CN114069032A - 聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用 - Google Patents

聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用 Download PDF

Info

Publication number
CN114069032A
CN114069032A CN202010754514.1A CN202010754514A CN114069032A CN 114069032 A CN114069032 A CN 114069032A CN 202010754514 A CN202010754514 A CN 202010754514A CN 114069032 A CN114069032 A CN 114069032A
Authority
CN
China
Prior art keywords
polymer
solid electrolyte
lithium battery
solid
state lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010754514.1A
Other languages
English (en)
Other versions
CN114069032B (zh
Inventor
宋威
高磊
常毅
梅骜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAC Aion New Energy Automobile Co Ltd
Original Assignee
GAC Aion New Energy Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GAC Aion New Energy Automobile Co Ltd filed Critical GAC Aion New Energy Automobile Co Ltd
Priority to CN202010754514.1A priority Critical patent/CN114069032B/zh
Publication of CN114069032A publication Critical patent/CN114069032A/zh
Application granted granted Critical
Publication of CN114069032B publication Critical patent/CN114069032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种聚合物固态电解质,包括聚合物以及锂盐,所述聚合物为式(1)结构的均聚物、无规共聚物或嵌段共聚物中的一种或多种;

Description

聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其 应用
技术领域
本发明涉及储能装置领域,尤其涉及一种聚合物固态电解质、全固态锂电 池电芯、全固态锂电池及其应用。
背景技术
目前商用的锂(离子)电池所用导离子材料为液态电解液。液态电解液主 要是由导电盐(LiPF6等)、溶剂(EC、EMC、VC等碳酸酯类溶剂)及添加剂 组成。液态电解液毒性强、易挥发、易燃,这会造成很多漏液、起火、爆炸等 安全性问题。同时,液态电解液适用的温度范围窄,这会严重影响电池在低温 或高温下的电化学性能的发挥。目前商用液态锂(离子)电池在温度低于0℃以 下后,电池放电容量会降低很多;在温度高于60℃以后,电池电化学性能很差 同时很容易发生安全性问题。
而固态电解质毒性小、温度适应范围宽、不可燃,这样的性质会大幅提升 电池的电化学性能、安全性能并拓展其应用领域,进而固态电解质及全固态电 池发展成为研究热点。因此,有必要提供一种新的聚合物固态电解质及全固态 电池,其适用温度范围可扩展到-50℃-200℃。
发明内容
本发明的第一目的在于提供一种聚合物固态电解质,该聚合物固态电解质 制备的全固态锂电池电芯电化学性能好和安全性高,且其适用温度范围可扩展 到-50℃~200℃。
本发明的第二目的在于提供一种全固态锂电池电芯,该全固态锂电池电芯 电化学性能好和安全性高,且其适用温度范围可扩展到-50℃~200℃。
本发明的第三目的在于提供一种全固态锂电池,该全固态锂电池包括全固 态锂电池电芯,全固态锂电池电芯电化学性能好和安全性高,且其适用温度范 围可扩展到-50℃~200℃。
本发明的第四目的在于将全固态锂电池应用于汽车、摩托车或自行车上, 该全固态锂电池包括全固态锂电池电芯,全固态锂电池电芯电化学性能好和安 全性高,且其适用温度范围可扩展到-50℃~200℃。
为实现上述目的,本发明提供了一种聚合物固态电解质,所述聚合物固态 电解质包括聚合物以及锂盐,所述聚合物为式(1)结构的均聚物、无规共聚物 或嵌段共聚物中的一种或多种;
Figure BDA0002610555040000021
进一步地,所述聚合物的含量为1~100wt%,所述锂盐的含量为0~99wt%。
进一步地,所述聚合物的分子量为1万~500万,所述式(1)中i的取值范 围为1~500,j的取值范围为1~20,k的取值范围为1~20,m的取值范围为0~100, n的取值范围为1~100,阳离子
Figure BDA0002610555040000022
为碱金属离子、碱土金属离子或式(4)~式(10)所示结构中的任意一种或多种,其中,所述碱金属离子包括Li+、Na+、K+、Rb+和Cs+,所述碱土金属离子包括Be2+、Mg2+、Ca2+、Sr2+、和Ba2+,所述式(4)~ 式(10)所示结构分别为:
Figure BDA0002610555040000023
进一步地,所述聚合物是由碳酸二苯酯、寡聚乙二醇及离子液体型二醇经 过缩聚反应得到,所述缩聚反应式为:
Figure BDA0002610555040000031
所述寡聚乙二醇的结构式如式(2)所示,所述离子液体型二醇的结构式如 式(3)所示:
Figure BDA0002610555040000032
进一步地,所述寡聚乙二醇占所述寡聚乙二醇及所述离子液体型二醇的总 量的比例Wt1为:0≤Wt1≤99.9%,所述离子液体型二醇占所述寡聚乙二醇及所述 离子液体型二醇的总量的比例Wt2为:0.01≤Wt2≤100%。
进一步地,所述锂盐包括LiP(Rf1Rf2Rf3Rf4Rf5Rf6)、LiB(Rf1Rf2Rf3Rf4)、 LiN(SO2Rf1)(SO2Rf2)、LiC(SO2Rf1)(SO2Rf2)(SO2Rf3)、二草酸硼酸锂(简称 LiBOB)、二氟草酸硼酸锂(简称LiDFOB)、高氯酸锂及六氟砷酸锂中的一种 或几种,其中Rf1、Rf2、Rf3、Rf4、Rf5、Rf6分别为CnF2n+1(0≤n≤10)。所述锂盐 典型的为LiPF6、LiBF4、LiClO4、LiAsF6、LiTFSI、LiFSI、LiBOB、LiDFOB等。
进一步地,所述聚合物固态电解质的离子电导率σ (-50℃)=7.38×10-9~4.91×10-4S·cm-1,σ(25℃)=9.32×10-5~2.36×10-3S·cm-1,σ (100℃)=2.84×10-3~2.19×10-2S·cm-1,σ(200℃)=1.89×10-3~5.59×10-2S·cm-1
本发明还包括一种全固态锂电池电芯,所述全固态锂电池电芯包括铝集流 体、正极层、上述聚合物固态电解质组成的聚合物固态电解质层、负极层以及 铜集流体,所述铝集流体及所述铜集流体的厚度为10nm~20um,所述正极层、 所述负极层及所述聚合物固态电解质层的厚度均为10nm~100um。
进一步地,所述正极层包括正极材料50wt%~100wt%、正极导电剂 0wt%~20wt%、上述的聚合物固态电解质0wt%~40wt%以及正极粘结剂 0wt%~10wt%,所述正极材料包括碳包覆的LiMPO4(M=Fe、Co、Ni及Mn中 的至少一种)、未进行碳包覆的LiMO2(M=Ni、Co、Mn及Al中的至少一种)、 碳包覆的LiMO2(M=Ni、Co、Mn及Al中的至少一种)中的一种或多种,所述 正极材料的颗粒直径为100nm~50um,所述正极导电剂包括炭黑、乙炔黑及碳纳 米管中的最少一种,所述正极导电剂的颗粒直径为10nm~50um,所述正极粘结 剂为聚偏二氟乙烯类聚合物,分子量为10万~500万。
进一步地,所述负极层包括负极材料50wt%~100wt%、负极导电剂 0wt%~20wt%、上述的聚合物固态电解质0wt%~40wt%以及负极粘结剂 0wt%~10wt%,所述负极材料包括锂粉、石墨、硅、硅碳以及SiOx中的一种或 多种,所述负极材料的颗粒直径为100nm~50um,所述负极导电剂包括炭黑、乙 炔黑及碳纳米管中的至少一种,所述负极导电剂的颗粒直径为100nm~50um,所 述负极粘结剂为丁苯橡胶及丁腈橡胶中的至少一种,分子量为10万~500万。
进一步地,所述负极层为锂金属箔或锂铜复合金属箔。
本发明还提供一种全固态锂电池,所述全固态锂电池包括如上所述的全固 态锂电池电芯。
本发明还将如上所述的全固态锂电池应用于汽车、摩托车或自行车上。
与现有技术相比,本发明提供了一种聚合物固态电解质,该聚合物固态电 解质具有高离子电导率、高锂离子迁移数、高热稳定性,且机械性优异以及电 化学稳定。制备出来的全固态锂电池电芯适用于-50℃~200℃的温度范围,同时 能保证优异的电化学性能和安全性能。同时,能够提升全固态锂电池电芯和全 固态锂电池的使用寿命和能量密度。
具体实施方式
本文所公开的“范围”以下限和上限的形式。可以分别为一个或多个下限,和 一个或多个上限。给定范围是通过选定一个下限和一个上限进行限定的。选定 的下限和上限限定了特别范围的边界。所有可以这种方式进行限定的范围是包 含和可组合的,即任何下限可以与任何上限组合形成一个范围。例如,针对特 定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预 料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4 和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本发明 中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方式可以 相互组合形成新的技术方案。
在本发明中,如果没有特别的说明,本文所提到的所有技术特征以及优选特 征可以相互组合形成新的技术方案。
在本发明中,如果没有特别的说明,本文所提到的所有步骤可以顺序进行, 也可以随机进行,但是优选是顺序进行的。
本发明提供一种全固态锂电池,全固态锂电池包括电池模组、电路板及外壳 等,将电池模组、电路板等组装于外壳内形成全固态锂电池,全固态锂电池有 多种规格,可根据需要进行调整和设计,在此不作限制,现有技术的全固态锂 电池的组装方式均可应用至本发明。
其中,电池模组由若干全固态锂电池电芯串并联组成,同样地,电池模组也 有多种规格,亦可根据需要进行调整和设计,在此不作限制,现有技术的电池 模组的组装方式均可应用至本发明。
该全固态锂电池可应用于汽车、摩托车或自行车上,以给汽车、摩托车或自 行车提供动力。
下面描述本发明聚合物固态电解质、全固态锂电池电芯的各个实施例。
实施例1
(1)聚合物固态电解质层的制备
把碳酸二苯酯、离子液体型二醇按质量比3.425g:6.575g的比例进行投料 并混合,之后经过下列方程式的高温熔融缩聚反应得到均聚物。均聚物分子量 为30W g/mol。
Figure BDA0002610555040000061
其中所述离子液体型二醇的结构式如式(12)所示。
Figure BDA0002610555040000062
然后将上述所得聚合物和锂盐LiTFSI按质量比8g:2g取料,并溶解于 200mL的二氯甲烷、氯仿、1,2-二氯乙烷、乙腈、N-甲基吡咯烷酮、甲苯等有机 溶剂中的一种或多种中,最后把溶解好的溶液流延于PET膜上并烘干剥离,得 到厚度30um的聚合物固态电解质层。
(2)正极层的制备
先通过上述步骤得到聚合物。之后,把聚合物、锂盐LiTFSI按质量比0.8g: 0.2g取料并溶解于20mL N-甲基吡咯烷酮中,然后加入钴酸锂、乙炔黑、PVDF 并分散均匀。其中钴酸锂、乙炔黑、聚合物固态电解质以及PVDF质量分别为 8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于12um铝集流体上,80℃烘干 后得到厚度40um正极层。
(3)负极层的制备
先通过上述步骤得到聚合物。之后,把聚合物、锂盐LiTFSI按质量比0.8g: 0.2g取料并溶解于20mL氯仿-甲苯(二者体积比为1:1)中,然后加入石墨、 碳纳米管、SBR并分散均匀。其中石墨、碳纳米管、聚合物固态电解质以及SBR 质量分别为8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于10um铜集流体上,80℃烘干后得到厚度45um负极层。
(4)全固态锂电池电芯
把制备好的聚合物固态电解质层、正极层、负极层切片,然后通过叠片的方 式组装,然后于100℃热压即得到最终的全固态锂电池电芯。
实施例2
(1)聚合物固态电解质层的制备
把碳酸二苯酯、寡聚乙二醇及离子液体型二醇按质量比2.464g:5.171g: 2.365g的比例进行投料并混合,之后经过下列方程式的高温熔融缩聚反应得到 无规共聚物。无规共聚物分子量为50W g/mol。
Figure BDA0002610555040000071
其中所述寡聚乙二醇的结构式如式(11)所示;所述离子液体型二醇的结 构式如式(12)所示。
Figure BDA0002610555040000072
然后将上述所得聚合物和锂盐LiTFSI按质量比8g:2g取料,并溶解于 200mL二氯甲烷、氯仿、1,2-二氯乙烷、乙腈、N-甲基吡咯烷酮、甲苯等有机溶 剂中的一种或多种中,最后把溶解好的溶液流延于PET膜上并烘干剥离,得到 厚度30um的聚合物固态电解质层。
(2)正极层的制备
先通过上述步骤得到聚合物。之后,把聚合物、锂盐LiTFSI按质量比0.8g: 0.2g取料并溶解于20mL N-甲基吡咯烷酮中,加入钴酸锂、乙炔黑、PVDF并分 散均匀。其中钴酸锂、乙炔黑、聚合物固态电解质以及PVDF质量分别为8g、 0.5g、1g、0.5g。最后把分散好的浆料涂布于12um铝集流体上,80℃烘干后得 到厚度40um正极层。
(3)负极层的制备
先通过上述步骤得到聚合物。之后,把聚合物、锂盐LiTFSI按质量比0.8g: 0.2g取料并溶解于20mL氯仿-甲苯(二者体积比为1:1)中,然后加入石墨、 碳纳米管、SBR并分散均匀。其中石墨、碳纳米管、聚合物固态电解质以及SBR 质量分别为8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于10um铜集流体上, 80℃烘干后得到厚度45um负极层。
(4)全固态锂电池电芯
把制备好的聚合物固态电解质层、正极层、负极层切片,然后通过叠片的方 式组装,然后于100℃热压即得到最终的全固态锂电池电芯。
实施例3
按实施例2所述方法制备聚合物固态电解质层及全固态锂电池电芯,唯一不 同之处为用于聚合物合成的碳酸二苯酯、寡聚乙二醇及离子液体型二醇的质量 比为1.9258g:8.0734g:0.0008g。所得无规共聚物分子量为40W g/mol。
实施例4
(1)聚合物固态电解质层的制备
把碳酸二苯酯、离子液体型二醇按质量比2.936g:7.064g的比例进行投料 并混合,之后经过下列方程式的高温熔融缩聚反应得到均聚物。所得均聚物分 子量为45W g/mol。
Figure BDA0002610555040000091
其中所述离子液体型二醇的结构式如式(13)所示。
Figure BDA0002610555040000092
然后将上述所得聚合物和锂盐LiTFSI按质量比8g:2g取料,并溶解于 200mL的二氯甲烷、氯仿、1,2-二氯乙烷、乙腈、N-甲基吡咯烷酮、甲苯等有机 溶剂中的一种或多种中,最后把溶解好的溶液流延于PET膜上并烘干剥离,得 到厚度30um的聚合物固态电解质层。
(2)正极层的制备
先通过上述步骤得到聚合物。之后,把聚合物、锂盐LiTFSI按质量比0.8g: 0.2g取料并溶解于20mL N-甲基吡咯烷酮中,然后加入钴酸锂、乙炔黑、PVDF 并分散均匀。其中钴酸锂、乙炔黑、聚合物固态电解质以及PVDF质量分别为 8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于12um铝集流体上,80℃烘干 后得到厚度40um正极层。
(3)负极层的制备
先通过上述步骤得到聚合物。之后,把聚合物、锂盐LiTFSI按质量比0.8g: 0.2g取料并溶解于20mL氯仿-甲苯(二者体积比为1:1)中,然后加入石墨、 碳纳米管、SBR并分散均匀。其中石墨、碳纳米管、聚合物固态电解质以及SBR 质量分别为8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于10um铜集流体上, 80℃烘干后得到厚度45um负极层。
(4)全固态锂电池电芯
把制备好的聚合物固态电解质层、正极层、负极层切片,然后通过叠片的方 式组装,然后于100℃热压即得到最终的全固态锂电池电芯。
实施例5
(1)聚合物固态电解质层的制备
把碳酸二苯酯、寡聚乙二醇及离子液体型二醇按质量比2.325g:4.879g: 2.796g的比例进行投料并混合,之后经过下列方程式的高温熔融缩聚反应得到 无规共聚物。所得无规共聚物分子量为60W g/mol。
Figure BDA0002610555040000101
其中所述寡聚乙二醇的结构式如式(11)所示;所述离子液体型二醇的结 构式如式(13)所示。
Figure BDA0002610555040000102
Figure BDA0002610555040000111
然后将上述所得聚合物和锂盐LiTFSI按质量比8g:2g取料,并溶解于 200mL二氯甲烷、氯仿、1,2-二氯乙烷、乙腈、N-甲基吡咯烷酮、甲苯等有机溶 剂中的一种或多种中,最后把溶解好的溶液流延于PET膜上并烘干剥离,得到 厚度30um的聚合物固态电解质层。
(2)正极层的制备
先通过上述步骤得到聚合物。之后,把聚合物、锂盐LiTFSI按质量比0.8g: 0.2g取料并溶解于20mL N-甲基吡咯烷酮中,加入钴酸锂、乙炔黑、PVDF并分 散均匀。其中钴酸锂、乙炔黑、聚合物固态电解质以及PVDF质量分别为8g、 0.5g、1g、0.5g。最后把分散好的浆料涂布于12um铝集流体上,80℃烘干后得 到厚度40um正极层。
(3)负极层的制备
先通过上述步骤得到聚合物。之后,把聚合物、锂盐LiTFSI按质量比0.8g: 0.2g取料并溶解于20mL氯仿-甲苯(二者体积比为1:1)中,然后加入石墨、 碳纳米管、SBR并分散均匀。其中石墨、碳纳米管、聚合物固态电解质以及SBR 质量分别为8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于10um铜集流体上, 80℃烘干后得到厚度45um负极层。
(4)全固态锂电池电芯
把制备好的聚合物固态电解质层、正极层、负极层切片,然后通过叠片的方 式组装,然后于100℃热压即得到最终的全固态锂电池电芯。
实施例6
按实施例5所述方法制备聚合物固态电解质层及全固态锂电池电芯,唯一不 同之处为用于聚合物合成的碳酸二苯酯、寡聚乙二醇及离子液体型二醇的质量 比为1.9243g:8.0749g:0.0008g。所得无规共聚物分子量为55W g/mol。
实施例7
按实施例2所述方法制备聚合物固态电解质层及全固态锂电池电芯,唯一不 同之处为所述锂盐为LiPF6
实施例8
按实施例5所述方法制备聚合物固态电解质层及全固态锂电池电芯,唯一不 同之处为所述锂盐为LiPF6
对比例1
(1)聚合物固态电解质层的制备
把聚氧化乙烯(简称PEO,分子量为60W g/mol)、锂盐LiTFSI按质量比 7g:3g取料,并溶解于200mL乙腈中,最后把溶解好的溶液流延于PET膜上并 烘干剥离,得到厚度30um的聚合物固态电解质层。
(2)正极层的制备
把聚氧化乙烯(简称PEO,分子量为60W g/mol)、锂盐LiTFSI按质量比 0.7g:0.3g取料并溶解于20mL N-甲基吡咯烷酮中,加入钴酸锂、乙炔黑、PVDF 并分散均匀。其中钴酸锂、乙炔黑、聚合物固态电解质以及PVDF质量分别为 8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于12um铝集流体上,80℃烘干 后得到厚度40um正极层。
(3)负极层的制备
把聚氧化乙烯(简称PEO,分子量为60W g/mol)、锂盐LiTFSI按质量比 0.7g:0.3g取料并溶解于20mL氯仿-甲苯(二者体积比为1:1)中,然后加入 石墨、碳纳米管、SBR并分散均匀。其中石墨、碳纳米管、聚合物固态电解质 以及SBR质量分别为8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于10um铜 集流体上,80℃烘干后得到厚度45um负极层。
(4)全固态锂电池电芯
把制备好的聚合物固态电解质层、正极层、负极层切片,然后通过叠片的方 式组装,然后于100℃热压即得到最终的全固态锂电池电芯。
对比例2
(1)聚合物固态电解质层的制备
把聚碳酸丙烯酯(简称PPC,分子量为50000g/mol)、锂盐LiTFSI按质量 比3g:7g取料,并溶解于200mL乙腈中的一种或多种中,最后把溶解好的溶液 流延于PET膜上并烘干剥离,得到厚度30um的聚合物固态电解质层。
(2)正极层的制备
把聚碳酸丙烯酯(简称PPC,分子量为50000g/mol)、锂盐LiTFSI按质量 比0.3g:0.7g取料并溶解于20mL N-甲基吡咯烷酮中,加入钴酸锂、乙炔黑、 PVDF并分散均匀。其中钴酸锂、乙炔黑、聚合物固态电解质以及PVDF质量分 别为8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于12um铝集流体上,80℃ 烘干后得到厚度40um正极层。
(3)负极层的制备
把聚碳酸丙烯酯(简称PPC,分子量为50000g/mol)、锂盐LiTFSI按质量 比0.3g:0.7g取料并溶解于20mL氯仿-甲苯(二者体积比为1:1)中,然后加 入石墨、碳纳米管、SBR并分散均匀。其中石墨、碳纳米管、聚合物固态电解 质以及SBR质量分别为8g、0.5g、1g、0.5g。最后把分散好的浆料涂布于10um 铜集流体上,80℃烘干后得到厚度45um负极层。
(4)全固态锂电池电芯
把制备好的聚合物固态电解质层、正极层、负极层切片,然后通过叠片的方 式组装,然后于100℃热压即得到最终的全固态锂电池电芯。
全固态锂电池电芯性能测试方法:
(1)聚合物固态电解质离子电导率的测定
聚合物固态电解质离子电导率测试方法为电化学阻抗法。测试步骤为:取 上述聚合物固态电解质、不锈钢片制作成CR2025型号扣式电池,之后放入夹具 中于不同温度(-50℃、25℃、100℃、200℃、)下恒温5小时,在1Hz到8MHz 的频率范围内进行电化学阻抗测试,之后依据所测电解质阻抗和公式(1)计算聚 合物固态电解质的离子电导率。
σ=l/RS 公式(1)
其中σ为电解质的离子电导率,单位为S·cm-1;l为电解质膜的厚度,单位为cm; R为通过电化学阻抗法所测得的电解质的本体阻抗,单位为Ω(或S-1);S为电解 质与不锈钢片的接触面积,单位为cm2
聚合物固态电解质的离子电导率测试结果如下表1:
Figure BDA0002610555040000141
(2)不同温度下全固态电池的充放电性能
取上述制备好的全固态锂电池电芯,然后于不同温度(-50℃、25℃、100℃、)下恒温5小时。之后,以0.5C的倍率从3.0V恒流充电到4.2V,之后静置5分 钟,然后于4.2V恒压充电至0.05C截止,最后以0.5C的倍率进行放电到3.0V, 最后静置5分钟。不同温度下,电池放电比容量如下表2:
Figure BDA0002610555040000151
(3)全固态电池的循环性能
取上述制备好的全固态锂电池电芯,然后于不同温度(-50℃、25℃、100℃、)下恒温5小时。之后,以0.5C的倍率从3.0V恒流充电到4.2V,之后静置5分 钟,然后于4.2V恒压充电至0.05C截止,最后以0.5C的倍率进行放电到3.0V, 最后静置5分钟。如此循环100次。全固态电池循环性能如下表3:
Figure BDA0002610555040000152
Figure BDA0002610555040000161
从表1可知各温度下聚合物固态电解质的离子电导率,本发明的聚合物固 态电解质的离子电导率结果如下:σ(-50℃)=7.38×10-9~4.91×10-4S·cm-1,σ (25℃)=9.32×10-5~2.36×10-3S·cm-1,σ(100℃)=2.84×10-3~2.19×10-2S·cm-1,σ (200℃)=1.89×10-3~5.59×10-2S·cm-1;而对比例1的聚合物固态电解质的离子电导 率结果如下:σ(-50℃)=2.21×10-10S·cm-1,σ(25℃)=3.23×10-5S·cm-1;对比例2的 聚合物固态电解质的离子电导率结果如下:σ(-50℃)=5.67×10-9S·cm-1,σ (25℃)=8.76×10-5S·cm-1。显然,本发明的聚合物固态电解质的离子电导率显著高 于对比例的聚合物固态电解质的离子电导率。
从表2可知不同温度下全固态锂电池电芯的放电比容量,本发明的全固态 锂电池电芯的放电比容量D(-50℃)=3~120mAh/g,D(25℃)=80~138mAh/g, D(100℃)=135~140mAh/g,而对比例1的全固态锂电池电芯的放电比容量 D(-50℃)=1.5mAh/g,D(25℃)=75mAh/g;对比例2的全固态锂电池电芯的放电 比容量D(-50℃)=2mAh/g,D(25℃)=77mAh/g。显然,本发明的全固态锂电池 电芯的放电比容量显著高于对比例的全固态锂电池电芯的放电比容量。
从表3可知不同温度下循环100次后全固态锂电池电芯的放电比容量,本 发明的全固态锂电池电芯循环100次后的放电比容量D(-50℃)=0.5~105mAh/g, D(25℃)=43~137mAh/g,D(100℃)=137~140mAh/g,而对比例1的全固态锂电 池电芯循环100次后的放电比容量D(-50℃)=0mAh/g,D(25℃)=38mAh/g;对 比例2的全固态锂电池电芯循环100次后的放电比容量D(-50℃)=0mAh/g, D(25℃)=42mAh/g。显然,本发明的全固态锂电池电芯循环100次后的放电比容 量显著高于对比例的全固态锂电池电芯循环100次后的放电比容量。
制得说明的是,表1~表3中“—”表示数据未展示,原因主要在于现有方 法测得的数据不稳定/不准确,也在于温度过高导致聚合物固态电解质溶解无法 测出。
与现有技术相比,本发明提供了一种聚合物固态电解质,该聚合物固态电 解质具有高离子电导率、高锂离子迁移数、高热稳定性,且机械性优异以及电 化学稳定。制备出来的全固态锂电池电芯适用于-50℃~200℃的温度范围,同时 能保证优异的电化学性能和安全性能。同时,能够提升全固态锂电池电芯和全 固态锂电池的使用寿命和能量密度。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明 之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖 的范围。

Claims (13)

1.一种聚合物固态电解质,其特征在于,所述聚合物固态电解质包括聚合物以及锂盐,所述聚合物为式(1)结构的均聚物、无规共聚物或嵌段共聚物中的一种或多种;
Figure FDA0002610555030000011
2.如权利要求1所述的聚合物固态电解质,其特征在于,所述聚合物的含量为1~100wt%,所述锂盐的含量为0~99wt%。
3.如权利要求1所述的聚合物固态电解质,其特征在于,所述聚合物的分子量为1万~500万,所述式(1)中i的取值范围为1~500,j的取值范围为1~20,k的取值范围为1~20,m的取值范围为0~100,n的取值范围为1~100,阳离子
Figure FDA0002610555030000013
为碱金属离子、碱土金属离子或式(4)~式(10)所示结构中的任意一种或多种,其中,所述碱金属离子包括Li+、Na+、K+、Rb+和Cs+,所述碱土金属离子包括Be2+、Mg2+、Ca2+、Sr2+、和Ba2+,所述式(4)~式(10)所示结构分别为:
Figure FDA0002610555030000012
4.如权利要求1所述的聚合物固态电解质,其特征在于,所述聚合物是由碳酸二苯酯、寡聚乙二醇及离子液体型二醇经过缩聚反应得到,所述缩聚反应式为:
Figure FDA0002610555030000021
其中,寡聚乙二醇及离子液体型二醇的化学结构如下面所示式(2)和式(3):
Figure FDA0002610555030000022
5.如权利要求4所述的聚合物固态电解质,其特征在于,所述寡聚乙二醇占所述寡聚乙二醇及所述离子液体型二醇的总量的比例Wt1为:0≤Wt1≤99.9%,所述离子液体型二醇占所述寡聚乙二醇及所述离子液体型二醇的总量的比例Wt2为:0.01≤Wt2≤100%。
6.如权利要求1所述的聚合物固态电解质,其特征在于,所述锂盐包括LiP(Rf1Rf2Rf3Rf4Rf5Rf6)、LiB(Rf1Rf2Rf3Rf4)、LiN(SO2Rf1)(SO2Rf2)、LiC(SO2Rf1)(SO2Rf2)(SO2Rf3)、二草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiDFOB)、高氯酸锂及六氟砷酸锂中的一种或几种,其中Rf1、Rf2、Rf3、Rf4、Rf5、Rf6分别为CnF2n+1(0≤n≤10)。
7.如权利要求1所述的聚合物固态电解质,其特征在于,所述聚合物固态电解质的离子电导率σ(-50℃)=7.38×10-9~4.91×10-4S·cm-1,σ(25℃)=9.32×10-5~2.36×10-3S·cm-1,σ(100℃)=2.84×10-3~2.19×10-2S·cm-1,σ(200℃)=1.89×10-3~5.59×10-2S·cm-1
8.一种全固态锂电池电芯,其特征在于,所述全固态锂电池电芯包括:
铝集流体;
正极层;
如权利要求1~7任一项所述的聚合物固态电解质组成的聚合物固态电解质层;
负极层;以及
铜集流体,其中,所述铝集流体及所述铜集流体的厚度为10nm~20um,所述正极层、所述负极层及所述聚合物固态电解质层的厚度均为10nm~100um。
9.如权利要求8所述的全固态锂电池电芯,其特征在于,所述正极层包括:
正极材料50wt%~100wt%,所述正极材料包括碳包覆的LiMPO4(M=Fe、Co、Ni及Mn中的至少一种)、未进行碳包覆的LiMO2(M=Ni、Co、Mn及Al中的至少一种)、碳包覆的LiMO2(M=Ni、Co、Mn及Al中的至少一种)中的一种或多种,所述正极材料的颗粒直径为100nm~50um;
正极导电剂0wt%~20wt%,所述正极导电剂包括炭黑、乙炔黑及碳纳米管中的最少一种,所述正极导电剂的颗粒直径为10nm~50um;
权利要求1~7任一项所述的聚合物固态电解质0wt%~40wt%;以及
正极粘结剂0wt%~10wt%,所述正极粘结剂为聚偏二氟乙烯类聚合物,分子量为10万~500万。
10.如权利要求8所述的全固态锂电池电芯,其特征在于,所述负极层包括:
负极材料50wt%~100wt%,所述负极材料包括锂粉、石墨、硅、硅碳以及SiOx中的一种或多种,所述负极材料的颗粒直径为100nm~50um;
负极导电剂0wt%~20wt%,所述负极导电剂包括炭黑、乙炔黑及碳纳米管中的至少一种,所述负极导电剂的颗粒直径为100nm~50um;
权利要求1~7任一项所述的聚合物固态电解质0wt%~40wt%;
负极粘结剂0wt%~10wt%,所述负极粘结剂为丁苯橡胶及丁腈橡胶中的至少一种,分子量为10万~500万。
11.如权利要求8所述的全固态锂电池电芯,其特征在于,所述负极层为锂金属箔或锂铜复合金属箔。
12.一种全固态锂电池,其特征在于,所述全固态锂电池包括如权利要求8~11任一项所述的全固态锂电池电芯。
13.将权利要求12所述的全固态锂电池应用于汽车、摩托车或自行车上。
CN202010754514.1A 2020-07-30 2020-07-30 聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用 Active CN114069032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010754514.1A CN114069032B (zh) 2020-07-30 2020-07-30 聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010754514.1A CN114069032B (zh) 2020-07-30 2020-07-30 聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用

Publications (2)

Publication Number Publication Date
CN114069032A true CN114069032A (zh) 2022-02-18
CN114069032B CN114069032B (zh) 2023-06-30

Family

ID=80227292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010754514.1A Active CN114069032B (zh) 2020-07-30 2020-07-30 聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用

Country Status (1)

Country Link
CN (1) CN114069032B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006591A1 (fr) * 1999-07-21 2001-01-25 Yuasa Corporation Pile au lithium
JP2002033017A (ja) * 2000-07-14 2002-01-31 Mitsui Chemicals Inc 高分子固体電解質および二次電池
JP2004059533A (ja) * 2002-07-31 2004-02-26 Asahi Kasei Corp ビススルホニルイミド基含有モノマーの製造方法
WO2016127786A1 (zh) * 2015-02-13 2016-08-18 中国科学院青岛生物能源与过程研究所 一种全固态聚合物电解质及其制备和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006591A1 (fr) * 1999-07-21 2001-01-25 Yuasa Corporation Pile au lithium
JP2002033017A (ja) * 2000-07-14 2002-01-31 Mitsui Chemicals Inc 高分子固体電解質および二次電池
JP2004059533A (ja) * 2002-07-31 2004-02-26 Asahi Kasei Corp ビススルホニルイミド基含有モノマーの製造方法
WO2016127786A1 (zh) * 2015-02-13 2016-08-18 中国科学院青岛生物能源与过程研究所 一种全固态聚合物电解质及其制备和应用

Also Published As

Publication number Publication date
CN114069032B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN101515640B (zh) 一种负极和包括该负极的锂离子二次电池
KR101215416B1 (ko) 리튬 배터리용 캐쏘드 물질
US8956762B2 (en) Lithium ion secondary battery and method for manufacturing the same
CN103633363B (zh) 一种锂离子电池及其制备方法
CN101439972A (zh) 硅碳复合材料及其制备方法以及电池负极和锂离子电池
CN102376946A (zh) 正极活性物质和包括所述正极活性物质的锂电池
CN102487151B (zh) 一种锂离子二次电池
CN112599850A (zh) 一种固态电解质复合层及锂离子电池
KR20130125236A (ko) 복합양극활물질, 이를 채용한 양극 및 리튬 전지
KR20120089197A (ko) 전기화학 장치용 전해액 및 전기화학 장치
CN106602129A (zh) 一种多离子电池及其制备方法
CN112055909A (zh) 用于制造包括聚合物固体电解质的全固态电池的方法和由该方法获得的全固态电池
CN111213260A (zh) 阳极、阳极制备方法以及锂离子电池
CN101662026A (zh) 粘结剂组合物和正负极材料组合物和正极与负极及电池
CN101651233A (zh) 一种锂离子二次电池及其制备方法
CN103794814A (zh) 一种锂离子电池及其制备方法
CN101202359B (zh) 一种添加剂组合物以及含该添加剂组合物的电解液和锂离子二次电池
CN101197436A (zh) 一种锂离子二次电池的正极片及包括该正极片的电池
JP4441933B2 (ja) リチウム二次電池用正極およびリチウム二次電池
WO2020049843A1 (ja) 被覆正極活物質、リチウムイオン二次電池の製造方法及びリチウムイオン二次電池
US9893360B2 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery using same
CN112701347B (zh) 一种电化学装置及电子设备
CN114512718A (zh) 一种复合固态电解质及其制备方法和高性能全固态电池
CN114069032B (zh) 聚合物固态电解质、全固态锂电池电芯、全固态锂电池及其应用
CN114069033B (zh) 复合固态电解质、全固态锂电池电芯、全固态锂电池及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant