯醚的应用
CN104183867A (zh) * 2014-08-12 2014-12-03 中国科学院青岛生物能源与过程研究所 一种单离子导体纳米颗粒增强锂电池隔膜或聚合物电解质的制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226702B2 (en) * 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
KR20050024921A (ko) * 2003-09-05 2005-03-11 대한민국 (경상대학교 총장) 미세기공 고체 고분자전해질의 제조방법과 이를 이용한리튬/유황 이차전지
US9419307B2 (en) * 2011-11-22 2016-08-16 Jx Nippon Oil & Energy Corporation Organic electrolyte and organic electrolyte storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421190A (zh) * 2013-07-23 2013-12-04 中南大学 一种梳形聚硅氧烷及其固体电解质、制备方法和应用
CN103500845A (zh) * 2013-10-08 2014-01-08 中南大学 一种交联聚合物基全固态电解质材料及交联聚氧乙烯醚的应用
CN104183867A (zh) * 2014-08-12 2014-12-03 中国科学院青岛生物能源与过程研究所 一种单离子导体纳米颗粒增强锂电池隔膜或聚合物电解质的制备方法和应用

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110326136A (zh) * 2017-09-13 2019-10-11 辽宁星空钠电电池有限公司 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法
CN110326136B (zh) * 2017-09-13 2022-07-08 辽宁星空钠电电池有限公司 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法
CN110690496A (zh) * 2019-10-24 2020-01-14 西南大学 一种pfsa-k固态复合电解质隔膜及其制备方法和应用
CN110690496B (zh) * 2019-10-24 2023-04-18 西南大学 一种pfsa-k固态复合电解质隔膜及其制备方法和应用
CN112952190A (zh) * 2019-11-26 2021-06-11 恒大新能源技术(深圳)有限公司 复合电解质及其制备方法、固态电池
CN113130981A (zh) * 2019-12-30 2021-07-16 北京卫蓝新能源科技有限公司 一种聚硫酸酯类固态聚合物电解质及其在锂电池中的应用
CN113130981B (zh) * 2019-12-30 2022-09-20 北京卫蓝新能源科技有限公司 一种聚硫酸酯类固态聚合物电解质及其在锂电池中的应用
CN114069032B (zh) * 2020-07-30 2023-06-30 广汽埃安新能源汽车有限公司 聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用
CN114069032A (zh) * 2020-07-30 2022-02-18 广汽埃安新能源汽车有限公司 聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用
CN112271401A (zh) * 2020-10-23 2021-01-26 光鼎铷业(广州)集团有限公司 一种铷掺杂的无机-有机的锂电池复合涂覆型隔膜的制备方法
CN112341546A (zh) * 2020-10-27 2021-02-09 北京化工大学 一种氟化生物质膜材料的制备方法
CN114447417A (zh) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 改性无机快离子导体及其制备方法和应用
CN112490587B (zh) * 2020-11-17 2024-02-13 欣旺达动力科技股份有限公司 复合电解质隔膜及其制备方法和固态电池
CN112490587A (zh) * 2020-11-17 2021-03-12 欣旺达电动汽车电池有限公司 复合电解质隔膜及其制备方法和固态电池
CN112952192A (zh) * 2021-03-12 2021-06-11 上海交通大学 一种掺杂聚氨基薁的有机聚合物电解质薄膜的制备方法及其应用
CN112952192B (zh) * 2021-03-12 2022-07-29 上海交通大学 一种掺杂聚氨基薁的有机聚合物电解质薄膜的制备方法及其应用
CN113206291A (zh) * 2021-04-16 2021-08-03 华南理工大学 一种聚酰亚胺/聚氧化乙烯固态电解质复合膜、制备方法及应用
CN113517469B (zh) * 2021-04-20 2022-12-06 中国科学院宁波材料技术与工程研究所 一种单一相致密聚合物电解质的制备方法、产品及应用
CN113517469A (zh) * 2021-04-20 2021-10-19 中国科学院宁波材料技术与工程研究所 一种单一相致密聚合物电解质的制备方法、产品及应用
CN113471542A (zh) * 2021-05-17 2021-10-01 香港科技大学 一种固态锂电池及其制备方法
CN113583243A (zh) * 2021-06-10 2021-11-02 深圳市贝特瑞新能源技术研究院有限公司 聚合物电解质、聚合物电解质膜的制备方法及锂离子电池
CN113583243B (zh) * 2021-06-10 2022-07-19 深圳市贝特瑞新能源技术研究院有限公司 聚合物电解质、聚合物电解质膜的制备方法及锂离子电池
CN114539513B (zh) * 2021-06-11 2022-11-04 电子科技大学 一种锂电池固体电解质及其制备方法、锂电池结构
CN114539513A (zh) * 2021-06-11 2022-05-27 电子科技大学 一种锂电池固体电解质及其制备方法、锂电池结构
CN113451643B (zh) * 2021-06-15 2022-12-23 上海大学 酰胺基复合固态电解质的原位制备方法及其应用
CN113451643A (zh) * 2021-06-15 2021-09-28 上海大学 酰胺基复合固态电解质的原位制备方法及其应用
CN113471529B (zh) * 2021-06-29 2022-10-14 江西瑞马新能源材料技术有限公司 一种使用寿命长的固态硅锂电池制备方法
CN113471529A (zh) * 2021-06-29 2021-10-01 江西瑞马新能源材料技术有限公司 一种使用寿命长的固态硅锂电池制备方法
CN113471530A (zh) * 2021-07-28 2021-10-01 西安交通大学 一种无机粘土阵列的制备方法及应用
CN113603937B (zh) * 2021-08-10 2022-06-14 复旦大学 纤维素气凝胶-明胶固态电解质薄膜材料、超组装方法、瞬态Zn-MnO2二次电池系统
CN113603937A (zh) * 2021-08-10 2021-11-05 复旦大学 纤维素气凝胶-明胶固态电解质薄膜材料、超组装方法、瞬态Zn-MnO2二次电池系统
CN113725445B (zh) * 2021-08-17 2023-04-28 中国科学院上海微系统与信息技术研究所 一种高效能的全固态钠-氧-水电池
CN113725445A (zh) * 2021-08-17 2021-11-30 中国科学院上海微系统与信息技术研究所 一种高效能的全固态钠-氧-水电池
CN113745653A (zh) * 2021-08-31 2021-12-03 西安交通大学 一种基于pvdf-hfp聚合物固体电解质的原位固态电池制备方法
CN113745653B (zh) * 2021-08-31 2023-12-19 西安交通大学 一种基于pvdf-hfp聚合物固体电解质的原位固态电池制备方法
CN114335437A (zh) * 2021-12-17 2022-04-12 双登集团股份有限公司 一种固态锂离子电池极片的制备方法
CN114335700A (zh) * 2022-01-13 2022-04-12 湖南立方新能源科技有限责任公司 一种固态电解质膜及其制备方法、二次电池以及制备方法
CN114566622A (zh) * 2022-02-28 2022-05-31 郑州大学 一种柔性可充电准固态镍-铁电池的制备方法
CN114539451A (zh) * 2022-03-09 2022-05-27 中国地质大学(武汉) 富含羟基的单离子导体聚合物SPVA-Li及其制备方法和应用
CN114539451B (zh) * 2022-03-09 2022-11-08 中国地质大学(武汉) 富含羟基的单离子导体聚合物SPVA-Li及其制备方法和应用
CN114634648A (zh) * 2022-03-11 2022-06-17 安徽大学 一种固态聚合物电解质薄膜的制备方法
CN114628778A (zh) * 2022-03-15 2022-06-14 北京理工大学 一种实现全固态锂电池室温运行的固态电解质、其制备及应用
CN115000499A (zh) * 2022-05-24 2022-09-02 福州大学 一种氟化物复合的固态电解质膜及其制备方法和应用其的固态钠电池
CN114976231A (zh) * 2022-06-06 2022-08-30 中南大学 提升锂离子电池聚合物固态电解质离子电导率的方法及其制备的固态电解质、电池
CN115058002B (zh) * 2022-06-14 2023-11-14 温州大学 一种羧基化的衣康酸聚乙二酯类固态电解质材料及其应用
CN115058002A (zh) * 2022-06-14 2022-09-16 温州大学 一种羧基化的衣康酸聚乙二酯类固态电解质材料及其应用
CN115818611A (zh) * 2022-12-13 2023-03-21 大连融科储能集团股份有限公司 一种掺Mg磷酸钒钠、掺Mg氟磷酸钒钠、其制备方法及用途
CN116525926A (zh) * 2023-07-04 2023-08-01 北京卫蓝新能源科技有限公司 氧化物固态电解质分散液及其制备方法和应用
CN116525926B (zh) * 2023-07-04 2023-10-24 北京卫蓝新能源科技有限公司 氧化物固态电解质分散液及其制备方法和应用
CN117096439A (zh) * 2023-08-15 2023-11-21 湖南法恩莱特新能源科技有限公司 一种高安全锂电池电解液及其制备方法
CN117577930A (zh) * 2023-12-29 2024-02-20 国联汽车动力电池研究院有限责任公司 一种固态电解质膜及其制备方法
CN117558976A (zh) * 2024-01-11 2024-02-13 安徽盟维新能源科技有限公司 全浓度梯度复合固态电解质膜及其制备方法和应用
CN117558976B (zh) * 2024-01-11 2024-04-09 安徽盟维新能源科技有限公司 全浓度梯度复合固态电解质膜及其制备方法和应用
CN117720132A (zh) * 2024-02-07 2024-03-19 四川易纳能新能源科技有限公司 一种硫酸铁钠及其制备方法与应用
CN117720132B (zh) * 2024-02-07 2024-05-03 四川易纳能新能源科技有限公司 一种硫酸铁钠及其制备方法与应用

Also Published As

Publication number Publication date
EP3258532A4 (en) 2018-10-17
EP3258532B1 (en) 2020-12-16
EP3258532A1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2016127786A1 (zh) 一种全固态聚合物电解质及其制备和应用
CN105591154B (zh) 聚碳酸酯类全固态聚合物电解质及其构成的全固态二次锂电池及其制备和应用
Inoue et al. Are all-solid-state lithium-ion batteries really safe?–verification by differential scanning calorimetry with an all-inclusive microcell
CN107732293B (zh) 类三明治结构固态聚合物电解质膜的制备方法及其在固态锂离子电池中的应用
WO2020073915A1 (zh) 锂离子电池负极材料及非水电解质电池
CN104362296B (zh) 一种新型硫基材料电极及其制备方法与应用
JP2019204765A (ja) 全固体リチウムイオン電池の作り方
CN109244443A (zh) 锂离子电池负极材料及非水电解质电池
CN103094611B (zh) 一种制备离子液体凝胶电解质的方法
CN103855431B (zh) 一种提高锂离子电池循环性能的化成方法
CN107346834A (zh) 无锂盐添加复合固态电解质材料、电解质膜及其制备方法
CN105870449B (zh) 一种全固态锂-空气电池复合正极材料及全固态锂-空气电池
CN109346767A (zh) 一种固态聚合物电解质及其在锂金属电池中的应用
Jiang et al. Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes
CN102709597A (zh) 一种复合全固态聚合物电解质锂离子电池及其制备方法
CN110707294B (zh) 一种亲锂杂原子和金属氧化物共掺杂的三维纤维框架锂电池负极及制备
CN106252663A (zh) 金属有机骨架材料CuBDC纳米片及其制备方法和应用
Kou et al. Enhanced ionic conductivity of novel composite polymer electrolytes with Li1. 3Al0. 3Ti1. 7 (PO4) 3 NASICON-type fast ion conductor powders
CN111952670A (zh) 一种具有宽工作温度范围的锂离子电池
Wang et al. A dendrite-suppressed flexible polymer-in-ceramic electrolyte membrane for advanced lithium batteries
CN105789561B (zh) 一种锂-多硫化物二次电池的制备方法
CN110112459B (zh) 一种硫化物固态电解质以及全固态锂硫电池的制备方法
KR20170060225A (ko) 고체 고분자 전해질 및 이를 포함하는 리튬 이차전지
CN103268955B (zh) 一种复合凝胶聚合物电解质及其制备方法与应用
Li et al. Composite solid electrolyte with Li+ conducting 3D porous garnet-type framework for all-solid-state lithium batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748587

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016748587

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE