WO2015119198A1 - 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート - Google Patents

窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート Download PDF

Info

Publication number
WO2015119198A1
WO2015119198A1 PCT/JP2015/053250 JP2015053250W WO2015119198A1 WO 2015119198 A1 WO2015119198 A1 WO 2015119198A1 JP 2015053250 W JP2015053250 W JP 2015053250W WO 2015119198 A1 WO2015119198 A1 WO 2015119198A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
aggregated
aggregated particles
sheet
boron nitride
Prior art date
Application number
PCT/JP2015/053250
Other languages
English (en)
French (fr)
Inventor
桂 池宮
山崎 正典
鈴木 拓也
一樹 武田
敏行 澤村
沙和 平松
健史 五十島
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53777999&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015119198(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2015561028A priority Critical patent/JP6493226B2/ja
Priority to KR1020167021577A priority patent/KR102400206B1/ko
Priority to CN202111095896.2A priority patent/CN113788465B/zh
Priority to CN201580007267.6A priority patent/CN106029561B/zh
Priority to EP15746358.9A priority patent/EP3103766A4/en
Publication of WO2015119198A1 publication Critical patent/WO2015119198A1/ja
Priority to US15/229,619 priority patent/US10106413B2/en
Priority to US16/106,120 priority patent/US10414653B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to boron nitride aggregated particles (hereinafter referred to as “BN aggregated particles”) and a method for producing the particles, and more specifically, boron nitride primary particles (hereinafter referred to as “BN primary particles”) are aggregated.
  • BN aggregated particles boron nitride primary particles
  • the present invention relates to BN aggregated particles and a method for producing the same.
  • the present invention also relates to a BN aggregated particle-containing resin composition containing the BN aggregated particles and a molded body formed by molding the BN aggregated particle-containing resin composition.
  • the present invention also relates to a sheet containing specific BN primary particles in a specific state.
  • Boron nitride (hereinafter referred to as “BN”) is an insulating ceramic, and includes various materials such as c-BN having a diamond structure, h-BN having a graphite structure, ⁇ -BN having a turbulent structure, and ⁇ -BN. Crystal forms are known.
  • h-BN has the same layered structure as graphite, has a feature that it is relatively easy to synthesize and has excellent thermal conductivity, solid lubricity, chemical stability, and heat resistance. Therefore, it is widely used in the field of electrical and electronic materials.
  • h-BN is insulating, it has attracted attention as such a heat conductive filler for a heat radiating member, taking advantage of its high thermal conductivity.
  • h-BN has a plate-like particle shape and exhibits high thermal conductivity in the plate surface direction (in the ab plane or (002) plane) (usually about 400 W / mK as thermal conductivity).
  • the plate thickness direction C-axis direction
  • the plate-shaped h-BN is orientated in the plate surface direction of the molded body, which is the flow direction of the BN particle-containing resin composition during molding.
  • the thermal conductivity is excellent in the surface direction, there is a problem that only the low thermal conductivity is shown in the thickness direction.
  • h-BN has a shape other than the scale-like shape with little orientation as described above.
  • Agglomerated particles have been investigated. Examples of such h-BN agglomerated particles include h-BN agglomerated particles granulated by spray drying or the like, and h-BN agglomerated particles produced by sintering h-BN and pulverizing a sintered body. (Patent Documents 1 and 2). Further, h-BN aggregated particles produced from a mixture of boric acid and melamine, and pine cone-shaped h-BN aggregated particles in which primary particles are aggregated without being oriented have been proposed (Patent Document 3).
  • a conventional BN aggregated particle As a use of such a conventional BN aggregated particle, it is known to be used for a heat dissipation sheet required for a power semiconductor device or the like, but in order to reduce the contact resistance between the BN aggregated particles, a certain pressure is used. Since the molding underneath is required, the BN aggregated particles are collapsed by the pressure, and the primary particles are oriented in the direction of the molding surface. As a result, the heat conduction in the direction perpendicular to the molding surface is low, reaching the practical level. The current situation is not.
  • BN aggregated particles capable of imparting high thermal conductivity in the vertical direction of the heat-dissipating sheet even under a constant pressure are desired, and further development of aggregated particles in which the BN aggregated particles themselves have high thermal conductivity is desired.
  • Patent Document 4 discloses that the specific surface area is 10 m 2 / g or more, the total pore volume is 2.15 cm 3 / g or less, and the surface of the boron nitride aggregated particles has an average particle diameter of 0.05 ⁇ m or more and 1 ⁇ m or less. Boron nitride aggregated particles composed of boron nitride primary particles are described, and h-BN aggregated particles having a card house structure are disclosed. Although the boron nitride agglomerated particles described in Patent Document 4 have improved disintegration resistance, the particle size of the agglomerated particles is small, and further improvements are required in terms of relatively heat conduction and withstand voltage.
  • Patent Document 5 In addition to improving the performance of the BN aggregated particles in this way, for example, in Patent Document 5, as a result of containing two kinds of secondary aggregates having different average major axes of primary particles at a specific ratio, Compositions containing secondary aggregates and small secondary aggregate inorganic fillers are disclosed. Patent Document 6 discloses a composition of a flat filler and a particulate filler. However, in Patent Documents 5 and 6, the strength of the particles themselves is insufficient, and the heat conduction and withstand voltage have not yet reached the practical level.
  • a conventional BN aggregated particle As a use of such a conventional BN aggregated particle, it is widely known to be used for a heat dissipation sheet required for a power semiconductor device or the like, and obtained using a composition containing the BN aggregated particle or the composition. A compact is applied. From the viewpoint of the use, it is desired that the composition or the molded body has high thermal conductivity and high withstand voltage performance. In order to achieve these performances, it is necessary to reduce voids and contact resistance between BN aggregated particles. However, in order to reduce the contact resistance between the BN aggregated particles, since molding under a certain pressure is required, the BN aggregated particles are collapsed by the pressure, and the primary particles are oriented in the molding surface direction.
  • the interface between the primary particles constituting the BN aggregated particles and the low crystallinity of the primary particles are one of the causes of decreasing the heat conduction of the BN aggregated particles. It has been found that That is, it was considered that these causes were due to scattering of phonons, which are responsible for heat conduction, at the primary particle interface and the crystal grain boundaries in the primary particles.
  • the contact resistance between the aggregated particles can be reduced to some extent by increasing the BN aggregated particles, but the orientation of the BN primary particles constituting the BN aggregated particles is It has been found that the contact resistance between the BN aggregated particles is increased and the thermal conductivity is lowered. That is, in order to improve the thermal conductivity of the molded body, the orientation of the BN primary particles constituting the BN aggregated particles is controlled to reduce the contact resistance between the BN aggregated particles, and the BN constituting the BN aggregated particles. It was considered effective to increase the crystallinity of the primary particles and further reduce the grain boundaries in the BN primary particles constituting the BN aggregated particles.
  • the present invention solves the above-mentioned conventional problems, produces BN aggregated particles in which the BN primary particles constituting the BN aggregated particles have high thermal conductivity, and also has reduced contact resistance between the BN aggregated particles.
  • An object of the present invention is to provide a BN aggregated particle excellent in applicability to the present invention and a method for producing the same.
  • Another object of the present invention is to provide a BN aggregated particle-containing resin composition containing the BN aggregated particles and a resin, and a molded body obtained by molding the BN aggregated particle-containing resin composition.
  • Another object of the present invention is to further develop the above knowledge and provide a sheet having high thermal conductivity and high voltage resistance.
  • the inventors have made the average crystallite diameter in the BN primary particles constituting the BN aggregated particles large by making the raw material slurry viscosity within a specific range when producing the BN aggregated particles. I found out that By increasing the average crystallite diameter, the grain boundary between the crystallites in the primary particles was reduced, and as a result, the thermal conductivity of the BN aggregated particles was successfully improved. Further surprisingly, the BN aggregated particles thus prepared have a specific crystal plane of the BN primary particles constituting the BN aggregated particles, and therefore, when the BN aggregated particles are used to form a molded body. As a result, it has been found that it is possible to produce a molded product having higher thermal conductivity than conventional BN aggregated particles, and the present invention has been completed.
  • the first gist of the present invention is the following (a-1) to (a-13).
  • (A-1) Boron nitride aggregated particles (hereinafter referred to as “BN aggregated particles”) obtained by agglomerating primary boron nitride particles (hereinafter referred to as “BN primary particles”), and a 10 mm ⁇ powder tablet molding machine
  • the peak area intensity ratio between the (100) plane and the (004) plane of BN primary particles obtained by powder X-ray diffraction measurement of a pellet-like sample obtained by molding at a molding pressure of 0.85 ton / cm 2 ((100) / (004)) is 0.25 or more, and the BN aggregated particles are filled in a 0.2 mm deep glass sample plate so that the surface is smooth, and powder X-ray diffraction measurement is performed.
  • the obtained BN aggregated particles wherein the average crystallite size of the BN primary particles obtained from the (002) plane peak of the BN primary particles is 375 mm or more.
  • A-2 The BN aggregated particles according to (a-1), wherein the BN aggregated particles have an average particle diameter D 50 of 26 ⁇ m or more.
  • A-3) The BN aggregated particles according to (a-1) or (a-2), wherein the specific surface area of the BN aggregated particles is 8 m 2 / g or less.
  • A-4) The BN aggregated particles according to any one of (a-1) to (a-3), wherein the BN aggregated particles are spherical.
  • A-5) The BN aggregated particles according to any one of (a-1) to (a-4), wherein the BN aggregated particles have a card house structure.
  • a BN aggregated particle composition which is a mixture of the BN aggregated particles according to any one of (a-1) to (a-5) and other fillers.
  • a BN aggregated particle-containing resin composition comprising (a-7) a resin and the BN aggregated particles according to any one of (a-1) to (a-5).
  • A-8) A molded article comprising the BN aggregated particles according to any one of (a-1) to (a-5).
  • a method for producing BN aggregated particles comprising a step of granulating a raw material boron nitride powder slurry (hereinafter referred to as “BN slurry”) and a heat treatment step, In the granulation step, the BN slurry has a viscosity of 200 mPa ⁇ s or more and 5000 mPa ⁇ s or less, and in the heating step, heat treatment is performed at 1800 ° C. or more and 2300 ° C. or less.
  • A-10) The method for producing BN aggregated particles according to (a-9), wherein the oxygen concentration in the raw material boron nitride powder is 1% by mass or more and 10% by mass or less.
  • A-11 BN aggregated particles obtained by the production method described in (a-9) or (a-10).
  • BN aggregated particles a sheet containing boron nitride aggregated particles (hereinafter referred to as “BN aggregated particles”), Peak intensity ratio of (100) plane to (004) plane of boron nitride primary particles (hereinafter referred to as “BN primary particles”) in the sheet obtained by X-ray diffraction measurement of the sheet ((100) / (004)) is 1.0 or more, and the average crystallite diameter of the BN primary particles obtained from the (002) plane peak of the BN primary particles in the sheet obtained by X-ray diffraction measurement of the sheet is A sheet characterized by being 375 mm or more.
  • Peak area intensity ratio ((100) of (100) plane and (004) plane of boron nitride primary particles (hereinafter referred to as “BN primary particles”) in the sheet obtained by X-ray diffraction measurement of the sheet. / (004)) is a sheet according to (a-12), which is 0.6 or more.
  • the second gist of the present invention is the following (b-1) to (b-10).
  • (B-1) A composition comprising boron nitride aggregated particles (A) obtained by agglomerating primary boron nitride particles and inorganic particles (B), wherein at least the boron nitride aggregated particles (A) have a card house structure.
  • the volume average particle diameter of the boron nitride agglomerated particles (a) (D 50) is not less 25 ⁇ m or more, and the volume of the volume average particle diameter of the boron nitride agglomerated particles (a) (D 50)> inorganic particles (B)
  • the boron nitride aggregated particles (A) have a card house structure, and the volume average particle diameter (D 50 ) of the boron nitride aggregated particles (A) and the inorganic particles satisfies the above relationship. Phonon scattering generated at the crystal grain boundaries in the BN primary particles constituting the aggregated particles can be reduced, and as a result, high thermal conductivity is exhibited.
  • (B-2) A composition comprising boron nitride aggregated particles (A) formed by agglomeration of boron nitride primary particles and inorganic particles (B), wherein the boron nitride aggregated particles (A) are measured by powder X-ray diffraction measurement.
  • the peak intensity ratio ((100) / (004)) between the (100) plane and the (004) plane of the boron nitride primary particles obtained in this way is 3 or more, and the boron nitride primary particles are obtained from the (002) plane peak.
  • the boron nitride aggregated particle-containing composition, wherein the boron nitride primary particles have an average crystallite size of 375 mm or more.
  • the composition maintains the orientation of the specific crystal plane of the BN primary particles, that is, the peak intensity ratio ((100) / (004)) between the (100) plane and the (004) plane by powder X-ray diffraction measurement. Since the average crystallite diameter is maintained at 3 or more, the molded product when combined with the resin exhibits high thermal conductivity in addition to high thermal conductivity as aggregated particles.
  • the volume average particle diameter of the boron nitride agglomerated particles (A) (D 50) is not less 25 ⁇ m or more and a volume average particle diameter (D 50) of the boron nitride agglomerated particles (A)> inorganic particles (B).
  • the content ratio of the boron nitride aggregated particles (A) is 30 to 95% by mass with respect to the total of the boron nitride aggregated particles (A) and the inorganic particles (B).
  • the inorganic particles (B) are at least one selected from the group consisting of boron nitride, aluminum nitride, alumina, zinc oxide, magnesium oxide, beryllium oxide, and titanium oxide (b-1) to (b- 5)
  • B-7 A coating solution comprising the boron nitride aggregated particle-containing composition according to any one of (b-1) to (b-6).
  • B-8) A molded article obtained by molding the boron nitride aggregated particle-containing composition according to any one of (b-1) to (b-6).
  • Peak intensity ratio between (100) plane and (004) plane of boron nitride primary particles obtained by X-ray diffraction measurement of a sheet containing boron nitride aggregated particles (A) ((100) / (004)) is 1.0 or more and / or the peak area intensity ratio ((100) / (004)) is 0.6 or more.
  • B-10 Further, the average crystallite diameter of the boron nitride aggregated particles obtained from the (002) plane peak of the BN primary particles in the sheet obtained by X-ray diffraction measurement of the sheet is 300 mm or more.
  • the BN aggregated particles of the present invention have a peak intensity ratio ((100) / (004)) between the (100) plane and (004) plane of the BN primary particles constituting the BN aggregated particles obtained by powder X-ray diffraction measurement. Since it is 3 or more, the specific crystal plane of the BN primary particles constituting the BN aggregated particles is oriented, and the BN obtained from the (002) plane peak of the BN primary particles in the powder X-ray diffraction measurement of the BN aggregated particles Since the average crystallite diameter of the primary particles is 375 mm or more, phonon scattering generated at the crystal grain boundaries in the BN primary particles constituting the BN aggregated particles can be reduced, and as a result, high thermal conductivity is exhibited.
  • the peak area intensity ratio ((100) / (004)) between the (100) face and the (004) face of the BN primary particles is 0.25 or more.
  • the orientation of a specific crystal plane of the BN primary particles constituting the BN aggregated particles is maintained even after molding. Therefore, it exhibits high thermal conductivity in the direction perpendicular to the molding surface (molded body thickness direction), and is very useful for a heat-dissipating sheet that is preferably used in power semiconductor devices and the like.
  • SEM scanning electron microscope
  • the BN aggregated particles of the present invention are formed by aggregation of BN primary particles, and may contain components other than the BN primary particles as long as the effects of the present invention are not impaired.
  • components other than the BN primary particles include components derived from a binder, a surfactant, and a solvent that may be added to the slurry, which will be described later in [Method for producing BN aggregated particles].
  • the form of the BN aggregated particles of the present invention is not particularly limited, but preferably has a spherical form as shown in FIG. 1, and the form of the BN aggregated particles can be confirmed by SEM.
  • spherical means that the aspect ratio (ratio of major axis to minor axis) is 1 or more and 2 or less, preferably 1 or more and 1.5 or less.
  • the aspect ratio of the BN aggregated particles of the present invention is determined by arbitrarily selecting 200 or more particles from an image taken with an SEM, obtaining the ratio of the major axis to the minor axis, and calculating the average value.
  • the BN aggregated particles are a sea urchin-like form in which the crystals of BN primary particles grow radially from the center side to the surface side of the BN aggregated particles, and the BN primary particles are platelets. Is preferably a sea urchin-like spherical form that is sintered and agglomerated.
  • the BN aggregated particles preferably have a card house structure.
  • the card house structure is, for example, ceramic 43 No. 2 (issued by the Ceramic Society of Japan in 2008), and has a structure in which plate-like particles are laminated in a complicated manner without being oriented.
  • the BN aggregated particles having a card house structure are aggregates of BN primary particles, and have a structure in which the flat surface portion and the end surface portion of the primary particles are in contact (see FIG. 3). Particles, preferably spherical. Moreover, it is preferable that the card house structure is the same structure also inside the particle. The aggregation form and internal structure of these BN aggregated particles can be confirmed by a scanning electron microscope (SEM).
  • the BN primary particles constituting the BN aggregated particles have specific physical properties, and will be described in detail below.
  • the sample (powder) used for the physical property measurement specified in this specification may be a BN aggregated particle powder before being molded into a molded body, or taken out of a molded body or molded body containing BN aggregated particles.
  • BN aggregated particle powder may be used.
  • it is a BN aggregated particle powder before being formed into a molded body.
  • the major axis of the BN primary particles constituting the BN aggregated particles is usually 0.5 ⁇ m or more, preferably 0.6 ⁇ m or more, more preferably 0.8 ⁇ m or more, still more preferably 1.0 ⁇ m or more, particularly Preferably it is 1.1 micrometers or more. Moreover, it is 10 micrometers or less normally, Preferably it is 5 micrometers or less, More preferably, it is 3 micrometers or less.
  • the major axis is the maximum length of BN primary particles that can be observed on an image of the BN primary particles constituting one BN aggregated particle by enlarging one BN aggregated particle obtained by SEM measurement. The average value.
  • the crystal structure of the BN primary particles is not particularly limited, but those containing hexagonal h-BN as a main component in terms of ease of synthesis and thermal conductivity. preferable.
  • inorganic components other than BN are contained as a binder, they crystallize in the process of heat processing, but BN should just be contained as a main component.
  • the crystal structure of the BN primary particles can be confirmed by powder X-ray diffraction measurement.
  • the average crystallite diameter of BN primary particles obtained from the (002) plane peak of BN primary particles obtained by powder X-ray diffraction measurement of BN aggregated particles is not particularly limited.
  • a large average crystallite size is preferable from the viewpoint of thermal conductivity.
  • it is usually at least 300 mm, preferably at least 320 mm, more preferably at least 375 mm, more preferably at least 380 mm, even more preferably at least 390 mm, particularly preferably at least 400 mm, usually at most 5000 mm, preferably at most 2000 mm, further Preferably it is 1000 mm or less.
  • the average crystallite diameter is too large, the BN primary particles grow too much, so that there are more gaps in the BN aggregated particles, the moldability when forming a molded body is deteriorated, and the heat conduction is increased by increasing the gaps. Tend not to improve. If the average crystallite diameter is too small, the number of grain boundaries in the BN primary particles increases, so that phonon scattering occurs at the grain boundaries and the thermal conductivity tends to be low.
  • the powder X-ray diffraction measurement is performed by filling BN aggregated particles with a 0.2 mm deep glass sample plate with a smooth surface.
  • the “average crystallite diameter” is a crystallite obtained by the Scherrer equation as described in Examples below from the (002) plane peak of BN primary particles obtained by powder X-ray diffraction measurement. Is the diameter.
  • Powder BN aggregated particles before being formed into a molded body such as a sheet are filled in a 0.2 mm deep glass sample plate so that the surface is smooth, and powder X-ray diffraction measurement is performed.
  • the peak intensity ratio ((100) / (004)) between the (100) plane and the (004) plane of the BN primary particles obtained in this way is 3 or more.
  • the peak intensity ratio between the (100) plane and the (004) plane of the BN aggregated particles is usually 3 or more, preferably 3.2 or more, more preferably 3.4 or more, still more preferably 3.5 or more, and usually 10 or less. , Preferably 8 or less, more preferably 7 or less.
  • the peak intensity ratio can be calculated from the intensity ratio of the corresponding peak intensity measured by powder X-ray diffraction measurement.
  • BN primary particles Obtained by powder X-ray diffraction measurement of a pellet-like sample obtained by molding BN aggregated particles with a 10 mm ⁇ powder tablet molding machine at a molding pressure of 0.85 ton / cm 2.
  • the BN primary particles can be expressed even if the peak area intensity ratio ((100) / (004)) between the (100) plane and the (004) plane is 0.25 or more.
  • This peak area intensity ratio ((100) / (004)) is preferably 0.3 or more, preferably 0.5 or more, more preferably 0.7 or more, still more preferably 0.81 or more, and particularly preferably 0. .85 or more, particularly preferably 0.91 or more.
  • the upper limit is not particularly limited, but is usually 10.0 or less, preferably 5.0 or less, more preferably 4.0 or less, still more preferably 2.0 or less, and particularly preferably 1.6 or less. It is.
  • BN in a pellet-like sample obtained by molding BN aggregated particles with a molding tablet of 10 mm ⁇ at a molding pressure of 0.85 ton / cm 2 or more and 2.54 ton / cm 2 or less is usually 0.25 or more, preferably 0.30 or more, more preferably It is 0.35 or more, more preferably 0.40 or more, usually 2.0 or less, preferably 1.5 or less, more preferably 1.2 or less. If it is too large, the contact resistance between the BN aggregated particles tends to increase when formed into a molded product, and if it is too small, the BN aggregated particles tend to collapse and the thermal conductivity in the thickness direction does not tend to improve.
  • the optimum press pressure condition for a heat radiating sheet or the like varies depending on the type of heat radiating sheet.
  • the BN agglomerated particles dispersed in the resin matrix are exposed to pressure conditions depending on the application, but usually the BN particles tend to have an ab plane oriented in a direction perpendicular to the pressure direction. Even when BN aggregated particles are used, particle deformation occurs with respect to the molding pressure, and as a result, the ab surface tends to be oriented in a direction perpendicular to the pressure direction.
  • high heat dissipation substrate made of resin for complete contact of BN agglomerated grains obtained by void reduction and dispersion of the internal resin substrate, 0.85ton / cm 2 or more 2.54ton / cm 2 or less, such as It is thought that it is molded at a relatively high pressure. For this reason, BN aggregated particles with little change in the orientation of BN primary particles even in the above pressure range are necessary for improving the thermal conductivity.
  • the BN aggregated particles satisfying the physical properties defined in the present specification preferably the BN primary particles constituting the BN aggregated particles are in a card house structure, that is, the BN primary particles are in contact with each other at the primary particle plane portion and the end surface portion. Therefore, it is possible to suppress the deformation of the BN aggregated particles in a wide molding pressure range.
  • the optimum pressure range varies depending on the application, in order to achieve high thermal conductivity in the thickness direction of the molded body, primary particle orientation is at least a certain level in the range of 0.85 ton / cm 2 to 2.54 ton / cm 2. Is preferably achieved.
  • the primary particle orientation above a certain level is expressed by, for example, the peak area intensity ratio ((100) / (004)) between the (100) plane and the (004) plane of the primary particle.
  • This expresses how much the ab plane is oriented in the direction orthogonal to the pressure direction. Therefore, the larger the above-described peak area intensity ratio, the less deformation of the BN aggregated particles due to the molding pressure.
  • it is considered necessary that at least the peak area intensity ratio is 0.25 or more.
  • the lower limit and upper limit of the peak area intensity ratio are as described above.
  • the peak area intensity ratio in the range of 0.85 ton / cm 2 or more and 2.54 ton / cm 2 has no problem if it satisfies a predetermined numerical value even at one point in the pressure range, and it is necessary to achieve it in the entire pressure range of the present invention. Absent. Also, preferably, 0.85ton / cm 2, 1.69ton / cm 2, to meet the predetermined numerical at three points 2.54ton / cm 2.
  • the above peak area intensity ratio is obtained by filling a tablet machine (10 mm ⁇ ) with about 0.2 g of powder and using a manual hydraulic pump (P-1B-041 manufactured by Riken Seiki Co., Ltd.) at various press pressures.
  • a tablet-shaped sample is used for measurement (for example, 0.85 ton / cm 2 , 1.69 ton / cm 2 , 2.54 ton / cm 2, etc.).
  • the measurement can be carried out using an X'Pert Pro MPD powder X-ray diffractometer manufactured by The Netherlands PANalytical, and the intensity ratio of the corresponding peak area can be calculated.
  • the average particle diameter (D 50 ) of the BN aggregated particles is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, further preferably 26 ⁇ m or more, particularly preferably 30 ⁇ m or more, and most preferably 40 ⁇ m or more. Yes, even if it is 45 ⁇ m or more, it is preferable even if it is 50 ⁇ m or more. Moreover, it is 200 micrometers or less normally, Preferably it is 150 micrometers or less, More preferably, it is 100 micrometers or less.
  • D 50 means the particle diameter when the cumulative volume is 50% when the cumulative curve is drawn with the volume of the powder subjected to measurement as 100%, and the measurement method is a wet measurement method.
  • the breaking strength of the BN aggregated particles is usually 2.5 MPa or more, preferably 3.0 MPa or more, more preferably 3.5 MPa or more, still more preferably 4.0 MPa or more, usually 20 MPa or less, preferably 15 MPa or less. More preferably, it is 10 MPa or less. If the particle size is too large, the strength of the particles is too strong, so that the surface smoothness tends to deteriorate when formed into a molded product, and the thermal conductivity tends to decrease. It tends to be deformed and the thermal conductivity tends not to improve.
  • the breaking strength can be calculated by the following equation by compressing one particle according to JIS R 1639-5. Usually, 5 or more particles are measured, and the average value is adopted.
  • Cs 2.48P / ⁇ d 2
  • Cs fracture strength (MPa)
  • N Destructive test force (N)
  • d Particle diameter (mm)
  • the total pore volume of the BN aggregated particles is usually 2.2 cm 3 / g or less.
  • a particle having a small total pore volume has a dense BN aggregated particle, so that it is possible to reduce the boundary surface that hinders heat conduction, resulting in a BN aggregated particle having higher thermal conductivity. If the total pore volume of the BN aggregated particles is too large, when used as a filler in the composition, the resin may be taken into the pores and the apparent viscosity may increase, and the composition may be molded or applied. It may be difficult to apply the coating.
  • the lower limit value of the total pore volume of the BN aggregated particles is not particularly limited, but is usually 0.01 cm 3 / g.
  • the total pore volume of the present invention is preferably 0.01 cm 3 / g or more, more preferably 0.02 cm 3 / g or more, preferably 2 cm 3 / g or less, more preferably 1.5 cm 3 / g or less. It is.
  • the total pore volume of the aggregated BN powder can be measured by a nitrogen adsorption method and a mercury intrusion method.
  • the specific surface area of the BN aggregated particles is usually 1 m 2 / g or more, preferably 3 m 2 / g or more and 50 m 2 / g or less, more preferably 5 m 2 / g or more and 40 m 2 / g or less. Moreover, it is also preferable that it is 8 m ⁇ 2 > / g or less, and it is also preferable that it is 7.25 m ⁇ 2 > / g or less.
  • the specific surface area can be measured by the BET single point method (adsorption gas: nitrogen).
  • the bulk density of the BN aggregated particles should be large in order to minimize resin uptake, and is usually preferably 0.3 g / cm 3 or more. More preferably, it is 0.35 g / cm 3 or more, and still more preferably 0.4 g / cm 3 or more.
  • the bulk density of the BN aggregated particles is too small, the apparent volume increases, and the volume of the BN aggregated particles to be added increases with respect to the resin in the BN aggregated particle-containing resin composition, and the resin uptake increases. In addition, the handleability of the BN aggregated particles tends to be remarkably deteriorated.
  • the bulk density of a BN aggregated particle Usually, 0.95 g / cm ⁇ 3 > or less, Preferably it is 0.9 g / cm ⁇ 3 > or less, More preferably, it is 0.85 g / cm ⁇ 3 > or less. If the bulk density of BN aggregated particles is too large, the dispersion of aggregated BN tends to occur in the BN aggregated particle-containing resin composition and tends to settle. Note that the bulk density of the BN aggregated particles can be determined using a normal apparatus or method for measuring the bulk density of the powder.
  • the BN aggregated particles of the present invention are preferably granulated by using a slurry containing raw material BN powder having a viscosity of 200 to 5000 mPa ⁇ s (hereinafter sometimes referred to as “BN slurry”), and granulated.
  • BN slurry a slurry containing raw material BN powder having a viscosity of 200 to 5000 mPa ⁇ s
  • the viscosity of the BN slurry is preferably 300 mPa ⁇ s or more, more preferably 500 mPa ⁇ s or more, still more preferably 700 mPa ⁇ s or more, particularly preferably 1000 mPa ⁇ s or more, preferably 4000 mPa ⁇ s or less, more preferably 3000 mPa ⁇ s. -S or less.
  • the viscosity of the BN slurry is produced BN average volume-based aggregate particle diameter D 50 and the greatly affect the average crystallite size of BN primary particles constituting the BN agglomerated particles, the the viscosity 200 mPa ⁇ s or more and by, it is possible to increase the average particle diameter D 50 of the volume-based average crystallite diameter and BN agglomerated particles of BN primary particles.
  • granulation can be facilitated by setting the viscosity of the BN slurry to 5000 mPa ⁇ s or less. A method for adjusting the viscosity of the BN slurry will be described later.
  • the viscosity of the BN slurry in the present invention is a viscosity measured at a blade rotation speed of 100 rpm using a rotational viscometer “VISCO BASIC Plus R” manufactured by FUNGILAB.
  • a BN aggregated particle-containing resin composition is prepared using the BN aggregated particles of the present invention as a filler, the thermal conductivity of the molded product obtained compared with other BN particles is dramatically increased even with the same filling amount. Can improve.
  • the increase in the average crystal particle diameter of the BN primary particles constituting the BN aggregated particles reduces the crystal grain boundary in the BN primary particles, and the BN primary particles constituting the BN aggregated particles. is presumed to be due to the specific surface of the particles are oriented, it is considered preferably, by greater average particle size D 50 based on volume of the agglomerated particles, and the contact resistance between BN agglomerated particles also affects reducing .
  • the BN aggregated particles of the present invention not only have high thermal conductivity of the BN aggregated particles themselves, but also increase the thermal conductivity of a molded product produced by combining with a resin. That is, according to the present invention, the average crystallite diameter of the BN primary particles constituting the BN aggregated particles is increased by controlling the slurry viscosity, which is not assumed to be normally controlled by those skilled in the art, within a specific range. It has been found out a manufacturing method that is possible.
  • the inventors have found a method for producing BN aggregated particles defined in the present invention by controlling the slurry viscosity within a specific range.
  • the peak intensity ratio and the crystallite diameter can also be controlled by the firing temperature when the granulated particles produced from the BN slurry are heat-treated and the oxygen concentration present in the raw material BN powder.
  • the peak intensity ratio can be set to 3 or more by setting the firing temperature range when the granulated particles produced from the BN slurry are heat-treated to 1800 ° C. or higher and 2300 ° C. or lower.
  • the crystallite diameter can be controlled within a desired range. That is, the peak intensity ratio and the average crystallite diameter can be controlled simultaneously by using a raw material BN powder having an appropriate firing temperature range and an appropriate oxygen concentration.
  • BN aggregated particles having high thermal conductivity in which specific crystal planes of the BN primary particles constituting the material are oriented. Since the BN aggregated particles obtained by the present invention can be designed in various sizes while maintaining high thermal conductivity, they can be applied to a wide range of uses as molded articles.
  • the raw material BN powder used in the present invention includes commercially available h-BN, commercially available ⁇ and ⁇ -BN, BN produced by a reductive nitriding method of boron compound and ammonia, boron compound and melamine, etc. Any of BN synthesized from a nitrogen-containing compound can be used without any limitation, and h-BN is particularly preferably used since the effects of the present invention are more exhibited.
  • the peak half-value width of the (002) plane obtained from powder X-ray diffraction measurement is an angle of 2 ⁇ , usually 0.4 ° or more, preferably 0.45 ° or more, more preferably 0.5. It is more than °. Moreover, it is 2.0 degrees or less normally, Preferably it is 1.5 degrees or less, More preferably, it is 1 degree or less.
  • the crystallite is not sufficiently large, and it takes a long time to increase the crystallite, so that the productivity tends to deteriorate. If it is less than the above lower limit, the crystallinity is too high and sufficient crystal growth cannot be expected, and the dispersion stability at the time of slurry preparation tends to deteriorate.
  • the powder X-ray-diffraction measuring method is described in the item of the below-mentioned Example.
  • the total oxygen concentration in the raw material BN powder is usually 1% by mass. As mentioned above, Preferably it is 2 mass% or more, More preferably, it is 3 mass% or more, More preferably, it is 4 mass% or more. Moreover, it is 10 mass% or less normally, More preferably, it is 9 mass% or less. If it is larger than the above upper limit, oxygen tends to remain even after heat treatment, so that the effect of improving thermal conductivity tends to be small. If it is less than the above lower limit, the crystallinity is too high, crystal growth cannot be expected, and the peak intensity ratio that can be confirmed by powder X-ray diffraction measurement tends to be out of the desired range.
  • the average crystallite diameter of the BN primary particles constituting the BN aggregated particles can be controlled within a desired range by using a raw material having an oxygen concentration of 1.0% by weight or more present in the raw material BN powder.
  • a method for adjusting the total oxygen concentration of the raw material BN powder to the above range for example, a method in which the synthesis temperature at the time of BN synthesis is a low temperature of 1500 ° C. or lower, a raw material BN in a low-temperature oxidizing atmosphere of 500 ° C. to 900 ° C.
  • the method of heat-processing powder is mentioned.
  • the total oxygen concentration of the raw material BN powder can be measured by an inert gas melting-infrared absorption method using an oxygen / nitrogen analyzer manufactured by Horiba, Ltd.
  • the total pore volume of the raw material BN powder is usually 1.0 cm 3 / g or less, preferably 0.3 cm 3 / g or more and 1.0 cm 3 / g or less, more preferably not more than 0.5 cm 3 / g or more 1.0 cm 3 / g.
  • the total pore volume is 1.0 cm 3 / g or less, since the raw material BN powder is dense, granulation with high sphericity is possible.
  • the specific surface area of the raw material BN powder is usually 50 m 2 / g or more, preferably 60 m 2 / g or more, and more preferably 70 m 2 / g or more. Usually, although 1000 m 2 / g or less, preferably 500 meters 2 / g, more preferably at most 300m 2 / g. It is preferable that the raw material BN powder has a specific surface area of 50 m 2 / g or more because the dispersed particle diameter in the BN slurry used for spheronization by granulation can be reduced. Moreover, since it can suppress the increase in a slurry viscosity by setting it as 1000 m ⁇ 2 > / g or less, it is preferable.
  • the total pore volume of the raw material BN powder can be measured by a nitrogen adsorption method and a mercury intrusion method, and the specific surface area can be measured by a BET one-point method (adsorption gas: nitrogen). Specific measurement methods for the total pore volume and specific surface area of the raw material BN powder are described in the Examples section below.
  • the medium used for the preparation of the BN slurry is not particularly limited, and water and / or various organic solvents can be used, but water is preferably used from the viewpoints of ease of spray drying and simplification of the apparatus. Pure water is more preferable.
  • the amount of the medium used for the preparation of the BN slurry is preferably added so that the viscosity of the BN slurry is 200 to 5000 mPa ⁇ s.
  • the amount of the medium used for the preparation of the BN slurry is usually 10% by mass or more, preferably 20% by mass or more, more preferably 30% by mass or more, and usually 70% by mass or less, preferably 65% by mass. % Or less, more preferably 60% by mass or less.
  • the slurry viscosity becomes too low, so the uniformity of the BN slurry due to sedimentation or the like is impaired, and the crystallite size of the BN primary particles constituting the obtained BN aggregated particles is in a desired range. There is a tendency to deviate from. If it is less than the lower limit, the slurry viscosity is too high, so that granulation tends to be difficult. That is, when the amount of the medium used is outside the above range, the size of the BN aggregated particles, the crystallinity of the BN primary particles constituting the BN aggregated particles, and the reduction of the crystal grain boundaries in the BN primary particles can be satisfied at the same time. It becomes difficult.
  • ⁇ Surfactant> It is preferable to add various surfactants to the BN slurry from the viewpoint of adjusting the viscosity of the slurry and dispersion stability (inhibition of aggregation) of the raw material BN powder in the slurry.
  • the surfactant an anionic surfactant, a cationic surfactant, a nonionic surfactant or the like can be used. These may be used alone or in combination of two or more. May be used.
  • the surfactant can change the viscosity of the slurry. Accordingly, when a surfactant is added to the BN slurry, the amount thereof is adjusted so that the viscosity of the BN slurry is 200 to 5000 mPa ⁇ s.
  • a surfactant is added to the BN slurry, the amount thereof is adjusted so that the viscosity of the BN slurry is 200 to 5000 mPa ⁇ s.
  • a slurry having a solid content of 50% by mass using BN having a (002) plane peak half-value width 2 ⁇ of 0.67 ° and an oxygen concentration of 7.5% by mass obtained by powder X-ray diffraction measurement.
  • Is usually added as an active ingredient of an anionic surfactant usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the total amount of the slurry. Usually, it is added at 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
  • an anionic surfactant usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the total amount of the slurry.
  • the slurry viscosity tends to decrease too much and the surfactant-derived carbon component tends to remain in the generated BN aggregated particles. If it is less than the above lower limit, the slurry viscosity becomes too high and granulation itself tend
  • the BN slurry may contain a binder in order to effectively granulate the raw material BN powder into particles.
  • the binder acts to firmly bind the BN primary particles and stabilize the granulated particles.
  • Any binder can be used for the BN slurry as long as it can enhance the adhesion between the BN particles.
  • the high temperature in this heat-treatment step since the granulated particles are heat-treated after the formation of particles, the high temperature in this heat-treatment step. What has the heat resistance with respect to conditions is preferable.
  • metal oxides such as aluminum oxide, magnesium oxide, yttrium oxide, calcium oxide, silicon oxide, boron oxide, cerium oxide, zirconium oxide, and titanium oxide are preferably used.
  • aluminum oxide and yttrium oxide are preferable from the viewpoints of thermal conductivity and heat resistance as an oxide, bonding strength for bonding BN particles, and the like.
  • the binder may be a liquid binder such as alumina sol, or may be one that reacts during heat treatment and is converted into another inorganic component. These binders may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the amount of the binder used (in the case of a liquid binder, the amount used as a solid content) is usually 0% by mass to 30% by mass, preferably 0% by mass to 20% with respect to the raw material BN powder in the BN slurry. It is 0 mass% or less, More preferably, it is 0 mass% or more and 15 mass% or less. When the above upper limit is exceeded, the content of the raw material BN powder in the granulated particles decreases, which not only affects the crystal growth but also reduces the effect of improving thermal conductivity when used as a thermally conductive filler.
  • the slurry preparation method is not particularly limited as long as the raw material BN powder and medium, and if necessary, the binder and the surfactant are uniformly dispersed and prepared in a desired viscosity range, but the raw material BN powder and medium, and further if necessary When a binder or a surfactant is used, it is preferably prepared as follows.
  • a predetermined amount of the raw material BN powder is weighed into a resin bottle, and then a predetermined amount of binder is added. Further, after adding a predetermined amount of the surfactant, zirconia ceramic balls are added, and the mixture is stirred for about 0.5 to 5 hours with a pot mill rotary table until a desired viscosity is obtained.
  • the order of addition is not particularly limited, but when slurrying a large amount of raw material BN powder, it becomes easy to form agglomerates such as debris, so after preparing an aqueous solution in which a surfactant and a binder are added to water, a predetermined amount
  • the raw material BN powder may be added little by little, and zirconia ceramic balls may be added thereto, and dispersed and slurried with a pot mill rotary table.
  • a dispersing device such as a bead mill or a planetary mixer may be used.
  • the temperature of the slurry is 10 ° C. or higher and 60 ° C. or lower. If it is lower than the lower limit, the slurry viscosity increases and tends to deviate from the desired viscosity range. If it is higher than the upper limit, the raw material BN powder is easily decomposed into ammonia in the aqueous solution.
  • it is 10 ° C. or more and 60 ° C. or less, preferably 15 ° C. or more and 50 ° C. or less, more preferably 15 ° C. or more and 40 ° C. or less, and further preferably 15 ° C. or more and 35 ° C. or less.
  • granulated particles from the BN slurry In order to obtain the granulated particles from the BN slurry, general granulation methods such as a spray drying method, a rolling method, a fluidized bed method, and a stirring method can be used, and among these, the spray drying method is preferable.
  • spray drying method granulated particles of a desired size are produced based on the concentration of the slurry used as a raw material, the amount of liquid fed per unit time introduced into the apparatus, and the pressure and pressure when the liquid is sprayed. It is possible to obtain spherical granulated particles.
  • the average particle diameter of the granulated particles obtained by granulation is the volume-based average particle diameter D when the volume-based average particle diameter range of the BN aggregated particles of the present invention is preferably 5 ⁇ m or more and 200 ⁇ m or less.
  • 50 is usually 3 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more, particularly preferably 25 ⁇ m or more, more particularly preferably 25 ⁇ m or more, even 26 ⁇ m or more.
  • 30 ⁇ m or more is preferable, and 35 ⁇ m or more is also preferable.
  • the volume-based average particle diameter D 50 of the granulated particles can be measured by, for example, “LA920” manufactured by Horiba, Ltd. for wet, “Morphology” manufactured by Malvern, for dry.
  • the above BN granulated particles can be further heat-treated in a non-oxidizing gas atmosphere to produce BN aggregated particles.
  • the non-oxidizing gas atmosphere is an atmosphere of nitrogen gas, helium gas, argon gas, ammonia gas, hydrogen gas, methane gas, propane gas, carbon monoxide gas, or the like.
  • the crystallization speed of the aggregated BN particles varies depending on the type of the atmospheric gas used here, and in order to perform crystallization in a short time, nitrogen gas or a mixed gas using a combination of nitrogen gas and other gas is preferably used. It is done.
  • the heat treatment temperature is usually 1800 ° C. or higher and 2300 ° C. or lower, preferably 1900 ° C.
  • the heat treatment temperature is too low, the average crystallite growth of BN becomes insufficient, and the thermal conductivity of the BN aggregated particles and the compact may be reduced. If the heat treatment temperature is too high, BN may be decomposed.
  • the peak intensity ratio ((100) / (004)) between the (100) plane and the (004) plane of the BN primary particles is set to a desired value. it can.
  • the heat treatment time is usually 3 hours or longer, preferably 4 hours or longer, more preferably 5 hours or longer, and usually 20 hours or shorter, preferably 15 hours or shorter.
  • crystal growth becomes insufficient, and when it exceeds the upper limit, BN may be partially decomposed.
  • the firing furnace is evacuated using a vacuum pump and then heated to a desired temperature while introducing a non-oxidizing gas.
  • the temperature may be increased by heating while introducing the non-oxidizing gas under normal pressure.
  • firing furnaces include batch furnaces such as muffle furnaces, tubular furnaces, and atmospheric furnaces, and rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, vertical furnaces, and other continuous furnaces. Can be used properly.
  • the granulated particles to be heat-treated are heated and fired in a circular graphite crucible with a lid in order to reduce the non-uniformity of the composition at the time of firing.
  • a graphite partition may be inserted for the purpose of suppressing sintering of the BN aggregated particles due to firing.
  • the number of divisions by the partition is not particularly limited as long as sintering can be suppressed, but is usually 2 or more and 16 or less. If the number of divisions is larger than the upper limit, sintering can be suppressed, but the crystals of BN primary particles tend not to grow sufficiently. If the number of divisions is smaller than the lower limit, sintering may proceed.
  • the BN aggregated particles after the heat treatment are preferably classified in order to reduce the particle size distribution and suppress an increase in viscosity when blended in the BN aggregated particle-containing resin composition.
  • This classification is usually performed after the heat treatment of the granulated particles, but may be performed on the granulated particles before the heat treatment and then subjected to the heat treatment.
  • dry classification is preferable from the viewpoint of suppressing the decomposition of BN.
  • dry classification is particularly preferably used.
  • dry classification includes wind classification that uses a difference between centrifugal force and fluid drag, etc., but swirling air classifiers, forced vortex centrifugal classifiers, semi-free vortex centrifugal classifiers, etc. It can also be performed using a classifier.
  • particles to be classified such as a swirling air classifier to classify small particles in the submicron to single micron range, and a semi-free vortex centrifugal classifier to classify relatively larger particles. What is necessary is just to use properly according to the particle diameter of this.
  • the BN aggregated particle-containing resin composition of the present invention contains at least the BN aggregated particles of the present invention and a resin.
  • the BN aggregated particles of the present invention are suitably used as a filler for the BN aggregated particle-containing resin composition because of its shape characteristics.
  • the content ratio of the BN aggregated particles in the BN aggregated particle-containing resin composition (hereinafter sometimes referred to as “filler filling amount”) is usually 5% by mass or more, where the total of the BN aggregated particles and the resin is 100% by mass.
  • it is 30 mass% or more, More preferably, it is 50 mass% or more, and is 95 mass% or less normally, Preferably it is 90 mass% or less. If it is larger than the above upper limit, the viscosity becomes too high and molding processability cannot be secured, and there is a tendency for the thermal conductivity to decrease because the dense filling of BN aggregated particles is inhibited. Although molding processability can be ensured, there is a tendency that thermal conductivity is not improved due to too few BN aggregated particles.
  • the BN aggregated particle-containing resin composition according to another aspect (second aspect) of the present invention includes at least the BN aggregated particles (A) having the specific physical properties described above and inorganic particles different from the BN aggregated particles ( And B).
  • the kind of the inorganic particles (B) different from the BN aggregated particles (A) having the specific physical properties is not particularly limited, and any kind may be used.
  • boron nitride, aluminum nitride, alumina, zinc oxide, magnesium oxide, beryllium oxide, titanium oxide, and the like are mentioned, and preferably at least one selected from the group consisting of these, particularly from the viewpoint of reducing thermal resistance. Boron nitride is preferred.
  • the BN aggregated particles (A) and inorganic particles (B) to be used satisfy the volume average particle diameter (D 50 ) of the BN aggregated particles (A)> the volume average particle diameter (D 50 ) of the inorganic particles (B). It is preferable. If this is not satisfied, the particles cannot be closely packed and the thermal conductivity decreases.
  • D 50 of the inorganic particles (B) is preferably 0.95 times or less of the D 50 of the BN agglomerated particles (A), more preferably 0.8 times or less, particularly preferably 0.5 times or less. By being in this range, it becomes possible to fill the voids existing between the BN aggregated particles having the above specific properties without gaps, and it becomes possible to sufficiently reduce the thermal resistance and defects in the composition.
  • the molded body obtained from the composition containing the slag has high thermal conductivity and voltage resistance.
  • the lower limit of the ratio of the volume average particle diameter of the inorganic particles (B) to the volume average particle diameter of the BN aggregated particles (A) is not particularly limited as long as the above is satisfied, but the handling properties of the inorganic particles (B) are not limited.
  • the thermal resistance and the effect of reducing defects in the composition tend not to change greatly, so that they are usually 0.01 times or more, preferably 0.05 times or more.
  • the volume average particle size of the inorganic particles (B) is usually 100 ⁇ m or less, preferably 60 ⁇ m or less, and on the other hand, 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more. By being in this range, there is a tendency that high withstand voltage performance and high thermal conductivity are obtained because voids between particles can be efficiently filled. As long as satisfying the volume average particle diameter of BN agglomerated particles (A) (D 50)> The volume average particle diameter (D 50) of the inorganic particles (B), the inorganic particles (B) may be agglomerated particles .
  • the content ratio of the BN aggregated particles (A) in the BN aggregated particle-containing composition is usually 30% by mass or more, preferably 50% by mass with respect to the total of the BN aggregated particles (A) and the inorganic particles (B). In addition, it is usually 95% by weight or less, preferably 90% by weight or less. By being in this range, percolation occurs due to the aggregated particles, and the thermal conductivity tends to be high.
  • the total content ratio of BN aggregated particles (A) and inorganic particles (B) in the BN aggregated particle-containing composition (hereinafter sometimes referred to as “filler filling amount”) is the same as BN aggregated particles (A) and inorganic particles.
  • the total of (B) and the resin is 100% by mass, usually 5% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, and usually 95% by mass or less, preferably 90%. It is below mass%.
  • the resin used for the BN aggregated particle-containing resin composition is not particularly limited, but is preferably a curable resin and / or a thermoplastic resin.
  • the curable resin include thermosetting, photocurable, and electron beam curable.
  • thermosetting resins and / or thermoplastic resins are used.
  • epoxy resins are more preferable. Two or more of these resins may be used in combination.
  • the epoxy resin may be only an epoxy resin having one type of structural unit, but a plurality of epoxy resins having different structural units may be combined. Moreover, an epoxy resin is used with the hardening
  • the Tg is not particularly limited, but is usually 0 ° C. or higher, preferably 10 ° C. or higher, more preferably 25 ° C. or higher, and usually 350 ° C. or lower, preferably 300 ° C. or lower, more preferably 250 ° C. It is as follows.
  • epoxy resin a phenoxy resin described later as an epoxy resin.
  • the mass ratio of the epoxy resin (A) to the total amount of the epoxy resin is not particularly limited, but is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, and particularly preferably 16.0% by mass. % Or more, particularly preferably 18.0% by mass or more, preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 80% by mass or less.
  • the phenoxy resin usually refers to a resin obtained by reacting an epihalohydrin and a dihydric phenol compound, or a resin obtained by reacting a divalent epoxy compound and a divalent phenol compound.
  • a phenoxy resin having a high molecular weight having a weight average molecular weight of 10,000 or more is referred to as an epoxy resin (A).
  • the weight average molecular weight is a value in terms of polystyrene measured by gel permeation chromatography.
  • the epoxy resin (A) includes a phenoxy resin having at least one skeleton selected from the group consisting of naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton and dicyclopentadiene skeleton, bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, naphthalene type phenoxy resin, phenol novolac type phenoxy resin, cresol novolac type phenoxy resin, phenol aralkyl type phenoxy resin, biphenyl type phenoxy resin, triphenylmethane type phenoxy resin, dicyclopentadiene type Phenoxy resin, glycidyl ester type phenoxy resin, and glycidylamine type phenoxy resin are preferred.
  • the epoxy resin according to the present invention contains an epoxy resin having two or more epoxy groups in the molecule (hereinafter sometimes referred to as “epoxy resin (B)”).
  • epoxy resin (B) examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, phenol aralkyl type epoxy resin, and biphenyl type epoxy resin.
  • various epoxy resins such as triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, and polyfunctional phenol type epoxy resin.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, glycidylamine type epoxy resin, and polyfunctional phenol type epoxy resin are preferable in terms of improving heat resistance and adhesion. These may be used alone or in combination of two or more.
  • the epoxy resin (B) has a weight average molecular weight of preferably 100 to 5000, more preferably 200 to 2000, from the viewpoint of melt viscosity control.
  • the weight average molecular weight is lower than 100, the heat resistance tends to be inferior.
  • the weight average molecular weight is higher than 5000, the melting point of the epoxy resin tends to increase and the workability tends to decrease.
  • the epoxy resin according to the present invention is an epoxy resin other than the epoxy resin (A) and the epoxy resin (B) (hereinafter, may be referred to as “other epoxy resin”) as long as the purpose is not impaired. May be included.
  • the content of the other epoxy resin is usually 50% by mass or less, preferably 30% by mass or less, based on the total of the epoxy resin (A) and the epoxy resin (B).
  • the epoxy resin curing agent is appropriately selected according to the type of resin used.
  • an acid anhydride curing agent and an amine curing agent can be used.
  • the acid anhydride curing agent include tetrahydrophthalic acid anhydride, methyltetrahydrophthalic acid anhydride, hexahydrophthalic acid anhydride, and benzophenone tetracarboxylic acid anhydride.
  • amine curing agent examples include aliphatic polyamines such as ethylenediamine, diethylenetriamine, and triethylenetetramine, aromatic polyamines such as diaminodiphenylsulfone, diaminodiphenylmethane, diaminodiphenyl ether, and m-phenylenediamine, and dicyandiamide. These may be used alone or in combination of two or more. These epoxy resin curing agents are usually blended in an equivalent ratio with respect to the epoxy resin in the range of 0.3 to 1.5.
  • the curing accelerator is appropriately selected according to the type of resin and curing agent used.
  • examples of the curing accelerator for the acid anhydride curing agent include boron trifluoride monoethylamine, 2-ethyl-4-methylimidazole, 1-isobutyl-2-methylimidazole, and 2-phenyl-4-methylimidazole. Can be mentioned. These may be used alone or in combination of two or more.
  • These curing accelerators are usually used in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the resin of the BN aggregated particle-containing resin composition of the present invention may be a thermoplastic resin.
  • the thermoplastic resin include polyolefin resins such as polyethylene resin, polypropylene resin, and ethylene-vinyl acetate copolymer resin, polyester resins such as polyethylene terephthalate resin, polybutylene terephthalate resin, and liquid crystal polyester resin, polyvinyl chloride resin, and phenoxy.
  • examples include resins, acrylic resins, polycarbonate resins, polyphenylene sulfide resins, polyphenylene ether resins, polyamide resins, polyamideimide resins, polyimide resins, polyetheramideimide resins, polyetheramide resins, and polyetherimide resins.
  • copolymers such as those block copolymers and a graft copolymer, are also contained. These may be used alone or in combination of two or more.
  • the resin of the BN aggregated particle-containing resin composition of the present invention may contain a rubber component.
  • the rubber component include natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, Ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, butadiene-acrylonitrile copolymer rubber, isobutylene-isoprene copolymer rubber, chloroprene rubber, silicon rubber, fluorine rubber, chloro-sulfonated polyethylene, polyurethane rubber Etc. These may be used alone or in combination of two or more.
  • the BN aggregated particle-containing resin composition of the present invention may contain additional components as long as the effects of the present invention are obtained.
  • additional components include, in addition to the above-described resins, nitride particles such as aluminum nitride, silicon nitride, fibrous, plate-like, and particulate aggregate BN, which are inorganic fillers, alumina, fibrous alumina, and zinc oxide.
  • Insulating metal oxides such as magnesium oxide, beryllium oxide and titanium oxide, inorganic fillers such as diamond, fullerene, aluminum hydroxide and magnesium hydroxide, silane coupling agents which improve the interfacial bond strength between inorganic filler and matrix resin, etc.
  • Insulating carbon components such as surface treatment agents, reducing agents, resin curing agents, resin curing accelerators, viscosity modifiers, and dispersants.
  • nitride particles are preferable and particulate agglomerated BN is more preferable from the viewpoint of improvement of thermal conductivity and withstand voltage.
  • a dispersing agent when using the slurry of this invention, it is preferable to use a dispersing agent from the viewpoint of improving the film formability.
  • a solvent can be used for the BN aggregated particle containing resin composition of this invention from a viewpoint of reducing the viscosity of a BN aggregated particle containing resin composition.
  • a solvent that dissolves the resin from among known solvents is used.
  • solvents include methyl ethyl ketone, acetone, cyclohexanone, toluene, xylene, monochlorobenzene, dichlorobenzene, trichlorobenzene, phenol, and hexafluoroisopropanol as organic solvents. These may be used alone or in combination of two or more.
  • the solvent is usually used in the range of 0 to 10,000 parts by mass with respect to 100 parts by mass of the resin such as epoxy resin.
  • the BN aggregated particle-containing resin composition of the present invention is obtained by uniformly mixing the BN aggregated particles of the present invention, optionally inorganic particles, resin, and other components added as necessary by stirring or kneading. be able to.
  • a general kneading apparatus such as a mixer, a kneader, a single-screw or twin-screw kneader can be used, and the mixing may be performed as necessary.
  • a preparation method for making a slurry Is not particularly limited, and a conventionally known method can be used.
  • a paint shaker for the purpose of improving the uniformity of the coating liquid, defoaming, etc., a paint shaker, a bead mill, a planetary mixer, a stirring type disperser, a self-revolving stirring mixer, a three-roll, a kneader, a uniaxial or biaxial It is preferable to mix and stir using a general kneading apparatus such as a kneader.
  • each compounding component is arbitrary as long as there is no particular problem such as reaction or precipitation.
  • a resin solution is prepared by mixing and dissolving a resin in an organic solvent (for example, methyl ethyl ketone).
  • an organic solvent for example, methyl ethyl ketone
  • an organic solvent is further added and mixed for viscosity adjustment.
  • the molded body of the present invention is formed by molding a molded body using the BN aggregated particles of the present invention, preferably a BN aggregated particle-containing resin composition.
  • a generally used method can be used as a molding method of the molded body.
  • the BN aggregated particle-containing resin composition of the present invention has plasticity and fluidity, it can be molded by curing the BN aggregated particle-containing resin composition in a desired shape, for example, in a state accommodated in a mold. it can.
  • the slurry contains a solvent
  • the solvent can be removed by a known heating method such as a hot plate, a hot air furnace, an IR heating furnace, a vacuum dryer, or a high-frequency heater.
  • the BN aggregated particle-containing resin composition of the present invention is a thermosetting resin composition such as an epoxy resin or a silicone resin
  • the molding of the molded body, that is, curing can be performed under each curing temperature condition.
  • the molded body may be molded under conditions of a temperature equal to or higher than the melting temperature of the thermoplastic resin and a predetermined molding speed and pressure. it can.
  • the molded product of the present invention can also be obtained by cutting out a cured product of the BN aggregated particle-containing resin composition of the present invention into a desired shape.
  • a heat radiating sheet (also simply referred to as a sheet in the present specification) is preferable among the molded bodies.
  • a heat radiating sheet is preferable among the molded bodies.
  • the sheet manufacturing method applies the slurry (described later) to the base material (application step) and dries it (drying step), and pressurizes and shapes the coated dried product. It includes at least a step (sheet forming step) and a step of thermosetting the molded product (thermosetting step).
  • a coating film is formed on the surface of the substrate using BN aggregated particle-containing slurry. That is, using the slurry, a coating film is formed by a dip method, a spin coat method, a spray coat method, a blade method, or any other method.
  • a coating device such as a spin coater, slit coater, die coater, blade coater, comma coater, screen printing, doctor blade, applicator, spray coating, etc. It is possible to form a uniform coating film, and a blade coater capable of adjusting the gap is preferable.
  • the sheet of the present invention can be used as a self-supporting film, and is further formed on a known base material such as a metal foil or plate (copper, aluminum, silver, gold), a resin film such as PET, PEN, or glass. can do.
  • a known base material such as a metal foil or plate (copper, aluminum, silver, gold), a resin film such as PET, PEN, or glass.
  • these substrates can be peeled off depending on the form of use, or may have a laminated structure such as a substrate / heat radiation sheet / substrate.
  • the copper foil of the below-mentioned thickness is generally used, However, It is not limited to a copper board
  • the BN aggregated particle-containing slurry applied to the substrate is dried to obtain a dried product.
  • the drying temperature is usually 15 ° C or higher, preferably 20 ° C or higher, more preferably 23 ° C or higher, and usually 100 ° C or lower, preferably 90 ° C or lower, more preferably 80 ° C or lower, and further preferably 70 ° C or lower. . If the drying heating temperature is too low or the heating time is too short, the organic solvent in the coating film cannot be sufficiently removed, and the organic solvent remains in the resulting dried film.
  • the sheet is evaporated by the high-temperature pressure treatment in the sheeting step, and the evaporation trace of the residual solvent becomes a void, so that a sheet having high thermal conductivity, high insulating properties, predetermined physical strength, etc. cannot be formed.
  • the drying heating temperature is too high or the heating time is too long, curing of the resin proceeds and a good dry film cannot be obtained.
  • the drying time is usually 1 hour or more, preferably 2 hours or more, more preferably 3 hours or more, and further preferably 4 hours or more, and usually 168 hours or less, preferably 144 hours or less, more preferably 120 hours or less. More preferably, it is 96 hours or less.
  • the drying time is less than the lower limit, the organic solvent in the coating film cannot be sufficiently removed, the organic solvent remains in the resulting dried film, and the remaining organic solvent is pressed at a high temperature in the next sheet forming step.
  • a sheet having high thermal conductivity, high insulation, predetermined physical strength, and the like cannot be formed due to the evaporation of the residual solvent resulting in evaporation of the residual solvent.
  • the drying time exceeds the upper limit, the resin is too dry to obtain a coating film with good strength, and sufficient fluidity cannot be obtained even by plasticizing the resin in the sheeting process.
  • the resin cannot sufficiently penetrate into the voids present in the sheet, and there is a tendency that a sheet having high thermal conductivity, high insulation, predetermined physical strength and the like cannot be formed.
  • the thickness of the sheet before drying is usually 100 ⁇ m or more, preferably 150 ⁇ m or more, more preferably 200 ⁇ m or more, further preferably 300 ⁇ m or more, and usually 800 ⁇ m or less, preferably 700 ⁇ m or less, more preferably 600 ⁇ m or less, and further preferably. Is 500 ⁇ m or less.
  • the film thickness exceeds the above upper limit, it becomes difficult to control the evaporation rate of the organic solvent inside the film, the amount of the remaining organic solvent increases, and it evaporates by the high-temperature pressure treatment in the sheeting process, and the remaining solvent evaporates.
  • the mark becomes a void, and a sheet having high thermal conductivity, high insulation, predetermined physical strength, etc. cannot be formed.
  • the organic solvent evaporates in a short time, so that the resin is too dry and a coating film having a good strength cannot be obtained.
  • sufficient fluidity cannot be obtained, and the resin cannot sufficiently penetrate into the voids existing in the sheet, so that there is a tendency that a sheet having high thermal conductivity, high insulation, predetermined physical strength, etc. cannot be formed.
  • the heat treatment may be performed at a constant temperature, but the heat treatment may be performed under a reduced pressure condition in order to smoothly remove volatile components such as an organic solvent in the coating solution.
  • you may perform the heat processing by stepwise temperature rise in the range in which hardening of resin does not advance.
  • a heat treatment can be performed at 25 to 40 ° C., for example, 30 ° C., and then at 40 to 90 ° C., for example, 50 ° C., for about 30 to 60 minutes each.
  • the sheet obtained by this production method exhibits high thermal conductivity and a withstand voltage value.
  • the amount of the organic compound having a boiling point of 100 ° C. or less in the dried product is usually more than 0 ppm, preferably 0.01 ppm or more, more preferably 1 ppm or more, still more preferably 5 ppm or more, and particularly preferably 7 ppm or more. In general, it is 50 ppm or less, preferably 30 ppm or less, more preferably 19 ppm or less, and still more preferably 18 ppm or less. Within the above range, the effects of the present invention can be more effectively exhibited. In addition, content of the organic compound mentioned above in the application dried product can be measured by headspace gas chromatography.
  • a process (sheet forming process) of pressurizing and molding the coated dried product is performed.
  • a coated and dried product applied and dried on a copper substrate is cut into a predetermined size.
  • the heating temperature (pressing temperature) for forming into a sheet is usually 80 ° C. or higher, preferably 90 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 110 ° C. or higher, and usually 300 ° C. or lower, preferably 250. ° C or lower, more preferably 200 ° C or lower.
  • thermosetting reaction does not proceed sufficiently, and contact between BN aggregated particles or contact between BN aggregated particles and the resin interface becomes insufficient, so that high thermal conductivity, high insulation, predetermined A sheet having physical strength or the like cannot be formed.
  • the upper limit of the above range is exceeded, the resin is likely to be decomposed, and the tendency to be unable to form a sheet having high thermal conductivity, high insulation, predetermined physical strength, etc. due to voids and molecular weight reduction due to the decomposition. There is.
  • a press method in a pressurizing step (also referred to as a press process) performed to promote adhesion to the copper substrate can be performed using a known technique, for example, an isostatic press, a vacuum press, a belt press, or a hot press. It can be formed by a known method such as a servo press or a calender roll.
  • the dry film on a copper substrate usually 10 kgf / cm 2 or higher, preferably 150 kgf / cm 2 or more, more preferably 200 kgf / cm 2 or more, further preferably 250 kgf / cm 2 or more, usually, 2,000 kgf / cm 2 or less, preferably 1000 kgf / cm 2 or less, more preferably 900 kgf / cm 2 or less, more preferably pressurizes the 800 kgf / cm 2 or less.
  • the weight at the time of pressurization to the above upper limit or less, the BN aggregated particles are not destroyed, and a sheet having high thermal conductivity without voids in the sheet can be obtained. Further, by setting the weight to the above lower limit or more, the contact between the BN aggregated particles becomes good and it becomes easy to form a heat conduction path, so that a sheet having high heat conductivity can be obtained.
  • the composition film coated and dried on the copper substrate is usually pressurized at a temperature of 80 ° C. or higher, preferably 100 ° C. or higher, for example, 100 to 200 ° C. with a predetermined load for about 1 to 30 minutes.
  • a curing step in which a sheet is produced by performing a curing reaction by heating in an oven at a curing temperature of 150 ° C. or higher, for example, for about 2 to 4 hours.
  • the upper limit of the heating temperature at the time of complete curing in the curing step is a temperature at which the resin to be used is not decomposed or deteriorated and is appropriately determined depending on the type and grade of the resin, but is usually performed at 300 ° C. or lower.
  • a circuit board having a heat dissipation sheet in which both sides are bonded with copper to a sheet of the present invention formed using BN aggregated particles is not high because the BN aggregate filler of the present invention is used. Due to the heat dissipation effect due to thermal conductivity, high output and high density of the device can be achieved with high reliability. Therefore, it is suitable as a heat dissipation substrate and a heat dissipation sheet for power semiconductor device devices.
  • conventionally known members can be appropriately employed as members such as aluminum wiring, sealing material, package material, heat sink, thermal paste, and solder other than the heat dissipation sheet of the present invention.
  • the circuit board has a shape in which copper and aluminum, preferably copper are bonded to both sides of the heat dissipation sheet of the present invention, and the circuit is patterned on one side.
  • the lamination method can also be manufactured by film-forming press molding.
  • the circuit board patterning method is not particularly limited, and can be manufactured by a known method as described in, for example, Japanese Unexamined Patent Application Publication No. 2014-209608.
  • the thickness of the circuit board is not particularly limited, but is usually 10 ⁇ m or more, preferably 100 ⁇ m or more, more preferably 300 ⁇ m or more, further preferably 500 ⁇ m or more, and particularly preferably 1000 ⁇ m or more. Moreover, it is 5000 micrometers or less normally.
  • the layer thickness of the heat radiating sheet is not particularly limited, but is usually 80 ⁇ m or more, preferably 100 ⁇ m or more, and more preferably 200 ⁇ m or more. Moreover, it is usually 1000 micrometers or less. Further, the layer thickness of the copper part serving as the heat radiating part is not particularly limited, but is usually 10 ⁇ m or more, preferably 100 ⁇ m or more, more preferably 300 ⁇ m or more, particularly preferably 500 ⁇ m or more, and particularly preferably 1000 ⁇ m or more. It is. Moreover, it is 5000 micrometers or less normally.
  • the sheet of the present invention is a sheet containing boron nitride aggregated particles (hereinafter referred to as "BN aggregated particles”), and obtained by X-ray diffraction measurement of the sheet.
  • the peak intensity ratio [(100) / (004)] of the (100) plane to the (004) plane of the boron nitride primary particles (hereinafter referred to as “BN primary particles”) is 1.0 or more
  • the sheet Is obtained by X-ray diffraction measurement, and the average crystallite diameter of the BN primary particles obtained from the (002) plane peak of the BN primary particles in the sheet is 375 mm or more.
  • the sheet of the present invention satisfies such physical properties, thereby having a high thermal conductivity and an excellent withstand voltage performance, and can be suitably used as a heat radiating member.
  • the reason for the sheet exhibiting such excellent performance is that the ratio of the ab surfaces of the primary particles is oriented in the vertical direction of the sheet when the strength ratio of [(100) / (004)] is greater than or equal to the above. It is possible to demonstrate the high thermal conductivity of BN as a sheet, and to increase the primary particle size to 375 mm or more, thereby reducing the interface between the primary particles and providing a thermal resistance between the interfaces. This is to prevent it.
  • ) / (004)) is 1.0 or more.
  • This peak intensity ratio ((100) / (004)) is preferably 1.5 or more, more preferably 2.0 or more, still more preferably 2.5 or more, and particularly preferably 3.0 or more.
  • the upper limit is not particularly limited, but is usually 10.0 or less, preferably 7.0 or less, more preferably 5.0 or less.
  • this numerical value is too large, the ratio of the BN primary particles facing in the vertical direction with respect to the sheet surface becomes too high, and minute cracks in the sheet are likely to occur when a molding process such as pressing is performed. Such cracks tend to lower electrical characteristics such as withstand voltage.
  • the numerical value is too small, the ratio of the BN primary particles facing the sheet surface in the vertical direction is low, and the thermal conductivity tends to be low.
  • the BN primary particle average crystallite diameter obtained from the (002) plane peak of the BN primary particles in the sheet obtained by X-ray diffraction measurement of the sheet is not particularly limited, but is usually 300 mm or more, preferably Is at least 320 mm, more preferably at least 375 mm, more preferably at least 380 mm, even more preferably at least 390 mm, particularly preferably at least 400 mm, usually at most 5000 mm, preferably at most 2000 mm, more preferably at most 1000 mm.
  • the card house structure in the agglomerated particles is destroyed at the time of sheet molding such as a pressing process, the ratio of the ab surface of the BN primary particles to be perpendicular to the sheet surface is reduced, and the thermal conductivity is reduced. Tend to be lower. Moreover, since a BN primary particle interface will increase when a numerical value is too small, it becomes a heat transfer resistance and there exists a tendency for thermal conductivity to become low.
  • the sheet of the present invention is a sheet containing at least boron nitride agglomerated particles, and the sheet is obtained by X-ray diffraction measurement, and has a (100) plane and a (004) plane of BN primary particles in the sheet.
  • the peak area intensity ratio ((100) / (004)) is not particularly limited, but is usually 0.6 or more, preferably 0.65 or more, preferably 0.7 or more, more preferably 0.75 or more, and further Preferably it is 0.8 or more, particularly preferably 0.85 or more.
  • an upper limit does not have a restriction
  • the thermal conductivity (W / mK) of the heat dissipation sheet is not particularly limited, but is usually 5 W / mK or higher, preferably 10 W / mK or higher, more preferably 13 W / mK, particularly preferably 15 W / mK or higher. Preferably it is 17 W / mK or more.
  • the withstand voltage performance is usually 10 kV / mm or more, preferably 15 kV / mm or more, particularly preferably 20 kV / mm or more.
  • the glass transition temperature of the sheet of the present invention is usually 100 ° C. or higher, preferably 130 ° C. or higher, particularly preferably 175 ° C. or higher.
  • the adhesive strength (N / cm) of the heat dissipation sheet is not particularly limited, but is usually 0.5 N / cm or more, preferably 1 N / cm or more, more preferably 2 N / cm, particularly preferably 3 N / cm or more, Especially preferably, it is 5 N / cm or more.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to the following examples unless it exceeds the gist.
  • the various conditions in the following Examples and the values of the evaluation results show the preferable range of the present invention as well as the preferable range in the embodiment of the present invention, and the preferable range of the present invention is in the above-described embodiment. It can be determined in consideration of a preferable range and a range indicated by a combination of values of the following examples or values of the examples.
  • ⁇ Measurement condition The characteristics in the present invention were measured by the methods described below. ⁇ viscosity: Using a rotational viscometer “VISCO BASIC Plus R” manufactured by FUNGILAB, the measurement was performed at a blade rotation speed of 100 rpm.
  • Average particle size of the BN agglomerated particles (D 50) The D 50 ( ⁇ m) of BN aggregated particles was measured using “Morphology” manufactured by Malvern.
  • D crystallite diameter
  • K Scherrer constant
  • X-ray (CuK ⁇ 1 ) wavelength
  • peak half width
  • Bragg angle derived from CuK ⁇ 1 .
  • ( ⁇ o 2 ⁇ i 2 ) 0.5
  • ⁇ i is the half-value width derived from the apparatus determined by standard Si
  • ⁇ o is the peak half-value width derived from the (002) plane of h-BN. The following values were used for each constant.
  • -Peak intensity ratio of BN aggregated particles Calculate the ratio ((100) / (004)) of the peak intensity of (100) plane and (004) plane of BN primary particles obtained by powder X-ray diffraction measurement of BN aggregated particles.
  • the peak intensity ratio of the BN aggregated particles was evaluated.
  • an X-ray diffractometer “X′Pert Pro MPD” manufactured by PANalytical was used for powder X-ray diffraction measurement. The powder X-ray diffraction measurement was carried out using a sample prepared by filling a 0.2 mm deep glass sample plate with BN aggregated particles and preparing a measurement surface so that the surface was smooth.
  • Peak area intensity ratio of BN aggregated particles About 0.2 g of BN aggregated particles are filled in a tablet molding machine (10 mm ⁇ ), and tableting is performed at a press pressure of 0.85 ton / cm 2 using a manual hydraulic pump (P-1B-041 manufactured by Riken Seiki Co., Ltd.). did. About the obtained sample, the peak area intensity ratio ((100) / (004)) of the (100) plane and (004) plane of BN primary particles was calculated
  • thermal diffusivity in the thickness direction of the molded body was measured using a thermal diffusivity measuring apparatus "ai-Phase Mobile 1u" manufactured by I-Phase Co., Ltd., and was determined as follows.
  • Thermal conductivity in the thickness direction of the molded body thermal diffusivity in the thickness direction of the molded body ⁇ specific gravity of the molded body ⁇ specific heat of the molded body
  • BN Aggregated Particles (BN-A Aggregated Particles)
  • the BN granulated particles were evacuated at room temperature, then nitrogen gas was introduced and the pressure was restored, and the temperature was raised to 2000 ° C. at 83 ° C./hour while introducing nitrogen gas as it was. The gas was held for 5 hours while being introduced. Thereafter, the mixture was cooled to room temperature to obtain spherical BN-A aggregated particles having a card house structure.
  • the BN-A aggregated particles after the heat treatment were lightly pulverized using a mortar and pestle, and then classified using a sieve having an opening of 90 ⁇ m. After classification, the average crystallite size of the BN primary particles constituting the BN-A aggregated particles, the peak intensity ratio ((100) / (004)) between the (100) plane and the (004) plane of the BN primary particles, BN- The D 50 of the A aggregated particles was measured. The measurement results are shown in Table 1.
  • a BN aggregated particle-containing resin composition comprising a filler and a resin composition was prepared.
  • [Resin composition] “157S70”: “828US”: “157S70”: “828US”: “157S70”, “828US”, “4275”, which are epoxy resins manufactured by Mitsubishi Chemical Corporation, and “C11Z-CN”, which is a curing agent manufactured by Shikoku Kasei Kogyo Co., Ltd. 4275 ”:“ C11Z-CN ” 1: 0.25: 0.25: 0.11 (mass ratio) to obtain a resin composition.
  • BN-A (BN agglomerated particles) and the above resin composition are mixed so that the filling amount of the BN-A agglomerated particles (the content ratio of the BN-aggregated particles with respect to the total of the resin composition and the BN-A agglomerated particles) is 80% by mass.
  • Blended into 100 parts by mass of the prepared resin composition / BN-A aggregated particle mixture and 50 parts by mass of methyl ethyl ketone are placed in a cup with a cap made of polypropylene, and 6 parts by mass of 1-
  • cyanoethyl-2-undecylimidazole curing agent
  • a self-rotating stirrer Shintaro Foam AR-250 manufactured by Shinky
  • the obtained BN aggregated particle-containing resin composition coating solution was applied onto a copper substrate having a thickness of 100 ⁇ m and 10 cm ⁇ 20 cm with a bar coater (“Auto Film Applicator” manufactured by Tester Sangyo Co., Ltd.) having a gap interval of 400 ⁇ m. Then, it vacuum-dried at 50 degreeC for 30 minutes, and formed the coating film on the copper substrate.
  • a bar coater Auto Film Applicator” manufactured by Tester Sangyo Co., Ltd.
  • Example 2 In Example 1, except that the slurry A was changed to the BN slurry (slurry B) in which the mixing ratio of the raw materials was changed to the following, the same procedure as in Example 1 was performed, and spherical BN aggregated particles (aggregated BN- B) and BN aggregated particle-containing resin composition and molded body were produced. The measurement results are shown in Table 1.
  • Example 3 In Example 1, except that the slurry A was changed to the BN slurry (slurry C) in which the mixing ratio of the raw materials was changed to the following, the same procedure as in Example 1 was performed, and spherical BN aggregated particles (aggregated BN- C) and BN aggregated particle-containing resin composition and molded body were produced. The measurement results are shown in Table 1.
  • BN aggregated particles (BN-D aggregated particles) and BN aggregated particle-containing resin composition were carried out in the same manner as in Example 2 except that the slurry B in Example 2 was changed to the slurry D shown below with the mixing ratio of raw materials changed. Articles and molded bodies were produced. The viscosity of the slurry was 155 mPa ⁇ s. The measurement results are shown in Table 1.
  • Example 2 The slurry was prepared and granulated in the same manner as in Example 1, and BN aggregated particles were prepared in the same manner as in Example 1 except that the firing temperature during the preparation of BN aggregated particles was 1300 ° C. and the holding time was 24 h (aggregated BN -E). Using the BN aggregated particles, a BN aggregated particle-containing resin composition and a molded body were produced in the same manner as in Example 1. Table 1 shows the results.
  • Example 3 A BN aggregated particle-containing resin composition and a molded body were produced in the same manner as in Example 1 except that PTX60 manufactured by Momentive was used instead of the BN-A aggregated particles of Example 1. Table 1 shows the results.
  • Example 4 The same procedure as in Example 1 was performed except that PTX25 manufactured by Momentive was used instead of the BN-A aggregated particles of Example 1. Table 1 shows the results.
  • Example 5 A BN aggregated particle-containing resin composition and a molded body were produced in the same manner as in Example 1 except that SGPS manufactured by Denki Kagaku Kogyo Co., Ltd. was used instead of the BN-A aggregated particles of Example 1. Table 1 shows the results.
  • Example 6 A BN aggregated particle-containing resin composition and a molded product were produced in the same manner as in Example 1 except that CTS7M manufactured by Saint-Gobain was used instead of the BN-A aggregated particles of Example 1. Table 1 shows the results.
  • Example 7 The slurry was prepared and granulated in the same manner as in Example 1, and BN aggregated particles were prepared in the same manner as in Example 1 except that the firing temperature during the preparation of BN aggregated particles was 1600 ° C. and the holding time was 24 h (aggregated BN). -F). Using the BN aggregated particles, a BN aggregated particle-containing resin composition and a molded body were produced in the same manner as in Example 1. Table 1 shows the results.
  • Example 2 In Example 2, it carried out like Example 1 except having set it as the BN slurry (slurry E) which changed the compounding ratio of the raw material of the slurry B below.
  • Example 5 The (100) surface of the BN primary particles and the (100) surface were obtained in the same manner as in Example 4 except that the BN-B aggregated particles prepared in Example 2 were used as about 0.2 g of BN aggregated particles in a tablet molding machine (10 mm ⁇ ). The peak area intensity ratio ((100) / (004)) of the (004) plane was determined. The results are shown in Table 2.
  • Comparative Example 11 The peak area intensity ratio ((100) / (004)) between the (100) face and the (004) face of the BN primary particles is obtained in the same manner as in Example 4 except that PTX25 manufactured by Momentive is used as the BN aggregated particles. It was. The results are shown in Table 2.
  • Comparative Example 12 Except for using SGPS manufactured by Denki Kagaku Kogyo Co., Ltd. as the BN aggregated particles, the peak area intensity ratio ((100) / (004)) between the (100) plane and the (004) plane of the BN primary particles in the same manner as in Example 4. Asked. The results are shown in Table 2.
  • Comparative Example 13 The peak area intensity ratio ((100) / (004)) between the (100) face and the (004) face of the BN primary particles is obtained in the same manner as in Example 4 except that CTS7M manufactured by Saint-Gobain Co. is used as the BN aggregated particles. It was. The results are shown in Table 2.
  • Comparative Example 14 The peak area intensity ratio ((100) / (004)) between the (100) plane and the (004) plane of the BN primary particles was the same as in Example 4 except that BN—F aggregated particles were used as the BN aggregated particles. Asked. The results are shown in Table 2.
  • the average crystallite size of the BN primary particles constituting the BN aggregated particles is 375 mm or more, and the peak intensity ratio ((100) between the (100) plane and the (004) plane of the BN primary particles by powder X-ray diffraction measurement.
  • BN agglomerated particles of the present invention having a / (004)) of 3 or more exhibit unprecedented performance as a thermally conductive filler, and can be widely applied to various applications such as the electric and electronic fields where there are many thermal problems. .
  • the peak area intensity ratio ((100) / (004)) between the (100) plane and the (004) plane of the BN primary particles is 0.25 or more even at a specific pressure or higher.
  • (100) / (004) plane peak intensity ratio of BN primary particles It was determined by calculating the ratio of peak intensity ((100) / (004)) between the (100) plane and the (004) plane of BN primary particles obtained by powder X-ray diffraction measurement of BN aggregated particles.
  • X-ray diffraction measurement of heat dissipation sheet An X-ray diffractometer (X'Pert Pro MPD) manufactured by PANalytical was used. In addition, the sample sample was implemented using the heat-release sheet
  • (100) / (004) plane peak intensity ratio of heat dissipation sheet It calculated
  • Average crystallite size of BN primary particles of heat dissipation sheet In accordance with the above-described method for measuring the average crystallite size of the BN primary particles.
  • Adhesion test A heat dissipation sheet obtained by coating on a base material was cut into a size of 25 mm ⁇ 60 mm, and a measurement sample bonded and bonded to a 25 mm ⁇ 110 mm base material by a heating press was fixed to a resin plate and then peeled 90 °. It was determined by carrying out the test. The test was performed using STA-1225 manufactured by ORIENTEC .
  • Example 6 4.7 g of BN aggregated particles BN-A having a card house structure, boron nitride PTX25 having a non-card house structure (manufactured by Momentive Co., Ltd., D 50 : 19.8 ⁇ m, (100) / (004) plane peak of BN primary particles) Strength ratio: 1.4, average crystallite size of BN primary particles: 537 cm), and epoxy resin (Tg: 16.7% by mass of phenoxy resin containing bisphenol A type phenoxy resin with respect to the total amount of epoxy resin) 190 ° C.) 2.12 g, solvent (cyclohexanone / methyl ethyl ketone) 6.2 g, dispersant (trade name: BYK-2155, manufactured by BYK Japan Japan Co., Ltd.) 0.41 g, 1-cyanoethyl-2-undecylimidazole (product) Name: C11Z-CN, manufactured by Shikoku Kasei Kogyo Co., Ltd
  • the prepared slurry for a heat-dissipating sheet was applied to a substrate by a doctor blade method, and after drying by heating, pressing was performed to obtain a heat-dissipating sheet having a sheet thickness of about 200 ⁇ m.
  • Example 7 4.7 g of BN aggregated particles BN-A having a card house structure, boron nitride PTX25 having a non-card house structure (manufactured by Momentive Co., Ltd., D 50 : 19.8 ⁇ m, (100) / (004) plane peak of BN primary particles) Intensity ratio: 1.4, average crystallite diameter of BN primary particles: 537 kg), and epoxy resin (Tg: 31 ° C.) containing 20% by mass of phenoxy resin containing bisphenol F-type phenoxy resin with respect to the total amount of epoxy resin 2.12 g, 6.2 g of solvent (cyclohexanone / methyl ethyl ketone), dispersant (trade name: BYK-2155, manufactured by BYK Japan KK) 0.41 g, 1-cyanoethyl-2-undecylimidazole (trade name: C11Z-CN (manufactured by Shikoku Kasei Kogyo Co.
  • Example 8 BN aggregated particles BN-A having a card house structure BN-A (D 50 : 50 ⁇ m) 5.5 g, BN aggregated particles BN-D having a card house structure BN-D (D 50 : 14 ⁇ m) 1.8 g, and epoxy resin (Tg: 190 ° C.) ) 1.0 g, solvent (cyclohexanone / methyl ethyl ketone) 6.2 g, dispersant (trade name: BYK-2155, manufactured by Big Chemie Japan Co., Ltd.) 0.40 g, 1-cyanoethyl-2-undecylimidazole (trade name: C11Z-CN (manufactured by Shikoku Kasei Kogyo Co., Ltd.) (0.06 g) was mixed to prepare a heat dissipation sheet slurry.
  • solvent cyclohexanone / methyl ethyl ketone
  • dispersant trade name: BYK-21
  • the prepared slurry for a heat-dissipating sheet was applied to a substrate by a doctor blade method, and after drying by heating, pressing was performed to obtain a heat-dissipating sheet having a sheet thickness of about 200 ⁇ m.
  • a heat dissipation sheet having a sheet thickness of about 200 ⁇ m was obtained in the same manner as in Example 6.
  • the obtained heat radiation sheet was subjected to thermal conductivity, withstand voltage, and X-ray diffraction measurement.
  • the sheet press pressure at this time is 300 kg weight / cm 2
  • FIG. 5 is a sheet cross-sectional SEM photograph.
  • the BN aggregated particles of the present invention are considered to be one of the reasons that the effect of the present invention is exerted even when the BN aggregated particles of the present invention are pressed at the above-mentioned pressing pressure, and retain the shape of the powder before pressing. More specifically, as shown in FIG. 5, at a sheet press pressure of 300 kg weight / cm 2, the BN aggregated particles can be observed as aggregated particles, and particularly the card house structure can be observed.
  • Example 6 Using the prepared heat-dissipating sheet slurry, it was applied to a substrate by the doctor blade method in the same manner as in Example 6. After heat drying, pressing was performed to obtain a heat-dissipating sheet having a sheet thickness of about 200 ⁇ m. The obtained heat radiation sheet was subjected to thermal conductivity, withstand voltage, and X-ray diffraction measurement.
  • Example 3 Using the prepared slurry for heat dissipation sheet, a heat dissipation sheet having a sheet thickness of about 200 ⁇ m was obtained in the same manner as in Example 6. The obtained heat radiation sheet was subjected to thermal conductivity, withstand voltage, and X-ray diffraction measurement. The measurement results of Examples 2, 6, 7, and 8 and Comparative Examples 1, 3, 15, and 16 are shown in Table 3.
  • the molded body containing these has high thermal conductivity and high voltage resistance, and thus a molded sheet with higher heat dissipation performance and higher voltage resistance performance can be obtained.
  • Detailed mechanisms are not well understood, for example, high heat dissipation performance by the use of BN agglomerated particles, since the BN primary particles, D 50 of BN agglomerated particles is increased, between primary particles, aggregate particles to each other This is considered to be because the interfacial resistance was reduced.
  • the inorganic particles smaller than the BN aggregated particles the voids between the large particles can be efficiently reduced, and the withstand voltage performance is further improved.
  • the prepared slurry for an insulating heat dissipation sheet was applied to a copper foil (105 ⁇ m). Then, after heat-drying, the application surfaces were bonded together and pressed to obtain a double-sided copper foil beam insulation heat dissipation sheet.
  • the film thickness of the insulating heat radiating sheet portion was about 300 ⁇ m.
  • One side of the insulating heat dissipation sheet was patterned by etching to obtain an insulating circuit substrate shown in FIG. Further, die bonding and wire bonding were performed to produce a device. The result is shown in FIG.
  • the BN aggregated particles of the present invention it is possible to form a high-quality heat-dissipating sheet having high thermal conductivity required for power semiconductor devices, for example.
  • the BN aggregated particle-containing composition of the present invention it is possible to form a high-quality heat-dissipating sheet having high thermal conductivity required for, for example, a power semiconductor device.
  • the power semiconductor device having the heat dissipation sheet is useful for producing a power semiconductor device using a high-efficiency substrate capable of high-temperature operation, such as next-generation SiC and GaN.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Paints Or Removers (AREA)

Abstract

パワー半導体デバイスの放熱シートの熱伝導性フィラーとして好適な、熱伝導の等方性、耐崩壊性、樹脂との混練性に優れた窒化ホウ素凝集粒子を提供することを課題とする。窒化ホウ素一次粒子(以下「BN一次粒子」と称する。)が凝集してなる窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)であって、10mmφの粉末錠剤成形機で0.85ton/cmの成型圧力で成型して得られたペレット状の試料を粉末X線回折測定して得られる、BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であり、かつ該BN凝集粒子を0.2mm深さのガラス試料板に表面が平滑になるように充填し、粉末X線回折測定して得られる、BN一次粒子の(002)面ピークから求めたBN一次粒子の平均結晶子径が375Å以上であることを特徴とするBN凝集粒子により課題を解決する。

Description

窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
 本発明は窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)、該粒子の製造方法に係り、詳しくは、窒化ホウ素一次粒子(以下「BN一次粒子」と称す。)が凝集してなるBN凝集粒子及びその製造方法に関する。
 本発明はまた、このBN凝集粒子を含有するBN凝集粒子含有樹脂組成物と、このBN凝集粒子含有樹脂組成物を成形してなる成形体に関する。
 本発明はまた、特定のBN一次粒子を特定の状態で含む、シートに関する。
 窒化ホウ素(以下「BN」と称す。)は、絶縁性のセラミックであり、ダイヤモンド構造を持つc-BN、黒鉛構造をもつh-BN、乱層構造を持つα-BN、β-BNなど様々な結晶型が知られている。
 これらの中で、h-BNは、黒鉛と同じ層状構造を有し、合成が比較的容易でかつ熱伝導性、固体潤滑性、化学的安定性、耐熱性に優れるという特徴を備えていることから、電気・電子材料分野で多く利用されている。
 近年、特に電気・電子分野では集積回路の高密度化に伴う発熱が大きな問題となっており、いかに熱を放熱するかが緊急の課題となっている。h-BNは、絶縁性であるにもかかわらず、高い熱伝導性を有するという特徴を活かして、このような放熱部材用熱伝導性フィラーとして注目を集めている。
 しかしながら、h-BNは板状の粒子形状であり、その板面方向(ab面内あるいは(002)面内)には高い熱伝導性を示すものの(通常、熱伝導率として400W/mK程度)、板厚方向(C軸方向)には低い熱伝導性(通常、熱伝導率として2~3W/mK程度)しか示さないため、これを樹脂に配合してBN粒子含有樹脂組成物とし、例えば、板状の成形体を成形した場合、板状のh-BNが成形時にBN粒子含有樹脂組成物の流動方向である成形体の板面方向に配向することとなり、得られる成形体は、板面方向には熱伝導率に優れるものの、厚み方向には低熱伝導率しか示さないという問題があった。
 そこで、このようなh-BNの熱伝導性の異方性を改良するために、成形体を成形した場合でも上記のような配向が少ない、鱗片状以外の形状を有する、h-BNが凝集した凝集粒子が検討されてきた。このようなh-BN凝集粒子としては、噴霧乾燥などにより造粒されたh-BN凝集粒子、h-BNを焼結し焼結体を粉砕して製造されたh-BN凝集粒子などがある(特許文献1,2)。また、ホウ酸とメラミンの混合物から製造したh-BN凝集粒子であって、一次粒子が配向せずに凝集した松ぼっくり状のh-BN凝集粒子も提案されている(特許文献3)。
 言い換えれば、従来のh-BN凝集粒子に於いては、大きな凝集粒子を作製することで凝集粒子間の接触抵抗を低減させることが検討されてきた。また、h-BN凝集粒子を構成するh-BN一次粒子間の粒界を減らすことで高熱伝導性を達成するために、数μmから数百μm程度と比較的粒子径が大きく、結晶性の高いh-BN一次粒子が用いられてきた(特許文献1,2,3)。
 このような従来のBN凝集粒子の用途として、パワー半導体デバイスなどで必要とされる放熱シートに用いることが知られているが、BN凝集粒子間の接触抵抗を低減するためには、一定の圧力下での成形が必要なため、その圧力によってBN凝集粒子が崩壊し、一次粒子が成形面方向に配向してしまい、結果として成形面に垂直方向な熱伝導は低く、実用化レベルに到達していないのが現状である。つまり、一定圧力下でも放熱シート垂直方向に高い熱伝導性を付与可能なBN凝集粒子が望まれており、さらにBN凝集粒子自体が高い熱伝導性を有する凝集粒子の開発が望まれている。
 また、特許文献4には、比表面積が10m/g以上、全細孔容積が2.15cm/g以下、且つ、該窒化ホウ素凝集粒子の表面が、平均粒子径0.05μm以上1μm以下の窒化ホウ素一次粒子から構成される窒化ホウ素凝集粒子が記載され、カードハウス構造を持つh-BN凝集粒子が開示されている。特許文献4に記載の窒化ホウ素凝集粒子は耐崩壊性は向上するものの、凝集粒子の粒径が小さく、また、比較的熱伝導や耐電圧の点で、更なる改善が求められる。
 また、このようにBN凝集粒子の粒子での性能を向上させる以外に、例えば特許文献5では、一次粒子の平均長径が異なる2種の二次凝集体を特定の割合で含有する結果として、大きな二次凝集体と小さな二次凝集体の無機充填材を含有する組成物が開示されている。また特許文献6では、扁平状充填剤と粒子状充填剤との組成物が開示されている。しかしながら、特許文献5や6では、粒子自体の強度が不足しており、熱伝導や耐電圧はまだ実用化レベルに到達していないのが現状である。
 このような従来のBN凝集粒子の用途として、パワー半導体デバイスなどで必要とされる放熱シートに用いることが広く知られており、BN凝集粒子を含有する組成物または該組成物を用いて得られる成形体が適用される。上記用途の点から、上記組成物または成形体は高い熱伝導度を有し、かつ高い耐電圧性能を有することが望まれる。これらの性能を達成するためには、BN凝集粒子間の空隙や接触抵抗を低減することが必要となる。しかしながら、BN凝集粒子間の接触抵抗を低減するためには、一定の圧力下での成形が必要なため、その圧力によってBN凝集粒子が崩壊し、一次粒子が成形面方向に配向してしまい、結果として成形面に垂直方向の熱伝導は低く、実用化レベルに到達していないのが現状である。つまり、一定圧力下でも放熱シート垂直方向に高い熱伝導性を付与可能なBN凝集粒子が望まれており、さらにBN凝集粒子自体が高い熱伝導性を有する凝集粒子の開発が望まれている。
特開2006-257392号公報 特表2008-510878号公報 特開平9-202663号公報 特開2013-241321号公報 特開2011-6586号公報 特開2005-232313号公報
 本発明者らの検討によると、従来のBN凝集粒子では、BN凝集粒子を構成する一次粒子間の界面および一次粒子の結晶性の低さが、BN凝集粒子の熱伝導を低下させる原因の一つであるということがわかってきた。即ち、これらの原因は一次粒子界面および一次粒子中の結晶粒界に於いて熱伝導の担い手であるフォノンが散乱されるからであると考えた。
 また、樹脂に従来のBN凝集粒子を充填した場合にも、BN凝集粒子を大きくすることによる凝集粒子間の接触抵抗はある程度低減可能であるが、BN凝集粒子を構成するBN一次粒子の配向がBN凝集粒子同士の接触抵抗を増加させ、熱伝導性を低下させる原因となることがわかってきた。即ち、成形体としての熱伝導性を向上させるためには、BN凝集粒子を構成するBN一次粒子の配向を制御し、BN凝集粒子同士の接触抵抗を低減させるとともに、BN凝集粒子を構成するBN一次粒子の結晶性を高め、さらにBN凝集粒子を構成するBN一次粒子中の粒界を低減することが有効であると考えた。
 本発明は、上記従来の問題点を解決し、BN凝集粒子を構成するBN一次粒子が高熱伝導性でありながら、BN凝集粒子同士の接触抵抗も低減したBN凝集粒子を製造し、各種成形体への適用性に優れたBN凝集粒子及びその製造方法を提供することを課題とする。本発明はまた、このBN凝集粒子と樹脂とを含有するBN凝集粒子含有樹脂組成物と、このBN凝集粒子含有樹脂組成物を成形してなる成形体を提供することを課題とする。
 本発明はまた、上記知見を更に発展させ、高い熱伝導性を有し、かつ、高い耐電圧性を有するシートを提供することを課題とする。
 本発明者らは、鋭意検討を重ねた結果、BN凝集粒子を作製する際の原料スラリー粘度を特定の範囲にすることによって、BN凝集粒子を構成するBN一次粒子中の平均結晶子径が大きくなることを見出した。平均結晶子径が大きくなることで一次粒子中の結晶子間の粒界が減少し、結果としてBN凝集粒子の熱伝導性を高めることに成功した。さらに驚くべきことに、このようにして作製されたBN凝集粒子は、BN凝集粒子を構成するBN一次粒子の特定の結晶面が配向するため、該BN凝集粒子を用いて成形体とした際に、従来のBN凝集粒子と比較して熱伝導性の高い成形体を作製可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明の第1の要旨は、以下の(a-1)乃至(a-13)である。
(a-1)窒化ホウ素一次粒子(以下「BN一次粒子」と称する。)が凝集してなる窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)であって、10mmφの粉末錠剤成形機で0.85ton/cmの成型圧力で成型して得られたペレット状の試料を粉末X線回折測定して得られる、BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であり、かつ該BN凝集粒子を0.2mm深さのガラス試料板に表面が平滑になるように充填し、粉末X線回折測定して得られる、BN一次粒子の(002)面ピークから求めたBN一次粒子の平均結晶子径が375Å以上であることを特徴とするBN凝集粒子。
(a-2)BN凝集粒子の平均粒子径D50が26μm以上である、(a-1)に記載のBN凝集粒子。
(a-3)BN凝集粒子の比表面積が8m/g以下である、(a-1)又は(a-2)に記載のBN凝集粒子。
(a-4)BN凝集粒子が球状である(a-1)ないし(a-3)のいずれかに記載のBN凝集粒子。
(a-5)BN凝集粒子がカードハウス構造を有する(a-1)ないし(a-4)のいずれかに記載のBN凝集粒子。
(a-6)(a-1)ないし(a-5)のいずれかに記載のBN凝集粒子と他のフィラーの混合物であるBN凝集粒子組成物。
(a-7)樹脂と、(a-1)ないし(a-5)のいずれかに記載のBN凝集粒子を含むBN凝集粒子含有樹脂組成物。
(a-8)(a-1)ないし(a-5)のいずれかに記載のBN凝集粒子を含む成形体。
(a-9)原料窒化ホウ素粉末のスラリー(以下「BNスラリー」と称す。)を造粒するステップ、及び加熱処理をするステップを含むBN凝集粒子を製造する方法であって、
 前記造粒ステップにおいて該BNスラリーの粘度が200mPa・s以上5000mPa・s以下であり、前記加熱ステップにおいて加熱処理を1800℃以上2300℃以下で行うことを特徴とするBN凝集粒子の製造方法。
(a-10)原料窒化ホウ素粉末中の酸素濃度が、1質量%以上10質量%以下である(a-9)に記載のBN凝集粒子の製造方法。
(a-11)(a-9)または(a-10)に記載された製造方法によって得られるBN凝集粒子。
(a-12)窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)を含有するシートであって、
 該シートをX線回折測定して得られる、該シート中の窒化ホウ素一次粒子(以下「BN一次粒子」と称す。)の(100)面と(004)面のピーク強度比((100)/(004))が1.0以上であり、かつ
 該シートをX線回折測定して得られる、該シート中のBN一次粒子の(002)面ピークから求めたBN一次粒子の平均結晶子径が375Å以上であることを特徴とするシート。
(a-13)
 前記シートをX線回折測定して得られる、該シート中の窒化ホウ素一次粒子(以下「BN一次粒子」と称す。)の(100)面と(004)面のピーク面積強度比((100)/(004))が0.6以上である(a-12)に記載のシート。
 また、本発明の第二の要旨は、以下の(b-1)乃至(b-10)である。
(b-1)窒化ホウ素一次粒子が凝集してなる窒化ホウ素凝集粒子(A)と無機粒子(B)とを含む組成物であって、少なくとも窒化ホウ素凝集粒子(A)がカードハウス構造を有し、窒化ホウ素凝集粒子(A)の体積平均粒子径(D50)が25μm以上であり、かつ、窒化ホウ素凝集粒子(A)の体積平均粒子径(D50)>無機粒子(B)の体積平均粒子径(D50)であることを特徴とする窒化ホウ素凝集粒子含有組成物。
 該組成物は、窒化ホウ素凝集粒子(A)がカードハウス構造を有し、窒化ホウ素凝集粒子(A)と無機粒子の体積平均粒子径(D50)が上記の関係を満足することにより、BN凝集粒子を構成するBN一次粒子中の結晶粒界で生じるフォノン散乱を減らすことができ、その結果として、高い熱伝導性を示す。
(b-2)窒化ホウ素一次粒子が凝集してなる窒化ホウ素凝集粒子(A)と無機粒子(B)とを含む組成物であって、窒化ホウ素凝集粒子(A)を粉末X線回折測定して得られる窒化ホウ素一次粒子の(100)面と(004)面のピーク強度比((100)/(004))が3以上であり、かつ、窒化ホウ素一次粒子の(002)面ピークから求めた窒化ホウ素一次粒子の平均結晶子径が375Å以上であること特徴とする窒化ホウ素凝集粒子含有組成物。
 該組成物は、BN一次粒子の特定の結晶面の配向を保ったまま、すなわち粉末X線回折測定による(100)面と(004)面のピーク強度比((100)/(004))が3以上に保たれ、かつ平均結晶子径が大きいため、凝集粒子としての高熱伝導性に加え、樹脂と複合化した際の成形体においても高熱伝導性を示すという効果を奏するものである。
(b-3)窒化ホウ素凝集粒子(A)の体積平均粒子径(D50)が25μm以上であり、かつ、窒化ホウ素凝集粒子(A)の体積平均粒子径(D50)>無機粒子(B)の体積平均粒子径(D50)であることを特徴とする(b-2)に記載の窒化ホウ素凝集粒子含有組成物。
(b-4)窒化ホウ素凝集粒子(A)及び無機粒子(B)が球状である(b-1)~(b-3)のいずれかに記載の窒化ホウ素凝集粒子含有組成物。
(b-5)窒化ホウ素凝集粒子(A)の含有割合が、窒化ホウ素凝集粒子(A)と無機粒子(B)の合計に対して、30~95質量%である(b-1)~(b-4)のいずれかに記載の窒化ホウ素凝集粒子含有組成物。
(b-6)無機粒子(B)が窒化ホウ素、窒化アルミニウム、アルミナ、酸化亜鉛、酸化マグネシウム、酸化ベリリウム及び、酸化チタンからなる群から選ばれる一種以上である(b-1)~(b-5)のいずれかに記載の窒化ホウ素凝集粒子含有組成物。
(b-7)(b-1)~(b-6)のいずれかに記載の窒化ホウ素凝集粒子含有組成物を含む塗布液。
(b-8)(b-1)~(b-6)のいずれかに記載の窒化ホウ素凝集粒子含有組成物を成形してなる成形体。
(b-9)窒化ホウ素凝集粒子(A)を含有するシートであって、該シートをX線回折測定して得られる、窒化ホウ素一次粒子の(100)面と(004)面のピーク強度比((100)/(004))が1.0以上、及び/またはピーク面積強度比((100)/(004))が0.6以上であることを特徴とするシート。
(b-10)更に、該シートをX線回折測定して得られる、該シート中のBN一次粒子の(002)面ピークから求めた窒化ホウ素凝集粒子の平均結晶子径が300Å以上であることを特徴とするシート。
 本発明のBN凝集粒子は、粉末X線回折測定により得られる、BN凝集粒子を構成するBN一次粒子の(100)面と(004)面のピーク強度比((100)/(004))が3以上であるため、BN凝集粒子を構成するBN一次粒子の特定の結晶面が配向し、かつBN凝集粒子の粉末X線回折測定における前記BN一次粒子の(002)面ピークから求めた前記BN一次粒子の平均結晶子径が375Å以上であるため、BN凝集粒子を構成するBN一次粒子中の結晶粒界で生じるフォノン散乱を減らすことができ、その結果として、高い熱伝導性を示す。さらに、特定の圧力範囲で成形した場合でもBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であるため、本発明のBN凝集粒子を含有する樹脂組成物を成形して得られる成形体は、成形後でもBN凝集粒子を構成するBN一次粒子の特定の結晶面の配向が保たれる。従って、成形面に垂直方向(成形体厚み方向)に高い熱伝導性を示し、好ましくはパワー半導体デバイスなどで必要とされる放熱シートに非常に有用なものである。
本発明のBN凝集粒子の倍率20万倍の走査型電子顕微鏡(以下「SEM」と称す)写真である。 本発明のBN凝集粒子の倍率100万倍のSEM写真である。 カードハウス構造の模式図である。 実施例で得られた絶縁回路基板のパターンの写真である。 実施例で得られたBN凝集粒子含有シートの断面SEM写真である。 実施例で得られた絶縁回路基板を用いた半導体デバイスの形状の写真である。
 以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
 [BN凝集粒子]
 本発明のBN凝集粒子は、BN一次粒子が凝集して形成されたものであり、本願発明の効果を損なわない範囲で、上記BN一次粒子以外の成分を含有してもよい。BN一次粒子以外の成分としては、後記の[BN凝集粒子の製造方法]で述べる、スラリーに添加してもよいバインダー、界面活性剤、溶媒に由来する成分を挙げることができる。
 本発明のBN凝集粒子の形態は、特に制限はないが、好ましくは図1に示すような球状の形態が特徴であり、また、BN凝集粒子の形態はSEMにより確認することができる。
 ここで「球状」とは、アスペクト比(長径と短径の比)が1以上2以下、好ましくは1以上1.5以下であることをさす。本発明のBN凝集粒子のアスペクト比は、SEMで撮影された画像から200個以上の粒子を任意に選択し、それぞれの長径と短径の比を求めて平均値を算出することにより決定する。
 また、BN凝集粒子は、BN凝集粒子表面においてBN一次粒子の結晶がBN凝集粒子の中心側から表面側へ向けて放射状に成長しているウニ様の形態、BN一次粒子が小板でありそれらが焼結凝集しているウニ様の球状の形態であることが好ましい。また、BN凝集粒子は、カードハウス構造を有することが好ましい。カードハウス構造とは、例えばセラミックス 43 No.2(2008年 日本セラミックス協会発行)に記載されており、板状粒子が配向せずに複雑に積層したような構造である。より具体的には、カードハウス構造を有するBN凝集粒子とは、BN一次粒子の集合体であって、一次粒子の平面部と端面部が接触している構造(図3参照)を有するBN凝集粒子であり、好ましくは球状である。また、カードハウス構造は粒子の内部においても同様の構造であることが好ましい。これらのBN凝集粒子の凝集形態及び内部構造は走査型電子顕微鏡(SEM)により確認することができる。
 本発明のBN凝集粒子は、BN凝集粒子を構成するBN一次粒子が特定の物性を有し、以下詳細に説明する。なお、本明細書で規定する物性測定に供する試料(粉体)は、成形体に成形する前のBN凝集粒子粉体でもよいし、BN凝集粒子を含有した成形体もしくは成形体から取り出されたBN凝集粒子粉体であってもよい。好ましくは、成形体に成形する前のBN凝集粒子粉体である。
 (BN凝集粒子の特性)
 ・一次粒子の大きさ
 BN凝集粒子を構成するBN一次粒子の長軸は通常0.5μm以上、好ましくは0.6μm以上、より好ましくは、0.8μm以上、更に好ましくは1.0μm以上、特に好ましくは1.1μm以上である。また通常10μm以下、好ましくは5μm以下、より好ましくは3μm以下である。
 尚、上記長軸とはSEM測定により得られたBN凝集粒子1粒を拡大し、1粒のBN凝集粒子を構成しているBN一次粒子について、画像上で観察できるBN一次粒子の最大長を平均した値である。
 ・BN凝集粒子を構成するBN一次粒子の結晶構造
 BN一次粒子の結晶構造は、特に限定されないが、合成の容易さと熱伝導性の点で六方晶系のh-BNを主成分として含むものが好ましい。また、バインダーとしてBN以外の無機成分が含まれる場合、熱処理の過程でそれらが結晶化するが、BNが主成分として含まれていればよい。なお、上記BN一次粒子の結晶構造は、粉末X線回折測定により確認することができる。
 ・BN一次粒子の平均結晶子径
 BN凝集粒子を粉末X線回折測定して得られるBN一次粒子の(002)面ピークから求めたBN一次粒子の平均結晶子径は、特に制限はされないが、平均結晶子径は大きいことが熱伝導率の点から好ましい。例えば、通常300Å以上、好ましくは320Å以上、より好ましくは375Å以上であり、更に好ましくは380Å以上、より更に好ましくは390Å以上、特に好ましくは400Å以上であり、通常5000Å以下、好ましくは2000Å以下、更に好ましくは1000Å以下である。上記平均結晶子径が大きすぎると、BN一次粒子が成長しすぎるため、BN凝集粒子内の間隙が多くなり、成形体とする際の成形性が悪化するとともに、間隙が多くなることにより熱伝導性が向上しなくなる傾向がある。上記平均結晶子径が小さすぎると、BN一次粒子内の粒界が増えるため、フォノン散乱が結晶粒界で発生し、低熱伝導になる傾向がある。
 尚、粉末X線回折測定は、0.2mm深さのガラス試料板に表面が平滑になるようにBN凝集粒子を充填し、測定される。
 なお、ここで、「平均結晶子径」とは、粉末X線回折測定によって得られるBN一次粒子の(002)面ピークから、後述の実施例において記載の通り、Scherrer式にて求められる結晶子径である。
 ・BN一次粒子のピーク強度比
 シート等の成形体に成形する前の粉末のBN凝集粒子を0.2mm深さのガラス試料板に表面が平滑になるように充填し、粉末X線回折測定して得られるBN一次粒子の(100)面と(004)面のピーク強度比((100)/(004))が3以上である。
 BN凝集粒子の(100)面と(004)面のピーク強度比は通常3以上、好ましくは3.2以上、より好ましくは3.4以上、更に好ましくは3.5以上であり、通常10以下、好ましくは8以下、更に好ましくは7以下である。上記上限より大きいと、成形体とした際に粒子が崩壊しやすくなる傾向があり、上記下限未満だと、厚み方向の熱伝導性が向上しない傾向がある。
 なお、ピーク強度比は粉末X線回折測定により測定された該当するピーク強度の強度比から計算することができる。
 ・BN一次粒子のピーク面積強度比
 BN凝集粒子を10mmφの粉末錠剤成形機で0.85ton/cmの成形圧力で成形して得られたペレット状の試料を粉末X線回折測定して得られる、BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であるとしても表現ができる。このピーク面積強度比((100)/(004))は、好ましくは0.3以上、好ましくは0.5以上、より好ましくは0.7以上、更に好ましくは0.81以上、特に好ましくは0.85以上、とりわけ好ましくは0.91以上である。また、上限は特に制限はないが、通常10.0以下、好ましくは5.0以下、より好ましくは4.0以下であり、更に好ましくは2.0以下であり、特に好ましくは1.6以下である。
 また、別の表現としては、BN凝集粒子を10mmφの粉末錠剤成形機で0.85ton/cm以上2.54ton/cm以下の成形圧力で成形して得られたペレット状の試料中のBN凝集粒子を構成するBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))は、通常0.25以上、好ましくは0.30以上、より好ましくは0.35以上、更に好ましくは0.40以上であり、通常2.0以下、好ましくは1.5以下、更に好ましくは1.2以下である。大きすぎると、成形体とした際にBN凝集粒子間の接触抵抗が大きくなる傾向があり、小さすぎると、BN凝集粒子が崩壊し、厚み方向の熱伝導性が向上しない傾向がある。
 通常、放熱シートなどにおいて最適なプレス圧力条件は、放熱シートの種類によって異なる。樹脂マトリックス中に分散したBN凝集粒子は、用途に応じた圧力条件にさらされるが、通常、BN粒子は圧力方向に対して直行する方向にab面が配向する傾向にある。BN凝集粒子を用いた場合でも成形圧力に対して粒子変形が生じ、結果としてab面が圧力方向に直行する方向に配向する傾向にある。
 例えば、樹脂製の高放熱基板は、樹脂製基板内部の空隙低減や分散させたBN凝集粒子同士の完全な接触のために、0.85ton/cm以上2.54ton/cm以下のような比較的高い圧力で成形されると考えられる。このため、上記圧力範囲でもBN一次粒子の配向変化が少ないBN凝集粒子が熱伝導性向上には必要である。
 本発明では、本明細書で規定する物性を満たすBN凝集粒子、好ましくはBN凝集粒子を構成するBN一次粒子がカードハウス構造、すなわち、BN一次粒子同士が一次粒子平面部と端面部で接触することによる相互補強構造を有することから、広い成形圧力範囲でBN凝集粒子の変形を抑制することが可能である。用途に応じて最適な圧力範囲は異なるが、成形体の厚み方向に高熱伝導化するためには、0.85ton/cm以上2.54ton/cmの範囲において、少なくとも一定以上の一次粒子配向が保持される状態が達成することが好ましい。
一定以上の一次粒子配向とは、例えば一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))によって表現されるが、これは(004)面、すなわち、圧力方向に対して直行する方向にab面が配向する割合がどれだけ少ないかを表現するものである。従って、上述のピーク面積強度比が大きいほど、成形圧力によるBN凝集粒子の変形が少ない。高熱伝導性を達成するには、少なくともピーク面積強度比は0.25以上であることが必要と考えている。ピーク面積強度比の下限、上限については前述のとおりである。
 尚、0.85ton/cm以上2.54ton/cmの範囲におけるピーク面積強度比は、上記圧力範囲において一点でも所定の数値を満たせば問題なく、本発明の圧力範囲全てにおいて達成する必要はない。また、好ましくは、0.85ton/cm、1.69ton/cm、2.54ton/cmの3点にて所定の数値を満たすことである。
 なお、上記ピーク面積強度比は、錠剤成形機(10mmφ)に約0.2gの粉末を充填し、手動油圧式ポンプ(理研精機社製P-1B-041)を用いて、種々のプレス圧で錠剤成形した試料を測定に供する(例えば、0.85ton/cm、1.69ton/cm、2.54ton/cm等)。測定は、オランダPANalytical社製X‘PertPro MPD粉末X線回折装置を用いて行うことで、該当するピーク面積の強度比を計算することができる。
 ・BN凝集粒子の平均粒子径(D50
 BN凝集粒子の平均粒子径(D50)は、通常5μm以上であり、好ましくは10μm以上、より好ましくは25μm以上、更に好ましくは26μm以上であり、特に好ましくは30μm以上、最も好ましくは40μm以上であり、45μm以上であっても好ましく、50μm以上であっても好ましい。また、通常200μm以下、好ましくは150μm以下、更に好ましくは100μm以下である。大きすぎると成形体とした際に表面の平滑性が悪くなる、BN凝集粒子間の間隙が多くなる等により、熱伝導性が向上しない傾向があり、小さすぎると成形体とした際にBN凝集粒子間の接触抵抗が大きくなる、BN凝集粒子自体の熱伝導性が低くなる等の傾向がある。
 なお、D50は測定に供した粉体の体積を100%として累積曲線を描かせた際に丁度累積体積が50%となる時の粒子径を意味し、その測定方法は、湿式測定法としては、分散安定剤としてヘキサメタリン酸ナトリウムを含有する純水媒体中にBN凝集粒子を分散させた試料に対して、レーザ回折/散乱式粒度分布測定装置などを用いて測定することができ、乾式測定法としては、Malvern社製「Morphologi」を用いて測定することができる。
 ・破壊強度
 BN凝集粒子の破壊強度は、通常2.5MPa以上、好ましくは3.0MPa以上、より好ましくは3.5MPa以上、更に好ましくは4.0MPa以上であり、通常20MPa以下、好ましくは15MPa以下、更に好ましくは10MPa以下である。大きすぎると、粒子の強度が強すぎるため、成形体とした際に表面平滑性が悪くなり、熱伝導性が低下する傾向があり、小さすぎると、成形体を作製する際の圧力で粒子が変形しやすくなり、熱伝導性が向上しない傾向がある。
 なお、破壊強度は、粒子1粒をJIS R 1639-5に従って圧縮試験し、下記式により算出できる。通常、粒子は5点以上測定し、その平均値を採用する。
式:Cs=2.48P/πd
Cs:破壊強度(MPa)
P:破壊試験力(N)
d:粒子径(mm)
 ・全細孔容積
 BN凝集粒子の全細孔容積は、通常2.2cm/g以下である。全細孔容積が小さいものは、BN凝集粒子内が密になっているために、熱伝導を阻害する境界面を少なくすることが可能となり、より熱伝導性の高いBN凝集粒子となる。BN凝集粒子の全細孔容積が大きすぎると、組成物中のフィラーとして用いた場合に、細孔に樹脂が取り込まれ、見かけの粘度が上昇する場合があり、組成物の成形加工或いは塗布液の塗工が困難となる可能性がある。
 BN凝集粒子の全細孔容積の下限値は特に制限はないが、通常0.01cm/gである。本発明の全細孔容積は、好ましくは0.01cm/g以上、より好ましくは0.02cm/g以上であり、好ましくは2cm/g以下、より好ましくは1.5cm/g以下である。
 凝集BN粉末の全細孔容積は、窒素吸着法および水銀圧入法で測定することができる。
 ・比表面積
 BN凝集粒子の比表面積は通常1m/g以上であるが、好ましくは3m/g以上50m/g以下、より好ましくは5m/g以上40m/g以下である。また、8m/g以下であることも好ましく、7.25m/g以下であることも好ましい。BN凝集粒子の比表面積が、この範囲であると、樹脂と複合化した際に、BN凝集粒子同士の接触抵抗が低減される傾向にあり、BN凝集粒子含有樹脂組成物の粘度上昇も抑制できるため好ましい。比表面積は、BET1点法(吸着ガス:窒素)で測定することができる。
 ・バルク密度
 BN凝集粒子をフィラーとして用いる場合には、樹脂の取り込みを最小限とするためにBN凝集粒子のバルク密度は大きい方が良く、通常0.3g/cm以上であることが好ましく、より好ましくは0.35g/cm以上、更に好ましくは0.4g/cm以上である。BN凝集粒子のバルク密度が小さすぎる場合、見かけの体積が大きくなり、BN凝集粒子含有樹脂組成物中の樹脂に対して、添加するBN凝集粒子の体積が多くなるとともに、樹脂の取り込みが大きくなり、また、BN凝集粒子の取り扱い性が著しく悪化する傾向がある。BN凝集粒子のバルク密度の上限については特に制限はないが、通常0.95g/cm以下、好ましくは0.9g/cm以下、より好ましくは0.85g/cm以下である。BN凝集粒子のバルク密度が大きすぎるとBN凝集粒子含有樹脂組成物中で凝集BNの分散に偏りが生じ、沈降しやすくなる傾向がある。
 なお、BN凝集粒子のバルク密度は、粉体のバルク密度を測定する通常の装置や方法を用いて求めることができる。
 [BN凝集粒子の製造方法]
 本発明のBN凝集粒子は、好ましくは、粘度が200~5000mPa・sである原料BN粉末を含むスラリー(以下「BNスラリー」と称す場合がある。)を用いて粒子を造粒し、造粒粒子を加熱処理することによって、該造粒粒子の大きさを保持したままBN凝集粒子を構成するBN一次粒子の結晶子を成長させて、製造することができる。BNスラリーの粘度は、好ましくは300mPa・s以上、より好ましくは500mPa・s以上、更に好ましくは700mPa・s以上、特に好ましくは1000mPa・s以上であり、好ましくは4000mPa・s以下、より好ましくは3000mPa・s以下である。
 上記BNスラリーの粘度は、生成するBN凝集粒子の体積基準の平均粒子径D50および、BN凝集粒子を構成するBN一次粒子の平均結晶子径に大きく影響し、該粘度を200mPa・s以上とすることにより、BN一次粒子の平均結晶子径及びBN凝集粒子の体積基準の平均粒子径D50を大きくすることができる。
 一方BNスラリーの粘度を5000mPa・s以下とすることにより、造粒を容易にすることができる。BNスラリーの粘度の調製方法は、後述する。
 なお、本発明におけるBNスラリーの粘度とは、FUNGILAB社の回転粘度計「VISCO BASIC Plus R」を用い、ブレード回転数100rpmにて測定した粘度のことである。
 さらに、本発明のBN凝集粒子をフィラーとしてBN凝集粒子含有樹脂組成物を作製する場合、同一の充填量においても、他のBN粒子と比較して得られる成形体の熱伝導率が劇的に改善できる。これは、本発明のBN凝集粒子では、BN凝集粒子を構成するBN一次粒子の平均結晶粒子径の増大により、BN一次粒子中の結晶粒界が減少すること、BN凝集粒子を構成するBN一次粒子の特定面が配向していることによると推察され、好ましくは、凝集粒子の体積基準の平均粒子径D50が大きいことにより、BN凝集粒子間の接触抵抗が低減することも影響すると考えられる。
 本発明のBN凝集粒子はBN凝集粒子自体の熱伝導性が高いだけでなく、樹脂と複合化して作製した成形体の熱伝導性も高くなる。
 すなわち、本願発明によれば、当業者では通常制御することを想定していなかったスラリー粘度を特定の範囲に制御することにより、BN凝集粒子を構成するBN一次粒子の平均結晶子径を大きくすることが可能である製造方法を見出したものである。
 更に、本発明によれば、上記スラリー粘度を特定の範囲に制御することにより、本発明で規定するBN凝集粒子を製造する方法を見出したものである。
 なお、上記ピーク強度比および結晶子径は、BNスラリーから製造する造粒粒子を加熱処理する際の焼成温度、原料BN粉末中に存在する酸素濃度によっても制御できる。具体的には、後程述べる通り、BNスラリーから製造する造粒粒子を加熱処理する際の焼成温度範囲を1800℃以上2300℃以下とすることでピーク強度比を3以上とすることができ、原料BN粉末中に存在する酸素濃度が1.0重量%以上の原料を用いることで、結晶子径を所望の範囲に制御できる。即ち、適切な焼成温度範囲と適切な酸素濃度の原料BN粉末を用いることで上記ピーク強度比と上記平均結晶子径を同時に制御できる。
 これによりBN凝集粒子をBN凝集粒子含有樹脂組成物とした際のBN凝集粒子間の接触抵抗の低減並びにBN凝集粒子を構成するBN一次粒子中の結晶粒界が減少し、該BN凝集粒子を構成するBN一次粒子の特定の結晶面が配向した、熱伝導性の高いBN凝集粒子を作製できる。
 本発明によって得られるBN凝集粒子は、高熱伝導性を維持しながら様々な大きさに設計することが可能なため、成形体として幅広い用途に適用可能である。
 {スラリーの調製}
 <原料BN粉末>
 ・原料BN粉末の種類
 本発明で用いる原料BN粉末としては、市販のh-BN、市販のαおよびβ-BN、ホウ素化合物とアンモニアの還元窒化法により作製されたBN、ホウ素化合物とメラミンなどの含窒素化合物から合成されたBNなど何れも制限なく使用できるが、特にh-BNが本発明の効果をより発揮する点で好ましく用いられる。
 ・原料BN粉末の結晶性
 本発明で用いる原料BN粉末の形態としては、粉末X線回折測定により得られるピークの半値幅が広く、結晶性が低い粉末状のBN粒子が好適である。結晶性の目安として、粉末X線回折測定から得られる(002)面のピーク半値幅が、2θの角度で、通常0.4°以上、好ましくは0.45°以上、より好ましくは0.5°以上である。また、通常2.0°以下、好ましくは1.5°以下、更に好ましくは1°以下である。上記上限より大きいと、結晶子が十分大きくならず、大きくするためには長時間を要するため、生産性が悪くなる傾向がある。上記下限未満だと、結晶性が高すぎて、十分な結晶成長が見込めず、また、スラリー作製時の分散安定性が悪くなる傾向がある。なお、粉末X線回折測定方法は後述の実施例の項に記載する。
 ・原料BN粉末中の酸素原子濃度
 BN結晶成長の観点からは、原料BN粉末中に酸素原子がある程度存在することが好ましく、本発明では、原料BN粉末中の全酸素濃度は、通常1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは4質量%以上である。また、通常、10質量%以下、更に好ましくは9質量%以下である。上記上限より大きいと、熱処理後も酸素が残存しやすくなるため、熱伝導性の改善効果が小さくなる傾向がある。上記下限未満だと、結晶性が高すぎて、結晶成長が見込めず、粉末X線回折測定から確認できるピーク強度比が所望の範囲から外れる傾向がある。
 本発明においては、原料BN粉末中に存在する酸素濃度が1.0重量%以上の原料を用いることでも、BN凝集粒子を構成するBN一次粒子の平均結晶子径を所望の範囲に制御できる。
 なお、原料BN粉末の全酸素濃度を上記範囲に調製する方法としては、例えばBN合成時の合成温度を1500℃以下の低温で行う方法、500℃~900℃の低温の酸化雰囲気中で原料BN粉末を熱処理する方法などが挙げられる。
 なお、原料BN粉末の全酸素濃度は、不活性ガス融解-赤外線吸収法により、株式会社堀場製作所製の酸素・窒素分析計を用いて測定することができる。
 ・原料BN粉末の全細孔容積および比表面積
 原料BN粉末の全細孔容積は通常1.0cm/g以下であるが、好ましくは0.3cm/g以上1.0cm/g以下、より好ましくは0.5cm/g以上1.0cm/g以下である。全細孔容積が1.0cm/g以下であることにより、原料BN粉末が密になっているために、球形度の高い造粒が可能となる。
 原料BN粉末の比表面積は通常50m/g以上であるが、60m/g以上が好ましく、70m/g以上がより好ましい。通常、1000m/g以下であるが、500m/g以下が好ましく、300m/g以下がより好ましい。原料BN粉末の比表面積が50m/g以上であることにより、造粒による球形化の際に用いるBNスラリー中の分散粒子径を小さくすることができるため好ましい。また、1000m/g以下とすることによりスラリー粘度の増加を抑制することができるため好ましい。
 なお、原料BN粉末の全細孔容積は、窒素吸着法および水銀圧入法で測定することができ、比表面積は、BET1点法(吸着ガス:窒素)で測定することができる。原料BN粉末の全細孔容積及び比表面積の具体的測定方法は、後述の実施例の項に記載する。
 <媒体>
 BNスラリーの調製に用いる媒体としては特に制限はなく、水及び/又は各種の有機溶媒を用いることができるが、噴霧乾燥の容易さ、装置の簡素化などの観点から、水を用いることが好ましく、純水がより好ましい。
 BNスラリーの調製に用いる媒体の使用量は、BNスラリーの粘度が200~5000mPa・sとなる量を加えることが好ましい。
 具体的にはBNスラリーの調製に用いる媒体の使用量は、通常10質量%以上、好ましくは20質量%以上、より好ましくは30質量%以上であり、通常、70質量%以下、好ましくは65質量%以下、より好ましくは60質量%以下である。媒体の使用量が上記上限より大きいと、スラリー粘度が低くなりすぎるため、沈降などによるBNスラリーの均一性が損なわれ、得られるBN凝集粒子を構成するBN一次粒子の結晶子径が所望の範囲から外れる傾向がある。下限未満であるとスラリー粘度が高すぎるため、造粒が困難になる傾向がある。すなわち、上記媒体の使用量が上記範囲外であると、BN凝集粒子の大きさとBN凝集粒子を構成するBN一次粒子の結晶性とBN一次粒子中の結晶粒界の低減を同時に満足することが困難になる。
 <界面活性剤>
 BNスラリーには、スラリーの粘度を調節すると共に、スラリー中の原料BN粉末の分散安定性(凝集抑制)の観点から、種々の界面活性剤を添加するのが好ましい。
 界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、非イオン性界面活性剤等を用いることができ、これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 一般に、界面活性剤はスラリーの粘度を変化させることが可能である。従って、BNスラリーに界面活性剤を添加する場合、その量は、BNスラリーの粘度が200~5000mPa・sとなるような量に調整する。例えば、原料BNとして、粉末X線回折測定により得られる(002)面ピークの半値幅2θが0.67°、酸素濃度が7.5質量%であるBNを用いて固形分50質量%のスラリーを調整する場合、通常、陰イオン性界面活性剤の有効成分として、スラリー全量に対し、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上添加し、通常10質量%以下、好ましくは7質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下添加する。上記上限より大きいと、スラリー粘度が下がりすぎるとともに、生成したBN凝集粒子中に界面活性剤由来の炭素成分が残りやすくなる傾向がある。上記下限未満だと、スラリー粘度が高くなりすぎ、造粒自体が困難になる傾向がある。
 <バインダー>
 BNスラリーは、原料BN粉末を効果的に粒子状に造粒するために、バインダーを含んでもよい。バインダーは、BN一次粒子を強固に結びつけ、造粒粒子を安定化するために作用する。
 BNスラリーに用いるバインダーとしては、BN粒子同士の接着性を高めることができるものであればよいが、本発明においては、造粒粒子は粒子化後に加熱処理されるため、この加熱処理工程における高温条件に対する耐熱性を有するものが好ましい。
 このようなバインダーとしては、酸化アルミニウム、酸化マグネシウム、酸化イットリウム、酸化カルシウム、酸化珪素、酸化ホウ素、酸化セリウム、酸化ジルコニウム、酸化チタンなどの金属の酸化物などが好ましく用いられる。これらの中でも、酸化物としての熱伝導性と耐熱性、BN粒子同士を結合する結合力などの観点から、酸化アルミニウム、酸化イットリウムが好適である。なお、バインダーはアルミナゾルのような液状バインダーを用いてもよく、加熱処理中に反応して、他の無機成分に変換されるものであってもよい。これらのバインダーは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 バインダーの使用量(液状バインダーの場合は、固形分としての使用量)は、BNスラリー中の原料BN粉末に対して、通常0質量%以上30質量%以下であり、好ましくは0質量%以上20質量%以下、より好ましくは0質量%以上15質量%以下である。上記上限を超えると造粒粒子中の原料BN粉末の含有量が少なくなり、結晶成長に影響するばかりか熱伝導性のフィラーとして用いた場合に熱伝導性改善効果が小さくなる。
 <スラリー調製方法>
 スラリー調製方法は、原料BN粉末及び媒体、更に必要により、バインダー、界面活性剤が均一に分散し、所望の粘度範囲に調製されていれば特に限定されないが、原料BN粉末及び媒体、更に必要により、バインダー、界面活性剤を用いる場合、好ましくは以下のように調製する。
 原料BN粉末を樹脂製のボトルに所定量計量し、次いで、バインダーを所定量添加する。さらに、界面活性剤を所定量添加した後、ジルコニア性のセラミックボールを加えて、ポットミル回転台で所望の粘度になるまで0.5~5h程度撹拌する。
 添加の順番は特に制限はないが、大量の原料BN粉末をスラリー化する場合、だまなどの凝集物ができやすくなるため、水に界面活性剤とバインダーを加えた水溶液を作製した後、所定量の原料BN粉末を少量ずつ添加し、ここにジルコニア性のセラミックボールを加えて、ポットミル回転台で分散、スラリー化しても良い。
 また、分散に際しては、ポットミルのほかに、ビーズミル、プラネタリーミキサーなどの分散装置を使用しても良い。スラリー化に際して、スラリーの温度は、10℃以上60℃以下で行う。下限よりも低いと、スラリー粘度が上昇し、所望の粘度範囲から外れる傾向にあり、上限よりも高いと原料BN粉末が水溶液中でアンモニアに分解しやすくなる。通常、10℃以上60℃以下であるが、好ましくは15℃以上50℃以下、より好ましくは15℃以上40℃以下、更に好ましくは15℃以上35℃以下である。
 {造粒}
 BNスラリーから造粒粒子を得るには、スプレードライ法、転動法、流動層法、そして撹拌法などの一般的な造粒方法を用いることができ、この中でもスプレードライ法が好ましい。
 スプレードライ法では、原料となるスラリーの濃度、装置に導入する単位時間当たりの送液量と送液したスラリーを噴霧する際の圧空圧力及び圧空量により、所望の大きさの造粒粒子を製造することが可能であって、球状の造粒粒子を得ることも可能である。使用するスプレードライ装置に制限はないが、より大きな球状の造粒粒子とするためには、回転式ディスクによるものが最適である。このような装置としては、大川原化工機社製スプレードライヤーFシリーズ、藤崎電機社製スプレードライヤー「MDL-050M」などが挙げられる。
 造粒により得られた造粒粒子の平均粒子径は、本発明のBN凝集粒子の体積基準の平均粒子径の範囲を好ましくは5μm以上200μm以下とする場合には、体積基準の平均粒子径D50で通常3μm以上、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは15μm以上、より更に好ましくは20μm以上、特に好ましくは25μm以上、より特に好ましくは25μm以上、26μm以上であっても好ましく、30μm以上であっても好ましく、35μm以上であっても好ましい。また、150μm以下であることが好ましく、100μm以下であることがより好ましい。ここで、造粒粒子の体積基準の平均粒子径D50は、例えば、湿式では堀場製作所製「LA920」、乾式ではMalvern社製「Morphorogi」などで測定することができる。
 {加熱処理}
 上記のBN造粒粒子は、更に非酸化性ガス雰囲気下に加熱処理することでBN凝集粒子を製造することができる。
 ここで、非酸化性ガス雰囲気とは、窒素ガス、ヘリウムガス、アルゴンガス、アンモニアガス、水素ガス、メタンガス、プロパンガス、一酸化炭素ガスなどの雰囲気のことである。ここで用いる雰囲気ガスの種類により凝集BN粒子の結晶化速度が異なるものとなり、結晶化を短時間で行うためには特に窒素ガス、もしくは窒素ガスと他のガスを併用した混合ガスが好適に用いられる。
 加熱処理温度は通常1800℃以上、2300℃以下であるが、好ましくは1900℃以上であり、また好ましくは2200℃以下である。加熱処理温度が低すぎると、BNの平均結晶子の成長が不十分となり、BN凝集粒子および成形体の熱伝導率が小さくなる場合がある。加熱処理温度が高すぎると、BNの分解などが生じてしまうおそれがある。
 上記加熱処理温度を1800℃以上2300℃以下とすることにより、BN一次粒子の(100)面と(004)面のピーク強度比((100)/(004))を所望の値とすることができる。
 加熱処理時間は、通常3時間以上、好ましくは4時間以上、より好ましくは5時間以上、また通常20時間以下、好ましくは15時間以下である。加熱処理時間が上記下限未満の場合、結晶成長が不十分となり、上記上限を超えるとBNが一部分解するおそれがある。
 加熱処理は、非酸化性ガス雰囲気下で行うために、好ましくは、通常、焼成炉内を真空ポンプを用いて排気した後、非酸化性ガスを導入しながら、所望の温度まで加熱して昇温するが、焼成炉内が十分に非酸化性ガスで置換できる場合は、常圧下で非酸化性ガスを導入しながら加熱昇温しても良い。焼成炉としては、マッフル炉、管状炉、雰囲気炉などのバッチ式炉やロータリーキルン、スクリューコンベヤ炉、トンネル炉、ベルト炉、プッシャー炉、竪型連続炉などの連続炉が挙げられ、目的に応じて使い分けられる。
 通常、加熱処理する造粒粒子は、焼成時の組成の不均一性を低減するために、円形の黒鉛製蓋つきルツボに入れて加熱焼成される。この際、組成の不均一性の低減に加えて、焼成によるBN凝集粒子同士の焼結を抑制する目的で、黒鉛製の仕切りを入れても良い。仕切りによる分割数は、焼結が抑制できれば特に制限はないが、通常2分割以上16分割以下である。上記上限より分割数が多いと焼結は抑制できるものの、BN一次粒子の結晶が十分に成長しなくなる傾向にあり、上記下限より分割数が少ないと、焼結が進む場合がある。
 {分級}
 上記加熱処理後のBN凝集粒子は、粒子径分布を小さくし、BN凝集粒子含有樹脂組成物に配合したときの粘度上昇を抑制するために、好ましくは分級処理する。この分級は、通常、造粒粒子の加熱処理後に行われるが、加熱処理前の造粒粒子について行い、その後加熱処理に供してもよい。
 分級は湿式、乾式のいずれでも良いが、BNの分解を抑制するという観点からは、乾式の分級が好ましい。特に、バインダーが水溶性を有する場合には、特に乾式分級が好ましく用いられる。
 乾式の分級には、篩による分級のほか、遠心力と流体抗力の差によって分級する風力分級などがあるが、旋回気流式分級機、強制渦遠心式分級機、半自由渦遠心式分級機などの分級機を用いて行うこともできる。これらの中で、サブミクロンからシングルミクロン領域の小さな微粒子を分級するには旋回気流式分級機を、それ以上の比較的大きな粒子を分級するには半自由渦遠心式分級機など、分級する粒子の粒子径に応じて適宜使い分ければよい。
 [BN凝集粒子含有樹脂組成物]
 本発明のBN凝集粒子含有樹脂組成物は、少なくとも本発明のBN凝集粒子と樹脂とを含有するものである。なお本発明のBN凝集粒子は、その形状的な特徴から、BN凝集粒子含有樹脂組成物のフィラーとして好適に用いられる。
 BN凝集粒子含有樹脂組成物中におけるBN凝集粒子の含有割合(以下「フィラー充填量」と称する場合がある。)は、BN凝集粒子と樹脂の合計を100質量%として、通常5質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上であり、通常95質量%以下、好ましくは90質量%以下である。上記上限より大きいと、粘度が高くなりすぎて成形加工性が確保できなくなるとともに、BN凝集粒子の密な充填が阻害されるために熱伝導性が低下する傾向があり、上記下限未満だと、成形加工性は確保できるものの、BN凝集粒子が少なすぎて熱伝導性が向上しない傾向がある。
 また、本発明の別の態様(第二の要旨)に係るBN凝集粒子含有樹脂組成物は、少なくとも上記特定の物性を有するBN凝集粒子(A)と、該BN凝集粒子とは異なる無機粒子(B)とを含有するものである。
 上記特定の物性を有するBN凝集粒子(A)とは異なる無機粒子(B)の種類としては、特に限定されずどのようなものを用いてもよい。なかでも、窒化ホウ素、窒化アルミニウム、アルミナ、酸化亜鉛、酸化マグネシウム、酸化ベリリウム、酸化チタン等が挙げられ、これらからなる群から選ばれる一種以上であるのが好ましく、中でも、熱抵抗低減の点から窒化ホウ素が好ましい。
 使用するBN凝集粒子(A)と無機粒子(B)とは、BN凝集粒子(A)の体積平均粒子径(D50)>無機粒子(B)の体積平均粒子径(D50)を満足することが好ましい。これを満足しない場合、粒子を最密充填することが出来ず熱伝導率が低下する。無機粒子(B)のD50は、BN凝集粒子(A)のD50の0.95倍以下が好ましく、0.8倍以下がより好ましく、0.5倍以下が特に好ましい。この範囲であることにより、上記特定の物性を有するBN凝集粒子間に存在する空隙を隙間なく充填することが可能となり、熱抵抗、組成物内の欠陥を十分に低減することが可能となり、これらを含む組成物から得られる成形体が高い熱伝導度及び耐電圧性を有することとなる。
 尚、BN凝集粒子(A)の体積平均粒径に対する無機粒子(B)の体積平均粒径の比の下限は、上記を満足する限り特に限定されないが、無機粒子(B)の取り扱い性の点や、熱抵抗、組成物内の欠陥低減の効果が大きく変わらない傾向となるため、通常0.01倍以上、好ましく0.05倍以上である。
 また、無機粒子(B)の体積平均粒径は、通常100μm以下、好ましくは60μm以下であり、一方、0.5μm以上、好ましくは1μm以上であり、更に好ましくは3μm以上である。この範囲であることにより、粒子間のボイドを効率よく充填できることで高耐電圧性能・高熱伝導率となる傾向がある。
 なお、BN凝集粒子(A)の体積平均粒子径(D50)>無機粒子(B)の体積平均粒子径(D50)を満足する限り、無機粒子(B)が凝集粒子であってもよい。
(BN凝集粒子含有組成物の成分割合)
 BN凝集粒子含有組成物中のBN凝集粒子(A)の含有割合は、BN凝集粒子(A)と無機粒子(B)の合計に対して、通常30質量%以上であり、好ましくは50質量%以上であり、また、通常95重量%以下であり、好ましくは90質量%以下である。この範囲であることにより、凝集粒子によりパーコレーションが起こり高熱伝導率となる傾向にある。
 BN凝集粒子含有組成物中におけるBN凝集粒子(A)と無機粒子(B)の合計の含有割合(以下「フィラー充填量」と称する場合がある。)は、BN凝集粒子(A)と無機粒子(B)と樹脂との合計を100質量%として、通常5質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上であり、また、通常95質量%以下であり、好ましくは90質量%以下である。上記範囲であることにより、該組成物を用いて成形体を製造する際の成形性が確保でき、かつ、得られた成形体の熱伝導性が良好となる傾向がある。
 <樹脂>
 BN凝集粒子含有樹脂組成物に用いる樹脂としては、特に制限はないが、好ましくは硬化性樹脂および/または熱可塑性樹脂である。例えば、硬化性樹脂としては、熱硬化性、光硬化性、電子線硬化性などが挙げられ、耐熱性、吸水性、寸法安定性などの点で、熱硬化性樹脂および/または熱可塑性樹脂が好ましく、これらの中でもエポキシ樹脂がより好ましい。これらの樹脂は2種以上組わせて用いてもよい。
 エポキシ樹脂は1種類の構造単位を有するエポキシ樹脂のみであってもよいが、構造単位の異なる複数のエポキシ樹脂を組み合わせてもよい。また、エポキシ樹脂は、必要に応じて、エポキシ樹脂用硬化剤、硬化促進剤と共に用いられる。
 エポキシ樹脂を用いる場合、そのTgは特段限定されないが通常0℃以上、好ましくは10℃以上、より好ましくは25℃以上であり、また通常350℃以下、好ましくは300℃以下、より好ましくは250℃以下である。
 ここで、塗膜性ないしは成膜性や接着性と併せて、硬化物中のボイドを低減して高熱伝導の硬化物を得るために、エポキシ樹脂として少なくとも後述するフェノキシ樹脂(以下、「エポキシ樹脂(A)」と称す場合がある。)を含むことが好ましい。エポキシ樹脂全量に対するエポキシ樹脂(A)の質量比率は、特に制限はないが、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上、特に好ましくは16.0質量%以上、とりわけ好ましくは18.0質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは80質量%以下の範囲である。
 フェノキシ樹脂とは、通常、エピハロヒドリンと2価フェノール化合物とを反応させて得られる樹脂、または2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂を指すが、本発明においてはこれらのうち、重量平均分子量10000以上の高分子量であるフェノキシ樹脂をエポキシ樹脂(A)とする。
 ここで、重量平均分子量とは、ゲルパーミエイションクロマトグラフィーで測定したポリスチレン換算の値である。
 エポキシ樹脂(A)としては、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格およびジシクロペンタジエン骨格からなる群から選択された少なくとも1つの骨格を有するフェノキシ樹脂、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ナフタレン型フェノキシ樹脂、フェノールノボラック型フェノキシ樹脂、クレゾールノボラック型フェノキシ樹脂、フェノールアラルキル型フェノキシ樹脂、ビフェニル型フェノキシ樹脂、トリフェニルメタン型フェノキシ樹脂、ジシクロペンタジエン型フェノキシ樹脂、グリシジルエステル型フェノキシ樹脂、グリシジルアミン型フェノキシ樹脂が好ましい。中でも、耐熱性や密着性がより一層高められるので、フルオレン骨格および/またはビフェニル骨格を有するフェノキシ樹脂、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂が特に好ましい。
 これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 本発明に係るエポキシ樹脂は、上記エポキシ樹脂(A)以外に、分子内に2個以上のエポキシ基を有するエポキシ樹脂(以下「エポキシ樹脂(B)」と称す場合がある。)を含有することが好ましい。上記エポキシ樹脂(B)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、多官能フェノール型エポキシ樹脂等の、各種エポキシ樹脂が挙げられる。この中でもビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、多官能フェノール型エポキシ樹脂が耐熱性や密着性の向上の点で好ましい。
 これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 上記エポキシ樹脂(B)は、溶融粘度制御の観点から、その重量平均分子量が、好ましくは100~5000であり、より好ましくは200~2000である。重量平均分子量が100より低いものでは、耐熱性が劣る傾向にあり、5000より高いと、エポキシ樹脂の融点が高くなり、作業性が低下する傾向がある。
 また、本発明に係るエポキシ樹脂は、その目的を損なわない範囲において、エポキシ樹脂(A)とエポキシ樹脂(B)以外のエポキシ樹脂(以下、「他のエポキシ樹脂」と称す場合がある。)を含んでいてもよい。他のエポキシ樹脂の含有量は、エポキシ樹脂(A)とエポキシ樹脂(B)の合計に対して、通常50質量%以下、好ましくは30質量%以下である。
 エポキシ樹脂用硬化剤は、用いられる樹脂の種類に応じて適宜に選ばれる。例えば、酸無水物系硬化剤やアミン系硬化剤が挙げられる。酸無水物系硬化剤としては、例えば、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、及びベンゾフェノンテトラカルボン酸無水物が挙げられる。アミン系硬化剤としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族ポリアミン、ジアミノジフェニルスルホン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、m-フェニレンジアミン等の芳香族ポリアミン及びジシアンジアミド等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのエポキシ樹脂用硬化剤は、通常、エポキシ樹脂に対して当量比で、0.3以上1.5以下の範囲で配合される。
 硬化促進剤は、用いられる樹脂や硬化剤の種類に応じて適宜に選ばれる。例えば前記酸無水系硬化剤用の硬化促進剤としては、例えば三フッ化ホウ素モノエチルアミン、2-エチル-4-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾールが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらの硬化促進剤は、通常、エポキシ樹脂100質量部に対して0.1質量部以上30質量部以下の範囲で用いられる。
 また、本発明のBN凝集粒子含有樹脂組成物の樹脂は、熱可塑性樹脂であってもよい。熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、液晶ポリエステル樹脂等のポリエステル樹脂、ポリ塩化ビニル樹脂、フェノキシ樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルアミドイミド樹脂、ポリエーテルアミド樹脂及びポリエーテルイミド樹脂などが挙げられる。また、それらのブロック共重合体、グラフト共重合体等の共重合体も含まれる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 また、本発明のBN凝集粒子含有樹脂組成物の樹脂は、ゴム成分を含有してもよく、ゴム成分としては、例えば、天然ゴム、ポリイソプレンゴム、スチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン共重合体ゴム、ブタジエン-アクリロニトリル共重合体ゴム、イソブチレン-イソプレン共重合体ゴム、クロロプレンゴム、シリコンゴム、フッソゴム、クロロ・スルホン化ポリエチレン、ポリウレタンゴムなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 <その他の成分>
 本発明のBN凝集粒子含有樹脂組成物は、本発明の効果が得られる範囲において、さらなる成分を含有していてもよい。このようなさらなる成分としては、例えば、上述した樹脂の他、無機フィラーである窒化アルミニウム、窒化ケイ素、繊維状、板状、粒子状凝集BN等の窒化物粒子、アルミナ、繊維状アルミナ、酸化亜鉛、酸化マグネシウム、酸化ベリリウム、酸化チタン等の絶縁性金属酸化物、ダイヤモンド、フラーレン、水酸化アルミニウム、水酸化マグネシウムなどの無機フィラー、無機フィラーとマトリックス樹脂の界面接着強度を改善するシランカップリング剤などの表面処理剤、還元剤等の絶縁性炭素成分、樹脂硬化剤、樹脂硬化促進剤、粘度調整剤、分散剤が挙げられる。この中でも、熱伝導度の向上、耐電圧の向上から、窒化物粒子が好ましく、粒子状凝集BNがより好ましい。
 なお、本発明のスラリーを用いる場合、分散剤を用いることが、成膜性を上げる上で好ましい。
 また、BN凝集粒子含有樹脂組成物の粘度を下げる観点から、本発明のBN凝集粒子含有樹脂組成物には溶剤を用いることができる。溶剤には、公知の溶剤の中から樹脂を溶解する溶剤が用いられる。このような溶剤としては、例えば、有機溶媒として、メチルエチルケトン、アセトン、シクロヘキサノン、トルエン、キシレン、モノクロルベンゼン、ジクロルベンゼン、トリクロルベンゼン、フェノール、及びヘキサフルオロイソプロパノールが挙げられる。
 これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 溶剤は、エポキシ樹脂等の樹脂100質量部に対して、通常0~10,000質量部の範囲で用いられる。
 [BN凝集粒子含有樹脂組成物の製造方法]
 本発明のBN凝集粒子含有樹脂組成物は、本発明のBN凝集粒子、場合によっては無機粒子、樹脂、及び必要に応じて添加されるその他の成分を撹拌や混練によって均一に混合することによって得ることができる。その混合には、例えば、ミキサー、ニーダー、単軸又は二軸混練機等の一般的な混練装置を用いることができ、混合に際しては、必要に応じて加熱してもよい。
なお、溶媒を含む系や樹脂が液体状態で、本発明のBN凝集粒子含有組成物が流動性を有するスラリー状態(本明細書では塗布用スラリーともいう)の場合、スラリーにする際の調製方法は、特に限定されず、従来公知の方法を用いることができる。なお、その際、塗布液の均一性の向上、脱泡等を目的として、ペイントシェーカーやビーズミル、プラネタリミキサ、攪拌型分散機、自公転攪拌混合機、三本ロール、ニーダー、単軸又は二軸混練機等の一般的な混練装置などを用いて混合・撹拌することが好ましい。
 各配合成分の混合順序も、反応や沈殿物が発生するなど特段の問題がない限り任意であるが、例えば樹脂を有機溶媒(例えば、メチルエチルケトン)に混合・溶解させて樹脂液を作成し、得られた樹脂液に、BN凝集粒子及び後述するその他の成分とを十分混合したものを加えて混合し、その後、粘度調製用として更に有機溶媒を加えて混合した後に、更に、樹脂硬化剤や硬化促進剤、或いは、分散剤等の添加剤を加えて混合する方法が挙げられる。
 [BN凝集粒子の成形体]
 本発明の成形体は、本発明のBN凝集粒子を使用した成形体、好ましくはBN凝集粒子含有樹脂組成物を成形してなるものである。成形体の成形方法は一般に用いられる方法を用いることができる。
 例えば、本発明のBN凝集粒子含有樹脂組成物が可塑性や流動性を有する場合、該BN凝集粒子含有樹脂組成物を所望の形状で、例えば型へ収容した状態で硬化させることによって成形することができる。
 このような成形体の製造では、射出成形、射出圧縮成形、押出成形、圧縮成形および真空圧縮成形を利用することができる。
 上述スラリーが溶媒を含む場合は、ホットプレート、熱風炉、IR加熱炉、真空乾燥機、高周波加熱機など公知の加熱方法で溶媒を除去することができる。
 また、本発明のBN凝集粒子含有樹脂組成物がエポキシ樹脂やシリコーン樹脂等の熱硬化性樹脂組成物である場合、成形体の成形、すなわち硬化は、それぞれの硬化温度条件で行うことができる。
 また、本発明のBN凝集粒子含有樹脂組成物が熱可塑性樹脂組成物である場合、成形体の成形は、熱可塑性樹脂の溶融温度以上の温度及び所定の成形速度や圧力の条件で行うことができる。
 また、本発明の成形体は、本発明のBN凝集粒子含有樹脂組成物の硬化物を所望の形状に削り出すことによっても得ることができる。
 本発明のBN凝集粒子の用途としては、成形体の中でも放熱シート(本明細書では、単にシートともいう)が好ましい。放熱シートの製造方法は、特に制限はなく従来技術の放熱シートの製造方法により製造が可能である。
以下、BN凝集粒子を含むBN凝集粒子含有スラリーを用いて放熱シートを製造する方法を具体的に説明する。シートの製造方法は、上述したスラリーを調製する工程の他、後述する該スラリーを基材に塗布して(塗布工程)、乾燥させる工程(乾燥工程)、該塗布乾燥物を加圧して成形する工程(シート化工程)、及び該成形物を熱硬化させる工程(熱硬化工程)を少なくとも有する。
<塗布工程>
 まず基板の表面に、BN凝集粒子含有スラリーを用いて塗膜を形成する。
 即ち、スラリーを用いて、ディップ法、スピンコート法、スプレーコート法、ブレード法、その他の任意の方法で塗膜を形成する。組成物塗布液の塗布には、スピンコーター、スリットコーター、ダイコーター、ブレードコーター、コンマコーター、スクリーン印刷、ドクターブレード、アプリケーター、スプレー塗布などの塗布装置を用いることにより、基板上に所定の膜厚の塗膜を均一に形成することが可能であり、ギャップを調整可能なブレードコーターが好ましい。
 本発明のシートは、自立膜としても用いることができ、さらには金属箔もしくは板(銅、アルミ、銀、金)、PET,PENなどの樹脂フィルム、ガラスなど公知の基材の上に製膜することができる。なお、これらの基板は使用の形態によっては、剥がして使用することもできし、基板/放熱シート/基板のように積層構造としてもよい。
 なお、基板としては、後述の厚さの銅箔が一般的に用いられるが、何ら銅基板に限定されるものではない。また、基板の表面には凹凸があったり、また、表面処理が為されていてもよい。
<乾燥工程>
 次に、基板に塗布されたBN凝集粒子含有スラリーを乾燥させ塗布乾燥物を得る。乾燥温度は、通常15℃以上、好ましくは20℃以上、より好ましくは23℃以上であり、通常100℃以下、好ましくは90℃以下、より好ましくは80℃以下、更に好ましくは70℃以下である。
 この乾燥の加熱温度が低過ぎたり、加熱時間が短過ぎたりすると、塗膜中の有機溶媒を十分に除去し得ず、得られる乾燥膜中に有機溶媒が残留し、残留した有機溶媒が次のシート化工程における高温加圧処理で蒸発し、残留溶媒の蒸発跡がボイドとなって、高熱伝導性、高絶縁性、所定の物理的強度等を有するシートを形成し得ない。逆に、乾燥の加熱温度が高過ぎたり、加熱時間が長過ぎたりすると、樹脂の硬化が進行し、良好な乾燥膜とすることができない。
 また乾燥時間は、通常1時間以上、好ましくは2時間以上、より好ましくは3時間以上、更に好ましくは4時間以上であり、通常、168時間以下、好ましくは144時間以下、より好ましくは120時間以下、更に好ましくは96時間以下である。
 この乾燥の時間が下限未満の場合、塗膜中の有機溶媒を十分に除去し得ず、得られる乾燥膜中に有機溶媒が残留し、残留した有機溶媒が次のシート化工程における高温加圧処理で蒸発し、残留溶媒の蒸発跡がボイドとなって、高熱伝導性、高絶縁性、所定の物理的強度等を有するシートを形成し得ない。逆に、乾燥の時間が上限を超えると、樹脂が乾燥しすぎて、良好な強度の塗布膜が得られないばかりか、シート化工程における樹脂の可塑化によっても十分な流動性が得られず、シート内に存在するボイドに十分樹脂が浸透できなくなって、高熱伝導性、高絶縁性、所定の物理的強度等を有するシートを形成できない傾向がある。
 乾燥させる前のシートの膜厚は通常100μm以上、好ましくは150μm以上、より好ましくは200μm以上、更に好ましくは300μm以上であり、通常、800μm以下、好ましくは700μm以下、より好ましくは600μm以下、更に好ましくは500μm以下である。膜厚が上記上限を超えると、有機溶媒の蒸発速度を膜内部で制御することが難しくなり、残存有機溶媒量が多くなって、シート化工程における高温加圧処理で蒸発し、残留溶媒の蒸発跡がボイドとなって、高熱伝導性、高絶縁性、所定の物理的強度等を有するシートを形成し得ない。逆に、前記下限未満の場合、有機溶媒蒸発が短時間で起こってしまうため、樹脂が乾燥しすぎて、良好な強度の塗布膜が得られないばかりか、シート化工程における樹脂の可塑化によっても十分な流動性が得られず、シート内に存在するボイドに十分樹脂が浸透できなくなって、高熱伝導性、高絶縁性、所定の物理的強度等を有するシートを形成できない傾向がある。
 この際、一定の温度において加熱処理を行ってもよいが、塗布液中の有機溶媒等の揮発成分の除去を円滑に進めるために、減圧条件下にて加熱処理を行ってもよい。また、樹脂の硬化が進行しない範囲で、段階的な昇温による加熱処理を行っても良い。例えば、初めに25~40℃、例えば30℃で、次に40~90℃、例えば50℃で、各30分~60分程度の加熱処理を実施することができる。
 この乾燥工程において得られた塗布乾燥物中の150℃以上を有する有機化合物量は、0ppm超、好ましくは0.001ppm以上、より好ましくは0.1ppm以上、更に好ましくは1ppm以上であり、1800ppm以下、好ましくは1500ppm以下、より好ましくは1300ppm以下である。この範囲内であると、本製造方法で得られたシートは、高い熱伝導性と耐電圧値を示す。
 また、塗布乾燥物中の沸点が100℃以下である有機化合物量は、通常0ppm超、好ましくは0.01ppm以上、より好ましくは1ppm以上、更に好ましくは5ppm以上であり、特に好ましくは7ppm以上であり、通常50ppm以下、好ましくは30ppm以下、より好ましくは19ppm以下、更に好ましくは18ppm以下である。上記範囲であると、本発明の効果をより効果的に発揮することが可能である。なお、塗布乾燥物中の上述した有機化合物の含有量はヘッドスペースガスクロマトグラフィーにて測定できる。
<シート化工程>
 乾燥工程の後には、塗布乾燥物を加圧、成形する工程(シート化工程)を行う。シート化工程では、通常、銅基板に塗布、乾燥した塗布乾燥物を所定の大きさにカットする。
 シート化をする際の加熱温度(プレス温度)は、通常80℃以上、好ましくは90℃以上、より好ましくは、100℃以上、更に好ましくは110℃以上であり、通常300℃以下、好ましくは250℃以下、より好ましくは200℃以下である。
 この加熱温度が上記下限未満の場合、熱硬化反応が十分進行せず、BN凝集粒子同士の接触やBN凝集粒子と樹脂界面の接触も不十分となるため高熱伝導性、高絶縁性、所定の物理的強度等を有するシートを形成し得ない。逆に、前記範囲の上限を超える場合、樹脂の分解が生じやすくなり、該分解によるボイドや分子量の低下により、高熱伝導性、高絶縁性、所定の物理的強度等を有するシートを形成できない傾向がある。
 上記銅基板への接着を促進するために行う加圧工程(プレス処理ともいう)におけるプレス方法は、公知の技術を用いて行うことができ、例えば静水圧プレス、真空プレス、ベルトプレス、加熱プレス、サーボプレス、カレンダーロール等、公知の方法で成形することができる。
 プレス圧力は、銅基板上の乾燥膜に、通常10kgf/cm以上、好ましくは150kgf/cm以上、より好ましくは200kgf/cm以上、更に好ましくは250kgf/cm以上であり、通常、2000kgf/cm以下、好ましくは1000kgf/cm以下、より好ましくは900kgf/cm以下、更に好ましくは800kgf/cm以下を加圧する。この加圧時の加重を上記上限以下とすることにより、BN凝集粒子が破壊することなく、シート中に空隙などがない高い熱伝導性を有するシートを得ることが出来る。また、加重を上記下限以上とすることにより、BN凝集粒子間の接触が良好となり、熱伝導パスを形成しやすくなるため、高い熱伝導性を有するシートを得ることが出来る。
 特に熱硬化工程を経るシート化工程においては、上記の範囲の加重をかけて、加圧、硬化を行うことが好ましい。
 熱硬化工程では、銅基板に塗布、乾燥した組成物膜を通常80℃以上、好ましくは100℃以上、例えば100~200℃の温度で1~30分程度所定の加重をかけて加圧することにより、塗布・乾燥膜中の樹脂の溶融粘度を低下させると同時に、ある程度硬化反応を進めて、銅基板への接着を促進する加圧工程と、その後、樹脂膜を完全に硬化させるために、所望の硬化温度、例えば150℃以上で2~4時間程度、オーブンなどで加熱することにより硬化反応を行わせてシートを作製する硬化工程とが行われる。硬化工程において完全硬化させる際の加熱温度の上限は、使用する樹脂が分解、変質しない温度であり、樹脂の種類、グレードにより適宜決定されるが、通常300℃以下で行われる。
 また、BN凝集粒子を用いて成形された本発明のシートに対して両面を銅で貼り合せた放熱シートを有した回路基板は、本発明であるBN凝集フィラーを用いるからこそ従来にはない高い熱伝導性による放熱効果で、高い信頼性のもとに、デバイスの高出力、高密度化が可能であるため、パワー半導体デバイス装置の放熱基板や放熱シートとして適している。パワー半導体デバイス装置において、本発明の放熱シート以外のアルミ配線、封止材、パッケージ材、ヒートシンク、サーマルペースト、はんだ等の部材は従来公知の部材を適宜採用できる。
 基本的には、回路基板とは、本発明の放熱シートの両面に銅やアルミ、好ましくは銅を張り合わせた形状をとり、片側に回路をパターニングする。積層方法は上述のように製膜プレス成型により製造することもできる。
 回路基板パターニングの方法は特段限定されず、例えば、特開2014-209608号公報の文献に記載のような既知の方法により製造できる。また、回路基板とした際の層厚についても特段限定されないが、通常10μm以上、好ましくは100μm以上、より好ましくは300μm以上、さらに好ましくは500μm以上、特に好ましくは1000μm以上である。また通常5000μm以下である。
 放熱シート部分の層厚についても特段限定されないが、通常80μm以上、好ましくは100μm以上であり、さらに好ましくは200μm以上である。また通常1000μm以下である。
 また、放熱部となる銅部分の層厚についても特段限定されないが、通常10μm以上、好ましくは100μm以上であり、さらに好ましくは300μm以上であり、特に好ましくは500μm以上であり、殊更好ましくは1000μm以上である。また通常5000μm以下である。
・シートの物性
 また、本発明のシートは、窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)を含有するシートであって、該シートをX線回折測定して得られる、該シート中の窒化ホウ素一次粒子(以下「BN一次粒子」と称す。)の(100)面と(004)面のピーク強度比[(100)/(004)]が1.0以上であり、かつ 該シートをX線回折測定して得られる、該シート中のBN一次粒子の(002)面ピークから求めたBN一次粒子の平均結晶子径が375Å以上であることを特徴とするシートである。
 本発明のシートは、このような物性を満たすことで、高い熱伝導率を有し、耐電圧性能に優れたシートとなり、放熱部材として好適に使用できる。このような優れた性能を発揮するシートとなる理由は、[(100)/(004)]の強度比が上述以上となることにより、シートの垂直方向に一次粒子のab面が配向する割合が高く、BNの持つ高い熱伝導率をシートとして発揮することが出来、また一次粒子の大きさを375Åに以上にすることにより、一次粒子間の界面を減らし、界面間が熱抵抗となることを妨げるためである。
 窒化ホウ素凝集粒子を少なくとも含有するシートであって、該シートは、X線回折測定して得られる、該シート中のBN一次粒子の(100)面と(004)面のピーク強度比((100)/(004))が1.0以上である。このピーク強度比((100)/(004))は、好ましくは1.5以上、より好ましくは2.0以上、更に好ましくは2.5以上、特に好ましくは3.0以上である。上限は特に制限はないが、通常10.0以下、好ましくは7.0以下、より好ましくは5.0以下である。
 この数値が大きすぎると、シート面に対してBN一次粒子の垂直方向に向く割合が高くなりすぎて、プレス等の成形工程を行うときに、シート内の微小なクラックが入りやすくなる。このようなクラックは、耐電圧等の電気特性が低くなる傾向がある。また、数値が小さすぎると、シート面に対するBN一次粒子の垂直方向に向く割合が低くなり、熱伝導率が低くなる傾向がある。
 更に、該シートをX線回折測定して得られる、該シート中のBN一次粒子の(002)面ピークから求めたBN一次粒子平均結晶子径は、特に制限はないが、通常300Å以上、好ましくは320Å以上、より好ましくは375Å以上であり、更に好ましくは380Å以上、より更に好ましくは390Å以上、特に好ましくは400Å以上であり、通常5000Å以下、好ましくは2000Å以下、更に好ましくは1000Å以下であるシートであることが好ましい。
 この数値が大きすぎると、プレス工程などのシート成形時に、凝集粒子内のカードハウス構造が破壊され、シート面に対してBN一次粒子のab面が垂直方向に向く割合が減り、熱伝導度が低くなる傾向がある。また、数値が小さすぎると、BN一次粒子界面が増えるため、伝熱抵抗となって熱伝導度が低くなる傾向がある。
 本発明のシートは、窒化ホウ素凝集粒子を少なくとも含有するシートであって、該シートは、X線回折測定して得られる、該シート中のBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))は、特に制限はないが、通常0.6以上、好ましくは0.65以上、好ましくは0.7以上、より好ましくは0.75以上、更に好ましくは0.8以上、特に好ましくは0.85以上、である。また、上限は特に制限はないが、通常10.0以下、好ましくは5.0以下、より好ましくは4.0以下である。
 この数値が大きすぎると、凝集粒子内のカードハウス構造が破壊され、シート面に対してBN一次粒子のab面が垂直方向に向く割合が減り、熱伝導度が低くなる傾向がある。また、数値が小さすぎるとBN一次粒子界面が増えるため、伝導抵抗となって熱伝導度が低くなる傾向がある。
 また、放熱シートの熱伝導率(W/mK)は、特に制限はないが通常、5W/mK以上、好ましくは10W/mK以上、更に好ましくは13W/mK、特に好ましくは15W/mK以上、とりわけ好ましくは17W/mK以上である。
 耐電圧性能は、通常、10kV/mm以上、好ましくは15kV/mm以上、特に好ましくは20kV/mm以上である。また、本発明のシートのガラス転移温度は、通常100℃以上、好ましくは130℃以上、特に好ましくは175℃以上である。
 また、放熱シートの接着強度(N/cm)は、特に制限はないが通常、0.5N/cm以上、好ましくは1N/cm以上、更に好ましくは2N/cm、特に好ましくは3N/cm以上、とりわけ好ましくは5N/cm以上である。
 以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、下記の実施例における各種の条件や評価結果の値は、本発明の実施態様における好ましい範囲同様に、本発明の好ましい範囲を示すものであり、本発明の好ましい範囲は前記した実施態様における好ましい範囲と下記実施例の値または実施例同士の値の組合せにより示される範囲を勘案して決めることができる。
 {測定条件}
 本発明における特性は以下に記載の方法にて測定した。
 ・粘度:
 FUNGILAB社の回転粘度計「VISCO BASIC Plus R」を用い、ブレード回転数100rpmにて測定した。
 ・BN凝集粒子の平均粒子径(D50):
 BN凝集粒子をMalvern社製「Morphologi」を用いてD50(μm)を測定した。
 ・BN一次粒子の平均結晶子径:
 粉末X線回折測定によって得られたBN一次粒子の(002)面由来のピークから、Scherrer式を用いて平均結晶子径を求めた。粉末X線回折測定は、PANalytical社製X線回折装置「X‘Pert Pro MPD」を用いた。Scherrer式とは次の式である。
D=(K・λ)/(β・cosθ)
 ここで、D:結晶子径、K:Scherrer定数、λ:X線(CuKα)波長、β:ピーク半値幅、θ:CuKα由来のブラッグ角、である。またβは、次の補正式を用いて求めた。
β=(β -β 0.5
 ここで、βは、標準Siにより求めておいた装置由来の半価幅であり、βは、h-BNの(002)面由来のピーク半値幅である。各定数の値は、以下を用いた。
K=0.9、λ=1.54059Å
 ・BN凝集粒子のピーク強度比
 BN凝集粒子の粉末X線回折測定によって得られたBN一次粒子の(100)面および(004)面のピーク強度の比((100)/(004))を計算することによりBN凝集粒子のピーク強度比を評価した。粉末X線回折測定は、PANalytical社製X線回折装置「X‘Pert Pro MPD」を用いた。
 尚、上記粉末X線回折測定は、0.2mm深さのガラス試料板にBN凝集粒子を充填し、表面が平滑になるように測定面を調製した試料を用いて実施した。
BN凝集粒子のピーク面積強度比 
 錠剤成形機(10mmφ)に約0.2gのBN凝集粒子を充填し、手動油圧式ポンプ(理研精機社製P-1B-041)を用いて、0.85ton/cmのプレス圧で錠剤成形した。得られた試料について、粉末X線回折測定と同様の装置を用いて、BN一次粒子の(100)面および(004)面のピーク面積強度比((100)/(004))を求めた。結果を表1に示した。
 ・成形体の厚み方向熱伝導率
 成形体の厚み方向の熱拡散率を株式会社アイフェイズ製の熱拡散率測定装置「ai―Phase Mobile 1u」を用いて測定し、以下により求めた。
成形体の厚み方向熱伝導率=成形体の厚み方向の熱拡散率×成形体の比重×成形体の比熱
 BN凝集粒子、BN凝集粒子含有樹脂組成物および成形体の製造
 (実施例1)
 <BNスラリーからのBN凝集粒子の作製>
 [BNスラリー(スラリーA)の調製] 
 (原料)
 原料h-BN粉末(粉末X線回折測定により得られる(002)面ピークの半値幅が2θ=0.67°、酸素濃度が7.5質量%):10000g バインダー(多木化学(株)製「タキセラムM160L」、固形分濃度21質量%):11496g 界面活性剤(花王(株)製界面活性剤「アンモニウムラウリルサルフェート」:固形分濃度14質量%):250g
 (スラリーの調製)
 原料h-BN粉末を樹脂製のボトルに所定量計量し、次いでバインダーを所定量添加した。さらに、界面活性剤を所定量添加した後、ジルコニア性のセラミックボールを添加して、ポットミル回転台で1時間撹拌した。
 スラリーの粘度は、810mPa・sであった。
 [造粒]
 BNスラリーからの造粒は、大河原化工機株式会社製FOC-20を用いて、ディスク回転数20000~23000rpm、乾燥温度80℃で実施し、球状のBN凝集粒子を得た。
 [BN凝集粒子(BN-A凝集粒子)の作製]
 上記BN造粒粒子を、室温で真空引きをした後、窒素ガスを導入して復圧し、そのまま窒素ガスを導入しながら2000℃まで83℃/時で昇温し、2000℃到達後、そのまま窒素ガスを導入しながら5時間保持した。その後、室温まで冷却し、カードハウス構造を有する球状のBN-A凝集粒子を得た。
 [分級]
 更に、上記加熱処理後のBN-A凝集粒子を、乳鉢および乳棒を用いて軽粉砕した後、目開き90μmの篩を用いて分級した。分級後、BN-A凝集粒子を構成するBN一次粒子の平均結晶子径、該BN一次粒子の(100)面と(004)面のピーク強度比((100)/(004))、BN-A凝集粒子のD50を測定した。測定結果は表1に示す。
 <成形体シートの製造>
 上記で得られたBN-A凝集粒子をフィラーとして用い、フィラーと樹脂組成物とからなるBN凝集粒子含有樹脂組成物を調製した。
 [樹脂組成物]
 三菱化学(株)製エポキシ樹脂である「157S70」、「828US」、「4275」および四国化成工業(株)製の硬化剤である「C11Z-CN」を、「157S70」:「828US」:「4275」:「C11Z-CN」=1:0.25:0.25:0.11(質量比)の割合で混合して樹脂組成物を得た。
 [BN凝集粒子含有樹脂組成物の調製]
 BN-A(BN凝集粒子)と上記樹脂組成物をBN-A凝集粒子の充填量(樹脂組成物とBN―A凝集粒子の合計に対するBN-凝集粒子の含有割合)が80質量%になるように配合した。
 調製された樹脂組成物/BN-A凝集粒子混合物100質量部と、メチルエチルケトン50質量部をポリプロピレン製の蓋付きカップに入れ、さらに、樹脂組成物成分100質量部に対して6質量部の1-シアノエチル-2-ウンデシルイミダゾール(硬化剤)を加え、自公転攪拌機(シンキー社製「泡取り錬太郎 AR-250」))を用いて混合して、BN凝集粒子含有樹脂組成物塗布液を調製した。
 [塗布]
 得られたBN凝集粒子含有樹脂組成物塗布液を、ギャップ間隔400μmのバーコーター(テスター産業株式会社製「オートフィルムアプリケーター」)で、厚さ100μm、10cm×20cmの銅基板上に塗布した。その後、50℃で、30分間真空乾燥を行って、銅基板に塗布膜を形成した。
 [成形体の製造]
 得られた塗布膜が形成された銅版を4cm角に切断した。金型に入れて、130℃、500kg/cmで3分間ホットプレスを行い、さらにオーブン中で160℃、2時間硬化させることにより、熱伝導率評価用の成形体(4cm×4cm)を得た。測定結果は表1に示す。
 (実施例2)
 実施例1において、スラリーAを原料の配合比を以下に変更したBNスラリー(スラリーB)とした以外は、実施例1と同様に行い、カードハウス構造を有する球状のBN凝集粒子(凝集BN-B)及びBN凝集粒子含有樹脂組成物、成形体を作製した。測定結果を表1に示す。
 [BNスラリー(スラリーB)]
 (原料)
原料h-BN粉末:10000g
純水:7500g
バインダー:5750g
界面活性剤:250g
 (スラリー調製)
 原料h-BN粉末を樹脂製のボトルに所定量計量し、次いで純水、バインダーの順に所定量添加した。さらに、界面活性剤を所定量添加した後、ジルコニア性のセラミックボールを添加して、ポットミル回転台で1時間撹拌した。スラリーの粘度は、2200mPa・sであった。
 (実施例3)
 実施例1において、スラリーAを原料の配合比を以下に変更したBNスラリー(スラリーC)とした以外は、実施例1と同様に行い、カードハウス構造を有する球状のBN凝集粒子(凝集BN-C)及びBN凝集粒子含有樹脂組成物、成形体を作製した。測定結果を表1に示す。
 [BNスラリー(スラリーC)]
 (原料)
原料h-BN粉末:10000g
バインダー:11496g
界面活性剤:250g
 (スラリー調製)
 原料h-BN粉末を樹脂製のボトルに所定量計量し、次いでバインダーを所定量添加した。さらに、界面活性剤を所定量添加した後、ジルコニア性のセラミックボールを添加して、ポットミル回転台で1時間撹拌した。スラリーの粘度は、1600mPa・sであった。
 (比較例1)
 実施例2におけるスラリーBを、原料の配合比を変更した以下に示すスラリーDとした以外は、実施例2と同様に行い、BN凝集粒子(BN-D凝集粒子)及びBN凝集粒子含有樹脂組成物、成形体を作製した。スラリーの粘度は155mPa・sであった。測定結果を表1に示す。
 [BNスラリー(スラリーD)]
 スラリーD配合
 (原料)
原料h-BN粉末:2400g
純水:2199g
バインダー:1380g
界面活性剤:60g
 (比較例2)
 実施例1と同様にスラリーの調製および造粒を行い、BN凝集粒子作製時の焼成温度を1300℃、保持時間を24hとした以外は実施例1と同様にBN凝集粒子を作製した(凝集BN-E)。このBN凝集粒子を用いて、実施例1と同様の方法でBN凝集粒子含有樹脂組成物の作製、成形体の製造を行った。表1に結果を示す。
 (比較例3)
 実施例1のBN-A凝集粒子に変えてモメンティブ社製PTX60を用いた以外は実施例1と同様にBN凝集粒子含有樹脂組成物及び成形体の製造を行った。表1に結果を示す。
 (比較例4)
 実施例1のBN-A凝集粒子に変えてモメンティブ社製PTX25を用いた以外は実施例1と同様に行った。表1に結果を示す。
 (比較例5) 
 実施例1のBN-A凝集粒子に変えて電気化学工業社製SGPSを用いた以外は実施例1と同様にBN凝集粒子含有樹脂組成物及び成形体の製造を行った。表1に結果を示す。
 (比較例6)
 実施例1のBN-A凝集粒子に変えてサンゴバン社製CTS7Mを用いた以外は実施例1と同様にBN凝集粒子含有樹脂組成物及び成形体の製造を行った。表1に結果を示す。
 (比較例7)
 実施例1と同様にスラリーの調製および造粒を行い、BN凝集粒子作製時の焼成温度を1600℃、保持時間を24hとした以外は実施例1と同様にBN凝集粒子を作製した(凝集BN-F)。このBN凝集粒子を用いて、実施例1と同様の方法でBN凝集粒子含有樹脂組成物の作製、成形体の製造を行った。表1に結果を示す。
 (比較例8)
 実施例2において、スラリーBの原料の配合比を以下に変更したBNスラリー(スラリーE)とした以外は、実施例1と同様に行った。
 [BNスラリー(スラリーE)]
 (原料)
原料h-BN粉末:10000g
純水:7750g
バインダー:5750g
 (スラリー調製)
 原料h-BN粉末を樹脂製のボトルに所定量計量し、次いで純水、バインダーの順に所定量添加した。さらに、ジルコニア性のセラミックボールを添加して、ポットミル回転台で1時間撹拌した。スラリーの粘度は、8000mPa・sであった。
Figure JPOXMLDOC01-appb-T000001
 BN凝集粒子成形圧縮成形体におけるBN一次粒子の(100)/(004)面のピーク面積強度比の評価 
 実施例4
 錠剤成形機(10mmφ)に約0.2gの実施例1で作製したBN-A凝集粒子を充填し、手動油圧式ポンプ(理研精機社製P-1B-041)を用いて、表2に記載の種々のプレス圧で錠剤成形した。得られた試料について、粉末X線回折測定と同様の装置を用いて、BN一次粒子の(100)面および(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
 実施例5
 錠剤成形機(10mmφ)に約0.2gのBN凝集粒子として実施例2で作製したBN-B凝集粒子を用いた以外は、実施例4と同様にしてBN一次粒子の(100)面および(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
 比較例9
 BN凝集粒子としてBN-E凝集粒子を用いた以外は、実施例4と同様にしてBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
比較例10
 BN凝集粒子としてモメンティブ社製PTX60凝集粒子を用いた以外は、実施例4と同様にしてBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
 比較例11
 BN凝集粒子としてモメンティブ社製PTX25を用いた以外は、実施例4と同様にしてBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
 比較例12
 BN凝集粒子として電気化学工業社製SGPSを用いた以外は、実施例4と同様にしてBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
比較例13
 BN凝集粒子としてサンゴバン社製CTS7Mを用いた以外は、実施例4と同様にしてBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
比較例14
 BN凝集粒子としてBN-F凝集粒子を用いた以外は、実施例4と同様にしてBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表1から、本発明のBN凝集粒子を用いることにより、成形体として高い熱伝導性を示すことがわかる。平均結晶子径が375Å未満の比較例1、2では、熱伝導性が低く、平均結晶子径が375Åを超えるものの、BN凝集粒子の粉末X線回折測定によるBN一次粒子の(100)面と(004)面のピーク強度比((100)/(004))が3未満である比較例4も高い熱伝導率を達成することができない。従って、BN凝集粒子を構成するBN一次粒子の平均結晶子径が375Å以上であり、かつ粉末X線回折測定によるBN一次粒子の(100)面と(004)面のピーク強度比((100)/(004))が3以上である本発明のBN凝集粒子は、熱伝導性フィラーとして従来にはない性能を発揮し、熱の課題が多い電気電子分野など様々な用途に幅広く適用可能である。
 さらに、表1の結果と表2から、特定の圧力以上でもBN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であり、BN一次粒子の平均結晶子径が375Åより大きい凝集粒子を用いることで、厚み方向に高い熱伝導性を発現するシートを得ることができる。
 以下、本発明の別の態様(第二の要旨)に係る実施例について説明する。以下に、実施例における測定条件を記載するが、以下に記載された以外は、先に説明した測定条件を用いた。
BN一次粒子の(100)/(004)面ピーク強度比:
 BN凝集粒子の粉末X線回折測定によって得られたBN一次粒子の(100)面と(004)面とのピーク強度の比((100)/(004))を計算することにより求めた。
BN一次粒子の(100)/(004)ピーク面積強度比:
 錠剤成形機(10mmφ)に約0.2gの粉末を充填し、手動油圧式ポンプ(理研精機社製P-1B-041)を用いて、プレス圧0.85ton/cmで錠剤成形した試料を測定に供する。測定は、オランダPANalytical社製X‘Pert Pro MPD粉末X線回折装置を用いて行うことで、該当するピーク面積の強度比を計算することができる。
放熱シートのX線回折測定
 PANalytical社製X線回折装置 (X’Pert Pro MPD)を用いた。尚、試料サンプルは、プレス成形した放熱シートを用いて実施した。
測定条件を以下に示す。
試料ホルダー: 無反射試料板,ターゲット:CuKα,出力:40kV,30mA
測定範囲:5-100°,ステップ角度:0.016°,走査速度:0.05°/sec,可変スリット10mm
放熱シートの(100)/(004)面ピーク強度比:
 放熱シートのX線回折測定によって得られたBN一次粒子の(100)面と(004)面とのピーク強度の比((100)/(004))を計算することにより求めた。
放熱シートの(100)/(004)ピーク面積強度比:
 放熱シートのX線回折測定によって得られたBN一次粒子の(100)面と(004)面とのピーク面積強度の比((100)/(004))を計算することにより求めた。
放熱シートのBN一次粒子の平均結晶子径:
 上記BN一次粒子の平均結晶子径の測定方法に準じる。
密着性試験:
 基材上に塗布して得られた放熱シートを25mm×60mmの大きさに切り出し、25mm×110mmの基材と加熱プレスによって貼り合せて接着した測定サンプルを、樹脂板に固定した後に90°ピール試験を実施することで求めた。試験にはORIENTEC社製STA-1225を用いて行った
実施例6
 カードハウス構造を有するBN凝集粒子BN-A4.7g、非カードハウス構造である窒化ホウ素PTX25(モメンティブ(株)製、D50:19.8μm、BN一次粒子の(100)/(004)面ピーク強度比:1.4、BN一次粒子の平均結晶子径:537Å)1.6g、及びエポキシ樹脂全量に対するビスフェノールA型フェノキシ樹脂を含有したフェノキシ樹脂が16.7質量%含有したエポキシ樹脂(Tg:190℃)2.12g、溶剤(シクロヘキサノン/メチルエチルケトン)6.2g、分散剤(商品名:BYK-2155、ビックケミー・ジャパン(株)製)0.41g、1-シアノエチル-2-ウンデシルイミダゾール(商品名:C11Z-CN、四国化成工業(株)製)0.13gを混合し、放熱シート用スラリーを調製した。
 調製した放熱シート用スラリーをドクターブレード法で基材に塗布し、加熱乾燥を行った後にプレスを行ってシート厚が約200μmの放熱シートを得た。
実施例7
 カードハウス構造を有するBN凝集粒子BN-A4.7g、非カードハウス構造である窒化ホウ素PTX25(モメンティブ(株)製、D50:19.8μm、BN一次粒子の(100)/(004)面ピーク強度比:1.4、BN一次粒子の平均結晶子径:537Å)1.6g、及びエポキシ樹脂全量に対するビスフェノールF型フェノキシ樹脂が含有したフェノキシ樹脂が20質量%含有したエポキシ樹脂(Tg:31℃)2.12g、溶剤(シクロヘキサノン/メチルエチルケトン)6.2g、分散剤(商品名:BYK-2155、ビックケミー・ジャパン(株)製)0.41g、1-シアノエチル-2-ウンデシルイミダゾール(商品名:C11Z-CN、四国化成工業(株)製)0.13gを混合し、放熱シート用スラリーを調製した。
 調製した放熱シート用スラリーをドクターブレード法で基材に塗布し、加熱乾燥を行った後にプレスを行ってシート厚が約200μmの放熱シートを得た。
実施例8
 カードハウス構造を有するBN凝集粒子BN-A(D50:50μm) 5.5g、カードハウス構造を有するBN凝集粒子BN-D(D50:14μm) 1.8g、及びエポキシ樹脂(Tg:190℃)1.0g、溶剤(シクロヘキサノン/メチルエチルケトン)6.2g、分散剤(商品名:BYK-2155、ビックケミー・ジャパン(株)製)0.40g、1-シアノエチル-2-ウンデシルイミダゾール(商品名:C11Z-CN、四国化成工業(株)製)0.06gを混合し、放熱シート用スラリーを調製した。
 調製した放熱シート用スラリーをドクターブレード法で基材に塗布し、加熱乾燥を行った後にプレスを行ってシート厚が約200μmの放熱シートを得た。調製した放熱シート用スラリーを用い、実施例6と同様にしてシート厚が約200μmの放熱シートを得た。得られた放熱シートの熱伝導率、耐電圧、X線回折測定を行った。この際のシートプレス圧は300kg重/cm2であり、図5がシート断面SEM写真である。このように本発明のBN凝集粒子は上記プレス圧でプレスしてもプレス前の粉末の形状を保持していることが本発明の効果を奏する理由の一つであると考えられる。より具体的には、図5に示すように、300kg重/cm2のシートプレス圧において、BN凝集粒子が凝集粒子として観察できるシートであり、特にカードハウス構造も観察できるようなシートである。
比較例15
 非カードハウス構造である窒化ホウ素PTX60(モメンティブ(株)製、D50:55.8μm、BN一次粒子の(100)/(004)面ピーク強度比:2.8、BN一次粒子の平均結晶子径:370Å)4.6g、非カードハウス構造である窒化ホウ素PTX25(モメンティブ(株)製、D50:19.8μm、BN一次粒子の(100)/(004)面ピーク強度比:1.4、BN一次粒子の平均結晶子径:537Å) 1.5g、及びエポキシ樹脂(Tg:190℃)2.1g、溶剤(シクロヘキサノン/メチルエチルケトン)7.2g、分散剤(商品名:BYK-2155、ビックケミー・ジャパン(株)製)0.40g、1-シアノエチル-2-ウンデシルイミダゾール(商品名:C11Z-CN、四国化成工業(株)製)0.13gを混合し、放熱シート用スラリーを調製した。
 調製した放熱シート用スラリーを用い、実施例6と同様にしてドクターブレード法で基材に塗布し、加熱乾燥を行った後にプレスを行ってシート厚が約200μmの放熱シートを得た。得られた放熱シートの熱伝導率、耐電圧、X線回折測定を行った。
比較例16
 非カードハウス構造である窒化ホウ素PTX60 5.5g(モメンティブ(株)製、D50:55.8μm、BN一次粒子の(100)/(004)面ピーク強度比:2.8、BN一次粒子の平均結晶子径:370Å)、カードハウス構造を有するBN凝集粒子BN-D(D50:14μm)1.8g、及びエポキシ樹脂(Tg:190℃)1.0g、溶剤(シクロヘキサノン/メチルエチルケトン)6.1g、分散剤(商品名:BYK-2155、ビックケミー・ジャパン(株)製)0.40g、1-シアノエチル-2-ウンデシルイミダゾール(商品名:C11Z-CN、四国化成工業(株)製)0.06gを混合し、放熱シート用スラリーを調製した。
 調製した放熱シート用スラリーを用い、実施例6と同様にしてシート厚が約200μmの放熱シートを得た。得られた放熱シートの熱伝導率、耐電圧、X線回折測定を行った。
 上記、実施例2、6、7、8及び比較例1、3、15、16の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、本発明で規定するBN凝集粒子をシート代にした成形体や、体積平均粒径を満足するBN凝集粒子と、例えば、これより小さいD50を有する無機粒子を組み合わせた組成物を成形体とすることで、これらを含む成形体が高い熱伝導率と高い耐電圧性を有し、従って、高放熱性能・高耐電圧性能な成形シートが得られることがわかる。同様に、BN凝集粒子と無機粒子を含み、該BN凝集粒子のBN一次粒子の(100)/(004)面ピーク強度比及びBN一次粒子の平均結晶子径が本発明の規定を満足する場合、これらを含む成形体が高い熱伝導率と高い耐電圧性を有し、従って、より高放熱性能及び高耐電圧性能な成形シートが得られることがわかる。
 詳細なメカニズムは良くわかっていないが、例えば、高放熱性能は、BN凝集粒子を使用することにより、BN一次粒子、BN凝集粒子のD50が大きくなっているため、一次粒子同士、凝集粒子同士の界面抵抗を低減できたためであると考える。さらにBN凝集粒子より小さい無機粒子を併用することで、大粒子間の空隙を効率よく低減することができ、耐電圧性能がより改善されている。
絶縁回路基板の作成例
 カードハウス構造を有するBN凝集粒子(A)-1を22.2g、カードハウス構造である窒化ホウ素凝集粒子(A)-2)を7.3g、及びエポキシ樹脂(Tg:190℃)6.7g、溶剤(シクロヘキサノン/メチルエチルケトン)21.3g、分散剤(商品名:BYK-2155、ビックケミー・ジャパン(株)製)2.3g、1-シアノエチル-2-ウンデシルイミダゾール(商品名:C11Z-CN、四国化成工業(株)製)0.24gを混合し、放熱シート用スラリーを調製した。
 調製した絶縁放熱シート用スラリーを、銅箔(105μm)に塗布した。その後、加熱乾燥を行った後に、塗布面同士を張り合わせて、プレスを行い、両面銅箔はり絶縁放熱シートを得た。絶縁放熱シート部分の膜厚は、約300μmであった。
 この絶縁放熱シートの片面側をエッチングにより、パターニング化し、図4に示す絶縁回路基板を得た。
 さらに、ダイボンド、ワイヤボンディングを行い、デバイスを作製した。その結果を図6に示す。
 本発明のBN凝集粒子を用いることにより、例えばパワー半導体デバイスで必要とされる熱伝導性の高い、高品質の放熱シートを形成することができる。 また、本発明のBN凝集粒子含有組成物を用いることにより、例えばパワー半導体デバイスで必要とされる熱伝導性の高い、高品質の放熱シートを形成することができる。
 該放熱シートを有するパワー半導体デバイスは、次世代のSiC、GaNなど、高温動作が可能な高効率基板を用いたパワー半導体デバイスの作製に有用である。

Claims (14)

  1.  窒化ホウ素一次粒子(以下「BN一次粒子」と称する。)が凝集してなる窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)であって、10mmφの粉末錠剤成形機で0.85ton/cmの成型圧力で成型して得られたペレット状の試料を粉末X線回折測定して得られる、BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であり、かつ該BN凝集粒子を0.2mm深さのガラス試料板に表面が平滑になるように充填し、粉末X線回折測定して得られる、BN一次粒子の(002)面ピークから求めたBN一次粒子の平均結晶子径が375Å以上であることを特徴とするBN凝集粒子。
  2.  BN凝集粒子の平均粒子径D50が26μm以上である、請求項1に記載のBN凝集粒子。
  3.  BN凝集粒子の比表面積が8m/g以下である、請求項1又は2に記載のBN凝集粒子。
  4.  BN凝集粒子が球状である請求項1ないし3のいずれか1項に記載のBN凝集粒子。
  5.  BN凝集粒子がカードハウス構造を有する請求項1ないし4のいずれか1項に記載のBN凝集粒子。
  6.  請求項1ないし5のいずれか1項に記載のBN凝集粒子と他のフィラーの混合物であるBN凝集粒子組成物。
  7.  樹脂と、請求項1ないし5のいずれか1項に記載のBN凝集粒子を含むBN凝集粒子含有樹脂組成物。
  8.  請求項1ないし5のいずれか1項に記載のBN凝集粒子を含む成形体。
  9.  原料窒化ホウ素粉末のスラリー(以下「BNスラリー」と称す。)を造粒するステップ、及び加熱処理をするステップを含むBN凝集粒子を製造する方法であって、
     前記造粒ステップにおいて該BNスラリーの粘度が200mPa・s以上5000mPa・s以下であり、前記加熱ステップにおいて加熱処理を1800℃以上2300℃以下で行うことを特徴とするBN凝集粒子の製造方法。
  10.  原料窒化ホウ素粉末中の酸素濃度が、1質量%以上10質量%以下である請求項9に記載のBN凝集粒子の製造方法。
  11.  請求項9又は10に記載された製造方法によって得られるBN凝集粒子。
  12.  窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)を含有するシートであって、
     該シートをX線回折測定して得られる、該シート中の窒化ホウ素一次粒子(以下「BN一次粒子」と称す。)の(100)面と(004)面のピーク強度比((100)/(004))が1.0以上であり、かつ
     該シートをX線回折測定して得られる、該シート中のBN一次粒子の(002)面ピークから求めたBN一次粒子の平均結晶子径が375Å以上であることを特徴とするシート。
  13.  前記シートをX線回折測定して得られる、該シート中の窒化ホウ素一次粒子(以下「BN一次粒子」と称す。)の(100)面と(004)面のピーク面積強度比((100)/(004))が0.6以上である請求項12に記載のシート。
  14.  請求項12又は13に記載のシートを部材の一部として有するデバイス。
PCT/JP2015/053250 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート WO2015119198A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015561028A JP6493226B2 (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
KR1020167021577A KR102400206B1 (ko) 2014-02-05 2015-02-05 질화붕소 응집 입자, 질화붕소 응집 입자의 제조 방법, 그 질화붕소 응집 입자 함유 수지 조성물, 성형체, 및 시트
CN202111095896.2A CN113788465B (zh) 2014-02-05 2015-02-05 氮化硼凝集颗粒及其制造方法、含该氮化硼凝集颗粒的树脂组合物、成型体和片
CN201580007267.6A CN106029561B (zh) 2014-02-05 2015-02-05 氮化硼凝集颗粒、氮化硼凝集颗粒的制造方法、含该氮化硼凝集颗粒的树脂组合物、成型体、和片
EP15746358.9A EP3103766A4 (en) 2014-02-05 2015-02-05 Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
US15/229,619 US10106413B2 (en) 2014-02-05 2016-08-05 Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
US16/106,120 US10414653B2 (en) 2014-02-05 2018-08-21 Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2014-020423 2014-02-05
JP2014-020424 2014-02-05
JP2014020424 2014-02-05
JP2014020423 2014-02-05
JP2014207522 2014-10-08
JP2014-207522 2014-10-08
JP2014259221 2014-12-22
JP2014-259221 2014-12-22
JP2015-005424 2015-01-14
JP2015005424 2015-01-14
JP2015-005428 2015-01-14
JP2015005428 2015-01-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/229,619 Continuation US10106413B2 (en) 2014-02-05 2016-08-05 Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet

Publications (1)

Publication Number Publication Date
WO2015119198A1 true WO2015119198A1 (ja) 2015-08-13

Family

ID=53777999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053250 WO2015119198A1 (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート

Country Status (8)

Country Link
US (2) US10106413B2 (ja)
EP (1) EP3103766A4 (ja)
JP (9) JP6794613B2 (ja)
KR (1) KR102400206B1 (ja)
CN (2) CN106029561B (ja)
MY (2) MY195160A (ja)
TW (2) TWI757686B (ja)
WO (1) WO2015119198A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038512A1 (ja) * 2015-09-03 2017-03-09 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
CN106905698A (zh) * 2015-10-14 2017-06-30 信越化学工业株式会社 绝缘散热片材
WO2018066277A1 (ja) * 2016-10-07 2018-04-12 デンカ株式会社 窒化ホウ素塊状粒子、その製造方法及びそれを用いた熱伝導樹脂組成物
CN107922743A (zh) * 2015-08-26 2018-04-17 电化株式会社 导热性树脂组合物
WO2018074077A1 (ja) * 2016-10-21 2018-04-26 デンカ株式会社 球状窒化ホウ素微粉末、その製造方法及びそれを用いた熱伝導樹脂組成物
JP2018115275A (ja) * 2017-01-19 2018-07-26 積水化学工業株式会社 硬化性材料、硬化性材料の製造方法及び積層体
JP2018188632A (ja) * 2017-04-28 2018-11-29 積水化学工業株式会社 熱硬化性シート及び硬化シートの製造方法
CN109312164A (zh) * 2016-07-05 2019-02-05 纳美仕有限公司 膜用树脂组合物、膜、带有基材的膜、金属/树脂层叠体、树脂固化物、半导体装置以及膜的制造方法
JP2019073409A (ja) * 2017-10-13 2019-05-16 デンカ株式会社 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材
JP2019119883A (ja) * 2018-01-05 2019-07-22 三菱ケミカル株式会社 放熱絶縁シートおよび該シート硬化物を絶縁層とする積層構造体
WO2019189746A1 (ja) 2018-03-30 2019-10-03 三菱ケミカル株式会社 放熱シート、放熱部材及び半導体デバイス
WO2020049817A1 (ja) 2018-09-07 2020-03-12 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
WO2020196477A1 (ja) 2019-03-26 2020-10-01 三菱ケミカル株式会社 熱伝導性樹脂シート、積層放熱シート、放熱性回路基板、及び、パワー半導体デバイス
WO2020196679A1 (ja) * 2019-03-28 2020-10-01 デンカ株式会社 窒化ホウ素粉末及びその製造方法、並びに、複合材及び放熱部材
JPWO2020196643A1 (ja) * 2019-03-27 2020-10-01
WO2021085593A1 (ja) 2019-10-30 2021-05-06 三菱ケミカル株式会社 樹脂組成物、硬化物、複合成形体、半導体デバイス
JP2021091579A (ja) * 2019-12-11 2021-06-17 デンカ株式会社 複合粒子を含有する粉体及びその製造方法、並びに、該粉体を含有する樹脂組成物
WO2022210686A1 (ja) 2021-03-29 2022-10-06 三菱ケミカル株式会社 樹脂組成物、シート硬化物、複合成形体及び半導体デバイス

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6794613B2 (ja) * 2014-02-05 2020-12-02 三菱ケミカル株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体
WO2016156288A1 (en) * 2015-03-31 2016-10-06 Struers A/S A mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium
JP6822836B2 (ja) * 2016-12-28 2021-01-27 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP6828503B2 (ja) * 2017-02-22 2021-02-10 大日本印刷株式会社 無機層状材料積層体、放熱部材、及びパワーデバイス装置
JP6414260B2 (ja) * 2017-03-23 2018-10-31 三菱マテリアル株式会社 放熱回路基板
JP7092676B2 (ja) * 2017-06-23 2022-06-28 積水化学工業株式会社 放熱シート、放熱シートの製造方法及び積層体
JP6876800B2 (ja) 2017-07-14 2021-05-26 富士フイルム株式会社 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス
JP6698953B2 (ja) * 2017-10-13 2020-05-27 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
JP7069485B2 (ja) * 2017-12-27 2022-05-18 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
CN109988409B (zh) * 2017-12-29 2021-10-19 广东生益科技股份有限公司 一种氮化硼团聚体、包含其的热固性树脂组合物及其用途
CN109054302A (zh) * 2018-08-02 2018-12-21 中国科学院深圳先进技术研究院 热界面材料及其制备方法
JP7172319B2 (ja) * 2018-09-12 2022-11-16 富士通株式会社 放熱構造体、電子装置、及び放熱構造体の製造方法
JP6963100B2 (ja) * 2018-11-16 2021-11-05 富士高分子工業株式会社 熱伝導性シート及びその製造方法
EP3753993A4 (en) * 2018-12-25 2021-03-31 Fuji Polymer Industries Co., Ltd. THERMAL CONDUCTIVE COMPOSITION AND THERMAL CONDUCTIVE PLATE WITH IT
JPWO2020175377A1 (ja) * 2019-02-27 2021-12-23 三菱ケミカル株式会社 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
US20220186102A1 (en) * 2019-03-22 2022-06-16 Fujimi Incorporated Filler, molded body, and heat dissipating material
CN113631505B (zh) * 2019-03-27 2024-01-16 富士胶片株式会社 散热片前体及散热片的制造方法
WO2021035383A1 (en) * 2019-08-23 2021-03-04 Evonik Specialty Chemicals (Shanghai) Co., Ltd. Thermal conductive filler and preparation method thereof
JP7152617B2 (ja) * 2019-09-25 2022-10-12 富士フイルム株式会社 放熱シート
JP7152616B2 (ja) * 2019-09-25 2022-10-12 富士フイルム株式会社 放熱シート
KR20220044784A (ko) * 2019-09-27 2022-04-11 후지필름 가부시키가이샤 열전도 재료 형성용 조성물, 열전도 재료, 열전도 시트, 열전도층 부착 디바이스
JP7372140B2 (ja) * 2019-12-25 2023-10-31 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
KR20210103167A (ko) 2020-02-13 2021-08-23 삼성전자주식회사 반도체 패키지
CN112225186B (zh) * 2020-10-21 2023-07-21 江西联锴科技有限公司 一种球形氮化硼的制备方法
CN113336203A (zh) * 2021-07-09 2021-09-03 丹东市化工研究所有限责任公司 一种小粒径氮化硼团聚体颗粒及其制备方法
WO2023089452A1 (en) * 2021-11-22 2023-05-25 3M Innovative Properties Company Spherical boron nitride particles having low surface roughness
JP2024507083A (ja) * 2021-12-22 2024-02-16 コリア インスティテュート オブ セラミック エンジニアリング アンド テクノロジー 放熱素材、これを含む組成物、及びその製造方法
WO2023218372A1 (en) * 2022-05-11 2023-11-16 Church & Dwight Co., Inc. Elastomeric articles with improved properties
KR20240003087A (ko) 2022-06-30 2024-01-08 이예진 질화붕소 시트가 탑재된 자율주행 방역로봇
CN115974011A (zh) * 2022-12-23 2023-04-18 雅安百图高新材料股份有限公司 球形六方氮化硼及其制备方法
JP7438443B1 (ja) 2023-10-12 2024-02-26 古河電子株式会社 窒化ホウ素凝集粒子、シート部材および窒化ホウ素凝集粒子の製造方法
JP7438442B1 (ja) 2023-10-12 2024-02-26 古河電子株式会社 窒化ホウ素凝集粒子、シート部材および窒化ホウ素凝集粒子の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203807A (ja) * 1997-01-20 1998-08-04 Osamu Yamamoto 乱層構造窒化硼素粉末とその製造方法
WO2014003193A1 (ja) * 2012-06-27 2014-01-03 水島合金鉄株式会社 凹部付きbn球状焼結粒子およびその製造方法ならびに高分子材料

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817785B1 (ja) 1967-03-29 1973-05-31
JP3461651B2 (ja) * 1996-01-24 2003-10-27 電気化学工業株式会社 六方晶窒化ほう素粉末及びその用途
JPH1160216A (ja) * 1997-08-04 1999-03-02 Shin Etsu Chem Co Ltd 熱伝導性窒化ホウ素フィラー及び絶縁放熱シート
US20060121068A1 (en) * 1999-08-31 2006-06-08 General Electric Company Boron nitride particles of spherical geometry and process for making thereof
US20070241303A1 (en) 1999-08-31 2007-10-18 General Electric Company Thermally conductive composition and method for preparing the same
US7976941B2 (en) * 1999-08-31 2011-07-12 Momentive Performance Materials Inc. Boron nitride particles of spherical geometry and process for making thereof
US7445797B2 (en) 2005-03-14 2008-11-04 Momentive Performance Materials Inc. Enhanced boron nitride composition and polymer-based compositions made therewith
US6645612B2 (en) 2001-08-07 2003-11-11 Saint-Gobain Ceramics & Plastics, Inc. High solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them
JP4089636B2 (ja) 2004-02-19 2008-05-28 三菱電機株式会社 熱伝導性樹脂シートの製造方法およびパワーモジュールの製造方法
EP1797155B1 (en) 2004-08-23 2015-10-07 General Electric Company Thermally conductive composition and method for preparing the same
JP4817785B2 (ja) 2005-09-30 2011-11-16 三菱エンジニアリングプラスチックス株式会社 高熱伝導絶縁性ポリカーボネート系樹脂組成物および成形体
JP5081488B2 (ja) * 2006-04-20 2012-11-28 Jfeスチール株式会社 六方晶窒化ホウ素粉末
EP2074058B1 (en) 2006-10-07 2012-08-29 Momentive Performance Materials Inc. Mixed boron nitride composition and method for making thereof
JP5184543B2 (ja) 2007-09-26 2013-04-17 三菱電機株式会社 熱伝導性シート及びパワーモジュール
JP2010138097A (ja) 2008-12-10 2010-06-24 Kao Corp 液状化粧料
JP5036696B2 (ja) * 2008-12-26 2012-09-26 三菱電機株式会社 熱伝導性シート及びパワーモジュール
JP5208060B2 (ja) 2009-06-26 2013-06-12 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
US8617503B2 (en) * 2009-08-20 2013-12-31 Kaneka Corporation Process for production of spheroidized boron nitride
JP5497458B2 (ja) * 2010-01-13 2014-05-21 電気化学工業株式会社 熱伝導性樹脂組成物
CN103068875B (zh) 2010-08-26 2015-09-16 电气化学工业株式会社 树脂组合物及由该树脂组合物构成的成型体和基板材料以及含有该基板材料的电路基板
DE102010050900A1 (de) * 2010-11-10 2012-05-10 Esk Ceramics Gmbh & Co. Kg Bornitrid-Agglomerate, Verfahren zu deren Herstellung und deren Verwendung
JP5653280B2 (ja) * 2011-04-15 2015-01-14 三菱電機株式会社 熱伝導性シート用樹脂組成物、熱伝導性シート及びパワーモジュール
JP5594782B2 (ja) 2011-04-29 2014-09-24 独立行政法人産業技術総合研究所 凝集体の製造方法
JP6044880B2 (ja) 2011-06-07 2016-12-14 国立研究開発法人産業技術総合研究所 無機有機複合組成物からなる複合材料及びその製造方法
JP2013040062A (ja) 2011-08-12 2013-02-28 Mitsubishi Chemicals Corp 六方晶窒化ホウ素粉末、それを含有する熱伝導性樹脂組成物及びそれによる成形体
CN105947997B (zh) * 2011-11-29 2018-12-21 三菱化学株式会社 氮化硼凝聚粒子、含有该粒子的组合物、及具有包含该组合物的层的三维集成电路
JP2013147403A (ja) 2012-01-23 2013-08-01 Mitsubishi Chemicals Corp 金属化合物含有窒化ホウ素、及びそれを含有する複合材組成物
DE102012104049A1 (de) 2012-05-09 2013-11-28 Esk Ceramics Gmbh & Co. Kg Bornitrid-Agglomerate, Verfahren zu deren Herstellung und deren Verwendung
JP5969314B2 (ja) * 2012-08-22 2016-08-17 デンカ株式会社 窒化ホウ素粉末及びその用途
JP6794613B2 (ja) * 2014-02-05 2020-12-02 三菱ケミカル株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203807A (ja) * 1997-01-20 1998-08-04 Osamu Yamamoto 乱層構造窒化硼素粉末とその製造方法
WO2014003193A1 (ja) * 2012-06-27 2014-01-03 水島合金鉄株式会社 凹部付きbn球状焼結粒子およびその製造方法ならびに高分子材料

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922743A (zh) * 2015-08-26 2018-04-17 电化株式会社 导热性树脂组合物
CN107922743B (zh) * 2015-08-26 2019-03-08 电化株式会社 导热性树脂组合物
JPWO2017038512A1 (ja) * 2015-09-03 2018-02-22 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
KR102033328B1 (ko) * 2015-09-03 2019-10-17 쇼와 덴코 가부시키가이샤 육방정 질화붕소 분말, 그 제조 방법, 수지 조성물 및 수지 시트
CN107848801A (zh) * 2015-09-03 2018-03-27 昭和电工株式会社 六方晶氮化硼粉末、其制造方法、树脂组合物及树脂片
KR20180015683A (ko) * 2015-09-03 2018-02-13 쇼와 덴코 가부시키가이샤 육방정 질화붕소 분말, 그 제조 방법, 수지 조성물 및 수지 시트
CN107848801B (zh) * 2015-09-03 2021-01-12 昭和电工株式会社 六方晶氮化硼粉末、其制造方法、树脂组合物及树脂片
US10781352B2 (en) 2015-09-03 2020-09-22 Showa Denko K.K. Powder of hexagonal boron nitride, process for producing same, resin composition, and resin sheet
WO2017038512A1 (ja) * 2015-09-03 2017-03-09 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
EP3345865A4 (en) * 2015-09-03 2019-04-17 Showa Denko K.K. HEXAGONAL BORON NITRIDE POWDER, PROCESS FOR PRODUCING THE SAME, RESIN COMPOSITION, AND RESIN SHEET
CN106905698B (zh) * 2015-10-14 2021-02-26 信越化学工业株式会社 绝缘散热片材
CN106905698A (zh) * 2015-10-14 2017-06-30 信越化学工业株式会社 绝缘散热片材
CN109312164A (zh) * 2016-07-05 2019-02-05 纳美仕有限公司 膜用树脂组合物、膜、带有基材的膜、金属/树脂层叠体、树脂固化物、半导体装置以及膜的制造方法
EP3524573A4 (en) * 2016-10-07 2020-07-01 Denka Company Limited AGGREGATED BORNITRIDE GRAIN, METHOD FOR THE PRODUCTION THEREOF AND HEAT-CONDUCTING RESIN COMPOSITION THEREFOR
CN109790025A (zh) * 2016-10-07 2019-05-21 电化株式会社 氮化硼块状粒子、其制造方法及使用了其的导热树脂组合物
KR20190058482A (ko) * 2016-10-07 2019-05-29 덴카 주식회사 질화 붕소 덩어리 형상의 입자, 그 제조 방법 및 이를 이용한 열전도 수지 조성물
US11732173B2 (en) 2016-10-07 2023-08-22 Denka Company Limited Surface-treated aggregated boron nitride powder, aggregated boron nitride powder, and thermally conductive resin composition
CN109790025B (zh) * 2016-10-07 2023-05-30 电化株式会社 氮化硼块状粒子、其制造方法及使用了其的导热树脂组合物
JPWO2018066277A1 (ja) * 2016-10-07 2019-07-25 デンカ株式会社 窒化ホウ素塊状粒子、その製造方法及びそれを用いた熱伝導樹脂組成物
US11268004B2 (en) 2016-10-07 2022-03-08 Denka Company Limited Boron nitride aggregated grain
KR102337986B1 (ko) 2016-10-07 2021-12-10 덴카 주식회사 질화 붕소 덩어리 형상의 입자, 그 제조 방법 및 이를 이용한 열전도 수지 조성물
WO2018066277A1 (ja) * 2016-10-07 2018-04-12 デンカ株式会社 窒化ホウ素塊状粒子、その製造方法及びそれを用いた熱伝導樹脂組成物
WO2018074077A1 (ja) * 2016-10-21 2018-04-26 デンカ株式会社 球状窒化ホウ素微粉末、その製造方法及びそれを用いた熱伝導樹脂組成物
KR20190071686A (ko) * 2016-10-21 2019-06-24 덴카 주식회사 구형상 질화 붕소 미분말, 그 제조 방법 및 이를 이용한 열전도 수지 조성물
EP3530614A4 (en) * 2016-10-21 2020-04-29 Denka Company Limited SPHERICAL BORNITRIDE FINE POWDER, METHOD FOR THE PRODUCTION THEREOF AND HEAT-CONDUCTING RESIN COMPOSITION THEREFOR
KR102360935B1 (ko) 2016-10-21 2022-02-09 덴카 주식회사 구형상 질화 붕소 미분말, 그 제조 방법 및 이를 이용한 열전도 수지 조성물
US10752503B2 (en) 2016-10-21 2020-08-25 Denka Company Limited Spherical boron nitride fine powder, method for manufacturing same and thermally conductive resin composition using same
JPWO2018074077A1 (ja) * 2016-10-21 2019-08-15 デンカ株式会社 球状窒化ホウ素微粉末、その製造方法及びそれを用いた熱伝導樹脂組成物
JP7037494B2 (ja) 2016-10-21 2022-03-16 デンカ株式会社 球状窒化ホウ素微粉末、その製造方法及びそれを用いた熱伝導樹脂組成物
JP2018115275A (ja) * 2017-01-19 2018-07-26 積水化学工業株式会社 硬化性材料、硬化性材料の製造方法及び積層体
JP2018188632A (ja) * 2017-04-28 2018-11-29 積水化学工業株式会社 熱硬化性シート及び硬化シートの製造方法
JP2019073409A (ja) * 2017-10-13 2019-05-16 デンカ株式会社 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材
JP7104503B2 (ja) 2017-10-13 2022-07-21 デンカ株式会社 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材
JP2019119883A (ja) * 2018-01-05 2019-07-22 三菱ケミカル株式会社 放熱絶縁シートおよび該シート硬化物を絶縁層とする積層構造体
JP7188070B2 (ja) 2018-01-05 2022-12-13 三菱ケミカル株式会社 放熱絶縁シートおよび該シート硬化物を絶縁層とする積層構造体
US11834603B2 (en) 2018-03-30 2023-12-05 Mitsubishi Chemical Corporation Heat dissipation sheet, heat dissipation member, and semiconductor device
WO2019189746A1 (ja) 2018-03-30 2019-10-03 三菱ケミカル株式会社 放熱シート、放熱部材及び半導体デバイス
KR20200032043A (ko) 2018-09-07 2020-03-25 쇼와 덴코 가부시키가이샤 육방정 질화붕소 분말 및 그 제조 방법, 및 그것을 사용한 조성물 및 방열재
WO2020049817A1 (ja) 2018-09-07 2020-03-12 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
US11078080B2 (en) 2018-09-07 2021-08-03 Showa Denko K.K. Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
WO2020196477A1 (ja) 2019-03-26 2020-10-01 三菱ケミカル株式会社 熱伝導性樹脂シート、積層放熱シート、放熱性回路基板、及び、パワー半導体デバイス
JPWO2020196643A1 (ja) * 2019-03-27 2020-10-01
JP7145315B2 (ja) 2019-03-27 2022-09-30 デンカ株式会社 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
CN113710616A (zh) * 2019-03-28 2021-11-26 电化株式会社 氮化硼粉末及其制造方法、以及复合材料及散热构件
JP7079378B2 (ja) 2019-03-28 2022-06-01 デンカ株式会社 窒化ホウ素粉末及びその製造方法、並びに、複合材及び放熱部材
KR20210138720A (ko) * 2019-03-28 2021-11-19 덴카 주식회사 질화 붕소 분말 및 그의 제조 방법, 및 복합재 및 방열 부재
JPWO2020196679A1 (ja) * 2019-03-28 2020-10-01
WO2020196679A1 (ja) * 2019-03-28 2020-10-01 デンカ株式会社 窒化ホウ素粉末及びその製造方法、並びに、複合材及び放熱部材
KR102658545B1 (ko) 2019-03-28 2024-04-17 덴카 주식회사 질화 붕소 분말 및 그의 제조 방법, 및 복합재 및 방열 부재
WO2021085593A1 (ja) 2019-10-30 2021-05-06 三菱ケミカル株式会社 樹脂組成物、硬化物、複合成形体、半導体デバイス
JP2021091579A (ja) * 2019-12-11 2021-06-17 デンカ株式会社 複合粒子を含有する粉体及びその製造方法、並びに、該粉体を含有する樹脂組成物
JP7378284B2 (ja) 2019-12-11 2023-11-13 デンカ株式会社 複合粒子を含有する粉体及びその製造方法、並びに、該粉体を含有する樹脂組成物
WO2022210686A1 (ja) 2021-03-29 2022-10-06 三菱ケミカル株式会社 樹脂組成物、シート硬化物、複合成形体及び半導体デバイス

Also Published As

Publication number Publication date
JP2016135729A (ja) 2016-07-28
US10106413B2 (en) 2018-10-23
JPWO2015119198A1 (ja) 2017-03-23
JP2021038140A (ja) 2021-03-11
JP6794613B2 (ja) 2020-12-02
JP7207384B2 (ja) 2023-01-18
JP7455047B2 (ja) 2024-03-25
EP3103766A4 (en) 2017-03-01
CN113788465A (zh) 2021-12-14
JP2016135730A (ja) 2016-07-28
TWI757686B (zh) 2022-03-11
EP3103766A1 (en) 2016-12-14
JP2019137608A (ja) 2019-08-22
CN106029561A (zh) 2016-10-12
US20180354793A1 (en) 2018-12-13
JP2016135732A (ja) 2016-07-28
US20160340191A1 (en) 2016-11-24
JP6773153B2 (ja) 2020-10-21
CN113788465B (zh) 2024-01-12
JP6493226B2 (ja) 2019-04-03
MY195160A (en) 2023-01-11
JP2021006507A (ja) 2021-01-21
JP2016135731A (ja) 2016-07-28
KR20160117472A (ko) 2016-10-10
JP6447202B2 (ja) 2019-01-09
JP2024003261A (ja) 2024-01-11
KR102400206B1 (ko) 2022-05-19
CN106029561B (zh) 2021-11-02
US10414653B2 (en) 2019-09-17
TWI687393B (zh) 2020-03-11
TW202026270A (zh) 2020-07-16
TW201536715A (zh) 2015-10-01
MY179291A (en) 2020-11-03

Similar Documents

Publication Publication Date Title
JP7207384B2 (ja) 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP6786778B2 (ja) 放熱樹脂シート及び該放熱樹脂シートを含むデバイス
JP6364883B2 (ja) 窒化ホウ素粒子および窒化ホウ素粒子の製造方法、該窒化ホウ素粒子を含む放熱シート用塗布液、該窒化ホウ素粒子を含む放熱シート、並びにパワーデバイス装置
JP6500339B2 (ja) 放熱シートおよび放熱シート用塗布液、並びにパワーデバイス装置
TWI832978B (zh) 氮化硼凝集粉末、散熱片及半導體裝置
JP6379579B2 (ja) 窒化ホウ素シート
JP6394115B2 (ja) 樹脂組成物、樹脂組成物からなる放熱シート、及び放熱シートを含むパワーデバイス装置
JP2017036190A (ja) 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
JP6256158B2 (ja) 放熱シートおよび放熱シート製造方法、放熱シート用スラリー、並びにパワーデバイス装置
JP7467980B2 (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイスの製造方法
JP2015189609A (ja) 窒化ホウ素シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561028

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20167021577

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015746358

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746358

Country of ref document: EP