WO2015142791A1 - Coupler to transfer motion to surgical instrument from servo actuator - Google Patents
Coupler to transfer motion to surgical instrument from servo actuator Download PDFInfo
- Publication number
- WO2015142791A1 WO2015142791A1 PCT/US2015/020884 US2015020884W WO2015142791A1 WO 2015142791 A1 WO2015142791 A1 WO 2015142791A1 US 2015020884 W US2015020884 W US 2015020884W WO 2015142791 A1 WO2015142791 A1 WO 2015142791A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- isa
- surgical instrument
- carriage
- locking mechanism
- sterile adapter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B46/00—Surgical drapes
- A61B46/10—Surgical drapes specially adapted for instruments, e.g. microscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00142—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with means for preventing contamination, e.g. by using a sanitary sheath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Leader-follower robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B46/00—Surgical drapes
- A61B46/40—Drape material, e.g. laminates; Manufacture thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
- A61B90/98—Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00172—Connectors and adapters therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0813—Accessories designed for easy sterilising, i.e. re-usable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B46/00—Surgical drapes
- A61B46/20—Surgical drapes specially adapted for patients
- A61B46/23—Surgical drapes specially adapted for patients with means to retain or hold surgical implements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/20—Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49815—Disassembling
- Y10T29/49817—Disassembling with other than ancillary treating or assembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/59—Manually releaseable latch type
Definitions
- Embodiments of the invention relate to the field of field of mechanical couplers; and more specifically, to a mechanical coupler for transferring motion from a teleoperated actuator to an attached surgical instrument.
- Minimally invasive medical techniques have been used to reduce the amount of extraneous tissue which may be damaged during diagnostic or surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects.
- Traditional forms of minimally invasive surgery include endoscopy.
- One of the more common forms of endoscopy is laparoscopy, which is minimally invasive inspection or surgery within the abdominal cavity.
- laparoscopy is minimally invasive inspection or surgery within the abdominal cavity.
- cannula sleeves are passed through small (approximately 12 mm) incisions in the musculature of the patient's abdomen to provide entry ports through which laparoscopic surgical instruments can be passed in a sealed fashion.
- the laparoscopic surgical instruments generally include a
- Typical surgical end effectors include clamps, graspers, scissors, staplers, and needle holders, for example.
- the surgical instruments are similar to those used in conventional (open) surgery, except that the working end or end effector of each surgical instrument is separated from its handle by an approximately 30 cm. long extension tube, for example, so as to permit the operator to introduce the end effector to the surgical site and to control movement of the end effector relative to the surgical site from outside a patient's body.
- the surgical instrument In order to provide improved control of the working tools, it may be desirable to control the surgical instrument with teleoperated actuators.
- the surgeon may operate controls on a console to indirectly manipulate the instrument that is connected to the teleoperated actuators.
- the surgical instrument is detachably coupled to the teleoperated actuators so that the surgical instrument can be separately sterilized and selected for use as needed instrument for the surgical procedure to be performed.
- the surgical instrument may be changed during the course of a surgery.
- Performing surgery with teleoperated surgical instruments creates new challenges.
- One challenge is the need to maintain the region adjacent the patient in a sterile condition.
- the motors, sensors, encoders and electrical connections that are necessary to control the surgical instruments typically cannot be sterilized using conventional methods, e.g., steam, heat and pressure or chemicals, because they would be damaged or destroyed in the sterilization process.
- surgeon will typically employ several different surgical instruments during a procedure.
- a number of different surgical instruments will typically be introduced through the same trocar sleeve during the operation to limit the number of incisions required.
- there are a limited number of instrument holders available often fewer than the number of surgical instruments used during a procedure. Therefore the surgical instruments may be attached and detached from the same instrument holder a number of times during an operation.
- a number of connections are required between the surgical instrument and the teleoperated actuator and its controller. Connections are required to transmit the actuator forces, electrical signals, and data. This makes the attachment of the surgical instrument to the teleoperated actuator and its controller complex.
- a sterile adapter for coupling a surgical instrument and a surgical instrument manipulator includes a bottom component and a coupling component.
- the bottom component includes a bottom component opening with a bottom lip having a locking mechanism.
- the coupling component is rotatably coupled to the bottom component.
- the coupling component includes an engagement feature that engages the surgical instrument manipulator.
- the coupling component further includes a locking
- the coupling component may include a retention tab that is aligned with the keyway to insert the coupling component into the bottom component opening and then misaligned with the keyway to retain the coupling component in the bottom component opening.
- a ramp may be provided on a leading edge of a pocket to facilitate engaging the coupling component with the surgical instrument manipulator.
- FIG. 1 is a view of an illustrative patient-side portion of a teleoperated surgical system.
- FIG. 2 is a side view of a surgical instrument for use with a
- FIG. 3A is an illustration of an exemplary embodiment of a coupling of a surgical instrument, a carriage of a surgical instrument manipulator, and an instrument sterile adapter (ISA).
- ISA instrument sterile adapter
- FIG. 3B is an illustration of an exemplary embodiment of the coupler system of FIG. 3A.
- FIG. 4 is an illustration of an exemplary embodiment of an
- FIG. 5 is an illustration of an ISA bottom component and a plurality of ISA couplers.
- FIG. 6 is an illustration of an exemplary embodiment of an ISA
- FIG. 7 is an illustration of a plurality of ISA couplers coupled with the
- FIG. 8 is an illustration of an exemplary embodiment of an ISA top component having one ISA coupler placed in a top component opening.
- FIG. 9 is illustration of a cut-away ISA top component coupled to the
- FIG. 10 is an illustration of an exemplary embodiment of a top
- FIG. 1 1 is an illustration of an exemplary embodiment of the underside of an ISA.
- FIG. 12 is an illustration of an exemplary embodiment of an
- FIG. 13A is an illustration of an exemplary embodiment of an ISA bottom component having a locking mechanism illustrated as a boss.
- FIG. 13B is an enlarged illustration of the boss locking mechanism illustrated in a portion of Figure 13A.
- FIG. 13C is an illustration of an exemplary embodiment of an ISA bottom component having a locking mechanism illustrated as a ratchet.
- FIG. 13D is an enlarged illustration of the ratchet locking mechanism illustrated in a portion of Figure 13C
- FIG. 16A is an illustration of an exemplary embodiment of an ISA bottom engagement feature approaching a carriage engagement feature without an entry ramp.
- FIG. 16B is an illustration of the exemplary embodiment of Figure
- FIG. 17A is an illustration of an exemplary embodiment of an ISA bottom engagement feature approaching a carriage engagement feature that includes an entry ramp.
- FIG. 17B is an illustration of the exemplary embodiment of Figure
- FIG. 18A is an illustration of an exemplary embodiment of an ISA bottom engagement feature that includes an entry ramp approaching a carriage engagement feature.
- FIG. 18B is an illustration of the exemplary embodiment of Figure
- spatially relative terms such as “beneath”, “below”, “lower”, “above”, “upper”, and the like may be used herein for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
- object generally refers to a component or group of
- an object may refer to either a pocket or a boss of a disk within the specification or claims.
- object may refer to either a pocket or a boss of a disk within the specification or claims.
- instrument and “surgical instrument” are used herein to describe a medical device configured to be inserted into a patient's body and used to carry out surgical or diagnostic procedures.
- the instrument includes an end effector.
- the end effector may be a surgical tool associated with one or more surgical tasks, such as a forceps, a needle driver, a shears, a bipolar cauterizer, a tissue stabilizer or retractor, a clip applier, an anastomosis device, an imaging device (e.g., an endoscope or ultrasound probe), and the like.
- Some instruments used with embodiments of the invention further provide an articulated support (sometimes referred to as a "wrist") for the surgical tool so that the position and orientation of the surgical tool can be manipulated with one or more mechanical degrees of freedom in relation to the instrument's shaft.
- many surgical end effectors include a functional mechanical degree of freedom, such as jaws that open or close, or a knife that translates along a path.
- Surgical instruments may also contain stored (e.g., on a semiconductor memory inside the instrument) information that may be permanent or may be updatable by the surgical system. Accordingly, the system may provide for either one-way or two-way information communication between the instrument and one or more system components.
- pocket may be construed broadly as a recess of a
- a boss may be configured as any shape or size.
- One use of a boss is to participate in a mating process with a pocket through insertion of the boss into the pocket.
- the terms "boss” and “protrusion” are used interchangeably.
- engagement feature may be construed broadly as a
- mating may be construed broadly as any event in which two or more objects are connected in a manner allowing the mated objects to operate in conjunction with one another. It should be noted that mating does not require a direct connection (e.g., direct physical or electrical connection) but that a multiplicity of objects or components may be used to mate two or more objects. For example, objects A and B may be mated through the use of object C. As another example, objects D and E may mate when object D, a protrusion, is received into the recess of object E, a pocket. Throughout the specification and claims, the terms "mate,”
- Coupled means "connect” or “engage” are used interchangeably.
- detachably coupled or “detachably mated” may be construed to mean a coupling or mating event between two or more objects that is not permanent. This means that objects that are detachably coupled may be uncoupled and separated such that they no longer operate in conjunction.
- the protrusion of the boss is inherently smaller than opening of the pocket.
- the difference between the size of the protrusion and the size of the opening is the amount of backlash between the boss and the pocket.
- FIG. 1 is a view of an illustrative patient-side portion 100 of a
- the patient-side portion 100 includes support assemblies 1 10 and one or more surgical instrument manipulators 1 12 at the end of each support assembly.
- the support assemblies optionally include one or more unpowered, lockable setup joints that are used to position the surgical instrument manipulator(s) 1 12 with reference to the patient for surgery.
- the patient-side portion 100 rests on the floor.
- the patient-side portion may be mounted to a wall, to the ceiling, to the operating table 126, which also supports the patient's body 1 22, or to other operating room equipment.
- the patient-side portion 100 is shown as including four surgical instrument manipulators 1 12, more or fewer surgical instrument manipulators 1 12 may be used.
- the patient-side portion 100 may consist of a single assembly as shown, or it may include two or more separate assemblies, each optionally mounted in various possible ways.
- Each surgical instrument manipulator 1 12 supports one or more surgical instruments 1 20 that operate at a surgical site within the patient's body 1 22.
- Each surgical instrument manipulator 1 12 may be provided in a variety of forms that allow the associated surgical instrument to move with one or more mechanical degrees of freedom (e.g., all six Cartesian degrees of freedom, five or fewer Cartesian degrees of freedom, etc.).
- mechanical or control constraints restrict each surgical instrument manipulator 1 1 2 to move its associated surgical instrument around a center of motion on the surgical instrument that stays stationary with reference to the patient, and this center of motion is typically located to be at the position where the surgical instrument enters the body.
- a functional teleoperated surgical system will generally include a vision system portion (not shown) that enables the operator to view the surgical site from outside the patient's body 122.
- the vision system typically includes a surgical instrument that has a video-image-capture function 128 (a "camera instrument") and one or more video displays for displaying the captured images.
- the camera instrument 128 includes optics that transfer the images from the distal end of the camera instrument 1 28 to one or more imaging sensors (e.g., CCD or CMOS sensors) outside of the patient's body 122.
- the imaging sensor(s) may be positioned at the distal end of the camera instrument 128, and the signals produced by the sensor(s) may be transmitted along a lead or wirelessly for processing and display on the video display.
- An illustrative video display is the stereoscopic display on the surgeon's console in surgical systems commercialized by Intuitive Surgical, Inc., Sunnyvale, California.
- a functional teleoperated surgical system will further include a control system portion (not shown) for controlling the movement of the surgical instruments 120 while the instruments are inside the patient.
- the control system portion may be at a single location in the surgical system, or it may be distributed at two or more locations in the system (e.g., control system portion components may be in the system's patient-side portion 100, in a dedicated system control console, or in a separate equipment rack).
- the teleoperated master/slave control may be done in a variety of ways, depending on the degree of control desired, the size of the surgical assembly being controlled, and other factors.
- control system portion includes one or more manually-operated input devices, such as a joystick, exoskeletal glove, a powered and gravity- compensated manipulator, or the like. These input devices control teleoperated motors which, in turn, control the movement of the surgical instrument.
- manually-operated input devices such as a joystick, exoskeletal glove, a powered and gravity- compensated manipulator, or the like.
- the forces generated by the teleoperated motors are transferred via drivetrain mechanisms, which transmit the forces from the teleoperated motors to the surgical instrument 1 20.
- the input devices that control the manipulator(s) may be provided at a location remote from the patient, either inside or outside the room in which the patient is placed. The input signals from the input devices are then transmitted to the control system portion. Persons familiar with
- both the surgical instrument 120 and an optional entry guide 124 are removably coupled to the distal end of a manipulator 1 12, with the surgical instrument 120 inserted through the entry guide 124.
- Teleoperated actuators in the manipulator 1 12 move the surgical instrument 120 as a whole.
- the manipulator 1 12 further includes an instrument carriage 130.
- the surgical instrument 120 is detachably connected to the carriage 1 30.
- the teleoperated actuators housed in the carriage 130 provide a number of controller motions which the surgical instrument 120 translates into a variety of movements of the end effector on the surgical instrument.
- the teleoperated actuators in the carriage 130 move only one or more components of the surgical instrument 120 rather than the instrument as a whole.
- Inputs to control either the instrument as a whole or the instrument's components are such that the input provided by a surgeon to the control system portion (a "master” command) is translated into a corresponding action by the surgical instrument (a "slave” response).
- FIG. 2 is a side view of an illustrative embodiment of the surgical instrument 120, comprising a distal portion 250 and a proximal control mechanism 240 coupled by an elongate tube 210.
- the distal portion 250 of the surgical instrument 120 may provide any of a variety of surgical tools, such as the forceps 254 shown, a needle driver, a cautery device, a cutting tool, an imaging device (e.g., an endoscope or ultrasound probe), or a combined device that includes a combination of two or more various tools and imaging devices.
- the surgical tool 254 is coupled to the elongate tube 210 by a "wrist" 252 that allows the orientation of the surgical tool to be manipulated with reference to the instrument tube 21 0.
- Surgical instruments that are used with the invention may control their end effectors (surgical tools) with a plurality of rods and/or flexible cables.
- Rods which may be in the form of tubes, may be combined with cables to provide a "push/pull" control of the end effector with the cables providing flexible sections as required.
- a typical elongate tube 210 for a surgical instrument 120 is small, perhaps five to eight millimeters in diameter, roughly the diameter of a large soda straw. The diminutive scale of the mechanisms in the surgical instrument 120 creates unique mechanical conditions and issues with the construction of these
- the cables must fit within the elongate tube 210 and be able to bend as they pass through the wrist joint 252.
- a sterile component such as an instrument sterile adapter (ISA)
- ISA instrument sterile adapter
- the placement of an instrument sterile adapter between the surgical instrument 120 and the surgical instrument manipulator 1 30 includes the benefit of ensuring a sterile coupling point for the surgical instrument 120 and the surgical instrument manipulator 130. This permits removal of surgical instruments from the surgical instrument manipulator 1 30 and exchange with other surgical instruments during the course of a surgery.
- FIG. 3A shows a portion of an exemplary embodiment of a proximal control mechanism 240 of a surgical instrument 120, a carriage 31 0 of a teleoperated surgical instrument manipulator 130, and an instrument sterile adapter (ISA) 300 in a coupled condition.
- ISA instrument sterile adapter
- FIG. 3B shows an exploded view of the coupler system of FIG. 3A.
- the first stage of the coupling process includes the ISA 300 coupling with the carriage 130.
- Carriage drivers 320 on the carriage 130 are rotated to engage the corresponding ISA couplers 330.
- the surgical instrument 120 is coupled with the ISA 300.
- the ISA couplers 330 are rotated by the carriage drivers 320 to engage corresponding instrument drivers (not shown).
- the instrument sterile adapter is assembled from a plurality of components, including, among others, a top component, a bottom component and one or more couplers. A coupler is positioned through an opening in the bottom component, and then the top component is joined with the bottom component.
- FIG. 4 shows an exemplary embodiment of an assembled ISA 300.
- the ISA 300 includes an ISA top component 410, an ISA bottom
- FIG. 4 illustrates the ISA 300 including five ISA couplers 330.
- the number of ISA couplers 330 is not limited to five, but may be more than or less than five.
- FIG. 5 a view of an ISA bottom component 420 and a plurality of ISA couplers 330 is shown.
- the ISA bottom component 420 includes a plurality of bottom component openings 530.
- Each coupler 330 is associated with a corresponding opening 530.
- Each bottom component opening 530 is partially surrounded by a bottom lip 540, and each bottom lip 540 includes one or more keyways 550.
- the ISA coupler 330 includes two ISA bottom engagement features 610, two ISA top engagement features 600 (one is hidden from view), two ISA locking mechanism openings 640, two retention tabs 630, and an ISA coupler lip 620. It should be noted that the number of engagement features, retention tabs, and locking mechanism openings are variable. In addition, various configurations of the top and bottom engagement features 600, 610 may be used. For example, the bottom engagement feature 610 could be a recessed feature rather than a projecting feature as shown. [0066] Referring again to Figure 5, each ISA coupler 330 is positioned in a corresponding bottom component opening 530.
- the ISA coupler 330 is rotated to align the retention tabs 630 with the keyways 550 to allow the ISA coupler to be inserted into the corresponding bottom component opening 530.
- the ISA coupler lip 620 is larger than the bottom component opening 530 and limits the distance the ISA coupler 330 can be inserted into the bottom component opening.
- the ISA coupler 330 is then rotated to unalign the retention tabs 630 with the keyways 550 so as to retain the ISA coupler in the corresponding bottom component opening 530.
- FIG. 7 an illustration of a plurality of ISA couplers 330 coupled with the ISA bottom component 420 is shown.
- the ISA top component 410 of the ISA 300 includes five top component openings 810, through which five ISA couplers 330 pass. Furthermore, each top component opening 810 includes two keyway fillers 820. The number of keyway fillers 820 included in each top component opening 810 may be varied but should correspond with the number of keyways 550 included in each bottom component opening 530 of the ISA bottom component 420.
- FIG. 9 illustrates the ISA top component 410 coupled to the ISA bottom component 420.
- the ISA couplers 330 are not shown to allow the bottom lip 540 and keyway 550 features of the bottom component to be seen.
- FIG. 9 illustrates the ISA top component 410 cut along line 9— 9 in Figure 8 and the forward half of the ISA top component removed. After the ISA couplers 330 are inserted into the corresponding bottom component openings 530, the ISA top component 410 is then placed on top of the ISA bottom component 420 such that the ISA couplers 330 pass through the corresponding top component openings 81 0 in the ISA top component 41 0.
- the keyway fillers 820 of the ISA top component 410 align with the keyways 550 of the ISA bottom component 420.
- the alignment of the keyway fillers 820 and the keyways 550 locks the ISA couplers 330 between the ISA bottom component 420 and the ISA top component 410.
- the illustration of FIG. 9 shows that the keyway filler 820 of the top component 410 and the bottom lip 540 of the bottom component 420 create a complete lip when the top component 41 0 and then bottom component 420 are coupled.
- FIG. 10 illustrates an exemplary embodiment of the ISA top
- the ISA coupler 330 is not shown in FIG. 10 in order to illustrate how the keyway filler 820 aligns with the keyway 550 to create a solid lip preventing the ISA coupler 330 from dislodging.
- the keyway filler 820 is configured to be the counterpart to the keyway 550.
- other shapes may be used for the keyways 550 and the keyway fillers 820.
- the ISA 300 is shown to include five ISA couplers 330.
- the number of ISA couplers 330 is not limited to five; other embodiments may contain more than or less than five.
- ISA couplers 330 is not limited to that as illustrated in FIG. 11 , and ISA couplers may be arranged in various patterns.
- FIG. 6 shows an exemplary embodiment of an ISA coupler 330.
- the ISA coupler 330 includes two ISA bottom engagement features 610, two ISA top engagement features 600, two ISA locking mechanism openings 640, two retention tabs 630, and an ISA coupler lip 620.
- the portion of the ISA coupler 330 that includes the ISA bottom engagement features 610 projects through the bottom component opening 530.
- the portion of the ISA coupler 330 that includes the ISA top engagement features 600 projects through the top component opening 81 0.
- FIG. 12 an exemplary illustration of the carriage 310 is shown.
- the carriage 310 is shown to have five carriage drivers 320.
- Each carriage driver 320 is driven in a rotational manner by a motor (not shown).
- the number of carriage drivers 320 and motors can be varied depending on various factors such as, among other things, the size of the support assembly 1 10 and the size of the teleoperated surgical instrument manipulator 130.
- each carriage driver 320 is shown to have two carriage engagement features 1220.
- the carriage 310 of the surgical instrument manipulator 130 couples with the ISA 300 through an engagement process between the carriage engagement features 1220 of the carriage driver 320 and the ISA bottom engagement features 610 of the ISA coupler 330, which will be described below.
- the number of carriage engagement features 1220 and ISA bottom engagement features 610 is not limited to two. In other embodiments, the number may be more than or less than two.
- Each carriage driver 320 contains a spring-loaded mechanism such that when a force is applied to the carriage driver 320 (e.g., from projecting engagement features on a corresponding driven element), the carriage driver 320 recedes slightly into the carriage 310.
- the spring-loaded mechanism provides the necessary force to couple the ISA bottom engagement features 61 0 with the carriage engagement features 1220 when they come into alignment as the carriage drivers 320 rotate.
- the ISA couplers 330 may rotate as the carriage drivers 320 turn. It is necessary to ensure that the ISA bottom engagement features 610 engage the carriage engagement features 1 220 so that a surgical instrument attached to the ISA 300 can be properly controlled.
- a locking mechanism may be implemented within the ISA 300.
- the locking mechanism implemented within the ISA 300 is a
- FIG. 13A illustrates an embodiment of an ISA bottom component 420.
- the ISA bottom component 420 includes a plurality of bottom component openings 530.
- each bottom component opening 530 is partially surrounded by a bottom lip 540, and each bottom lip 540 includes one or more keyways 550 and one or more locking mechanisms 1 310.
- the ISA coupler 330 Prior to any coupling with the carriage 310 or the surgical instrument 120, the ISA coupler 330 does not sit flush against the bottom lip 540 or the locking mechanism(s) 1310 and is free to rotate completely in either direction. However, when an attempt to couple the carriage 310 with the ISA 300 is made, the carriage drivers 320 push the ISA couplers 330 against the bottom lip 540 or the locking mechanism(s) 1310. When the ISA coupler 330 is pushed up toward the bottom lip 540, one of two situations occur: (1 ) the ISA coupler lip 620 comes in contact with the locking mechanism(s) 1310 or (2) the ISA locking mechanism opening 640 and the locking mechanism 1310 are in alignment and the ISA coupler lip 620 is pushed flush against the bottom lip 540.
- the ISA coupler 330 is illustrated as a boss.
- the ISA locking mechanism opening 640 is aligned with the ISA locking mechanism 1310, the ISA coupler 330 is pushed flush against the bottom lip 540.
- the ISA coupler rotates with the carriage drivers 310 against the bottom lip 540 until the ISA locking mechanism opening(s) 640 and the locking mechanism(s) 1310 are aligned.
- the locking mechanism opening(s) 61 0 and the locking mechanism(s) 1 310 are aligned, the ISA coupler lip 620 is pushed flush against the bottom lip 540.
- the ISA coupler lip 620 is pushed flush against the bottom lip 540 and the locking mechanism 1310 is embodied as a boss, the ISA coupler 330 is prevented from rotating in either direction.
- carriage engagement features 1220 are not initially aligned at the time the carriage drivers 320 come in contact with the ISA couplers 330, the friction between the ISA couplers 330 and carriage drivers 320 will cause the ISA couplers 330 to rotate with the carriage drivers 320.
- the ISA couplers 330 rotate such that the ISA locking mechanism opening(s) 640 are aligned with the locking mechanism(s) 1 31 0, the ISA coupler lip 620 will be pushed flush against the bottom lip 540.
- the torque from the motors is more powerful than the friction created by the force of the spring-loaded mechanisms in the carriage drivers 320 so the carriage drivers 320 continue to rotate as the ISA couplers remain stationary.
- FIG. 13C the locking mechanism 1 320 is illustrated as a ratchet.
- FIG. 13D is a detail drawing of a portion of Figure 13C that shows the ratchet locking mechanism.
- the ISA coupler lip 620 slides along in the slip direction of the ratchet until it hits a ratchet wall.
- the ISA coupler 330 has slid along the slip and hit the ratchet wall, the ISA coupler lip 620 sits flush against the bottom lip 540.
- the ISA coupler lip 620 is pushed flush against the bottom lip 540 and the locking mechanism 1320 is embodied as a ratchet, the ISA coupler 330 is prevented from rotating in the direction against the ratchet wall.
- the motors that drive the carriage drivers 320 are configured to rotate the carriage drivers 320, and consequently the ISA couplers 330, in the direction against the ratchet. If the ISA bottom engagement features 610 and the carriage engagement features 1220 are not initially aligned at the time the carriage drivers 320 come in contact with the ISA couplers 330, the friction between the ISA couplers 330 and carriage drivers 320 will cause the ISA couplers 330 to rotate with the carriage drivers 320.
- the torque from the motors is more powerful than the friction created by the force of the spring-loaded mechanisms in the carriage drivers 320 so once the ISA coupler lip 620 rotates to hit the ratchet wall, the carriage drivers 320 continue to rotate as the ISA couplers remain stationary. As the carriage drivers 320 rotate, it will bring the carriage engagement features 1220 into alignment with the ISA bottom engagement features 610. When the carriage engagement features 1220 and the ISA bottom engagement features 610 are in alignment, the pressure from the spring-loaded mechanism of the carriage 310 will cause the carriage engagement features 1220 and the ISA bottom engagement features 610 to engage.
- the locking mechanism 1320 is embodied as a ratchet
- the ISA coupler 330 is properly engaged with the carriage drivers 320, it is possible to rotate the ISA coupler 330 in the direction opposite that in which the ISA coupler lip 620 rotates to hit the ratchet wall. This allows the ISA coupler 330 to be rotated to a desired position prior to engaging a surgical instrument manipulator 130 with the ISA 300.
- the ISA coupler 330 is properly engaged with the carriage drivers 320, it is preferable for the ISA coupler 330 to be permitted to rotate freely in either direction.
- the instrument drivers 71 0 of the instrument 120 attempt to couple with the ISA couplers 330, the instrument drivers 71 0 place pressure on the ISA couplers 330. This in turn presses the ISA coupler lip 620 below the depth of the locking mechanism 131 0 or 1320, and allows the ISA coupler 330 to avoid the locking mechanism 1310 or 1 320 and rotate freely in either direction.
- the pockets may be located on the carriage drivers 320 and the bosses to be located on the ISA couplers 330 as shown in the figures provided.
- one embodiment may have the carriage drivers 320 including bosses and the ISA couplers 330 including pockets.
- the locking mechanism may be formed on the ISA top component 41 0 and extend into the ISA bottom component 420.
- the teleoperated surgical instrument manipulator 130 includes a software module that enables the surgical instrument manipulator 1 30 to detect when a proper engagement between the ISA 300 and the surgical instrument manipulator 130 (through the ISA couplers 330 and the carriage drivers 31 0) has occurred.
- a proper engagement event may be detected by the software module through the analysis of the amount of torque applied to the motors of the carriage 310.
- the ISA bottom engagement features 61 0 have coupled with the carriage engagement features 1 220 and the motors are attempting to drive the ISA couplers 330 against restriction of the locking mechanism.
- the software module detects an increased torque on each motor. The detection of this increased torque indicates a proper engagement and the absence of the increased torque indicates that the ISA bottom engagement features 610 have not successfully coupled with the carriage engagement features 1220.
- the software module may communicate the absence or completion of a proper engagement to surgical personnel. This communication may occur in numerous ways. Examples of possible ways a proper engagement may be communicated are, among other things, flashing a light on the surgical instrument manipulator 130 or changing a light of a first color on the surgical instrument manipulator 1 1 2 to a second color (such as red to green).
- FIG. 14 shows an embodiment of the ISA 300 and the surgical
- the surgical instrument manipulator 1 30 includes one or more carriage drivers 320 that provide rotary motion to drive a surgical instrument.
- the ISA includes a like number of ISA couplers 330 that transfer the rotary motion from the carriage drivers 320 to the surgical instrument.
- each carriage driver 320 includes two carriage engagement features 1220 in form of pockets.
- the corresponding ISA coupler 330 includes a like number of ISA bottom engagement features 610 in the form of bosses. Each ISA engagement feature 610 mates with a corresponding carriage engagement feature 1220 to provide a positive connection between the carriage driver 320 and the ISA coupler 330.
- carriage engagement features may be in form of bosses and the ISA bottom engagement features may be in the form of pockets.
- carriage engagement features may include both pockets and bosses and the ISA bottom engagement features may be in the form of bosses and pockets as necessary to mate with the corresponding carriage engagement features.
- FIG. 15 shows an embodiment of the ISA 300 and a surgical instrument 120 with the ISA and the surgical instrument rotated away from each other to show the surfaces that engage each other.
- the ISA couplers 330 engage corresponding instrument drivers 1500 to transfer the rotary motion from the carriage drivers 320 (Fig. 14) to the surgical instrument 120.
- each instrument driver 1500 includes two instrument engagement features 1520 in form of pockets.
- the corresponding ISA coupler 330 includes a like number of ISA top engagement features 600 in the form of bosses.
- Each ISA engagement feature 600 mates with a corresponding instrument engagement feature 1520 to provide a positive connection between the ISA coupler 330 and the instrument driver 1500. In other embodiments different numbers of engagement features may be used.
- instrument engagement features may be in form of bosses and the ISA top engagement features may be in the form of pockets.
- instrument engagement features may include both pockets and bosses and the ISA top engagement features may be in the form of bosses and pockets as necessary to mate with the corresponding instrument engagement features.
- One solution presented above discusses implementing a locking mechanism in the ISA 300 which restricts ability of the ISA couplers 330 to rotate during the engagement process, thereby ensuring that the friction caused by the ISA bottom engagement features 610 coming into contact with the carriage disks 320 did not prevent a proper engagement between the ISA bottom engagement features 610 and the carriage engagement features 1220.
- the motors may be limited as to the rotational speed of the carriage drivers 320.
- the rotational speed of the carriage drivers 320 By limiting the rotational speed of the carriage drivers 320, it can be ensured that the spring-loaded mechanism of the carriage drivers 320 will be sufficiently strong to engage the ISA bottom engagement features 610 with the carriage engagement features 1220.
- the limited rotational speed of the carriage drivers 320 allows the spring-loaded mechanism of the instrument drivers 1520 to reliably engage the ISA top engagement features 600.
- carriage drivers only the carriage drivers provide a spring-loaded mechanism that cause engagement of both the carriage engagement features with the ISA bottom engagement features and the ISA top engagement features with the instrument engagement features.
- a limitation of the rotational speed of the motors that drive the carriage drivers 320 may be controlled by a software module.
- the rotational speed of the motor may be limited by the applied voltage, current, and/or frequency of the current.
- the appropriate rotational speed of the carriage drivers 320 may be established by an analysis of the geometry and physics associated with the ISA couplers 330, the carriage and instrument drivers 320, 1520, and the associated spring-loaded mechanisms.
- the engagement feature configured as a
- pocket may be configured with an entry ramp to increase the ease of the process of mating with the engagement feature configured as a boss.
- the carriage 310 and the ISA 300 will be described. However, it should be understood that these features may also be used to couple the instrument 120 and the ISA 300.
- the engagement feature of the carriage 310 is configured as a pocket and the engagement figure of the ISA 300 is configured as a boss.
- the engagement feature of the carriage 31 0 may be configured as a boss and the engagement feature of the ISA 300 may be configured as a pocket.
- FIG. 16A an exemplary illustration of an ISA bottom
- boss 610 approaching a carriage pocket 1220 without an entry ramp is illustrated. It is seen in FIG. 16A that carriage pocket wall 1600 is at a 90- degree angle 1 621 in relation to the surface 121 0 of the carriage disk 320.
- the ISA bottom boss 610 will insert into the carriage pocket 1220 only when the two engagement features are in direct alignment.
- the size of the protrusion of the ISA bottom boss 61 0 will correspond almost exactly to size of the opening of the carriage pocket 1 220 to decrease the backlash that may arise during rotation of the carriage drivers 320 and the ISA couplers 330 after a successful proper engagement. Therefore, it is difficult for the ISA bottom boss 610 to be inserted into the carriage pocket 1220, especially when the carriage drivers 320 are rotating at a high speed.
- FIG. 16B an exemplary illustration of a failed attempt at coupling the ISA bottom boss 61 0 with the carriage pocket 1220 is illustrated. As is seen in FIG. 16B, the ISA bottom boss 610 may bypass the carriage pocket 1220, resulting in a failed attempt to couple the two engagement features.
- FIG. 17A an exemplary illustration of an ISA bottom boss 610 approaching a carriage pocket 1221 including an entry ramp 1720 is illustrated. It is seen in FIG. 17A that a wall of the carriage pocket 1221 includes an entry ramp 1 720 and a straight portion 1700.
- the entry ramp 1720 is seen to form an obtuse angle of more than 90 degrees in relation to the surface 1210 of the carriage disk 320 that supports the ISA bottom boss 610 before it engages the carriage pocket 1 221 .
- the entry ramp 1720 allows the ISA bottom boss 610 to begin insertion into the carriage pocket 1221 before the leading ISA boss wall 1770 reaches the trailing pocket wall 1 750.
- FIG. 17B an exemplary illustration of an ISA bottom boss 610 approaching a carriage pocket 1221 and using the entry ramp 1720 to begin insertion into the carriage pocket 1221 is shown.
- the ISA bottom boss 610 begins sliding down the entry ramp 1 720
- the ISA boss 1760 begins to enter carriage pocket 1 221 .
- the leading ISA boss wall 1770 comes in contact with the trailing pocket wall 1750 and the ISA bottom boss 61 0 is prevented from bypassing the carriage pocket 1 221 .
- the spring-loaded mechanism of the carriage driver 320 is then able to propel the insertion of the ISA bottom boss 610 into the carriage pocket 1221 .
- the carriage driver 320 contains a spring-loaded mechanism, the carriage driver 320 will rise from the carriage to cause the ISA bottom boss 61 0 to enter the carriage pocket 1221 .
- the angle 1721 of entry ramp 1720 in relation to the surface 1 210 of the carriage disk 320 shown is only one exemplary embodiment.
- the angle of the entry ramp may be more than or less than the angle 1 721 shown.
- the entry ramp 1720 will always form an obtuse angle with the surface 1210 of the carriage disk 320.
- the entry ramp 1720 should be configured so that the straight portion 1700 of the wall of the carriage pocket 1221 provides an adequate bearing surface to support the ISA bottom boss 610 when driven against the straight portion of the wall.
- the straight portion 1700 of the wall needs to be sufficiently high to prevent the ISA coupler 330 from disengaging from the carriage driver 320 when driven in the reverse direction from the direction for engagement.
- FIG. 18A an exemplary illustration of an ISA bottom
- boss 181 0 that includes an entry ramp 1820 approaching a carriage pocket 1220 is illustrated. It is seen in FIG. 18A that a trailing ISA boss wall 1840 wall includes an entry ramp 1820 that forms an obtuse angle of more than 90 degrees in relation to the lower surface 1830 of the ISA bottom boss 1810, the lower surface supporting the ISA coupler 330 on the surface 1210 of the carriage disk 320 before it engages the carriage pocket 1221 .
- FIG. 18B an exemplary illustration of the ISA bottom boss 181 0 approaching the carriage pocket 1 220 and using the entry ramp 1820 to begin insertion into the carriage pocket 1220.
- the entry ramp 1820 allows the ISA bottom boss 1810 to begin insertion into the carriage pocket 1220 before the leading ISA boss wall 1870 reaches the trailing pocket wall 1850.
- the leading ISA boss wall 1870 comes in contact with the trailing pocket wall 1850 and the ISA bottom boss 1810 is prevented from bypassing the carriage pocket 1220.
- the spring-loaded mechanism of the carriage driver 320 is then able to propel the insertion of the ISA bottom boss 61 0 into the carriage pocket 1220. As suggested by Figure 17B, if the carriage driver 320 contains a spring-loaded mechanism, the carriage driver 320 will rise from the carriage to cause the ISA bottom boss 1810 to enter the carriage pocket 1220.
- the angle of the entry ramp may be more than or less than the angle shown. However, the entry ramp 1820 will always form an obtuse angle with the lower surface 1830 of the ISA bottom boss 1810. It will be appreciated that the entry ramp 1820 should be configured so that the straight portion of the trailing ISA boss wall 1840 wall provides an adequate bearing surface to support the ISA bottom boss 610 when driven against the straight portion of the wall. At a minimum, the straight portion of the trailing ISA boss wall 1840 needs to be sufficiently high to prevent the ISA coupler 330 from disengaging from the carriage driver 320 when driven in
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Surgical Instruments (AREA)
- Manipulator (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Networks & Wireless Communication (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Materials For Medical Uses (AREA)
- Mechanical Engineering (AREA)
- Accommodation For Nursing Or Treatment Tables (AREA)
- Endoscopes (AREA)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016557993A JP6869722B2 (ja) | 2014-03-17 | 2015-03-17 | 遠隔操作アクチュエータから手術器具に運動を移転する連結器 |
| EP19201778.8A EP3610821B1 (en) | 2014-03-17 | 2015-03-17 | Coupler to transfer motion to surgical instrument from teleoperated actuator |
| US15/121,374 US10912616B2 (en) | 2014-03-17 | 2015-03-17 | Coupler to transfer motion to surgical instrument from teleoperated actuator |
| EP15764940.1A EP3119328B1 (en) | 2014-03-17 | 2015-03-17 | Coupler to transfer motion to surgical instrument from teleoperated actuator |
| KR1020167027582A KR102396051B1 (ko) | 2014-03-17 | 2015-03-17 | 원격 조종 액추에이터로부터 수술 기구로 모션을 전달하기 위한 커플러 |
| CN201580013952.XA CN106102631B (zh) | 2014-03-17 | 2015-03-17 | 用于将运动从伺服致动器传递到外科手术器械的联接器 |
| CN202010417746.8A CN111671521B (zh) | 2014-03-17 | 2015-03-17 | 用于将运动从伺服致动器传递到外科手术器械的联接器 |
| US17/140,373 US12114956B2 (en) | 2014-03-17 | 2021-01-04 | Coupler to transfer motion to surgical instrument from teleoperated actuator |
Applications Claiming Priority (16)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461954502P | 2014-03-17 | 2014-03-17 | |
| US201461954497P | 2014-03-17 | 2014-03-17 | |
| US201461954571P | 2014-03-17 | 2014-03-17 | |
| US201461954595P | 2014-03-17 | 2014-03-17 | |
| US201461954557P | 2014-03-17 | 2014-03-17 | |
| US61/954,571 | 2014-03-17 | ||
| US61/954,502 | 2014-03-17 | ||
| US61/954,557 | 2014-03-17 | ||
| US61/954,595 | 2014-03-17 | ||
| US61/954,497 | 2014-03-17 | ||
| US201462019318P | 2014-06-30 | 2014-06-30 | |
| US62/019,318 | 2014-06-30 | ||
| US201562103991P | 2015-01-15 | 2015-01-15 | |
| US62/103,991 | 2015-01-15 | ||
| US201562104306P | 2015-01-16 | 2015-01-16 | |
| US62/104,306 | 2015-01-16 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/121,374 A-371-Of-International US10912616B2 (en) | 2014-03-17 | 2015-03-17 | Coupler to transfer motion to surgical instrument from teleoperated actuator |
| US17/140,373 Continuation US12114956B2 (en) | 2014-03-17 | 2021-01-04 | Coupler to transfer motion to surgical instrument from teleoperated actuator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2015142791A1 true WO2015142791A1 (en) | 2015-09-24 |
| WO2015142791A8 WO2015142791A8 (en) | 2016-09-22 |
Family
ID=54067678
Family Applications (8)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/020876 Ceased WO2015142785A1 (en) | 2014-03-17 | 2015-03-17 | Latch to secure surgical instrument to actuator |
| PCT/US2015/020882 Ceased WO2015142789A1 (en) | 2014-03-17 | 2015-03-17 | Alignment and engagement for teleoperated actuated surgical instruments |
| PCT/US2015/020884 Ceased WO2015142791A1 (en) | 2014-03-17 | 2015-03-17 | Coupler to transfer motion to surgical instrument from servo actuator |
| PCT/US2015/020880 Ceased WO2015142788A1 (en) | 2014-03-17 | 2015-03-17 | Method for engaging surgical instrument with teleoperated actuator |
| PCT/US2015/020888 Ceased WO2015142795A1 (en) | 2014-03-17 | 2015-03-17 | Signal connector for sterile barrier between surgical instrument and teleoperated actuator |
| PCT/US2015/020886 Ceased WO2015142793A1 (en) | 2014-03-17 | 2015-03-17 | Sterile barrier between surgical instrument and teleoperated actuator |
| PCT/US2015/021020 Ceased WO2015142889A1 (en) | 2014-03-17 | 2015-03-17 | Detection pins to determine presence of surgical instrument and adapter on manipulator |
| PCT/US2015/020885 Ceased WO2015142792A1 (en) | 2014-03-17 | 2015-03-17 | Mounting datum of surgical instrument |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/020876 Ceased WO2015142785A1 (en) | 2014-03-17 | 2015-03-17 | Latch to secure surgical instrument to actuator |
| PCT/US2015/020882 Ceased WO2015142789A1 (en) | 2014-03-17 | 2015-03-17 | Alignment and engagement for teleoperated actuated surgical instruments |
Family Applications After (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/020880 Ceased WO2015142788A1 (en) | 2014-03-17 | 2015-03-17 | Method for engaging surgical instrument with teleoperated actuator |
| PCT/US2015/020888 Ceased WO2015142795A1 (en) | 2014-03-17 | 2015-03-17 | Signal connector for sterile barrier between surgical instrument and teleoperated actuator |
| PCT/US2015/020886 Ceased WO2015142793A1 (en) | 2014-03-17 | 2015-03-17 | Sterile barrier between surgical instrument and teleoperated actuator |
| PCT/US2015/021020 Ceased WO2015142889A1 (en) | 2014-03-17 | 2015-03-17 | Detection pins to determine presence of surgical instrument and adapter on manipulator |
| PCT/US2015/020885 Ceased WO2015142792A1 (en) | 2014-03-17 | 2015-03-17 | Mounting datum of surgical instrument |
Country Status (7)
| Country | Link |
|---|---|
| US (28) | US9839487B2 (enExample) |
| EP (18) | EP3119316B1 (enExample) |
| JP (17) | JP6510550B2 (enExample) |
| KR (12) | KR102395425B1 (enExample) |
| CN (15) | CN106102639B (enExample) |
| ES (2) | ES3035773T3 (enExample) |
| WO (8) | WO2015142785A1 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10912544B2 (en) | 2015-06-11 | 2021-02-09 | Intuitive Surgical Operations, Inc | Systems and methods for instrument engagement |
| EP4356863A4 (en) * | 2021-07-14 | 2024-10-16 | Cornerstone Technology (Shenzhen) Limited | Transmission connection structure for sterile adapter and surgical instrument, and instrument drive transmission mechanism of surgical robot |
Families Citing this family (453)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8600478B2 (en) | 2007-02-19 | 2013-12-03 | Medtronic Navigation, Inc. | Automatic identification of instruments used with a surgical navigation system |
| US8233963B2 (en) | 2007-02-19 | 2012-07-31 | Medtronic Navigation, Inc. | Automatic identification of tracked surgical devices using an electromagnetic localization system |
| US9339342B2 (en) | 2008-09-30 | 2016-05-17 | Intuitive Surgical Operations, Inc. | Instrument interface |
| US9259274B2 (en) | 2008-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Passive preload and capstan drive for surgical instruments |
| US12402960B2 (en) | 2010-10-11 | 2025-09-02 | Ecole Polytechnique Federale De Lausanne (Epfl) | Mechanical manipulator for surgical instruments |
| US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
| US20140005640A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical end effector jaw and electrode configurations |
| WO2015010189A1 (en) * | 2013-07-24 | 2015-01-29 | Centre For Surgical Invention & Innovation | Multi-function mounting interface for an image-guided robotic system and quick release interventional toolset |
| JP6513670B2 (ja) | 2013-08-15 | 2019-05-15 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 器具減菌アダプタ駆動構成 |
| CN108784838B (zh) | 2013-08-15 | 2021-06-08 | 直观外科手术操作公司 | 器械无菌适配器驱动接口 |
| US10076348B2 (en) | 2013-08-15 | 2018-09-18 | Intuitive Surgical Operations, Inc. | Rotary input for lever actuation |
| WO2015023853A1 (en) | 2013-08-15 | 2015-02-19 | Intuitive Surgical Operations, Inc. | Robotic instrument driven element |
| US10550918B2 (en) | 2013-08-15 | 2020-02-04 | Intuitive Surgical Operations, Inc. | Lever actuated gimbal plate |
| KR102523090B1 (ko) | 2013-08-15 | 2023-04-19 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 예압형 수술 기구 인터페이스 |
| EP3033032B1 (en) | 2013-08-15 | 2019-10-02 | Intuitive Surgical Operations, Inc. | Variable instrument preload mechanism controller |
| EP3578119B1 (en) | 2013-12-11 | 2021-03-17 | Covidien LP | Wrist and jaw assemblies for robotic surgical systems |
| EP3102139B1 (en) | 2014-02-03 | 2018-06-13 | DistalMotion SA | Mechanical teleoperated device comprising an interchangeable distal instrument |
| JP6510550B2 (ja) | 2014-03-17 | 2019-05-08 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 手術器具のための取付け基準 |
| EP3679885B1 (en) | 2014-03-17 | 2024-02-28 | Intuitive Surgical Operations, Inc. | Systems and methods for confirming disc engagement |
| WO2016025134A2 (en) | 2014-08-13 | 2016-02-18 | Covidien Lp | Robotically controlling mechanical advantage gripping |
| JP6560338B2 (ja) | 2014-08-15 | 2019-08-14 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 可変入口ガイド構成を有する外科用システム |
| US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| DE102014117407A1 (de) * | 2014-11-27 | 2016-06-02 | avateramedical GmBH | Vorrichtung zur robotergestützten Chirurgie |
| US10695142B2 (en) | 2015-02-19 | 2020-06-30 | Covidien Lp | Repositioning method of input device for robotic surgical system |
| KR102466680B1 (ko) | 2015-02-20 | 2022-11-14 | 스트리커 코포레이션 | 멸균 차단 조립체, 장착 시스템, 및 수술용 구성 요소들을 결합하기 위한 방법 |
| WO2016144937A1 (en) | 2015-03-10 | 2016-09-15 | Covidien Lp | Measuring health of a connector member of a robotic surgical system |
| CN107666877B (zh) | 2015-04-27 | 2021-11-05 | 直观外科手术操作公司 | 手术器械外壳及相关的系统和方法 |
| GB2538326B (en) * | 2015-05-07 | 2019-06-05 | Cmr Surgical Ltd | A surgical drape for transferring drive |
| GB2538230B (en) * | 2015-05-07 | 2019-01-02 | Cmr Surgical Ltd | A surgical drape for transferring drive |
| JP6714618B2 (ja) | 2015-06-03 | 2020-06-24 | コヴィディエン リミテッド パートナーシップ | オフセット計器駆動装置 |
| EP3311181B1 (en) | 2015-06-16 | 2020-03-11 | Covidien LP | Robotic surgical system torque transduction sensing |
| JP6719487B2 (ja) | 2015-06-23 | 2020-07-08 | コヴィディエン リミテッド パートナーシップ | ロボット外科手術アセンブリ |
| US10806454B2 (en) | 2015-09-25 | 2020-10-20 | Covidien Lp | Robotic surgical assemblies and instrument drive connectors thereof |
| ITUB20155057A1 (it) | 2015-10-16 | 2017-04-16 | Medical Microinstruments S R L | Assieme robotico di chirurgia |
| EP3878396A1 (en) | 2015-10-23 | 2021-09-15 | Covidien LP | Surgical system for detecting gradual changes in perfusion |
| EP3376988B1 (en) | 2015-11-19 | 2023-08-23 | Covidien LP | Optical force sensor for robotic surgical system |
| EP3422990A4 (en) | 2016-03-04 | 2019-11-13 | Covidien LP | INVERSE KINEMATIC CONTROL SYSTEMS FOR SURGICAL ROBOTIC SYSTEM |
| WO2017173524A1 (en) | 2016-04-07 | 2017-10-12 | Titan Medical Inc. | Camera positioning method and apparatus for capturing images during a medical procedure |
| EP3463168A4 (en) | 2016-05-26 | 2020-03-11 | Covidien LP | Robotic surgical assemblies |
| WO2017205576A1 (en) | 2016-05-26 | 2017-11-30 | Covidien Lp | Instrument drive units |
| EP3463162A4 (en) | 2016-06-03 | 2020-06-24 | Covidien LP | SYSTEMS, METHODS AND COMPUTER READABLE PROGRAM PRODUCTS FOR CONTROLLING A ROBOT CONTROLLED MANIPULATOR |
| WO2017210499A1 (en) | 2016-06-03 | 2017-12-07 | Covidien Lp | Control arm for robotic surgical systems |
| WO2017210500A1 (en) | 2016-06-03 | 2017-12-07 | Covidien Lp | Robotic surgical system with an embedded imager |
| EP3463149B1 (en) | 2016-06-03 | 2025-02-19 | Covidien LP | Passive axis system for robotic surgical systems |
| KR102400881B1 (ko) | 2016-07-14 | 2022-05-24 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 다중 케이블 의료 기기 |
| CN109640865B (zh) * | 2016-07-14 | 2022-06-17 | 直观外科手术操作公司 | 包括具有机械封锁的无菌适配器的外科手术设备 |
| WO2018013187A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Instrument release |
| CN109414300B (zh) | 2016-07-14 | 2021-11-09 | 直观外科手术操作公司 | 器械冲洗系统 |
| WO2018013298A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Geared grip actuation for medical instruments |
| US20190231451A1 (en) | 2016-07-14 | 2019-08-01 | Intuitive Surgical Operations, Inc. | Geared roll drive for medical instrument |
| GB201615616D0 (en) | 2016-09-14 | 2016-10-26 | Cambridge Medical Robotics Ltd | Interfacing a surgical robotic arm and instrument |
| US11925431B2 (en) | 2016-07-29 | 2024-03-12 | Cmr Surgical Limited | Motion feedthrough |
| GB2552540B (en) | 2016-07-29 | 2021-11-24 | Cmr Surgical Ltd | Interface structure |
| GB2600067B (en) * | 2016-07-29 | 2022-08-10 | Cmr Surgical Ltd | Motion feedthrough |
| US10478256B2 (en) * | 2016-08-16 | 2019-11-19 | Ethicon Llc | Robotics tool bailouts |
| US11564760B2 (en) | 2016-10-18 | 2023-01-31 | Intuitive Surgical Operations, Inc. | Computer-assisted teleoperated surgery systems and methods |
| CN110198681B (zh) | 2016-11-21 | 2022-09-13 | 直观外科手术操作公司 | 线缆长度持恒的医疗器械 |
| US10149727B2 (en) | 2016-12-09 | 2018-12-11 | Ethicon Llc | Surgical tool and robotic surgical system interfaces |
| US10588704B2 (en) * | 2016-12-09 | 2020-03-17 | Ethicon Llc | Surgical tool and robotic surgical system interfaces |
| US10149732B2 (en) | 2016-12-09 | 2018-12-11 | Ethicon Llc | Surgical tool and robotic surgical system interfaces |
| US10433920B2 (en) | 2016-12-09 | 2019-10-08 | Ethicon Llc | Surgical tool and robotic surgical system interfaces |
| US10736705B2 (en) | 2016-12-20 | 2020-08-11 | Verb Surgical Inc. | Sterile adapter with integrated wireless interface for use in a robotic surgical system |
| GB2599324B (en) * | 2017-02-07 | 2022-09-07 | Cmr Surgical Ltd | Mounting an endoscope to a surgical robot |
| JP2020507377A (ja) | 2017-02-15 | 2020-03-12 | コヴィディエン リミテッド パートナーシップ | 医療用ロボット用途の圧砕防止のためのシステムおよび機器 |
| US10357321B2 (en) | 2017-02-24 | 2019-07-23 | Intuitive Surgical Operations, Inc. | Splayed cable guide for a medical instrument |
| US11076926B2 (en) | 2017-03-21 | 2021-08-03 | Intuitive Surgical Operations, Inc. | Manual release for medical device drive system |
| US10671969B2 (en) * | 2017-05-03 | 2020-06-02 | Summate Technologies, Inc. | Operating room situated, parts-inventory control system and supervisory arrangement for accurately tracking the use of and accounting for the ultimate disposition of an individual component part of a complete implant which is then being surgically engrafted in-vivo upon or into the body of a living subject |
| US11317980B2 (en) * | 2017-05-09 | 2022-05-03 | Asensus Surgical Us, Inc. | Instrument end effector identification |
| US11058503B2 (en) | 2017-05-11 | 2021-07-13 | Distalmotion Sa | Translational instrument interface for surgical robot and surgical robot systems comprising the same |
| WO2018217429A1 (en) | 2017-05-24 | 2018-11-29 | Covidien Lp | Presence detection for electrosurgical tools in a robotic system |
| CN110177518B (zh) | 2017-05-25 | 2023-01-31 | 柯惠Lp公司 | 用于在图像捕获装置的视场内检测物体的系统和方法 |
| WO2018217430A1 (en) | 2017-05-25 | 2018-11-29 | Covidien Lp | Robotic surgical systems and drapes for covering components of robotic surgical systems |
| JP2020520745A (ja) | 2017-05-25 | 2020-07-16 | コヴィディエン リミテッド パートナーシップ | 自動誘導付きロボット外科システム |
| GB2563234B (en) | 2017-06-06 | 2021-12-08 | Cmr Surgical Ltd | Securing an interface element rail of a robotic surgical instrument interface |
| US11406441B2 (en) | 2017-08-16 | 2022-08-09 | Covidien Lp | End effector including wrist assembly and monopolar tool for robotic surgical systems |
| US11076883B2 (en) | 2017-08-21 | 2021-08-03 | Verb Surgical Inc. | Cannula attachment devices and methods for a surgical robotic system |
| US10966720B2 (en) | 2017-09-01 | 2021-04-06 | RevMedica, Inc. | Surgical stapler with removable power pack |
| US11331099B2 (en) | 2017-09-01 | 2022-05-17 | Rev Medica, Inc. | Surgical stapler with removable power pack and interchangeable battery pack |
| US10695060B2 (en) | 2017-09-01 | 2020-06-30 | RevMedica, Inc. | Loadable power pack for surgical instruments |
| AU2018328098A1 (en) | 2017-09-05 | 2020-03-19 | Covidien Lp | Collision handling algorithms for robotic surgical systems |
| WO2019050878A2 (en) | 2017-09-06 | 2019-03-14 | Covidien Lp | SCALE OF LIMITS OF SURGICAL ROBOTS |
| WO2019051004A1 (en) | 2017-09-08 | 2019-03-14 | Covidien Lp | DISCONNECTING ENERGY FOR ROBOTIC SURGICAL SETS |
| US12350003B2 (en) | 2017-09-19 | 2025-07-08 | Momentis Surgical Ltd | Surgical drape |
| US11096754B2 (en) | 2017-10-04 | 2021-08-24 | Mako Surgical Corp. | Sterile drape assembly for surgical robot |
| US10624708B2 (en) * | 2017-10-26 | 2020-04-21 | Ethicon Llc | Auto cable tensioning system |
| US10624709B2 (en) * | 2017-10-26 | 2020-04-21 | Ethicon Llc | Robotic surgical tool with manual release lever |
| US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
| US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
| US11406390B2 (en) | 2017-10-30 | 2022-08-09 | Cilag Gmbh International | Clip applier comprising interchangeable clip reloads |
| US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
| US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
| US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
| US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US10932806B2 (en) | 2017-10-30 | 2021-03-02 | Ethicon Llc | Reactive algorithm for surgical system |
| JP6936713B2 (ja) * | 2017-11-27 | 2021-09-22 | 株式会社デンソーウェーブ | ロボット用の保護ジャケット |
| US11666399B2 (en) * | 2017-11-30 | 2023-06-06 | Covidien Lp | Robotic surgical instrument including instrument rotation based on translation position |
| CN111417356A (zh) | 2017-12-01 | 2020-07-14 | 柯惠Lp公司 | 用于机器人手术系统的帷帘管理组件 |
| US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
| US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
| US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
| US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
| US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
| US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
| US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
| US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
| US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
| US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
| US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
| US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
| US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
| US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
| US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
| US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
| US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
| US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
| US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
| US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
| US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
| US10918310B2 (en) | 2018-01-03 | 2021-02-16 | Biosense Webster (Israel) Ltd. | Fast anatomical mapping (FAM) using volume filling |
| US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
| US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
| US12376855B2 (en) | 2017-12-28 | 2025-08-05 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
| US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
| US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
| US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
| US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
| US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
| US20190201112A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Computer implemented interactive surgical systems |
| US11213359B2 (en) | 2017-12-28 | 2022-01-04 | Cilag Gmbh International | Controllers for robot-assisted surgical platforms |
| US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
| US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
| US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US12396806B2 (en) | 2017-12-28 | 2025-08-26 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
| US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
| US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
| US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
| US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
| US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
| US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
| US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
| US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
| US20190201042A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Determining the state of an ultrasonic electromechanical system according to frequency shift |
| US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
| US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
| US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
| US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
| US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
| US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
| US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
| US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
| US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
| US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
| US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
| US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
| US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
| US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
| US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
| US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
| US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
| WO2019133143A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub and modular device response adjustment based on situational awareness |
| US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
| US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
| US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
| US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
| US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
| US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
| US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
| US20190201090A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Capacitive coupled return path pad with separable array elements |
| US12458351B2 (en) | 2017-12-28 | 2025-11-04 | Cilag Gmbh International | Variable output cartridge sensor assembly |
| US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
| US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
| US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
| US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
| US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
| US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
| US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
| US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
| US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
| US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
| US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
| US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
| US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
| US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
| US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
| US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
| US11045591B2 (en) | 2017-12-28 | 2021-06-29 | Cilag Gmbh International | Dual in-series large and small droplet filters |
| US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
| US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
| AU2019205201B2 (en) | 2018-01-04 | 2020-11-05 | Covidien Lp | Systems and assemblies for mounting a surgical accessory to robotic surgical systems, and providing access therethrough |
| WO2019139841A1 (en) * | 2018-01-09 | 2019-07-18 | Covidien Lp | Sterile interface module for robotic surgical assemblies |
| WO2019139949A1 (en) | 2018-01-10 | 2019-07-18 | Covidien Lp | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
| JP2019122769A (ja) * | 2018-01-12 | 2019-07-25 | エスエス イノベーションズ チャイナ カンパニー リミテッドSS Innovations China Co. Ltd | ロボット手術システムのために滅菌アダプタアセンブリをアクチュエータアセンブリに固定させるロック装置 |
| JP6778769B2 (ja) * | 2018-01-12 | 2020-11-04 | エスエス イノベーションズ チャイナ カンパニー リミテッドSS Innovations China Co. Ltd | ロボット手術システムための滅菌アダプタアセンブリ |
| GB2570520B8 (en) * | 2018-01-30 | 2023-05-24 | Cmr Surgical Ltd | Interfacing a surgical robotic arm and instrument |
| US12102403B2 (en) | 2018-02-02 | 2024-10-01 | Coviden Lp | Robotic surgical systems with user engagement monitoring |
| US12376927B2 (en) | 2018-02-07 | 2025-08-05 | Distalmotion Sa | Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy |
| EP3749243A1 (en) | 2018-02-07 | 2020-12-16 | Distalmotion SA | Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy |
| US11497567B2 (en) | 2018-02-08 | 2022-11-15 | Intuitive Surgical Operations, Inc. | Jointed control platform |
| US11118661B2 (en) | 2018-02-12 | 2021-09-14 | Intuitive Surgical Operations, Inc. | Instrument transmission converting roll to linear actuation |
| US10695140B2 (en) | 2018-02-15 | 2020-06-30 | Ethicon Llc | Near field communication between a surgical instrument and a robotic surgical system |
| US11189379B2 (en) | 2018-03-06 | 2021-11-30 | Digital Surgery Limited | Methods and systems for using multiple data structures to process surgical data |
| US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
| US11298148B2 (en) | 2018-03-08 | 2022-04-12 | Cilag Gmbh International | Live time tissue classification using electrical parameters |
| US12303159B2 (en) | 2018-03-08 | 2025-05-20 | Cilag Gmbh International | Methods for estimating and controlling state of ultrasonic end effector |
| JP2021514220A (ja) | 2018-03-08 | 2021-06-10 | コヴィディエン リミテッド パートナーシップ | 手術ロボットシステム |
| US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
| WO2019183236A1 (en) * | 2018-03-21 | 2019-09-26 | The Regents Of The University Of California | Rapid and precise tool exchange mechanism for intraocular robotic surgical systems |
| US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
| US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
| US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
| US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
| US11589865B2 (en) | 2018-03-28 | 2023-02-28 | Cilag Gmbh International | Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems |
| US11406382B2 (en) | 2018-03-28 | 2022-08-09 | Cilag Gmbh International | Staple cartridge comprising a lockout key configured to lift a firing member |
| US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
| US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
| US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
| WO2019195841A1 (en) * | 2018-04-06 | 2019-10-10 | Project Moray, Inc. | Improved fluidic drivers, devices, methods, and systems for catheters and other uses |
| CN111989065A (zh) | 2018-04-20 | 2020-11-24 | 柯惠Lp公司 | 具有立体显示器的机器人手术系统中的观察者移动的补偿 |
| CN111971150A (zh) | 2018-04-20 | 2020-11-20 | 柯惠Lp公司 | 手术机器人手推车放置的系统和方法 |
| CN110384557B (zh) * | 2018-04-20 | 2021-03-30 | 赛诺微医疗科技(浙江)有限公司 | 组合定位机构、采用其的器械夹持手及外科手术机器人 |
| CN110384556B (zh) * | 2018-04-20 | 2021-04-02 | 赛诺微医疗科技(浙江)有限公司 | 快换机构、采用其的器械夹持手及外科手术机器人 |
| JP7397006B2 (ja) * | 2018-05-15 | 2023-12-12 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | カテーテル制御システムのバックエンド機構 |
| CN110559078B (zh) * | 2018-06-05 | 2021-03-30 | 杭州术创机器人有限公司 | 一种用于微创手术系统的套管固定组件 |
| CN109091239B (zh) * | 2018-06-22 | 2021-06-01 | 深圳市精锋医疗科技有限公司 | 具有安装槽的手术机器人 |
| CN110623734B (zh) * | 2018-06-22 | 2021-07-09 | 深圳市精锋医疗科技有限公司 | 高精度手术机器人 |
| CN110623748B (zh) * | 2018-06-22 | 2021-02-19 | 深圳市精锋医疗科技有限公司 | 可快速安装的从操作设备、操作臂、动力机构及连接机构 |
| CN112105312A (zh) | 2018-07-03 | 2020-12-18 | 柯惠Lp公司 | 用于在手术程序期间检测图像退化的系统、方法和计算机可读介质 |
| WO2020023255A1 (en) | 2018-07-26 | 2020-01-30 | Covidien Lp | Surgical robotic systems |
| US11759269B2 (en) | 2018-08-20 | 2023-09-19 | Verb Surgical Inc. | Engagement and/or homing of a surgical tool in a surgical robotic system |
| US11406457B2 (en) | 2018-08-20 | 2022-08-09 | Verb Surgical Inc. | Method and system for engagement of a surgical tool with actuators of a tool drive in a surgical robotic system |
| US11490971B2 (en) | 2018-08-28 | 2022-11-08 | Medicaroid Corporation | Driver interface, robotic surgical apparatus, and method of detecting attachment of surgical instrument to driver interface |
| JP6745306B2 (ja) * | 2018-08-28 | 2020-08-26 | 株式会社メディカロイド | アダプタおよび接続方法 |
| JP6839220B2 (ja) * | 2018-08-28 | 2021-03-03 | 株式会社メディカロイド | 駆動部インターフェース、アダプタ、および駆動部インターフェースへの手術器具の装着検知方法 |
| JP6902003B2 (ja) | 2018-08-28 | 2021-07-14 | 株式会社メディカロイド | 滅菌ドレープおよび手術器具の取付方法 |
| JP6772226B2 (ja) | 2018-08-28 | 2020-10-21 | 株式会社メディカロイド | 手術器具 |
| WO2020055707A1 (en) | 2018-09-14 | 2020-03-19 | Covidien Lp | Surgical robotic systems and methods of tracking usage of surgical instruments thereof |
| US11998288B2 (en) | 2018-09-17 | 2024-06-04 | Covidien Lp | Surgical robotic systems |
| WO2020060789A1 (en) | 2018-09-17 | 2020-03-26 | Covidien Lp | Surgical robotic systems |
| JP2021535801A (ja) * | 2018-09-17 | 2021-12-23 | コヴィディエン リミテッド パートナーシップ | 手術ロボットシステム |
| US11109746B2 (en) | 2018-10-10 | 2021-09-07 | Titan Medical Inc. | Instrument insertion system, method, and apparatus for performing medical procedures |
| CN112955091B (zh) * | 2018-10-26 | 2024-09-17 | 尤里卡发明有限公司 | 外科手术装置和方法 |
| WO2020092775A1 (en) | 2018-10-31 | 2020-05-07 | Intuitive Surgical Operations, Inc. | System and method for assisting tool exchange |
| US12048504B2 (en) | 2018-11-15 | 2024-07-30 | Intuitive Surgical Operations, Inc. | Cable drive limited slip capstan and shaft |
| WO2020117913A2 (en) | 2018-12-04 | 2020-06-11 | Mako Surgical Corp. | Mounting system with sterile barrier assembly for use in coupling surgical components |
| US11586106B2 (en) | 2018-12-28 | 2023-02-21 | Titan Medical Inc. | Imaging apparatus having configurable stereoscopic perspective |
| CN111374771B (zh) * | 2018-12-29 | 2024-07-26 | 达科为(深圳)医疗设备有限公司 | 一种无菌适配器 |
| JP2022515864A (ja) * | 2018-12-30 | 2022-02-22 | メミック イノベーティブ サージェリー リミテッド | ロボットデバイス用の手術用ドレープ |
| US11717355B2 (en) | 2019-01-29 | 2023-08-08 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
| US11576733B2 (en) | 2019-02-06 | 2023-02-14 | Covidien Lp | Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies |
| US11484372B2 (en) | 2019-02-15 | 2022-11-01 | Covidien Lp | Articulation mechanisms for surgical instruments such as for use in robotic surgical systems |
| US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
| US11272931B2 (en) | 2019-02-19 | 2022-03-15 | Cilag Gmbh International | Dual cam cartridge based feature for unlocking a surgical stapler lockout |
| US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
| US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
| US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
| KR102012620B1 (ko) | 2019-03-08 | 2019-08-20 | 재단법인 대구경북첨단의료산업진흥재단 | 로봇 수술 시스템의 구동 장치 |
| EP3714830A1 (en) * | 2019-03-28 | 2020-09-30 | Medicaroid Corporation | Stopper and adaptor |
| JP6912541B2 (ja) * | 2019-03-28 | 2021-08-04 | 株式会社メディカロイド | ストッパおよびアダプタ |
| CN110010207B (zh) * | 2019-04-08 | 2022-05-13 | 大连理工大学 | 一种测定单层二硫化钼弯曲刚度的分子动力学方法 |
| US11471233B2 (en) | 2019-04-30 | 2022-10-18 | Canon U.S.A., Inc. | Preloaded sterile bag |
| EP3972518A4 (en) | 2019-05-22 | 2023-10-11 | Covidien LP | SURGICAL ROBOTIC ARMS STORAGE ASSEMBLIES AND METHODS OF REPLACING SURGICAL ROBOTIC ARMS USING THE STORAGE ASSEMBLIES |
| WO2020252184A1 (en) | 2019-06-13 | 2020-12-17 | Intuitive Surgical Operations, Inc. | Medical tool with length conservation mechanism for actuating tension bands |
| USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
| USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
| USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
| US10881478B1 (en) | 2019-06-26 | 2021-01-05 | Titan Medical Inc. | Methods for protecting robotic surgery systems with sterile barriers |
| US11278362B2 (en) * | 2019-06-27 | 2022-03-22 | Cilag Gmbh International | Surgical instrument drive systems |
| US11547468B2 (en) | 2019-06-27 | 2023-01-10 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
| US11413102B2 (en) | 2019-06-27 | 2022-08-16 | Cilag Gmbh International | Multi-access port for surgical robotic systems |
| US11612445B2 (en) | 2019-06-27 | 2023-03-28 | Cilag Gmbh International | Cooperative operation of robotic arms |
| US11369443B2 (en) * | 2019-06-27 | 2022-06-28 | Cilag Gmbh International | Method of using a surgical modular robotic assembly |
| US11207146B2 (en) | 2019-06-27 | 2021-12-28 | Cilag Gmbh International | Surgical instrument drive systems with cable-tightening system |
| US11399906B2 (en) | 2019-06-27 | 2022-08-02 | Cilag Gmbh International | Robotic surgical system for controlling close operation of end-effectors |
| US11376082B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Robotic surgical system with local sensing of functional parameters based on measurements of multiple physical inputs |
| US11376083B2 (en) * | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Determining robotic surgical assembly coupling status |
| US11607278B2 (en) | 2019-06-27 | 2023-03-21 | Cilag Gmbh International | Cooperative robotic surgical systems |
| US11723729B2 (en) | 2019-06-27 | 2023-08-15 | Cilag Gmbh International | Robotic surgical assembly coupling safety mechanisms |
| WO2023219917A1 (en) | 2022-05-13 | 2023-11-16 | RevMedica, Inc. | Power pack for activating surgical instruments and providing user feedback |
| US12290257B2 (en) | 2019-07-19 | 2025-05-06 | RevMedica, Inc. | Surgical clip applier with removable power pack |
| EP3998960A4 (en) | 2019-07-19 | 2022-12-14 | Revmedica, Inc. | SURGICAL STAPLE WITH DETACHABLE POWER SUPPLY |
| US12279771B2 (en) | 2019-07-19 | 2025-04-22 | RevMedica, Inc. | Power pack for activating surgical instruments and providing user feedback |
| US12279770B2 (en) | 2019-07-19 | 2025-04-22 | RevMedica, Inc. | Power pack for activating surgical instruments and providing user feedback |
| CN110464467B (zh) | 2019-08-30 | 2021-03-12 | 微创(上海)医疗机器人有限公司 | 传动、驱动、无菌、器械盒组件与手术器械系统、机器人 |
| EP3808282A3 (en) | 2019-09-01 | 2021-06-30 | Bb Surgical Devices, S.L. | Universal surgical access system |
| US12223629B2 (en) | 2019-09-11 | 2025-02-11 | Covidien Lp | Systems and methods for smoke-reduction in images |
| EP4028985A4 (en) | 2019-09-11 | 2023-06-07 | Covidien LP | Systems and methods for neural-network based color restoration |
| US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
| JP7046880B2 (ja) * | 2019-09-27 | 2022-04-04 | 株式会社メディカロイド | 手術器具 |
| US12408929B2 (en) | 2019-09-27 | 2025-09-09 | Globus Medical, Inc. | Systems and methods for navigating a pin guide driver |
| US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
| JP6971284B2 (ja) * | 2019-09-27 | 2021-11-24 | 株式会社メディカロイド | アダプタセットおよびアダプタ |
| JP7184728B2 (ja) * | 2019-10-21 | 2022-12-06 | 株式会社メディカロイド | ロボット手術装置および手術器具 |
| CN114929150A (zh) * | 2019-10-23 | 2022-08-19 | 威博外科公司 | 在外科机器人系统中的外科工具的接合和/或归巢 |
| US12059219B2 (en) | 2019-11-15 | 2024-08-13 | Siemens Healthineers Ag | Assisted steering of intracardiac echocardiogram catheters |
| US12029497B2 (en) | 2019-11-15 | 2024-07-09 | Siemens Healthineers Ag | Interlocking gear system for sterile robotic catheter navigation systems |
| CN111700683A (zh) * | 2019-11-20 | 2020-09-25 | 山东威高手术机器人有限公司 | 微创手术器械快换装置 |
| CN114727850A (zh) | 2019-11-21 | 2022-07-08 | 奥瑞斯健康公司 | 用于覆盖外科系统的系统和方法 |
| EP4065030A4 (en) * | 2019-11-30 | 2023-04-05 | Xact Robotics Ltd. | ADJUSTABLE COVER FOR AUTOMATED MEDICAL DEVICE |
| CN111067633B (zh) * | 2019-12-07 | 2021-04-13 | 广州多得医疗设备服务有限公司 | 一种医疗设备维修保养记录仪及其记录系统 |
| US12350828B2 (en) | 2019-12-16 | 2025-07-08 | Covidien Lp | Surgical robotic systems including surgical instruments with articulation |
| CN115443108A (zh) | 2019-12-23 | 2022-12-06 | 柯惠Lp公司 | 手术程序指导系统 |
| CN111045332A (zh) * | 2019-12-27 | 2020-04-21 | 哈尔滨工程大学 | 一种无人艇路径跟踪导引策略和扰动补偿方法 |
| US12075992B1 (en) | 2019-12-31 | 2024-09-03 | Auris Health, Inc. | Force transfer mechanism |
| WO2021137107A1 (en) * | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Tool detection system |
| CN111134740B (zh) * | 2020-01-07 | 2022-02-22 | 深圳市精锋医疗科技股份有限公司 | 手术器械与驱动装置的接合方法、从操作设备及手术机器人 |
| CN113766891B (zh) * | 2020-01-09 | 2023-02-21 | 瑞德医疗机器股份有限公司 | 手术工具 |
| US12491028B2 (en) | 2020-02-06 | 2025-12-09 | Covidien Lp | System and methods for suturing guidance |
| IT202000002545A1 (it) * | 2020-02-10 | 2021-08-10 | Medical Microinstruments Spa | Assieme di barriera sterile e sistema di chirurgia robotica |
| IT202000002554A1 (it) * | 2020-02-10 | 2021-08-10 | Medical Microinstruments Spa | Stazione di comando per chirurgia robotica, campo operatorio sterile, sistema di chirurgia robotica e metodo |
| IT202000002539A1 (it) * | 2020-02-10 | 2021-08-10 | Medical Microinstruments Spa | Assieme di manipolo di comando e sistema di chirurgia robotica |
| EP4501271A3 (en) | 2020-02-10 | 2025-04-09 | Medical Microinstruments, Inc. | Sterile barrier assembly and robotic surgery system |
| CN115135273A (zh) | 2020-02-20 | 2022-09-30 | 瑞德医疗机器股份有限公司 | 手术器具保持装置以及手术辅助装置 |
| US12262964B2 (en) | 2020-02-26 | 2025-04-01 | Covidien Lp | Robotic surgical instrument including linear encoders for measuring cable displacement |
| WO2021183689A1 (en) * | 2020-03-13 | 2021-09-16 | Intuitive Surgical Operations, Inc. | Alignment of a connector interface |
| CN111329592B (zh) * | 2020-03-17 | 2021-06-22 | 上海奥朋医疗科技有限公司 | 血管介入手术中旋夹手的无菌隔绝方法及系统 |
| JP7257353B2 (ja) * | 2020-03-30 | 2023-04-13 | 株式会社メディカロイド | 内視鏡アダプタ、ロボット手術システムおよび内視鏡アダプタの回転位置調整方法 |
| WO2021231508A1 (en) | 2020-05-12 | 2021-11-18 | Covidien Lp | Systems and methods for image mapping and fusion during surgical procedures |
| US12030195B2 (en) | 2020-05-27 | 2024-07-09 | Covidien Lp | Tensioning mechanisms and methods for articulating surgical instruments such as for use in robotic surgical systems |
| CA3183162A1 (en) | 2020-06-19 | 2021-12-23 | Jake Anthony Sganga | Systems and methods for guidance of intraluminal devices within the vasculature |
| USD963851S1 (en) | 2020-07-10 | 2022-09-13 | Covidien Lp | Port apparatus |
| WO2022034488A1 (en) | 2020-08-13 | 2022-02-17 | Forsight Robotics Ltd. | Capsulorhexis apparatus and method |
| US11793597B2 (en) | 2020-09-30 | 2023-10-24 | Verb Surgical Inc. | Attachment mechanism for docking cannulas to surgical robotic arms |
| US11793500B2 (en) | 2020-09-30 | 2023-10-24 | Verb Surgical Inc. | Adjustable force and ball bearing attachment mechanism for docking cannulas to surgical robotic arms |
| US20220096120A1 (en) * | 2020-09-30 | 2022-03-31 | Verb Surgical Inc. | Systems and methods for docking surgical robotic arms |
| CN112401943A (zh) * | 2020-10-14 | 2021-02-26 | 极限人工智能有限公司 | 一种无菌屏障组件和应用其的无菌微创手术装置 |
| CN112401944A (zh) * | 2020-10-14 | 2021-02-26 | 极限人工智能有限公司 | 一种微创手术装置 |
| CN114431959B (zh) * | 2020-10-30 | 2023-12-29 | 上海微创医疗机器人(集团)股份有限公司 | 隔离装置和手术机器人系统 |
| CN112370169B (zh) * | 2020-11-12 | 2021-04-27 | 山东威高手术机器人有限公司 | 一种可旋转的微创手术器械快换装置 |
| KR102742619B1 (ko) * | 2020-12-03 | 2024-12-16 | (주)이롭 | 복강경 수술을 보조하는 엔드이펙터 |
| EP4294312A4 (en) * | 2021-02-17 | 2025-01-08 | Auris Health, Inc. | Medical instrument drive assembly and docking system |
| CN113069213B (zh) * | 2021-02-23 | 2023-12-01 | 深圳康诺思腾科技有限公司 | 无菌围帘及具有其的手术机器人组件 |
| EP4301247A4 (en) | 2021-03-01 | 2025-01-22 | Revmedica, Inc. | POWER SUPPLY FOR ACTIVATION OF SURGICAL INSTRUMENTS |
| CN115120347B (zh) * | 2021-03-24 | 2025-06-17 | 炳硕生医(新加坡)私人有限公司 | 手术装置 |
| CN113143467B (zh) * | 2021-04-25 | 2023-08-25 | 上海微创医疗机器人(集团)股份有限公司 | 隔离装置和手术设备 |
| CN113081315A (zh) * | 2021-04-27 | 2021-07-09 | 深圳市精锋医疗科技有限公司 | 手术系统的无菌罩以及手术系统 |
| CN115337105B (zh) * | 2021-05-12 | 2025-07-25 | 上海微创医疗机器人(集团)股份有限公司 | 目标区域规划方法、传递路径规划方法、手术机器人系统和存储介质 |
| CN113288430B (zh) * | 2021-05-13 | 2022-07-29 | 上海微创医疗机器人(集团)股份有限公司 | 无菌板组件、手术器械、动力盒及手术机器人系统 |
| US12409003B2 (en) | 2021-05-14 | 2025-09-09 | Covidien Lp | Instrument cassette assemblies for robotic surgical instruments |
| CN113229943B (zh) * | 2021-05-20 | 2025-08-12 | 深圳市精锋医疗科技股份有限公司 | 接合装置、从操作设备及手术机器人 |
| CN113229944B (zh) * | 2021-05-20 | 2025-08-12 | 深圳市精锋医疗科技股份有限公司 | 接合装置、从操作设备及手术机器人 |
| CN113476061B (zh) * | 2021-05-21 | 2024-02-27 | 上海微创医疗机器人(集团)股份有限公司 | 膜体安装机构 |
| US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
| US12369998B2 (en) | 2021-05-28 | 2025-07-29 | Covidien Lp | Real time monitoring of a robotic drive module |
| EP4203829A1 (en) | 2021-06-01 | 2023-07-05 | Forsight Robotics Ltd. | Kinematic structures and sterile drapes for robotic microsurgical procedures |
| IT202100016154A1 (it) | 2021-06-21 | 2022-12-21 | Medical Microinstruments Inc | Strumento chirurgico per chirurgia robotica |
| US11931026B2 (en) | 2021-06-30 | 2024-03-19 | Cilag Gmbh International | Staple cartridge replacement |
| US12358136B2 (en) | 2021-06-30 | 2025-07-15 | Cilag Gmbh International | Grasping work determination and indications thereof |
| US11974829B2 (en) | 2021-06-30 | 2024-05-07 | Cilag Gmbh International | Link-driven articulation device for a surgical device |
| US12121307B2 (en) | 2021-07-01 | 2024-10-22 | Remedy Robotics, Inc. | Vision-based position and orientation determination for endovascular tools |
| US11690683B2 (en) | 2021-07-01 | 2023-07-04 | Remedy Robotics, Inc | Vision-based position and orientation determination for endovascular tools |
| US11707332B2 (en) | 2021-07-01 | 2023-07-25 | Remedy Robotics, Inc. | Image space control for endovascular tools |
| CN113693727B (zh) * | 2021-07-14 | 2025-03-07 | 深圳康诺思腾科技有限公司 | 一种手术机器人的装配机构 |
| CN113349937B (zh) * | 2021-07-14 | 2025-08-01 | 深圳康诺思腾科技有限公司 | 一种手术机器人的器械驱动传动机构及装配机构 |
| CN113349936A (zh) * | 2021-07-14 | 2021-09-07 | 深圳康诺思腾科技有限公司 | 一种无菌适配器与手术器械后端的导向定位结构 |
| CN113349934A (zh) * | 2021-07-14 | 2021-09-07 | 深圳康诺思腾科技有限公司 | 无菌适配器与手术器械的连接结构以及手术机器人 |
| CN113425415A (zh) * | 2021-07-14 | 2021-09-24 | 深圳康诺思腾科技有限公司 | 器械驱动器和无菌适配器的连接结构以及手术机器人 |
| EP4360582B1 (en) * | 2021-07-14 | 2025-07-02 | Cornerstone Technology (Shenzhen) Limited | Connecting structures and surgical robot |
| WO2023283735A1 (en) * | 2021-07-15 | 2023-01-19 | Titan Medical Inc. | Sterile adapter assemblies for robotic surgical systems |
| US11903669B2 (en) | 2021-07-30 | 2024-02-20 | Corindus, Inc | Sterile drape for robotic drive |
| US11839440B2 (en) * | 2021-07-30 | 2023-12-12 | Corindus, Inc. | Attachment for robotic medical system |
| US11779518B2 (en) | 2021-08-09 | 2023-10-10 | Express Scripts Strategic Development, Inc. | Blister pack device and method |
| CN113598968B (zh) * | 2021-08-10 | 2022-08-19 | 常州唯精医疗机器人有限公司 | 器械快换装置及微创手术机器人 |
| CN113520606B (zh) * | 2021-08-11 | 2023-03-24 | 上海微创医疗机器人(集团)股份有限公司 | 无菌板组件、手术机器人及手术机器人系统 |
| US12419703B2 (en) | 2022-08-01 | 2025-09-23 | Imperative Care, Inc. | Robotic drive system for achieving supra-aortic access |
| US20230047098A1 (en) | 2021-08-12 | 2023-02-16 | Imperative Care, Inc. | Multi catheter method of performing a robotic neurovascular procedure |
| US12447317B2 (en) | 2022-08-01 | 2025-10-21 | Imperative Care, Inc. | Method of priming concentrically stacked interventional devices |
| US12446979B2 (en) | 2022-08-01 | 2025-10-21 | Imperative Care, Inc. | Method of performing a multi catheter robotic neurovascular procedure |
| US12440289B2 (en) | 2022-08-01 | 2025-10-14 | Imperative Care, Inc. | Method of priming an interventional device assembly |
| US11992210B2 (en) | 2021-08-16 | 2024-05-28 | Cilag Gmbh International | Multiple-sensor firing lockout mechanism for powered surgical stapler |
| US12458348B2 (en) | 2021-08-16 | 2025-11-04 | Cilag Gmbh International | Deflectable firing member for surgical stapler |
| US12213668B2 (en) | 2021-08-16 | 2025-02-04 | Cilag Gmbh International | Firing system features for surgical stapler |
| US11957336B2 (en) | 2021-08-16 | 2024-04-16 | Cilag Gmbh International | Proximally located firing lockout mechanism for surgical stapler |
| US12171428B2 (en) | 2021-08-16 | 2024-12-24 | Cilag Gmbh International | Firing member tracking feature for surgical stapler |
| US11944297B2 (en) | 2021-08-16 | 2024-04-02 | Cilag Gmbh International | Variable response motor control algorithm for powered surgical stapler |
| US11779332B2 (en) | 2021-08-16 | 2023-10-10 | Cilag Gmbh International | Powered surgical stapler having independently operable closure and firing systems |
| US12029508B2 (en) | 2021-08-16 | 2024-07-09 | Cilag Gmbh International | Adjustable power transmission mechanism for powered surgical stapler |
| US12089842B2 (en) | 2021-08-16 | 2024-09-17 | Cilag Gmbh International | Firing bailout system for powered surgical stapler |
| US11986182B2 (en) | 2021-08-16 | 2024-05-21 | Cilag Gmbh International | Multi-position restraining member for sled movement |
| US12011164B2 (en) | 2021-08-16 | 2024-06-18 | Cilag Gmbh International | Cartridge-based firing lockout mechanism for surgical stapler |
| US12102321B2 (en) | 2021-08-16 | 2024-10-01 | Cilag Gmbh International | Methods of operating a robotic surgical stapler |
| US11992209B2 (en) | 2021-08-16 | 2024-05-28 | Cilag Gmbh International | Multi-threshold motor control algorithm for powered surgical stapler |
| CN113796965B (zh) * | 2021-09-28 | 2023-07-18 | 深圳市爱博医疗机器人有限公司 | 一种可拆装式从端介入手术机器人驱动装置 |
| US12376910B2 (en) | 2021-09-29 | 2025-08-05 | Cilag Gmbh International | Methods for controlling cooperative surgical instruments |
| US12290319B2 (en) | 2021-09-29 | 2025-05-06 | Cilag Gmbh International | Methods for controlling cooperative surgical instruments |
| US12137986B2 (en) | 2021-09-29 | 2024-11-12 | Cilag Gmbh International | Methods for controlling cooperative surgical instruments |
| US12295667B2 (en) | 2021-09-29 | 2025-05-13 | Cilag Gmbh International | Surgical devices, systems, and methods using multi-source imaging |
| US12137872B2 (en) | 2021-09-29 | 2024-11-12 | Cilag Gmbh International | Surgical devices, systems, and methods using multi-source imaging |
| US12239387B2 (en) | 2021-09-29 | 2025-03-04 | Cilag Gmbh International | Surgical methods using fiducial identification and tracking |
| US12364545B2 (en) | 2021-09-29 | 2025-07-22 | Cilag Gmbh International | Surgical devices, systems, and methods using fiducial identification and tracking |
| CN115998438A (zh) * | 2021-10-21 | 2023-04-25 | 瑞龙诺赋(上海)医疗科技有限公司 | 一种无菌适配器、无菌屏障以及医疗系统 |
| CN116058969A (zh) * | 2021-10-29 | 2023-05-05 | 常州唯精医疗机器人有限公司 | 无菌隔离装置及其装配方法、安装方法 |
| CN113842220A (zh) * | 2021-10-29 | 2021-12-28 | 常州唯精医疗机器人有限公司 | 微创手术机器人 |
| CN114081630B (zh) * | 2021-11-11 | 2023-04-07 | 常州唯精医疗机器人有限公司 | 器械快换装置及微创手术机器人 |
| CN114052919A (zh) * | 2021-11-18 | 2022-02-18 | 武汉联影智融医疗科技有限公司 | 动力连接装置、末端执行设备及腹腔镜机器人 |
| WO2023101948A1 (en) | 2021-11-30 | 2023-06-08 | Endoquest, Inc. | Master control systems for robotic surgical systems |
| TWI850880B (zh) | 2021-11-30 | 2024-08-01 | 美商安督奎斯特機器人公司 | 可拋式終端操縱裝置、醫療裝置及其操作方法 |
| KR20240144087A (ko) | 2021-11-30 | 2024-10-02 | 엔도퀘스트 로보틱스 인코포레이티드 | 로봇 수술 시스템용 조종 가능한 오버튜브 조립체 |
| WO2023101974A1 (en) | 2021-11-30 | 2023-06-08 | Endoquest Robotics, Inc. | Force transmission systems for robotically controlled medical devices |
| TWI838986B (zh) | 2021-11-30 | 2024-04-11 | 美商安督奎斯特機器人公司 | 患者控制台、具有該患者控制台的機器人手術系統及其執行方法 |
| TWI850874B (zh) | 2021-11-30 | 2024-08-01 | 美商安督奎斯特機器人公司 | 控制器適配器系統、具有該控制器適配器系統的機器人手術儀器控制器總成及其安裝覆巾之方法 |
| US12496119B2 (en) | 2021-12-06 | 2025-12-16 | Covidien Lp | Jaw member, end effector assembly, and method of manufacturing a jaw member of an electrosurgical instrument |
| US12390294B2 (en) | 2021-12-14 | 2025-08-19 | Covidien Lp | Robotic surgical assemblies including surgical instruments having articulatable wrist assemblies |
| DE102022102806A1 (de) | 2022-02-07 | 2023-08-10 | avateramedical GmBH | Sterileinheit und Manipulator für die robotische Chirurgie |
| DE102022102805A1 (de) | 2022-02-07 | 2023-08-10 | avateramedical GmBH | Manipulator für die robotische Chirurgie und Sterileinheit |
| US12433699B2 (en) | 2022-02-10 | 2025-10-07 | Covidien Lp | Surgical robotic systems and robotic arm carts thereof |
| WO2023167906A1 (en) | 2022-03-02 | 2023-09-07 | Mako Surgical Corp. | Robotic system including a link tracker |
| CN117426880A (zh) * | 2022-07-15 | 2024-01-23 | 深圳康诺思腾科技有限公司 | 一种无菌隔离组件和手术机器人 |
| WO2024030285A1 (en) | 2022-08-01 | 2024-02-08 | Intuitive Surgical Operations, Inc. | Adapter for manual actuation of surgical instrument |
| US20240041480A1 (en) | 2022-08-02 | 2024-02-08 | Imperative Care, Inc. | Multi catheter system with integrated fluidics management |
| US12479098B2 (en) | 2022-08-03 | 2025-11-25 | Covidien Lp | Surgical robotic system with access port storage |
| US12465447B2 (en) | 2022-08-25 | 2025-11-11 | Covidien Lp | Surgical robotic system with instrument detection |
| JP2024036816A (ja) * | 2022-09-06 | 2024-03-18 | 川崎重工業株式会社 | 手術支援システムおよび操作装置の制御方法 |
| CN117838301A (zh) * | 2022-09-30 | 2024-04-09 | 深圳市精锋医疗科技股份有限公司 | 一种医疗机器人的驱动装置及导管机器人 |
| WO2024067335A1 (zh) * | 2022-09-30 | 2024-04-04 | 深圳市精锋医疗科技股份有限公司 | 一种医疗机器人的驱动装置及导管机器人 |
| CN117838313A (zh) * | 2022-09-30 | 2024-04-09 | 深圳市精锋医疗科技股份有限公司 | 一种医疗机器人的驱动装置及导管机器人 |
| US12496728B2 (en) | 2022-10-25 | 2025-12-16 | Covidien Lp | Surgical robotic system and method for restoring operational state |
| US12297956B2 (en) | 2022-10-26 | 2025-05-13 | Mako Surgical Corp. | Joint for a support arm and support arm including the joint |
| CN116999170A (zh) * | 2022-11-25 | 2023-11-07 | 深圳康诺思腾科技有限公司 | 一种无菌适配器 |
| DE102022131663B4 (de) | 2022-11-30 | 2025-08-14 | Karl Storz Se & Co. Kg | Schnittstelle für ein elektrochirurgisches Instrument sowie Operationssystem |
| CN120529878A (zh) | 2022-12-01 | 2025-08-22 | 因普瑞缇夫护理公司 | 伸缩驱动台及使用方法 |
| CN115969537A (zh) * | 2022-12-16 | 2023-04-18 | 杭州唯精医疗机器人有限公司 | 用于隔离板上的分离式锁扣组、隔离板及手术机器人 |
| CN116019569A (zh) * | 2022-12-16 | 2023-04-28 | 杭州唯精医疗机器人有限公司 | 开缝式锁扣及使用其的隔离板和手术机器人 |
| DE102022134206A1 (de) * | 2022-12-20 | 2024-06-20 | Karl Storz Se & Co. Kg | Steriladapter für eine an einem Roboterarm anbringbare Antriebseinheit |
| DE102022134201A1 (de) | 2022-12-20 | 2024-06-20 | Karl Storz Se & Co. Kg | Chirurgisches Instrument zur Kopplung mit einer Antriebseinheit |
| DE102022134205A1 (de) | 2022-12-20 | 2024-06-20 | Karl Storz Se & Co. Kg | Chirurgisches Instrument |
| WO2024145418A1 (en) * | 2022-12-28 | 2024-07-04 | Vicarious Surgical Inc. | Drape plate assembly |
| JP7657510B2 (ja) * | 2023-01-06 | 2025-04-07 | リバーフィールド株式会社 | 先側ドレープ、及びドレープセット |
| USD1066405S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066383S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066380S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066382S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066378S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066379S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066404S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066381S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| CN116019570A (zh) * | 2023-02-16 | 2023-04-28 | 杭州唯精医疗机器人有限公司 | 隔离板及手术机器人 |
| US12377206B2 (en) | 2023-05-17 | 2025-08-05 | Imperative Care, Inc. | Fluidics control system for multi catheter stack |
| CN116584986A (zh) * | 2023-07-04 | 2023-08-15 | 山东威高手术机器人有限公司 | 将医疗器械盒与器械操纵器接合的方法 |
| CN117067257A (zh) * | 2023-07-28 | 2023-11-17 | 杭州唯精医疗机器人有限公司 | 调节工装及手术机器人 |
| USD1087995S1 (en) | 2023-08-02 | 2025-08-12 | Covidien Lp | Surgeon display screen with a transitional graphical user interface having staple firing icon |
| USD1087135S1 (en) | 2023-08-02 | 2025-08-05 | Covidien Lp | Surgeon display screen with a graphical user interface having spent staple icon |
| US12150729B1 (en) | 2024-02-02 | 2024-11-26 | Panda Surgical Limited | Handheld surgical systems with interchangeable dexterous end-effectors |
| CN121003487A (zh) * | 2024-10-31 | 2025-11-25 | 敏捷医疗科技(苏州)有限公司 | 手术机器人末端执行装置及动力盒 |
| CN119745456B (zh) * | 2024-11-18 | 2025-08-29 | 北京大学第一医院(北京大学第一临床医学院) | 一种肾窝放疗辅助水囊填塞装置 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100170519A1 (en) * | 2008-11-07 | 2010-07-08 | Hansen Medical, Inc. | Sterile interface apparatus |
| US20110295270A1 (en) * | 2007-01-10 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
| US20120239060A1 (en) * | 2005-12-20 | 2012-09-20 | Intuitive Surgical Operations, Inc. | Disposable Sterile Surgical Adaptor |
| US8506555B2 (en) * | 2006-02-03 | 2013-08-13 | The European Atomic Energy Community (Euratom) | Robotic surgical system for performing minimally invasive medical procedures |
| US20140069437A1 (en) * | 2009-01-12 | 2014-03-13 | Hansen Medical, Inc. | Modular interfaces and drive actuation through barrier |
Family Cites Families (129)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1002219A (en) | 1910-03-08 | 1911-09-05 | James J Burke | Automatic boiler-feed and water-level alarm. |
| US1004582A (en) | 1911-01-28 | 1911-10-03 | William D Mcnaull | Tire for vehicle-wheels. |
| US4386933A (en) * | 1981-05-21 | 1983-06-07 | Sanchez Enrique R | Sterile adapter for use in blood transfers |
| US4542272A (en) * | 1982-09-28 | 1985-09-17 | The Cross Company | Induction heating device with electronic positioning control |
| US5069221A (en) * | 1987-12-30 | 1991-12-03 | Densa Limited | Displacement sensor and medical apparatus |
| CH681753A5 (enExample) | 1991-03-05 | 1993-05-14 | Olten Ag Elektro Apparatebau | |
| US5419343A (en) * | 1992-03-18 | 1995-05-30 | Microtek Medical, Inc. | Arthroscopy drape and collection pouch |
| JP3306108B2 (ja) | 1992-08-21 | 2002-07-24 | 宇宙開発事業団 | 軸継手機構 |
| US5469863A (en) * | 1993-08-11 | 1995-11-28 | Polygenex International, Inc. | Polyurethane condom of welded polyurethane film |
| US5405344A (en) | 1993-09-30 | 1995-04-11 | Ethicon, Inc. | Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor |
| EP2286729B1 (en) | 1995-06-07 | 2013-12-18 | SRI International | Surgical manipulator for a telerobotic system |
| US5814038A (en) | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
| US5730740A (en) * | 1995-11-09 | 1998-03-24 | Ethicon Endo-Surgery, Inc. | Latch mechanism for surgical instruments |
| US5803086A (en) | 1996-05-16 | 1998-09-08 | Minnesota Mining And Manufacturing Company | Linerless surgical incise drape |
| US7699855B2 (en) | 1996-12-12 | 2010-04-20 | Intuitive Surgical Operations, Inc. | Sterile surgical adaptor |
| US7666191B2 (en) | 1996-12-12 | 2010-02-23 | Intuitive Surgical, Inc. | Robotic surgical system with sterile surgical adaptor |
| US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
| US8529582B2 (en) | 1996-12-12 | 2013-09-10 | Intuitive Surgical Operations, Inc. | Instrument interface of a robotic surgical system |
| US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
| US7727244B2 (en) * | 1997-11-21 | 2010-06-01 | Intuitive Surgical Operation, Inc. | Sterile surgical drape |
| US7758569B2 (en) | 1998-02-24 | 2010-07-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
| US7297142B2 (en) * | 1998-02-24 | 2007-11-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
| US7309519B2 (en) | 1998-10-05 | 2007-12-18 | 3M Innovative Properties Company | Friction control articles for healthcare applications |
| US8600551B2 (en) | 1998-11-20 | 2013-12-03 | Intuitive Surgical Operations, Inc. | Medical robotic system with operatively couplable simulator unit for surgeon training |
| US7125403B2 (en) | 1998-12-08 | 2006-10-24 | Intuitive Surgical | In vivo accessories for minimally invasive robotic surgery |
| EP1897511B1 (en) | 1998-12-08 | 2014-02-12 | Intuitive Surgical Operations, Inc. | Surgical robotic tools, data architecture, and use |
| DE19950440A1 (de) | 1999-10-19 | 2001-11-22 | World Of Medicine Lemke Gmbh | Fixiervorrichtung für wenigstens ein, im Sterilbereich bei Operationen einsetzbares Bedienelement, bspw. ein Operationsinstrument |
| JP2001187067A (ja) | 2000-01-05 | 2001-07-10 | Olympus Optical Co Ltd | 内視鏡観察位置検出表示システム |
| US6401313B1 (en) * | 2000-06-07 | 2002-06-11 | Illinois Tool Works Inc. | Buckle |
| DE20015892U1 (de) * | 2000-09-14 | 2001-01-25 | Aesculap AG & Co. KG, 78532 Tuttlingen | Vorrichtung zur Bestimmung der Position eines medizinischen Instrumentes oder Gerätes oder eines Körperteils |
| US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
| US7674270B2 (en) * | 2002-05-02 | 2010-03-09 | Laparocision, Inc | Apparatus for positioning a medical instrument |
| JP4073249B2 (ja) * | 2002-05-17 | 2008-04-09 | オリンパス株式会社 | 手術システム |
| US7331967B2 (en) * | 2002-09-09 | 2008-02-19 | Hansen Medical, Inc. | Surgical instrument coupling mechanism |
| US7386365B2 (en) | 2004-05-04 | 2008-06-10 | Intuitive Surgical, Inc. | Tool grip calibration for robotic surgery |
| US20040118410A1 (en) | 2002-12-18 | 2004-06-24 | Griesbach Henry L. | Surgical drape having an instrument holder |
| US7100260B2 (en) * | 2002-12-26 | 2006-09-05 | Utica Enterprises, Inc. | Programmable apparatus and method for body panel and clinch nut attachment |
| US8118732B2 (en) | 2003-04-01 | 2012-02-21 | Boston Scientific Scimed, Inc. | Force feedback control system for video endoscope |
| US20050244217A1 (en) | 2004-04-29 | 2005-11-03 | William Burke | Test instrument module latch system and method |
| US7096870B2 (en) | 2004-09-30 | 2006-08-29 | Lonnie Jay Lamprich | Disposable sterile surgical drape and attached instruments |
| CN1323813C (zh) * | 2004-12-22 | 2007-07-04 | 哈尔滨工业大学 | 用于临床创伤手指康复的感知型仿生机械手及其组合模块 |
| US8945095B2 (en) | 2005-03-30 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Force and torque sensing for surgical instruments |
| US8463439B2 (en) * | 2009-03-31 | 2013-06-11 | Intuitive Surgical Operations, Inc. | Optic fiber connection for a force sensing instrument |
| US7588398B2 (en) | 2005-04-19 | 2009-09-15 | Black & Decker Inc. | Tool chuck with power take off and dead spindle features |
| US20060260622A1 (en) | 2005-05-19 | 2006-11-23 | Wooley Deborah M | Operating room equipment drapes and methods of making and using the same |
| US7717312B2 (en) * | 2005-06-03 | 2010-05-18 | Tyco Healthcare Group Lp | Surgical instruments employing sensors |
| MX2008000779A (es) * | 2005-07-18 | 2008-02-21 | Bayer Healthcare Ag | Uso de activadores y estimuladores de guanilatociclasa solubles para la prevencion o tratamiento de trastornos renales. |
| US7555363B2 (en) | 2005-09-02 | 2009-06-30 | Neato Robotics, Inc. | Multi-function robotic device |
| JP5043414B2 (ja) * | 2005-12-20 | 2012-10-10 | インテュイティブ サージカル インコーポレイテッド | 無菌外科手術アダプタ |
| US9241767B2 (en) | 2005-12-20 | 2016-01-26 | Intuitive Surgical Operations, Inc. | Method for handling an operator command exceeding a medical device state limitation in a medical robotic system |
| US9586327B2 (en) | 2005-12-20 | 2017-03-07 | Intuitive Surgical Operations, Inc. | Hook and pivot electro-mechanical interface for robotic medical arms |
| ATE547059T1 (de) * | 2005-12-20 | 2012-03-15 | Intuitive Surgical Operations | Instrumentenschnittstelle eines roboter- chirurgiesystems |
| US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
| CA2642481C (en) | 2006-02-16 | 2016-04-05 | David W. Smith | System utilizing radio frequency signals for tracking and improving navigation of slender instruments during insertion into the body |
| US8784435B2 (en) | 2006-06-13 | 2014-07-22 | Intuitive Surgical Operations, Inc. | Surgical system entry guide |
| US20110288560A1 (en) | 2006-08-01 | 2011-11-24 | Shaul Shohat | System and method for telesurgery |
| US8157793B2 (en) | 2006-10-25 | 2012-04-17 | Terumo Kabushiki Kaisha | Manipulator for medical use |
| WO2008101228A2 (en) * | 2007-02-15 | 2008-08-21 | Hansen Medical, Inc. | Robotic medical instrument system |
| US8676242B2 (en) | 2007-02-16 | 2014-03-18 | Qualcomm Incorporated | Method and apparatus for registration of location information of wireless devices in a wireless communication network supporting multicast calls |
| WO2008106593A2 (en) * | 2007-02-28 | 2008-09-04 | Smith & Nephew, Inc. | System and method for identifying a landmark |
| US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
| US8139225B2 (en) | 2007-10-24 | 2012-03-20 | Siemens Medical Solutions Usa, Inc. | System for processing patient monitoring power and data signals |
| US8752749B2 (en) | 2008-02-14 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled disposable motor-driven loading unit |
| US7886743B2 (en) | 2008-03-31 | 2011-02-15 | Intuitive Surgical Operations, Inc. | Sterile drape interface for robotic surgical instrument |
| US9895813B2 (en) | 2008-03-31 | 2018-02-20 | Intuitive Surgical Operations, Inc. | Force and torque sensing in a surgical robot setup arm |
| WO2009151205A1 (ko) | 2008-06-11 | 2009-12-17 | (주)미래컴퍼니 | 수술용 로봇 암의 인스트루먼트 |
| JP2010022415A (ja) | 2008-07-15 | 2010-02-04 | Terumo Corp | 医療用マニピュレータ及び医療用マニピュレータシステム |
| US9339342B2 (en) | 2008-09-30 | 2016-05-17 | Intuitive Surgical Operations, Inc. | Instrument interface |
| WO2010126128A1 (ja) | 2009-04-30 | 2010-11-04 | テルモ株式会社 | 医療用マニピュレータ |
| WO2010126129A1 (ja) | 2009-04-30 | 2010-11-04 | テルモ株式会社 | 医療用マニピュレータ |
| WO2011022525A1 (en) | 2009-08-21 | 2011-02-24 | 3M Innovative Properties Company | Methods and products for illuminating tissue |
| WO2011037394A2 (ko) * | 2009-09-23 | 2011-03-31 | 주식회사 이턴 | 멸균 어댑터, 휠의 체결 구조 및 수술용 인스트루먼트의 체결 구조 |
| CN107028660A (zh) | 2009-09-23 | 2017-08-11 | 伊顿株式会社 | 无菌适配器、转轮联接结构以及手术用器械的联接结构 |
| US8623028B2 (en) * | 2009-09-23 | 2014-01-07 | Intuitive Surgical Operations, Inc. | Surgical port feature |
| KR101750518B1 (ko) | 2010-02-19 | 2017-06-26 | (주)미래컴퍼니 | 휠의 체결 구조 및 수술용 인스트루먼트의 체결 구조 |
| KR101037069B1 (ko) | 2009-09-23 | 2011-05-26 | 주식회사 이턴 | 멸균 어댑터 |
| US8555892B2 (en) | 2009-09-28 | 2013-10-15 | Obp Corporation | Mayo stand drape with self-disposing feature |
| KR101590163B1 (ko) | 2009-10-01 | 2016-01-29 | (주)미래컴퍼니 | 수술용 로봇 및 이를 커버하는 멸균 드레이프 |
| US8141762B2 (en) | 2009-10-09 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical stapler comprising a staple pocket |
| EP3381397B1 (en) * | 2009-11-13 | 2020-01-08 | Intuitive Surgical Operations Inc. | Motor interface for parallel drive shafts within an independently rotating member |
| CN102711635B (zh) | 2010-01-15 | 2015-06-10 | 意美森公司 | 用于带有触觉反馈的微创外科手术工具的系统和方法 |
| SG184478A1 (en) * | 2010-04-06 | 2012-11-29 | Reseal Internat Ltd Partnership | Delivery system for dispensing metered volumes of pure or sterile flowable substances |
| US8307910B2 (en) | 2010-04-07 | 2012-11-13 | Robert Bosch Gmbh | Drive mechanism for a reciprocating tool |
| US8142437B2 (en) | 2010-06-18 | 2012-03-27 | Spine Wave, Inc. | System for percutaneously fixing a connecting rod to a spine |
| WO2012018816A2 (en) | 2010-08-02 | 2012-02-09 | The Johns Hopkins University | Tool exchange interface and control algorithm for cooperative surgical robots |
| JP2012050706A (ja) * | 2010-09-01 | 2012-03-15 | Terumo Corp | 保護カバー |
| EP2616126A4 (en) | 2010-09-17 | 2017-05-24 | Corindus Inc. | Wheel for robotic catheter system drive mechanism |
| CN105748152B (zh) | 2010-11-15 | 2018-06-26 | 直观外科手术操作公司 | 在手术仪器中去耦仪器轴滚动和末端执行器促动 |
| EP2645936B1 (en) * | 2010-11-30 | 2016-09-07 | Interventco, LLC | Radiation shield assembly and method of providing a sterile barrier to radiation |
| WO2012072774A1 (en) | 2010-12-02 | 2012-06-07 | Dsm Ip Assets B.V. | Acrylic polymer |
| EP2653754B1 (en) | 2010-12-15 | 2019-07-17 | Yamaha Hatsudoki Kabushiki Kaisha | Control device for dual clutch transmission and control method for dual clutch transmission |
| WO2012109306A2 (en) * | 2011-02-09 | 2012-08-16 | Ohio Urologic Research, Llc | Surgical drape system for urology procedures on male patients |
| JP5820601B2 (ja) * | 2011-03-31 | 2015-11-24 | オリンパス株式会社 | マスタマニピュレータ |
| JP2012210294A (ja) * | 2011-03-31 | 2012-11-01 | Olympus Corp | 手術支援システム |
| JP5834481B2 (ja) | 2011-05-12 | 2015-12-24 | 日本電気株式会社 | サービス提供システム、通信端末、プログラム及びサービス提供方法 |
| JP5931497B2 (ja) | 2011-08-04 | 2016-06-08 | オリンパス株式会社 | 手術支援装置およびその組立方法 |
| JP5953058B2 (ja) | 2011-08-04 | 2016-07-13 | オリンパス株式会社 | 手術支援装置およびその着脱方法 |
| JP6009840B2 (ja) | 2011-08-04 | 2016-10-19 | オリンパス株式会社 | 医療機器 |
| WO2013063522A2 (en) * | 2011-10-26 | 2013-05-02 | Reid Robert Cyrus | Surgical instrument motor pack latch |
| KR101828452B1 (ko) * | 2012-01-05 | 2018-02-12 | 삼성전자주식회사 | 서보 제어 장치 및 그 제어 방법 |
| JP6165780B2 (ja) * | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ロボット制御式の手術器具 |
| US9931167B2 (en) * | 2012-02-15 | 2018-04-03 | Intuitive Surgical Operations, Inc. | Minimally invasive surgical instrument to provide needle-based therapy |
| JP5826094B2 (ja) | 2012-03-30 | 2015-12-02 | 株式会社半導体エネルギー研究所 | p型半導体材料、および光電変換装置の作製方法 |
| CN202568458U (zh) * | 2012-03-30 | 2012-12-05 | 浙江省淳安县人和医疗用品工贸有限公司 | 医用电钻无菌保护套 |
| KR101434861B1 (ko) | 2012-04-25 | 2014-09-02 | 주식회사 고영테크놀러지 | 구동력 전달장치 |
| DE102012008535A1 (de) * | 2012-04-27 | 2013-10-31 | Kuka Laboratories Gmbh | Chirurgierobotersystem |
| CN107736937B (zh) | 2012-06-01 | 2021-02-05 | 直观外科手术操作公司 | 用于手术系统的器械托架组件 |
| US9216068B2 (en) | 2012-06-27 | 2015-12-22 | Camplex, Inc. | Optics for video cameras on a surgical visualization system |
| US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
| US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
| US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
| US8747238B2 (en) | 2012-06-28 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Rotary drive shaft assemblies for surgical instruments with articulatable end effectors |
| EP2881073B1 (de) | 2012-07-03 | 2019-07-24 | KUKA Deutschland GmbH | Chirurgische Instrumentenanordnung und Antriebsstranganordnung für ein, insbesondere robotergeführtes, chirurgisches Instrument und chirurgisches Instrument |
| DE102012013242A1 (de) * | 2012-07-03 | 2014-01-09 | Kuka Laboratories Gmbh | Chirurgische Instrumentenanordnung |
| CN103625049A (zh) | 2012-08-29 | 2014-03-12 | 3M创新有限公司 | 无纺布和聚氨酯复合材料及其制备方法 |
| WO2014035308A1 (en) * | 2012-08-31 | 2014-03-06 | Sca Hygiene Products Ab | A system and a method for data collection and monitoring of a defined space |
| US20140277334A1 (en) | 2013-03-14 | 2014-09-18 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
| CN203234838U (zh) * | 2013-05-21 | 2013-10-16 | 陈刚 | 一次性使用的无菌手术适配器 |
| CN109512519B (zh) * | 2013-08-15 | 2022-03-29 | 直观外科手术操作公司 | 通向器械无菌适配器的致动器接口 |
| KR102523090B1 (ko) | 2013-08-15 | 2023-04-19 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 예압형 수술 기구 인터페이스 |
| US10548630B2 (en) | 2014-02-11 | 2020-02-04 | Vanderbilt University | System, method, and apparatus for configuration, design, and operation of an active cannula robot |
| EP3679885B1 (en) | 2014-03-17 | 2024-02-28 | Intuitive Surgical Operations, Inc. | Systems and methods for confirming disc engagement |
| JP6510550B2 (ja) | 2014-03-17 | 2019-05-08 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 手術器具のための取付け基準 |
| KR102708970B1 (ko) | 2014-03-17 | 2024-09-25 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술용 드레이프와 수술용 드레이프를 포함하는 시스템 및 부착 센서 |
| JP6626110B2 (ja) | 2014-09-04 | 2019-12-25 | メミック イノベーティブ サージェリー リミテッドMemic Innovative Surgery Ltd. | 機械腕を含むデバイスおよびシステム |
| US11200560B2 (en) * | 2014-12-19 | 2021-12-14 | Capital One Services, Llc | Systems and methods for contactless and secure data transfer |
| GB2538326B (en) | 2015-05-07 | 2019-06-05 | Cmr Surgical Ltd | A surgical drape for transferring drive |
| KR101633618B1 (ko) | 2015-06-05 | 2016-06-27 | (주)미래컴퍼니 | 수술 로봇용 어댑터 구조 |
| US10736705B2 (en) * | 2016-12-20 | 2020-08-11 | Verb Surgical Inc. | Sterile adapter with integrated wireless interface for use in a robotic surgical system |
-
2015
- 2015-03-17 JP JP2016555980A patent/JP6510550B2/ja active Active
- 2015-03-17 CN CN201580013292.5A patent/CN106102639B/zh active Active
- 2015-03-17 EP EP15764268.7A patent/EP3119316B1/en active Active
- 2015-03-17 CN CN201580014411.9A patent/CN106132344B/zh active Active
- 2015-03-17 WO PCT/US2015/020876 patent/WO2015142785A1/en not_active Ceased
- 2015-03-17 JP JP2016555834A patent/JP6620109B2/ja active Active
- 2015-03-17 CN CN201580013601.9A patent/CN106132342B/zh active Active
- 2015-03-17 WO PCT/US2015/020882 patent/WO2015142789A1/en not_active Ceased
- 2015-03-17 KR KR1020167026585A patent/KR102395425B1/ko active Active
- 2015-03-17 CN CN201580013290.6A patent/CN106102638B/zh active Active
- 2015-03-17 CN CN201910766854.3A patent/CN110448383B/zh active Active
- 2015-03-17 EP EP23191978.8A patent/EP4248902A3/en active Pending
- 2015-03-17 US US14/660,836 patent/US9839487B2/en active Active
- 2015-03-17 KR KR1020167026579A patent/KR102443404B1/ko active Active
- 2015-03-17 CN CN201580013952.XA patent/CN106102631B/zh active Active
- 2015-03-17 ES ES22169553T patent/ES3035773T3/es active Active
- 2015-03-17 EP EP20154737.9A patent/EP3662861B1/en active Active
- 2015-03-17 KR KR1020227037809A patent/KR102656875B1/ko active Active
- 2015-03-17 WO PCT/US2015/020884 patent/WO2015142791A1/en not_active Ceased
- 2015-03-17 JP JP2016557618A patent/JP6554478B2/ja active Active
- 2015-03-17 EP EP15764881.7A patent/EP3119327B1/en active Active
- 2015-03-17 KR KR1020247011599A patent/KR20240051310A/ko active Pending
- 2015-03-17 JP JP2016557594A patent/JP6553633B2/ja active Active
- 2015-03-17 US US15/121,354 patent/US10485621B2/en active Active
- 2015-03-17 WO PCT/US2015/020880 patent/WO2015142788A1/en not_active Ceased
- 2015-03-17 KR KR1020167027274A patent/KR102324665B1/ko active Active
- 2015-03-17 KR KR1020167026575A patent/KR102442336B1/ko active Active
- 2015-03-17 EP EP19201778.8A patent/EP3610821B1/en active Active
- 2015-03-17 EP EP20172196.6A patent/EP3711702A1/en not_active Withdrawn
- 2015-03-17 US US15/121,731 patent/US10363109B2/en active Active
- 2015-03-17 CN CN202010417746.8A patent/CN111671521B/zh active Active
- 2015-03-17 US US15/121,726 patent/US10610320B2/en active Active
- 2015-03-17 CN CN202410206298.5A patent/CN118078451A/zh active Pending
- 2015-03-17 KR KR1020167025787A patent/KR102377893B1/ko active Active
- 2015-03-17 EP EP15765493.0A patent/EP3119335B1/en active Active
- 2015-03-17 US US15/121,369 patent/US10639119B2/en active Active
- 2015-03-17 WO PCT/US2015/020888 patent/WO2015142795A1/en not_active Ceased
- 2015-03-17 JP JP2016556255A patent/JP6585067B2/ja active Active
- 2015-03-17 US US15/121,723 patent/US9687312B2/en active Active
- 2015-03-17 KR KR1020167027582A patent/KR102396051B1/ko active Active
- 2015-03-17 EP EP20154204.0A patent/EP3679884B1/en active Active
- 2015-03-17 EP EP15764940.1A patent/EP3119328B1/en active Active
- 2015-03-17 US US14/660,834 patent/US10213268B2/en active Active
- 2015-03-17 JP JP2016558038A patent/JP6505125B2/ja active Active
- 2015-03-17 EP EP15766019.2A patent/EP3119344B1/en active Active
- 2015-03-17 EP EP15765779.2A patent/EP3119341B1/en active Active
- 2015-03-17 WO PCT/US2015/020886 patent/WO2015142793A1/en not_active Ceased
- 2015-03-17 EP EP19188212.5A patent/EP3581138B1/en active Active
- 2015-03-17 EP EP19181058.9A patent/EP3563792B1/en active Active
- 2015-03-17 CN CN202310216510.1A patent/CN116058981A/zh active Pending
- 2015-03-17 WO PCT/US2015/021020 patent/WO2015142889A1/en not_active Ceased
- 2015-03-17 CN CN202010087628.5A patent/CN111281550B/zh active Active
- 2015-03-17 EP EP22179743.4A patent/EP4079253B1/en active Active
- 2015-03-17 JP JP2016555833A patent/JP6634023B2/ja active Active
- 2015-03-17 EP EP15764745.4A patent/EP3119324B1/en active Active
- 2015-03-17 KR KR1020227031302A patent/KR102594595B1/ko active Active
- 2015-03-17 US US15/121,374 patent/US10912616B2/en active Active
- 2015-03-17 EP EP20161337.9A patent/EP3682838A1/en active Pending
- 2015-03-17 JP JP2016557993A patent/JP6869722B2/ja active Active
- 2015-03-17 US US15/121,351 patent/US10420622B2/en active Active
- 2015-03-17 KR KR1020237036330A patent/KR20230152174A/ko active Pending
- 2015-03-17 KR KR1020167028618A patent/KR102462158B1/ko active Active
- 2015-03-17 US US15/121,718 patent/US10543051B2/en active Active
- 2015-03-17 KR KR1020167026582A patent/KR102443416B1/ko active Active
- 2015-03-17 CN CN201580014408.7A patent/CN106102646B/zh active Active
- 2015-03-17 ES ES22179743T patent/ES3031983T3/es active Active
- 2015-03-17 EP EP15764089.7A patent/EP3119313B1/en active Active
- 2015-03-17 WO PCT/US2015/020885 patent/WO2015142792A1/en not_active Ceased
- 2015-03-17 CN CN202010993620.5A patent/CN112022244B/zh active Active
- 2015-03-17 EP EP22169553.9A patent/EP4052675B1/en active Active
- 2015-03-17 CN CN201580013607.6A patent/CN106102640B/zh active Active
- 2015-03-17 CN CN201910409914.6A patent/CN110123461B/zh active Active
- 2015-03-17 CN CN202510025942.3A patent/CN119867832A/zh active Pending
-
2017
- 2017-06-09 US US15/619,325 patent/US10045828B2/en active Active
- 2017-11-10 US US15/809,534 patent/US10278784B2/en active Active
-
2018
- 2018-08-13 US US16/102,225 patent/US10537400B2/en active Active
-
2019
- 2019-02-21 US US16/282,164 patent/US11389259B2/en active Active
- 2019-04-04 JP JP2019072171A patent/JP6795648B2/ja active Active
- 2019-05-03 US US16/403,304 patent/US11717370B2/en active Active
- 2019-07-04 JP JP2019124988A patent/JP6882381B2/ja active Active
- 2019-07-04 JP JP2019124989A patent/JP6985336B2/ja active Active
- 2019-07-29 US US16/524,832 patent/US11446105B2/en active Active
- 2019-08-19 US US16/543,826 patent/US10898288B2/en active Active
- 2019-11-01 JP JP2019199985A patent/JP2020032215A/ja active Pending
- 2019-11-01 JP JP2019199929A patent/JP6928057B2/ja active Active
- 2019-11-06 US US16/676,100 patent/US12357408B2/en active Active
-
2020
- 2020-01-21 US US16/748,419 patent/US11045274B2/en active Active
- 2020-03-25 US US16/829,856 patent/US20200222139A1/en active Pending
- 2020-04-06 US US16/840,730 patent/US12102409B2/en active Active
- 2020-11-12 JP JP2020188901A patent/JP7123108B2/ja active Active
-
2021
- 2021-01-04 US US17/140,373 patent/US12114956B2/en active Active
- 2021-01-22 US US17/155,475 patent/US11944403B2/en active Active
- 2021-08-05 JP JP2021129162A patent/JP7240454B2/ja active Active
- 2021-11-25 JP JP2021191215A patent/JP7434256B2/ja active Active
-
2022
- 2022-02-18 JP JP2022023606A patent/JP7314337B2/ja active Active
- 2022-06-23 US US17/848,030 patent/US12097006B2/en active Active
-
2024
- 2024-02-02 US US18/431,434 patent/US20240173092A1/en active Pending
- 2024-08-13 US US18/802,290 patent/US20250041015A1/en active Pending
- 2024-08-30 US US18/821,052 patent/US20250134612A1/en active Pending
-
2025
- 2025-06-04 US US19/227,828 patent/US20250359958A1/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120239060A1 (en) * | 2005-12-20 | 2012-09-20 | Intuitive Surgical Operations, Inc. | Disposable Sterile Surgical Adaptor |
| US8506555B2 (en) * | 2006-02-03 | 2013-08-13 | The European Atomic Energy Community (Euratom) | Robotic surgical system for performing minimally invasive medical procedures |
| US20110295270A1 (en) * | 2007-01-10 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
| US20100170519A1 (en) * | 2008-11-07 | 2010-07-08 | Hansen Medical, Inc. | Sterile interface apparatus |
| US20140069437A1 (en) * | 2009-01-12 | 2014-03-13 | Hansen Medical, Inc. | Modular interfaces and drive actuation through barrier |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10912544B2 (en) | 2015-06-11 | 2021-02-09 | Intuitive Surgical Operations, Inc | Systems and methods for instrument engagement |
| US11627948B2 (en) | 2015-06-11 | 2023-04-18 | Intuitive Surgical Operations, Inc. | Systems and methods for instrument engagement |
| US12349881B2 (en) | 2015-06-11 | 2025-07-08 | Intuitive Surgical Operations, Inc. | Systems and methods for instrument engagement |
| EP4356863A4 (en) * | 2021-07-14 | 2024-10-16 | Cornerstone Technology (Shenzhen) Limited | Transmission connection structure for sterile adapter and surgical instrument, and instrument drive transmission mechanism of surgical robot |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12114956B2 (en) | Coupler to transfer motion to surgical instrument from teleoperated actuator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15764940 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15121374 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2016557993 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20167027582 Country of ref document: KR Kind code of ref document: A |
|
| REEP | Request for entry into the european phase |
Ref document number: 2015764940 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2015764940 Country of ref document: EP |