WO2013065556A1 - 窒化ホウ素粉末の連続的製造方法 - Google Patents

窒化ホウ素粉末の連続的製造方法 Download PDF

Info

Publication number
WO2013065556A1
WO2013065556A1 PCT/JP2012/077499 JP2012077499W WO2013065556A1 WO 2013065556 A1 WO2013065556 A1 WO 2013065556A1 JP 2012077499 W JP2012077499 W JP 2012077499W WO 2013065556 A1 WO2013065556 A1 WO 2013065556A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
powder
boron
crude
furnace
Prior art date
Application number
PCT/JP2012/077499
Other languages
English (en)
French (fr)
Inventor
一昭 松本
敏之 川口
坂口 雅史
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201280053543.9A priority Critical patent/CN104024153A/zh
Priority to JP2013541730A priority patent/JP5923106B2/ja
Priority to EP12845975.7A priority patent/EP2774893A4/en
Priority to US14/355,020 priority patent/US20140314652A1/en
Priority to KR1020147008838A priority patent/KR20140095049A/ko
Publication of WO2013065556A1 publication Critical patent/WO2013065556A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0645Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/90Other morphology not specified above
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites

Definitions

  • the present invention relates to a continuous production method of boron nitride powder. More specifically, after heat-treating the boron-containing material and the nitrogen-containing material to obtain crude boron nitride having a BN content of 80% by weight or more, the crude boron nitride is combined with a boron-containing flux component containing a predetermined amount of boron.
  • the present invention relates to a continuous production method of crystalline hexagonal boron nitride powder, which is charged in a heat-resistant container and reheated at 1550 to 2400 ° C. in a continuous reaction furnace in a nitrogen gas atmosphere to grow crystals.
  • Hexagonal boron nitride powder (hereinafter referred to as h-BN powder) has excellent properties such as heat resistance, lubricity, electrical insulation, and thermal conductivity, so it is a solid lubricant, mold release agent, and cosmetic raw material. It is used in many applications such as fillers for heat conductive resins and sintered body raw materials. Among them, it is particularly useful as a cosmetic raw material and a heat conductive filler for a resin because of its excellent concealing effect when mixed in cosmetics and high thermal conductivity.
  • a boron-containing material such as boric acid, boron oxide, or borax and a nitrogen-containing material such as melamine, urea, dicyandiamide, ammonia, or nitrogen are reacted in a heated atmosphere.
  • a nitrogen-containing material such as melamine, urea, dicyandiamide, ammonia, or nitrogen
  • Patent Document 1 discloses that a boron-containing substance and a nitrogen-containing substance are heat-treated at a temperature of about 900 to 1300 ° C. to synthesize a crude BN powder, and then the crude BN powder is washed with water. It has been shown that crystalline h-BN powder can be efficiently produced by removing impurities and treating again at a high temperature of about 1500 to 1800 ° C.
  • Patent Document 2 discloses that a mixture containing a boron-containing substance such as boric acid and a nitrogen-containing substance such as melamine is baked and crystallized at a high temperature of 1800 ° C. to 2200 ° C. after adding the Ca-containing substance. It has been shown that crystalline h-BN powder can be produced. Similarly, Patent Document 3 shows that calcium carbonate and calcium borate are suitable as Ca-containing substances when producing crystalline h-BN powder. Furthermore, Patent Document 6 discloses a method in which crude boron nitride powder is cured at 60 ° C. or lower for one week or longer and then reheated.
  • a boron-containing substance such as boric acid
  • a nitrogen-containing substance such as melamine
  • Patent Document 4 is characterized by reducing and nitriding a carbon compound serving as a reducing agent and a boron-containing substance such as boric acid at a high temperature of 1650 ° C. to 2300 ° C. in the presence of a nitriding catalyst in a nitrogen gas atmosphere. -A continuous process for the production of BN is described. Patent Document 5 describes a high-temperature continuous reaction furnace suitable for h-BN reductive nitridation.
  • JP-A-61-72604 Japanese Patent Laid-Open No. 11-29307 Japanese Patent Laid-Open No. 11-79720 JP 60-155507 A JP-A-62-102080 JP 2010-37123 A
  • the present invention provides a method for producing a crystalline hexagonal boron nitride powder having a higher particle size and a higher crystallinity continuously and with less contamination of the furnace with higher efficiency and lower cost. It was raised as an issue.
  • the present inventors realize the problem of producing h-BN powder having a large particle size and excellent crystallinity at a high efficiency and at a low cost continuously with less contamination of the furnace. As a result, we conducted an intensive study.
  • the crude boron nitride is heat-resistant together with a boron-containing flux component containing a predetermined amount of boron. It was found that crystalline h-BN powder can be continuously produced by charging into a container and reheating at 1550 to 2400 ° C. in a continuous reaction furnace in a nitrogen gas atmosphere to grow crystals. It came.
  • the crude product is obtained in the second step.
  • Boron nitride is charged into a heat-resistant container together with a boron-containing flux component satisfying the following formula (1), and is reheated at 1550 to 2400 ° C. in a continuous reaction furnace in a nitrogen gas atmosphere to grow crystals. This is a continuous process for producing crystalline hexagonal boron nitride powder.
  • Formula (1) Boron content in boron-containing flux component / crude boron nitride content ⁇ 1.4 wt%
  • the second of the present invention is the continuous production method of the crystalline hexagonal boron nitride powder according to the first, wherein the heat treatment temperature in the first step is 800 ° C. or higher and lower than 1550 ° C.
  • a third aspect of the present invention is the method for continuously producing crystalline hexagonal boron nitride powder according to the first or second aspect, wherein the heat-resistant container is made of graphite or boron nitride.
  • a fourth aspect of the present invention is the continuous production method of crystalline hexagonal boron nitride powder according to any one of the first to third, wherein the heat-resistant container is a graphite container at least an inner surface of which is coated with boron nitride. is there.
  • a fifth aspect of the present invention is the continuous production method of crystalline hexagonal boron nitride powder according to any one of the first to fourth aspects, wherein the continuous reaction furnace is a pusher type tunnel furnace.
  • the crude boron nitride powder has a graphitization index (GI) by X-ray diffraction of 2.5 or more and a number average particle diameter of 9 ⁇ m or less, and 1550 to 2400 ° C. in a nitrogen gas atmosphere.
  • the crystalline hexagonal boron nitride powder after the reheating treatment with a graphite has a graphitization index (GI) by X-ray diffraction method of 1.9 or less and a number average particle diameter of 10 ⁇ m or more. 6.
  • the present invention includes an invention (Invention A) that does not have the requirement of Formula (1) in the first invention. Also in the invention A, the matters mentioned in the second to sixth inventions are preferable embodiments. Regarding all other requirements, the invention A is the same as the first invention.
  • FIG. 1 is a view showing an example of a longitudinal sectional view of a pusher type tunnel furnace used in the present invention.
  • FIG. 2 is a diagram showing an example of a heat-resistant container used in the pusher-type tunnel furnace of the present invention.
  • the present invention provides a first step of obtaining a crude boron nitride by heat-treating a boron-containing substance and a nitrogen-containing substance, and a boron-containing flux component containing the crude boron nitride and a predetermined amount of boron in an inert gas atmosphere. It is characterized by including a second step of crystal growth by reheating treatment in a continuous reaction furnace.
  • crude boron nitride for crystal growth of boron nitride is prepared.
  • the crude boron nitride is reacted with a reduced amount of boron to further grow boron nitride crystals.
  • boron-containing substance used in the present invention various compounds such as boric acid, boron oxide, borate salts of inorganic or organic compounds, boron halides, borazine, borosiloxane can be used.
  • boron compounds such as boric acid, boron oxide, alkali metal or alkaline earth metal borate (for example, borax) can be preferably used.
  • boric acid and boron oxide include orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4 O 7 ), and boric anhydride (B 2 O 3 ).
  • One or more of the compounds represented by 2 O 3 ) ⁇ (H 2 O) x (where x 0 to 3) are preferred.
  • the nitrogen-containing substance used in the present invention may be any substance that contains a nitrogen atom in the molecule, and organic nitrogen compounds, inorganic nitrogen compounds, simple nitrogen substances, and mixtures thereof can be used.
  • organic nitrogen compounds among nitrogen-containing substances.
  • organic compounds having NH 2 groups such as melamine and urea, organic ammonium salts
  • An amide compound, an organic compound having an N ⁇ C— group, and the like are preferable.
  • melamine and urea are particularly preferably used.
  • examples of inorganic nitrogen compounds include ammonia gas, ammonium salts of alkali metals or alkaline earth metals, and the like.
  • nitrogen simple substance nitrogen gas, liquid nitrogen, etc. can be illustrated.
  • the boron-containing substance and the nitrogen-containing substance are reacted in advance as long as a predetermined BN content is obtained as described later. It may be allowed to stand, or may be charged into a furnace without being reacted and fired as it is.
  • the nitrogen-containing substance is a gas such as ammonia gas or nitrogen gas, only the boron-containing substance is charged into the furnace, and then the inside of the furnace is replaced with the gas and heated as it is.
  • the atmosphere can be replaced with a gas such as ammonia gas or nitrogen gas, so that nitrogen can be introduced more efficiently. It is not limited, and it is possible even under a general inert gas atmosphere. Furthermore, a small amount of water or oxygen may be mixed.
  • the above components may be mixed using a conventionally known method, for example, using a high-speed stirring device such as a Henschel mixer.
  • the maximum temperature of the furnace in the first step is not particularly limited. However, in consideration of the equipment cost of the furnace and the utility cost required for heating, for example, it is less than 1550 ° C, preferably less than 1500 ° C, more preferably less than 1460 ° C, More preferably, it is less than 1400 degreeC, Most preferably, it is less than 1350 degreeC, Preferably it is 800 degreeC or more, More preferably, it is 850 degreeC or more, More preferably, it is 900 degreeC or more. If the maximum temperature of the furnace becomes too high, special heat-resistant materials and expensive heat insulating materials will be required for the furnace in the first step, which will increase the equipment cost and increase the cost of utilities required for heating.
  • H-BN powders that are produced cause a cost increase.
  • the crystallization of BN powder proceeds halfway, so that the tendency to make crystallization difficult to progress when heated once again after being taken out becomes stronger.
  • rate of temperature increase the rate of temperature decrease, the processing time at the maximum temperature, and the like.
  • the crude BN powder obtained in the first step needs to have a BN content of 80% by weight or more. If the BN content is less than 80% by weight, a large amount of volatiles and impurities are generated during continuous reheating at 1550-2400 ° C in the second step. Or the yield of the crystalline h-BN powder in the continuous reactor decreases.
  • the BN content of the crude BN powder obtained in the first step is preferably 85% by weight or more, more preferably 90% by weight or more.
  • the crude BN powder obtained in the first step may be once cooled and taken out into the air atmosphere and cured at a temperature of 60 ° C. or lower for one week or more, or as it is in the second step without being cooled. It may be charged into a continuous reactor. When cured, high crystallization can be promoted.
  • Second Step The crude BN powder thus obtained is reheated at 1550-2400 ° C. in a nitrogen gas atmosphere to grow crystals, thereby producing h-BN powder having a large particle size and excellent crystallinity. be able to.
  • the present invention is characterized in that the amount of the boron-containing flux component used is suppressed in the second step, but when the boron-containing flux component is suppressed, volatilization of the flux component during the reheating treatment causes Even if the high crystallization of boron nitride is at an excellent level, it may not reach the highest level.
  • the maximum temperature at the time of reheating is in the range of 1550 to 2400 ° C, but in order to obtain a higher crystalline h-BN powder, a higher maximum temperature is preferable, and in order to reduce furnace management costs and maintenance costs It is preferable to keep the maximum temperature low.
  • the maximum temperature is preferably 1600 to 2300 ° C, more preferably 1700 to 2250 ° C, still more preferably 1750 to 2200 ° C, and most preferably 1800 to 2150 ° C.
  • the processing time at the maximum temperature is long, and in order to reduce productivity and utility costs, it is preferable that the processing time at the maximum temperature is short.
  • the treatment time at the preferred maximum temperature is 10 minutes to 10 hours, more preferably 20 minutes to 6 hours, and most preferably 30 minutes to 5 hours.
  • the atmosphere at the time of reheating needs to be carried out in a nitrogen gas atmosphere.
  • the GI can be obtained by calculating the integral intensity ratio, that is, the area ratio of the (100), (101), and (102) lines of the X-ray diffraction diagram by the following formula, and the smaller this value, the higher the crystallinity.
  • GI [area ⁇ (100) + (101) ⁇ ] / [area (102)]
  • GI is an index of crystallinity of h-BN powder, and the higher the crystallinity, the smaller this value becomes.
  • GI 1.60.
  • the GI is further reduced because the powder is easily oriented.
  • the crude BN powder obtained in the first step preferably has a GI value of 2.5 or more, and the crystalline h-BN powder after crystal growth in the second step has a GI of 1. It is preferable to make it 9 or less. If the GI value of the crude BN powder obtained in the first step is less than 2.5, crystal growth in the second step may be difficult.
  • the GI value in the first step is more preferably 2.6 or more, further preferably 2.8 or more, and most preferably 3.0 or more. If the GI value in the second step exceeds 1.9, crystallization is often insufficient for use as a final product.
  • the GI value in the second step is more preferably 1.8 or less, further preferably 1.6 or less, and most preferably 1.4 or less.
  • the number average particle diameter of h-BN powder is measured with a laser scattering type particle size analyzer after throwing the h-BN powder into an aqueous solution containing a surfactant so that it does not aggregate and dispersing with an ultrasonic disperser for 1 minute. It is the value.
  • the crude BN powder obtained in the first step preferably has a number average particle size of 9 ⁇ m or less, and the crystalline h-BN powder after crystal growth in the second step has a number average particle size. Is preferably 10 ⁇ m or more.
  • the number average particle size in the first step is more preferably 8 ⁇ m or less, further preferably 7 ⁇ m or less, and most preferably 6 ⁇ m or less. If the number average particle size in the second step is less than 10 ⁇ m, crystallization is often insufficient for use as a final product.
  • the number average particle size in the second step is preferably 12 ⁇ m or more, more preferably 14 ⁇ m or more, further preferably 16 ⁇ m or more, and most preferably 18 ⁇ m or more.
  • the present invention it is necessary to add a boron-containing flux component when the crystal is grown by reheating at 1550 to 2400 ° C. in the second step.
  • a boron-containing flux component it is preferable to positively add a boron-containing flux component in the second step, but by controlling the reactivity of the first step well, it is suitable for the crude BN powder produced in the first step.
  • the free boron component By leaving the free boron component, the free boron component can be used as it is as the boron-containing flux component in the second step.
  • the above components may be mixed using a conventionally known method, for example, using a high speed stirring device such as a Henschel mixer.
  • Boron compounds other than boron nitride are used as the boron-containing flux component.
  • various compounds such as boric acid, boron oxide, borate salts of inorganic or organic compounds, boron halides, borazine, borosiloxane, etc. can be used, but from the viewpoint of economy and reactivity, Boron compounds such as alkali metal or alkaline earth metal borates, boric acid, and boron oxide can be preferably used.
  • an alkali metal borate such as borax, or an alkaline earth metal borate such as calcium borate or magnesium borate is preferable.
  • boric acid, boron oxide, and calcium borate are particularly preferable.
  • the boron-containing flux component it is preferable to use an alkali metal or alkaline earth metal borate, but it is not necessary to add borate as a raw material. That is, if an alkali metal-containing substance / alkaline earth metal-containing substance and a boron-containing substance are present, an alkali metal or alkaline earth metal borate is generated in the system by reacting at a high temperature, and h- Promotes crystallization of BN powder. Furthermore, the purity of the obtained h-BN powder can be improved by selecting a substance in which components other than alkali metal or alkaline earth metal do not remain or easily volatilize.
  • alkali metal-containing substances and alkaline earth metal-containing substances lithium, sodium, potassium and the like are preferably used as the alkali metal, and beryllium, magnesium, calcium, strontium, barium and the like are preferably used as the alkaline earth metal.
  • An organometallic compound such as a narate compound is preferably used.
  • the alkali metal-containing material / alkaline earth metal-containing material does not need to have a particularly high purity, and those of commercially available quality for industrial use are preferably used.
  • boric acid and boron oxide include orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4 O 7 ), and boric anhydride (B 2 O 3 ).
  • One or more of the compounds represented by 2 O 3 ) ⁇ (H 2 O) x (where x 0 to 3) are preferred.
  • the boron-containing flux component added at the time of reheating treatment at 1550 to 2400 ° C. for crystal growth is added at 50 parts by weight or less with respect to 100 parts by weight of the crude BN powder.
  • the amount of the additive exceeds 50 parts by weight with respect to the crude BN powder, the amount of crystalline h-BN powder that can be fired at one time when produced in the same furnace is reduced, resulting in a decrease in production efficiency.
  • the inside of the furnace may be contaminated by volatilization of the flux component. Further, since the additive remains in the obtained crystalline h-BN powder, the purity of the crystalline h-BN powder is lowered.
  • the amount of the boron-containing flux component added to 100 parts by weight of the crude BN powder is preferably 40 parts by weight or less, more preferably 30 parts by weight or less, further preferably 20 parts by weight or less, particularly preferably 15 parts by weight or less, and most preferably 11 parts by weight or less.
  • boron contained in the boron-containing flux component satisfies the following formula.
  • the value on the left side of the formula (1) is preferably 1.3% by weight or less, more preferably 1.2% by weight or less, and still more preferably 1.1% by weight or less.
  • the value of the left side of Formula (1) is 0.01 weight% or more, for example, Preferably it is 0.05 weight% or more, More preferably, it is 0.1 weight% or more. If the value on the left side of equation (1) is too large, the furnace may be contaminated and the pipes may be clogged, so that crystal growth may not be promoted.
  • Formula (1) Boron content in boron-containing flux component / crude boron nitride content ⁇ 1.4 wt%
  • the boron-containing flux component added in the second step may remain in the h-BN powder when taken out from the continuous reaction furnace in the second step. In that case, it is preferable to wash the flux component by washing the h-BN powder with an acidic aqueous solution after taking out.
  • an acidic aqueous solution a general-purpose inorganic strong acid aqueous solution such as hydrochloric acid, nitric acid or sulfuric acid is used.
  • a continuous reaction furnace is used for reheating treatment at 1550 to 2400 ° C. in the second step.
  • a continuous reactor is different from a method in which a sample is heat-treated by a temperature rising / falling operation of a furnace such as a general batch-type reactor, in which a sample to be processed in a furnace previously maintained at a temperature to be reheated is processed. By passing through, it shows a reactor that continuously heat-treats samples.
  • the temperature increase / decrease operation of the furnace as much as 2000 ° C. becomes unnecessary, so that the energy cost required for the heat treatment can be greatly reduced.
  • the raw material will continuously receive a thermal history before and after the raw material passes through the high temperature zone, so the processing time kept in the high temperature zone is the same.
  • the crystallinity is high with a large particle size, and a high-quality h-BN powder can be obtained.
  • reaction furnace As the continuous reaction furnace, generally used reaction furnaces can be widely applied.
  • the term “continuous” as used herein does not refer only to a method in which the sample is constantly moving, but may be a method in which the sample moves a certain distance every certain time.
  • the raw BN obtained in the first step and the boron-containing flux component are charged into a heat-resistant container, and then the heat-resistant container containing the raw material is moved every few minutes to several hours, so that the inside of the continuous reaction furnace A method in which the sample passes through the high temperature region maintained at 1550 to 2400 ° C. over a certain period of time is employed.
  • the heat-resistant container used for the reheating treatment at 1550 to 2400 ° C. in the second step is preferably made of graphite or boron nitride.
  • Other heat-resistant containers may have reactivity with crude BN powder and boron-containing flux components at high temperatures, and the cost of the containers may increase.
  • a graphite or boron nitride vessel is used for the pusher furnace as a continuous reaction furnace, the frictional force generated between the vessel and the furnace inner wall in the furnace can be reduced, thereby extending the life of the continuous reaction furnace. It becomes possible.
  • a container whose container surface or inner surface is coated with boron nitride in order to reduce the reactivity between the crude BN powder or boron-containing flux component and the container.
  • the continuous reaction furnace used in the second step is preferably a pusher type tunnel furnace. That is, the crude BN obtained in the first step and the boron-containing flux component are charged into a heat-resistant container, and then the heat-resistant container containing the raw material is continuously supplied into a pusher-type tunnel furnace maintained at 1550 to 2400 ° C. As a result, the raw material continuously passes through the space maintained at 1550-2400 ° C without raising or lowering the temperature of the pusher tunnel, so that crystalline h-BN powder is continuously produced. Will be.
  • Examples of pusher-type tunnel furnaces that can be reheated to 1550-2400 ° C include furnaces with a structure in which a tunnel made of a heat-resistant material such as graphite or boron nitride is installed in a furnace equipped with a graphite heater. (For example, FIG. 1).
  • a pusher near the entrance of such a tunnel furnace and pushing the heat-resistant container filled with the raw material at intervals with the pusher, the raw material is sequentially sent to the high temperature area, and crystallization in the high temperature area is performed. proceed.
  • the tunnel is made of heat-resistant materials such as graphite and boron nitride, even if a small amount of volatile matter is generated from the raw material, the volatile matter will not contaminate the heater. It becomes possible to operate continuously for a period.
  • the h-BN powder having a large particle size and high crystallinity obtained by the present invention is excellent in the concealing effect by other components when mixed in cosmetics, and can be preferably used for cosmetics, for example. Moreover, since it is highly crystalline, it has a high thermal conductivity, and since it has a large particle size, the thermal resistance at the contact surface between the particles can be reduced. Therefore, it is particularly useful as a thermal conductive filler for resins, for example. As the resin when used as the thermally conductive filler, it can be effectively used for both thermosetting resins and thermoplastic resins.
  • thermosetting resin epoxy resins such as glycidyl ether type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, urethane resins, curable silicone resins, curable acrylic resins, etc.
  • Thermoplastic resins include aromatic vinyl resins such as polystyrene, vinyl cyanide resins such as polyacrylonitrile, chlorine resins such as polyvinyl chloride, polymethacrylate resins such as polymethyl methacrylate, and polyacrylic acid.
  • Ester resins polyolefin resins such as polyethylene, polypropylene and cyclic polyolefin resins, polyvinyl ester resins such as polyvinyl acetate, polyvinyl alcohol resins and their derivative resins, polymethacrylic acid resins and polyacrylic acid resins and these Metal salt resins, polyconjugated diene resins, polymers obtained by polymerizing maleic acid and fumaric acid and their derivatives, polymers obtained by polymerizing maleimide compounds, amorphous semi-aromatic polyesters and amorphous Fully aromatic polyester Amorphous polyester resins, crystalline polyester resins such as crystalline semi-aromatic polyesters and crystalline wholly aromatic polyesters, polyamide resins such as aliphatic polyamides, aliphatic-aromatic polyamides and wholly aromatic polyamides, Polycarbonate resin, polyurethane resin, polysulfone resin, polyalkylene oxide resin, cellulose resin, polyphenylene ether resin, polyphenylene
  • GI Graphitization index
  • Number average particle diameter 1 ml of a 20% by weight aqueous solution of sodium hexametaphosphate was put into a 100 ml beaker, and 20 mg of h-BN powder was put into this aqueous solution, followed by dispersion treatment for 3 minutes with an ultrasonic disperser. With the obtained dispersion, the number average particle size was measured using a laser diffraction particle size distribution analyzer MT3300EXII manufactured by Nikkiso Co., Ltd.
  • Example 1 After mixing 55 kg of orthoboric acid and 45 kg of melamine with a Henschel mixer, the mixture was heated to 1100 ° C. in a batch-type tubular electric furnace under nitrogen flow, treated for 2 hours and then cooled to obtain crude BN powder. This crude BN powder was once taken out, allowed to stand for 10 days under conditions of 23 ° C. and 50% RH, and cured. Next, 18 kg of crude BN powder, 1.2 kg of calcium oxide, and 0.8 kg of orthoboric acid were mixed with a Henschel mixer, and then 3 kg of each mixture in a cubic shape with an outer dimension of 230 mm square and an inner dimension of 210 mm square.
  • 50 containers filled with the raw material mixture were prepared by repeating the operation of charging into a graphite heat-resistant container whose inner surface and outer surface were both coated with boron nitride.
  • the central part of a pusher type tunnel furnace having a graphite heater and a graphite muffle type tunnel was kept at 2050 ° C., and the interior was filled with high-purity nitrogen.
  • a high-purity nitrogen stream is further flown inside, and a heat-resistant container filled with the raw material is sent to the furnace one by one every 30 minutes to maintain the temperature at 2050 ° C.
  • the dripping zone was passed over 120 minutes to crystallize the crude BN powder to obtain crystalline h-BN powder.
  • the obtained crystalline h-BN powder was dispersed in a nitric acid aqueous solution, followed by filtration, washing with pure water, and drying to obtain 2.66 kg of crystalline h-BN powder per heat-resistant container. .
  • the characteristics of the obtained h-BN powder are as follows. Crude BN powder: graphitization index 4.74, number average particle size 0.95 ⁇ m. Crystalline h-BN powder: Graphitization index 1.09, number average particle size 23.5 ⁇ m.
  • Example 2 After mixing 65 parts by weight of anhydrous boric acid and 35 parts by weight of calcium phosphate with a Henschel mixer, it was heated to 1000 ° C. in a tubular electric furnace under ammonia flow, treated for 6 hours, and then cooled to obtain crude BN powder. This crude BN powder was once taken out, allowed to stand for 10 days under conditions of 23 ° C. and 50% RH, and cured. Next, after 18 kg of crude BN powder and 2.0 kg of calcium borate were mixed with a Henschel mixer, 3 kg of the mixture per container was charged into a heat resistant container made of cubic graphite having an outer dimension of 230 mm square and an inner dimension of 210 mm square. By repeating the operation, 50 containers filled with the raw material mixture were prepared.
  • the central part of a pusher type tunnel furnace having a graphite heater and a graphite muffle type tunnel was kept at 2050 ° C., and the interior was filled with high-purity nitrogen.
  • a high-purity nitrogen stream is further flown inside, and a heat-resistant container filled with the raw material is sent to the furnace one by one every 30 minutes to maintain the temperature at 2050 ° C.
  • the dripping zone was passed over 120 minutes to crystallize the crude BN powder to obtain crystalline h-BN powder.
  • the obtained crystalline h-BN powder was dispersed in a nitric acid aqueous solution, followed by filtration, washing with pure water, and drying to obtain 2.66 kg of crystalline h-BN powder per heat-resistant container. .
  • the characteristics of the obtained h-BN powder are as follows. Crude BN powder: graphitization index 3.58, number average particle size 1.05 ⁇ m. Crystalline h-BN powder: Graphitization index 1.06, number average particle size 26.5 ⁇ m.
  • Comparative Example 1 After mixing 55 kg of orthoboric acid and 45 kg of melamine with a Henschel mixer, the mixture was heated to 1100 ° C. in a batch-type tubular electric furnace under nitrogen flow, treated for 2 hours and then cooled to obtain crude BN powder. This crude BN powder was once taken out, allowed to stand for 10 days under conditions of 23 ° C. and 50% RH, and cured. After 90 g of this crude BN powder, 6 g of calcium oxide, and 4 g of orthoboric acid were mixed in a crucible, they were charged into a boron nitride container and a batch-type electric atmosphere furnace capable of high-temperature heating. After replacing the interior with nitrogen, the mixture was heated at 2050 ° C.
  • Comparative Example 2 55 kg of orthoboric acid and 45 kg of melamine were mixed with a Henschel mixer. 3 kg of this mixture was taken out per container, and 50 containers filled with the raw material mixture were prepared by repeating the work of charging into a cube-shaped graphite heat-resistant container having an outer dimension of 230 mm square and an inner dimension of 210 mm square.
  • the central part of a pusher type tunnel furnace having a graphite heater and a graphite muffle type tunnel was kept at 2050 ° C., and the interior was filled with high-purity nitrogen.
  • a high-purity nitrogen stream is further flown inside, and a heat-resistant container filled with the raw material is sent to the furnace one by one every 30 minutes to maintain the temperature at 2050 ° C.
  • the sagging zone was passed over 120 minutes to synthesize crystalline h-BN powder.
  • the muffle in the furnace was significantly contaminated by volatiles generated from the raw materials, so when 12 of the 50 containers were sent, the pusher of the continuous reaction furnace became inoperable and stopped.
  • the obtained h-BN powder was dispersed in an aqueous nitric acid solution, filtered, washed with pure water, and dried to obtain crystalline h-BN powder.
  • the characteristics of the obtained h-BN powder are as follows. Crystalline h-BN powder: Graphitization index 1.55, number average particle size 13.8 ⁇ m.
  • Comparative Example 2 since continuous production was continuously attempted without taking out the crude BN powder, the production efficiency of h-BN powder was lower than in Example 1, and the contamination in the furnace became severe.
  • the obtained crystalline h-BN powder had a small particle size and low crystallinity.
  • the heat-resistant container filled with the raw material is sent to the furnace one by one every 30 minutes to maintain the temperature at 2050 ° C.
  • Crystalline h-BN powder was synthesized by a method of nitriding with nitrogen gas while reducing orthoboric acid with acetylene black by passing through the drowned zone for 120 minutes. As a result, only 0.6 kg of h-BN powder was obtained per heat-resistant container, and the productivity was significantly reduced.
  • tar-like filth was generated from the raw material, and the inside of the furnace was contaminated by being deposited near the downstream of the inside of the furnace.
  • the obtained h-BN powder was dispersed in an aqueous nitric acid solution, filtered, washed with pure water, and dried to obtain crystalline h-BN powder.
  • the characteristics of the obtained h-BN powder are as follows. Crystalline h-BN powder: Graphitization index 1.41, number average particle diameter 11.7 ⁇ m.
  • Comparative Example 3 a method called a reductive nitriding method was adopted, so although continuous productivity was improved in comparison with Comparative Example 2, the production efficiency of h-BN powder was significantly decreased in comparison with Example 1, The inside of the furnace was contaminated, and the obtained crystalline h-BN powder had a small particle size and low crystallinity.
  • the crystalline h-BN powder produced by the production method of the present invention has a large particle size and high crystallinity, and can be produced with high efficiency even in a small-scale facility.
  • Such crystalline h-BN powder is particularly useful as a heat conductive filler for resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、より高効率かつ低コストで、粒径が大きくかつ結晶性の高い結晶性六方晶窒化ホウ素粉末を連続的にかつ炉の汚染を少なくして製造する方法を提供する。本発明は、第一工程にてホウ素含有物質と窒素含有物質とを加熱処理してBN含有率が80重量%以上の粗製窒化ホウ素を得た後、第二工程にて該粗製窒化ホウ素を下記式(1)を満足する量のホウ素含有フラックス成分とともに耐熱容器に仕込み、窒素ガス雰囲気下連続反応炉で1550~2400℃にて再加熱処理して結晶成長させることを特徴とする、結晶性六方晶窒化ホウ素粉末の連続的製造方法に関する。 式(1):ホウ素含有フラックス成分に含まれるホウ素量/粗製窒化ホウ素量≦1.4重量%

Description

窒化ホウ素粉末の連続的製造方法
 本発明は、窒化ホウ素粉末の連続的製造方法に関する。さらに詳しくは、ホウ素含有物質と窒素含有物質とを加熱処理し、BN含有率が80重量%以上の粗製窒化ホウ素を得た後、該粗製窒化ホウ素を所定量のホウ素を含むホウ素含有フラックス成分とともに耐熱容器に仕込み、窒素ガス雰囲気下連続反応炉で1550~2400℃にて再加熱処理して結晶成長させることを特徴とする、結晶性六方晶窒化ホウ素粉末の連続的製造方法に関する。
 六方晶窒化ホウ素粉末(以下、h-BN粉末と記す)は耐熱性、潤滑性、電気絶縁性、および熱伝導性などに優れた特性を持つことから、固体潤滑材、離型剤、化粧品原料、熱伝導性樹脂用フィラー、焼結体原料などの多くの用途に使用されている。中でも化粧品に混合したときの隠蔽効果に優れることや、熱伝導性が高いことから、化粧品原料や樹脂用熱伝導性フィラーとして特に有用である。
 これらh-BN粉末の工業的な製造方法としては、ホウ酸、酸化ホウ素、ホウ砂等のホウ素含有物質と、メラミン、尿素、ジシアンジアミド、アンモニア、窒素等の窒素含有物質とを加熱雰囲気下に反応させる方法が挙げられる。
 これら製造方法の中でも、特許文献1には、ホウ素含有物質と窒素含有物質とを900~1300℃程度の温度で加熱処理して一旦粗製BN粉末を合成した後、該粗製BN粉末を水洗して不純物を除去して、再度1500~1800℃程度の高温で処理することにより、結晶性のh-BN粉末が効率良く製造可能であることが示されている。
 また特許文献2には、ホウ酸等のホウ素含有物質とメラミン等の窒素含有物質を含む混合物に対し、Ca含有物質を添加してから1800℃~2200℃の高温で焼成・結晶化することにより、結晶性のh-BN粉末が製造できることが示されている。同様に特許文献3には結晶性のh-BN粉末の製造時に、Ca含有物質として、炭酸カルシウム、ホウ酸カルシウムが好適であることが示されている。さらに、特許文献6には、粗製窒化ホウ素粉末を、60℃以下で1週間以上養生させて、再加熱する方法が示されている。
 特許文献4には、還元剤となる炭素化合物とホウ酸等のホウ素含有物質とを、窒素ガス雰囲気中窒化触媒存在下に1650℃~2300℃の高温で還元窒化することを特徴とする、h-BNの連続的製造方法が記載されている。また特許文献5には、h-BNの還元窒化に適した高温連続反応炉が記載されている。
特開昭61-72604号公報 特開平11-29307号公報 特開平11-79720号公報 特開昭60-155507号公報 特開昭62-102080号公報 特開2010-37123号公報
 以上のように、結晶性h-BNの製造には2000℃前後の高温処理が必要である。しかしながら特許文献1~3及び6のようなバッチ炉による製法では、生産の度に2000℃前後までの昇温と取り出し可能な温度までの降温を繰り返す必要があり、加熱冷却に多大なエネルギーロスが生じるという問題があった。
 また特許文献2~3のように粗製BN粉末を一旦取り出すことなく一気に2000℃付近の高温で処理を行う製法では、結晶性h-BN生産時に、原料となる窒素化合物やホウ素化合物から大量の分解物が発生する。したがってこのような製法を連続反応炉による連続生産方式に適用しようとすると、高温炉内が常時汚染されることとなるため、炉内の掃除に多大な手間を要する。
 特許文献4~5のようなh-BN生産が連続的に可能となる製法では、還元剤として用いられる炭素化合物が高温でホウ素化合物を還元することによりCOあるいはCOガスとして揮発する。そのため、仕込んだ原料の量に対して得られるh-BNの収率が低くなり、高価でかつメンテナンスも容易ではない高温炉の稼働率が低下して設備コストが増大し、結晶性h-BN粉末がコストアップするという問題があった。また、得られるh-BN粉末は結晶サイズが大きくなりにくいという問題があった。
 以上のように従来技術では、粒径が大きくかつ結晶性の高いh-BN粉末を高効率かつ低コストにて、かつ炉内の汚染を少なくして生産するのは困難であった。そこで、本発明では、より高効率かつ低コストで、粒径が大きくかつ結晶性の高い結晶性六方晶窒化ホウ素粉末を連続的にかつ炉の汚染を少なくして製造する方法を提供することを課題として掲げた。
 本発明者らは上記現状に鑑み、粒径が大きくかつ結晶性に優れたh-BN粉末を、高効率かつ低コストで連続的にかつ炉の汚染を少なくして生産するという課題を実現させるべく、鋭意検討を行った。
 その結果、ホウ素含有物質と窒素含有物質とを加熱処理し、BN含有率が80重量%以上の粗製窒化ホウ素を得た後、該粗製窒化ホウ素を所定量のホウ素を含むホウ素含有フラックス成分とともに耐熱容器に仕込み、窒素ガス雰囲気下連続反応炉で1550~2400℃にて再加熱処理して結晶成長させることにより、結晶性h-BN粉末を連続的に製造可能であることを見出し、本発明に至った。
 すなわち本発明の第一は、第一工程にてホウ素含有物質と窒素含有物質とを加熱処理してBN含有率が80重量%以上の粗製窒化ホウ素を得た後、第二工程にて該粗製窒化ホウ素を、下記式(1)を満足するホウ素含有フラックス成分とともに耐熱容器に仕込み、窒素ガス雰囲気下連続反応炉で1550~2400℃にて再加熱処理して結晶成長させることを特徴とする、結晶性六方晶窒化ホウ素粉末の連続的製造方法である。
 式(1):ホウ素含有フラックス成分に含まれるホウ素量/粗製窒化ホウ素量≦1.4重量%
 本発明の第二は、前記第一工程の加熱処理温度が800℃以上、1550℃未満である第一に記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法である。
 本発明の第三は、前記耐熱容器が、グラファイト製または窒化ホウ素製であることを特徴とする、第一又は二に記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法である。
 本発明の第四は、前記耐熱容器が、少なくとも内面が窒化ホウ素でコーティングされているグラファイト製容器である第一~三のいずれかに記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法である。
 本発明の第五は、前記連続反応炉がプッシャー式トンネル炉であることを特徴とする、第一~四のいずれかに記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法である。
 本発明の第六は、前記粗製窒化ホウ素粉末のX線回折法による黒鉛化指数(GI)が2.5以上かつ数平均粒子径が9μm以下であり、窒素ガス雰囲気中にて1550~2400℃で再加熱処理した後の結晶性六方晶窒化ホウ素粉末のX線回折法による黒鉛化指数(GI)が1.9以下かつ数平均粒子径が10μm以上であることを特徴とする、第一~五のいずれかに記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法である。
 なお本発明には、前記第一発明において、式(1)の要件がない発明(発明A)も含まれる。この発明Aにおいても、前記第二発明~第六発明で言及されている事項は、好ましい態様になる。その他、全ての要件に関し、発明Aは前記第一発明と同様である。
 上記のごとく、まず焼成して粗製窒化ホウ素(BN)粉末を一旦製造した後、1550~2400℃の高温処理を実施する際に使用するホウ素含有フラックス成分量を抑制することで、高温処理時に分解物や揮発物がほとんど発生しなくなるため、連続生産時に炉内壁を分解物で汚染したりすることがほとんど無くなり、炉を長期間連続的に稼動させることが可能となったため、高温炉の昇降温に要するエネルギーを大幅に低減することが可能となった。また分解物や揮発物がほとんど発生しなくなった結果、高温連続反応炉の利用効率を高めることが可能となり、設備コストを低く抑えられるため、小規模な設備であっても粒径が大きくかつ高結晶性のh-BN粉末を高効率かつ低コストにて、工業的規模で生産できることとなった。
 特に1550~2400℃の高温処理を連続炉で行えば、少ないホウ素含有フラックスが揮発することでその残存量が非常に少なくなるにも拘わらず、高結晶化をより確実に達成できる。
図1は本発明に使用されるプッシャー式トンネル炉の縦断面図の一例を示す図である。 図2は本発明のプッシャー式トンネル炉に使用される耐熱容器の図の一例を示す図である。
 本発明は、ホウ素含有物質と窒素含有物質とを加熱処理して粗製窒化ホウ素を得る第一工程と、該粗製窒化ホウ素と所定量のホウ素を含むホウ素含有フラックス成分とを不活性ガス雰囲気下の連続反応炉で再加熱処理して結晶成長させる第二工程を含むことを特徴とする。第一工程では、窒化ホウ素を結晶成長させるための粗製窒化ホウ素を調製する。第二工程では、該粗製窒化ホウ素と低減された量のホウ素とを反応させて、さらに窒化ホウ素を結晶成長させる。
1.第一工程
 本発明で使用されるホウ素含有物質としては、ホウ酸、酸化ホウ素、無機又は有機化合物のホウ酸塩、ハロゲン化ホウ素、ボラジン、ボロシロキサン等の様々な化合物が使用可能であるが、経済性や反応性等の観点から、ホウ酸、酸化ホウ素、アルカリ金属またはアルカリ土類金属のホウ酸塩(例えば、ホウ砂)等のホウ素化合物を好適に用いることが可能である。ホウ酸及び酸化ホウ素としては、オルトホウ酸(HBO)、メタホウ酸(HBO)、テトラホウ酸(H)、無水ホウ酸(B)など、一般式(B)・(HO)x〔但し、x=0~3〕で示される化合物の1種又は2種以上が好適である。
 本発明で使用される窒素含有物質としては、分子中に窒素原子を含有する物質であればよく、有機窒素化合物、無機窒素化合物、窒素単体およびこれらの混合物などが使用可能である。
 窒素含有物質のうち有機窒素化合物としては様々な物質が使用可能であるが、窒素含有量、経済性、反応性等の観点から、メラミン、尿素等のNH基を有する有機化合物、有機アンモニウム塩、アミド化合物、N≡C-基を有する有機化合物等が好適である。これらの中でも、メラミン、尿素が特に好ましく用いられる。窒素含有物質のうち、無機窒素化合物としては、アンモニアガス、アルカリ金属またはアルカリ土類金属のアンモニウム塩等を例示することができる。また窒素単体としては、窒素ガス、液体窒素等を例示することができる。
 これらホウ素含有物質及び窒素含有物質を、適温で反応させて粗製BN粉末を得る第一工程においては、後述のように所定のBN含有量となる限り、予めホウ素含有物質と窒素含有物質とを反応させておいても良いし、未反応のまま炉に仕込んでそのまま焼成してもよい。また窒素含有物質がアンモニアガスや窒素ガスなどの気体である場合には、ホウ素含有物質のみを炉内に仕込んだ後、炉内を上記ガスに置換し、そのまま加熱すれば良い。あるいはホウ素含有物質及び窒素含有物質を炉内に仕込んだ後、雰囲気をアンモニアガスや窒素ガスなどの気体で置換することにより、より効率よく窒素を導入することが可能であるが、雰囲気はこれらに限定されるものではなく、一般的な不活性ガス雰囲気下でも可能である。さらには少量の水分や酸素が混入していてもかまわない。第一工程において、上記成分は、従来公知の方法を使用して混合してもよく、例えば、ヘンシェルミキサーなどの高速攪拌装置を使用して混合してもよい。
 第一工程における炉の最高温度は、特に制限は無いが、炉の設備コストや加熱に要するユーティリティーのコストを考慮すると、例えば、1550℃未満、好ましくは1500℃未満、より好ましくは1460℃未満、さらに好ましくは1400℃未満、最も好ましくは1350℃未満であり、好ましくは800℃以上、より好ましくは850℃以上、さらに好ましくは900℃以上である。炉の最高温度が高くなり過ぎると、第一工程の炉にも特殊な耐熱素材や高価な断熱材が必要となり設備コストアップになるほか、加熱に要するユーティリティーのコストも高額となってしまい、得られるh-BN粉末がコストアップする原因となる。また1550℃以上で加熱するとBN粉末の結晶化が中途半端に進行してしまうため、一旦取り出した後再度加熱した際に結晶化が進行しづらくなる傾向が強くなる。昇温速度、降温速度、最高温度での処理時間等には特に制限は無い。
 第一工程で得られた粗製BN粉末は、BN含有率が80重量%以上である必要がある。BN含有率が80重量%未満の場合には、第二工程で1550~2400℃にて連続的に再加熱処理する際に、揮発物や不純物が多く発生するため、連続反応炉内を汚染してしまったり、連続反応炉での結晶性h-BN粉末の収率が低下してしまったりする。第一工程で得られた粗製BN粉末のBN含有率は、好ましくは85重量%以上、より好ましくは90重量%以上である。
 第一工程で得られた粗製BN粉末は、一旦冷却して大気雰囲気中に取り出し、60℃以下の温度にて一週間以上養生させてもよいし、一旦冷却させること無くそのまま第二工程の高温連続反応炉に仕込んでも良い。養生させると、高結晶化を促進することができる。
2.第二工程
 こうして得られた粗製BN粉末を、窒素ガス雰囲気下にて1550~2400℃で再加熱処理し結晶成長させることで、粒径が大きくかつ結晶性に優れたh-BN粉末を生産することができる。本発明は、後述する様に、本第二工程でホウ素含有フラックス成分の使用量を抑制する点に特徴を有するが、ホウ素含有フラックス成分を抑制すると、再加熱処理時のフラックス成分の揮発によって、窒化ホウ素の高結晶化が優れたレベルではあっても、最高レベルにまでは到達しない事がある。窒化ホウ素の高結晶化を最高レベルにするには、1500~2400℃での再加熱処理において加熱を連続炉で行う事が望ましい。再加熱時の最高温度は1550~2400℃の範囲であるが、より高結晶性のh-BN粉末を得るためには最高温度が高いほうが好ましく、炉の管理コストや維持費を低減させるためには最高温度を低く抑えるほうが好ましい。以上の兼ね合いから、最高温度は好ましくは1600~2300℃、より好ましくは1700~2250℃、さらに好ましくは1750~2200℃、最も好ましくは1800~2150℃である。より高結晶性のh-BN粉末を得るためには最高温度での処理時間は長いほうが好ましく、生産性やユーティリティー費用を低減させるためには最高温度での処理時間は短いほうが好ましい。好ましい最高温度での処理時間は、10分~10時間であり、より好ましくは20分~6時間であり、最も好ましくは30分~5時間である。再加熱時の雰囲気は窒素ガス雰囲気下で実施する必要がある。
 h-BN粉末の結晶性の評価については、粉末X線回折法による黒鉛化指数(GI=Graphitization Index)が用いられる。GIは、X線回折図の(100)、(101)及び(102)線の積分強度比すなわち面積比を次式によって算出することによって求めることができ、この値が小さいほど結晶性が高い。
GI=〔面積{(100)+(101)}〕/〔面積(102)〕
 上記のように、GIはh-BN粉末の結晶性の指標であり、結晶性が高いほどこの値が小さくなり完全に結晶化(黒鉛化)したものではGI=1.60になるとされている。しかし、高結晶性でかつ粒子が十分に成長したh-BN粉末の場合、粉末が配向しやすいためGIは更に小さくなる。
 本発明においては、第一工程で得られる粗製BN粉末は、GI値を2.5以上とすることが好ましく、第二工程で結晶成長させた後の結晶性h-BN粉末はGIを1.9以下とすることが好ましい。第一工程で得られる粗製BN粉末のGI値を2.5未満とすると、第二工程での結晶成長が困難となる場合がある。第一工程でのGI値はより好ましくは2.6以上、さらに好ましくは2.8以上、最も好ましくは3.0以上である。第二工程でのGI値が1.9を超えると、最終製品として用いるには結晶化が不十分である場合が多い。第二工程でのGI値はより好ましくは1.8以下、さらに好ましくは1.6以下、最も好ましくは1.4以下である。
 h-BN粉末の数平均粒子径は、界面活性剤を含む水溶液にh-BN粉末を凝集しないよう投入し、超音波分散器で1分間分散させた後、レーザー散乱式粒度測定装置にて測定した値である。
 本発明においては、第一工程で得られる粗製BN粉末は、数平均粒子径を9μm以下とすることが好ましく、第二工程で結晶成長させた後の結晶性h-BN粉末は数平均粒子径を10μm以上とすることが好ましい。第一工程で得られる粗製BN粉末の数平均粒子径が9μmを超えると、第二工程での結晶成長が困難となる場合がある。第一工程での数平均粒子径はより好ましくは8μm以下、さらに好ましくは7μm以下、最も好ましくは6μm以下である。第二工程での数平均粒子径が10μm未満であると、最終製品として用いるには結晶化が不十分である場合が多い。第二工程での数平均粒子径は好ましくは12μm以上、より好ましくは14μm以上、さらに好ましくは16μm以上、最も好ましくは18μm以上である。
 本発明においては、第二工程の1550~2400℃で再加熱処理し結晶成長させる際には、ホウ素含有フラックス成分を添加する必要がある。但し第二工程においてホウ素含有フラックス成分を積極的に添加することが好ましいが、第一工程の反応性をうまく制御することで、また、第一工程にて製造される粗製BN粉末中に適度な遊離のホウ素成分を残留させることで、この遊離のホウ素成分を第二工程におけるホウ素含有フラックス成分としてそのまま用いることも可能である。1550℃未満で反応させて生成した粗製BN粉末中に含まれる遊離のホウ素成分が少ない場合には、別途第二工程においてホウ素含有フラックス成分を追加で添加する必要がある。第二工程において、上記成分は、従来公知の方法を使用して混合してもよく、例えばヘンシェルミキサーなどの高速攪拌装置を用いて混合してもよい。
 ホウ素含有フラックス成分としては、窒化ホウ素を除くホウ素化合物が用いられる。具体的には、ホウ酸、酸化ホウ素、無機又は有機化合物のホウ酸塩、ハロゲン化ホウ素、ボラジン、ボロシロキサン等の様々な化合物が使用可能であるが、経済性や反応性等の観点から、アルカリ金属またはアルカリ土類金属のホウ酸塩、ホウ酸、酸化ホウ素等のホウ素化合物を好適に用いることが可能である。アルカリ金属またはアルカリ土類金属のホウ酸塩類としては、ホウ砂などのアルカリ金属のホウ酸塩、ホウ酸カルシウム、ホウ酸マグネシウムなどのアルカリ土類金属のホウ酸塩が好適である。これらの中でもホウ酸、酸化ホウ素、ホウ酸カルシウムが特に好ましい。
 ホウ素含有フラックス成分としては、アルカリ金属またはアルカリ土類金属のホウ酸塩類を用いることが好ましいが、原料としてホウ酸塩類を添加する必要は無い。即ちアルカリ金属含有物質・アルカリ土類金属含有物質と、ホウ素含有物質とが存在していれば、高温にて反応してアルカリ金属またはアルカリ土類金属のホウ酸塩類が系内で生じ、h-BN粉末の結晶化を促進する。さらにはアルカリ金属あるいはアルカリ土類金属以外の成分が残存しないあるいは揮発しやすい物質を選択することで、得られるh-BN粉末の純度を向上させることも可能である。
 アルカリ金属含有物質・アルカリ土類金属含有物質のうち、アルカリ金属としてはリチウム、ナトリウム、カリウム等が、アルカリ土類金属としてはベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が好ましく用いられる。これらの金属を含有する炭酸塩、酸化物、過酸化物、水酸化物、ハロゲン化物、金属、硝酸塩、亜硝酸塩、硫酸塩、亜硫酸塩、リン酸塩、ケイ酸塩、ホウ酸塩、アセチルアセトナート化合物等の有機金属化合物が好適に用いられる。アルカリ金属含有物質・アルカリ土類金属含有物質は特に高純度である必要はなく、通常市販の工業用の品質のものが好適に使用される。ホウ酸及び酸化ホウ素としては、オルトホウ酸(HBO)、メタホウ酸(HBO)、テトラホウ酸(H)、無水ホウ酸(B)など、一般式(B)・(HO)x〔但し、x=0~3〕で示される化合物の1種又は2種以上が好適である。
 アルカリ金属・アルカリ土類金属(M)とホウ素(B)との元素モル比は適宜設定可能であるが、通常はM/B=1/4~4/1程度、好ましくはM/B=1/3~3/1程度で使用すればよい。
 第二工程の1550~2400℃で再加熱処理し結晶成長させる際に添加されるホウ素含有フラックス成分の添加量は、粗製BN粉末100重量部に対し50重量部以下で添加するのが好ましい。添加剤の量が粗製BN粉末に対して50重量部を超えると、同じ炉で生産した際に一度に焼成可能な結晶性h-BN粉末の量が減ってしまうため、生産効率が低下してしまう上、フラックス成分の揮発により炉内を汚染させる原因となる場合がある。また得られる結晶性h-BN粉末に添加物が残存してしまうため、結晶性h-BN粉末の純度が低下してしまう。粗製BN粉末100重量部に対するホウ素含有フラックス成分の添加量は、好ましくは40重量部以下、より好ましくは30重量部以下、さらに好ましくは20重量部以下、特に好ましくは15重量部以下、最も好ましくは11重量部以下である。
 本発明において、ホウ素含有フラックス成分に含まれるホウ素は、以下の式を満たすことが必須である。式(1)の左辺の値は、好ましくは1.3重量%以下、より好ましくは1.2重量%以下、さらに好ましくは1.1重量%以下である。また式(1)の左辺の値は、例えば、0.01重量%以上、好ましくは0.05重量%以上、より好ましくは0.1重量%以上である。式(1)の左辺の値が大きすぎると、炉を汚染して配管が詰まるため、結晶成長を促進できないことがある。式(1)の左辺の値が小さすぎると、結晶成長に必要なホウ素量が少ないため、結晶成長を促進できないことがある。
式(1):ホウ素含有フラックス成分に含まれるホウ素量/粗製窒化ホウ素量≦1.4重量%
 第二工程で添加されたホウ素含有フラックス成分は、フラックスの添加量や種類によっては、第二工程の連続反応炉から取り出した際に、h-BN粉末中に残存している場合がある。その場合には、取り出し後にh-BN粉末を酸性水溶液などで水洗することで、フラックス成分を洗浄することが好ましい。酸性水溶液としては、塩酸、硝酸、硫酸等の汎用的な無機強酸水溶液が用いられる。
 本発明において第二工程で1550~2400℃にて再加熱処理する際には、連続反応炉が用いられる。連続反応炉とは、一般的なバッチ式反応炉のような炉の昇温降温動作によりサンプルを熱処理する方法とは異なり、再加熱処理したい温度に予め保たれた炉内を、処理するサンプルが通過していくことにより、サンプルの熱処理を連続的に行う反応炉のことを示す。このような連続反応炉を用いることにより、2000℃にも及ぶ炉の昇温降温動作が不要となるため、熱処理に要するエネルギーコストを大幅に低減できる。また連続反応炉による連続的な処理を行うことにより、原料が高温ゾーンを通過する前後でも、原料が連続的に熱履歴を受けることとなるため、高温ゾーンに保たれた処理時間が同じ場合には、バッチ式の炉で処理した場合と比べて大粒径で結晶性が高くなり、高品質のh-BN粉末が得られることとなる。
 連続反応炉としては、一般的に用いられる反応炉を広く適用することが出来る。ここで言う「連続」とは、常時サンプルが移動している方式のみを指すのでは無く、一定時間おきに一定距離をサンプルが移動する方式であれば良い。一般的には第一工程で得られた粗製BNとホウ素含有フラックス成分とを耐熱容器に仕込んだ後、原料の入った耐熱容器を数分~数時間毎に移動させる方法により、連続反応炉内の1550~2400℃に保たれた高温領域をサンプルが一定時間かけて通過する方式が採用される。
 第二工程で1550~2400℃にて再加熱処理する際に用いられる耐熱容器は、グラファイト製または窒化ホウ素製であることが好ましい。これら以外の耐熱容器では、高温で粗製BN粉末やホウ素含有フラックス成分との反応性を有することがあるうえ、容器にかかるコストも高くなることがある。さらに連続反応炉としてのプッシャー炉に、グラファイト製または窒化ホウ素製容器を用いた場合に、炉内で容器と炉内壁との間に生じる摩擦力が低減でき、連続反応炉の寿命を延ばすことが可能となる。グラファイト製容器を用いる場合には、粗製BN粉末やホウ素含有フラックス成分と、容器との反応性を低下させるため、容器表面または内面を窒化ホウ素でコーティングした容器を用いるのが好ましい。
 第二工程で用いられる連続反応炉は、プッシャー式トンネル炉であることが好ましい。即ち第一工程で得られた粗製BNとホウ素含有フラックス成分とを、耐熱容器に仕込んだ後、原料の入った耐熱容器を1550~2400℃に保たれたプッシャー式トンネル炉内に連続的に供給することで、プッシャー式トンネルの温度を昇降温することなく、1550~2400℃に保たれた空間内を原料が連続的に通過していくことで、結晶性h-BN粉末が連続的に生産されることとなる。
 1550~2400℃にまで再加熱可能なプッシャー式トンネル炉としては、グラファイト製ヒーターを備えた炉内に、グラファイトや窒化ホウ素などの耐熱素材で作られたトンネルを設置した構造の炉を例示することが出来る(例えば、図1)。このようなトンネル炉の入り口付近にプッシャーを設置し、原料が充填された耐熱容器をプッシャーにより間隔を開けて押し進めて行くことで、順次原料が高温エリアに送られ、高温エリアでの結晶化が進行する。この際、原料から発生する少量の揮発物を炉外に排出するため、プッシャー式トンネル炉内には常に窒素気流を流しておくことが好ましい。また窒素気流下で処理されることにより、BN結晶内部の欠陥が修復され、h-BNの結晶化が進行することとなる。またグラファイトや窒化ホウ素などの耐熱素材でトンネルが構成されていることにより、原料から少量の揮発物等が発生した場合であっても、揮発物がヒーターを汚染することが無いため、炉を長期間連続的に運転させることが可能となる。
 本発明により得られる、粒径が大きく結晶性の高いh-BN粉末は、化粧品に混合したときの他の成分による隠蔽効果に優れることから、例えば、化粧品に好ましく用いることが可能である。また高結晶性であるため熱伝導性が高いことや、大粒径であるため粒子同士の接触面における熱抵抗を低減できることから、例えば、樹脂用熱伝導性フィラーとして特に有用である。熱伝導性フィラーとして用いる際の樹脂としては、熱硬化性樹脂、熱可塑性樹脂のいずれにも効果的に使用可能である。熱硬化性樹脂としては、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などのエポキシ系樹脂、ウレタン系樹脂、硬化性シリコーン系樹脂、硬化性アクリル系樹脂等が好ましく使用可能である。熱可塑性樹脂としては、ポリスチレンなどの芳香族ビニル系樹脂、ポリアクリロニトリルなどのシアン化ビニル系樹脂、ポリ塩化ビニルなどの塩素系樹脂、ポリメチルメタクリレート等のポリメタアクリル酸エステル系樹脂やポリアクリル酸エステル系樹脂、ポリエチレンやポリプロピレンや環状ポリオレフィン樹脂等のポリオレフィン系樹脂、ポリ酢酸ビニルなどのポリビニルエステル系樹脂、ポリビニルアルコール系樹脂及びこれらの誘導体樹脂、ポリメタクリル酸系樹脂やポリアクリル酸系樹脂及びこれらの金属塩系樹脂、ポリ共役ジエン系樹脂、マレイン酸やフマル酸及びこれらの誘導体を重合して得られるポリマー、マレイミド系化合物を重合して得られるポリマー、非晶性半芳香族ポリエステルや非晶性全芳香族ポリエステルなどの非晶性ポリエステル系樹脂、結晶性半芳香族ポリエステルや結晶性全芳香族ポリエステルなどの結晶性ポリエステル系樹脂、脂肪族ポリアミドや脂肪族-芳香族ポリアミドや全芳香族ポリアミドなどのポリアミド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリスルホン系樹脂、ポリアルキレンオキシド系樹脂、セルロース系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂、ポリケトン系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリエーテルイミド系樹脂、ポリエーテルケトン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリビニルエーテル系樹脂、フェノキシ系樹脂、フッ素系樹脂、シリコーン系樹脂、液晶ポリマー、及びこれら例示されたポリマーのランダム・ブロック・グラフト共重合体などが挙げられる。これら熱可塑性樹脂は、それぞれ単独で、あるいは2種以上の複数を組み合わせて用いることができる。2種以上の樹脂を組み合わせて用いる場合には、必要に応じて相溶化剤などを添加して用いることもできる。これら熱可塑性樹脂は、目的に応じて適宜使い分ければよい。
 本願は、2011年11月2日に出願された日本国特許出願第2011-240880号に基づく優先権の利益を主張するものである。2011年11月2日に出願された日本国特許出願第2011-240880号の明細書の全内容が、本願に参考のため援用される。
 以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
 黒鉛化指数(GI)測定:スペクトリス(株)製PANalytical X’Pert Pro XRD測定装置を用い、Cu・KαのX線にて、広角X線回折測定を行った。得られた測定値から、2θ=41°付近、44°付近、50°付近に見られる(100)(101)(102)の面積を測定し、下記式に基づいて黒鉛化指数(GI)を算出した。
GI=〔面積{(100)+(101)}〕/〔面積(102)〕
 数平均粒子径:100mlビーカーにヘキサメタリン酸ナトリウム20重量%水溶液1mlを入れ、この水溶液にh-BN粉末20mgを投入し、超音波分散器で3分間分散処理した。得られた分散液にて、日機装(株)製レーザー回折式粒度分布測定器MT3300EXIIを用い、数平均粒子径を測定した。
 実施例1
 オルトホウ酸55kg、メラミン45kgをヘンシェルミキサーで混合した後、窒素フロー下でバッチ式の管状電気炉にて1100℃に加熱し2時間処理後冷却することで、粗製BN粉末を得た。この粗製BN粉末を一旦取り出し、23℃50%RH条件にて10日間静置し、養生した。次いで、粗製BN粉末18kg、酸化カルシウム1.2kg、オルトホウ酸0.8kgをヘンシェルミキサーで混合した後、容器1個につき混合物を3kgずつ、外寸230mm角四方、内寸210mm角四方の立方体形状で内面及び外面がいずれも窒化ホウ素でコーティングされているグラファイト製耐熱容器に仕込む作業を繰り返すことで、原料混合物が充填された容器を50個準備した。グラファイト製ヒーターとグラファイト製マッフル型トンネルとを有したプッシャー式トンネル炉の中心部分を2050℃に保ち、内部に高純度窒素を充満させた。この状態のプッシャー式トンネル炉にさらに内部に高純度窒素気流を流しながら、原料が充填された耐熱容器を30分に1回の頻度で容器一個分ずつ炉内へ送ることにより、2050℃に保たれたゾーンを120分間かけて通過させ、粗製BN粉末を結晶化させて結晶性h-BN粉末を得た。得られた結晶性h-BN粉末を硝酸水溶液に分散させたあと、ろ過、純水での洗浄、乾燥を経ることにより、耐熱容器1個あたり2.66kgの結晶性h-BN粉末を得た。
得られたh-BN粉末の特性は下記の通りである。
粗製BN粉末:黒鉛化指数4.74、数平均粒子径0.95μm。
結晶性h-BN粉末:黒鉛化指数1.09、数平均粒子径23.5μm。
 実施例2
 無水ホウ酸65重量部、リン酸カルシウム35重量部をヘンシェルミキサーで混合した後、アンモニアフロー下で管状電気炉にて1000℃に加熱し6時間処理後冷却することで、粗製BN粉末を得た。この粗製BN粉末を一旦取り出し、23℃50%RH条件にて10日間静置し、養生した。次いで、粗製BN粉末18kg、ホウ酸カルシウム2.0kgをヘンシェルミキサーで混合した後、容器1個につき混合物を3kgずつ、外寸230mm角四方、内寸210mm角四方の立方体形状グラファイト製耐熱容器に仕込む作業を繰り返すことで、原料混合物が充填された容器を50個準備した。グラファイト製ヒーターとグラファイト製マッフル型トンネルとを有したプッシャー式トンネル炉の中心部分を2050℃に保ち、内部に高純度窒素を充満させた。この状態のプッシャー式トンネル炉にさらに内部に高純度窒素気流を流しながら、原料が充填された耐熱容器を30分に1回の頻度で容器一個分ずつ炉内へ送ることにより、2050℃に保たれたゾーンを120分間かけて通過させ、粗製BN粉末を結晶化させて結晶性h-BN粉末を得た。得られた結晶性h-BN粉末を硝酸水溶液に分散させたあと、ろ過、純水での洗浄、乾燥を経ることにより、耐熱容器1個あたり2.66kgの結晶性h-BN粉末を得た。
得られたh-BN粉末の特性は下記の通りである。
粗製BN粉末:黒鉛化指数3.58、数平均粒子径1.05μm。
結晶性h-BN粉末:黒鉛化指数1.06、数平均粒子径26.5μm。
 比較例1
 オルトホウ酸55kg、メラミン45kgをヘンシェルミキサーで混合した後、窒素フロー下でバッチ式の管状電気炉にて1100℃に加熱し2時間処理後冷却することで、粗製BN粉末を得た。この粗製BN粉末を一旦取り出し、23℃50%RH条件にて10日間静置し、養生した。この粗製BN粉末90g、酸化カルシウム6g、オルトホウ酸4gをるつぼにて混合した後、窒化ホウ素製容器仕込み、高温加熱が可能なバッチ式電気雰囲気炉に仕込んだ。内部を窒素置換した後、2050℃にて2時間加熱し、粗製BN粉末を結晶化させた。こうして得られた結晶性h-BN粉末を硝酸水溶液に分散させたあと、ろ過、純水での洗浄、乾燥を経て、結晶性h-BN粉末を得た。
粗製BN粉末:黒鉛化指数4.74、数平均粒子径0.95μm。
結晶性h-BN粉末:黒鉛化指数1.68、数平均粒子径12.3μm。
 比較例1では連続反応炉による連続的生産方式を採用しなかったため、実施例1よりも得られた結晶性h-BN粉末の粒径が小さく、かつ結晶性が低くなった。
 比較例2
 オルトホウ酸55kg、メラミン45kgをヘンシェルミキサーで混合した。容器1個につきこの混合物3kgを取り出し、外寸230mm角四方、内寸210mm角四方の立方体形状グラファイト製耐熱容器に仕込む作業を繰り返すことで、原料混合物が充填された容器を50個準備した。グラファイト製ヒーターとグラファイト製マッフル型トンネルとを有したプッシャー式トンネル炉の中心部分を2050℃に保ち、内部に高純度窒素を充満させた。この状態のプッシャー式トンネル炉にさらに内部に高純度窒素気流を流しながら、原料が充填された耐熱容器を30分に1回の頻度で容器一個分ずつ炉内へ送ることにより、2050℃に保たれたゾーンを120分間かけて通過させ、結晶性h-BN粉末を合成した。結果、耐熱容器1個につき0.5kgしかh-BN粉末が得られず、生産性が著しく低下した。また原料から発生した揮発物等により炉内のマッフルが著しく汚染されたため、容器50個中12個を送った時点で連続反応炉のプッシャーが動作不可能となり、停止してしまった。得られたh-BN粉末を硝酸水溶液に分散させたあと、ろ過、純水での洗浄、乾燥を経て、結晶性h-BN粉末を得た。
得られたh-BN粉末の特性は下記の通りである。
結晶性h-BN粉末:黒鉛化指数1.55、数平均粒子径13.8μm。
 比較例2では一旦粗製BN粉末を取り出すことなく、一貫して連続反応炉による製造を試みたため、実施例1よりもh-BN粉末の生産効率が低下し、炉内の汚染も激しくなったうえ、得られた結晶性h-BN粉末は粒径が小さく結晶性の低いものであった。
 比較例3
 オルトホウ酸50kg、アセチレンブラック11kg、酸化カルシウム5kgをヘンシェルミキサーで混合した。容器1個につきこの混合物3kgを取り出し、外寸230mm角四方、内寸210mm角四方の立方体形状グラファイト製耐熱容器に仕込む作業を繰り返すことで、原料混合物が充填された容器を50個準備した。グラファイト製ヒーターとグラファイト製マッフル型トンネルとを有したプッシャー式トンネル炉の中心部分を2050℃に保ち、内部に高純度窒素を充満させた。この状態のプッシャー式トンネル炉にさらに内部に高純度窒素気流を流しながら、原料が充填された耐熱容器を30分に1回の頻度で容器一個分ずつ炉内へ送ることにより、2050℃に保たれたゾーンを120分間かけて通過させることで、オルトホウ酸をアセチレンブラックで還元しながら窒素ガスで窒化させる方法により、結晶性h-BN粉末を合成した。結果、耐熱容器1個につき0.6kgしかh-BN粉末が得られず、生産性が著しく低下した。また原料からタール状の汚物が発生し、炉内下流付近に析出することで炉内が汚染された。得られたh-BN粉末硝酸水溶液に分散させたあと、ろ過、純水での洗浄、乾燥を経て、結晶性h-BN粉末を得た。
得られたh-BN粉末の特性は下記の通りである。
結晶性h-BN粉末:黒鉛化指数1.41、数平均粒子径11.7μm。
 比較例3では還元窒化法と呼ばれる方法を採用したため、比較例2との比較では連続生産性は改善されたものの、やはり実施例1との比較ではh-BN粉末の生産効率が著しく低下し、炉内も汚染されたうえ、得られた結晶性h-BN粉末は粒径が小さく結晶性の低いものであった。
 以上から本発明の製造方法にて製造された結晶性h-BN粉末は、大粒径で結晶性が高く、さらに小規模の設備でも高効率で生産可能であることが分かる。このような結晶性h-BN粉末は、特に樹脂用熱伝導性フィラーとして有用である。
1.プッシャー、
2.ガス排出口、  
3.カーボンヒーター、
4.ガス導入口、
5.トンネル型マッフル、
6.耐熱容器

Claims (6)

  1.  第一工程にてホウ素含有物質と窒素含有物質とを加熱処理してBN含有率が80重量%以上の粗製窒化ホウ素を得た後、第二工程にて該粗製窒化ホウ素を、下記式(1)を満足するホウ素含有フラックス成分とともに耐熱容器に仕込み、窒素ガス雰囲気下連続反応炉で1550~2400℃にて再加熱処理して結晶成長させることを特徴とする、結晶性六方晶窒化ホウ素粉末の連続的製造方法。
     式(1):ホウ素含有フラックス成分に含まれるホウ素量/粗製窒化ホウ素量≦1.4重量%
  2.  前記第一工程の加熱処理温度が800℃以上、1550℃未満である請求項1に記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法。
  3.  前記耐熱容器が、グラファイト製または窒化ホウ素製であることを特徴とする、請求項1又は2に記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法。
  4.  前記耐熱容器が、少なくとも内面が窒化ホウ素でコーティングされているグラファイト製容器である請求項1~3のいずれかに記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法。
  5.  前記連続反応炉がプッシャー式トンネル炉であることを特徴とする、請求項1~4のいずれかに記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法。
  6.  前記粗製窒化ホウ素粉末のX線回折法による黒鉛化指数(GI)が2.5以上かつ数平均粒子径が9μm以下であり、窒素ガス雰囲気中にて1550~2400℃で再加熱処理した後の結晶性六方晶窒化ホウ素粉末のX線回折法による黒鉛化指数(GI)が1.9以下かつ数平均粒子径が10μm以上であることを特徴とする、請求項1~5のいずれかに記載の結晶性六方晶窒化ホウ素粉末の連続的製造方法。
PCT/JP2012/077499 2011-11-02 2012-10-24 窒化ホウ素粉末の連続的製造方法 WO2013065556A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280053543.9A CN104024153A (zh) 2011-11-02 2012-10-24 氮化硼粉末的连续制造方法
JP2013541730A JP5923106B2 (ja) 2011-11-02 2012-10-24 窒化ホウ素粉末の連続的製造方法
EP12845975.7A EP2774893A4 (en) 2011-11-02 2012-10-24 PROCESS FOR CONTINUOUS PRODUCTION OF BORON NITRIDE POWDER
US14/355,020 US20140314652A1 (en) 2011-11-02 2012-10-24 Process for continuous production of boron nitride powder
KR1020147008838A KR20140095049A (ko) 2011-11-02 2012-10-24 질화붕소 분말의 연속적 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011240880 2011-11-02
JP2011-240880 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013065556A1 true WO2013065556A1 (ja) 2013-05-10

Family

ID=48191907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077499 WO2013065556A1 (ja) 2011-11-02 2012-10-24 窒化ホウ素粉末の連続的製造方法

Country Status (7)

Country Link
US (1) US20140314652A1 (ja)
EP (1) EP2774893A4 (ja)
JP (1) JP5923106B2 (ja)
KR (1) KR20140095049A (ja)
CN (1) CN104024153A (ja)
TW (1) TW201323320A (ja)
WO (1) WO2013065556A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109134A1 (ja) * 2013-01-10 2014-07-17 株式会社カネカ 六方晶窒化ホウ素及びそれを用いた高熱伝導性樹脂成形体
JP2017160086A (ja) * 2016-03-09 2017-09-14 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法並びに化粧料
JP2017222522A (ja) * 2016-06-13 2017-12-21 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
WO2020031913A1 (ja) 2018-08-07 2020-02-13 水島合金鉄株式会社 六方晶窒化ホウ素粉末
WO2021039586A1 (ja) * 2019-08-28 2021-03-04 株式会社トクヤマ 改質窒化ホウ素粉末
JP2021102542A (ja) * 2019-12-25 2021-07-15 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP2021102540A (ja) * 2019-12-25 2021-07-15 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP2021123508A (ja) * 2020-02-03 2021-08-30 株式会社トクヤマ 窒化アルミニウム粉末の製造方法および製造装置
JP7161638B1 (ja) 2022-03-30 2022-10-26 株式会社ノリタケカンパニーリミテド マッフル炉

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528669A (zh) * 2014-12-03 2015-04-22 营口天元化工研究所股份有限公司 一种六方氮化硼的合成方法
KR20160073435A (ko) * 2014-12-15 2016-06-27 오씨아이 주식회사 질화붕소 분말의 제조방법
CN106241753A (zh) * 2015-05-19 2016-12-21 常州新墨能源科技有限公司 一种白色石墨烯纳米粒子的制备方法
WO2017034003A1 (ja) * 2015-08-26 2017-03-02 デンカ株式会社 熱伝導性樹脂組成物
EP3490929A1 (en) * 2016-07-26 2019-06-05 Arconic Inc. Methods for making boron nitride ceramic powder
CN108408698B (zh) * 2018-04-27 2021-10-01 南方科技大学 氧掺杂捆束状多孔氮化硼制备方法
CN110872677B (zh) * 2019-12-05 2020-12-18 北京矿冶科技集团有限公司 一种低烧损可磨耗涂层材料及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155507A (ja) 1984-01-26 1985-08-15 Shin Etsu Chem Co Ltd 窒化ほう素の連続的製造方法
JPS6172604A (ja) 1984-09-14 1986-04-14 Kawasaki Steel Corp 高結晶性窒化硼素粉末の製造方法
JPS61286207A (ja) * 1985-06-08 1986-12-16 Showa Denko Kk 窒化ホウ素の製造法
JPS62102080A (ja) 1985-10-30 1987-05-12 信越化学工業株式会社 高温連続反応炉
JPH01278404A (ja) * 1988-04-27 1989-11-08 Union Carbide Corp 窒化ホウ素の製造方法
JPH10203807A (ja) * 1997-01-20 1998-08-04 Osamu Yamamoto 乱層構造窒化硼素粉末とその製造方法
JPH1129307A (ja) 1997-07-09 1999-02-02 Denki Kagaku Kogyo Kk 六方晶窒化ほう素粉末
JPH1179720A (ja) 1997-07-09 1999-03-23 Denki Kagaku Kogyo Kk 六方晶窒化ほう素粉末及び用途
JP2009149469A (ja) * 2007-12-20 2009-07-09 Denki Kagaku Kogyo Kk 六方晶窒化ホウ素の製造方法
JP2010037123A (ja) 2008-08-04 2010-02-18 Kaneka Corp 六方晶窒化ホウ素の製造方法
JP2012056818A (ja) * 2010-09-10 2012-03-22 Denki Kagaku Kogyo Kk 六方晶窒化ホウ素粉末及びそれを用いた高熱伝導性、高耐湿性放熱シート

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283306A (ja) * 1985-10-04 1987-04-16 Res Dev Corp Of Japan 透明なbn系セラミックス材料
JP2010042963A (ja) * 2008-08-18 2010-02-25 Kaneka Corp 六方晶窒化ホウ素の製造方法
CN101891165A (zh) * 2010-07-15 2010-11-24 丹东市化工研究所有限责任公司 大结晶六方氮化硼生产方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155507A (ja) 1984-01-26 1985-08-15 Shin Etsu Chem Co Ltd 窒化ほう素の連続的製造方法
JPS6172604A (ja) 1984-09-14 1986-04-14 Kawasaki Steel Corp 高結晶性窒化硼素粉末の製造方法
JPS61286207A (ja) * 1985-06-08 1986-12-16 Showa Denko Kk 窒化ホウ素の製造法
JPS62102080A (ja) 1985-10-30 1987-05-12 信越化学工業株式会社 高温連続反応炉
JPH01278404A (ja) * 1988-04-27 1989-11-08 Union Carbide Corp 窒化ホウ素の製造方法
JPH10203807A (ja) * 1997-01-20 1998-08-04 Osamu Yamamoto 乱層構造窒化硼素粉末とその製造方法
JPH1129307A (ja) 1997-07-09 1999-02-02 Denki Kagaku Kogyo Kk 六方晶窒化ほう素粉末
JPH1179720A (ja) 1997-07-09 1999-03-23 Denki Kagaku Kogyo Kk 六方晶窒化ほう素粉末及び用途
JP2009149469A (ja) * 2007-12-20 2009-07-09 Denki Kagaku Kogyo Kk 六方晶窒化ホウ素の製造方法
JP2010037123A (ja) 2008-08-04 2010-02-18 Kaneka Corp 六方晶窒化ホウ素の製造方法
JP2012056818A (ja) * 2010-09-10 2012-03-22 Denki Kagaku Kogyo Kk 六方晶窒化ホウ素粉末及びそれを用いた高熱伝導性、高耐湿性放熱シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2774893A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109134A1 (ja) * 2013-01-10 2014-07-17 株式会社カネカ 六方晶窒化ホウ素及びそれを用いた高熱伝導性樹脂成形体
JP2017160086A (ja) * 2016-03-09 2017-09-14 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法並びに化粧料
JP2017222522A (ja) * 2016-06-13 2017-12-21 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
WO2020031913A1 (ja) 2018-08-07 2020-02-13 水島合金鉄株式会社 六方晶窒化ホウ素粉末
KR20210028712A (ko) 2018-08-07 2021-03-12 미즈시마 페로알로이 가부시키가이샤 육방정 질화붕소 분말
WO2021039586A1 (ja) * 2019-08-28 2021-03-04 株式会社トクヤマ 改質窒化ホウ素粉末
JP2021102542A (ja) * 2019-12-25 2021-07-15 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP2021102540A (ja) * 2019-12-25 2021-07-15 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP7372142B2 (ja) 2019-12-25 2023-10-31 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP7429532B2 (ja) 2019-12-25 2024-02-08 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP2021123508A (ja) * 2020-02-03 2021-08-30 株式会社トクヤマ 窒化アルミニウム粉末の製造方法および製造装置
JP7401330B2 (ja) 2020-02-03 2023-12-19 株式会社トクヤマ 窒化アルミニウム粉末の製造方法および製造装置
JP7161638B1 (ja) 2022-03-30 2022-10-26 株式会社ノリタケカンパニーリミテド マッフル炉
JP2023148905A (ja) * 2022-03-30 2023-10-13 株式会社ノリタケカンパニーリミテド マッフル炉

Also Published As

Publication number Publication date
KR20140095049A (ko) 2014-07-31
JPWO2013065556A1 (ja) 2015-04-02
EP2774893A4 (en) 2015-11-25
CN104024153A (zh) 2014-09-03
JP5923106B2 (ja) 2016-05-24
TW201323320A (zh) 2013-06-16
EP2774893A1 (en) 2014-09-10
US20140314652A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5923106B2 (ja) 窒化ホウ素粉末の連続的製造方法
JP5065198B2 (ja) 六方晶窒化ホウ素の製造方法
JP6483508B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法
JP2010042963A (ja) 六方晶窒化ホウ素の製造方法
JP7334763B2 (ja) 窒化アルミニウム-窒化ホウ素複合凝集粒子およびその製造方法
JP5038257B2 (ja) 六方晶窒化ホウ素及びその製造方法
JP2016160134A (ja) 六方晶窒化ホウ素粉末及びその製造方法
EP3560890B1 (en) Hexagonal boron nitride powder and method for producing same
JP2010180066A (ja) 窒化ホウ素球状ナノ粒子とその製造方法
JP2019182737A (ja) 六方晶窒化ホウ素粉末およびその製造方法
JP2014015339A (ja) 炭化珪素粉末の製造方法
JP6519876B2 (ja) 六方晶窒化ホウ素の製造方法、及び放熱シートの製造方法
JP2011520763A5 (ja)
Yasno et al. Short time reaction synthesis of nano-hexagonal boron nitride
US20120063983A1 (en) Method for Synthesis of Boron Nitride Nanopowder
JP5109882B2 (ja) 六方晶窒化ホウ素粉末の製造方法
JP2017014064A (ja) 六方晶窒化硼素粒子及びその製造方法
JPH08217424A (ja) 六方晶窒化ほう素粉末及びその製造方法
WO2014109134A1 (ja) 六方晶窒化ホウ素及びそれを用いた高熱伝導性樹脂成形体
JP5043632B2 (ja) 六方晶窒化ホウ素の製造方法
JP3647079B2 (ja) 六方晶窒化ほう素粉末の製造方法
JPH01176208A (ja) 六方晶窒化硼素微粉末の製造方法
Qiu et al. Solvothermal preparation of silicon nanocrystals
Berchmans et al. Synthesis of nanocrystalline boron nitride by combustion process
Matsumoto et al. Enhancing Thermal Conductivity of CNT/AlN/Silicone Rubber Composites through Directly Grown CNTs on AlN for Reduced Filler Filling Ratio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541730

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147008838

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14355020

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012845975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012845975

Country of ref document: EP