JPH10203807A - 乱層構造窒化硼素粉末とその製造方法 - Google Patents

乱層構造窒化硼素粉末とその製造方法

Info

Publication number
JPH10203807A
JPH10203807A JP2105297A JP2105297A JPH10203807A JP H10203807 A JPH10203807 A JP H10203807A JP 2105297 A JP2105297 A JP 2105297A JP 2105297 A JP2105297 A JP 2105297A JP H10203807 A JPH10203807 A JP H10203807A
Authority
JP
Japan
Prior art keywords
boron nitride
powder
turbostratic
nitride powder
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2105297A
Other languages
English (en)
Other versions
JP3839539B2 (ja
Inventor
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKANO AKIYUKI
Fuji Enterprise KK
Original Assignee
NAKANO AKIYUKI
Fuji Enterprise KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKANO AKIYUKI, Fuji Enterprise KK filed Critical NAKANO AKIYUKI
Priority to JP02105297A priority Critical patent/JP3839539B2/ja
Priority to CN 98105629 priority patent/CN1195672C/zh
Publication of JPH10203807A publication Critical patent/JPH10203807A/ja
Application granted granted Critical
Publication of JP3839539B2 publication Critical patent/JP3839539B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(57)【要約】 【課題】焼結性に優れた窒化硼素粉末を安価に提供す
る。 【解決手段】無水硼酸と尿素の混合物を硼酸アルカリと
共に/又はなしで密閉ないし準密閉反応容器中に入れ、
非酸化性の1気圧より高い圧力雰囲気に保持して順次温
度を上げ、850〜950℃までの温度に加熱反応させ
て実質的に非晶質の窒化硼素を合成し(一次工程)、次
いで反応生成物を1200〜1400℃で加熱してt−
BNへと結晶化し、生成物を水性洗浄液で洗浄して精製
して、結晶性t−BNを製造する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は焼結性に優れ、特に
高純度でかつ安価に量産できる窒化硼素粉末、特に乱層
構造を有する窒化硼素粉末とその(特に量産可能な)製
造方法に関する。
【0002】窒化硼素には六方晶系の窒化硼素(以下h
−BNという)、菱面体晶系の窒化硼素(以下「r−B
N」)、非晶質の窒化硼素(以下a−BNという)、乱
層構造(turbostratic)の窒化硼素(以下
t−BNという)及び高圧相であるZinc Blen
d型のc−BNとW urtzite型のw−BNが知
られている。a−BNは、たとえば900℃以下の比較
的低温で窒化硼素を合成すると生成し、高温で窒化硼素
を合成したり、低温で合成されたa−BNを高温で熱処
理すると、結晶化が進んで安定な六方晶系のh−BNに
転化することが知られている。h−BN粉末の一次粒子
は通常六角板状である。
【0003】h−BN粉末の粉末X線回折図には(図1
に示すように)[002]、[100]、[101]、
[102]及び[004]の回折線が顕著である。これ
に対しa−BNである窒化硼素粉末のX線回折図は、一
般に、図8に示すようにh−BN粉末の粉末X線回折図
の[002]回折線と、[100]回折線及び[10
1]回折線に相当する位置に[100]回折線と[10
1]回折線とが合体したいずれもブロード(半価幅が大
きい)な回折線を示す(以下、説明の便宜上h−BN以
外の結晶構造を有する窒化硼素結晶の粉末X線回折にお
ける回折線をh−BN粉末の粉末X線回折による回折線
の呼称で呼ぶ)。h−BNは硼素と窒素の六角形の網目
層がaa’aa’・・・・のパターンで積層した結晶構
造を有するが、硼素と窒素からなる六角形の網目層の積
層形態が変われば六方晶系でない結晶系の窒化硼素結晶
になり、積層形態(即ち積層層間の相互関係)に規則性
のない窒化硼素が一般的に乱層構造窒化硼素と呼ばれ
る。
【0004】この極く広義の一般的な意味では、a−B
Nも一種の乱層構造を有する窒化硼素であり、たとえば
資源・素材学会誌Vol.105(1989)No.
2,p201に説明があるように、a−BNを乱層構造
窒化硼素とする分類方法もあるが、これは非晶質窒化硼
素と称すべきものであり、本発明では結晶が相当発達し
てその粉末X線回折図の[004]回折線を始めとする
回折線がある程度顕著に現われたものをt−BNと呼ぶ
ものとする。(さらに本発明においては、後述の通り、
[004]回折線の2θの半価幅が所定値以下の結晶で
あって、かつ積層形態(パターン)に規則性のない窒化
硼素を特に結晶性t−BNとして意図するものであ
る。)
【0005】窒化硼素は黒鉛と類似の層状結晶構造を有
していることによって、電気的に優れた絶縁体である点
を除くと、黒鉛と類似の性質を有している。たとえば、
層間の結合が弱く鱗片状に劈開しやすい、固体潤滑性が
ある、非酸化性雰囲気中では高温まで安定である、難焼
結性である、焼結体は容易に機械加工できる、加えて酸
化温度が黒鉛に比べて約500℃程高い(約1000
℃)等である。窒化硼素には材料として魅力的な性質が
あるので、もし焼結性に優れた或いは高純度な窒化硼素
粉末を安価に製造でき、安価に焼結体を提供できれば経
済的に成立しなかった多くの新用途を実現できることに
なる。
【0006】
【従来の技術】窒化硼素の製造方法としては、次のよう
な方法が知られている。 (1)硼砂と尿素の混合物をアンモニア雰囲気中で加熱
する(特公昭38−1610号)。 (2)硼酸や硼酸アンモニウムを含窒素化合物(尿素、
アンモニア、メラミン、ジシアンジアミド等)とともに
加熱する(特公昭48−14559号、特公昭5−47
483号、特開平7−172806号、J.Am.Ch
em.Soc.vol.84 p4619−4622,
1963)。 (3)硼素粉末を窒素とアンモニアの雰囲気中で加熱す
る(特公平7−53610号)。 (4)BCl3とNH3を減圧下で気相反応させて合成す
る(特開平2−296706号)。 (5)ボラジン又はボラジン誘導体を熱分解する(特公
平4−4966号)。 (6)J.Am.Chem.Soc.84、p4619
〜4622、1963には、尿素と硼酸をアンモニア中
で500〜950℃で加熱反応して合成された窒化硼素
粉末が乱層構造炭素と同様の乱層構造を有すると報告さ
れている。
【0007】
【発明が解決しようとする課題】本発明に至る開発経過
において従来技術について以下のような問題に直面する
ことが分かった。(1)の方法による合成粉末は低温で
反応させたものはa−BNであり、高温で反応するとh
−BNになるとされており、反応で生成した合成粉末中
にはかなり多くのNa成分が含まれていて、そのままで
は電気絶縁性が必要な用途には適さない。(2)の方法
では、1000℃未満の低温で合成するとa−BN粉末
が得られ、高温で合成すれば硼酸がh−BNの結晶化を
促進してh−BNになるとされている。これは、本発明
の観点からすると、合成されたa−BN粉末は硼酸以外
の不純物を含まないが、硼酸があるためh−BNが生成
しやすいという問題がある。
【0008】(3)と(5)の方法では、原料である硼
素粉末やボラジン、ボラジン誘導体が高価であり、結果
的に製造する窒化硼素も高価になる。(4)の方法は生
産性が劣り、反応で生成する塩酸ガス等に腐食性があっ
て刺激臭もあるので、作業環境上の問題及び塩酸ガスの
吸収除去装置を必要とするため設備費が高くつくという
問題がある。また、これらの報告中には、いずれについ
ても結晶性のよいt−BN粉末が得られたという記載は
見当たらない。
【0009】他方、(6)の方法では、本発明の観点か
らするとこの窒化硼素はその粉末X線回折図の[00
2]回折線に相当する位置及び、[100]回折線と
[101]回折線に相当する個所にそれぞれブロード
(半価幅が大きい)な回折線[002],[10]を示
し、[004]回折線も認められないような非晶質窒化
硼素粉末について説明しているに過ぎない(Fig.1
A)。そしてさらに高温にした場合約1450℃で乱層
構造から六方晶系への変態が開始し、1850℃で完了
するとされると共に、結晶化が進むと部分的三次元規則
化が生じ(Fig.1B、C)最終的に六方晶系の完全
な三次元規則化に到達すると報告している。なお、この
場合も酸化硼素の残留が不可避である。
【0010】以上のとおり、従来知られたいずれの方法
においても、乱層構造窒化硼素(特により結晶化の進ん
だ結晶性乱層構造窒化硼素)を標的に量産可能な方法は
知られていない。また、そのように量産可能な性質の乱
層構造窒化硼素も従来知られていない。本発明の基本目
的は、新規な乱層構造窒化硼素及び新規な乱層構造窒化
硼素の製造方法を提供することにある。より詳しくは、
本発明は上記問題点を解決して焼結性に優れ、かつ安価
な窒化硼素粉末、特に乱層構造窒化硼素とその量産可能
な製造方法を提供することを具体的課題とする。さら
に、別の視点において、より高純度な乱層構造窒化硼素
を提供すること、さらには、より均一な粒径を有するも
の(特に所望の1μm以下から超サブミクロンのレベル
まで、粒径の制御が可能なもの)を提供することも、夫
々課題とする。
【0011】
【課題を解決するための手段】本発明の第1の視点にお
いて、実質的に非晶質の窒化硼素をフラックス剤として
の有効量の溶融硼酸アルカリの存在下に非酸化性雰囲気
中(密閉状態又は準密閉状態の容器中雰囲気を含む)に
おいて結晶性乱層構造窒化硼素(t−BN)へと結晶化
させる工程(t−BN結晶化工程ないし二次工程)を含
むことを特徴とする乱層構造窒化硼素粉末の製造方法が
提供される。
【0012】ここに、BNの結晶化とは、一般には三次
元的規則配列を持ったBNへの移行を指すが、ここで言
うt−BN結晶化とは、BNの層が次第に発達し、層面
内回転に関しては不規則ながら層間相互の平行性が増
し、層間間隔が揃って行く過程、即ち結晶性のt−BN
化について言うものとする。
【0013】前記t−BN結晶化工程は、約1500℃
以下で実質的に結晶性t−BNに達するまでの所定時間
行うことが好ましく、さらに1200〜1400℃の温
度で行なうことが好ましい。なお、第1の視点において
この二次工程の出発物質は好ましくは、第2の視点以下
に示すがこれに限定されず、任意の非晶質窒化硼素を用
いることも可能である。また、部分的に乱層構造の結晶
化の進行した中間段階のものを用いることも、結晶性の
t−BNの種を用いることもできる。
【0014】本発明の第2の視点において、硼素源と窒
素源を含有する混合物を大気圧ないし加圧条件下(密閉
ないし準密閉容器中を含む)に加熱反応させて実質的に
非晶質の窒化硼素を合成する工程(一次工程ないBN合
成工程)を含むことを特徴とする乱層構造窒化硼素粉末
の製造方法が提供される。加熱時の圧力を大気圧以上に
保つことにより、反応が促進され、高純度を目指す場
合、硼酸アルカリの量は極く少量とするか、又は全くな
くてもよい。その反応生成物は洗浄を施すことなく、t
−BN結晶化処理を行うことができる。加熱反応は12
00℃未満、好ましくは950℃以下まで加熱して行う
ことができる。
【0015】本発明の第3の視点において、硼素源をな
す硼素酸化物ないし加熱により硼素酸化物を生ずる物質
と窒素源にフラックス剤としての有効量の硼酸アルカリ
を含む混合物を非酸化性の雰囲気(密閉状態又は準密閉
状態の容器中雰囲気を含む)に保持して加熱反応させて
実質的に非晶質の窒化硼素を合成する工程(一次工程な
いしBN合成工程)を含むことを特徴とする乱層構造窒
化硼素粉末の製造方法が提供される。
【0016】前記窒素源として尿素を用いることが好ま
しい。硼酸アルカリはその水和物として用いることがで
き、硼酸ナトリウム及び/又はその水和物を用いること
ができる。前記一次工程は、1200℃未満で少なくと
もフラックス剤の溶融温度以上まで加熱して行うことが
好ましい。さらに、前記反応を850〜950℃までの
温度に加熱して行なうことが好ましい。
【0017】第2、第3の視点において、前記一次工程
における非酸化性雰囲気は出発混合物の加熱分解ガス成
分から主として成ることができる。前記一次工程を反応
容器中において生成ガスの吸引排気をすることなく行う
ことができ、非酸化性雰囲気が大気圧ないし微加圧を含
む大気圧より高い圧力にできる。また、第2、第3の視
点において混合物中の硼素源としての硼素と窒素源とし
ての窒素のN/B比を窒素過剰とすることができ、N/
B比は1.01以上、さらに1.5以上、さらに2以上
とすることが好ましい。例えば尿素/無水硼酸の重量比
は1.5以上、さらに2以上が好ましく、約6/4〜9
/4の範囲(N/B比1.75〜2.6)が最も好まし
い。
【0018】さらに、前記t−BN結晶化工程(二次工
程)において、窒素源をさらに添加(さらに加熱)する
こともできる。これは窒素雰囲気の生成、さらには未反
応硼素源の反応の完遂に資する。混合物中の硼酸アルカ
リの量を0.01重量%以上、20重量%以下(さらに
0.1〜15重量%(ないし1〜10重量%)とするこ
とが反応促進上好ましいが、高純度化のためには、硼酸
アルカリを用いないことがより好ましい。但し、その場
合、圧力等の反応条件及び仕込み混合物のN/B比を最
適化して調節する。
【0019】前記一次工程の反応生成物を非酸化性雰囲
気中(密閉状態又は準密閉状態の容器中雰囲気を含む)
で1500℃以下、さらに1450℃以下、特に120
0〜1400℃に保持して結晶性乱層構造窒化硼素(t
−BN)へと結晶化させる工程(t−BN結晶化工程な
いし二次工程)を含むことが好ましい。本発明の利点
は、このt−BN結晶化工程を、一次工程の反応生成物
の洗浄ないし精製を行うことなしに行うことができるこ
とであり、またそうすることがある意味では好ましいこ
とである。さらに前記一次工程の反応生成物を粉砕する
工程をt−BN結晶化工程(二次工程)の前に含むこと
が好ましいが、前記一次工程に引続き二次工程を連続し
て行うこともできる。
【0020】前記結晶化させた結晶性乱層構造窒化硼素
を溶媒(水性洗浄液、特に酸性水)で洗浄して硼酸アル
カリ等の残留介在物ないし不純物を除去することができ
る。水洗で高純度に洗浄できることは、大きな利点であ
る。前記一次工程を前記反応容器を密閉ないし準密閉容
器とし徐々に及び/又は段階的に温度を上げて行なうこ
とが好ましい。このようにして昇温過程においても反応
を進行させることができる。t−BN微粉末を種結晶と
して少量添加して硼素源、窒素源及びフラックス剤を含
む混合物を加熱反応させる工程(通例は一次工程におい
て)を含むことが出来る。これにより、反応効率ないし
収率の増大が達成される。
【0021】本発明の第4の視点において、第1、第
2、第3の視点のいずれかの方法により製造されること
を特徴とする結晶性乱層構造窒化硼素粉末が提供され
る。本発明の第4の視点の一例において硼素源としての
硼素酸化物ないし加熱により硼素酸化物を生ずる物質
と、尿素を含む窒素源と、有効量の硼酸アルカリとを含
む混合物を非酸化性雰囲気中(密閉状態又は準密閉状態
の容器中雰囲気を含む)で加熱反応させて結晶性乱層構
造窒化硼素の前駆体を生成させる工程(一次工程)、及
び該反応生成物を非酸化性雰囲気中で加熱して結晶性乱
層構造窒化硼素へと結晶化させる工程(二次工程)を含
む方法により製造される結晶性乱層構造窒化硼素粉末が
提供される。
【0022】第4の視点の他の変形例として、一次工程
を上記出発混合物を硼酸アルカリを含むことなく、大気
圧ないし加圧下条件下(密閉ないし準密閉容器中を含
む)に加熱反応させて結晶性乱層構造窒化硼素の前駆体
を生成する工程を含み、さらに上記の二次工程を含む方
法により製造される高純度結晶性乱層構造窒化硼素粉末
が提供される。
【0023】第4の視点において、CuKα線によるX
線回折図における六方晶系窒化硼素の[004]の回折
線に対応する回折線の2θの半価幅が0.6°以下(さ
らに0.5°以下ないし0.47°以下)である結晶性
乱層構造窒化硼素粉末が得られる。この結晶性乱層構造
窒化硼素粉末としては、さらに、該X線回折図において
六方晶系窒化硼素に相当する[002]回折ピーク、
[004]回折ピーク及び[100]回折ピークを有
し、[101]回折ピークに代わり実質的に非晶質の乱
層構造窒化構造窒化硼素に現れる[10]回折ピークを
[100]回折ピークの大角側に連接下り勾配として有
すると共に、六方晶系窒化硼素の[102]相当回折ピ
ークを実質的に明確に示さないことを特徴とするものが
得られる。好ましくは、該X線回折図中の六方晶系窒化
硼素の[100]、[101]及び[102]の回折線
に対応する各回折線の占める面積(回折線の強度を意味
する)S100、S101及びS102の間にS102/(S100+
S101)≦ 0.02の関係がある(これは実質的にh−
BNを含まないことを意味する)。また、典型的には、
CuKα線による粉末X線回折図における六度晶系窒化
硼素の[004]の回折線に相当する2θの回折線が5
5°±0.3°にある結晶性乱層構造窒化硼素粉末が得
られる。これらは、高純度の結晶性t−BNに対応する
ものである。純度としては通例99%以上、99.5%
以上、さらには99.8%以上のものが得られる。
【0024】本発明の第5の視点において、均一な一次
粒子径の窒化硼素粉末が提供される。典型的にはその一
次粒子の粒径が3μm以下、一次粒子の平均粒径が1μ
m以下とできる。また、一次粒子の大部分が略球状及び
/又は略円板形状の粒形を有するものである。粒子形状
は小さいものは略球状、結晶が発達すると略円板形状に
なる。さらに、窒化硼素粉末の一次粒子の平均粒径が
0.1μm以下のものが得られる。典型的には、一次粒
子の平均粒径をXμmとするとき、一次粒子の90%以
上が1/2X〜2Xμmの範囲内に存する均一粒度分布
のものが容易に得られる。吸着法で測定される窒化硼素
粉末の比表面積は20m2/g以上のもの得られる。本
発明の結晶性乱層構造窒化硼素粉末は、X線回折上実質
的には、酸化硼素を含まないものが容易に得られる。
【0025】また、前記乱層構造窒化硼素のCuKα線
による粉末X線回折図に六方晶系窒化硼素の[102]
回折線に相当する回折線ピークが認められない結晶性乱
層構造窒化硼素粉末が得られる。より好ましくは、前記
乱層構造窒化硼素粉末のCuKα線による粉末X線回折
図の六方晶系窒化硼素の[100]及び[101]に相
当する回折線が合わさった[10]回折線に[101]
回折線に相当する回折線がピークとして実質上に認めら
れないものが得られる。
【0026】本発明の第6の視点において、CuKα線
による合成窒化硼素粉末のX線回折図における六方晶系
窒化硼素の[004]の回折線に対応する回折線が明確
な尖鋭なピークとしての形を有さない鈍い山形状である
実質的に非晶質の窒化硼素粉末を含む粉末組成物が提供
される。これは、同粉末を非酸化性雰囲気中において1
200〜1400℃で加熱してt−BNへの結晶化処理
をするとき、CuKα線による合成窒化硼素粉末のX線
回折図における六方晶系窒化硼素の[004]の回折線
に対応する回折線の2θの半価幅が0.6°以下であ
り、該X線回折図中の六方晶系窒化硼素の[100]、
[101]及び[102]の回折線に対応する各回折線
の占める面積(回折線の強度を意味する)S100、S101
及びS102の間にS102/(S100+S101)≦ 0.02
の関係がある結晶性乱層構造窒化硼素粉末に転化する特
性を有する結晶性乱層窒化硼素前駆体を含有することを
特徴とする非晶質窒化硼素粉末含有粉末組成物として得
られる。
【0027】本願の第7の視点として、硼酸アルカリを
含有する被覆層(好ましくは主として硼酸アルカリから
成る被覆層)を有する被覆窒化硼素粉末粒子が得られ
る。これは、一次工程の結果物(又は二次工程の出発物
質として)中間製品の形で得られる。このような状態の
被覆粒子は、t−BN結晶化に最適である。この被覆窒
化硼素としては、実質的に非晶質でよいが、実質的結晶
性t−BNを含有することも有用である(特に種結晶と
しての役割)。種(ないし核)は実質的に結晶性t−B
Nであればよく完全な結晶性は必ずしも要しない。
【0028】
【発明の実施の形態】本発明の第1、第2の視点におい
て、乱層構造窒化硼素粉末の製造方法は、硼素源として
の硼酸(ないし無水硼酸)と窒素源(特に尿素)に硼酸
アルカリ(フラックス剤)を加えた混合物を蓋付きの反
応容器中に入れ、非酸化性の(特に大気圧ないし大気圧
より高い圧力)雰囲気に保持して加熱反応させて窒化硼
素を合成する工程を含むことが好ましい。反応は特に、
950℃までの温度で(特にフラックス剤を含む場合フ
ラックス剤の溶融温度まで、好ましくは850〜950
℃まで)行ない実質的に非晶質の窒化硼素を(特に乱層
構造窒化硼素の前駆体として)生成することが好まし
い。窒素源としては窒素と炭素、水素、酸素等の1以上
の元素との化合物があり、尿素の如く、加熱温度下にお
いて液状となるものが反応効率の上で好ましい。硼素源
としては、硼素と酸素の化合物が反応性及び安価かつ安
全性の観点から好ましい。いずれもさらに水和物であっ
てよい。
【0029】硼酸は天然の硼酸塩(主に硼砂)に硫酸を
加え、硼酸の水に対する溶解度が小さいことを利用して
溶液から析出させて製造される。無水硼酸は硼酸を加熱
して脱水すれば得られるのでやはり安価な原料であり、
無水硼酸の融点は460℃とされている。また、尿素は
アンモニアと炭酸ガスから直接合成されるので高純度化
が容易であり、肥料としても使用されていることから分
かるように安価であり、その融点は135℃である。
【0030】本発明では、硼酸はB23が水化して生ず
る硼素酸を総称しており、加熱して脱水すれば無水硼酸
(酸化硼素)に変わる。したがって、硼素源としては無
水硼酸の代わりに硼酸を使用することもでき加熱時には
同様な反応を行なうことになる。原料に使用できるフラ
ックス剤たる硼酸アルカリとしては、硼酸リチウム、硼
酸ナトリウム、硼酸カリウムがある。これらの硼酸アル
カリの内、安価で水洗によって容易に除去できることか
ら硼酸ナトリウムを使用するのが好ましい。硼酸アルカ
リは通常硼砂のように結晶水を含んでいる場合が多い
が、加熱すると結晶水が取れて無水物になり、比較的低
温で溶けてガラス化する。混合物中に硼酸アルカリが混
在すると、t−BNに転化しやすいa−BNを生成し、
さらに結晶性t−BNへの転化を促進する働きがある。
【0031】硼酸アルカリ、たとえば硼砂(四硼酸ナト
リウム、Na247・10H2O)は200℃以上35
0〜400℃で脱水して無水物になり、741〜878
℃で溶融する。窒素源、硼素源のいずれの化合物も溶融
温度が比較的低いものを用いることができるので、加熱
時には原料の混合物がまず溶融した状態となり、次いで
温度上昇に伴いバサバサの状態になるが、反応時の溶融
物ないし反応中間物(反応系)から水蒸気、炭酸ガス等
が放出される。このとき放出される反応生成物及び放出
物には毒性がなく、不燃性のものとできるので、その場
合、製造装置は簡単に構成できる。反応時の反応容器は
放出される水蒸気、炭酸ガス等の反応生成ガスによって
充満置換され、密閉(ないし準密閉)して大気(酸素)
の流入を防ぐようにしておけば加熱により自然に圧力が
上昇する。容器の安全性及び耐圧容器のコスト等を勘案
すると、圧力が上り過ぎないように圧力逃がし弁を設け
て適切な正圧ないし微加圧(例えば、1.01気圧以
上)に保つのが好ましい。しかし、圧力は、目的に応
じ、所定の反応を達成するに適した圧力にさらに調節す
ることができる。圧力の上限は特にないが、反応容器の
耐圧力、製作費等を考慮し、一例として2.5kg/c
2以下でよい。特にフラックス剤を用いない場合に
は、できるだけ反応促進のため、高圧下に反応させるこ
とが好ましい。
【0032】一次工程における反応加熱(加熱)は、B
N合成反応の進行のため450℃以上、さらに500〜
600℃以上かつ1200℃未満、好ましくは1050
℃以下或いは1000℃以下(さらに好ましくは800
〜950℃、さらに好ましくは880〜920℃、最も
好ましくは約900℃)の温度で行なうことができる。
しかし、950℃以下で十分反応が進行してBNが合成
されるので一次工程は、この程度の温度以下でかつ、フ
ラックス剤の溶融温度以上に加熱することが好ましい。
フラックス剤の溶融温度以上の加熱により、溶融したフ
ラックス剤は生成した窒化硼素粒子の周りに(その量に
応じ一様に)被覆される(或いは、フラックス剤が十分
存在する場合、生成BN粒子が溶融フラックス剤のマト
リックス中に分散して存在する)。
【0033】一次工程の反応生成物即ち、一次工程産物
(乱層構造窒化硼素前駆体)はさらに結晶性のt−BN
化するために(好ましくは窒素雰囲気等の非酸化性雰囲
気中で)t−BN結晶化温度で処理される。このt−B
N結晶化温度は約1500℃以下で実質的にh−BNが
生成しない条件(時間、雰囲気及び周囲状態)で行うも
のとし、1450℃以下さらには、通常の非酸化性雰囲
気(特に窒素雰囲気)中では、特に1200〜1400
℃(好ましくは1250〜1380℃、さらに1300
〜1350℃)(好ましくは密閉ないし準密閉状態の容
器中で)所定のt−BN構造の結晶化(さらに所定の結
晶粒径)を達成するまでの時間処理することができる。
この際介在する当初の出発材料(混合物)成分の残分が
h−BN化を防ぎ効率的にt−BN化を提供する。その
詳しい理由は、未解明な点も多いが、硼酸アルカリ成分
の存在が有効であることが判っている。硼酸アルカリを
用いない場合には、十分にBN合成及びt−BN結晶化
を進めることが好ましく、また洗浄を十分に行うことが
高純度化に資する。洗浄は、水洗のみならず、酸性洗浄
水を用いて行い、特に揮発性の酸(HClなど)を用い
ることが好ましい。残留酸化硼素を除去するため、洗浄
液は加熱する。最後は熱水ですすぐ。t−BNへの結晶
化工程終了後、反応生成物ないし結晶化生成物は、水洗
され、アルカリ成分等の残留物を除去し、精製t−BN
粉末を得る。その際、酸化硼素の未反応残分も容易に除
去されるので、残留硼素(ないし硼素酸化物)を低く制
御できる。
【0034】本発明の第4の視点の一例として、硼酸
(ないし無水硼酸)、尿素を含み、さらに硼酸アルカリ
を含む(又は含まない)混合物を大気圧より高い圧力雰
囲気の反応容器中(特に密閉状態又は準密閉状態の容器
中)で加熱反応させる工程、及び反応生成物を窒素雰囲
気中で加熱して乱層構造窒化硼素へと結晶化させる工程
を含む方法により、製造される特定の結晶性乱層構造窒
化硼素粉末が提供できる。このCuKα線による合成窒
化硼素粉末のX線回折図における六方晶系窒化硼素の
[004]の回折線に対応する回折線の2θの半価幅は
好ましくは0.6°以下(さらに0.5°以下、典型的
には約0.47°以下)であり、この点でもt−BNで
も非晶質に近いもの(a−BN)ないし、結晶性の低い
ものとは異なる。a−BNでは[004]回折線は、尖
鋭なピークとして現れず、なだらかな山形ないし丘状カ
ーブを示し、結晶性の低いt−BNでは[004]相当
回折線の半価幅は0.7°以上(1°,1.5°等)の
ものが知られている。即ち、所定回折線の2θの半価幅
が小さいということは、相当結晶化が進んでいる(或い
は結晶粒子が成長している)ことを意味する。また、該
X線回折図中の六方晶系窒化硼素の[100]、[10
1]及び[102]の回折線に対応する各回折線の占め
る面積(回折線の強度を意味する)S100、S101及びS
102の間にS102/(S100+S101)≦ 0.02の関係
があるものが得られる。S102/( S100+S101)≦
0.02の関係は一般的にはh−BNが含まれないか含
まれていても極少ない(実質的に含まれない)ことを意
味する。このようにかなりの結晶性を有するが積層形態
には完全な規則性のないt−BNではh−BNの[10
2]に相当する回折線が基本的には全く現れないはずで
あり、[102]の回折線が現れる場合にはt−BNで
ないh−BN等の結晶が混在していることを一般には意
味すると考えられる。しかし、この場合、h−BNに特
徴的な他の回折線が現れない場合には、部分的に擬h−
BN構造の変形t−BNが生成している場合も考えられ
る。
【0035】本発明の第6の視点において、均一で狭い
(揃った)一次粒子径の結晶性t−BNが得られる。一
次粒子径は、純度及び二次工程(t−BN結晶化工程)
の熱処理温度(さらに処理時間)によって主として制御
できる。サブミクロン域ではSEMで測定しないと正確
に制御できないが、1300℃未満で平均0.1μm以
下;1300℃で平均0.2〜0.3μmのもの、13
50℃で平均1μm以下のもの、最小では0.01〜
0.02μm、0.05μm以下とか0.07〜0.0
8μmのものも可能であり、大きい方では3〜4μmの
もの(1400℃)も可能である。さらに温度を上げる
とh−BNの気配が生ずるが、主体としてはt−BNと
なるよう制御できるところに本発明の特徴がある。な
お、一次粒子径は上記の範囲内の任意の平均粒子径に制
御することができる。
【0036】二次工程は、典型的には、N2などの非酸
化性雰囲気中で(常圧でよい)1200〜1400℃に
約2時間保持することにより行うことができる。一例と
しては一次工程の後常温から約10時間かけて所定保持
温度(例えば1300℃)まで昇温する。保持温度は温
度及び所望粒径、結晶化の程度等にもよるが通例10分
以上、好ましくは30分〜1時間以上〜さらに2時間以
上ともできる。この際に尿素などの窒素源を加えて加熱
することにより、窒素雰囲気と共に残留酸化硼素のBN
化も併せて達成し、収率及び純度を改善できる。もちろ
ん、一次工程と二次工程は続けて行うこともできるが、
一次工程の後反応生成物をほぐし或いは粉砕(軽く解砕
する程度でも可)することが均一化のために好ましい。
【0037】本発明の第7の視点において、既述の通
り、結晶性t−BNの前駆体たる非晶質t−BN粉末含
有粉末組成物が得られる。これは硼酸アルカリを含むも
のとして、一次工程の生成物(中間生成物)として得ら
れるが、非晶質t−BN粒子は硼酸アルカリのフラック
ス剤に少なくとも部分的に被覆され、或いは囲まれて分
散した形をなす。なお、本願において、数値範囲は、上
限、下限値の間に含まれる(またはそれ以下又は以上)
の任意の数字を代表するものとし、少なくとも全範囲の
10分の1スケールの任意数を含むものとする。記載の
簡略化のため、中間値の記載を省くに過ぎない。
【0038】混合物中に配合する硼酸アルカリの配合量
は、硼素成分の一部が窒化硼素の原料になり、a−BN
のt−BNへの結晶化を促進する働きをするので、この
働きを充分発揮できるように結晶水を除いた混合物中の
配合量で計算して混合物中0.01(さらに0.1,
0.5)重量%以上とするのが好ましい。しかし余り多
く配合してもこの結晶化を促進する働きはある程度以上
増えず、水洗して精製するとき多くの時間と多くの純水
を消費することになる。硼酸アルカリの配合量は、さら
に好ましくは20(さらに15、10、5)重量%以下
とでき、その配合量は上述の範囲内で任意の数値に調節
可能である。しかし、特に高純度のt−BNを目指す場
合、硼酸アルカリは加えることなく、所望のt−BNを
製造できる。なお、一次工程にのみ硼酸アルカリを用
い、その後洗浄して二次工程を行うこともできるが、洗
浄による残留未反応物(不純物)の除去ロスを考慮する
と、一次工程から硼酸アルカリを用いないでBNの合成
を行うことが有利である。その場合、既述の通り、反応
条件を調節し、反応促進を図る。反応促進は、一次工程
の上限温度及び時間、さらにより大きくは、反応雰囲気
の圧力増大によって達成できる。なお、二次工程は温度
に注意すれば硼酸アルカリの不存在下でも十分均一な結
晶性t−BNが得られる。さらに、加熱洗浄水、特に酸
性洗浄水による洗浄の併用によって、最終的に高純度の
結晶性t−BNが得られる。
【0039】反応容器は反応温度と反応圧力に耐え、腐
食されないものであればよく、950℃までの反応容器
には安価な鋼製又はステンレス鋼製の反応容器を使用で
きる。非酸化性雰囲気とは酸素の供給を断った状態であ
ればよく、反応容器の加熱時の微加圧(水蒸気の気化成
分が噴出するる状態)にあればよい。大気圧より高い圧
力雰囲気というのは、空気中の酸素が反応容器中に全く
侵入しない圧力をいうが、完全に酸素を断った状態とし
て合成反応を促進できることから、好ましくは1.01
〜2.5気圧、さらに好ましくは1.05〜2.0気圧
とすることができる。2.5気圧より容器内の圧力を高
くしなくても十分に反応が進むので、好ましい圧力を
2.5気圧以下とするが、より高い圧力を用いること
も、当然可能である。この反応容器中で起きる主な反応
は、 B23+CO(NH22→2BN+CO2+2H2Oであ
ると考えられる。硼酸アルカリは大部分は残留すると考
えられる。
【0040】反応容器に仕込んだ混合物中の硼素成分を
効率よく窒化硼素に転化にさせるには、反応容器中の混
合物の窒素:硼素の原子比(N/B比)を窒素過剰に
(好ましくはかなり大過剰に)することが好ましい。こ
のN/B比は1.1以上とするのが好ましい。尿素/無
水硼酸の重量比では6/4〜9/4(N/B比1.75
〜2.6)とすることができる。なお、通例尿素(出発
仕込み量)に対し約10%(wt)の尿素が残る状態で
あれば一応十分と考えられるが、この比は、硼酸アルカ
リを用いず、かつ高純度を図るほど、高めとすることが
好ましく、N/B比2以上、さらに2.3以上、より好
ましくは2.6±0.2程度である。
【0041】第一次工程(好ましくは950℃まで)の
合成反応後に反応容器から取り出される反応物は、アル
カリ硼酸塩(さらに反応残留物)ないしは硼酸アルカリ
を含まない反応残留物で覆われた状態のa−BNであ
り、一例としてナトリウム塩で覆われた状態のa−BN
はフレーク状ないしカルメ焼き状になっていて嵩張るの
で、t−BN結晶に結晶化するための第2段結晶化工程
に入る前に粉砕ないし解砕(ほぐす処理)して多くの粉
末を充填できるようにするのが好ましい。目安としては
1mmパスの粒度程度でよい。この段階で粉砕してあれ
ば、最後に行なう洗浄によるt−BNの精製も容易にな
る。
【0042】次いでa−BNを主体としアルカリ塩を含
む(又は含まない)一次工程の反応生成物をt−BN結
晶化促進温度、かつh−BN化しない温度・条件にて加
熱する二次工程を実施し、a−BNをt−BN結晶に転
化する。この加熱温度は約1500℃以下でh−BNが
実質上生じないようにし、好ましくは1200〜140
0℃以下とし、より好ましくは、1250〜1350℃
とする。この温度は残留硼素酸化物(ないし酸素)の許
容量、目的純度、粒径等に応じて可変である(一般には
所定温度で10分ないし1時間単位での制御でよい)。
通例昇温・加熱時間は少なくとも1時間以上とすること
が好ましいが、10時間以上でよく、12〜13時間、
さらには16時間程度かけての昇温・加熱でt−BN結
晶化が十分に完了するまで行なう。なお、h−BNの発
生する気配のありうる1450〜1500℃では処理時
間に十分注意することが好ましい(場合により分単位で
制御する)。
【0043】このとき反応生成物を入れる容器には熱処
理温度に耐える材質のもの、耐熱性スチールやたとえ
ば、アルミナないしムライト製あるいはコージライト製
等の耐火セラミックス製容器等を使用するのが好ましい
が一般にサヤと称するものでもよい。雰囲気は非酸化性
雰囲気即ち、酸素の流入を断った状態であればよい。そ
のため容器は加熱時に窒化硼素が酸素を取り込まないよ
うにするのが好ましく、空気中に酸素の侵入を防げるよ
うに密閉状態又は準密閉状態としておくのが好ましい。
このため、容器には容器と同じく耐熱材料の蓋を設ける
のが好ましい。a−BNをt−BN結晶に転化する温度
は、より好ましくは1280〜1350℃である。加熱
温度は、特定t−BN結晶の結晶化が実用的な時間内で
完結するように、1200℃以上とするが、加熱温度を
高くし過ぎるとh−BNが同時に生成するのでh−BN
の混在を防ぐには1450℃、特に1400℃以下とす
ることが好ましい。さらに好ましくは1300±10℃
である。
【0044】t−BN結晶への転化は、t−BN粉末中
の酸素の含有量(B23残分)を少なくできるようにa
−BNが空気中の酸素と接触しない窒素等の雰囲気中で
行なうことが好ましいが、a−BNが硼酸ナトリウム塩
等のアルカリ塩で覆われた状態になっている場合は、蓋
付きの容器を使用し、密閉状態又は準密閉状態として、
少なくとも空気中の酸素の侵入をある程度防げる状態で
加熱すれば酸素(B23残分)の含有量の少ないt−B
N結晶に転化できる。蓋付きの容器に入れた反応物は、
容器もろとも電気炉等の加熱結晶化炉に収容して所定の
温度に昇温し所定時間加熱するのが好ましい。この加熱
時間が短ければt−BN結晶への転化が完結せず、加熱
時間は一般的に10時間程度で十分であるが、結晶化温
度との関係で、適宜可変調節されうる。通例、10時間
以上12〜13時間、16時間程度をかけての昇温・加
熱は十分なt−BN結晶化をもたらす。その際、最高設
定温度には所定時間保持する(一般に10分以上、好ま
しくは30分以上、さらに1〜2時間)。二次工程の加
熱時に、未反応硼素源をさらに反応させるため、昇温を
段階的ないし徐々に(例えば10時間かけて)所定t−
BN結晶化温度に昇温することが好ましい。
【0045】t−BN結晶への転化が完結した反応物
は、不純物として未反応残留物及び場合によりナトリウ
ム塩等のアルカリ塩を含んでいるので、水性洗浄液で洗
浄して精製するのが好ましい。従来、これら不純物の除
去に際しては、窒化硼素では水と反応して窒化硼素中に
酸素が取り込まれないようにエタノール等のアルコール
で洗浄していたが、充分にt−BNへの結晶化が進んだ
状態の本発明によるt−BN粉末では水洗で精製しても
酸素の取り込みが僅かであり、安価な水洗によるt−B
Nの精製が可能である。使用する洗浄水の純度は、精製
後の窒化硼素粉末の純度に影響するので、蒸留水又はイ
オン交換された純水或いは脱酸素処理水を使用するのが
好ましい。この洗浄がどの程度進んだかは洗浄水のpH
値を調べれば分かる。洗浄水の温度を上げれば、硼素酸
化物及びナトリウム塩等の水への溶解度が高まり、洗浄
を速やかに行なえるので、合成されたt−BNに悪影響
を及ぼさない範囲で温水(通例80〜85℃で十分)を
使用するのが好ましい。洗浄液には酸性のものを用いる
ことができ、残留痕跡の少ない揮発性ないし熱分解性の
酸(HClとか有機酸)を用いることが好ましい。この
ようにして、高純度のt−BNが得られる。
【0046】上記により水で洗浄して精製された窒化硼
素粉末は純度が高いt−BN粉末であり、一次粒子は、
非常に細く、好ましくは実質的にすべて、3〜4μm以
下のものができる。t−BN粉末の一次粒子は、良好な
成形性と焼結性を併せて保有するように好ましくは平均
粒径が1μm以下、0.5μm以下、0.3μm以下、
0.2μm以下などさらに0.1μm以下のものができ
る。得られたt−BN粉末は一次粒子の大きさが細か
く、通常二次粒子を形成しているので沈降式の粒度分布
測定装置では測定が難しい。このため、液中で分散させ
たt−BN粉末は電子顕微鏡で写真撮影し、例えばプリ
ントした写真画面に基づいて調べることができる。一例
として図4にHORIBA製LA−700粒径アナライ
ザーによる測定値を示すが、メジアン径0.3μm、累
積粒子径1μm以下で95.2%、90%粒子径=0.
75μmの値が得られた。しかし、これはなお、かなり
の二次凝集を含んでいると考えられるので、実際の一次
粒子径はこれよりもさらに細い。t−BN粉末の平均粒
径は、粉末X線回折図の半価幅からScherrer式
(J.Am.Chem.Soc.vol.84 p46
20、1963参照)によっても求めることができ、a
軸方向の結晶子のサイズLaとc軸方向の結晶子の サイ
ズLcとして求められる。この結晶子サイズは電子顕微
鏡の写真から求めら れる値とほぼ一致する。本発明の
製造方法によって得られるt−BNの一次粒子の粒度分
布は、図4に示す粒度分布グラフ及び図3、5、6に示
すSEM顕微鏡写真で観察されるように非常にシャープ
で、その粒径が狭い粒度範囲に揃ったものでを合成でき
る。t−BN粉末は、各種のレベルの狭い粒度分布とし
て得られ、例えばt−BNの一次粒子の95%以上が
0.3〜1μmのもの、さらに、0.1μm以下のも
の、0.02〜0.07μmのもの、0.2〜0.6μ
mのもの、その他の範囲のものが得られる。
【0047】本発明のt−BN粉末の製造方法の好まし
い態様では、反応容器中での窒化硼素合成反応(第1次
工程を、3段階以上に分けて)段階的に温度を上げて行
なう。たとえば、バッチ方式の反応容器中(特にポット
式の容器)に原料の混合物を入れ、反応容器を加熱装置
から次の加熱装置へと移動させながら順次温度を上げる
方法を採用すれば、a−BN粉末を能率よく半連続的に
合成でき、例えば多ステーションの流れ工程などが可能
である。この方法で合成されたa−BN粉末は容易に目
的とする本発明のt−BN粉末に転化させることができ
る。
【0048】本発明のt−BN粉末の製造方法におい
て、一次工程(或いは二次工程の)出発原料の混合物に
は種結晶として、少量のt−BN粉末を添加するのが好
ましい。少量の種結晶を添加しておくと、t−BN結晶
への転化が促進され、純度の高いt−BN粉末を速やか
に合成でき、収率の改善を図ることができる。添加する
種結晶の量は少な過ぎると効果が小さいので、水分を除
いた混合物中に好ましくは0.1重量%以上とし、多く
しても効果に差が出ないので3重量%以下とし、さらに
好ましくは0.2〜1重量%とする。この種結晶は完全
なものでなくてもよく、中間体でもよい。従って、二次
工程の反応生成物(場合によっては一次工程の反応生成
物)をそのままあるいは粉砕して或いは場合により水洗
して、一次及び/又は二次工程にリサイクリングするこ
とも収率の増大に資する。
【0049】本発明によるt−BN粉末をCuKα線の
粉末X線回折で調べると、六方晶系窒化硼素の[00
4]回折線に相当する回折線の強度が相当強く、結晶化
が進んでおり、その2θの半価幅が0.6°以下(典型
的には0.47°以下)と小さいにもかかわらず、[1
02]回折線が認められないか、たとえ認められても非
常に小さく、純度の高いt−BN粉末である。
【0050】CuKα線による粉末X線回折図における
六方晶系窒化硼素の[002]の回折線に対応する回折
線の2θの半価幅が0.6°以下であるt−BN粉末と
いうのは、結晶が相当発達していることを意味する。ま
た、h−BN粉末では粉末の一次粒子が六角板状を呈す
るが、好ましいt−BN粉末では乱層構造を有している
ため結晶のa軸方向に方向性が現れず、図3から分かる
ようにt−BNの一次粒子は円板状(大きい場合)、又
は図3、5、6に示すようにより小径の場合略球状であ
る。本発明によるt−BN粉末のCuKα線による[0
02]回折線の2θの半価幅は、好ましくは0.5°以
下である。しかし、本発明の一次工程、二次工程の組合
せ、条件の設定により、この値はさらに小さくも、大き
くも可変制御できる点に、本発明の製造方法の利点が存
する。
【0051】本発明によるt−BN粉末において、粉末
X線回折図の六方晶系窒化硼素の[100]、[10
1]及び[102]の回折線に対応する各回折線の占め
る面積S100、S101、S102の間にS102/(S100+S1
01)≦0.02の関係があるものが得られる。これは、
[102]の回折線が六角網目の積み重なりに規則性が
あるときに現れる回折線であるので、六角網目層の積み
重なり方に全く規則性がない又は殆ど規則性がない(層
と層の間の角度・位置の整列規則性がない)乱層構造の
t−BNであることを意味する。
【0052】面積S100、S101、S102の求め方は、プ
ラニメーターによって測定してもよいが、記録紙に記録
さ れたX線回折図から[100]、[101]及び
[102]の回折線の部分(ベースラインの上側)をそ
れぞれはさみで切り取り、切り取った各紙片を精密天秤
で秤量して各紙片の重量をそれぞれS100、S101、S10
2としてもよい。S102/(S100+ S101)の値は、さ
らに好ましくは0.01以下である。S102が非常に小
さければh−BNの[102]に対応する回折線が 粉
末X線回折図中に認められないことになる。(図2、図
7参照)
【0053】本発明のt−BN粉末では、t−BN粉末
中に含まれる酸素の含有量(従って不純物量)を少なく
できるという特徴があり、少なくともX線回折上はB2
3のピークが認められないものが得られる。窒化硼素
粉末の純度99重量%以上、さらに好ましくは99.5
ないし99.8重量%以上ないしさらに99.9重量%
以上とすることができる。酸化硼素(酸素)の含有量が
少ないt−BN粉末は焼結反応性が高く、さらにまた加
圧成形などで圧密化した時に成形体の嵩比重を大きくで
き、これによって焼結しやすく、焼結時の収縮を小さく
でき、寸法精度のよい焼結体を作りやすいという利点が
ある。また、別の観点から、高純度の単相t−BNは、
その本来の特性を十分に発揮した種々の応用を考える上
で、魅力的である。
【0054】また、ガス吸着法で測定されるt−BN粉
末の比表面積は、好ましくは20m2/g以上、さらに
好ましくは23〜25m2/g以上のものが得られる。
【0055】さらに、本発明の第7の視点において、特
定の実質的に非晶質窒化硼素粉末(ないし、組成物)が
提供される。この無定形窒化硼素粉末は、1200〜1
400℃でt−BN結晶化処理を施したとき、所定の結
晶性t−BNに高収率、高効率で転化する特性を有する
ことで特徴づけられる。この組成物は、典型的には一次
工程の結果物として得られ、所定無定形窒化硼素粉末を
有意量含有することを特徴とする。直接的には、反応残
留物及び場合によりアルカリ硼素化合物塩の残留物を介
在するが、洗浄により精製した中間体を得ることも当然
可能である。これは特別の視点として、一次工程自体の
独自の有用性を示すものでもある。リサイクル(種添
加)等によって一次工程を繰り返すことも当然収率の改
善に資するし、粒径の調節にも資する。なお、付言する
こと、第1次工程の反応生成物は、それ自体乱層構造窒
化硼素の前駆体として有用であるが、それ自体として用
いる場合、或いはt−BNを初めとし、h−BNなどの
その他の(結晶状態の)窒化硼素、或いは、他の複合化
合物(ないし焼結体)、複合セラミックの合成ないし出
発原料としても当然有用である。
【0056】
【実施例】以下本発明の実施例を具体的に説明するが、
以下の実施例は本発明の一例であって本発明はこれらの
実施例に限定されない。
【0057】[実施例1]無水硼酸(B23)3.5k
g、尿素((NH22CO)5.3kg、硼砂(Na2
47・10H2O)0.63kgからなる混合物を出
発材料とし、この混合物を直径530mmの蓋付きのス
テンレス鋼製反応容器に入れ、この反応容器を炉内に入
れて250〜500℃;500〜600℃、600〜7
00℃、700〜800℃、800〜900℃の多段階
に各10分かけて昇温し、900±10℃で10分間保
持して反応させた(合計1時間)。約100℃で水蒸気
が噴出し初め、200℃で部分的に成分が溶融し始め反
応が進みぶくぶくと泡だってガスの放出が続いた。さら
に350〜400℃まで水蒸気を主として放出し、90
0℃に10分間保持したところ生成ガスの放出が減少し
た。この状態で放冷して反応容器の蓋を開けて反応物を
反応容器から取り出した。このとき、反応容器中の反応
物はB23がほぼ反応完了したことを示す乾燥したバサ
バサのカルメラ焼き状になっていた。反応容器中で反応
物を解砕し、真空吸引により取り出し、さらに粉砕機
(クラッシャー)にかけて粉砕し、1mmパスの粉末を
得た(以上、一次工程)。この生成粉末を、以下二次工
程の出発材料とする。
【0058】セラミック(アルミナ)耐火物製の蓋付き
容器(蓋は軽く閉止)に移し、蓋付き容器ごと電気炉に
装入した。電気炉にN2又はCO2を導入して非酸化性雰
囲気とし温度を常温から1300℃に10時間かけて上
げ、最後に約1300℃に2時間保持し、放冷した。
【0059】蓋付き容器から取り出した粉末を80〜8
5℃のイオン中和し交換水(熱水)で十分に攪拌粉砕し
つつ洗浄してアルカリ成分を除き、最後に酸(HCl)
で洗い中和し、さらに水洗しその後乾燥した。二次工程
の出発原料10kg当たり、洗浄後に約0.6〜0.6
5kgのt−BNが得られた。これは一次工程の出発硼
素重量に対し約28.5%以上のt−BNとなり収率は
70%以上の高率であり、しかも高純度であった。な
お、一次工程産物から二次工程の熱処理まで10〜20
%の重量ロスが認められた。
【0060】[実施例2]実施例1とは別のサンプルで
あるが、実施例とほぼ同様にして得た結晶性t−BN粉
末をCuKα線による粉末X線回折で調べた。得られた
合成粉末のX線回折図を図2に示す。図1に示す公知の
h−BNのX線回折図形と、図2の粉末X線回折図を比
べると、図2の粉末X線回折図の窒化硼素は相当t−B
N結晶化が進んでいて図1のh−BNの[002]の回
折線及び[004]回折線に対応する位置にシャープな
回折線が夫々約26.6°、約55°に認められる。し
かし、h−BNの[102]回折線に対応する位置に回
折線が認められないことが分かる。また、h−BNの
[100]回折線に対応する位置(41.55°)にか
なりシャープな回折線がある。この[100]回折線は
h−BNのシャープな[101]回折線のある高角度側
で低い[101]回折線とすそで重なっており、、[1
01]回折線は高角度側ですそを引いてやや高まったバ
ックグラウンドを描いている。この[101]回折線は
シャープな突起として存在していない。このことはこの
合成窒化硼素粉末が結晶化が進んだ純度の高いt−BN
粉末であることを意味する。図2の粉末は本発明にいう
ところの結晶性t−BN粉末の一例である。
【0061】図2の粉末X線回折図の各回折線の2θの
位置と半価幅を調べたところ、[002]回折線は2
6.58°にあり、[004]回折線は55.0°にあ
り半価幅が0.47°であった。
【0062】[実施例3]実施例1と同様にして得たt
−BN微粉末のSEMによる拡大写真(×20000倍
及び×10,000倍)を図3に示す。図3のSEM写
真から、このt−BN合成粉末の一次粒子の平均粒径は
約0.45μmであり、一次粒子の粒径は実質的に0.
3〜0.75μmの範囲内に存在することが分かる。ま
た、この一次粒子はh−BNの一次粒子に見られる六方
晶系に特有の六角板状の結晶粒子形状を示さず、結晶性
t−BN結晶に特有と考えられる円板状(大きなもの)
ないし略球状(小さなもの)であることを認めた。
【0063】[実施例4]実施例1と同様な方法で合成
し、分散した一次粒子を多く含むt−BN粉末を種結晶
として外掛けで原料中に1重量%添加した以外は実施例
1と同様にしてt−BN粉末を合成した。この実施例で
は、一次反応の進行も早くなり、最終生成t−BNの収
率に一層の改善が認められた。なお、仕込み無水硼酸に
対する生成BNの収率は最高80%以上にも達する。
【0064】[実施例5]実施例1と同様な条件で作成
したt−BN粉の分散体を作成し粒度分布測定を行い、
その結果を図4に示す。測定はHORIBA LA−7
00粒径アナライザを用いて行った。その結果メデジア
ン径0.30μm、粒子径1μm以下の累積95.2
%、90%粒子径は0.75μmであった。なおこの測
定では、完全な一次粒子とは言えない(かなり凝集した
まま測定される)点を留歩すると平均0.3μm以下で
あることは確実である。なお、その比表面積は23.4
2/cm3であった。なお、同様にして得た別のサンプ
ルのSEM写真を図5に示す。粒子は略円板状ないし略
球状をしており、平均一次粒子径は約0.3μmであ
り、一次粒子の粒径は実質的に0.2〜0.45μmの
ごく狭い範囲内にあることが分かる。
【0065】[実施例6]無水硼酸と尿素の混合比を
4:9(重量比)に変え、硼砂を用いることなく、一次
工程加熱を1.5時間とし、最終温度を920〜950
℃で15分間保持し、かつ密閉容器のガス抜き孔を十分
にしぼって内部を加圧状態にした以外は実施例1と同様
にしてBNを合成した。二次工程は実施例1とほぼ同様
の条件で行い、洗浄も同様に行った。極めて高純度のt
−BNが得られた。そのSEM写真を図6に示す。形状
は略球形であり、平均一次粒子径は約0.25μmであ
り、一次粒子径は大部分が0.2〜0.3μmで実質的
に0.15〜0.38μm(即ち凡そ0.1〜0.4μ
m)の範囲にあることが分かる。なお、無水硼酸と尿素
の混合比(重量比)は4:6〜4:9が好ましいが4:
9が最良の結果を与えた。
【0066】[実施例7]実施例6と同様な条件で作成
したサンプルt−BNのX線回折図を図7に示す。図7
と図1の粉末X線回折図を比べると、図7の粉末X線回
折図の窒化硼素は相当t−BN結晶化が進んでいて図1
のh−BNの[002]の回折線及び[100]回折線
に対応する位置にシャープな回折線が夫々26.7°、
41.8°に認められる。しかし、[002]の回折線
の位置はh−BNの対応回折線位置と比べて若干高角度
側にずれており、h−BNの[102]回折線に対応す
る位置(50°)に回折線が全く認められないことが分
かる。また、h−BNの[100]回折線に対応する位
置(41.8°)に余り高くないがシャープな回折線が
ある。この回折線はh−BNの[101]回折線のある
高角度側に肩部を経てやや長いすそを引いている(以下
(10)回折線という)が[101]回折線は明確な突
起として存在しない。このことはこの合成窒化硼素粉末
がt−BNとしての結晶化が進んだ純度の高い単相t−
BN粉末であることを意味する。図7の粉末は本発明に
いうところの高純度結晶性t−BN粉末の一例である
(特に0.2〜0.3μmオーダーの超サブミクロンの
もの)。バックグランドの低さから高純度であること、
t−BN単相であることが十分うかがえる。即ち、図
2、図7の回折線共B23を示すピークは全く現れてい
ない点が注目されよう。
【0067】
【発明の効果】本発明によれば、非晶質ではなく、t−
BN結晶化が進んだ、純度の高い、特に単相の、t−B
N微粉末を工業的に量産、即ち安価に提供できる。本発
明により得られる結晶性t−BN微粉末は工業的に量産
可能な唯一の製品であり、そのt−BN自体として、ま
たその焼結体さらに他のセラミック材料の出発材料等と
して有用である。また、成形体としたときの嵩比重が大
きく、焼結性にも優れているので、このt−BN粉末を
原料として焼結すれば、相対密度の大きい、したがって
強度の大きい窒化硼素焼結体が得られる。また、残留不
純物(B23ないし酸素含有量)を、任意に制御(低
下)できるので目的に応じた用途開発が可能である。こ
のt−BN粉末は安く製造できるので、経済的な理由で
従来使用できなかった用途にも独自に用いることができ
ると共に、優れた特性を有する窒化硼素焼結体を使用す
ることが可能なり、本発明によるt−BN粉末は産業上
の利用価値が大きい。本発明は、かかる窒化硼素の工業
的製造方法としての実用的価値も甚大である。
【0068】また本発明の一次工程により窒化硼素(特
にt−BN)の前駆体としての実質的に非晶質の窒化硼
素が含有組成物が効率よく製造される。一次工程は、特
に、ガス雰囲気を大気圧以上とすることで高効率に実現
される。これは従来の減圧合成方法に比べ、飛躍的なブ
レークスルーを提供する。また、この組成物は、次段の
二次工程(加熱t−BN結晶化)により、高効率で乱層
構造窒化硼素(特に、特定のt−BN)に転化しうる特
性を有するものである。この一次工程の産物はそれ自体
としても有用であり、さらに結晶性t−BNその他のB
N(h−BNなど)の出発材料とすることもできる上
に、他の複合セラミックス材の出発材料としても、今後
広範な利用の基礎が与えられる。
【0069】なお、フラックスとしての硼酸アルカリの
使用は、主として、酸化防止の働きを行うと期待される
が、粒成長を阻止することによってt−BNへの(微細
結晶化)の触媒ないし助成を行なうと考えられる。換言
すれば、h−BNへの転化の阻止を行なう。さらに、水
洗を容易にし高純度化にも資する。しかし、本発明によ
れば、フラックス剤を使用せずに、一層の高純度化、微
細化を特に均一一次粒径を保った上で、達成できること
は、全く驚くべきことでもある。
【図面の簡単な説明】
【図1】従来のh−BNの公知のX線回折図の一例を示
す。
【図2】本発明のt−BN粉末の一例の粉末X線回折図
である。[]内にh−BN対応ピーク、()内にt−B
N対応ピークを指数付けて示す。
【図3】本発明による一実施例のt−BN粉末の結晶構
造を示す走査電子顕微鏡(SEM)写真(×20,00
0、×10,000、表示倍率×2/3)である。
【図4】本発明の一実施例のt−BN粉末の粒度分布グ
ラフである。
【図5】本発明の一実施例のt−BN粉末の結晶構造を
示す走査電子顕微鏡(SEM)写真(×20,000、
×10,000、表示倍率×2/3)である。
【図6】本発明の他の実施例(フラックス剤なし)のt
−BN粉末の結晶構造を示す走査電子顕微鏡(SEM)
写真(×20,000、×10,000、表示倍率2/
3)である。
【図7】本発明の他の実施例のX線回折図である。[]
内にh−BN対応ピーク、()内にt−BN対応ピーク
を指数付けて示す。
【図8】非晶質BN(a−BN)のX線回折図の一例
(従来法)である。
フロントページの続き (72)発明者 山本 修 愛知県犬山市字大門4番地の1

Claims (42)

    【特許請求の範囲】
  1. 【請求項1】実質的に非晶質の窒化硼素をフラックス剤
    としての有効量の溶融硼酸アルカリの存在下に非酸化性
    雰囲気中(密閉状態又は準密閉状態の容器中雰囲気を含
    む)において結晶性乱層構造窒化硼素(t−BN)へと
    結晶化させる工程(t−BN結晶化工程ないし二次工
    程)を含むことを特徴とする乱層構造窒化硼素粉末の製
    造方法。
  2. 【請求項2】前記t−BN結晶化工程は、約1500℃
    以下で実質的に結晶性t−BNに達するまでの所定時間
    行う請求項1記載の乱層構造窒化硼素粉末の製造方法。
  3. 【請求項3】前記結晶化は1200〜1400℃の温度
    で行なう請求項1又は2記載の乱層構造窒化硼素粉末の
    製造方法。
  4. 【請求項4】硼素源と窒素源を含有する混合物を大気圧
    ないし加圧条件下(密閉ないし準密閉容器中を含む)に
    加熱反応させて実質的に非晶質の窒化硼素を合成する工
    程(一次工程ないしBN合成工程)を含むことを特徴と
    する乱層構造窒化硼素粉末の製造方法。
  5. 【請求項5】硼素源は硼素酸化物ないし加熱により硼素
    酸化物を生ずる物質である請求項4記載の乱層構造窒化
    硼素粉末の製造方法。
  6. 【請求項6】前記一次工程の反応生成物を約1500℃
    以下で実質的に結晶性t−BNに達するまでの所定時間
    非酸化性雰囲気(窒素雰囲気を含む)中において結晶性
    乱層構造窒化硼素(t−BN)へと結晶化させる工程
    (t−BN結晶化工程ないし二次工程)を含むことを特
    徴とする請求項4又は5に記載の乱層構造窒化硼素粉末
    の製造方法。
  7. 【請求項7】硼素源をなす硼素酸化物ないし加熱により
    硼素酸化物を生ずる物質と窒素源にフラックス剤として
    の有効量の硼酸アルカリを含む混合物を非酸化性の雰囲
    気(密閉状態又は準密閉状態の容器中雰囲気を含む)に
    保持して加熱反応させて実質的に非晶質の窒化硼素を合
    成する工程(一次工程ないしBN合成工程)を含むこと
    を特徴とする乱層構造窒化硼素粉末の製造方法。
  8. 【請求項8】前記窒素源として尿素を用いる請求項4〜
    7の一に記載の乱層構造窒化硼素粉末の製造方法。
  9. 【請求項9】前記一次工程は、1200℃未満の温度ま
    で加熱して行う請求項4〜8の一に記載の乱層構造窒化
    硼素粉末の製造方法。
  10. 【請求項10】前記一次工程は少なくともフラックス剤
    の溶融温度以上まで加熱して行う請求項7〜9の一に記
    載の乱層構造窒化硼素粉末の製造方法。
  11. 【請求項11】前記反応を850〜950℃までの温度
    に加熱して行ない実質的に非晶質の窒化硼素を生成する
    ことを特徴とする請求項4〜10の一に記載の乱層構造
    窒化硼素粉末の製造方法。
  12. 【請求項12】硼酸アルカリが硼酸ナトリウム及び/又
    はその水和物である請求項1〜3、7〜11のいずれか
    1に記載の乱層構造窒化硼素の製造方法。
  13. 【請求項13】前記一次工程における雰囲気が出発混合
    物の加熱分解ガス成分から主として成る請求項4〜11
    の一に記載の乱層構造窒化硼素粉末の製造方法。
  14. 【請求項14】前記一次工程を反応容器中において生成
    ガスの吸引排気をすることなく行う請求項4〜12の一
    に記載の乱層構造窒化硼素粉末の製造方法。
  15. 【請求項15】前記一次工程における雰囲気が大気圧な
    いし微加圧を含む大気圧より高い圧力である請求項7〜
    14のいずれか一に記載の乱層構造窒化硼素の製造方
    法。
  16. 【請求項16】混合物中の硼素源としての硼素と窒素源
    窒素を窒素過剰とする請求項4〜15に記載の乱層構造
    窒化硼素の製造方法。
  17. 【請求項17】前記t−BN結晶化工程において、窒素
    源をさらに添加する請求項1〜16に記載の乱層構造窒
    化硼素の製造方法。
  18. 【請求項18】混合物中の硼酸アルカリの量を0.01
    〜20重量%とする請求項1〜3、7〜17の一に記載
    の乱層構造窒化硼素粉末の製造方法。
  19. 【請求項19】前記一次工程の反応生成物を非酸化性雰
    囲気中(密閉状態又は準密閉状態の容器中雰囲気を含
    む)で1200〜1400℃に保持して結晶性乱層構造
    窒化硼素(t−BN)へと結晶化させる工程(t−BN
    結晶化工程ないし二次工程)を含む請求項4〜18のい
    ずれかに記載の乱層構造窒化硼素粉末の製造方法。
  20. 【請求項20】さらに前記一次工程の反応生成物を粉砕
    する工程をBN結晶化工程(二次工程)の前に含む請求
    項4〜19の一に記載の乱層構造窒化硼素粉末の製造方
    法。
  21. 【請求項21】前記一次工程に引続き二次工程を連続し
    て行う請求項4〜19の一に記載の乱層構造窒化硼素粉
    末の製造方法。
  22. 【請求項22】前記乱層構造窒化硼素を結晶化工程の後
    で水性洗浄液で洗浄して不純物を除去する請求項1〜2
    1の一に記載の乱層構造窒化硼素粉末の製造方法。
  23. 【請求項23】前記一次工程を徐々に及び/又は段階的
    に温度を上げて行なう請求項4〜22のいずれかに記載
    の乱層構造窒化硼素粉末の製造方法。
  24. 【請求項24】t−BN微粉末を種結晶として少量添加
    して硼素源、窒素源及びフラックス剤を含む混合物を加
    熱反応させる工程を含む請求項1〜23のいずれかに記
    載の乱層構造窒化硼素粉末の製造方法。
  25. 【請求項25】請求項1〜24のいずれかの方法により
    製造されることを特徴とする結晶性乱層構造窒化硼素粉
    末。
  26. 【請求項26】硼素源としての硼素酸化物ないし加熱に
    より硼素酸化物を生ずる物質と尿素を含む窒素源に有効
    量の硼酸アルカリを含む混合物を非酸化性雰囲気中(密
    閉状態又は準密閉状態の容器中雰囲気を含む)で加熱反
    応させて結晶性乱層構造窒化硼素の前駆体を生成させる
    工程(一次工程)、及び該反応生成物を非酸化性雰囲気
    中で加熱して結晶性乱層構造窒化硼素へと結晶化させる
    工程(二次工程)を含む方法により製造される結晶性乱
    層構造窒化硼素粉末。
  27. 【請求項27】硼素源としての硼素酸化物ないし加熱に
    より硼素酸化物を生ずる物質と尿素を含む窒素源とを含
    む混合物を大気圧ないし加圧条件下(密閉ないし準密閉
    容器中を含む)に加熱反応させて結晶性乱層構造窒化硼
    素の前駆体を生成させる工程(一次工程)、及び該反応
    生成物を非酸化性雰囲気中で加熱して結晶性乱層構造窒
    化硼素へと結晶化させる工程(二次工程)を含む方法に
    より製造される結晶性乱層構造窒化硼素粉末。
  28. 【請求項28】CuKα線によるX線回折図における六
    方晶系窒化硼素の[004]の回折線に対応する回折線
    の2θの半価幅が0.6°以下であることを特徴とする
    結晶性乱層構造窒化硼素粉末。
  29. 【請求項29】該X線回折図において六方晶系窒化硼素
    に相当する[002]回折ピーク、[004]回折ピー
    ク及び[100]回折ピークを有し、[101]回折ピ
    ークに代わり実質的に非晶質の乱層構造窒化硼素に現れ
    る[10]回折ピークを[100]回折ピークの大角側
    に連接して有すると共に、六方晶系窒化硼素の「10
    2」相当回折ピークを実質的に明確に示さないことを特
    徴とする請求項28に記載の結晶性乱層構造窒化硼素粉
    末。
  30. 【請求項30】該X線回折図中の六方晶系窒化硼素の
    [100]、[101]及び[102]の回折線に対応
    する各回折線の占める面積(回折線の強度を意味する)
    S100、S101及びS102の間にS102/(S100+S101)
    ≦ 0.02の関係があることを特徴とする請求項26
    〜29の一に記載の結晶性乱層構造窒化硼素粉末。
  31. 【請求項31】CuKα線による粉末X線回折図におけ
    る六方晶系窒化硼素の[004]の回折線に相当する2
    θの回折線が55°±0.3°にある請求項28〜30
    の一に記載の結晶性乱層構造窒化硼素粉末。
  32. 【請求項32】窒化硼素粉末の一次粒子の粒径が3μm
    以下、一次粒子の平均粒径が1μm以下、一次粒子の大
    部分が略球状及び/又は略円板形状の粒形を有するもの
    である請求項25〜31の一に記載の結晶性乱層構造窒
    化硼素粉末。
  33. 【請求項33】窒化硼素粉末の一次粒子の平均粒径が
    0.1μm以下である請求項25〜32の一に記載の結
    晶性乱層構造窒化硼素粉末。
  34. 【請求項34】一次粒子の平均粒径をXμmとすると
    き、一次粒子の90%以上が1/2X〜2Xμmの範囲
    内に存する請求項25〜33の一に記載の結晶性乱層構
    造窒化硼素粉末。
  35. 【請求項35】吸着法で測定される窒化硼素粉末の比表
    面積が20m2/g以上である請求項25〜34のいず
    れかに記載の結晶性乱層構造窒化硼素粉末。
  36. 【請求項36】X線回折上実質的に酸化硼素を含まない
    高純度の請求項25〜35のいずれかに記載の結晶性乱
    層構造窒化硼素粉末。
  37. 【請求項37】前記乱層構造窒化硼素のCuKα線によ
    る粉末X線回折図に六方晶系窒化硼素の[102]回折
    線に相当する回折線ピークが認められない請求項25〜
    36のいずれかに記載の結晶性乱層構造窒化硼素粉末。
  38. 【請求項38】前記乱層構造窒化硼素粉末のCuKα線
    による粉末X線回折図の六方晶系窒化硼素の[100]
    及び[101]に相当する回折線が合わさった[10]
    回折線に[101]回折線に相当する回折線がピークと
    して実質上に認められない請求項25〜37のいずれか
    に記載の結晶性乱層構造窒化硼素粉末。
  39. 【請求項39】CuKα線による合成窒化硼素粉末のX
    線回折図における六方晶系窒化硼素の[004]の回折
    線に対応する回折線が明確な尖鋭なピークとしての形を
    有さない鈍い山形状である実質的に非晶質の窒化硼素粉
    末を含む粉末組成物であって、同粉末を非酸化性雰囲気
    中において1200〜1400℃で加熱してt−BNへ
    の結晶化処理をするとき、CuKα線による合成窒化硼
    素粉末のX線回折図における六方晶系窒化硼素の[00
    4]の回折線に対応する回折線の2θの半価幅が0.6
    °以下であり、該X線回折図中の六方晶系窒化硼素の
    [100]、[101]及び[102]の回折線に対応
    する各回折線の占める面積(回折線の強度を意味する)
    S100、S101及びS102の間にS102/(S100+S101)
    ≦ 0.02の関係がある結晶性乱層構造窒化硼素粉末
    に転化する特性を有する結晶性乱層窒化硼素前駆体を含
    有することを特徴とする非晶質窒化硼素粉末含有粉末組
    成物。
  40. 【請求項40】硼酸アルカリを含有する被覆層を有する
    被覆窒化硼素粉末粒子。
  41. 【請求項41】前記窒化硼素として実質的に非晶質の窒
    化硼素を含有する請求項40記載の被覆窒化硼素粉末粒
    子。
  42. 【請求項42】前記窒化硼素として実質的に結晶性乱層
    構造窒化硼素を含有する請求項40記載の被覆窒化硼素
    粉末粒子。
JP02105297A 1997-01-20 1997-01-20 結晶性乱層構造窒化硼素粉末とその製造方法 Expired - Fee Related JP3839539B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02105297A JP3839539B2 (ja) 1997-01-20 1997-01-20 結晶性乱層構造窒化硼素粉末とその製造方法
CN 98105629 CN1195672C (zh) 1997-01-20 1998-01-19 乱层结构氮化硼粉末、制造方法及其粉末组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02105297A JP3839539B2 (ja) 1997-01-20 1997-01-20 結晶性乱層構造窒化硼素粉末とその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006106751A Division JP3854303B2 (ja) 2006-04-07 2006-04-07 結晶性乱層構造窒化硼素粉末の製造方法

Publications (2)

Publication Number Publication Date
JPH10203807A true JPH10203807A (ja) 1998-08-04
JP3839539B2 JP3839539B2 (ja) 2006-11-01

Family

ID=12044151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02105297A Expired - Fee Related JP3839539B2 (ja) 1997-01-20 1997-01-20 結晶性乱層構造窒化硼素粉末とその製造方法

Country Status (2)

Country Link
JP (1) JP3839539B2 (ja)
CN (1) CN1195672C (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182879A (ja) * 2002-12-04 2004-07-02 Osamu Yamamoto 高性能水溶性金属加工油剤
US6893601B2 (en) * 2003-01-21 2005-05-17 Equity Enterprises Surface hardened carbon material and process of manufacturing
JP2008174448A (ja) * 2008-04-08 2008-07-31 Osamu Yamamoto 結晶性乱層構造窒化硼素
JP2009145877A (ja) * 2007-11-21 2009-07-02 Canon Inc 磁性トナー
EP2408711A1 (en) * 2009-03-19 2012-01-25 Boron Compounds Ltd. Method for the preparation of boron nitride powder
WO2013065556A1 (ja) * 2011-11-02 2013-05-10 株式会社カネカ 窒化ホウ素粉末の連続的製造方法
WO2015119198A1 (ja) * 2014-02-05 2015-08-13 三菱化学株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
WO2023120092A1 (ja) * 2021-12-21 2023-06-29 株式会社トクヤマ 六方晶窒化ホウ素粉末およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656868B2 (en) 2013-03-07 2017-05-23 Denka Company Limited Boron-nitride powder and resin composition containing same
CN110386593A (zh) * 2019-07-04 2019-10-29 北京科技大学 非晶前驱体诱导合成球状氮化硼(bn)纳米粉体的方法
CN112520714A (zh) * 2020-03-20 2021-03-19 山东晶亿新材料有限公司 一种六方氮化硼及其制备方法和应用
CN115520841A (zh) * 2022-08-30 2022-12-27 山东工业陶瓷研究设计院有限公司 一种球形氮化硼粉体及其原位合成制备方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182879A (ja) * 2002-12-04 2004-07-02 Osamu Yamamoto 高性能水溶性金属加工油剤
US6893601B2 (en) * 2003-01-21 2005-05-17 Equity Enterprises Surface hardened carbon material and process of manufacturing
JP2009145877A (ja) * 2007-11-21 2009-07-02 Canon Inc 磁性トナー
JP2008174448A (ja) * 2008-04-08 2008-07-31 Osamu Yamamoto 結晶性乱層構造窒化硼素
EP2408711A4 (en) * 2009-03-19 2014-05-28 Boron Compounds Ltd PROCESS FOR THE PREPARATION OF BORON NITRIDE POWDER
EP2408711A1 (en) * 2009-03-19 2012-01-25 Boron Compounds Ltd. Method for the preparation of boron nitride powder
JP2012520823A (ja) * 2009-03-19 2012-09-10 ボロン コンパウンズ エルティーディー. 窒化ホウ素粉末の調製のための方法
JPWO2013065556A1 (ja) * 2011-11-02 2015-04-02 株式会社カネカ 窒化ホウ素粉末の連続的製造方法
WO2013065556A1 (ja) * 2011-11-02 2013-05-10 株式会社カネカ 窒化ホウ素粉末の連続的製造方法
WO2015119198A1 (ja) * 2014-02-05 2015-08-13 三菱化学株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JPWO2015119198A1 (ja) * 2014-02-05 2017-03-23 三菱化学株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
US10106413B2 (en) 2014-02-05 2018-10-23 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
US20180354793A1 (en) 2014-02-05 2018-12-13 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
JP2019137608A (ja) * 2014-02-05 2019-08-22 三菱ケミカル株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
US10414653B2 (en) 2014-02-05 2019-09-17 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
JP2021006507A (ja) * 2014-02-05 2021-01-21 三菱ケミカル株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
WO2023120092A1 (ja) * 2021-12-21 2023-06-29 株式会社トクヤマ 六方晶窒化ホウ素粉末およびその製造方法

Also Published As

Publication number Publication date
CN1195672C (zh) 2005-04-06
JP3839539B2 (ja) 2006-11-01
CN1194960A (zh) 1998-10-07

Similar Documents

Publication Publication Date Title
Suri et al. Synthesis and consolidation of boron carbide: a review
Chen et al. Synthesis and formation mechanism of high‐purity Ti3AlC2 powders by microwave sintering
Nouroozi et al. Synthesis and characterization of brush-like ZnO nanorods using albumen as biotemplate
JPH10203807A (ja) 乱層構造窒化硼素粉末とその製造方法
JP2011001242A (ja) リン酸鉄リチウム粒子の製造方法とリン酸鉄リチウム粒子
Savary et al. Fast synthesis of nanocrystalline Mg2Si by microwave heating: a new route to nano-structured thermoelectric materials
TW201829299A (zh) 高純度氮化矽粉末之製造方法
CN108698837A (zh) 金属/半金属氧化物的还原
US6306358B1 (en) Crystalline turbostratic boron nitride powder and method for producing same
Simonenko et al. Preparation of MB 2/SiC and MB 2/SiC-MC (M= Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics
CN105765748A (zh) 具有高热电优值的纳米结构的硒化铜及其制备方法
Gunnewiek et al. Synthesis of nanocrystalline boron carbide by direct microwave carbothermal reduction of boric acid
Wang et al. Controlled synthesis of Co 3 O 4 single-crystalline nanofilms enclosed by (111) facets and their exceptional activity for the catalytic decomposition of ammonium perchlorate
Liu et al. Fabrication of KSr2Nb5O15 particles with high aspect ratio by two-step molten salt synthesis
Wu et al. Combustion synthesis of hexagonal boron nitride nanoplates with high aspect ratio
Bigdeloo et al. Synthesis of high purity micron size boron carbide powder from B2O3/C precursor
JPH1059702A (ja) 窒化ホウ素及びその製造方法
JP3854303B2 (ja) 結晶性乱層構造窒化硼素粉末の製造方法
US20070231234A1 (en) Microwave assisted rapid gel combustion technique for producing ultrafine complex oxides and ceramic composites powders
Haber et al. Chemical synthesis of nanocrystalline titanium and nickel aluminides from the metal chlorides and lithium aluminum hydride
CN113184870A (zh) 一种宏量粒度可控LaB6粉体的制备方法
CN112403395A (zh) 一种金属磷化物的制备方法
Shi et al. Effects of reactants proportions on features of in-situ magnesiothermic self-propagating high temperature synthesized boron carbide powder
CN112573520B (zh) 一种碳化硼纳米粒子的制备方法
Orlov et al. Properties of nitrides prepared by the ammonolysis of magnesiothermic niobium powders

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20050512

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20050527

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A131 Notification of reasons for refusal

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Effective date: 20060803

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees