WO2020073915A1 - 锂离子电池负极材料及非水电解质电池 - Google Patents

锂离子电池负极材料及非水电解质电池 Download PDF

Info

Publication number
WO2020073915A1
WO2020073915A1 PCT/CN2019/110100 CN2019110100W WO2020073915A1 WO 2020073915 A1 WO2020073915 A1 WO 2020073915A1 CN 2019110100 W CN2019110100 W CN 2019110100W WO 2020073915 A1 WO2020073915 A1 WO 2020073915A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
negative electrode
lithium ion
ion battery
solid
Prior art date
Application number
PCT/CN2019/110100
Other languages
English (en)
French (fr)
Inventor
张健
楼晓鸣
陈少海
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020073915A1 publication Critical patent/WO2020073915A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a lithium ion battery anode material and a non-aqueous electrolyte battery.
  • lithium ion batteries Due to the advantages of high power density and high energy density, lithium ion batteries are recognized as a very promising energy source for electric vehicles. Especially with the popularization of new energy vehicles, the research and development of power batteries has become the key to the rapid development of new energy. However, there is still a lack of power batteries with excellent performance in the market, and electrode materials are the key factors affecting power batteries.
  • commercial lithium-ion batteries mostly use graphite as the negative electrode material and liquid organic solutions as the electrolyte.
  • Graphite has the advantages of high theoretical capacity (372mAh g -1 ), long cycle life, low cost, etc. However, its working potential is very low, there is a risk of battery short circuit during large-rate charge and discharge, there is a risk of burning the battery Security risks.
  • the low lithium ion diffusion coefficient of graphite itself will lead to poor rate performance, hindering the application of graphite in high-performance lithium-ion batteries.
  • the migration rate of lithium ions in graphite is low, the diffusion coefficient is small, and the high overpotential caused by fast charging and large current will cause the negative electrode potential of graphite to become more negative. It will become larger, increasing the hidden safety of the battery.
  • the heat generated by the system is increased, the instability of the liquid organic electrolyte is increased, and it is easier to decompose, making the cycle stability of the lithium ion battery worse. Therefore, it is very urgent to develop anode materials with excellent electrochemical performance and high safety performance.
  • Li 4 Ti 5 O 12 material has been extensively studied.
  • the material has a safe working potential, good cycle performance, and is modified to meet the needs of safe, stable, and fast charge and discharge, but its inherent low theoretical capacity (only 175mAh g -1 ) limits its high-performance lithium ion Battery applications.
  • M-Nb-O anode materials have attracted attention because of their high theoretical capacity and safe working potential.
  • M-Nb-O material also has a safe working potential (Nb 3+ / Nb 4+ and Nb 4+ / Nb 5+ ), but due to Nb 3+ and Nb 5+ There are two electrons transferred between them, so the M-Nb-O material has a higher theoretical capacity.
  • M-Nb-O material has a more open space structure than Li 4 Ti 5 O 12 and is more conducive to the conduction of ions and electrons, so M-Nb-O material has better electrochemical performance.
  • the object of the present invention is to provide a negative electrode material for a lithium ion battery, a preparation method thereof and a non-aqueous electrolyte battery.
  • the negative electrode material of the lithium ion battery has good electrochemical performance and avoids the lithium dendrite problem.
  • the embodiments of the present invention provide a negative electrode material for lithium ion batteries, the chemical formula of which is M x Nb y O z , where M represents a positive divalent non-niobium metal ion, and 0 ⁇ x ⁇ 3, 1 ⁇ y ⁇ 34, 3 ⁇ z ⁇ 87.
  • the M includes one or more of Zn, Cu, Mg, Ni, Mn, Co, Ca, Fe, Sr, Sn, Pb, Ba, and Hg.
  • the M x Nb y O z is one of M 2 Nb 34 O 87 , MNb 8 O 21 , M 1/3 Nb 74/3 O 62 , MNb 20 O 51 Kind or several.
  • the M x Nb y O z is Zn 2 Nb 34 O 87 , Cu 2 Nb 34 O 87 , Mg 2 Nb 34 O 87 , Ca 2 Nb 34 O 87 , CuNb 8 O 21 , ZnNb 8 O 21 , MgNb 8 O 21 , CaNb 8 O 21 , Cu 1/3 Nb 74/3 O 62 , Zn 1/3 Nb 74/3 O 62 , Mg 1/3 Nb 74/3 O 62 , Ca 1/3 Nb 74/3 O 62 , CuNb 20 O 51 , ZnNb 20 O 51 , MgNb 20 O 51 , CaNb 20 O 51 one or more.
  • the anode material of the lithium ion battery has a single pure phase structure, and its crystal structure is a sheared ReO 3 structure.
  • the lithium ion battery anode material M x Nb y O z provided by the present invention has the advantages of high theoretical specific capacity, high safety performance, high reversible specific capacity, high coulombic efficiency and excellent cycle performance.
  • the negative electrode material M x Nb y O z provided by the present invention can improve the charge rate performance of lithium ion batteries and solve many problems faced by using traditional liquid electrolyte and graphite negative electrode materials during the charging process of lithium ion batteries, such as liquid The electrolyte is unstable and the lithium dendrite problem is serious.
  • the negative electrode material M x Nb y O z can be used as an electrode material for a new non-aqueous electrolyte battery, which solves the problem of restricting the development of high-performance non-aqueous electrolyte batteries due to the lack of M-Nb-O materials to choose from.
  • M-Nb-O materials to choose from.
  • the invention also provides several preparation methods of the above-mentioned lithium ion battery anode material M x Nb y O z , including solid phase method, electrospinning method and template method. The following are the specific steps of each preparation method.
  • the temperature is 110011400 ° C and the high-temperature sintering time is 315h.
  • the source of metal M includes oxide M and / or M salt; the salt of M includes acetylacetone M and / or acetate M; the source of niobium includes niobium pentoxide, niobium powder, niobium oxalate and niobium alcohol One or more.
  • the electrospinning method includes the following steps:
  • Step 1 Add metal M source, anti-hydrolysis agent and binder to organic solution and mix to form M precursor solution;
  • Step 2 Dissolve the niobium source in the organic solution to form a niobium precursor solution
  • Step 4 Dry and sinter the fibers obtained in Step 3 in sequence to obtain M x Nb y O z powder.
  • the source of metal M includes oxide M and / or M salt; the salt of M includes acetylacetone M and / or acetate M; the source of niobium includes niobium pentoxide, niobium powder, niobium oxalate and niobium alcohol One or more; the anti-hydrolysis agent includes acetic acid and / or citric acid; the binder includes polyvinylpyrrolidone and / or polyacrylonitrile; the organic solvent includes N, N-dimethylformamide And / or ethanol.
  • the conditions of the electrospinning include: the needle diameter is 22G, the syringe capacity is 15ml, the distance between the needle and the receiving plate is 15cm, the ejection speed is 1ml / h, and the voltage is 18KV.
  • the drying temperature is 80 ° C; the sintering temperature is 85011400 ° C, and the sintering time is 315h.
  • the metal M source includes M salt; the M salt includes one or more of acetylacetone M, chloride M and acetate M; the niobium source includes niobium powder, niobium oxalate and niobium alcohol One or more types; the organic solvent includes N, N-dimethylformamide and / or ethanol.
  • the drying temperature is 80 ° C; the sintering temperature is 80011300 ° C, and the sintering time is 315h.
  • the above polystyrene template can be prepared by, but not limited to, the following steps: preparing a monodisperse polystyrene emulsion using a soap-free emulsion method; and then preparing a monodisperse polystyrene emulsion into a colloidal crystal at a temperature of 60 ° C by an evaporation self-assembly method template.
  • the above-mentioned solid method, electrospinning method and template method are easy to obtain raw materials, and the operation is simple and convenient, which is suitable for mass production of the lithium ion battery anode material M x Nb y O z .
  • the present invention also provides a non-aqueous electrolyte lithium-ion battery, which includes a positive electrode material, a non-aqueous electrolyte, and a negative electrode material of the above-mentioned lithium-ion battery.
  • the non-aqueous electrolyte lithium ion battery includes one or more of a liquid non-aqueous electrolyte battery, a gel-state non-aqueous electrolyte battery, and a solid-state non-aqueous electrolyte battery.
  • non-aqueous electrolyte lithium ion batteries including liquid non-aqueous electrolyte, gel-state non-aqueous electrolyte, and solid non-aqueous electrolyte include, but are not limited to, the following components: negative electrode, positive electrode, non-aqueous electrolyte, separator, and outer packaging components.
  • the negative electrode of the non-aqueous electrolyte battery includes: a current collector, a negative electrode material, a conductive agent and a binder;
  • the current collector includes copper, nickel, stainless steel, aluminum, or an aluminum alloy containing other metals;
  • the negative electrode material includes an electrode material provided by the present invention, at least one of graphite, lithium metal, and lithium titanate;
  • the conductive agent includes at least one of carbon black, graphite, and acetylene black;
  • the binder includes a poly At least one of tetrafluoroethylene, polyvinylidene fluoride, and fluorine-based rubber;
  • the mass ratio of the negative electrode material is not less than 65%, and the conductive agent The mass ratio is not less than 2%.
  • the positive electrode of the non-aqueous electrolyte battery includes: a current collector, a positive electrode material, a conductive agent, and a binder; the current collector includes aluminum, or an aluminum alloy containing other metals; and the positive electrode material includes oxides and sulfides And one or more of polymers; specifically, the oxides include lithium manganese composite oxides (for example, Li X Mn 2 O 4 ), lithium nickel composite oxides (for example, LiNi 2 O 4 ), lithium Cobalt composite oxide (for example, Li a CoO 2 ), lithium nickel cobalt composite oxide (for example, LiNi 1-b Co b O 2 ), lithium manganese nickel composite oxide (for example, LiMn 2-b Ni b O 2 , LiMn 2-b Ni b O 4 ), lithium manganese cobalt composite oxide (for example, Li a Mn b Co 1-b O 2 ), lithium phosphate (for example, Li a FePO 4 , Li a MPO 4 , Li 2 MPO 4
  • the non-aqueous electrolyte of the non-aqueous electrolyte battery includes one or more of liquid non-aqueous electrolyte, gel-state non-aqueous electrolyte, and solid non-aqueous electrolyte.
  • the liquid non-aqueous electrolyte is prepared by dissolving the electrolyte in an organic solvent
  • the gel-state non-aqueous electrolyte is prepared by forming a composite of a liquid electrolyte and a polymer material.
  • the electrolyte includes a lithium salt or a mixture thereof, including lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenide, lithium trifluoromethanesulfonate, and bis (trifluoromethylsulfonyl) imide Lithium;
  • the organic solvent includes cyclic carbonates, linear carbonates, cyclic ethers, linear ethers, acetonitrile, and sulfolane;
  • the cyclic carbonates include propylene carbonate, ethylene carbonate, or vinylene carbonate;
  • the linear carbonate includes diethyl carbonate, dimethyl carbonate or dimethyl carbonate;
  • the cyclic ethers include tetrahydrofuran, 2-methyltetrahydrofuran or dioxane;
  • the linear ether includes dimethyl ethyl Alkane or diethoxyethane.
  • the membrane includes a porous membrane; the porous membrane is composed of polyethylene, polypropylene, cellulose, or polyvinylidene fluoride.
  • the solid non-aqueous electrolyte lithium ion battery in the non-aqueous electrolyte lithium ion battery is manufactured by the following steps:
  • the lamination process is used to assemble the positive and negative plates to produce a solid non-aqueous electrolyte lithium ion battery.
  • the curing temperature of the positive electrode sheet is 601150 ° C and the curing time is 2111h; the curing temperature of the negative electrode curing material and the negative electrode sheet is 701160 ° C and the curing time is 701350s.
  • the content of the positive electrode material is 65% 185%, and the content of the conductive agent is 2% 15%.
  • the content of solid non-aqueous electrolyte is 10% 133%; based on the total mass of the negative electrode sheet is 100%, the content of the negative electrode material is 65% 185%, the content of the conductive agent is 2% 15%, so The content of the solid non-aqueous electrolyte is 10% to 133%.
  • the lamination process assembly is performed at room temperature, and the lamination pressure is 3001600 MPa.
  • the outsourcing component may be cylindrical, square, button-shaped, etc., and the shape may be designed according to specific needs and applied in portable devices or electric vehicles.
  • M x Nb y O z material is used as a negative electrode material in a non-aqueous electrolyte lithium ion battery for the first time, especially an all-solid-state lithium ion battery, which utilizes the characteristics of solid electrolyte stability and not easy to decompose, under the condition of large current charging, The cycle stability of the battery is significantly improved and it is resistant to high voltages.
  • the preparation method of the non-aqueous electrolyte lithium ion battery provided by the present invention is simple in process, convenient in operation, low in production cost, and easy for large-scale industrial production.
  • the present invention has the following beneficial effects:
  • the M x Nb y O z electrode material provided by the present invention as a non-aqueous electrolyte battery anode material has the advantages of high theoretical specific capacity, high safety performance, high reversible specific capacity, high coulombic efficiency and excellent cycle performance;
  • the M x Nb y O z electrode material provided by the present invention has a simple preparation and synthesis process, is suitable for large-scale preparation, and has broad development in the field of non-aqueous electrolyte batteries;
  • the present invention provides more options for the use of M-Nb-O materials for the anode material of non-aqueous electrolyte batteries, and has broad application prospects in the field of non-aqueous electrolyte batteries for portable devices and electric vehicles, accelerating both The promotion of battery, especially promoted the development of all solid-state lithium-ion batteries.
  • Example 1 is an XRD pattern of Zn 2 Nb 34 O 87 obtained in Example 1 and Example 43;
  • Example 2 is an XRD pattern of Cu 2 Nb 34 O 87 obtained in Example 2 and Example 60;
  • Example 3 is an XRD pattern of Mg 1/3 Nb 74/3 O 62 and Cu 1/3 Nb 74/3 O 62 obtained in Example 5 and Example 6;
  • Example 4 is an electron microscope photograph of Zn 2 Nb 34 O 87 obtained in Example 1;
  • Example 5 is an electron microscope photograph of Cu 2 Nb 34 O 87 obtained in Example 2;
  • Example 6 is an electron microscope photograph of Zn 2 Nb 34 O 87 obtained in Example 43;
  • Example 7 is an electron microscope photograph of Cu 2 Nb 34 O 87 obtained in Example 60;
  • Example 8 is a graph of rate performance of the Zn 2 Nb 34 O 87 half-cell obtained in Example 1;
  • Example 9 is a graph of the rate performance of the Zn 2 Nb 34 O 87 half-cell obtained in Example 43;
  • Example 10 is a graph of rate performance of the Cu 2 Nb 34 O 87 half-cell obtained in Example 2;
  • Example 11 is a graph of rate performance of the Cu 2 Nb 34 O 87 half-cell obtained in Example 60;
  • Example 14 is a graph of rate performance of the Zn 2 Nb 34 O 87 / LiFePO 4 all-solid-state battery obtained in Example 84;
  • Example 15 is a graph of rate performance of the Cu 2 Nb 34 O 87 / LiFePO 4 all-solid-state battery obtained in Example 86;
  • Example 16 is a graph of rate performance of the Mg 1/3 Nb 74/3 O 62 / LiFePO 4 all-solid-state battery obtained in Example 92;
  • Example 17 is a graph showing the cycle performance of the Mg 1/3 Nb 74/3 O 62 / LiFePO 4 all-solid-state battery obtained in Example 92 at 10C;
  • Example 20 is a graph showing the cycle performance of the CaNb 20 O 5 / LiNi 0.5 Mn 1.5 O 4 all-solid-state battery obtained in Example 30 at 10C;
  • Example 21 is a graph of the cycle performance of the ZnNb 8 O 21 / LiNi 0.5 Mn 1.5 O 4 all-solid-state battery obtained in Example 34 at 10C.
  • each raw material used in the preparation method is commercially available unless otherwise specified.
  • Example 1142 provides a method for preparing M x Nb y O z electrode material by a solid phase method, as follows:
  • This embodiment provides a method for preparing a Zn 2 Nb 34 O 87 electrode material by a solid phase method, which includes the following steps:
  • Zinc oxide and niobium pentoxide are mixed according to the element molar ratio of 1:17 by high energy ball mill ball milling method, and then sintered at 1200 °C for 4 hours to obtain Zn 2 Nb 34 O 87 powder.
  • This embodiment provides a method for preparing a Cu 2 Nb 34 O 87 electrode material by a solid phase method, which includes the following steps:
  • Cu 2 Nb 34 O 87 powder After mixing copper oxide and niobium pentoxide according to the element molar ratio of 1:17, using a high energy ball mill ball milling method, and sintering at 1100 ° C for 4 hours, Cu 2 Nb 34 O 87 powder can be obtained.
  • This embodiment provides a method for preparing MgNb 20 O 51 electrode material by a solid phase method, which includes the following steps:
  • MgNb 20 O 51 powder After mixing magnesium oxide and niobium pentoxide according to the element molar ratio of 1:20, using a high-energy ball mill ball mill method, and sintering at 1200 ° C for 4 hours, MgNb 20 O 51 powder can be obtained.
  • This embodiment provides a method for preparing a CaNb 20 O 51 electrode material by a solid phase method, which includes the following steps:
  • Calcium oxide and niobium pentoxide are mixed according to the element molar ratio of 1:20 using a high-energy ball mill ball mill method, and sintered at 1200 ° C for 4 hours to obtain CaNb 20 O 51 powder.
  • This embodiment provides a method for preparing a Mg 1/3 Nb 74/3 O 62 electrode material by a solid phase method, which includes the following steps:
  • Magnesium oxide and niobium pentoxide are mixed according to the element molar ratio of 1:74 by high energy ball mill ball milling method, and sintered at 1200 ° C for 4 hours to obtain Mg 1/3 Nb 74/3 O 62 powder.
  • This embodiment provides a method for preparing Cu 1/3 Nb 74/3 O 62 electrode material by a solid phase method, which includes the following steps:
  • Copper oxide and niobium pentoxide are mixed according to the element molar ratio of 1:74 by high energy ball mill ball milling method, and sintered at 1200 °C for 4h to obtain Cu 1/3 Nb 74/3 O 62 powder.
  • the present invention also provides a method for preparing M x Nb y O z electrode materials by using a solid phase method with an M source and a niobium source in Example 7142.
  • Materials and mixing ratios of each M source and niobium source in Example 7142, sintering temperature and sintering Table 1 shows the time and final product.
  • Example 43159 provides a method for preparing M x Nb y O z electrode material by electrospinning, as follows:
  • This embodiment provides a method for preparing Zn 2 Nb 34 O 87 electrode material by electrospinning, which includes the following steps:
  • This embodiment provides a method for preparing an MgNb 20 O 51 electrode material by electrostatic spinning, which includes the following steps:
  • the present invention also provides a method for preparing M x Nb y O z electrode material by electrospinning method using M source and niobium source in Example 45159.
  • the materials of each M source and niobium source in Example 45159, anti-hydrolysis agent, adhesion The mixing ratio of the agent and organic solvent, sintering temperature, sintering time and final product are shown in Table 2.
  • Example 60176 provides a method for preparing an M x Nb y O z electrode material using a template method, as follows:
  • This embodiment provides a method for preparing Cu 2 Nb 34 O 87 electrode material using a template method, which includes the following steps:
  • the monodisperse polystyrene emulsion is prepared as a colloidal crystal template at 60 ° C by the evaporation self-assembly method;
  • This embodiment provides a method for preparing a CaNb 8 O 21 electrode material using a template method, which includes the following steps:
  • the monodisperse polystyrene emulsion is prepared as a colloidal crystal template at 60 ° C by the evaporation self-assembly method;
  • the present invention also provides a method for preparing M x Nb y O z electrode material by electrospinning method using M source and niobium source in Example 62179, the mixing ratio of each M source, niobium source material, and organic solvent in Example 62179, The sintering temperature, sintering time and final product are shown in Table 3.
  • Example 1179 different M x Nb y O z electrode materials were prepared by different methods, and the Zn 2 Nb 34 O 87 and Cu 2 Nb prepared in Examples 1, 2, 43 and 60 were tested using XRD and electron microscope 34 O 87 The crystal form and morphology of the electrode material.
  • 1 shows the XRD pattern of Zn 2 Nb 34 O 87 prepared in Example 1 and Example 43;
  • FIG. 2 shows the XRD pattern of Cu 2 Nb 34 O 87 prepared in Example 2 and Example 60;
  • 3 shows the XRD patterns of Mg 1/3 Nb 74/3 O 62 and Cu 1/3 Nb 74/3 O 62 obtained in Example 5 and Example 6. As shown in FIG.
  • the Zn 2 Nb 34 O 87 materials prepared by the solid-phase method in Example 1 and the electro-spinning method in Example 43 are pure, indicating that both the solid-phase method and the electro-spinning method can be successfully prepared Zn 2 Nb 34 O 87 material, as shown in FIG. 2, the Cu 2 Nb 34 O 87 material made by the solid phase method in Example 2 and the template method in Example 60 are pure, indicating that both the solid phase method and the template method The Cu 2 Nb 34 O 87 material can be successfully prepared, as shown in FIG.
  • Example 3 the Mg 1/3 Nb 74/3 O 62 prepared in Example 5 and the Cu 1/3 Nb 74/3 O prepared in Example 6
  • the 62 materials are pure, indicating that the solid phase method can successfully prepare Mg 1/3 Nb 74/3 O 62 and Cu 1/3 Nb 74/3 O 62 materials.
  • FIG. 4 shows a embodiment employing Zn 2 Nb 34 O 87 electron micrograph of material prepared in Example 1, FIG. 4, Example 1 was Zn 2 Nb 34 O 87 material of irregular shape, particle size Between 315 microns.
  • FIG. 5 shows a Cu 2 obtained in Example 2 Nb 34 O 87 electron micrograph of the material shown in Figure 5, obtained in Example 2 Cu 2 Nb 34 O 87 material of irregular shape, particle size Between 315 microns.
  • FIG 6 shows a Zn prepared as described in Example 43 2 Nb 34 O 87 material is an electron micrograph, shown in Figure 6, embodiments Zn 2 Nb 34 O 87 material prepared in Example 43 is one-dimensional line structure, the fiber The size is around 100 nanometers.
  • FIG. 7 shows 2 Nb 34 O electron micrograph of Cu prepared as described in Example 60 of material 87, as shown in Figure 7, Example 60 is prepared Cu 2 Nb 34 O 87 material is ordered macroporous structure,
  • Example 80183 tested the electrochemical performance of M x Nb y O z electrode materials prepared by different methods, as follows:
  • This embodiment provides a non-aqueous electrolyte lithium ion half-cell prepared by Zn 2 Nb 34 O 87 prepared by a solid-phase method, specifically,
  • Zn 2 Nb 34 O 87 prepared by the solid-phase method of Example 1 is a positive electrode active material, a lithium sheet is a negative electrode, a polyethylene separator, and lithium hexafluorophosphate is an electrolyte salt prepared non-aqueous electrolyte lithium ion half-cell;
  • the above non-aqueous electrolyte lithium ion half-cells were charged and discharged in the voltage range of 0.8V ⁇ 3V, the first discharge capacity can reach 275mAh / g, and can be cycled stably 500 times at 10C.
  • This embodiment provides a non-aqueous electrolyte lithium ion half-cell prepared by Zn 2 Nb 34 O 87 prepared by electrostatic spinning, specifically,
  • Zn 2 Nb 34 O 87 prepared by the electrospinning method of Example 43 is a positive active material, a lithium sheet is a negative electrode, a polyethylene separator, and lithium hexafluorophosphate is an electrolyte salt prepared non-aqueous electrolyte lithium ion half-cell;
  • non-aqueous electrolyte lithium ion half-cells were charged and discharged in the voltage range of 0.8V to 3V, and the first discharge capacity was up to 328mAh / g, which could be cycled stably 500 times at 10C.
  • This embodiment provides a non-aqueous electrolyte lithium ion half-cell prepared by a solid phase method of Cu 2 Nb 34 O 87 , specifically,
  • a non-aqueous electrolyte lithium ion half-cell prepared by using the solid phase method of Example 2 to prepare Cu 2 Nb 34 O 87 as a positive electrode active material, a lithium sheet as a negative electrode, a polyethylene separator, and lithium hexafluorophosphate as an electrolyte salt;
  • the above-mentioned non-aqueous electrolyte lithium ion half-cells were charged and discharged in the voltage range of 0.8V ⁇ 3V, the first discharge capacity can reach 286mAh / g, and can be stably cycled 500 times at 10C.
  • This embodiment provides a non-aqueous electrolyte lithium ion half-cell prepared by the Cu 2 Nb 34 O 87 prepared by the template method, specifically,
  • a non-aqueous electrolyte lithium ion half-cell prepared by using the template method of Example 60, Cu 2 Nb 34 O 87 as a positive electrode active material, a lithium sheet as a negative electrode, a polyethylene separator, and lithium hexafluorophosphate as an electrolyte salt;
  • non-aqueous electrolyte lithium ion half-cells were charged and discharged in the voltage range of 0.8V to 3V, and the first discharge capacity was up to 339mAh / g, which could be cycled steadily 500 times at 10C.
  • Example 8 and 9 are graphs of rate performance of the Zn 2 Nb 34 O 87 materials obtained in Example 1 and Example 43, respectively. It can be seen from FIG. 8 that the Zn 2 Nb 34 O 87 material prepared by the solid-phase method in Example 1 has a charge-discharge coulombic efficiency of 98.2% for the first time at a 0.1C rate, a reversible specific capacity of 274mAh g -1 , and a reversible specific capacity of 10C rate. 162mAh g -1 . It can be seen from FIG.
  • FIG. 10 and FIG. 11 are graphs of rate performance of the Cu 2 Nb 34 O 87 materials obtained in Example 2 and Example 60, respectively. It can be seen from Fig.
  • the Cu 2 Nb 34 O 87 material prepared by the solid-phase method has a charge-discharge coulombic efficiency of 87.2% for the first time at a 0.1C rate, a reversible specific capacity of 294mAh g -1 , and a reversible specific capacity of 108.8mAh g at a 10C rate. -1 .
  • a template obtained by Method 2 Nb 34 O 87 Cu material first charge-discharge coulombic efficiency of 92.3% at 0.1C rate, the reversible specific capacity of 321mAh g -1, still reversible specific capacity 232mAh g at 10C rate - 1 .
  • Example 12 and 13 are the cycle performance graphs of Zn 2 Nb 34 O 87 and Cu 2 Nb 34 O 87 obtained in Example 1, Example 43, Example 2, and Example 60 at 10C. It can be seen from FIG. 12 that the Zn 2 Nb 34 O 87 material obtained by the solid-phase method of Example 1 has a capacity of 87.1% after 500 cycles at 10C. The Cu 2 Nb 34 O 87 material produced by the electrospinning method in Example 43 has a capacity of 89.1% after 500 cycles at 10C. It can be seen from FIG. 13 that the Cu 2 Nb 34 O 87 material obtained by the solid-phase method of Example 2 has a capacity of 86.4% after 500 cycles at 10C.
  • Example 60 the Cu 2 Nb 34 O 87 material prepared by the template method has a capacity of 88.9% after 500 cycles at 10C. It can be seen that the M x Nb y O z electrode materials prepared by the above three methods have excellent electrochemical performance and are very suitable for application in high-performance non-aqueous electrolyte batteries.
  • the following embodiments provide an all-solid-state lithium-ion non-aqueous electrolyte lithium-ion battery using M x Nb y O z electrode material as the anode material.
  • Embodiment 84195 provides a preparation method of an all-solid-state lithium ion battery using M x Nb y O z electrode material as a negative electrode material, as follows:
  • the lamination process is used to assemble the positive and negative plates to produce a solid non-aqueous electrolyte lithium ion battery.
  • the curing temperature of the positive electrode sheet is 601150 ° C and the curing time is 2111h; the curing temperature of the negative electrode curing material and the negative electrode sheet is 701160 ° C and the curing time is 601300s.
  • Zn 2 Nb 34 O 87 prepared by solid-phase method is a negative electrode active material
  • LiFePO 4 is a positive electrode active material
  • sulfide Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 is an all-solid-state battery prepared from a solid electrolyte.
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V ⁇ 3V.
  • the test results are shown in Figure 14.
  • the first-time discharge capacity of the all-solid-state battery can reach 113mAh / g, which can be cycled stably at 10C. 40 Times.
  • Zn 2 Nb 34 O 87 prepared by electrospinning is the negative electrode active material
  • LiFePO 4 is the positive electrode active material
  • the sulfide Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 is an all-solid-state battery prepared from a solid electrolyte.
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V to 3V, and the first discharge capacity was up to 116mAh / g, which could be cycled steadily 55 times.
  • Cu 2 Nb 34 O 87 prepared by solid-phase method is a negative electrode active material
  • LiFePO 4 is a positive electrode active material
  • sulfide Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 is an all-solid-state battery prepared from a solid electrolyte.
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V ⁇ 3V.
  • the test results are shown in Figure 15.
  • the first-time discharge capacity of the all-solid-state battery can reach 108mAh / g and can be cycled steadily 60 times.
  • Cu 2 Nb 34 O 87 prepared by the template method is a negative electrode active material
  • LiFePO 4 is a positive electrode active material
  • sulfide Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 is an all-solid-state battery prepared from a solid electrolyte.
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V ⁇ 3V, the first discharge capacity can reach 121mAh / g, and it can be cycled steadily 85 times.
  • the MgNb 20 O 51 prepared by electrospinning is a negative electrode active material
  • LiFePO 4 is a positive electrode active material
  • the sulfide Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 is an all-solid-state battery prepared from a solid electrolyte.
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V to 3V, and the first discharge capacity was up to 102mAh / g, which could be cycled steadily 50 times.
  • MgNb 20 O 51 prepared by solid-phase method is a negative electrode active material
  • LiFePO 4 is a positive electrode active material
  • sulfide Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 is an all-solid-state battery prepared from a solid electrolyte.
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V ⁇ 3V, and the first discharge capacity can reach 96mAh / g, which can be cycled steadily 70 times.
  • CaNb 8 O 21 prepared by the template method is a negative electrode active material
  • LiFePO 4 is a positive electrode active material
  • sulfide Li 3 PS 4 is an all-solid-state battery prepared from a solid electrolyte
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V to 3V, and the first discharge capacity was up to 86mAh / g, which can be cycled steadily 55 times.
  • the CaNb 8 O 21 prepared by the template method is a negative electrode active material
  • LiFePO 4 is a positive electrode active material
  • the sulfide Li 3 PS 4 is an all-solid-state battery prepared from a solid electrolyte.
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V to 3V, and the first discharge capacity was up to 97mAh / g, which could be cycled steadily for 60 times.
  • Mg 1/3 Nb 74/3 O 62 prepared by solid-phase method is a negative electrode active material
  • LiFePO 4 is a positive electrode active material
  • sulfide Li 3 PS 4 is a solid-state battery prepared from a solid electrolyte.
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V ⁇ 3V.
  • the test results are shown in Figure 16.
  • the first discharge capacity of the all-solid-state battery can reach 114mAh / g, as shown in Figure 17, in It can circulate stably 80 times at 10C.
  • Cu 1/3 Nb 74/3 O 62 prepared by the solid-phase method is a negative electrode active material
  • LiFePO 4 is a positive electrode active material
  • the sulfide Li 9.54 Si 1.74 P 1.44 S 11.7 C l0.3 is a fully solid prepared from a solid electrolyte battery.
  • the above-mentioned all-solid-state lithium-ion battery was charged and discharged in the voltage range of 0.8V ⁇ 3V.
  • the test results are shown in Figure 18.
  • the first discharge capacity of the all-solid-state battery can reach 130mAh / g, as shown in Figure 19. 60 cycles at 10C.
  • the CaNb 20 O 5 prepared in Example 30 is used as a negative electrode active material, LiNi 0.5 Mn 1.5 O 4 is used as a positive electrode active material, and the sulfide Li 9.54 Si 1.74 P 1.44 S 11.7 C l0.3 is an all-solid-state battery prepared from a solid electrolyte.
  • the ZnNb 8 O 21 prepared in Example 34 is used as a negative electrode active material, LiNi 0.5 Mn 1.5 O 4 is used as a positive electrode active material, and the sulfide Li 9.54 Si 1.74 P 1.44 S 11.7 C l0.3 is an all-solid-state battery prepared from a solid electrolyte.

Abstract

本发明涉及锂离子电池技术领域,公开了一种锂离子电池负极材料及非水电解质电池。本发明中,所述锂离子电池负极材料的化学式通式为MxNbyOz,其中,M表示正二价的非铌金属离子,且0<x≤3,1≤y≤34,3≤z≤87。上述锂离子电池负极材料MxNbyOz可以采用固相法、静电纺丝法和模板法制得。所述MxNbyOz负极材料具有良好的电化学性能,应用在非水电解质锂离子电池中,能避免锂枝晶问题。

Description

锂离子电池负极材料及非水电解质电池 技术领域
本发明涉及锂离子电池技术领域,特别涉及一种锂离子电池负极材料及非水电解质电池。
背景技术
由于具有高的功率密度,高的能量密度等优点,锂离子电池被公认为可以用作电动汽车的非常有前途的能源。尤其随着新能源汽车的普及,动力电池的研发成为新能源快速发展的关键。然而市场上还缺乏性能十分优异的动力电池,而电极材料是影响动力电池的关键因素。目前商业化的锂离子电池多使用石墨作为负极材料,液态有机溶液作为电解液。石墨具有高的理论容量(372mAh g -1),长的循环寿命,低的成本等优点,然而,它的工作电位很低,在大倍率充放电时存在电池短路的危险,存在使电池燃烧的安全隐患。此外石墨自身低的锂离子扩散系数会导致差的倍率性能,阻碍了石墨在高性能锂离子电池中的应用。例如锂离子在石墨中的迁移速率低,扩散系数小,快充大电流带来的高过电位会导致石墨负极电位更负,石墨负极迅速接纳锂的压力会变大,生成锂枝晶的倾向会变大,增大了电池的安全隐患。同时在大电流充电的条件下,体系产生的热量加剧,液态有机电解液不稳定性增加,更易分解,使锂离子电池的循环稳定性变差。因此,开发出具有优异的电化学性能和高的安全性能的负极材料是目前十分迫切的需求。
在众多有希望代替石墨的负极材料中,“零应变”Li 4Ti 5O 12材料被做了广泛的研究。该材料具有安全的工作电位,良好的循环性能,经过改性后满足安全、稳定、快速充放电的需求,但是其固有的低理论容量(只有175mAh g -1)限制了它在高性能锂离子电池中的应用。
在这种状况下,M-Nb-O负极材料因为具有高的理论容量和安全的工作电位而受到瞩目。与Li 4Ti 5O 12材料相比,M-Nb-O材料同样具有安全的工作电位(Nb 3+/Nb 4+和Nb 4+/Nb 5+),但由于Nb 3+和Nb 5+之间有两个电子的转移,因此M-Nb-O材料具有较高的理论容量。此外,M-Nb-O材料相比于Li 4Ti 5O 12具有更开放的空间结构,更有利于离子和电子的传导,因此M-Nb-O材料具有更好的电化学性能。然而,到目前为止仅有少量的M-Nb-O材料被用于非水电解质电池。因此,探索更多的具有良好的电化学性能的M-Nb-O负极材料对于高性能非水电解质电池的开发是十分有帮助的。
技术问题
本发明的目的在于提供一种锂离子电池负极材料、其制备方法及非水电解质电池。该锂离子电池负极材料具有良好的电化学性能,避免锂枝晶问题。
技术解决方案
为解决上述技术问题,本发明的实施方式提供了一种锂离子电池负极材料,其化学式通式为M xNb yO z,其中,M表示正二价的非铌金属离子,且0<x≤3,1≤y≤34,3≤z≤87。
根据本发明的具体实施例,优选地,所述M包括Zn、Cu、Mg、Ni、Mn、Co、Ca、Fe、Sr、Sn、Pb、Ba和Hg中的一种或几种。
根据本发明的具体实施例,优选地,所述M xNb yO z为M 2Nb 34O 87,MNb 8O 21,M 1/3Nb 74/3O 62,MNb 20O 51中的一种或几种。
根据本发明的具体实施例,优选地,所述M xNb yO z为Zn 2Nb 34O 87,Cu 2Nb 34O 87,Mg 2Nb 34O 87,Ca 2Nb 34O 87,CuNb 8O 21,ZnNb 8O 21,MgNb 8O 21,CaNb 8O 21,Cu 1/3Nb 74/3O 62,Zn 1/3Nb 74/3O 62,Mg 1/3Nb 74/3O 62,Ca 1/3Nb 74/3O 62,CuNb 20O 51,ZnNb 20O 51,MgNb 20O 51,CaNb 20O 51中的一种或几种。
根据本发明的具体实施例,优选地,所述锂离子电池负极材料为单一纯相结构,其晶体结构为剪切ReO 3结构。
与传统的石墨负极相比,本发明提供的锂离子电池负极材料M xNb yO z具有理论比容量高,安全性能高,可逆比容量高、库仑效率高和循环性能优异等优点。此外,本发明提供的负极 材料M xNb yO z可以提高锂离子电池的充电倍率性能,并解决锂离子电池充电过程中使用传统的液态电解液和石墨负极材料所面临的诸多问题,如液态电解液不稳定,锂枝晶问题严重等。尤其,该负极材料M xNb yO z可作为新的非水电解质电池的电极材料,解决由于缺乏M-Nb-O材料可供选择而限制高性能非水电解质电池发展的问题。例如在全固态锂离子电池的应用中,由于M xNb yO z材料充放电膨胀率低,减小界面阻抗,因而有利于提高其在锂离子电池中的电化学性能。
本发明还提供了上述锂离子电池负极材料M xNb yO z的几种制备方法,包括固相法、静电纺丝法和模板法,以下是各制备方法的具体步骤。
固相法包括以下步骤:将金属M源和铌源按摩尔比为M:Nb=x:y混合,然后依次进行高能球磨和高温烧结,得到M xNb yO z粉末;所述高温烧结的温度为110011400℃,高温烧结的时间为315h。
优选地,所述金属M源包括氧化M和/或M盐;所述M盐包括乙酰丙酮M和/或醋酸M;所述铌源包括五氧化二铌、铌粉、草酸铌和乙醇铌中的一种或几种。
静电纺丝法包括以下步骤:
步骤一:将金属M源、抗水解剂、粘合剂加入有机溶液中混合,形成M前驱体溶液;
步骤二:将铌源溶于有机溶液中,形成铌前驱体溶液;
步骤三:以M前驱体溶液中所含金属M与铌前驱体溶液中所含铌的摩尔比计,将M前驱体溶液与铌前驱体溶液按M:Nb=x:y混合,然后通过静电纺丝得到纤维;
步骤四:将步骤三得到纤维依次进行烘干、烧结,得到M xNb yO z粉末。
优选地,所述金属M源包括氧化M和/或M盐;所述M盐包括乙酰丙酮M和/或醋酸M;所述铌源包括五氧化二铌、铌粉、草酸铌和乙醇铌中的一种或几种;所述抗水解剂包括乙酸和/或柠檬酸;所述粘合剂包括聚乙烯吡咯烷酮和/或聚丙烯腈;所述有机溶剂包括N,N-二甲基甲酰胺和/或乙醇。
优选地,所述静电纺丝的条件包括:针头直径为22G,注射器容量为15ml,针头与接收板的距离为15cm,推射速度为1ml/h,电压为18KV。
优选地,所述步骤四中,烘干的温度为80℃;所述烧结的温度为85011400℃,烧结的时间为315h。
模板法包括以下步骤:将金属M源和铌源按摩尔比为M:Nb=x:y混合溶于有机溶液中,形成M/Nb混合溶液;将聚苯乙烯模板置于所述M/Nb混合溶液中浸渍12h左右,随后取出聚苯乙烯模板依次进行烘干、烧结,得到M xNb yO z粉末。
优选地,所述金属M源包括M盐;所述M盐包括乙酰丙酮M,氯化M和醋酸M中的一种或几种;所述铌源包括铌粉、草酸铌和乙醇铌中的一种或几种;所述有机溶剂包括N,N-二甲基甲酰胺和/或乙醇。
优选地,所述烘干的温度为80℃;所述烧结的温度为80011300℃,烧结的时间为315h。
上述聚苯乙烯模板可以但不限于通过以下步骤制得:利用无皂乳液法制备单分散聚苯乙烯乳液;然后利用蒸发自组装法于60℃温度下将单分散聚苯乙烯乳液制备成为胶体晶体模板。
与现有的固相球磨法和溶剂热法技术相比,上述固体法、静电纺丝法和模板法原料易得,操作简单便捷,适合大规模生产所述锂离子电池负极材料M xNb yO z
此外,本发明还提供一种非水电解质锂离子电池,其包括正极材料,非水电解质,以及由上述的锂离子电池负极材料。
根据本发明的具体实施例,优选地,所述的非水电解质锂离子电池包括液态非水电解质电池、凝胶态非水电解质电池和固态非水电解质电池中的一种或几种。
上述液体非水电解质、凝胶态非水电解质和固态非水电解质三种非水电解质锂离子电池包括但不限于以下组成部分,负极、正极、非水电解质、隔膜和外包装部件。其中,所述非水电解质电池的负极包括:集流体、负极材料、导电剂和粘合剂;所述集流体包括铜,镍,不锈钢,铝,或含有其他金属的一种铝合金;所述负极材料包括本发明提供的一种电极材料、石墨、金属锂和钛酸锂中至少一种;所述导电剂包括炭黑、石墨和乙炔黑中的至少一种;所述粘合剂包括聚四氟乙烯、聚偏二氟乙烯和氟基橡胶中的至少一种;进一步地,在所述非水电解质电池的负极中,所述负极材料的质量比例不低于65%,所述导电剂的质量比例不低 于2%。
所述非水电解质电池的正极包括:集流体、正极材料、导电剂和粘合剂;所述集流体包括铝,或含有其他金属的一种铝合金;所述正极材料包括氧化物、硫化物和聚合物中的一种或几种;具体地,所述氧化物包括锂锰复合氧化物(例如,Li XMn 2O 4)、锂镍复合氧化物(例如,LiNi 2O 4)、锂钴复合氧化物(例如,Li aCoO 2)、锂镍钴复合氧化物(例如,LiNi 1-bCo bO 2)、锂锰镍复合氧化物(例如,LiMn 2-bNi bO 2、LiMn 2-bNi bO 4)、锂锰钴复合氧化物(例如,Li aMn bCo 1-bO 2)、锂磷酸化物(例如,Li aFePO 4、Li aMPO 4、Li 2MPO 4F)以及锂镍钴锰复合氧化物中的一种或几种,且在上述氧化物的化学式中,0≤a≤1,0≤b≤1;所述硫化物包括铁硫酸化物[例如,Fe 2(SO 4) 3];所述聚合物包括聚苯胺、聚吡咯和二硫化物基聚合物中的至少一种;所述导电剂包括炭黑、石墨和乙炔黑中的至少一种;所述粘合剂包括聚四氟乙烯、聚偏二氟乙烯和氟基橡胶中的至少一种;进一步地,在所述非水电解质电池的正极中,所述正极材料的质量比例不低于65%,所述导电剂的质量比例不低于2%。
所述非水电解质电池的非水电解质包括:液体非水电解质、凝胶态非水电解质和固态非水电解质中的一种或几种。其中,所述液体非水电解质是通过电解质溶解在有机溶剂中制备;所述凝胶态非水电解质是通过形成液体电解质和聚合物材料的复合物制备。具体地,所述电解质包括锂盐或它们的混合物,包括高氯酸锂、六氟磷酸锂、四氟硼酸锂、六氟砷锂、三氟甲磺酸锂和双(三氟甲基磺酰)亚胺锂;所述有机溶剂包括环状碳酸酯、线性碳酸酯、环状醚类、线性醚、乙腈和环丁砜;所述环状碳酸酯包括碳酸亚丙酯、碳酸亚乙酯或碳酸亚乙烯酯;所述线性碳酸酯包括碳酸二乙酯、碳酸二甲酯或碳酸二甲乙酯;所述环状醚类包括四氢呋喃、2-甲基四氢呋喃或二恶烷;所述线性醚包括二甲基乙烷或二乙氧基乙烷。
所述固态非水电解质包括硫化物基固态电解质、氧化物基固态电解质和导电高分子固态电解质;所述硫化物基固态电解质包括Li 2S-P 2S 5、Li 2S-SiS 2、Li 2S-GeS 2、Li 2S-B 2S 3等二元硫化物和Li 2S-MeS 2-P 2S 5(Me=Si,Ge,Sn,Al等)三元硫化物,或者,卤素掺杂的硫化物二元体系Li 2S-A(A=P 2S 5,SiS 2,GeS 2,P 2S 5,B 2S 3or Al 2S 4等),卤素掺杂的三元体系Li 2S-MeS 2-P 2S 5(Me=Si,Ge,Sn,Al等),Cl,Br,I掺杂上述体系型电解质,优选Li 9.54Si 1.74P 1.44S 11.7Cl 0.3;;所述氧化物基固态电解质包括晶态和非晶态;所述晶态包括钙钛矿型、NASICON型、LISICON型以及石榴石型电解质等,优选石榴石型Li 6.5La 3Zr 1.75Te 0.25O 12电解质;所述非晶态主要是LiPON型电解质等;所述导电高分子固态电解质包括聚环氧乙烷、聚丙烯腈、聚偏氟乙烯、聚甲基丙烯酸甲酯、聚环氧丙烷、聚偏氯乙烯或单离子聚合物电解质。
所述隔膜包括多孔膜;所述多孔膜由聚乙烯、聚丙烯、纤维素、或聚偏二氟乙烯组成。
根据本发明的具体实施例,优选地,所述非水电解质锂离子电池中的固态非水电解质锂离子电池通过以下步骤制得:
(1)将固态非水电解质溶于有机溶剂中制得胶液;
(2)将正极材料,导电剂与所述胶液混合均匀后涂覆在正集流体上,固化后得到正极片;
(3)将负极材料,导电剂与所述胶液混合均匀后涂覆在负集流体上,固化后得到负极固化材料;将固态非水电解质球磨后溶于有机溶剂中制得浆料;将所述浆料涂覆在所述负极固化材料表面形成电介质层,固化后得到负极片;
(4)采用叠片工艺组装所述正极片和负极片,制得固态非水电解质锂离子电池。
根据本发明的具体实施例,优选地,所述正极片的固化温度为601150℃,固化时间为2111h;所述负极固化材料和负极片的固化温度为701160℃,固化时间为701350s。
根据本发明的具体实施例,优选地,以所述正极片的总质量为100%计,所述正极材料的含量为65%185%,所述导电剂的含量为2%15%,所述固态非水电解质的含量为10%133%;以所述负极片的总质量为100%计,所述负极材料的含量为65%185%,所述导电剂的含量为2%15%,所述固态非水电解质的含量为10%133%。
根据本发明的具体实施例,优选地,所述叠片工艺组装在室温下进行,叠片施加压力为 3001600MPa。
所述外包部件可以是圆筒形、方形、钮扣形等,可以根据具体的需要设计形状来应用在便携式设备或者电动汽车中。
现有的全固态锂离子电池负极材料多使用金属锂和钛酸锂,金属锂充放电体积膨胀率大,钛酸锂理论容量低。本发明首次将M xNb yO z材料作为负极材料应用在非水电解质锂离子电池中,尤其是全固态锂离子电池,其利用固态电解质稳定不易分解等特点,在大电流充电的条件下,电池的循环稳定性明显提高,且耐高压。此外,本发明提供的非水电解质锂离子电池的制备方法工艺简单、操作方便、生产成本低,易于大规模工业化生产。
有益效果
与现有技术相比,本发明具有以下有益效果:
(1)本发明提供的M xNb yO z电极材料作为非水电解质电池负极材料,具有理论比容量高,安全性能高,可逆比容量高、库仑效率高和循环性能优异等优点;
(2)本发明提供的M xNb yO z电极材料制备合成工艺简单,适用于大规模制备,在非水电解质电池领域具有广阔的发展;
(3)本发明为M-Nb-O材料用于非水电解质电池负极材料提供了更多的选择,在非水电解质电池用于便携式设备和电动汽车领域具有广阔的应用前景,加速了两者的推广,尤其推动了全固态锂离子电池的发展。
附图说明
图1为实施例1、实施例43所得到Zn 2Nb 34O 87的XRD图;
图2为实施例2、实施例60所得到Cu 2Nb 34O 87的XRD图;
图3为实施例5、实施例6所得到Mg 1/3Nb 74/3O 62和Cu 1/3Nb 74/3O 62的XRD图;
图4为实施例1所得到Zn 2Nb 34O 87的电子显微镜照片;
图5为实施例2所得到Cu 2Nb 34O 87的电子显微镜照片;
图6为实施例43所得到Zn 2Nb 34O 87的电子显微镜照片;
图7为实施例60所得到Cu 2Nb 34O 87的电子显微镜照片;
图8为实施例1所得到Zn 2Nb 34O 87半电池的倍率性能图;
图9为实施例43所得到Zn 2Nb 34O 87半电池的倍率性能图;
图10为实施例2所得到Cu 2Nb 34O 87半电池的倍率性能图;
图11为实施例60所得到Cu 2Nb 34O 87半电池的倍率性能图;
图12为实施例1、实施例43所得到Zn 2Nb 34O 87半电池在10C下的循环性能图;
图13为实施例2、实施例60所得到Cu 2Nb 34O 87半电池在10C下的循环性能图;
图14为实施例84所得到Zn 2Nb 34O 87/LiFePO 4全固态电池的倍率性能图;
图15为实施例86所得到Cu 2Nb 34O 87/LiFePO 4全固态电池的倍率性能图;
图16为实施例92所得到Mg 1/3Nb 74/3O 62/LiFePO 4全固态电池的倍率性能图;
图17为实施例92所得到Mg 1/3Nb 74/3O 62/LiFePO 4全固态电池在10C下的循环性能图;
图18为实施例93所得到Cu 1/3Nb 74/3O 62/LiFePO 4全固态电池的倍率性能图;
图19为实施例93所得到Cu 1/3Nb 74/3O 62/LiFePO 4全固态电池在10C下的循环性能图;
图20为实施例30所得到CaNb 20O 5/LiNi 0.5Mn 1.5O 4全固态电池在10C下的循环性能图;
图21为实施例34所得到ZnNb 8O 21/LiNi 0.5Mn 1.5O 4全固态电池在10C下的循环性能图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使 读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明各权利要求所要求保护的技术方案。
下面结合实施例对本发明进一步说明:制备方法中所使用的各原料如无特别说明,均为市售。
实施例1142提供了采用固相法制备M xNb yO z电极材料的方法,具体如下:
实施例1
本实施例提供了一种采用固相法制备Zn 2Nb 34O 87电极材料的方法,其包括以下步骤:
将氧化锌和五氧化二铌按照元素摩尔比1:17的比例采用高能球磨机球磨方法进行混合后,在1200℃烧结4h,即可得到Zn 2Nb 34O 87粉末。
实施例2
本实施例提供了一种采用固相法制备Cu 2Nb 34O 87电极材料的方法,其包括以下步骤:
将氧化铜和五氧化二铌按照元素摩尔比1:17的比例采用高能球磨机球磨方法进行混合后,在1100℃烧结4h,即可得到Cu 2Nb 34O 87粉末。
实施例3
本实施例提供了一种采用固相法制备MgNb 20O 51电极材料的方法,其包括以下步骤:
将氧化镁和五氧化二铌按照元素摩尔比1:20的比例采用高能球磨机球磨方法进行混合后,在1200℃烧结4h,即可得到MgNb 20O 51粉末。
实施例4
本实施例提供了一种采用固相法制备CaNb 20O 51电极材料的方法,其包括以下步骤:
将氧化钙和五氧化二铌按照元素摩尔比1:20的比例采用高能球磨机球磨方法进行混合后,在1200℃烧结4h,即可得到CaNb 20O 51粉末。
实施例5
本实施例提供了一种采用固相法制备Mg 1/3Nb 74/3O 62电极材料的方法,其包括以下步骤:
将氧化镁和五氧化二铌按照元素摩尔比1:74的比例采用高能球磨机球磨方法进行混合后,在1200℃烧结4h,即可得到Mg 1/3Nb 74/3O 62粉末。
实施例6
本实施例提供了一种采用固相法制备Cu 1/3Nb 74/3O 62电极材料的方法,其包括以下步骤:
将氧化铜和五氧化二铌按照元素摩尔比1:74的比例采用高能球磨机球磨方法进行混合后,在1200℃烧结4h,即可得到Cu 1/3Nb 74/3O 62粉末。
本发明还提供了实施例7142采用M源与铌源通过固相法制备M xNb yO z电极材料的方法,实施例7142的各M源与铌源的材料、混合比例,烧结温度、烧结时间和最终产物如表1所示。
表1
Figure PCTCN2019110100-appb-000001
Figure PCTCN2019110100-appb-000002
Figure PCTCN2019110100-appb-000003
实施例43159提供了采用静电纺丝法制备M xNb yO z电极材料的方法,具体如下:
实施例43
本实施例提供了一种采用静电纺丝法制备Zn 2Nb 34O 87电极材料的方法,其包括以下步骤:
S11:将0.001mol乙酰丙酮锌、2mL冰醋酸、1g聚乙烯吡咯烷酮,溶于10mL N,N-二甲基甲酰胺中形成锌溶液;
S12:将0.017mol乙醇铌溶于5mL无水乙醇中形成铌溶液;
S13:锌溶液与铌溶液混合均匀后静电纺丝得到纤维,针头直径22G,注射器容量为15mL,针头与接收板的距离为15cm,推射速度为1mL/h,电压为18kV,纺丝完成后,于80℃烘干;
S14:对所述前驱体纤维进行850℃烧结1h,获得电极材料Zn 2Nb 34O 87粉末。
实施例44
本实施例提供了一种采用静电纺丝法制备MgNb 20O 51电极材料的方法,其包括以下步骤:
S11:将0.001mol乙酰丙酮镁、2mL冰醋酸、1g聚乙烯吡咯烷酮,溶于10mL N,N-二甲基甲酰胺中形成锌溶液;
S12:将0.017mol乙醇铌溶于5mL无水乙醇中形成铌溶液;
S13:镁溶液与铌溶液混合均匀后静电纺丝得到纤维,针头直径22G,注射器容量为15mL,针头与接收板的距离为15cm,推射速度为1mL/h,电压为18kV,纺丝完成后,于80℃烘干;
S14:对所述前驱体纤维进行850℃烧结1h,获得电极材料MgNb 20O 51粉末。
本发明还提供了实施例45159采用M源与铌源通过静电纺丝法制备M xNb yO z电极材料的方法,实施例45159的各M源、铌源的材料、抗水解剂、粘合剂、有机溶剂的混合比例,烧结温度、烧结时间和最终产物如表2所示。
表2
Figure PCTCN2019110100-appb-000004
Figure PCTCN2019110100-appb-000005
实施例60176提供了采用模板法制备M xNb yO z电极材料的方法,具体如下:
实施例60
本实施例提供了一种采用模板法制备Cu 2Nb 34O 87电极材料的方法,包括以下步骤:
S11:利用无皂乳液法制备单分散聚苯乙烯乳液;
S12:利用蒸发自组装法于60℃温度下将单分散聚苯乙烯乳液制备成为胶体晶体模板;
S13:将0.001mol氯化铜和0.017mol乙醇铌溶于10ml无水乙醇中,形成铜铌混合溶液;
S14:将所制备聚苯乙烯模板浸入到铜铌混合溶液中,12h后,取出模板,于60℃烘干;
S15:将烘干模板进行800℃烧结4h,得到获得电极材料Cu 2Nb 34O 87粉末。
实施例61
本实施例提供了一种采用模板法制备CaNb 8O 21电极材料的方法,包括以下步骤:
S11:利用无皂乳液法制备单分散聚苯乙烯乳液;
S12:利用蒸发自组装法于60℃温度下将单分散聚苯乙烯乳液制备成为胶体晶体模板;
S13:将0.001mol氯化钙和0.017mol乙醇铌溶于10ml无水乙醇中,形成铜铌混合溶液;
S14:将所制备聚苯乙烯模板浸入到铜铌混合溶液中,12h后,取出模板,于60℃烘干;
S15:将烘干模板进行800℃烧结4h,得到获得电极材料CaNb 8O 21粉末。
本发明还提供了实施例62179采用M源与铌源通过静电纺丝法制备M xNb yO z电极材料的方法,实施例62179的各M源、铌源的材料、机溶剂的混合比例,烧结温度、烧结时间和最终产物如表3所示。
表3
Figure PCTCN2019110100-appb-000006
Figure PCTCN2019110100-appb-000007
Figure PCTCN2019110100-appb-000008
上述实施例1179采用不同方法制得了不同的M xNb yO z电极材料,并采用XRD和电子显微镜测试了实施例1,2,43和60制得的Zn 2Nb 34O 87及Cu 2Nb 34O 87电极材料的晶型和形貌。图1示出了实施例1、实施例43制得的Zn 2Nb 34O 87的XRD图;图2示出了实施例2、实施例60制得的Cu 2Nb 34O 87的XRD图;图3示出了实施例5、实施例6制得的Mg 1/3Nb 74/3O 62和Cu 1/3Nb 74/3O 62的XRD图。如图1所示,实施例1采用固相法和实施例43采用静电纺丝法制成的Zn 2Nb 34O 87材料均为纯的,表明固相法和静电纺丝法都能成功制备出Zn 2Nb 34O 87材料,如图2所示,实施例2采用固相法和实施例60采用模板法制成的Cu 2Nb 34O 87材料均为纯的,表明固相法和模板法都能成功制备出Cu 2Nb 34O 87材料,如图3所示,实施例5制得的Mg 1/3Nb 74/3O 62和实施例6制得的Cu 1/3Nb 74/3O 62材料均为纯的,表明固相法能成功制备出Mg 1/3Nb 74/3O 62和Cu 1/3Nb 74/3O 62材料。
图4示出了采用实施例1制得的Zn 2Nb 34O 87材料的电子显微镜照片,如图4所示,实施例1制得的Zn 2Nb 34O 87材料呈不规则形状,颗粒尺寸在315微米之间。图5示出了实施例2制得的Cu 2Nb 34O 87材料的电子显微镜照片,如图5所示,实施例2制得的Cu 2Nb 34O 87材料呈不规则形状,颗粒尺寸在315微米之间。图6示出了实施例43制得的Zn 2Nb 34O 87材料的电子显微镜照片,如图6所示,实施例43制得的Zn 2Nb 34O 87材料为一维纳米线结构,纤维尺寸在100纳米左右。图7示出了实施例60制得的Cu 2Nb 34O 87材料的电子显微镜照片,如图7所示,实施例60制得的Cu 2Nb 34O 87材料为有序大孔结构,
实施例80183测试了不同方法制备的M xNb yO z电极材料的电化学性能,具体如下:
实施例80
本实施例提供一种采用固相法制备的Zn 2Nb 34O 87制备的非水电解质锂离子半电池,具体地,
采用实施例1固相法制备的Zn 2Nb 34O 87为正极活性材料,锂片为负极,聚乙烯隔膜,六氟磷酸锂为电解质盐制备出来的非水电解质锂离子半电池;
对上述非水电解质锂离子半电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达275mAh/g,在10C下可稳定循环500次。
实施例81
本实施例提供一种采用静电纺丝法制备的Zn 2Nb 34O 87制备的非水电解质锂离子半电池,具体地,
采用实施例43静电纺丝法制备的Zn 2Nb 34O 87为正极活性材料,锂片为负极,聚乙烯隔膜,六氟磷酸锂为电解质盐制备出来的非水电解质锂离子半电池;
对上述非水电解质锂离子半电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达328mAh/g,在10C下可稳定循环500次。
实施例82
本实施例提供一种采用固相法制备的Cu 2Nb 34O 87制备的非水电解质锂离子半电池,具体地,
采用实施例2固相法制备的Cu 2Nb 34O 87为正极活性材料,锂片为负极,聚乙烯隔膜,六氟磷酸锂为电解质盐制备出来的非水电解质锂离子半电池;
对上述非水电解质锂离子半电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达286mAh/g,在10C下可稳定循环500次。
实施例83
本实施例提供一种采用模板法制备的Cu 2Nb 34O 87制备的非水电解质锂离子半电池,具体地,
采用实施例60模板法制备的Cu 2Nb 34O 87为正极活性材料,锂片为负极,聚乙烯隔膜,六氟磷酸锂为电解质盐制备出来的非水电解质锂离子半电池;
对上述非水电解质锂离子半电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达339mAh/g,在10C下可稳定循环500次。
图8、图9分别是实施例1、实施例43得到的Zn 2Nb 34O 87材料的倍率性能图。由图8可知,实施例1固相法制得的Zn 2Nb 34O 87材料在0.1C倍率下首次充放电库伦效率98.2%,可逆比容量274mAh g -1,在10C倍率下可逆比容量仍为162mAh g -1。由图9可知,通过静电纺丝法制得的Zn 2Nb 34O 87材料在0.1C倍率下首次充放电库伦效率94.5%,可逆比容量311mAh g -1,在10C倍率下可逆比容量仍为212mAh g -1。图10、图11分别是实施例2、实施例60得到的Cu 2Nb 34O 87材料的倍率性能图。由图10可知,固相法制得的Cu 2Nb 34O 87材料在0.1C倍率下首次充放电库伦效率87.2%,可逆比容量294mAh g -1,在10C倍率下可逆比容量仍为138.8mAh g -1。由图11可知,通过模板法制得的Cu 2Nb 34O 87材料在0.1C倍率下首次充放电库伦效率92.3%,可逆比容量321mAh g -1,在10C倍率下可逆比容量仍为232mAh g -1。图12、图13为实施例1、实施例43、实施例2、实施例60所得Zn 2Nb 34O 87和Cu 2Nb 34O 87在10C下的循环性能图。由图12可知,实施例1固相法制得的Zn 2Nb 34O 87材料在10C倍率下经过500圈循环后还剩87.1%的容量。实施例43静电纺丝法制得的Cu 2Nb 34O 87材料在10C倍率下经过500圈循环后还剩89.1%的容量。由图13可知,实施例2固相法制得的Cu 2Nb 34O 87材料在10C倍率下经过500圈循环后还剩86.4%的容量。实施例60模板法制得的Cu 2Nb 34O 87材料在10C倍率下经过500圈循环后还剩88.9%的容量。可见,以上这三种方法制备的M xNb yO z电极材料都具有优异的电化学性能,十分适合应用于高性能非水电解质电池当中。
以下实施例提供了采用M xNb yO z电极材料作为负极材料的全固态锂离子非水电解质锂离子电池。
实施例84195提供了采用M xNb yO z电极材料作为负极材料的全固态锂离子电池的制备方法,具体如下:
(1)将固态非水电解质溶于有机溶剂中制得胶液;
(2)将正极活性材料,导电剂与所述胶液混合均匀后涂覆在正集流体上,固化后得到正极片;
(3)将负极活性材料,导电剂与所述胶液混合均匀后涂覆在负集流体上,固化后得到负极固化材料;将固态非水电解质球磨后溶于有机溶剂中制得浆料;将所述浆料涂覆在所述负极固化材料表面形成电介质层,固化后得到负极片;
(4)采用叠片工艺组装所述正极片和负极片,制得固态非水电解质锂离子电池。
根据本发明的具体实施例,优选地,所述正极片的固化温度为601150℃,固化时间为2111h;所述负极固化材料和负极片的固化温度为701160℃,固化时间为601300s。
实施例84
采用固相法制备的Zn 2Nb 34O 87为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 9.54Si 1.74P 1.44S 11.7Cl 0.3为固态电解质制备出来的全固态电池。
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,测试结果如图14所示,该全固态电池的首次放电容量可达113mAh/g,在10C下可稳定循环40次。
实施例85
采用静电纺丝法制备的Zn 2Nb 34O 87为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 9.54Si 1.74P 1.44S 11.7Cl 0.3为固态电解质制备出来的全固态电池。
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达116mAh/g,可稳定循环55次。
实施例86
采用固相法制备的Cu 2Nb 34O 87为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 9.54Si 1.74P 1.44S 11.7Cl 0.3为固态电解质制备出来的全固态电池。
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,测试结果如图15所示,该全固态电池的首次放电容量可达108mAh/g,可稳定循环60次。
实施例87
采用模板法制备的Cu 2Nb 34O 87为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 9.54Si 1.74P 1.44S 11.7Cl 0.3为固态电解质制备出来的全固态电池。
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达121mAh/g,可稳定循环85次。
实施例88
采用静电纺丝法制备的MgNb 20O 51为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 9.54Si 1.74P 1.44S 11.7Cl 0.3为固态电解质制备出来的全固态电池。
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达102mAh/g,可稳定循环50次。
实施例89
采用固相法制备的MgNb 20O 51为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 9.54Si 1.74P 1.44S 11.7Cl 0.3为固态电解质制备出来的全固态电池。
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达96mAh/g,可稳定循环70次。
实施例90
采用模板法制备的CaNb 8O 21为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 3PS 4为固态电解质制备出来的全固态电池;
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达86mAh/g,可稳定循环55次。
实施例91
采用模板法制备的CaNb 8O 21为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 3PS 4为固态电解质制备出来的全固态电池。
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,首次放电容量可达97mAh/g,可稳定循环60次。
实施例92
采用固相法制备的Mg 1/3Nb 74/3O 62为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 3PS 4为固态电解质制备出来的全固态电池。
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,测试结果如图16所示,该全固态电池的首次放电容量可达114mAh/g,如图17所示,在10C下可稳定循环80次。
实施例93
采用固相法制备的Cu 1/3Nb 74/3O 62为负极活性材料,LiFePO 4为正极活性材料,硫化物Li 9.54Si 1.74P 1.44S 11.7C l0.3为固态电解质制备出来的全固态电池。
对上述全固态锂离子电池在0.8V~3V的电压范围内进行充放电测试,测试结果如图18所示,该全固态电池的首次放电容量可达130mAh/g,如图19所示,在10C下可稳定循环60次。
实施例94
采用实施例30制备的CaNb 20O 5为负极活性材料,LiNi 0.5Mn 1.5O 4为正极活性材料,硫化 物Li 9.54Si 1.74P 1.44S 11.7C l0.3为固态电解质制备出来的全固态电池。
测试该全固态电池在10C下的循环性能,如图20所示,CaNb 20O 5/LiNi 0.5Mn 1.5O 4全固态电池在10C下可稳定循环40次。
实施例95
采用实施例34制备的ZnNb 8O 21为负极活性材料,LiNi 0.5Mn 1.5O 4为正极活性材料,硫化物Li 9.54Si 1.74P 1.44S 11.7C l0.3为固态电解质制备出来的全固态电池。
测试该全固态电池在10C下的循环性能,如图21所示,ZnNb 8O 21/LiNi 0.5Mn 1.5O 4全固态电池在10C下可稳定循环60次。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种锂离子电池负极材料,其特征在于,所述锂离子电池负极材料的化学式通式为M xNb yO z,其中,M表示正二价的非铌金属离子,且0<x≤3,1≤y≤34,3≤z≤87。
  2. 根据权利要求1所述的锂离子电池负极材料,其特征在于,所述M包括Zn、Cu、Mg、Ni、Mn、Co、Ca、Fe、Sr、Sn、Pb、Ba和Hg中的一种或几种。
  3. 根据权利要求1所述的锂离子电池负极材料,其特征在于,所述M xNb yO z为M 2Nb 34O 87,MNb 8O 21,M 1/3Nb 74/3O 62,MNb 20O 51中的一种或几种。
  4. 根据权利要求1所述的锂离子电池负极材料,其特征在于,所述M xNb yO z为Zn 2Nb 34O 87,Cu 2Nb 34O 87,Mg 2Nb 34O 87,Ca 2Nb 34O 87,CuNb 8O 21,ZnNb 8O 21,MgNb 8O 21,CaNb 8O 21,Cu 1/3Nb 74/3O 62,Zn 1/3Nb 74/3O 62,Mg 1/3Nb 74/3O 62,Ca 1/3Nb 74/3O 62,CuNb 20O 51,ZnNb 20O 51,MgNb 20O 51,CaNb 20O 51中的一种或几种。
  5. 根据权利要求1所述的锂离子电池负极材料,其特征在于,所述锂离子电池负极材料为单一纯相结构,其晶体结构为剪切ReO 3结构。
  6. 一种非水电解质锂离子电池,其包括正极材料,非水电解质,以及由权利要求115中任一项所述的锂离子电池负极材料。
  7. 根据权利要求6所述的非水电解质锂离子电池,其特征在于,所述的非水电解质锂离子电池包括液态非水电解质电池、凝胶态非水电解质电池和固态非水电解质电池中的一种或几种。
  8. 根据权利要求7所述的非水电解质锂离子电池,其特征在于,所述非水电解质锂离子电池中的固态非水电解质锂离子电池通过以下步骤制得:
    (1)将固态非水电解质溶于有机溶剂中制得胶液;
    (2)将正极材料,导电剂与所述胶液混合均匀后涂覆在正集流体上,固化后得到正极片;
    (3)将负极材料,导电剂与所述胶液混合均匀后涂覆在负集流体上,固化后得到负极固化材料;将固态非水电解质球磨后溶于有机溶剂中制得浆料;将所述浆料涂覆在所述负极固化材料表面形成隔膜层,固化后得到负极片;
    (4)采用叠片工艺组装所述正极片和负极片,制得固态非水电解质锂离子电池。
  9. 根据权利要求8所述的非水电解质锂离子电池,其特征在于,所述正极片的固化温度为601150℃,固化时间为2111h;
    所述负极固化材料和负极片的固化温度为701160℃,固化时间为701350s。
  10. 根据权利要求8所述的非水解电解质锂离子电池,其特征在于,以所述正极片的总质量为100%计,所述正极材料的含量为65%185%,所述导电剂的含量为2%15%,所述固态非水电解质的含量为10%133%;
    以所述负极片的总质量为100%计,所述负极材料的含量为65%185%,所述导电剂的含量为2%15%,所述固态非水电解质的含量为10%133%。
  11. 根据权利要求8所述的非水解电解质锂离子电池,其特征在于,所述叠片工艺组装在室温下进行,叠片施加压力为3001600MPa。
  12. 根据权利要求8所述的非水电解质锂离子电池,其特征在于,所述固态非水电解质包括硫化物基固态电解质和/或氧化物基固态电解质;
    所述硫化物基固态电解质包括Li 2S-A,卤素掺杂的Li 2S-A,Li 2S-MeS 2-P 2S 5或卤素掺杂的Li 2S-MeS 2-P 2S 5,其中,A表示P 2S 5、SiS 2、GeS 2、B 2S 3和Al 2S 4中的一种或几种,Me表示Si,Ge,Sn和Al中的一种或几种,卤素包括Cl、Br和I中的一种或几种。
PCT/CN2019/110100 2018-10-09 2019-10-09 锂离子电池负极材料及非水电解质电池 WO2020073915A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811172011.2A CN109360978A (zh) 2018-10-09 2018-10-09 锂离子电池负极材料及非水电解质电池
CN201811172011.2 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020073915A1 true WO2020073915A1 (zh) 2020-04-16

Family

ID=65348711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110100 WO2020073915A1 (zh) 2018-10-09 2019-10-09 锂离子电池负极材料及非水电解质电池

Country Status (3)

Country Link
US (1) US11380881B2 (zh)
CN (1) CN109360978A (zh)
WO (1) WO2020073915A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11721806B2 (en) 2020-08-28 2023-08-08 Echion Technologies Limited Active electrode material
US11799077B2 (en) 2020-06-03 2023-10-24 Echion Technologies Limited Active electrode material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360978A (zh) * 2018-10-09 2019-02-19 瑞声科技(南京)有限公司 锂离子电池负极材料及非水电解质电池
CN110459813B (zh) * 2019-07-02 2022-03-18 极安新能源科技(上海)有限公司 一种锂电池的制备方法
CN110459810A (zh) * 2019-08-15 2019-11-15 萨姆蒂萨(天津)数据信息技术有限公司 一种锂电池的制备方法
WO2021074594A1 (en) * 2019-10-18 2021-04-22 Echion Technologies Limited Li/na-ion battery anode materials
CN111584863B (zh) * 2020-05-13 2021-12-21 青岛大学 一种二次锂离子电池的电极材料的制备方法及其应用
CN112086629B (zh) * 2020-09-08 2022-05-06 合肥国轩高科动力能源有限公司 一种Si@C/ZnNb2O6负极复合材料的制备方法及其应用
CN112408504A (zh) * 2020-11-18 2021-02-26 江苏集萃托普索清洁能源研发有限公司 电池负极材料Cu2Nb34O87的制备方法
CN112397678B (zh) * 2020-11-18 2021-09-07 江苏集萃托普索清洁能源研发有限公司 Cu2Nb34O87纽扣电池负极片的制备方法
CN112786874B (zh) * 2021-01-29 2022-06-03 复旦大学 一种钠离子电池的电极材料及其制备和应用
CN117913351A (zh) * 2024-03-19 2024-04-19 蜂巢能源科技股份有限公司 一种全固态电池及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853347A1 (en) * 1996-12-20 1998-07-15 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
CN106532109A (zh) * 2016-12-28 2017-03-22 上海航天电源技术有限责任公司 一种全固态锂离子电池及其制作方法
CN107742716A (zh) * 2017-10-12 2018-02-27 海南大学 一种锂离子电池的电极材料及其制备方法
CN109360978A (zh) * 2018-10-09 2019-02-19 瑞声科技(南京)有限公司 锂离子电池负极材料及非水电解质电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078647B (zh) * 2013-03-27 2016-04-27 比亚迪股份有限公司 一种锂离子电池负极及其制备方法和锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853347A1 (en) * 1996-12-20 1998-07-15 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
CN106532109A (zh) * 2016-12-28 2017-03-22 上海航天电源技术有限责任公司 一种全固态锂离子电池及其制作方法
CN107742716A (zh) * 2017-10-12 2018-02-27 海南大学 一种锂离子电池的电极材料及其制备方法
CN109360978A (zh) * 2018-10-09 2019-02-19 瑞声科技(南京)有限公司 锂离子电池负极材料及非水电解质电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU, XIANGZHEN: "Mg2Nb34087 Porous Microspheres for Use in Hi- gh-Energy, Safe, Fast-Charging, and Stable Lithium-Ion Batteries", ACS APPLIED MATERIALS &INTERFACES, vol. 10, no. 28, 18 July 2018 (2018-07-18), pages 23711 - 23720, XP055701091 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11799077B2 (en) 2020-06-03 2023-10-24 Echion Technologies Limited Active electrode material
US11721806B2 (en) 2020-08-28 2023-08-08 Echion Technologies Limited Active electrode material
US11973220B2 (en) 2020-08-28 2024-04-30 Echion Technologies Limited Active electrode material

Also Published As

Publication number Publication date
CN109360978A (zh) 2019-02-19
US11380881B2 (en) 2022-07-05
US20200112018A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
WO2020073915A1 (zh) 锂离子电池负极材料及非水电解质电池
CN105304936B (zh) 一种锂离子二次电池
WO2020098427A1 (zh) 锂离子电池负极材料及非水电解质电池
WO2016127786A1 (zh) 一种全固态聚合物电解质及其制备和应用
CN102903930B (zh) 一种锂离子二次电池及其制备方法
CN102154739B (zh) 锂离子电池负极材料ZnFe2O4/C纳米纤维的制备方法
CN110931849B (zh) 梯度复合固态电解质及其制备方法和固态锂电池
CN108987798A (zh) 一种一体化全固态锂金属电池
CN110931797A (zh) 一种具有复合包覆层的高镍正极材料及其制备方法
CN111864181A (zh) 预锂化的硅负极及其制备方法和应用
WO2013185629A1 (zh) 一种高能量密度充放电锂电池
KR20110121283A (ko) 도전제, 이를 포함하는 리튬 이차 전지 양극용 슬러리 조성물 및 이를 포함하는 이튬 이차 전지
CN104466168A (zh) 四氧化三钴-碳多孔纳米纤维的制备方法及其作为锂离子电池的用途
CN102244233B (zh) 一种类石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法
KR20160091172A (ko) 잔류 리튬이 감소된 양극활물질의 제조 방법 및 이에 의하여 제조된 잔류 리튬이 감소된 양극활물질
CN109904441A (zh) 一种锂离子电池负极材料、非水电解质锂离子电池及其制备方法
JP2015201388A (ja) 非水系二次電池用正極活物質及びその製造方法
CN113140731B (zh) 一种全固态锂电池及其制备方法
CN113451580A (zh) 一种界面层及包括该界面层的锂离子电池
CN104966814A (zh) 一种高安全性的金属锂负极及其制备方法
CN107452950A (zh) 一种循环稳定的锂离子电池正极材料及方法
CN108281636B (zh) 一种二氧化钛包覆三氧化二铁复合材料的制备方法及其应用
CN114512708A (zh) 一种锂离子复合固态电解质的制备方法及应用
CN109273670B (zh) 一种具有高比表面介孔保护膜的金属锂负极及其制备方法
CN114864916A (zh) 一种五氧化二铌包覆石墨复合负极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870545

Country of ref document: EP

Kind code of ref document: A1