WO2014126256A1 - 電解液及びこれを備えたリチウムイオン二次電池 - Google Patents

電解液及びこれを備えたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2014126256A1
WO2014126256A1 PCT/JP2014/053752 JP2014053752W WO2014126256A1 WO 2014126256 A1 WO2014126256 A1 WO 2014126256A1 JP 2014053752 W JP2014053752 W JP 2014053752W WO 2014126256 A1 WO2014126256 A1 WO 2014126256A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte salt
electrolyte
lithium ion
discharge
secondary battery
Prior art date
Application number
PCT/JP2014/053752
Other languages
English (en)
French (fr)
Inventor
弘行 水野
平田 和久
川瀬 健夫
出穂 岡田
裕大 勝山
美和子 富永
正幸 岡島
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to PL14751453T priority Critical patent/PL2958183T3/pl
Priority to CN201480008985.0A priority patent/CN104995785B/zh
Priority to JP2015500340A priority patent/JP6078629B2/ja
Priority to EP14751453.3A priority patent/EP2958183B1/en
Priority to KR1020157023579A priority patent/KR102141903B1/ko
Priority to US14/768,273 priority patent/US10978740B2/en
Publication of WO2014126256A1 publication Critical patent/WO2014126256A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution and a lithium ion secondary battery provided with the same.
  • Batteries such as lithium ion secondary batteries, are used as power supplies for mobile phones and personal computers, as well as power supplies for automobiles.
  • batteries used for such applications researches for improving various characteristics such as securing of safety and improvement of cycle characteristics have been repeated.
  • Patent Document 1 discloses a mixed solvent of ethylene carbonate and dimethyl carbonate, a halogenated carbonate such as 4-fluoro-1,3-dioxolan-2-one (FEC), and bis (fluoro) bis (electrolyte salt).
  • the electrolytic solution which dissolved the sulfonyl) imide lithium (LiFSI) and lithium hexafluoride so that it may be set to 1.1 mol / L in total is disclosed, and this patent document 1 discloses LiFSI and halogenated carbonate ester. It is disclosed that the cycle characteristics in the low temperature range and the high temperature range can be improved by using together and setting the LiFSI concentration to 0.001 mol / L to 0.5 mol / L.
  • the present invention has been made focusing on the above circumstances, and the object of the present invention is to improve the life performance of a battery with less deterioration of cycle characteristics in an electrolytic solution having a high concentration of electrolyte salt. It is providing a solution and a lithium ion secondary battery using the same.
  • the electrolytic solution of the present invention which has achieved the above object is an electrolytic solution containing an electrolytic salt and a solvent, wherein the electrolytic salt concentration is over 1.1 mol / L, and the following general formula (1) as the electrolytic salt And a compound having a cyclic carbonate as a solvent.
  • the electrolytic solution of the present invention further contains, as an electrolyte salt, at least one compound selected from the group consisting of compounds represented by the following general formula (2) and general formula (3) and lithium hexafluoroarsenate. Is preferred.
  • the molar ratio (cyclic carbonate / Li + ) of the cyclic carbonate to the lithium ion (total amount) contained in the electrolytic solution is preferably 1 or more and 3 or less.
  • the present invention also includes a lithium ion secondary battery using the above-mentioned electrolytic solution.
  • the average discharge voltage of the lithium ion secondary battery is preferably 3.7 V or more.
  • FIG. 1 It is a figure which shows the result of experiment example A.
  • FIG. It is a figure which shows the result of experiment example C.
  • Electrolyte Solution is an electrolyte solution containing an electrolyte salt and a solvent, and the electrolyte salt concentration is more than 1.1 mol / L, and is represented by the following general formula (1) as the electrolyte salt It is characterized in that it contains a compound (hereinafter sometimes referred to as electrolyte salt (1)) and contains cyclic carbonate as a solvent.
  • electrolyte salt (1) a compound (hereinafter sometimes referred to as electrolyte salt (1)) and contains cyclic carbonate as a solvent.
  • the electrolyte solution of the present invention has an electrolyte salt concentration of more than 1.1 mol / L.
  • concentration of the electrolyte salt increases, the amount of ions present in the electrolytic solution also increases, so it is considered that the battery performance is improved by the increase of the ion conductivity.
  • the electrolyte salt concentration increases, the viscosity of the electrolytic solution also increases, so the ion conductivity actually decreases. Therefore, conventionally, the electrolyte salt was used at a concentration of about 1.0 mol / L.
  • the electrolytic solution contains the electrolyte salt represented by the above general formula (1), the ion conductivity is high even in the high electrolyte salt concentration region of more than 1.1 mol / L.
  • the present invention has been completed by finding that it is difficult to deteriorate and that deterioration of cycle characteristics does not easily occur.
  • the electrolyte salt concentration of the electrolytic solution of the present invention is preferably 1.2 mol / L or more, more preferably 1.25 mol / L or more, still more preferably 1.3 mol / L or more, preferably 2.0 mol / L or less, more preferably 1.9 mol / L or less, and still more preferably 1.8 mol / L or less.
  • the electrolyte salt concentration is too high, the viscosity increase of the electrolyte concentration becomes remarkable and the ion conductivity may be lowered, and the battery performance (discharge load characteristics etc.) may also be lowered.
  • the concentration of the electrolyte salt when the concentration of the electrolyte salt is too low, the amount of ions present in the electrolytic solution decreases, and as a result, the ion conductivity decreases, making it difficult to obtain desired battery performance.
  • the electrolytic solution of the present invention will be further described.
  • Electrolyte salt 1-1-1 Electrolyte salt (1)
  • the electrolytic solution of the present invention contains the electrolyte salt represented by the above general formula (1).
  • the electrolyte salt (1) reacts with the positive electrode and / or the negative electrode during battery operation to form a film on the electrode surface.
  • This film has an electrolytic solution decomposition suppressing effect, and thereby, a stable capacity maintaining function (cycle characteristic) is exhibited without impairing the performance of the electrolytic solution.
  • the formation of the film suppresses the elution of electrode components such as the electrode active material, and as a result, the rise in the internal resistance of the battery can be suppressed and the discharge voltage can be maintained at a high value. Is improved.
  • X represents a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms is preferably a linear or branched alkyl group.
  • methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group and hexyl group can be mentioned.
  • the fluoroalkyl group having 1 to 6 carbon atoms include those in which a part or all of the hydrogen atoms of the above-mentioned alkyl group are substituted with a fluorine atom.
  • fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group and the like can be mentioned.
  • substituent X a fluorine atom, a trifluoromethyl group and a pentafluoroethyl group are preferable.
  • the electrolyte salt (1) include lithium bis (fluorosulfonyl) imide, lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, lithium (fluorosulfonyl) (methylsulfonyl) imide, lithium (fluorosulfonyl) (penta) Fluoroethylsulfonyl) imide, lithium (fluorosulfonyl) (ethylsulfonyl) imide, and more preferably lithium bis (fluorosulfonyl) imide, lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, lithium (fluorosulfonyl) ( Pentafluoroethylsulfonyl) imide is more preferable, and lithium bis (fluorosulfonyl) imide and lithium (fluorosulfonyl) (trifluoromethylsulfonyl)
  • electrolyte salt (1) one type may be used alone, or two or more types may be used in combination.
  • the electrolyte salt (1) may be a commercially available product, or a product synthesized by a conventionally known method may be used.
  • the concentration of the electrolyte salt (1) in the electrolytic solution of the present invention is preferably 0.01 mol / L or more, more preferably 0.05 mol / L or more, and still more preferably 0.2 mol / L or more. It is preferable that it is 1.8 mol / L or less, More preferably, it is 1.6 mol / L or less, More preferably, it is 1.4 mol / L or less.
  • concentration of the electrolyte salt (1) is too high, the positive electrode current collector may be corroded. On the other hand, when the concentration is too low, the effect derived from the electrolyte salt (1) may be difficult to obtain.
  • the electrolyte of the present invention may contain other electrolyte salts different from the above electrolyte salt (1).
  • electrolyte salts trifluoromethanesulfonic acid ion (CF 3 SO 3 -), hexafluorophosphate ion (PF 6 -), perchlorate ion (ClO 4 -), tetrafluoroborate ion (BF 4 -) , hexafluoroarsenate ion (AsF 6 -), tetracyanoquinodimethane borate ion ([B (CN) 4] -), tetrachloro aluminum ion (AlCl 4 -), tricyanomethide ion (C [(CN) 3] - ), Dicyanamide ion (N [(CN) 2 ] - ), bis (trifluoromethanesulfonyl) imide ion (N [(SO 2
  • the compound represented by the general formula (2) (hereinafter sometimes referred to as electrolyte salt (2)) is preferably LiPF 6 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (C 3 F 7 ) 3 , LiPF 3 (C 4 F 9 ) 3 and the like. More preferably, LiPF 6 and LiPF 3 (C 2 F 5 ) 3 are used, and still more preferably, LiPF 6 is used.
  • the electrolyte salt represented by the general formula (3) is preferably LiBF 4 , LiBF (CF 3 ) 3 , LiBF (C 2 F 5 ) 3 , LiBF (C 3 F 7) 3, and the like, LiBF 4, LiBF (CF 3 ) 3 , and still more preferably LiBF 4.
  • the other electrolyte salt may be used alone or in combination of two or more of the above exemplified compounds.
  • Preferred other electrolyte salts are LiPF 6 , LiPF 3 (C 2 F 5 ) 3 , LiBF 4 and LiBF (CF 3 ) 3 , more preferably LiPF 6 and LiBF 4 , still more preferably LiPF 6 It is.
  • LiPF 6 is used together with the above-mentioned electrolyte salt (1), it is preferable because good cycle characteristics can be easily obtained even in a high electrolyte salt concentration region (more than 1.1 mol / L).
  • the concentration of the other electrolyte salt is not particularly limited as long as the total concentration with the above electrolyte salt (1) is used in the range of more than 1.1 mol / L, but the concentration of the other electrolyte salt is preferably 0 .1 mol / L or more, more preferably 0.15 mol / L or more, still more preferably 0.2 mol / L or more, preferably 1.5 mol / L or less, more preferably 1.4 mol / L or less It is L or less, more preferably 1.3 mol / L or less. If the concentration of the other electrolyte salt is too high, the ionic conductivity may decrease due to the increase in viscosity, while if it is too low, corrosion of the positive electrode current collector due to the electrolyte salt (1) may occur. .
  • the electrolytic solution of the present invention contains cyclic carbonate as a solvent.
  • cyclic carbonates include saturated cyclic carbonates such as ethylene carbonate (ethylene carbonate), propylene carbonate (propylene carbonate), 2,3-dimethyl ethylene carbonate (2,3-butanediyl carbonate), 1,2-butylene carbonate and erythritan carbonate.
  • saturated cyclic carbonates are preferable in terms of cost, and ethylene carbonate and propylene carbonate are particularly preferable.
  • the cyclic carbonates may be used alone or in combination of two or more.
  • the cyclic carbonate is preferably used in such a range that the molar ratio (cyclic carbonate / Li + ) with respect to lithium ions (total amount) contained in the electrolytic solution is 1 to 5.
  • the molar ratio (cyclic carbonate / Li + ) with respect to lithium ions (total amount) contained in the electrolytic solution is 1 to 5.
  • the cause of the deterioration of cycle characteristics is the decomposition of the solvent constituting the electrolyte.
  • the deterioration of the cycle characteristics can be further suppressed by setting the amount of the cyclic carbonate used in the above range with respect to lithium ions.
  • the inventors consider the reason why the deterioration of the cycle characteristics is suppressed as follows. By determining the amount of cyclic carbonate used according to the amount of lithium ions, it is possible to reduce the amount of cyclic carbonate (free cyclic carbonate) which is not solvated with lithium ions present in the electrolytic solution. That is, since the amount of free cyclic carbonate which can participate in the decomposition reaction decreases, it is considered that the decomposition reaction of the solvent hardly occurs and the deterioration of the cycle characteristics is suppressed.
  • cyclic carbonate / Li + If the molar ratio (cyclic carbonate / Li + ) is too large, free cyclic carbonate present in excess in the electrolytic solution is oxidized and / or reductively decomposed, resulting in deterioration of cycle characteristics. On the other hand, when the molar ratio is too small, the amount of cyclic carbonate is too small to obtain the effect derived from cyclic carbonate (for example, the effect of forming a film on the negative electrode and suppressing the decomposition of the electrolyte) In addition, the consumption of the solvent due to the repetition of charge and discharge (film formation, decomposition, etc.) may cause the electrolytic solution to dry out.
  • the cyclic carbonate in a molar ratio to the lithium ion (cyclic carbonate / Li + ) in the range of 1 or more and 4.5 or less, still more preferably 1 or more and 4.0 or less. More preferably, it is 1 or more and 3.0 or less, still more preferably 1 or more and 2.7 or less, still more preferably 2.5 or less, particularly preferably 2.0 or less, and 1.8 or less Is particularly preferred.
  • the molar ratio of cyclic carbonate to lithium ion is calculated based on the specific gravity and molar mass of the cyclic carbonate.
  • the specific gravity may be calculated as 1.321 and the molar mass as 88.06.
  • the electrolytic solution of the present invention may contain a solvent (other solvent) other than cyclic carbonate.
  • a solvent other solvent
  • a solvent having a large dielectric constant, a high solubility of an electrolyte salt, a boiling point of 60 ° C. or more, and a wide electrochemical stability range is preferable. More preferably, it is an organic solvent (non-aqueous solvent) having a low water content.
  • Such organic solvents include ethylene glycol dimethyl ether (1,2-dimethoxyethane), ethylene glycol diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 2,6-dimethyltetrahydrofuran, tetrahydropyran, crown ether, triethylene glycol dimethyl ether, Ethers such as tetraethylene glycol dimethyl ether, 1,4-dioxane, 1,3-dioxolane; dimethyl carbonate, ethyl methyl carbonate (ethyl methyl carbonate), diethyl carbonate (diethyl carbonate), diphenyl carbonate, methyl phenyl carbonate, etc.
  • Ethers such as tetraethylene glycol dimethyl ether, 1,4-dioxane, 1,3-dioxolane; dimethyl carbonate, ethyl methyl carbonate (ethyl methyl carbonate), diethyl carbonate (die
  • Linear carbonates methyl formate, methyl acetate, methyl propionate, ethyl propionate, ethyl acetate, propyl acetate, butyl acetate, amyl acetate and other fats
  • Carboxylic acid esters Aromatic carboxylic acid esters such as methyl benzoate and ethyl benzoate; Lactones such as ⁇ -butyrolactone, ⁇ -valerolactone and ⁇ -valerolactone; trimethyl phosphate, ethyl dimethyl phosphate, phosphoric acid Phosphate esters such as diethylmethyl and triethyl phosphate; Nitriles such as acetonitrile, propionitrile, methoxypropionitrile, glutaronitrile, adiponitrile, 2-methylglutaronitrile, valeronitrile, butyronitrile and isobutyronitrile Amides such as N-methylformamide, N-ethy
  • chain carbonates aliphatic carboxylic esters, lactones and ethers are preferable, and dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone and the like are more preferable.
  • the other solvents may be used alone or in combination of two or more.
  • the amount of the other solvent used is preferably 50% by volume or more, more preferably 55% by volume or more, still more preferably 60% by volume or more, based on 100% by volume of the cyclic carbonate and the other solvent in total. Preferably it is 99 volume% or less, More preferably, it is 95 volume% or less, More preferably, it is 90 volume% or less.
  • the electrolytic solution of the present invention may contain an additive for the purpose of improving various characteristics of the battery.
  • Additives include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic acid anhydride, cyclopentanetetracarboxylic acid dianhydride, phenyl Carboxylic anhydrides such as succinic anhydride; ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, tetramethylthiuram monosulfide, etc.
  • Sulfur compounds nitrogen-containing compounds such as 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, N-methylsuccinimide and the like; Fluorophosphate, difluorinated Phosphates such as acid salts; saturated hydrocarbon compounds such as heptane, octane and cycloheptane; biphenyls, alkylbiphenyls, terphenyls, partially hydrogenated terphenyls, cyclohexylbenzenes, t-butylbenzenes, t-amylbenzenes, Unsaturated hydrocarbon compounds such as diphenyl ether and dibenzofuran; and the like.
  • nitrogen-containing compounds such as 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imid
  • the additive in the electrolytic solution of the present invention has a concentration of 0.1% by mass or more (more preferably 0.2% by mass or more, still more preferably 0.3% by mass or more), 20% by mass or less (more preferably) It is preferable to use in the range of 15% by mass or less, still more preferably 10% by mass or less, still more preferably 8% by mass or less, still more preferably 5% by mass or less.
  • concentration of 0.1% by mass or more more preferably 0.2% by mass or more, still more preferably 0.3% by mass or more
  • 20% by mass or less more preferably
  • the lithium ion secondary battery of the present invention comprises a positive electrode and a negative electrode, and is characterized in that the electrolytic solution of the present invention is provided as an electrolytic solution. More specifically, a separator is provided between the positive electrode and the negative electrode, and the electrolytic solution of the present invention is accommodated in the outer case together with the positive electrode, the negative electrode, etc. in a state of being impregnated in the separator. There is.
  • the shape of the lithium ion secondary battery according to the present invention is not particularly limited, and any conventionally known shape may be used as the shape of the lithium secondary battery, such as cylindrical, square, laminate, coin, large, etc. it can.
  • any conventionally known shape may be used as the shape of the lithium secondary battery, such as cylindrical, square, laminate, coin, large, etc. it can.
  • a high voltage power supply tens of volts to hundreds of volts
  • the lithium ion secondary battery of the present invention preferably has an average discharge voltage of 3.7 V or more.
  • the average discharge voltage is preferably 5.0 V or less, more preferably 3.75 V to 4.95 V, and still more preferably 3.8 V to 4.9 V.
  • the higher the value of the average discharge voltage the higher the energy density of the battery.
  • the average discharge voltage in the present invention is a value measured by the charge / discharge device. More specifically, it is a value measured at the time of the first discharge of the lithium ion secondary battery, and the fully charged lithium ion secondary battery is discharged at a current (0.2 C) at which the discharge is completed in 5 hours. It means the voltage of the lithium ion secondary battery when 150 minutes have passed since the start of discharge.
  • the positive electrode is one in which a positive electrode mixture containing a positive electrode active material, a conductive additive, a binder and the like is supported on a positive electrode current collector, and is usually formed into a sheet.
  • a positive electrode active material composition in which a positive electrode mixture is dissolved or dispersed in a dispersion solvent is coated on a positive electrode current collector by a doctor blade method or the like.
  • the material of the positive electrode current collector is not particularly limited.
  • a conductive metal such as aluminum, an aluminum alloy, or titanium can be used.
  • aluminum is preferable because it is easily processed into a thin film and is inexpensive.
  • the positive electrode active material is only required to be capable of absorbing and desorbing lithium ions, and a conventionally known positive electrode active material used in a lithium ion secondary battery is used.
  • One of these positive electrode active materials may be used alone, or two or more thereof may be used in combination.
  • the amount of the positive electrode active material used is preferably 75 parts by mass to 99 parts by mass, and more preferably 85 parts by mass to 97 parts by mass with respect to 100 parts by mass of the positive electrode mixture.
  • the conductive support agent is used to increase the output of the lithium ion secondary battery, and conductive carbon is mainly used as the conductive support agent.
  • conductive carbon include acetylene black, carbon black, graphite, fullerene, metal powder material, single-walled carbon nanotube, multi-walled carbon nanotube, vapor grown carbon fiber and the like.
  • the content of the conductive aid in the positive electrode mixture when using the conductive aid is preferably in the range of 0.1% by mass to 10% by mass with respect to 100% by mass of the positive electrode mixture (from Preferably 0.5% by mass to 10% by mass, more preferably 1% by mass to 10% by mass).
  • the amount of the conductive additive is too small, the conductivity is extremely deteriorated, and the load characteristics and the discharge capacity may be deteriorated.
  • the amount is too large, the bulk density of the positive electrode mixture layer becomes high, and the need to further increase the content of the binder is not preferable.
  • binder fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene; Styrene-butadiene rubber, nitrile butadiene rubber, methyl methacrylate butadiene rubber, synthetic rubber such as chloroprene rubber, etc .; Polyamide such as polyamide imide Resins; Polyolefin resins such as polyethylene and polypropylene; Poly (meth) acrylic resins such as polyacrylamide and polymethyl methacrylate; Polyacrylic acid; Cellulose resins such as methyl cellulose, ethyl cellulose, triethyl cellulose, carboxymethyl cellulose and aminoethyl cellulose And vinyl alcohol resins such as ethylene vinyl alcohol and polyvinyl alcohol; and the like. These binders may be used alone or in combination of two or more. Moreover, when manufacturing the positive electrode, these binders may be in a state of being dissolved in a solvent or in a state of being dispersed
  • the content of the binder in the positive electrode mixture is preferably 0.1% by mass to 10% by mass with respect to 100% by mass of the positive electrode mixture (more preferably, 0.1% by mass). 5% by mass to 10% by mass, more preferably 1% by mass to 10% by mass). If the amount of the binder is too small, good adhesion can not be obtained, and there is a possibility that the positive electrode active material and the conductive additive may be detached from the current collector. On the other hand, if the amount is too large, the internal resistance may be increased to adversely affect the battery characteristics.
  • the compounding amount of the conductive support agent and the binder can be appropriately adjusted in consideration of the purpose of use of the battery (such as emphasis on output and emphasis on energy), ion conductivity, and the like.
  • alcohols, glycols, cellosolves, aminoalcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carbonic acid Acid esters, phosphoric acid esters, ethers, nitriles, water and the like can be mentioned.
  • examples thereof include ethanol, N-methylpyrrolidone, acetone, methyl ethyl ketone, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, hexamethylphosphoric acid triamide, dimethyl sulfoxide, ethyl acetate, tetrahydrofuran and the like.
  • solvents may be used in combination.
  • the amount of the solvent used is not particularly limited, and may be appropriately determined depending on the production method and the material to be used.
  • the negative electrode is formed by supporting a negative electrode mixture containing a negative electrode active material, a binder, and optionally a conductive auxiliary agent on a negative electrode current collector, and is usually formed into a sheet.
  • the same method as the method of manufacturing the positive electrode can be adopted. Further, as the conductive auxiliary agent, the binder and the solvent for dispersing the material used in the production of the negative electrode, the same ones as used in the positive electrode are used.
  • Negative electrode current collector As a material of the negative electrode current collector, conductive metals such as copper, iron, nickel, silver, stainless steel (SUS) and the like can be used. Copper is preferable from the viewpoint of easy processing to a thin film.
  • Negative Electrode Active Material As the negative electrode active material, a conventionally known negative electrode active material used in a lithium ion secondary battery can be used, as long as it can occlude and release lithium ions. Specifically, graphite materials such as artificial graphite and natural graphite, mesophase sintered bodies made of coal, petroleum pitch, carbon materials such as non-graphitizable carbon, Si, Si alloys, Si based negative electrode materials such as SiO, Sn An Sn-based negative electrode material such as an alloy, a lithium metal, and a lithium alloy such as a lithium-aluminum alloy can be used.
  • graphite materials such as artificial graphite and natural graphite, mesophase sintered bodies made of coal, petroleum pitch, carbon materials such as non-graphitizable carbon, Si, Si alloys, Si based negative electrode materials such as SiO, Sn
  • An Sn-based negative electrode material such as an alloy, a lithium metal, and a lithium alloy such as a lithium-aluminum alloy can
  • the amount of the negative electrode active material used is preferably 80 parts by mass to 99 parts by mass, and more preferably 90 parts by mass to 99 parts by mass with respect to 100 parts by mass of the negative electrode mixture.
  • the separator is disposed to separate the positive electrode and the negative electrode.
  • the separator is not particularly limited, and any conventionally known separator can be used in the present invention.
  • Specific examples of the separator include porous sheets made of a polymer that absorbs and holds a non-aqueous electrolyte (for example, a microporous polyolefin separator and a cellulose separator), a non-woven separator, and a porous metal body.
  • the microporous polyolefin separator is preferable because it has a property of being chemically stable with respect to an organic solvent.
  • Examples of the material of the porous sheet include laminates having a three-layer structure of polyethylene, polypropylene, polypropylene / polyethylene / polypropylene, and the like.
  • non-woven fabric separator examples include cotton, rayon, acetate, nylon, polyester, polypropylene, polyethylene, polyimide, aramid, glass and the like, and depending on the required mechanical strength, etc. Or in combination of two or more.
  • Battery exterior material A battery element provided with a positive electrode, a negative electrode, a separator, an electrolyte and the like is accommodated in the battery exterior material in order to protect the battery element from external impact, environmental deterioration and the like when using a lithium ion secondary battery.
  • the material of the battery case is not particularly limited, and any conventionally known case can be used.
  • Experimental example 1 Preparation of Electrolyte Lithium hexafluorophosphate (as electrolyte salt (2)) in a non-aqueous solvent prepared by mixing ethylene carbonate (EC, cyclic carbonate) and ethyl methyl carbonate (EMC) at 15:85 (volume ratio)
  • An electrolyte (1) was prepared by dissolving LiPF 6 (manufactured by Kishida Kagaku Co., Ltd.) to a concentration of 1.20 mol / L.
  • Anode active material spherically processed natural graphite
  • conductive support agent carbon black
  • binder a mixture of 2.0 parts by mass of styrene-butadiene rubber and 1.2 parts by mass of carboxymethylcellulose
  • the positive electrode sheet, the negative electrode sheet, and the polyethylene separator obtained above were punched into circles (positive electrode ⁇ 12 mm, negative electrode ⁇ 14 mm, separator ⁇ 16 mm).
  • CR2032 coin-type battery parts positive electrode case (made by aluminum clad SUS304L), negative electrode cap (made by SUS316L), spacer (1 mm thick, made by SUS316L), wave washers (made by SUS316L), gaskets (made by polypropylene)
  • a coin-type lithium ion secondary battery was manufactured using.
  • a negative electrode cap equipped with a gasket, a wave washer, a spacer, a negative electrode sheet (provided that the copper foil side of the negative electrode faces the spacer), and a separator are stacked in this order, and then the above electrolyte (1) is added.
  • the separator was impregnated.
  • the positive electrode sheet was placed so that the positive electrode mixture coated surface faced the negative electrode active material layer side, and the positive electrode case was stacked thereon, and a coin-type lithium ion secondary battery was produced by caulking with a caulking machine.
  • Discharge load characteristics test For coin-type lithium ion secondary batteries, using a charge / discharge test apparatus (manufactured by Aska Electronics Co., Ltd.) under an environment of a temperature of 25 ° C., predetermined charge conditions (1 C, 4.4 V, constant current constant voltage) After charging in the mode 0.02 C cut, constant-current discharge was performed at a discharge termination voltage of 2.75 V and a discharge current of 0.2 C to measure the discharge capacity of the battery. Thereafter, charge is performed again under predetermined charge conditions (1 C, 4.4 V, constant current constant voltage mode 0.02 C cut), and then discharge is performed with constant current discharge with discharge termination voltage 2.75 V and discharge current 3 C. The volume was measured. During each charge and discharge, the discharge capacity was measured with a rest time of 10 minutes. The index of the discharge capacity in the discharge constant current 3C when the discharge capacity in the discharge constant current 0.2C is 100 is shown in Table 1 and FIG. 1 as load characteristics.
  • Experimental Examples 2 to 23 The electrolyte salts (2) to (23) were prepared by dissolving the electrolyte salts in the mixed non-aqueous solvent so as to obtain the compositions shown in Table 1 below.
  • Coin-type lithium ion secondary batteries were produced in the same manner as in Experimental Example 1 except that the obtained electrolytic solutions (2) to (23) were used, and the cycle characteristics test and the discharge load characteristics test were conducted.
  • the cycle characteristic tests of Experimental Examples 20 to 23 were performed by changing the charge condition, which was 4.4 V in Experimental Example 1, to 4.2 V. The results are shown in Table 1 and FIG.
  • Table 1 also shows the results of measurement of the average discharge voltage at the time of the first discharge in the discharge load characteristic test.
  • the average discharge voltage of the lithium ion secondary batteries manufactured in Experimental Examples 2 to 23 was 3.7 V or more.
  • LiFSI lithium bis (fluoro sulfonyl) imide
  • the same effect can be obtained regardless of the termination voltage during charging. It can be understood that Furthermore, by using LiFSI as the main agent as the electrolyte salt (1), improvement of rate characteristics at low temperature is expected.
  • the discharge load characteristics when the electrolyte salt (1) is not contained, the discharge load characteristics tend to deteriorate as the electrolyte salt concentration increases even if the solvent composition is the same (Experimental Examples 2 and 6, Experimental Examples Comparison of 4 and 7).
  • the solubility of the electrolyte salt (1) in the solvent is higher than that of the other electrolyte salt (LiPF 6 ), and in the example of the present invention containing the electrolyte salt (1), the concentration of the electrolyte salt is increased. It is considered that viscosity increase did not occur.
  • the fact that the ion conductivity of the electrolyte salt (1) is superior to that of other electrolyte salts (LiPF 6 ) is also considered to contribute to the discharge load characteristics.
  • the lithium ion secondary battery provided with the electrolyte solution of the present invention can be expected to have a long life by suppressing the deterioration of the cycle characteristics.
  • Experimental example B Experimental Example 24 1. Preparation of Electrolytic Solution Lithium bis (fluorosulfonyl) imide as electrolyte salt (1) in a non-aqueous solvent prepared by mixing ethylene carbonate (EC, cyclic carbonate) and ethyl methyl carbonate (EMC) at 10:90 (volume ratio) And lithium hexafluorophosphate (LiPF 6 , manufactured by Kishda Chemical Co., Ltd.) as the electrolyte salt (2) were dissolved to a concentration of 0.6 mol / L to prepare an electrolytic solution (24). .
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • charge / discharge test apparatus ACD-01, manufactured by Aska Electronics Co., Ltd.
  • charge / discharge speed was 0.2 C (constant current mode) at 25 ° C. and charge / discharge was performed once at 3.0 V to 4.2 V After that, the laminate cell was opened and sealed again under vacuum. Under the same conditions, charge and discharge were repeated 5 times to complete a laminate type lithium ion secondary battery.
  • Experimental Example 24 (cyclic carbonate / Li + ratio is 1.25) showed higher discharge capacity at any of the discharge rates as compared to the other experimental examples.
  • Experimental Example 26 in which the cyclic carbonate / Li + ratio was 0 without cyclic carbonate was lower in capacity at any rate as compared to Experimental Example 24.
  • the discharge rate characteristics of Experimental Examples 25 and 27 not containing the electrolyte salt (1) (LiFSI) were inferior to those of Experimental Example 24 containing the electrolyte salt (1).
  • a commercially available positive electrode sheet (LiCoO 2 ), a commercially available negative electrode sheet (natural graphite) and a polyethylene separator were punched into circles (positive electrode ⁇ 12 mm, negative electrode ⁇ 14 mm, separator ⁇ 16 mm).
  • CR2032 coin type battery parts positive electrode case (made of aluminum clad SUS304L), negative electrode cap (made of SUS316L), spacer (1 mm thick, made of SUS316L), wave washers (made of SUS316L), gaskets (made of polypropylene) purchased from Takasen Co., Ltd.
  • a coin-type lithium ion secondary battery was manufactured using.
  • the separator was impregnated with the electrolyte adjusted to be
  • the positive electrode sheet is set so that the layer containing the positive electrode active material (LiCoO 2 ) faces the negative electrode active material layer side, and the positive electrode case is stacked thereon and crimped with a caulking machine.
  • the following battery was produced.
  • the cycle characteristics decrease as the molar ratio of cyclic carbonate to lithium ion (cyclic carbonate / Li + ) decreases, as in the case of using LiFSI Tended to be suppressed.
  • the cycle characteristics tend to deteriorate as the concentration of the electrolyte salt (1) increases, but the cyclic carbonate / Li + is reduced. It is understood that the deterioration of the cycle characteristics can be suppressed even in the electrolyte solution having a high concentration of the electrolyte salt (particularly, 3 or less).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)

Abstract

 電解質塩濃度が高い電解液において、サイクル特性の低下が生じ難く電池の寿命性能を向上させられる電解液及びこれを用いたリチウムイオン二次電池を提供する。本発明の電解液は電解質塩と溶媒とを含み、上記電解質塩濃度が1.1mol/L超であり、上記電解質塩として下記一般式(1)で表される化合物を含み、且つ、溶媒として環状カーボネートを含む。 (XSO2)(FSO2)NLi (1) (一般式(1)中、Xはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)

Description

電解液及びこれを備えたリチウムイオン二次電池
 本発明は電解液及びこれを備えたリチウムイオン二次電池に関する。
 携帯電話、パーソナルコンピューター用の電源、さらには自動車用電源等として、リチウムイオン二次電池等の電池が用いられている。また、斯かる用途に使用される電池では、安全性の確保、サイクル特性の改善等の各種特性の向上を目的とした研究が重ねられている。
 例えば、特許文献1には、炭酸エチレンと炭酸ジメチルとからなる混合溶媒に、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)等のハロゲン化炭酸エステルと、電解質塩としてビス(フルオロスルホニル)イミドリチウム(LiFSI)と六フッ化リチウムとを合計で1.1mol/Lとなるように溶解させた電解液が開示されており、この特許文献1では、LiFSIとハロゲン化炭酸エステルとを併用し、且つ、LiFSI濃度を0.001mol/L~0.5mol/Lとすることで、低温領域及び高温領域におけるサイクル特性が向上させられる旨開示されている。
特開2011-150958号公報
 上述のように、電解質塩濃度1.1mol/L以下においてサイクル特性を向上させる技術は既に提案されている。しかしながら、1.1mol/L超といった電解質塩濃度の高い電解液において、サイクル特性等の電池特性を向上させる技術は知られていない。
 本発明は上記の様な事情に着目してなされたものであって、その目的は、電解質塩濃度が高い電解液において、サイクル特性の低下が生じ難く電池の寿命性能を向上させることのできる電解液及びこれを用いたリチウムイオン二次電池を提供することにある。
 上記目的を達成し得た本発明の電解液とは、電解質塩と溶媒とを含む電解液において、上記電解質塩濃度が1.1mol/L超であり、上記電解質塩として下記一般式(1)で表される化合物を含み、且つ、溶媒として環状カーボネートを含むところに要旨を有するものである。
(XSO2)(FSO2)NLi     (1)
(一般式(1)中、Xはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)
 本発明の電解液は、電解質塩として、さらに下記一般式(2)、一般式(3)で表される化合物及び六フッ化砒酸リチウムよりなる群から選択される少なくとも1種の化合物を含むことが好ましい。
LiPFa(Cm2m+16-a (0≦a≦6、1≦m≦4)    (2)
LiBFb(Cn2n+14-b (0≦b≦4、1≦n≦4)    (3)
 また、本発明においては、上記環状カーボネートと、電解液中に含まれるリチウムイオン(合計量)とのモル比(環状カーボネート/Li+)が1以上、3以下であることが望ましい。
 本発明には、上記電解液を用いたリチウムイオン二次電池も含まれる。この場合において、リチウムイオン二次電池の平均放電電圧は3.7V以上であるのが好ましい。
 本発明によれば、1.1mol/L超の高い電解質塩濃度の電解液において、サイクル特性の劣化が生じ難く、電池の寿命性能を向上させられる電解液及びこれを用いたリチウムイオン二次電池の提供が期待できる。
実験例Aの結果を示す図である。 実験例Cの結果を示す図である。
 1.電解液
 本発明の電解液とは、電解質塩と溶媒とを含む電解液であって、上記電解質塩濃度が1.1mol/L超であり、上記電解質塩として下記一般式(1)で表される化合物(以下、電解質塩(1)と称する場合がある)を含み、且つ、溶媒として環状カーボネートを含むところに特徴を有している。
(XSO2)(FSO2)NLi     (1)
(一般式(1)中、Xはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)
 本発明の電解液は、電解質塩濃度が1.1mol/L超である。電解質塩濃度が高まれば電解液中に存在するイオン量も多くなるため、イオン伝導度の上昇により電池性能は向上するとも考えられる。しかしながら、電解質塩濃度が高まれば電解液の粘度も上昇するため、実際には、イオン伝導度はむしろ低下してしまう。したがって、従来は、電解質塩は1.0mol/L程度の濃度で用いられていた。
 しかしながら、本発明者等は検討の結果、電解液が上記一般式(1)で表される電解質塩を含む場合には、1.1mol/L超の高電解質塩濃度領域においてもイオン伝導度が低下し難く、また、サイクル特性の劣化が生じ難いことを見出し、本発明を完成した。
 本発明の電解液の電解質塩濃度は好ましくは1.2mol/L以上であり、より好ましくは1.25mol/L以上であり、さらに好ましくは1.3mol/L以上であり、好ましくは2.0mol/L以下であり、より好ましくは1.9mol/L以下であり、さらに好ましくは1.8mol/L以下である。電解質塩濃度が高すぎる場合には、電解液濃度の粘度上昇が顕著となってイオン伝導度が低下し、電池性能(放電負荷特性等)も低下する虞がある。一方、電解質塩濃度が低すぎる場合には、電解液中に存在するイオン量が減少する結果、イオン伝導度が低下し、所望の電池性能が得られ難くなる。なお、本発明において、電解質塩濃度を1.1mol/L超としてもイオン伝導度が低下し難いのは、電解質塩に含まれる電解質塩(1)が、LiPF6等の他の電解質塩に比べて、溶媒への溶解性に優れていること、粘度を上昇させ難いこと、また、電解質塩(1)のイオン伝導度が優れているためと考えられる。
 以下、本発明の電解液についてさらに説明する。
 1-1.電解質塩
 1-1-1.電解質塩(1)
 本発明の電解液は、上記一般式(1)で表される電解質塩を含む。電解質塩(1)は、電池駆動時に正極及び/又は負極と反応して、電極表面上に被膜を形成する。この被膜は、電解液分解抑制効果を有しており、これにより、電解液の性能を損なうことなく安定した容量維持作用(サイクル特性)が発揮される。また、上記被膜の形成により、電極活物質などの電極構成成分の溶出が抑制され、その結果、電池の内部抵抗の上昇が抑えられ放電電圧を高い値に維持することができ、電池のサイクル特性が改善される。
 一般式(1)中、Xはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。炭素数1~6のアルキル基としては、直鎖状又は分枝鎖状のアルキル基であるのが好ましい。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられる。炭素数1~6のフルオロアルキル基としては、上記アルキル基が有する水素原子の一部又は全部がフッ素原子で置換されたものが挙げられる。例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。置換基Xとしては、フッ素原子、トリフルオロメチル基、ペンタフルオロエチル基が好ましい。具体的な電解質塩(1)としては、リチウムビス(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(メチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミド、リチウム(フルオロスルホニル)(エチルスルホニル)イミドが挙げられ、より好ましくはリチウムビス(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミドであり、更に好ましくはリチウムビス(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミドである。
 電解質塩(1)は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、電解質塩(1)は、市販品であってもよく、また、従来公知の方法により合成した物を用いてもよい。
 本発明の電解液における電解質塩(1)の濃度は0.01mol/L以上であるのが好ましく、より好ましくは0.05mol/L以上であり、さらに好ましくは0.2mol/L以上であり、1.8mol/L以下であるのが好ましく、より好ましくは1.6mol/L以下であり、さらに好ましくは1.4mol/L以下である。電解質塩(1)の濃度が高すぎると、正極集電体が腐食する虞があり、一方、低すぎると、電解質塩(1)に由来する効果が得られ難くなる場合がある。
 1-1-2.他の電解質塩
 本発明の電解液は、上記電解質塩(1)とは異なる他の電解質塩を含んでいてもよい。他の電解質塩としては、トリフルオロメタンスルホン酸イオン(CF3SO3 -)、ヘキサフルオロリン酸イオン(PF6 -)、過塩素酸イオン(ClO4 -)、テトラフルオロ硼酸イオン(BF4 -)、ヘキサフルオロ砒酸イオン(AsF6 -)、テトラシアノホウ酸イオン([B(CN)4-)、テトラクロロアルミニウムイオン(AlCl4 -)、トリシアノメチドイオン(C[(CN)3-)、ジシアナミドイオン(N[(CN)2-)、ビス(トリフルオロメタンスルホニル)イミドイオン(N[(SO2CF32-)、トリス(トリフルオロメタンスルホニル)メチドイオン(C[(CF3SO23-)、ヘキサフルオロアンチモン酸イオン(SbF6 -)およびジシアノトリアゾレートイオン(DCTA)等をアニオンとする無機又は有機カチオン塩等の従来公知の電解質塩が使用できる。
 上記他の電解質塩の中でも、一般式(2):LiPFa(Cm2m+16-a(0≦a≦6、1≦m≦4)、一般式(3):LiBFb(Cn2n+14-b(0≦b≦4、1≦n≦4)で表される化合物及び六フッ化砒酸リチウム(LiAsF6)よりなる群から選択される1種以上の化合物が好ましい。これらの電解質塩を併用することで電解質塩(1)に起因する正極集電体の腐食が抑制される。
 一般式(2)で表される化合物(以下、電解質塩(2)と称する場合がある)としては、好ましくは、LiPF6、LiPF3(CF33、LiPF3(C253、LiPF3(C373、LiPF3(C493等が挙げられる。より好ましくは、LiPF6、LiPF3(C253であり、さらに好ましくはLiPF6である。
 一般式(3)で表される電解質塩(以下、電解質塩(3)と称する場合がある)としては、好ましくは、LiBF4、LiBF(CF33、LiBF(C253、LiBF(C373等が挙げられ、LiBF4、LiBF(CF33がより好ましく、LiBF4がさらに好ましい。
 他の電解質塩は上記例示の化合物を1種単独で、また2種以上を組み合わせて使用してもよい。好ましい他の電解質塩としては、LiPF6、LiPF3(C253、LiBF4、LiBF(CF33であり、より好ましくはLiPF6、LiBF4であり、さらに好ましくは、LiPF6である。特に、上記電解質塩(1)と共にLiPF6を使用する場合には、高い電解質塩濃度領域(1.1mol/L超)においても良好なサイクル特性が得られ易いので好ましい。
 他の電解質塩は、上記電解質塩(1)との濃度の合計が1.1mol/L超の範囲で使用される限りその濃度は特に限定されないが、他の電解質塩の濃度は、好ましくは0.1mol/L以上であり、より好ましくは0.15mol/L以上であり、さらに好ましくは0.2mol/L以上であり、好ましくは1.5mol/L以下であり、より好ましくは1.4mol/L以下であり、さらに好ましくは1.3mol/L以下である。他の電解質塩の濃度が高すぎると、粘度の上昇によりイオン伝導度が減少する虞があり、一方、低すぎると、電解質塩(1)に起因する正極集電体の腐食が生じる虞がある。
 1-2.溶媒
 本発明の電解液は、溶媒として環状カーボネートを含む。環状カーボネートとしては、炭酸エチレン(エチレンカーボネート)、炭酸プロピレン(プロピレンカーボネート)、2,3-ジメチル炭酸エチレン(炭酸2,3-ブタンジイル)、炭酸1,2-ブチレン及びエリスリタンカーボネート等の飽和環状カーボネート;炭酸ビニレン、メチルビニレンカーボネート(MVC;4-メチル-1,3-ジオキソール-2-オン)、エチルビニレンカーボネート(EVC;4-エチル-1,3-ジオキソール-2-オン)、2-ビニル炭酸エチレン(4-ビニル-1,3-ジオキソラン-2-オン)及びフェニルエチレンカーボネート(4-フェニル-1,3-ジオキソラン-2-オン)等の不飽和結合を有する環状カーボネート;フルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及びトリフルオロプロピレンカーボネート等のフッ素含有環状カーボネート;等が挙げられる。これらの中でも、コスト面からは飽和環状カーボネートが好ましく、特に炭酸エチレン、炭酸プロピレンが好ましい。環状カーボネートは1種を単独で用いてもよく、又、2種以上を組み合わせて用いてもよい。
 環状カーボネートは、電解液に含まれるリチウムイオン(総量)に対するモル比(環状カーボネート/Li+)が1~5となる範囲で用いるのが好ましい。上記範囲内で環状カーボネートを使用する場合には、この電解液をリチウムイオン二次電池に使用した場合のサイクル特性(寿命)の劣化が一層抑制される。
 サイクル特性劣化の一因は、電解液を構成する溶媒の分解にあることが知られている。しかしながら、環状カーボネートの使用量をリチウムイオンに対して上記範囲とすることで、サイクル特性の劣化を一層抑制することができる。本発明者等は、サイクル特性の劣化が抑制される理由を次のように考えている。環状カーボネートの使用量をリチウムイオン量に応じて決定することで、電解液中に存在するリチウムイオンと溶媒和していない環状カーボネート(フリーな環状カーボネート)の量を低減できる。すなわち、分解反応に関与できるフリーな環状カーボネートの量が減少するので、溶媒の分解反応が生じ難くなり、サイクル特性の劣化が抑制されるものと考えられる。
 上記モル比(環状カーボネート/Li+)が大きすぎる場合は、電解液中に過剰に存在するフリーな環状カーボネートが酸化及び/又は還元分解され、その結果、サイクル特性が劣化してしまう。一方、上記モル比が小さすぎる場合は、環状カーボネート量が少なすぎて、環状カーボネートに由来する効果(例えば、負極上に被膜を形成し、電解液の分解を抑制する効果等)が得られ難くなったり、また、充放電の繰り返しによる溶媒の消費(被膜形成、分解等)により電解液の液枯れ状態となる虞がある。したがって、環状カーボネートは、リチウムイオンに対するモル比(環状カーボネート/Li+)が1以上、4.5以下の範囲で使用することがより好ましく、より一層好ましくは1以上、4.0以下であり、さらに好ましくは1以上、3.0以下であり、さらに一層好ましくは1以上、2.7以下であり、さらに一層好ましくは2.5以下であり、特に2.0以下が好ましく、1.8以下であるのが特に一層好ましい。
 なお、環状カーボネートのリチウムイオンに対するモル比(環状カーボネート/Li+)は、環状カーボネートの比重、モル質量に基づき算出する。例えば、エチレンカーボネートの場合は、比重を1.321、モル質量を88.06として、算出すればよい。
 本発明の電解液は、環状カーボネート以外の溶媒(他の溶媒)を含んでいてもよい。他の溶媒としては、誘電率が大きく、電解質塩の溶解性が高く、沸点が60℃以上であり、且つ、電気化学的安定範囲が広い溶媒が好適である。より好ましくは、含有水分量が低い有機溶媒(非水系溶媒)である。このような有機溶媒としては、エチレングリコールジメチルエーテル(1,2-ジメトキシエタン)、エチレングリコールジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、2,6-ジメチルテトラヒドロフラン、テトラヒドロピラン、クラウンエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエ-テル、1,4-ジオキサン、1,3-ジオキソラン等のエーテル類;炭酸ジメチル、炭酸エチルメチル(エチルメチルカーボネート)、炭酸ジエチル(ジエチルカーボネート)、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル類;蟻酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル等の脂肪族カルボン酸エステル類;安息香酸メチル、安息香酸エチル等の芳香族カルボン酸エステル類;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン類;リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル等のリン酸エステル類;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2-メチルグルタロニトリル、バレロニトリル、ブチロニトリル、イソブチロニトリル等のニトリル類;N-メチルホルムアミド、N-エチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリジノン、N-ビニルピロリドン等のアミド類;ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等の硫黄化合物類:エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のアルコール類;ジメチルスルホキシド、メチルエチルスルホキシド、ジエチルスルホキシド等のスルホキシド類;ベンゾニトリル、トルニトリル等の芳香族ニトリル類;ニトロメタン、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、3-メチル-2-オキサゾリジノン等を挙げることができる。
 これらの中でも、鎖状炭酸エステル類、脂肪族カルボン酸エステル類、ラクトン類、エーテル類が好ましく、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、γ-ブチロラクトン、γ-バレロラクトン等がより好ましい。上記他の溶媒は1種を単独で用いてもよく、又、2種以上を組み合わせて用いてもよい。
 他の溶媒の使用量は、環状カーボネートと他の溶媒の合計100体積%に対して50体積%以上であるのが好ましく、より好ましくは55体積%以上であり、さらに好ましくは60体積%以上であり、好ましくは99体積%以下であり、より好ましくは95体積%以下であり、さらに好ましくは90体積%以下である。
 1-3.その他の成分
 本発明の電解液は、電池の各種特性の向上を目的とする添加剤を含んでいてもよい。
 添加剤としては、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン、テトラメチルチウラムモノスルフィド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルスクシンイミド等の含窒素化合物;モノフルオロリン酸塩、ジフルオロリン酸塩等のリン酸塩;ヘプタン、オクタン、シクロヘプタン等の飽和炭化水素化合物;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の不飽和炭化水素化合物;等が挙げられる。
 上記添加剤は、本発明の電解液中の濃度が0.1質量%以上(より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上)、20質量%以下(より好ましくは15質量%以下、より一層好ましくは10質量%以下、さらに好ましくは8質量%以下、さらに一層好ましくは5質量%以下)の範囲で用いるのが好ましい。添加剤の使用量が少なすぎるときには、添加剤に由来する効果が得られ難い場合がある。一方、多量に他の添加剤を使用しても、添加量に見合う効果は得られ難く、また、余剰な添加剤の分解や、電極やセパレータ等への吸着や重合等の反応が起こり、電池性能に悪影響を与える虞がある。
 2.リチウムイオン二次電池
 本発明のリチウムイオン二次電池とは、正極と負極とを備え、電解液として、本発明の電解液を備えているところに特徴を有する。より詳細には、上記正極と負極との間にはセパレータが設けられており、且つ、本発明の電解液は、上記セパレータに含浸された状態で、正極、負極等と共に外装ケースに収容されている。
 本発明に係るリチウムイオン二次電池の形状は特に限定されず、円筒型、角型、ラミネート型、コイン型、大型等、リチウム二次電池の形状として従来公知の形状はいずれも使用することができる。また、電気自動車、ハイブリッド電気自動車等に搭載するための高電圧電源(数10V~数100V)として使用する場合には、個々の電池を直列に接続して構成される電池モジュールとすることもできる。
 本発明のリチウムイオン二次電池は、平均放電電圧が3.7V以上であるのが好ましい。平均放電電圧は5.0V以下であるのが好ましく、より好ましく3.75V以上、4.95V以下であり、さらに好ましくは3.8V以上、4.9V以下である。平均放電電圧の値が高いほど電池のエネルギー密度が高くなる。なお、本発明における平均放電電圧とは充放電装置により測定される値である。より詳細には、リチウムイオン二次電池の初回放電時に測定される値であって、満充電状態のリチウムイオン二次電池を、5時間で放電が完了する電流(0.2C)で放電したときに、放電開始から150分経過時のリチウムイオン二次電池の電圧を意味する。
 2-1.正極
 正極は、正極活物質、導電助剤及び結着剤等を含む正極合剤が正極集電体に担持されているものであり、通常、シート状に成形されている。
 正極の製造方法としては、例えば、分散用溶媒に正極合剤を溶解又は分散させた正極活物質組成物を正極集電体にドクターブレード法等で塗工したり、正極集電体を正極活物質組成物に浸漬した後に、乾燥する方法;正極活物質組成物を混練成形し乾燥して得たシートを正極集電体に導電性接着剤を介して接合し、プレス、乾燥する方法;液状潤滑剤を添加した正極活物質組成物を正極集電体上に塗布又は流延して、所望の形状に成形した後、液状潤滑剤を除去し、次いで、一軸又は多軸方向に延伸する方法;等が挙げられる。
 2-1-1.正極集電体
 正極集電体の材料としては特に限定されず、例えば、アルミニウム、アルミニウム合金、チタン等の導電性金属が使用できる。中でも、アルミニウムは、薄膜に加工し易く、安価であるため好ましい。
 2-1-2.正極活物質
 正極活物質としては、リチウムイオンの吸蔵及び放出が可能であればよく、リチウムイオン二次電池で使用される従来公知の正極活物質が用いられる。
 具体的には、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、LiMn24系で一部をNiに置換したLiNi0.5Mn1.54、LiNi1-x-yCoxMny2やLiNi1-x-yCoxAly2(0<x<1、0<y<1、0<x+y<1)で表される三元系酸化物等の遷移金属酸化物、LiAPO4(A=Fe、Mn、Ni、Co)等のオリビン構造を有する化合物、遷移金属を複数取り入れた固溶材料(電気化学的に不活性な層状のLi2MnO3と、電気化学的に活性な層状のLiM’O[M’=Co、Ni等の遷移金属]との固溶体)等が正極活物質として例示できる。これらの正極活物質は、1種を単独で使用してもよく、又は、複数を組み合わせて使用してもよい。
 正極活物質の使用量は、正極合剤100質量部に対して75質量部~99質量部とするのが好ましく、より好ましくは85質量部~97質量部である。
 2-1-3.導電助剤
 導電助剤はリチウムイオン二次電池を高出力化するために用いられるものであり、導電助剤としては、主に導電性カーボンが用いられる。導電性カーボンとしては、アセチレンブラック、カーボンブラック、グラファイト、フラーレン、金属粉末材料、単層カーボンナノチューブ、多層カーボンナノチューブ、気相法炭素繊維等が挙げられる。
 導電助剤を用いる場合の、正極合剤中の導電助剤の含有量としては、正極合剤100質量%に対して、0.1質量%~10質量%の範囲で用いるのが好ましい(より好ましくは0.5質量%~10質量%、さらに好ましくは1質量%~10質量%)。導電助剤が少なすぎると、導電性が極端に悪くなり、負荷特性及び放電容量が劣化する虞がある。一方、多すぎると正極合剤層のかさ密度が高くなり、結着剤の含有量をさらに増やす必要性がでてくるため好ましくない。
 2-1-4.結着剤
 結着剤としては、ポリビニリデンフロライド、ポリテトラフルオロエチレン等のフッ素系樹脂;スチレン-ブタジエンゴム、ニトリルブタジエンゴム、メチルメタクリレートブタジエンゴム、クロロプレンゴム等の合成ゴム;ポリアミドイミド等のポリアミド系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリアクリルアミド、ポリメチルメタクリレート等のポリ(メタ)アクリル系樹脂;ポリアクリル酸;メチルセルロース、エチルセルロース、トリエチルセルロース、カルボキシメチルセルロース、アミノエチルセルロース等のセルロース系樹脂;エチレンビニルアルコール、ポリビニルアルコール等のビニルアルコール系樹脂;等が挙げられる。これらの結着剤は単独で使用してもよく、2種以上を混合して使用してもよい。また、正極の製造時、これらの結着剤は、溶媒に溶けた状態であっても、溶媒に分散した状態であっても構わない。
 上記結着剤を用いる場合の、正極合剤中の結着剤の含有量としては、正極合剤100質量%に対して、0.1質量%~10質量%が好ましい(より好ましくは0.5質量%~10質量%、さらに好ましくは1質量%~10質量%)。結着剤が少なすぎると良好な密着性が得られず、正極活物質や導電助剤が集電体から脱離してしまう虞がある。一方、多すぎると内部抵抗の増加を招き電池特性に悪影響を及ぼしてしまう虞がある。
 導電助剤及び結着剤の配合量は、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性等を考慮して適宜調整することができる。
 正極を製造するに際して、正極活物質組成物に用いられる溶媒としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、燐酸アミド類、スルホキシド類、カルボン酸エステル類、燐酸エステル類、エーテル類、ニトリル類、及び水等が挙げられる。より具体的には、例えば、エタノール、N-メチルピロリドン、アセトン、メチルエチルケトン、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、ヘキサメチル燐酸トリアミド、ジメチルスルホキシド、酢酸エチル、テトラヒドロフラン等が挙げられる。これらの溶媒は組み合わせて使用してもよい。溶媒の使用量は特に限定されず、製造方法や、使用する材料に応じて適宜決定すればよい。
 2-2.負極
 負極は、負極活物質、結着剤及び必要に応じて導電助剤等を含む負極合剤が負極集電体に担持されてなるものであり、通常、シート状に成形されている。
 負極の製造方法としては、正極の製造方法と同様の方法を採用することができる。また、負極の製造時に使用する導電助剤、結着剤、材料分散用の溶媒も、正極で用いられるものと同様のものが用いられる。
 2-2-1.負極集電体
 負極集電体の材料としては、銅、鉄、ニッケル、銀、ステンレス鋼(SUS)等の導電性金属を用いることができる。なお、薄膜への加工が容易である観点からは、銅が好ましい。
 2-2-2.負極活物質
 負極活物質としては、リチウムイオン二次電池で使用される従来公知の負極活物質を用いることができ、リチウムイオンの吸蔵及び放出が可能なものであればよい。具体的には、人造黒鉛、天然黒鉛等の黒鉛材料、石炭、石油ピッチから作られるメソフェーズ焼成体、難黒鉛化性炭素等の炭素材料、Si、Si合金、SiO等のSi系負極材料、Sn合金等のSn系負極材料、リチウム金属、リチウム-アルミニウム合金等のリチウム合金を用いることができる。
 負極活物質の使用量は、負極合剤100質量部に対して80質量部~99質量部とするのが好ましく、より好ましくは90質量部~99質量部である。
 2-3.セパレータ
 セパレータは正極と負極とを隔てるように配置されるものである。セパレータには特に制限がなく、本発明では、従来公知のセパレータはいずれも使用できる。具体的なセパレータとしては、例えば、非水電解液を吸収・保持するポリマーからなる多孔性シート(例えば、ポリオレフィン系微多孔質セパレータやセルロース系セパレータ等)、不織布セパレータ、多孔質金属体等が挙げられる。中でも、ポリオレフィン系微多孔質セパレータは、有機溶媒に対して化学的に安定であるという性質を有するため好適である。
 上記多孔性シートの材質としては、ポリエチレン、ポリプロピレン、ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造を有する積層体等が挙げられる。
 上記不織布セパレータの材質としては、例えば、綿、レーヨン、アセテート、ナイロン、ポリエステル、ポリプロピレン、ポリエチレン、ポリイミド、アラミド、ガラス等が挙げられ、要求される機械強度等に応じて、上記例示の材質を単独で、又は、2種以上を組み合わせて用いることができる。
 2-4.電池外装材
 正極、負極、セパレータ及び電解液等を備えた電池素子は、リチウムイオン二次電池使用時の外部からの衝撃、環境劣化等から電池素子を保護するため電池外装材に収容される。本発明では、電池外装材の素材は特に限定されず従来公知の外装材はいずれも使用することができる。
 なお本願は、2013年2月18日に出願された日本国特許出願第2013-29274号、2013年9月11日に出願された日本国特許出願第2013-188802号に基づく優先権の利益を主張するものである。
 2013年2月18日に出願された日本国特許出願第2013-29274号、2013年9月11日に出願された日本国特許出願第2013-188802号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実験例A
 実験例1
 1.電解液の調製
 エチレンカーボネート(EC、環状カーボネート)とエチルメチルカーボネート(EMC)とを、15:85(体積比)で混合した非水溶媒に、電解質塩(2)として六フッ化リン酸リチウム(LiPF6、キシダ化学株式会社製)を濃度が1.20mol/Lとなるように溶解させて、電解液(1)を調製した。
 2.コイン型リチウムイオン二次電池の製造
 正極活物質(LiNi1/3Co1/3Mn1/32)、導電助剤(アセチレンブラック2質量部とグラファイト2質量部の混合物)及び結着剤(PVdF)を93:4:3の質量比で混合し溶媒(N-メチルピロリドン)に分散させた正極合剤スラリーをアルミニウム箔(正極集電体)上に塗工し、乾燥して、正極シートを作製した。
 負極活物質(球状加工天然黒鉛)、導電助剤(カーボンブラック)及び結着剤(スチレン-ブタジエンゴム2.0質量部とカルボキシメチルセルロース1.2質量部の混合物)を96.3/0.5/3.2の質量比で混合した負極合剤スラリーを銅箔(負極集電体)上に塗工し、乾燥して負極シートを作製した。
 次いで、上記で得られた正極シート、負極シート及びポリエチレン製セパレータを、それぞれ円形(正極φ12mm、負極φ14mm、セパレータφ16mm)に打ち抜いた。宝泉株式会社より購入したCR2032コイン型電池用部品(正極ケース(アルミクラッドSUS304L製)、負極キャップ(SUS316L製)、スペーサー(1mm厚、SUS316L製)、ウェーブワッシャー(SUS316L製)、ガスケット(ポリプロピレン製))を用いてコイン型リチウムイオン二次電池を作製した。具体的には、ガスケットを装着した負極キャップ、ウェーブワッシャー、スペーサー、負極シート(負極の銅箔側がスペーサーと対向するように設置)、セパレータをこの順で重ねた後、上記電解液(1)をセパレータに含浸させた。次いで、正極合剤塗布面が負極活物質層側と対向するように正極シートを設置し、その上に正極ケースを重ね、カシメ機でかしめることによりコイン型リチウムイオン二次電池を作製した。
 3.サイクル特性試験
 得られたコイン型リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置(株式会社アスカ電子製)を使用し、所定の充電条件(1C、4.4V、定電流定電圧モード0.02Cカット)及び放電条件(1C、終止電圧2.75V、定電流モード)にて、各充放電時には10分の充放電休止時間を設けてサイクル特性試験を行った。容量維持率は、1サイクル後の放電容量と150サイクル後の放電容量の値から算出した。結果を表1に示す。
    容量維持率(%)=(150サイクル後の放電容量/1サイクル後の放電容量)×100
 4.放電負荷特性試験
 コイン型リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置(株式会社アスカ電子製)を使用し、所定の充電条件(1C、4.4V、定電流定電圧モード0.02Cカット)での充電後、放電終止電圧2.75V、放電電流0.2Cで、定電流放電を行って電池の放電容量を測定した。その後、再び、所定の充電条件(1C、4.4V、定電流定電圧モード0.02Cカット)で充電を行った後、放電終止電圧2.75V、放電電流3Cで定電流放電を行って放電容量を測定した。各充放電時には10分の休止時間を設けて放電容量測定を行った。放電定電流0.2Cにおける放電容量を100としたときの放電定電流3Cにおける放電容量の指数を負荷特性として表1及び図1に示す。
 また、初回放電時に平均放電電圧(満充電状態から0.2Cで放電し、放電開始から150分間経過したときの電圧)を測定したところ、実験例1で製造したリチウムイオン二次電池の平均放電電圧は3.735Vであった。
 実験例2~23
 下記表1に示す組成となるように、混合した非水溶媒に各電解質塩を溶解させて電解液(2)~(23)を調整した。得られた電解液(2)~(23)を使用したこと以外は実験例1と同様にして、コイン型リチウムイオン二次電池を作製し、サイクル特性試験及び放電負荷特性試験を行った。なお、実験例20~23のサイクル特性試験は、実験例1では4.4Vであった充電条件を4.2Vに変更して行った。結果を表1及び図1に示す。
 また、実験例1と同様、放電負荷特性試験の初回放電時に平均放電電圧を測定した結果を併せて表1に示す。実験例2~23で製造したリチウムイオン二次電池の平均放電電圧は3.7V以上であった。
Figure JPOXMLDOC01-appb-T000001
 表1中、「LiFSI」はリチウムビス(フルオロスルホニル)イミドを示す。
 表1より、LiPF6のみを電解質塩として使用した場合には、電解質塩濃度を高めることで、サイクル特性の劣化がやや抑制されたものがあるものの、抑制の程度は十分ではなかった(実験例8(電解質塩濃度:1.0mol/L、サイクル特性:70.1%);実験例1~7(電解質塩濃度:1.2mol/L~1.5mol/L、サイクル特性:42.2%~72.6%))。
 これに対して、電解液に電解質塩(1)を含む実験例9~19では、実験例1~8と比べて、1.1mol/L超の高電解質塩濃度領域でのサイクル特性の劣化が抑制されていた。また、実験例5ではサイクル特性試験後に電解液量の減少が見られたが、電解質塩(1)の有無以外は実験例5と同様の電解液組成を有する実験例15では、サイクル特性試験後も電解液量の減少は見られなかった。
 このことより、電解質塩(1)を使用したことにより、正極及び/又は負極表面に被膜が形成された結果、溶媒の酸化分解や還元分解が抑制され、サイクル特性の劣化が抑えられたものと考えられる。
 実験例9~19では、特に、同一の電解質塩濃度を有する電解液において、リチウムイオンに対する環状カーボネートのモル比(環状カーボネート/Li+)が小さいほど、サイクル特性が良好になる傾向が認められた(実験例9と10との比較、実験例11~13の比較、実験例14~17の比較)。これは、電極表面に被膜が形成されたことに加えて、環状カーボネートを特定の範囲で使用したことにより、溶媒である環状カーボネートとリチウムイオンとの溶媒和によってリチウムイオンと溶媒和しておらず分解反応に関与できる環状カーボネート量が減少し、溶媒の分解反応が一層抑制されたためと考えられる。
 実験例20~23より、電解質塩(1)を主剤(全電解質塩濃度の約58%以上)として用いた電解液においても、リチウムイオンに対する環状カーボネートのモル比(環状カーボネート/Li+)が小さいと、サイクル特性が良好になる傾向が認められた。これは、実験例9~19と同様に、実験例20~23でも電極表面に被膜が形成され、また、環状カーボネートを特定の範囲で使用したことにより、環状カーボネートとリチウムイオンとの溶媒和によってリチウムイオンと溶媒和しておらず分解反応に関与できる環状カーボネート量が減少し、溶媒の分解反応が一層抑制されたためと考えられる。
 このように、電解質塩(1)と環状カーボネートを含み、且つ、電解質塩濃度が高い(1.1mol/L超)本発明の電解液では、充電時の終止電圧に拘らず同様の効果が得られることがわかる。さらに、電解質塩(1)としてLiFSIを主剤として用いることにより、低温でのレート特性の改善なども期待される。
 放電負荷特性について、電解質塩(1)を含まない場合は、溶媒組成が同じであっても、電解質塩濃度が高いほど、放電負荷特性が低下する傾向がある(実験例2と6、実験例4と7の比較)。これに対して、電解質塩(1)を含む場合、同じ溶媒組成においては、電解質塩濃度が高くなっても、負荷特性に顕著な変化はなかった。この結果から、他の電解質塩(LiPF6)に比べて電解質塩(1)の溶媒への溶解性が高く、電解質塩(1)を含む本発明の例では、電解質塩濃度が増加しても粘度上昇が生じなかったものと考えられる。また、電解質塩(1)のイオン伝導度が他の電解質塩(LiPF6)よりも優れていることも、放電負荷特性に寄与したものと考えられる。
 以上の結果より、本発明の電解液を備えたリチウムイオン二次電池は、サイクル特性の劣化抑制により、長寿命を有することが期待できる。
 実験例B
 実験例24
 1.電解液の調製
 エチレンカーボネート(EC、環状カーボネート)とエチルメチルカーボネート(EMC)とを、10:90(体積比)で混合した非水溶媒に、電解質塩(1)としてリチウムビス(フルオロスルホニル)イミドと、電解質塩(2)として六フッ化リン酸リチウム(LiPF6、キシダ化学株式会社製)とを濃度がそれぞれ0.6mol/Lとなるように溶解させて、電解液(24)を調製した。
 2.ラミネート型リチウムイオン二次電池の作製と試験前の充放電
 市販の正極シート(活物質:LiNi1/3Co1/3Mn1/32)1枚と、市販の負極シート(活物質:グラファイト)1枚とを対向するように積層し、その間に1枚のポリオレフィン系セパレータを挟んだ。2枚のアルミニウムラミネートフィルムで正、負極のシートを挟み込み、アルミニウムラミネートフィルム内を電解液で満たし、真空状態で密閉することにより、24mAhのラミネートセルを作製した。
 充放電試験装置(ACD-01、アスカ電子株式会社製)を使用して、25℃で充放電速度0.2C(定電流モード)、3.0V~4.2Vで1度充放電を行った後、ラミネートセルを開封してから、再度真空状態で密閉した。同条件で充放電を5回繰り返してラミネート型リチウムイオン二次電池を完成させた。
 3.サイクル特性試験(充放電効率)
 得られたラミネート型リチウムイオン二次電池について、温度25℃で、充放電試験装置(ACD-01、アスカ電子株式会社製)を使用し、充放電速度0.2C(定電流定電圧モード、0.02Cカット)、3.0V~4.2Vにて、各充放電時には10分の充放電休止時間を設けて、サイクル試験を行った。下記式より、1サイクル目、5サイクル目における充放電効率を算出した。結果を表2に示す。
   充放電効率 (%)=100×[放電容量]/[充電容量]
 4.低温特性試験(放電レート特性)
 ラミネート型リチウムイオン二次電池について、温度25℃で、充放電試験装置(ACD-01、アスカ電子株式会社製)を用いて、充電速度0.2C(定電流定電圧モード、0.02Cカット)で、4.2Vまで充電した後、同温度で、放電速度0.2C(定電流モード)で3Vまで放電させた時の放電容量を基準とした。次いで、同じ条件で充電した後、温度-30℃で、放電レート0.2C、0.5C、1.0C、2.0Cに変化させ、3.0Vまで放電させたときの放電容量を測定した。結果を表2に示す。
 実験例25~27
 下記表2に示す組成となるように、溶媒に各電解質塩を溶解させて電解液(25)~(27)を調製した。得られた電解液(25)~(27)を使用したこと以外は実験例24と同様にして、ラミネート型リチウムイオン二次電池を作製し、サイクル特性試験及び低温特性試験を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、サイクル特性試験(充放電効率)において、環状カーボネート/Li+比が1.25である実験例24のラミネート型リチウムイオン二次電池は高い充放電効率を示していた。これに対して、環状カーボネートを含まず環状カーボネート/Li+比が0となる実験例26では1サイクル目と5サイクル目の充放電効率が実験例24に比べて劣っていた。この結果より、同じ溶媒組成であっても電解質塩(1)を含む方がリチウムイオン二次電池を高容量化できることが確認された。また、実験例24と26とでは、放電容量も実験例24の方が高かった。
 これは、実験例26では溶媒に環状カーボネートが含まれておらず負極に被膜が形成されなかったため、環状カーボネートを含有した電解液を用いた実験例24と比較して溶媒の分解が促進されたためであると考えられる。実験例24と25では、電解質塩(1)を含む実験例24の方が放電容量が高かった。これは環状カーボネートに由来する被膜に加え、電解質塩(1)に由来する被膜が電極表面に形成されたことにより、溶媒の分解が抑制されたためであると考えられる。
 低温特性試験(放電レート特性)において、実験例24(環状カーボネート/Li+比が1.25)は、いずれの放電レートでも他の実験例に比べて高い放電容量を示していた。一方で、環状カーボネートを含まず環状カーボネート/Li+比が0になる実験例26は実験例24と比較していずれのレートにおいても容量が低かった。また、電解質塩(1)(LiFSI)を含まない実験例25、27の放電レート特性は、電解質塩(1)を含む実験例24と比較して劣るものであった。
 なお、実験例24~27で製造したリチウムイオン二次電池について、低温特性試験の初回放電時(満充電状態から0.2Cで放電し、放電開始から150分間経過したときの電圧)に測定した平均放電電圧はいずれも3.7V以上であった。測定結果を表2に示す。
 実験例C
 実験例28
 1.電解液の調製
 エチレンカーボネート(EC、環状カーボネート)とエチルメチルカーボネート(EMC)とを、表3に示す組成となるように混合した非水溶媒に、電解質塩(1)としてリチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミドと、電解質塩(2)として六フッ化リン酸リチウム(LiPF6、キシダ化学株式会社製)とを表3に示す濃度となるように溶解させて、各電解液を調製した。なお、表3中、「LiFTI」はリチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミドを表す。
 2.コイン型リチウムイオン二次電池の製造
 市販の正極シート(LiCoO2)、市販の負極シート(天然黒鉛)及びポリエチレン製セパレータを、それぞれ円形(正極φ12mm、負極φ14mm、セパレータφ16mm)に打ち抜いた。宝泉株式会社より購入したCR2032コイン型電池用部品(正極ケース(アルミクラッドSUS304L製)、負極キャップ(SUS316L製)、スペーサー(1mm厚、SUS316L製)、ウェーブワッシャー(SUS316L製)、ガスケット(ポリプロピレン製))を用いてコイン型リチウムイオン二次電池を作製した。
 具体的には、ガスケットを装着した負極キャップ、ウェーブワッシャー、スペーサー、負極シート(負極の銅箔側がスペーサーと対向するように設置)、セパレータをこの順で重ねた後、表3に記載した組成となるように調整した電解液をセパレータに含浸させた。次いで、正極活物質(LiCoO2)が含まれる層が負極活物質層側と対向するように正極シートを設置し、その上に正極ケースを重ね、カシメ機でかしめることによりコイン型リチウムイオン二次電池を作製した。
 3.サイクル特性試験
 得られたコイン型リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置(ACD-01、株式会社アスカ電子製)を使用し、所定の充電条件(1C、4.2V、定電流定電圧モード0.02Cカット)及び所定の放電条件(1C、終止電圧3V、定電流モード)にて、各充放電時には10分の充放電休止時間を設けてサイクル特性試験を行った。容量維持率は、1サイクル後の放電容量と100サイクル後の放電容量の値から算出した。結果を表3及び図2に示す。
容量維持率(%)=(100サイクル後の放電容量/1サイクル後の放電容量)×100
Figure JPOXMLDOC01-appb-T000003
 上記実験例により、電解質塩(1)としてLiFTIを使用した場合においても、LiFSIを使用した場合と同様、リチウムイオンに対する環状カーボネートのモル比(環状カーボネート/Li+)が小さい程、サイクル特性の低下が抑制される傾向が認められた。また、実験例29と33、実験例30と34、実験例36と37の対比より、電解質塩(1)濃度が高まるとサイクル特性は劣化する傾向にあるが、環状カーボネート/Li+を小さくすることで(特に3以下)、電解質塩濃度が高い電解液においても、サイクル特性の低下を抑制できることが分かる。

Claims (5)

  1.  電解質塩と溶媒とを含む電解液において、
     上記電解質塩濃度が1.1mol/L超であり、
     上記電解質塩として下記一般式(1)で表される化合物を含み、且つ、溶媒として環状カーボネートを含むことを特徴とする電解液。
    (XSO2)(FSO2)NLi     (1)
    (一般式(1)中、Xはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)
  2.  電解質塩として、さらに下記一般式(2)、一般式(3)で表される化合物及び六フッ化砒酸リチウムよりなる群から選択される少なくとも1種の化合物を含む請求項1に記載の電解液。
    LiPFa(Cm2m+16-a (0≦a≦6、1≦m≦4)  (2)
    LiBFb(Cn2n+14-b (0≦b≦4、1≦n≦4)  (3)
  3.  上記環状カーボネートと、電解液中に含まれるリチウムイオン(合計量)とのモル比(環状カーボネート/Li+)が1以上、3以下である請求項1又は2に記載の電解液。
  4.  請求項1~3のいずれかに記載の電解液を備えることを特徴とするリチウムイオン二次電池。
  5.  平均放電電圧が3.7V以上である請求項4に記載のリチウムイオン二次電池。
     
PCT/JP2014/053752 2013-02-18 2014-02-18 電解液及びこれを備えたリチウムイオン二次電池 WO2014126256A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL14751453T PL2958183T3 (pl) 2013-02-18 2014-02-18 Roztwór elektrolitu i dostarczana z nim bateria akumulatorowa jonowo-litowa
CN201480008985.0A CN104995785B (zh) 2013-02-18 2014-02-18 电解液及具备该电解液的锂离子二次电池
JP2015500340A JP6078629B2 (ja) 2013-02-18 2014-02-18 電解液及びこれを備えたリチウムイオン二次電池
EP14751453.3A EP2958183B1 (en) 2013-02-18 2014-02-18 Electrolyte solution and lithium ion secondary battery provided with same
KR1020157023579A KR102141903B1 (ko) 2013-02-18 2014-02-18 전해액 및 이것을 구비한 리튬이온 이차전지
US14/768,273 US10978740B2 (en) 2013-02-18 2014-02-18 Electrolyte solution and lithium ion secondary battery provided with same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-029274 2013-02-18
JP2013029274 2013-02-18
JP2013-188802 2013-09-11
JP2013188802 2013-09-11

Publications (1)

Publication Number Publication Date
WO2014126256A1 true WO2014126256A1 (ja) 2014-08-21

Family

ID=51354254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053752 WO2014126256A1 (ja) 2013-02-18 2014-02-18 電解液及びこれを備えたリチウムイオン二次電池

Country Status (7)

Country Link
US (1) US10978740B2 (ja)
EP (1) EP2958183B1 (ja)
JP (2) JP6078629B2 (ja)
KR (1) KR102141903B1 (ja)
CN (1) CN104995785B (ja)
PL (1) PL2958183T3 (ja)
WO (1) WO2014126256A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085977A (ja) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 リチウムイオン蓄電池
JP2017021949A (ja) * 2015-07-09 2017-01-26 株式会社豊田中央研究所 非水系リチウム電池及びその使用方法
EP3076472A4 (en) * 2014-09-26 2017-03-01 LG Chem, Ltd. Nonaqueous electrolyte solution and lithium secondary battery containing same
WO2017047019A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 電池
JP2017069164A (ja) * 2015-10-02 2017-04-06 株式会社日本触媒 リチウムイオン二次電池
JP2017117617A (ja) * 2015-12-24 2017-06-29 セイコーインスツル株式会社 非水電解質二次電池
CN107078354A (zh) * 2014-10-23 2017-08-18 国立大学法人东京大学 电解液
WO2017179681A1 (ja) * 2016-04-15 2017-10-19 国立大学法人東京大学 リチウムイオン二次電池
JP2017191740A (ja) * 2016-04-15 2017-10-19 国立大学法人 東京大学 リチウムイオン二次電池
JP2017532740A (ja) * 2014-09-26 2017-11-02 エルジー・ケム・リミテッド 非水性電解液及びこれを含むリチウム二次電池
CN107710492A (zh) * 2015-06-23 2018-02-16 株式会社日本触媒 导电性材料及其制备方法和精制方法,以及使用了该导电性材料的非水电解液和抗静电剂
EP3257099A4 (en) * 2015-02-09 2018-08-08 Solidenergy Systems High salt concentration electrolytes for rechargeable lithium battery
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818911B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833322B2 (en) 2017-01-19 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
US10833317B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
US11081687B2 (en) 2016-12-02 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery including positive-electrode active material
US11437646B2 (en) 2014-09-26 2022-09-06 Lg Energy Solution, Ltd. Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP2022551946A (ja) * 2019-12-24 2022-12-14 寧徳時代新能源科技股▲分▼有限公司 二次電池及び二次電池を備える装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978740B2 (en) 2013-02-18 2021-04-13 Nippon Shokubai Co., Ltd. Electrolyte solution and lithium ion secondary battery provided with same
JP6296597B2 (ja) * 2013-10-16 2018-03-20 学校法人 関西大学 リチウムイオン二次電池
JP5945753B2 (ja) * 2014-05-08 2016-07-05 エス・イー・アイ株式会社 リチウム二次電池
KR102101396B1 (ko) 2016-12-09 2020-04-16 주식회사 엘지화학 비수성 전해질 및 이를 포함하는 리튬 이차 전지
WO2019130958A1 (ja) * 2017-12-26 2019-07-04 日立オートモティブシステムズ株式会社 リチウムイオン二次電池用電解液
CN111656593B (zh) 2018-01-31 2023-10-13 松下知识产权经营株式会社 非水电解质二次电池、电解液和非水电解质二次电池的制造方法
CN112470318A (zh) * 2018-07-31 2021-03-09 株式会社日本触媒 电解质组合物、电解质膜及电解质膜的制造方法
CN109524716A (zh) * 2018-12-14 2019-03-26 深圳先进技术研究院 电解液及其制备方法与包含其的二次电池和用电设备
CN110649319A (zh) * 2019-10-18 2020-01-03 中国科学院过程工程研究所 一种匹配高镍正极材料锂离子电池的耐高温电解液
CN114245943A (zh) * 2019-12-24 2022-03-25 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150958A (ja) 2010-01-25 2011-08-04 Sony Corp 非水電解質および非水電解質電池
JP2012174437A (ja) * 2011-02-21 2012-09-10 Denso Corp リチウム二次電池の充電装置及び充電方法
JP2012182130A (ja) * 2011-02-10 2012-09-20 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5121035B1 (ja) * 2012-02-28 2013-01-16 株式会社日立製作所 リチウムイオン二次電池
JP2013101900A (ja) * 2011-10-12 2013-05-23 Nippon Shokubai Co Ltd 非水電解液及びこれを用いた蓄電デバイス
JP2013105643A (ja) * 2011-11-15 2013-05-30 Nippon Shokubai Co Ltd リチウム二次電池
JP2013145731A (ja) * 2011-12-16 2013-07-25 Nippon Shokubai Co Ltd リチウム二次電池
JP2013145732A (ja) * 2011-12-16 2013-07-25 Nippon Shokubai Co Ltd リチウム二次電池
JP2013251066A (ja) * 2012-05-30 2013-12-12 Central Glass Co Ltd 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2014013704A (ja) * 2012-07-04 2014-01-23 Nippon Shokubai Co Ltd リチウム二次電池用非水電解液及びこれを備えたリチウム二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2106974A5 (ja) 1970-09-30 1972-05-05 Michelin & Cie
JP4847675B2 (ja) * 2002-10-23 2011-12-28 パナソニック株式会社 非水電解質二次電池およびそれに用いる電解質
JP5314885B2 (ja) 2007-12-13 2013-10-16 株式会社ブリヂストン 非水電解液及びそれを備えた非水電解液二次電源
JP2010287431A (ja) * 2009-06-11 2010-12-24 Sony Corp 電池
WO2011070964A1 (ja) 2009-12-07 2011-06-16 ソニー株式会社 二次電池、電解液、電池パック、電子機器および電動車両
CN102074734A (zh) * 2010-09-30 2011-05-25 张家港市国泰华荣化工新材料有限公司 一种含氟磺酰亚胺锂锂盐的电解质溶液及其用途
KR101929599B1 (ko) 2011-02-10 2018-12-14 미쯔비시 케미컬 주식회사 2 차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 2 차 전지
CN116525945A (zh) 2011-02-10 2023-08-01 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质二次电池
JP6065367B2 (ja) * 2011-06-07 2017-01-25 ソニー株式会社 非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2014072071A (ja) 2012-09-28 2014-04-21 Sanyo Electric Co Ltd 非水電解質二次電池
US10978740B2 (en) 2013-02-18 2021-04-13 Nippon Shokubai Co., Ltd. Electrolyte solution and lithium ion secondary battery provided with same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150958A (ja) 2010-01-25 2011-08-04 Sony Corp 非水電解質および非水電解質電池
JP2012182130A (ja) * 2011-02-10 2012-09-20 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2012174437A (ja) * 2011-02-21 2012-09-10 Denso Corp リチウム二次電池の充電装置及び充電方法
JP2013101900A (ja) * 2011-10-12 2013-05-23 Nippon Shokubai Co Ltd 非水電解液及びこれを用いた蓄電デバイス
JP2013105643A (ja) * 2011-11-15 2013-05-30 Nippon Shokubai Co Ltd リチウム二次電池
JP2013145731A (ja) * 2011-12-16 2013-07-25 Nippon Shokubai Co Ltd リチウム二次電池
JP2013145732A (ja) * 2011-12-16 2013-07-25 Nippon Shokubai Co Ltd リチウム二次電池
JP5121035B1 (ja) * 2012-02-28 2013-01-16 株式会社日立製作所 リチウムイオン二次電池
JP2013251066A (ja) * 2012-05-30 2013-12-12 Central Glass Co Ltd 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2014013704A (ja) * 2012-07-04 2014-01-23 Nippon Shokubai Co Ltd リチウム二次電池用非水電解液及びこれを備えたリチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2958183A4 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532740A (ja) * 2014-09-26 2017-11-02 エルジー・ケム・リミテッド 非水性電解液及びこれを含むリチウム二次電池
EP3076472A4 (en) * 2014-09-26 2017-03-01 LG Chem, Ltd. Nonaqueous electrolyte solution and lithium secondary battery containing same
US10276894B2 (en) 2014-09-26 2019-04-30 Lg Chem, Ltd. Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
US11437646B2 (en) 2014-09-26 2022-09-06 Lg Energy Solution, Ltd. Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP2017528894A (ja) * 2014-09-26 2017-09-28 エルジー・ケム・リミテッド 非水性電解液及びこれを含むリチウム二次電池
US10497980B2 (en) 2014-10-23 2019-12-03 University Of Tokyo Electrolytic solution
CN107078354B (zh) * 2014-10-23 2020-01-21 国立大学法人东京大学 电解液
CN107078354A (zh) * 2014-10-23 2017-08-18 国立大学法人东京大学 电解液
JP2016085977A (ja) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 リチウムイオン蓄電池
JP2022079763A (ja) * 2014-10-24 2022-05-26 株式会社半導体エネルギー研究所 リチウムイオン蓄電池
JP2020126865A (ja) * 2014-10-24 2020-08-20 株式会社半導体エネルギー研究所 リチウムイオン蓄電池
JP7364730B2 (ja) 2014-10-24 2023-10-18 株式会社半導体エネルギー研究所 リチウムイオン蓄電池
EP3257099A4 (en) * 2015-02-09 2018-08-08 Solidenergy Systems High salt concentration electrolytes for rechargeable lithium battery
CN107710492A (zh) * 2015-06-23 2018-02-16 株式会社日本触媒 导电性材料及其制备方法和精制方法,以及使用了该导电性材料的非水电解液和抗静电剂
EP3316381A4 (en) * 2015-06-23 2019-02-27 Nippon Shokubai Co., Ltd. CONDUCTIVE MATERIAL AND MANUFACTURING METHOD AND CLEANING PROCESS THEREFOR AND WATER-FREE ELECTROLYTE SOLUTION AND ANTISTATIC AGENT USING THE SAID CONDUCTIVE MATERIAL
US10461365B2 (en) 2015-06-23 2019-10-29 Nippon Shokubai Co., Ltd. Conductive material and manufacturing method and purification method for same, and non aqueous electrolyte solution and antistatic agent using said conductive material
JP2017021949A (ja) * 2015-07-09 2017-01-26 株式会社豊田中央研究所 非水系リチウム電池及びその使用方法
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11637277B2 (en) 2015-07-23 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833317B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
JPWO2017047019A1 (ja) * 2015-09-16 2018-07-05 パナソニックIpマネジメント株式会社 電池
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818912B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818911B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11569492B2 (en) 2015-09-16 2023-01-31 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US11799067B2 (en) 2015-09-16 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Battery
US11588143B2 (en) 2015-09-16 2023-02-21 Panasonic Intellectual Property Management Co., Ltd. Battery
WO2017047019A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 電池
US11710816B2 (en) 2015-09-16 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Battery
US11721800B2 (en) 2015-09-16 2023-08-08 Panasonic Intellectual Property Management Co., Ltd. Battery
JP2017069164A (ja) * 2015-10-02 2017-04-06 株式会社日本触媒 リチウムイオン二次電池
JP2017117617A (ja) * 2015-12-24 2017-06-29 セイコーインスツル株式会社 非水電解質二次電池
JPWO2017179681A1 (ja) * 2016-04-15 2019-02-28 国立大学法人 東京大学 リチウムイオン二次電池
US11271242B2 (en) 2016-04-15 2022-03-08 Kabushiki Kaisha Toyota Jidoshokki Lithium ion secondary battery
WO2017179681A1 (ja) * 2016-04-15 2017-10-19 国立大学法人東京大学 リチウムイオン二次電池
JP2017191740A (ja) * 2016-04-15 2017-10-19 国立大学法人 東京大学 リチウムイオン二次電池
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US11081687B2 (en) 2016-12-02 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery including positive-electrode active material
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
US10833322B2 (en) 2017-01-19 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
JP2022551946A (ja) * 2019-12-24 2022-12-14 寧徳時代新能源科技股▲分▼有限公司 二次電池及び二次電池を備える装置
JP7381737B2 (ja) 2019-12-24 2023-11-15 寧徳時代新能源科技股▲分▼有限公司 二次電池及び二次電池を備える装置

Also Published As

Publication number Publication date
JP2017084820A (ja) 2017-05-18
CN104995785A (zh) 2015-10-21
CN104995785B (zh) 2017-11-24
PL2958183T3 (pl) 2020-11-02
EP2958183A4 (en) 2016-09-21
US20150380768A1 (en) 2015-12-31
JP6078629B2 (ja) 2017-02-08
US10978740B2 (en) 2021-04-13
EP2958183A1 (en) 2015-12-23
JPWO2014126256A1 (ja) 2017-02-02
JP6353564B2 (ja) 2018-07-04
KR20150120393A (ko) 2015-10-27
EP2958183B1 (en) 2020-05-06
KR102141903B1 (ko) 2020-08-06

Similar Documents

Publication Publication Date Title
JP6353564B2 (ja) 電解液及びこれを備えたリチウムイオン二次電池
JP6296597B2 (ja) リチウムイオン二次電池
JP6113496B2 (ja) リチウム二次電池
JP6018820B2 (ja) リチウム二次電池用非水電解液及びこれを備えたリチウム二次電池
JP2014203748A (ja) リチウムイオン二次電池用非水電解液およびこれを備えたリチウムイオン二次電池
JP6975525B2 (ja) リチウムイオン二次電池
WO2016204278A1 (ja) 非水電解液およびそれを用いた非水電解液二次電池
JP6931965B2 (ja) リチウムイオン二次電池
JP2016051600A (ja) 蓄電デバイス用非水電解液
JP6876369B2 (ja) リチウムイオン二次電池
JP6666679B2 (ja) リチウムイオン二次電池
JP2017162793A (ja) 非水電解液およびそれを用いた非水電解液二次電池
JP6276575B2 (ja) 非水電解液及びこれを含むリチウムイオン二次電池
JP6931966B2 (ja) リチウムイオン二次電池
JP5727985B2 (ja) 電池用電極及びこれを用いた電池
JP2015062154A (ja) リチウムイオン二次電池
JP2017091993A (ja) リチウムイオン二次電池
JP2017084739A (ja) リチウムイオン二次電池
JP6315775B2 (ja) リチウムイオン二次電池
JP6646522B2 (ja) 非水電解液二次電池
JP2015138627A (ja) 正極溶出抑制剤及びこれを含むリチウムイオン二次電池
JP6592228B2 (ja) 過充電防止剤及びこれを含む電解液、並びにリチウムイオン二次電池
WO2024071253A1 (ja) 非水電解質二次電池
WO2024071255A1 (ja) 非水電解質二次電池
WO2024071254A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500340

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014751453

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14768273

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157023579

Country of ref document: KR

Kind code of ref document: A