WO2014104302A1 - 化学強化用フロートガラス - Google Patents

化学強化用フロートガラス Download PDF

Info

Publication number
WO2014104302A1
WO2014104302A1 PCT/JP2013/085125 JP2013085125W WO2014104302A1 WO 2014104302 A1 WO2014104302 A1 WO 2014104302A1 JP 2013085125 W JP2013085125 W JP 2013085125W WO 2014104302 A1 WO2014104302 A1 WO 2014104302A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
ion exchange
chemical strengthening
top surface
glass
Prior art date
Application number
PCT/JP2013/085125
Other languages
English (en)
French (fr)
Inventor
鈴木 祐一
中島 哲也
淳 笹井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51021371&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014104302(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157016964A priority Critical patent/KR20150103004A/ko
Priority to CN201380068393.3A priority patent/CN104884398B/zh
Priority to JP2014554596A priority patent/JP6112122B2/ja
Publication of WO2014104302A1 publication Critical patent/WO2014104302A1/ja
Priority to US14/753,416 priority patent/US9714193B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/005Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • C03B25/08Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2255Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident ion beams, e.g. proton beams
    • G01N23/2258Measuring secondary ion emission, e.g. secondary ion mass spectrometry [SIMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a float glass for chemical strengthening.
  • a thin plate-like cover glass is formed on the front surface of the display so as to be wider than the image display portion in order to enhance the protection and aesthetics of the display. It has been done to arrange.
  • Such a flat panel display device is required to be lightweight and thin, and accordingly, a cover glass used for display protection is also required to be thin.
  • the float glass manufactured by the float process is chemically strengthened to form a compressive stress layer on the surface to enhance the scratch resistance of the cover glass.
  • Patent Document 1 It has been reported that the float glass is warped after chemical strengthening and the flatness is impaired (Patent Document 1).
  • the warpage is caused by chemical strengthening between a glass surface that is not in contact with molten tin (hereinafter also referred to as a top surface) and a glass surface that is in contact with molten tin (hereinafter also referred to as a bottom surface) during float forming. It is supposed to be caused by different ways of entering.
  • Patent Document 1 the plate-like body manufactured and processed by the float process is chemically polished after being immersed in or contacted with Li ions, Na ions, or a mixed inorganic salt thereof without polishing the surface. Improvements are disclosed.
  • the strengthening stress due to chemical strengthening is reduced, or the top surface and the bottom surface of the float glass are subjected to grinding treatment or polishing treatment, and then chemically strengthened after removing the surface heterogeneous layer.
  • Patent Document 1 it is necessary to immerse the float glass in the mixed inorganic salt before chemical strengthening, which is complicated. Moreover, there is a possibility that the strength of the float glass after chemical strengthening becomes insufficient by the method of reducing the strengthening stress.
  • the method of grinding or polishing the top and bottom surfaces of the float glass before chemical strengthening has a problem from the viewpoint of improving productivity, and it is preferable to omit these grinding or polishing treatments. .
  • an object of the present invention is to provide a float glass for chemical strengthening that can effectively suppress warping after chemical strengthening.
  • the main cause of the warpage occurring when the soda lime glass produced by the float process is chemically strengthened is caused by a difference in the way of entering the chemical strengthening between the bottom surface and the top surface, and is not necessarily in contact with the molten metal during the float forming. It was found that the difference between the top surface and the bottom surface is not the metal that penetrates the glass surface, but the difference between the top surface and the bottom surface, that is, the difference between the hydration and dealkalization.
  • the present invention is as follows. 1. A bottom surface in contact with molten metal at the time of molding, a chemically strengthened float glass having a top surface opposed to the bottom surface, the concentration of Na 2 O in said top surface in concentration of Na 2 O the depth 100 ⁇ m position The normalized Na 2 O concentration at the bottom surface, which is the value obtained by dividing the Na 2 O concentration at the bottom surface by the Na 2 O concentration at the depth of 100 ⁇ m from the square of the normalized Na 2 O surface concentration at the top surface, which is the value obtained by dividing the value. A float glass for chemical strengthening, wherein a difference ⁇ (N—Na 2 O 2 ) obtained by subtracting the square of 2 O surface concentration is 0.040 or less.
  • each Na 2 O concentration is a value measured by fluorescent X-ray analysis using Na—K ⁇ rays.
  • a float glass for chemical strengthening having a bottom surface in contact with a molten metal during molding and a top surface facing the bottom surface, wherein the ion exchange amount 1 on the bottom surface is reduced from the ion exchange amount 1 on the top surface.
  • the float glass for chemical strengthening whose ⁇ ion exchange amount 1 which is a value is 0.32 or less.
  • the ion exchange amount 1 is a value obtained by the following equation (2-1).
  • Ion exchange amount 1 5.51 ⁇ (standardized Na 2 O surface concentration) ⁇ 0.038 ⁇ (Sn concentration) Formula (2-1)
  • normalized Na 2 O surface concentration is a value obtained by dividing the concentration of Na 2 O surface concentration of Na 2 O the depth 100 ⁇ m position.
  • the Na 2 O concentration is a value measured by fluorescent X-ray analysis using Na—K ⁇ rays.
  • the Sn concentration is the Sn adhesion amount per unit area of the top and bottom surfaces (unit: as SnO 2 ⁇ g / cm 2 ).
  • the unit of the Sn deposition amount per unit area is “as SnO 2 ⁇ g / cm 2 ” when the Sn deposition amount per unit area is assumed to be Sn in the form of SnO 2. This is to clearly show that the amount of Sn deposited per 1 cm 2 is expressed in terms of SnO 2 equivalent, and in this specification, the amount of deposited Sn per unit area (unit: ⁇ g / cm 2 ) is the amount of deposited Sn per unit area (unit: ⁇ g / cm 2 ). Unit: as SnO 2 ⁇ g / cm 2 ) 3.
  • a chemically strengthened float glass having a bottom surface in contact with a molten metal at the time of molding and a top surface facing the bottom surface, wherein W1 obtained by the following formula (3-1) is 56 or less Glass.
  • W1 ⁇ 16 ⁇ ( ⁇ H / Si) ⁇ 6.47 ⁇ (Sn concentration difference) ⁇ 43.8 ⁇ ( ⁇ ion exchange amount 1) Equation (3-1)
  • ⁇ H / Si is a value obtained by subtracting the normalized hydrogen concentration at the bottom surface from the normalized hydrogen concentration at the top surface.
  • the normalized hydrogen concentration is a value obtained by dividing the average hydrogen concentration at a depth of 0 to 10 ⁇ m by the average hydrogen concentration at a depth of 105 to 110 ⁇ m, and an average hydrogen concentration at a depth of 0 to 10 ⁇ m and an average at a depth of 105 to 110 ⁇ m.
  • the hydrogen concentration is a value measured under the following analytical conditions.
  • Measuring device Secondary ion mass spectrometer having a quadrupole mass analyzer
  • Primary ion species Cs + Primary acceleration voltage: 5.0 kV
  • Primary ion current 1 ⁇ A
  • Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
  • Raster size 200 ⁇ 200 ⁇ m 2
  • Detection area 40 ⁇ 40 ⁇ m 2
  • Secondary ion polarity Use of electron gun for negative neutralization Formula (3-1)
  • the difference in Sn concentration is the amount of Sn adhered per unit area of the bottom surface (unit: as SnO 2 ⁇ g / cm 2 ) This is a difference obtained by subtracting the Sn adhesion amount per unit (unit: ⁇ g / cm 2 ), and is equal to the Sn adhesion amount per unit area of the bottom surface when the glass does not contain SnO 2 .
  • the ⁇ ion exchange amount 1 is a value obtained by subtracting the ion exchange amount 1 on the bottom surface from the ion exchange amount 1 on the top surface.
  • the ion exchange amount 1 is obtained by the following equation.
  • Ion exchange amount 1 5.51 ⁇ (standardized Na 2 O surface concentration) ⁇ 0.038 ⁇ (Sn concentration)
  • normalized Na 2 O surface concentration is a value obtained by dividing the concentration of Na 2 O surface concentration of Na 2 O the depth 100 ⁇ m position.
  • the Na 2 O concentration is a value measured by fluorescent X-ray analysis using Na—K ⁇ rays. 4).
  • a chemically strengthened float glass having a bottom surface in contact with a molten metal at the time of molding and a top surface facing the bottom surface, wherein the absolute value of W2 obtained by the following formula (4-1) is 56 or less Tempered float glass.
  • W2 9.18 ⁇ ⁇ [(ion exchange amount) / (H / Si)] + 49 (Equation (4-1))
  • ⁇ [(ion exchange amount) / (H / Si)] is obtained by dividing the ion exchange amount 1 on the top surface by the normalized hydrogen concentration H / Si on the same surface, on the bottom surface.
  • ion exchange amount 1 5.51 ⁇ (standardized Na 2 O surface concentration) ⁇ 0.038 ⁇ (Sn concentration)
  • normalized Na 2 O surface concentration is a value obtained by dividing the concentration of Na 2 O surface concentration of Na 2 O the depth 100 ⁇ m position.
  • the Na 2 O concentration is a value measured by fluorescent X-ray analysis using Na—K ⁇ rays.
  • Sn concentration is the Sn adhesion amount per unit area of the top and bottom surfaces (unit: as SnO 2 ⁇ g / cm 2 ).
  • the normalized hydrogen concentration is a value obtained by dividing an average hydrogen concentration at a depth of 1 to 10 ⁇ m by an average hydrogen concentration at a depth of 105 to 110 ⁇ m, and an average hydrogen concentration at a depth of 1 to 10 ⁇ m and an average at a depth of 105 to 110 ⁇ m.
  • the hydrogen concentration is a value measured under the following analytical conditions.
  • Measuring device Secondary ion mass spectrometer having a quadrupole mass analyzer
  • Primary ion species Cs +
  • Primary acceleration voltage 5.0 kV
  • Primary ion current 1 ⁇ A
  • Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
  • Raster size 200 ⁇ 200 ⁇ m 2
  • Detection area 40 ⁇ 40 ⁇ m 2
  • Secondary ion polarity Use of electron gun for negative neutralization 5.
  • a chemically strengthened float glass having a bottom surface in contact with a molten metal at the time of molding and a top surface facing the bottom surface, wherein W3 obtained by the following formula (5-1) is 58 or less Glass.
  • ⁇ N-Na 2 O normalized Na 2 O surface of the top surface is a value obtained by dividing the concentration of Na 2 O the depth 100 ⁇ m positions concentration of Na 2 O of the surface at the top surface is a value obtained by subtracting the normalized Na 2 O surface concentration of the bottom surface of the concentration of Na 2 O is a value obtained by dividing the concentration of Na 2 O the depth 100 ⁇ m position of the surface at the bottom surface from the concentration.
  • each Na 2 O concentration is a value measured by fluorescent X-ray analysis using Na—K ⁇ rays.
  • the Sn concentration difference is defined as Sn adhesion amount per unit area of bottom surface (unit: as SnO 2 ⁇ g / cm 2 ) to Sn adhesion amount per unit area of top surface (unit: as SnO 2 ⁇ g). / Cm 2 ), and when the glass does not contain SnO 2 , it is equal to the Sn adhesion amount per unit area of the bottom surface.
  • a float glass for chemical strengthening having a bottom surface in contact with a molten metal at the time of molding and a top surface opposite to the bottom surface, wherein the ion exchange amount 2 on the bottom surface is reduced from the ion exchange amount 2 on the top surface.
  • the float glass for chemical strengthening whose ⁇ ion exchange amount 2 as a value is 0.33 or less.
  • the ion exchange amount 2 is a value obtained by the following formula (6-1).
  • Ion exchange amount 2 ⁇ 0.02 ⁇ (H / Si) + 5.54 ⁇ (N—Na 2 O concentration) ⁇ 0.037 ⁇ (Sn concentration)
  • Formula (6-1) In Formula (6-1), H / Si is the normalized hydrogen concentration, and the normalized hydrogen concentration is a value obtained by dividing the average hydrogen concentration at a depth of 0 to 10 ⁇ m by the average hydrogen concentration at a depth of 105 to 110 ⁇ m.
  • the average hydrogen concentration at a depth of 0 to 10 ⁇ m and the average hydrogen concentration at a depth of 105 to 110 ⁇ m are values measured under the following analytical conditions.
  • Measuring device Secondary ion mass spectrometer having a quadrupole mass analyzer
  • Primary ion species Cs +
  • Primary acceleration voltage 5.0 kV
  • Primary ion current 1 ⁇ A
  • Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
  • Raster size 200 ⁇ 200 ⁇ m 2
  • Negative neutralizing N-concentration of Na 2 O electron gun used chromatic formula (6-1) for is a value obtained by dividing the concentration of Na 2 O depth 100 ⁇ m position of the surface concentration of Na 2 O Standards Na 2 O surface concentration.
  • the Na 2 O concentration is a value measured by fluorescent X-ray analysis using Na—K ⁇ rays.
  • the Sn concentration is the Sn adhesion amount per unit area (unit: as SnO 2 ⁇ g / cm 2 ). 7).
  • a bottom surface in contact with molten metal at the time of molding, a chemically strengthened float glass having a top surface opposed to the bottom surface, the concentration of Na 2 O in said top surface in concentration of Na 2 O the depth 100 ⁇ m position normalized Na 2 O surface of the bottom surface is a value obtained by dividing the concentration of Na 2 O the depth 100 ⁇ m positions concentration of Na 2 O from normalized Na 2 O surface concentration at the bottom surface of the top surface is divided by the A float glass for chemical strengthening in which the difference ⁇ N ⁇ Na 2 O squared ( ⁇ N ⁇ Na 2 O) 2 with reduced concentration is 5.0 ⁇ 10 ⁇ 4 or less.
  • Each Na 2 O concentration is a value measured by fluorescent X-ray analysis using Na—K ⁇ rays. 8).
  • Chemical strengthening temperature T unit: K
  • chemical tempering time t used in the chemical strengthening (unit time)
  • dol ⁇ 0.13 ⁇ Al 2 O 3 ⁇ 1.88 ⁇ MgO ⁇ 2.41 ⁇ CaO ⁇ 1.85 ⁇ SrO ⁇ 1.35 ⁇ BaO ⁇ 1.59 ⁇ ZrO 2 + 1.50 ⁇ Na 2 O + 2. 42 ⁇ K 2 O-129359 / T + 9.28 ⁇ t 0.5 +182.88 Al 2 O 3 , MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O and K 2 O are not essential components.
  • the salt used for chemical strengthening typically has a KNO 3 concentration of 95 to 100% by mass. 9.
  • K 2 O is contained in 0 to 7% means that K 2 O is not essential but may be contained up to 7%.
  • Preferred composition ranges are SiO 2 64 to 77%, Al 2 O 3 0.01 to 7%, Na 2 O 10 to 18%, K 2 O 0 to 5%, MgO 1 to 10%.
  • CaO is 1 to 12%, SrO is 0 to 5%, BaO is 0 to 5%, and ZrO 2 is 0 to 3%. 10. 10. The float glass for chemical strengthening according to any one of 1 to 9 above, wherein in terms of mass percentage, SiO 2 is 60 to 80%, Al 2 O 3 is 0.01 to 8%, and Na 2 O is 8 -22%, K 2 O 0-7%, ZrO 2 0-5%, and MgO, CaO, SrO or BaO is contained. The total content of MgO, CaO, SrO and BaO is 5-25. %, And the ratio of Na 2 O and Al 2 O 3 content ratio Na 2 O / Al 2 O 3 float glass for chemical strengthening is 1.5 or more. 11.
  • the float glass for chemical strengthening of the present invention has a small difference between the top surface and the bottom surface, so that the stress due to chemical strengthening is not reduced and the polishing treatment before chemical strengthening is simplified or omitted. Moreover, the curvature of the float glass after chemical strengthening can be reduced, and excellent flatness can be obtained.
  • FIG. 1 shows the normalized hydrogen concentration of the surface layer of a soda lime glass plate (base plate) before chemical strengthening [(H / Si) (average H / Si of 0 to 10 ⁇ m, average H / Si of 105 to 110 ⁇ m by SIMS analysis) in a diagram showing the correlation between the divided ones] and the normalized Na 2 O surface concentration (that surface concentration of Na 2 O by X-ray fluorescence analysis divided by concentration of Na 2 O 100 ⁇ m depth position).
  • FIG. 2 shows the mechanism of ion exchange between Na + in the glass and H + in the atmosphere in the glass before chemical strengthening.
  • FIG. 3 shows the ion exchange amount (K 2 O, wt%) of the soda-lime glass plate after chemical strengthening (fluorescence X-ray analysis) and the normalized Na 2 O surface concentration (fluorescence X) before chemical strengthening (base plate).
  • the surface concentration of Na 2 O by line analysis is a graph showing the correlation between the divided by concentration of Na 2 O 100 ⁇ m depth position).
  • wt% is mass%.
  • FIG. 4 is a schematic diagram showing a method for calculating the ion exchange amount by fluorescent X-ray analysis.
  • FIG. 5 (a) to (d) show the mechanism by which the amount of ion exchange decreases when a soda lime glass plate in which Na + and H + are ion-exchanged is immersed in a mixed molten salt of KNO 3 and chemically strengthened. It is a schematic diagram shown.
  • FIG. 6 shows ⁇ (N—Na 2 O 2 ) (Top-Bottom), which is the difference between the squares of the normalized Na 2 O surface concentration on the top surface and the bottom surface of the glass subjected to chemical strengthening, with ⁇ warpage. It is the graph which plotted quantity on the vertical axis.
  • FIG. 7 is a graph in which the horizontal axis represents the difference in ion exchange amount between the top surface and the bottom surface, and the vertical axis represents the ⁇ warpage amount.
  • FIG. 8 shows a graph in which the difference between the values obtained by dividing the ion exchange amount between the top surface and the bottom surface by the hydrogen concentration is plotted on the horizontal axis and the ⁇ warpage amount is plotted on the vertical axis.
  • FIG. 9 is a graph in which multiple regression analysis is performed using the normalized Na 2 O surface concentration difference ( ⁇ Na 2 O) and Sn concentration difference (adhesion amount per unit area) and ⁇ warpage amount as factors as the top surface and the bottom surface before chemical strengthening. Indicates.
  • FIG. 1 normalized Na 2 O surface concentration difference
  • Sn concentration difference asdhesion amount per unit area
  • FIG. 10 is a longitudinal sectional view of the chemical strengthening float glass manufacturing apparatus of the present invention.
  • FIG. 11 is a cross-sectional view of a flat panel display used as a cover glass for a flat panel display after chemically strengthening the chemically strengthened float glass of the present invention.
  • FIG. 12 shows a graph in which W 1 is plotted on the horizontal axis and ⁇ warpage is plotted on the vertical axis.
  • FIG. 13 shows a graph in which W2 is plotted on the horizontal axis and ⁇ warpage is plotted on the vertical axis.
  • FIG. 14 shows a graph in which W 3 is plotted on the horizontal axis and ⁇ warpage is plotted on the vertical axis.
  • FIG. 15 shows a graph in which the horizontal axis plots the difference between the ion exchange amounts 2 on the top surface and the bottom surface ( ⁇ ion exchange amount 2), and the vertical axis plots the ⁇ warpage amount.
  • Figure 16 is the square of the difference obtained by subtracting the normalized Na 2 O surface concentration of the bottom surface from the normalized Na 2 O surface concentration of the top surface to the horizontal axis [ ⁇ N-Na 2 O (Top -Bottom)] 2, vertical The graph which plotted (DELTA) curvature amount on the axis
  • FIG. 17 shows a graph in which [( ⁇ N ⁇ Na 2 O) + 0.01 ⁇ (Sn concentration difference)] is plotted on the horizontal axis and W3 is plotted on the vertical axis.
  • burn refers to a phenomenon in which the glass surface is eroded by the atmosphere, usually deteriorated by the influence of humidity.
  • an alkali metal component on the surface layer of the glass typically Na 2 O, is present.
  • the degree of glass burn can be analyzed by measuring the Na 2 O concentration by fluorescent X-ray analysis.
  • Fig. 1 shows normalized hydrogen concentration (SIMS analysis) and normalized Na 2 O surface concentration (surface Na 2 O concentration by fluorescent X-ray analysis at a depth of 100 ⁇ m) in the surface layer of a soda-lime glass plate (base plate) before chemical strengthening. And the one obtained by dividing by the Na 2 O concentration).
  • the normalized hydrogen concentration of the surface layer of the soda lime glass plate before chemical strengthening and the normalized Na 2 O surface concentration are in an inversely proportional relationship.
  • FIG. 3 shows the correlation between the ion exchange amount (wt%) (fluorescence X-ray analysis) of the soda-lime glass plate after chemical strengthening and the normalized Na 2 O surface concentration of the base plate.
  • the ion exchange amount is defined as a value obtained by subtracting the K 2 O analysis value before chemical strengthening (base plate) from the K 2 O analysis value after chemical strengthening.
  • the degree of burn before soda lime glass is chemically strengthened affects the ion exchange amount, and it is considered that the warpage after chemical strengthening occurs when the ion exchange amount differs between the top surface and the bottom surface. From this, in order to control the warpage of the soda lime glass after chemical strengthening, the difference in the degree of burnt of the glass surface layer on the top surface and bottom surface of the glass before chemical strengthening (Na in the top surface and bottom surface). control 2 O concentration difference) is considered to be important.
  • Sn concentration The Sn (tin) profile ( 120 Sn ⁇ / 30 Si ⁇ ) on the bottom surface of soda lime glass produced by the float method was analyzed by a secondary ion mass spectrometer (SIMS). The depth and the depth at which Sn penetrated were about 7 ⁇ m. Therefore, when performing chemical strengthening of low DOL such that the ion exchange depth and therefore DOL is typically 20 ⁇ m or less, there is a difference in the way of entering the chemical strengthening between the bottom surface and the top surface. Therefore, it may be necessary to consider the Sn concentration.
  • ⁇ (N—Na 2 O 2 ) and ( ⁇ N—Na 2 O) 2 both depend on the degree of burn, but do not depend directly on the Sn concentration.
  • Sn intrusion into the bottom surface in the float bath is due to ion exchange with Na on the glass surface layer. Therefore, it is considered that the glass with a large amount of Sn adhesion has a low Na concentration in the surface layer. Therefore, the normalized Na 2 O surface concentration is related to the Sn concentration. That is, it can be said that ⁇ (N—Na 2 O 2 ) and ( ⁇ N—Na 2 O) 2 are not explicit, but depend on the Sn concentration.
  • the Sn concentration of the glass is determined by measuring the Sn adhesion amount per unit area. Specifically, for example, the Sn concentration in the solution can be quantified and determined by ICP emission spectroscopic analysis after etching with a hydrofluoric acid solution.
  • the float glass for chemical strengthening of the present invention is formed by the float process, and has a bottom surface that contacts the molten metal at the time of forming and a top surface that faces the bottom surface. As described below, it is considered that the difference in hydrogen concentration between the top surface and the bottom surface may be one of the causes of warpage caused by chemically strengthening the float glass.
  • molten glass is continuously supplied from the upstream side to the surface of the molten metal stored in the float bath, and a glass ribbon is formed while forming the glass ribbon from the downstream end of the float bath.
  • a glass ribbon is drawn out and slowly cooled with a layer to produce a plate glass.
  • the glass surface with a high hydrogen concentration is less stressed during chemical strengthening, and the glass surface with a lower hydrogen concentration is susceptible to stress during chemical strengthening. It will be.
  • the glass when a float glass with a lower hydrogen concentration on the top surface than the bottom surface is chemically strengthened, the glass has a strong stress on the top surface with a lower hydrogen concentration than the bottom surface with a higher hydrogen concentration, and is convex toward the top surface. It is thought that warping occurs and warping occurs.
  • the stress approaches to a state where the stresses are balanced, and the warpage is reduced.
  • [ 1 H ⁇ / 30 Si ⁇ ] is a value measured under the following analytical conditions.
  • Measuring device Secondary ion mass spectrometer having a quadrupole mass analyzer
  • Primary ion species Cs +
  • Primary acceleration voltage 5.0 kV
  • Primary ion current 1 ⁇ A
  • Primary ion incident angle 60 °
  • Raster size 200 ⁇ 200 ⁇ m 2
  • Detection area 40 ⁇ 40 ⁇ m 2
  • Secondary ion polarity minus Use of electron gun for neutralization
  • the secondary ion intensity I M1 of the isotope M 1 of the element M in secondary ion mass spectrometry is the primary ion intensity I P , the sputtering rate Y of the matrix, the concentration M M of the element M (ratio to the total concentration), and the isotope M. It is proportional to the existence probability ⁇ 1 of 1 , the secondary ionization rate ⁇ M of the element M, and the transmission efficiency ⁇ (including the detection efficiency of the detector) of the mass spectrometer.
  • I M1 A ⁇ I P ⁇ Y ⁇ C M ⁇ ⁇ 1 ⁇ ⁇ M ⁇ ⁇ (Formula 1)
  • A is the ratio of the secondary ion detection area to the scanning range of the primary ion beam.
  • is eliminated by using a main component element or the like in the same sample as a reference element and taking a ratio with (Equation 1).
  • 1 H ⁇ corresponds to M 1 and 30 Si ⁇ corresponds to R j . Therefore, from (Equation 2), the intensity ratio [ 1 H ⁇ / 30 Si ⁇ ] is equal to the average hydrogen concentration C H divided by K. That is, [ 1 H ⁇ / 30 Si ⁇ ] is a direct indicator of the average hydrogen concentration.
  • the normalized strength is a value obtained by dividing [ 1 H ⁇ / 30 Si ⁇ ] at a certain depth x by [ 1 H ⁇ / 30 Si ⁇ ] at a depth of 105 to 110 ⁇ m, that is, C H / K at a certain depth x. It is a value divided by C H / K at a depth of 105 to 110 ⁇ m. K is the same as that obtained by dividing the C H at depth 105 ⁇ 110 [mu] m a C H in the end normalized intensity because they are erased depth x, i.e., a normalized hydrogen concentration at the depth x.
  • the reason why the average hydrogen concentration at the depth of 105 to 110 ⁇ m was used as a reference when calculating the normalized hydrogen concentration is that the region of the depth 105 to 110 ⁇ m is considered as an internal region where the average hydrogen concentration does not vary.
  • the absolute value of the difference in normalized strength between the top surface and the bottom surface in the float glass is determined by, for example, the following (i) to (iii) by secondary ion mass spectrometry (Secondary Ion Mass Spectrometry, SIMS analysis). The procedure is required.
  • the analysis conditions shown below are examples, and should be changed as appropriate depending on the measurement device, sample, and the like.
  • More specific analysis conditions are, for example, as follows.
  • ADEPT 1010 manufactured by ULVAC-PHI can be mentioned.
  • the ion exchange amount is a stress generation factor and is proportional to the K 2 O concentration in the glass after chemical strengthening. Therefore, the difference in ion exchange amount between the top surface and the bottom surface can be analyzed by the difference in K 2 O concentration.
  • the K 2 O concentration can be analyzed by fluorescent X-ray analysis.
  • the float glass for chemical strengthening of the present invention is a float glass with a small amount of warpage after chemical strengthening.
  • the amount of warpage of the float glass can be measured with a contact-type surface shape measuring instrument [for example, Surfcom (trade name) manufactured by Tokyo Seimitsu Co., Ltd.].
  • the amount of warpage is measured as the difference between the highest point and the lowest point after performing baseline correction so that the measurement start point and measurement end point are at the same level when measured with a contact-type surface shape measuring instrument.
  • it warps in the convex direction of the top surface it is expressed as plus, and when it warps in the convex direction of the bottom surface, it is expressed as minus.
  • Warp amount (War amount after chemical strengthening)-(War amount before chemical strengthening)
  • the absolute value of the ⁇ warpage when measured on the central 9 cm square portion of the 10 cm square float glass and converted to a sheet thickness of 0.7 mm is 58 ⁇ m or less, 56 ⁇ m or less, 54 ⁇ m or less, or 52 ⁇ m or less. It is preferable.
  • the absolute value of the ⁇ warp amount is equal to or less than the upper limit, the warp after chemical strengthening can be reduced.
  • the float glass for chemical strengthening of the present invention preferably has a surface compressive stress of chemically strengthened glass of 650 MPa or more, and is particularly suitable for use where the depth of the compressive stress layer is 20 ⁇ m or less.
  • the depth of the compressive stress layer is more preferably 15 ⁇ m or less.
  • the normalized hydrogen concentration of the surface layer in the glass before chemical strengthening and the normalized Na 2 O surface concentration are in an inversely proportional relationship.
  • the normalized Na 2 O surface concentration in the glass before the chemical strengthening has increased ion exchange capacity after the chemical strengthening higher, normalized Na 2 O surface concentration in the glass before the chemical strengthening And the amount of ion exchange are in an inversely proportional relationship.
  • FIG. 6 shows the normalized bottom surface from the square of normalized Na 2 O surface concentration of the top surface on the horizontal axis.
  • ⁇ (N—Na 2 O 2 ) is the square of the value measured by fluorescent X-ray analysis of the normalized Na 2 O surface concentration on the top and bottom surfaces of the glass subjected to chemical strengthening. It is the difference and is obtained by the following formula (1-2).
  • ⁇ (N—Na 2 O 2 ) (Normalized Na 2 O surface concentration on top surface before chemical strengthening) 2
  • Normalized Na 2 O surface concentration on bottom surface before chemical strengthening
  • Each Na 2 O concentration is a value calculated from the relative intensity ratio with respect to the standard sample by measuring the Na-K ⁇ ray intensity by the fluorescent X-ray method.
  • concentration of Na 2 O depth 100 [mu] m position is the concentration of Na 2 O measured by X-ray fluorescence surface after scraping the glass from the surface to a depth of 100 [mu] m.
  • the analysis depth of the value measured by fluorescent X-ray analysis using Na-K ⁇ rays is typically 3 ⁇ m.
  • the difference in the square of the normalized Na 2 O surface concentration between the top surface and the bottom surface of the glass subjected to chemical strengthening is 0.040 or less, preferably 0.035 or less, 0.030 or less, or 0.025 or less. is there. Even if the polishing process before chemical strengthening is simplified or omitted by making the difference in square of the normalized Na 2 O surface concentration between the top surface and the bottom surface of the glass subjected to chemical strengthening 0.040 or less, The warp of the float glass after chemical strengthening can be reduced and excellent flatness can be obtained.
  • ( ⁇ N-Na 2 O) 2 is the square of the difference between the values measured by fluorescent X-ray analysis of the normalized Na 2 O surface concentration on the top and bottom surfaces of the glass subjected to chemical strengthening. And is obtained by the following equation (7-2).
  • ( ⁇ N-Na 2 O) 2 [( normalized Na 2 O surface concentration at the top surface before chemical strengthening) - (normalized Na 2 O surface concentration at the bottom surface of the front chemical strengthening) 2 Equation (7 2)
  • the square difference of the normalized Na 2 O concentration difference between the top surface and the bottom surface of the glass used for chemical strengthening is 5.0 ⁇ 10 ⁇ 4 or less, preferably 4.5 ⁇ 10 ⁇ 4 or less. 0 ⁇ 10 ⁇ 4 or less or 3.5 ⁇ 10 ⁇ 4 or less.
  • the normalized Na 2 O surface concentration on the top and bottom surfaces of the glass subjected to chemical strengthening is adjusted, ⁇ (N—Na 2 O 2 ) or ( ⁇ N—Na 2 O) 2 can be adjusted.
  • N—Na 2 O 2
  • ⁇ N—Na 2 O 2 ⁇ N—Na 2 O 2
  • Ion exchange amount 1 5.51 ⁇ (standardized Na 2 O surface concentration) ⁇ 0.038 ⁇ (Sn concentration)
  • ion exchange amount may also be used to represent the ion exchange amount 1.
  • normalized Na 2 O surface concentration is a value obtained by dividing the concentration of Na 2 O depth 100 ⁇ m position of the surface concentration of Na 2 O.
  • each Na 2 O concentration is a value measured by fluorescent X-ray analysis using Na—K ⁇ rays.
  • the Sn concentration is the Sn adhesion amount per unit area of the top surface and the bottom surface (unit: as SnO 2 ⁇ g / cm 2 ).
  • the ⁇ ion exchange amount 1 is 0.32 or less, preferably 0.30 or less, 0.28 or less, 0.26 or less, or 0.24 or less.
  • the difference in ion exchange amount 1 between the top surface and the bottom surface after chemical strengthening is obtained.
  • a certain ⁇ ion exchange amount 1 can be adjusted. Specifically, for example, when the glass is slowly cooled, water vapor or SO 2 gas is sprayed on the top surface to lower the Na 2 O concentration on the top surface, and the flow rate of SO 2 gas sprayed on the bottom surface is reduced to prevent scratches. It is preferable to increase the Na 2 O concentration on the bottom surface, decrease the temperature upstream of the float bath, or increase the ambient hydrogen concentration to decrease the amount of Sn penetration into the bottom surface.
  • ⁇ H / Si is a difference between values measured by SIMS analysis of a difference in hydrogen concentration between the top surface and the bottom surface before chemical strengthening (difference in normalized hydrogen concentration). 2).
  • ⁇ H / Si (normalized hydrogen concentration on top surface before chemical strengthening)
  • normalized hydrogen concentration on bottom surface before chemical strengthening
  • the Sn concentration difference is calculated from the Sn adhesion amount per unit area of the bottom surface (unit: as SnO 2 ⁇ g / cm 2 ) to the Sn adhesion amount per unit area of the top surface (unit: as SnO). 2 ⁇ g / cm 2 ), and when the glass does not contain SnO 2 , it is equal to the Sn adhesion amount per unit area of the bottom surface.
  • the ⁇ ion exchange amount 1 is a value obtained by subtracting the ion exchange amount on the bottom surface from the ion exchange amount 1 on the top surface.
  • the ion exchange amount is obtained by the above equation (2-1).
  • FIG. 12 shows a graph in which W1 is plotted on the horizontal axis and ⁇ warpage is plotted on the vertical axis. From the graph shown in FIG. 12, it can be seen that there is a correlation between W1 and the ⁇ warpage amount.
  • W1 is 56 or less, preferably 54 or less, 52 or less, or 50 or less.
  • W1 can be adjusted by adjusting the hydrogen concentration and the Sn concentration on the bottom surface by the method described later in (A) of “7. Glass Manufacturing Method”. Specifically, for example, when the glass is slowly cooled, water vapor or SO 2 gas is sprayed on the top surface to lower the Na 2 O concentration on the top surface, and the flow rate of SO 2 gas sprayed on the bottom surface is reduced to prevent scratches. It is preferable to increase the Na 2 O concentration on the bottom surface, decrease the temperature upstream of the float bath, or increase the ambient hydrogen concentration to decrease the amount of Sn penetration into the bottom surface.
  • the amount of ion exchange is a stress generation factor
  • the hydrogen concentration in the glass surface layer is considered to be a stress relaxation factor. That is, it is considered that the glass density decreases as the hydrogen concentration in the glass surface layer increases. Since H in the glass exists in the SiOH state, and the SiOH is generated by cutting the continuous cross-linked structure Si—O—Si in the glass, the density of the glass decreases as the hydrogen concentration in the glass surface layer increases. It is thought that stress is relieved.
  • the value obtained by dividing the ion exchange amount by the hydrogen concentration and the warpage amount are considered to have a correlation. .
  • FIG. 8 shows a graph in which the horizontal axis shows the difference between values obtained by dividing the ion exchange amount on the top surface and the bottom surface by the normalized hydrogen concentration on the top surface and the bottom surface before chemical strengthening, and the vertical axis plots the ⁇ warpage amount. .
  • ⁇ [(ion exchange amount) / (H / Si)] represents the ion exchange amount on the bottom surface from the value obtained by dividing the ion exchange amount on the top surface by the normalized hydrogen concentration H / Si. The value obtained by subtracting the value divided by the normalized hydrogen concentration H / Si.
  • FIG. 13 shows a graph in which W2 is plotted on the horizontal axis and ⁇ warpage is plotted on the vertical axis. From the graph shown in FIG. 13, it can be seen that there is a correlation between W2 and the ⁇ warpage amount.
  • W2 is 56 or less, preferably 54 or less, 52 or less, or 50 or less.
  • W2 can be adjusted by adjusting the hydrogen concentration by the method described later in (7) “7. Manufacturing method of glass”. Specifically, for example, when the glass is slowly cooled, water vapor or SO 2 gas is sprayed on the top surface to lower the Na 2 O concentration on the top surface, and the flow rate of SO 2 gas sprayed on the bottom surface is reduced to prevent scratches. It is preferable to increase the Na 2 O concentration on the bottom surface, decrease the temperature upstream of the float bath, or increase the ambient hydrogen concentration to decrease the amount of Sn penetration into the bottom surface.
  • ⁇ N—Na 2 O is a value obtained by dividing the Na 2 O concentration on the top and bottom surfaces of the glass subjected to chemical strengthening by the Na 2 O concentration at a depth of 100 ⁇ m.
  • Na 2 O surface concentration difference which is determined by the following formula (5-2).
  • each Na 2 O concentration is a value measured by fluorescent X-ray analysis using Na—K ⁇ rays.
  • ⁇ N-Na 2 O (normalized Na 2 O surface concentration at the top surface) - (normalized Na 2 O surface concentration at the bottom surface)
  • the Sn concentration difference is the Sn concentration difference between the top surface and the bottom surface before chemical strengthening, and the Sn adhesion amount per unit area of the bottom surface (unit: as SnO 2 ⁇ g / cm 2 ) is used per unit area of the top surface. This is a difference obtained by subtracting the Sn adhesion amount (unit: as SnO 2 ⁇ g / cm 2 ). When the glass does not contain SnO 2 , it is equal to the Sn adhesion amount per unit area of the bottom surface.
  • FIG. 13 shows a graph in which W3 is plotted on the horizontal axis and ⁇ warpage is plotted on the vertical axis. From the graph shown in FIG. 12, it can be seen that there is a correlation between W3 and the ⁇ warpage amount.
  • W3 is 58 or less, preferably 56 or less, 54 or less, or 52 or less.
  • W3 can be adjusted by adjusting the Na 2 O concentration difference and the Sn concentration difference by the method described later in “A. Glass manufacturing method” (A). Specifically, for example, when the glass is slowly cooled, water vapor or SO 2 gas is sprayed on the top surface to lower the Na 2 O concentration on the top surface, and the flow rate of SO 2 gas sprayed on the bottom surface is reduced to prevent scratches. It is preferable to increase the Na 2 O concentration on the bottom surface, decrease the temperature upstream of the float bath, or increase the ambient hydrogen concentration to decrease the amount of Sn penetration into the bottom surface.
  • FIG. 15 shows a graph in which the horizontal axis represents the difference between the ion exchange amounts 2 on the top surface and the bottom surface ( ⁇ ion exchange amount 2), and the vertical axis represents the ⁇ warpage amount. From the graph shown in FIG. 15, it can be seen that there is a correlation between the ⁇ ion exchange amount 2 and the ⁇ warpage amount.
  • the ⁇ ion exchange amount 2 is 0.33 or less, preferably 0.31 or less, 0.29 or less, or 0.27 or less.
  • Glass manufacturing method can do. Specifically, for example, when the glass is slowly cooled, water vapor or SO 2 gas is sprayed on the top surface to lower the Na 2 O concentration on the top surface, and the flow rate of SO 2 gas sprayed on the bottom surface is reduced to prevent scratches. It is preferable to increase the Na 2 O concentration on the bottom surface, decrease the temperature upstream of the float bath, or increase the ambient hydrogen concentration to decrease the amount of Sn penetration into the bottom surface.
  • Glass manufacturing method Float glass has a small difference between the top surface and the bottom surface, and the difference in the amount of metal that enters the glass surface that comes into contact with the molten metal during float forming reduces the amount of warpage.
  • the following methods (A) to (D) may be mentioned. These methods may be used alone or in combination.
  • FIG. 10 is a longitudinal sectional view of a float glass manufacturing apparatus according to the present invention.
  • 12 is a twill
  • 22 is a fixed refractory under the twill
  • 23 is a lip of a spout.
  • the raw material is continuously supplied into the glass tank kiln, the raw material is melted in the high temperature area in the glass tank kiln, and the obtained molten glass is guided to the cooling area to adjust the temperature.
  • the molten glass 1 whose temperature has been adjusted passes through the connection groove 11 and passes through the gap 2 formed by the twill 12 and the fixed refractory 22 located therebelow. Subsequently, it is supplied to the molten metal bath 5 through the lip 23 of the spout and formed into the glass ribbon 4.
  • the float glass preferably has a thickness of 1.5 mm or less, more preferably 1.1 mm or less. Moreover, although it is typically 0.7 mm or more, a thinner one is used if necessary.
  • examples of the composition of the float glass for chemical strengthening include the following glass compositions.
  • (I) Composition expressed in mass%, SiO 2 60-60%, Al 2 O 3 0.01-8%, Na 2 O 8-22%, K 2 O 0-7%, RO (R Mg, Ca, Sr, Ba) 5 to 25% in total, ZrO 2 containing 0 to 5% glass
  • a chemically strengthened float glass can be obtained by cutting the formed float glass into a predetermined size with a cutting machine (not shown) and then chemically strengthening.
  • alkali metal ions typically Li ions or Na ions
  • alkali ions typically, This is a process for forming a compressive stress layer on the glass surface by exchanging for K ions.
  • the chemical strengthening treatment can be performed by a conventionally known method.
  • FIG. 2 is a cross-sectional view of a display device in which a cover glass is arranged.
  • front, rear, left and right are based on the direction of the arrow in the figure.
  • the display device 10 generally includes a display panel 20 provided in the housing 15 and a cover glass 30 that covers the entire surface of the display panel 20 and surrounds the front of the housing 15. .
  • the cover glass 30 is installed mainly for the purpose of improving the aesthetics and strength of the display device 10 and preventing impact damage, and is formed of a single sheet of glass having a substantially flat shape as a whole. As shown in FIG. 11, the cover glass 30 may be installed so as to be separated from the display side (front side) of the display panel 20 (with an air layer), and has a translucent adhesive film (FIG. (Not shown) may be attached to the display side of the display panel 20.
  • a translucent adhesive film FOG. (Not shown) may be attached to the display side of the display panel 20.
  • a functional film 41 is provided on the front surface of the cover glass 30 that emits light from the display panel 20, and a functional film 42 is provided on the back surface on which light from the display panel 20 is incident, at a position corresponding to the display panel 20. ing.
  • the functional films 41 and 42 are provided on both surfaces in FIG. 2, the functional films 41 and 42 are not limited thereto, and may be provided on the front surface or the back surface, or may be omitted.
  • the functional films 41 and 42 have functions such as anti-reflection of ambient light, prevention of impact breakage, electromagnetic wave shielding, near-infrared shielding, color tone correction, and / or scratch resistance improvement, and thickness and shape are used for applications. It is selected as appropriate.
  • the functional films 41 and 42 are formed, for example, by attaching a resin film to the cover glass 30. Or you may form by thin film formation methods, such as a vapor deposition method, a sputtering method, or CVD method.
  • Reference numeral 44 denotes a black layer, which is, for example, a coating formed by applying ink containing pigment particles to the cover glass 30, irradiating it with ultraviolet rays, or heating and baking it, and then cooling it.
  • the display panel and the like cannot be seen from the outside, and the appearance is improved.
  • symbol 44 may be not only a black layer but a white layer, for example.
  • Example 1 Manufacture of float glass
  • Glasses having the following compositions were produced by the float method so that the plate thickness was 0.7 mm, and cut into 10 cm ⁇ 10 cm to produce the float plate glasses of Examples 1 to 4.
  • Composition B SiO 2 : 71.5%, Al 2 O 3 : 1.8%, Na 2 O: 13.5%, K 2 O: 0.26%, MgO: 4.64%, CaO: 7.
  • the analysis conditions for secondary ion mass spectrometry were as follows.
  • Measuring apparatus ADEPT1010 manufactured by ULVAC-PHI Primary ion species: Cs + Primary acceleration voltage: 5.0 kV Primary ion current: 1 ⁇ A Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 ° Raster size: 200 ⁇ 200 ⁇ m 2 Detection area: 40 ⁇ 40 ⁇ m 2 Sputter rate: 14 nm / sec Secondary ion polarity: minus Use of electron gun for neutralization
  • H / Si represents a value obtained by dividing an average value of depth 0 to 10 ⁇ m by an average value of depth 105 to 110 ⁇ m.
  • the "N-Na 2 O" a normalized Na 2 O surface concentration is a value obtained by dividing the concentration of Na 2 O in concentration of Na 2 O the depth 100 ⁇ m position.
  • the Na 2 O concentration is a value calculated from the relative intensity ratio with the standard sample by measuring the Na-K ⁇ ray intensity by the fluorescent X-ray method.
  • the ion exchange amount (K 2 O concentration) after chemical strengthening is shown in the column of K 2 O ion exchange amount in Table 1.
  • the Sn concentration on the glass surface was determined by etching the glass surface with a hydrofluoric acid solution and quantifying the Sn concentration in the solution by ICP emission spectroscopy.
  • ICP emission spectroscopic analyzer SPS3100 manufactured by SII Nano Technology Co., Ltd. was used.
  • Normalized hydrogen concentration [0 to 10 ⁇ m average (H / Si) / 105 to 110 ⁇ m (average H / Si)] before chemical strengthening of the glasses of Examples 1 to 4, N—Na 2 O concentration (surface concentration / 100 ⁇ m depth) Position concentration, hereinafter also referred to as normalized Na 2 O surface concentration), K 2 O concentration and Sn concentration (attachment amount per unit area), ion exchange amount after chemical strengthening (K 2 O concentration), and ⁇ warpage amount were obtained. The results are shown in Table 1.
  • N—Na 2 O concentration on the top surface is less than 1 is considered that SO 2 gas sprayed on the bottom surface wraps around the top surface. Further, the difference in the N—Na 2 O concentration on the top surface between, for example, Example 1 and Example 4 is considered to be due to the variation of the SO 2 gas spraying state.
  • Example 2 And correlated to the concentration of Na 2 O difference and ⁇ warpage in the top surface and the bottom surface of the concentration of Na 2 O difference and ⁇ warpage chemical strengthening before soda-lime glass plate in the top surface and the bottom surface before chemical strengthening Therefore, the difference ⁇ (N ⁇ Na 2 O 2 ) between the squares of the normalized Na 2 O surface concentration between the top surface and the bottom surface is obtained from the data shown in Table 1, and the correlation with the ⁇ warpage amount is examined. did.
  • FIG. 6 shows the difference ⁇ (N ⁇ Na 2 O 2 ) (Top-Bottom) of the normalized Na 2 O surface concentration between the top surface and the bottom surface of the glass subjected to chemical strengthening on the horizontal axis, and ⁇ on the vertical axis. It is the graph which plotted the amount of curvature.
  • N—Na 2 O 2
  • is the square of the value measured by fluorescent X-ray analysis of the normalized Na 2 O surface concentration on the top and bottom surfaces of the glass subjected to chemical strengthening. It is the difference and is obtained by the following formula (1-2).
  • Na 2 O (normalized Na 2 O surface concentration at the top surface before chemical strengthening) 2 - (normalized Na 2 O surface concentration at the bottom surface of the front chemical strengthening) 2 Equation (1-2)
  • Example 3 Difference in ion exchange amount and ⁇ warpage between top surface and bottom surface after chemical strengthening Since the difference in ion exchange amount between top surface and bottom surface and ⁇ warpage are considered to be correlated, the data shown in Table 1 The difference in ion exchange amount ( ⁇ ion exchange amount 1) was obtained from the above, and the correlation with the ⁇ warpage amount was examined.
  • the ⁇ ion exchange amount 1 is a value obtained by subtracting the ion exchange amount 1 on the bottom surface from the ion exchange amount 1 on the top surface.
  • FIG. 7 is a graph in which the horizontal axis represents the difference ⁇ ion exchange amount 1 between the ion exchange amounts 1 on the top surface and the bottom surface, and the vertical axis represents the ⁇ warp amount.
  • the ⁇ warpage amount can be set to 58 ⁇ m or less.
  • Example 4 Difference in hydrogen concentration, Sn concentration difference, ion exchange amount difference and ⁇ warpage before chemical strengthening Hydrogen concentration difference, Sn concentration difference, ion exchange amount difference between top surface and bottom surface before chemical strengthening Since it is considered that there is a correlation between the ⁇ warpage amounts, the following equation (3-1) was obtained as a result of multiple regression analysis based on the data shown in Table 1 using these as factors. Table 4 shows data used from the data shown in Table 1.
  • ⁇ H / Si is a difference between values measured by SIMS analysis of a difference in hydrogen concentration between the top surface and the bottom surface before chemical strengthening (difference in normalized hydrogen concentration). 2).
  • ⁇ H / Si (normalized hydrogen concentration on top surface before chemical strengthening)
  • normalized hydrogen concentration on bottom surface before chemical strengthening
  • the ⁇ ion exchange amount 1 is a value obtained by subtracting the ion exchange amount on the bottom surface from the ion exchange amount on the top surface.
  • the amount of ion exchange was determined by the above formula (2-1).
  • FIG. 12 shows a graph in which W1 is plotted on the horizontal axis and ⁇ warpage is plotted on the vertical axis. From the graph shown in FIG. 12, it was found that there is a correlation between W1 and the ⁇ warpage amount. From the results shown in Table 4 and FIG. 12, it was found that by setting W1 to 56 or less, the ⁇ warpage amount can be set to 58 ⁇ m or less.
  • Example 4 Difference in ion exchange amount between top and bottom surfaces and difference in hydrogen concentration and ⁇ warpage between top and bottom surfaces before chemical strengthening Difference in ion exchange amount between top and bottom surfaces and between top and bottom surfaces before chemical strengthening Since it is considered that there is a correlation between the difference in hydrogen concentration and the amount of ⁇ warp, from the data shown in Table 1, the difference in ion exchange amount between the top surface and the bottom surface and the difference in hydrogen concentration between the top surface and the bottom surface before chemical strengthening. And the correlation between the amount of ⁇ warp.
  • FIG. 8 is a graph in which the horizontal axis represents the difference between the ion exchange amounts on the top surface and the bottom surface divided by the difference in hydrogen concentration between the top surface and the bottom surface before chemical strengthening, and the vertical axis represents the ⁇ warpage amount. .
  • ⁇ [(ion exchange amount) / (H / Si)] represents the ion exchange amount on the bottom surface from the value obtained by dividing the ion exchange amount on the top surface by the normalized hydrogen concentration H / Si. The value obtained by subtracting the value divided by the normalized hydrogen concentration H / Si. The amount of ion exchange was determined by the above formula (2-1).
  • FIG. 13 shows a graph in which W2 is plotted on the horizontal axis and ⁇ warpage is plotted on the vertical axis. From the graph shown in FIG. 13, it was found that there is a correlation between W2 and the ⁇ warpage amount. From the results shown in Table 5 and FIG. 13, it was found that by setting W2 to 56 or less, the ⁇ warpage amount can be set to 58 ⁇ m or less.
  • Example 5 Na 2 O concentration difference and Sn concentration difference and ⁇ warpage amount between top surface and bottom surface before chemical strengthening Normalized Na 2 O surface concentration difference and Sn concentration and ⁇ warpage amount between top surface and bottom surface before chemical strengthening Since it is considered that there is a correlation, a multiple regression analysis was performed based on the data shown in Table 1 using these as factors. The results are shown in Table 6, FIG. 9 and FIG.
  • ⁇ N-Na 2 O Na 2 O concentration of 100 ⁇ m position value obtained by subtracting the normalized Na 2 O surface concentration at the bottom surface from the normalized Na 2 O surface concentration at the top surface from the surface The difference between the two values is obtained by the following equation (5-2).
  • ⁇ N-Na 2 O (normalized Na 2 O surface concentration at the top surface before chemical strengthening) - (normalized Na 2 O surface concentration at the bottom surface of the front chemical strengthening)
  • FIG. 14 is a graph in which W3 is plotted on the horizontal axis and ⁇ warpage is plotted on the vertical axis. From the graph shown in FIG. 14, it was found that there is a correlation between W3 and the ⁇ warpage amount. From the results shown in Table 6 and FIG. 14, it was found that by setting W3 to 58 or less, the ⁇ warpage amount can be set to 58 ⁇ m or less.
  • the ion exchange amount 2 and the warp of the glass after chemical strengthening include a difference in the ion exchange amount between the top surface and the bottom surface. Since this is considered to be an influence, the correlation between the difference ⁇ ion exchange amount 2 and the ⁇ warpage amount between the top surface and the bottom surface of the ion exchange amount 2 obtained by the equation (6-2) was examined.
  • ⁇ ion exchange amount 2 ( ⁇ ion exchange amount 2 on the top surface) ⁇ ( ⁇ ion exchange amount 2 on the bottom surface) Equation (6-2)
  • FIG. 15 shows a graph in which the horizontal axis represents the difference between the ion exchange amounts 2 on the top surface and the bottom surface ( ⁇ ion exchange amount 2), and the vertical axis represents the ⁇ warpage amount. From the graph shown in FIG. 15, it was found that there was a correlation between the ⁇ ion exchange amount 2 and the ⁇ warpage amount.
  • the ⁇ warpage amount could be 58 ⁇ m or less by setting the ⁇ ion exchange amount 2 to 0.33 or less in the formula (6-1).
  • Example 7 And correlated to the concentration of Na 2 O difference and ⁇ warpage in the top surface and the bottom surface of the concentration of Na 2 O difference and ⁇ warpage chemical strengthening before soda-lime glass plate in the top surface and the bottom surface before chemical strengthening it is considered, the square of the difference obtained by subtracting the normalized Na 2 O surface concentration of the bottom surface from the normalized Na 2 O surface concentration of the top surface from the data shown in Table 1 [ ⁇ N-Na 2 O ( Top-bottom) ] 2 was calculated
  • Figure 16 is the square of the difference obtained by subtracting the normalized Na 2 O surface concentration of the bottom surface from the normalized Na 2 O surface concentration of the top surface subjected to chemical strengthening in the horizontal axis [ ⁇ N-Na 2 O (Top -Bottom) ] 2 is a graph in which the amount of ⁇ warp is plotted on the vertical axis.
  • ( ⁇ N-Na 2 O) 2 is the square of the difference between the values measured by fluorescent X-ray analysis of the normalized Na 2 O surface concentration on the top and bottom surfaces of the glass subjected to chemical strengthening. It was obtained by the following formula (7-2).
  • ( ⁇ N-Na 2 O) 2 [( normalized Na 2 O surface concentration at the top surface before chemical strengthening) - (normalized Na 2 O surface concentration at the bottom surface of the front chemical strengthening) 2 Equation (7 2)
  • Table 9 shows the composition examples G1 to G16 of the mass percentage display of the float glass for chemical strengthening of the present invention, and the compressive stress CS (unit: MPa) and the compressive stress depth DOL (unit: ⁇ m) when they are chemically strengthened. 10 shows.
  • Na 2 O / Al 2 O 3 is the content ratio of Na 2 O and Al 2 O 3
  • RO is the total content of MgO
  • CaO + SrO + BaO is the content of CaO
  • strengthening temperature (unit: ° C.) and strengthening time (unit: h) are for the chemical strengthening
  • KNO 3 is the concentration of KNO 3 in the molten salt used for chemical strengthening (unit: mass%)
  • dol is the dol. Incidentally, the remaining components of that concentration of KNO 3 in the molten salt is not 100% is NaNO 3.

Abstract

 本発明は、成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、該トップ面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるトップ面の規格化NaO表面濃度の2乗から該ボトム面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるボトム面の規格化NaO表面濃度の2乗を減じた差Δ(N-Na)が0.040以下である化学強化用フロートガラスに関する。

Description

化学強化用フロートガラス
 本発明は、化学強化用フロートガラスに関する。
 近年、携帯電話または携帯情報端末(PDA)等のフラットパネルディスプレイ装置において、ディスプレイの保護および美観を高めるために、画像表示部分よりも広い領域となるように薄い板状のカバーガラスをディスプレイの前面に配置することが行われている。
 このようなフラットパネルディスプレイ装置に対しては、軽量および薄型化が要求されており、そのため、ディスプレイ保護用に使用されるカバーガラスも薄くすることが要求されている。
 しかし、カバーガラスの厚さを薄くしていくと、強度が低下し、使用中または携帯中の落下などによりカバーガラス自身が割れてしまうことがあり、ディスプレイ装置を保護するという本来の役割を果たすことができなくなるという問題がある。
 このため従来のカバーガラスは、耐傷性を向上させるため、フロート法により製造されたフロートガラスを、化学強化することで表面に圧縮応力層を形成しカバーガラスの耐傷性を高めている。
 フロートガラスは化学強化後に反りが生じて平坦性が損なわれることが報告されている(特許文献1)。該反りは、フロート成形時に溶融錫と接触していないガラス面(以下、トップ面ともいう。)と、溶融錫と接触しているガラス面(以下、ボトム面ともいう。)との化学強化の入り方が異なることにより生じるとされている。
 従来、フロートガラスのトップ面が、ボトム面と化学強化の入り方が異なる理由としては、フロート成形時において溶融金属との接触するガラス面に溶融金属が侵入するためと考えられてきた(特許文献1)。
 特許文献1では、フロート方式で製造され、加工された板状体を表面研磨せずに、Liイオン若しくはNaイオンまたはこれらの混合無機塩に浸漬または接触した後に化学強化することにより、前記反りを改善することが開示されている。
 また、従来、前記反りを低減するために、化学強化による強化応力を小さくしたり、フロートガラスのトップ面およびボトム面を研削処理または研磨処理等することにより表面異質層を除去した後に化学強化する対処方法がなされている。
日本国特許第2033034号公報
 しかしながら、特許文献1に記載の方法では、化学強化前に混合無機塩にフロートガラスを浸漬処理することが必要であり、煩雑である。また、強化応力を小さくする方法では化学強化後のフロートガラスの強度が不十分となる虞がある。
 さらに、化学強化前にフロートガラスのトップ面およびボトム面を研削処理または研磨処理等する方法は、生産性を向上させる観点から問題があり、これらの研削処理または研磨処理等を省略することが好ましい。
 したがって、本発明は、化学強化後の反りを効果的に抑制することができる化学強化用フロートガラスを提供することを目的とする。
 本発明者らは、フロート法により製造したソーダライムガラスを化学強化するとボトム面とトップ面の化学強化の入り方に差が生じて反る主原因は、必ずしもフロート成形時において溶融金属と接触するガラス面に侵入する当該金属ではなく、トップ面とボトム面におけるヤケ程度の差、すなわち水和・脱アルカリ程度の差であることを見出した。
 さらに、これらの影響を抑えることで、トップ面とボトム面との化学強化による強化の入りやすさを均衡化し、化学強化後におけるフロートガラスの反りを低減できることを見出した。また、圧縮応力層の深さ(DOL)が典型的には20μm以下、15μm以下または10μm以下である低DOL領域においてヤケの影響が特に大きくなっており、この領域においてヤケ程度の影響を抑えることで化学強化後におけるフロートガラスの反りを効果的に低減できることを見出した。この知見に基づいて、本発明を完成させた。
 すなわち、本発明は以下の通りである。
1.成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、該トップ面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるトップ面の規格化NaO表面濃度の2乗から該ボトム面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるボトム面の規格化NaO表面濃度の2乗を減じた差Δ(N-Na)が0.040以下である化学強化用フロートガラス。
 ここで、それぞれのNaO濃度はNa-Kα線を用いる蛍光X線分析により測定した値である。
2.成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、該トップ面におけるイオン交換量1から該ボトム面におけるイオン交換量1を減じた値であるΔイオン交換量1が0.32以下である化学強化用フロートガラス。
 ここで、イオン交換量1は下記式(2-1)により求められる値である。
  イオン交換量1=5.51×(規格化NaO表面濃度)-0.038×(Sn濃度)…式(2-1)
 式(2-1)において、規格化NaO表面濃度は表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値である。ここで、NaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。
 また、Sn濃度はトップ面およびボトム面単位面積当たりのSn付着量(単位:as SnOμg/cm)である。本明細書で単位面積当たりのSn付着量の単位が「as SnOμg/cm」とされているのは、単位面積当たりのSn付着量が、SnがSnOの形で存在するとしたときの1cmあたりのSnO換算付着質量で示されることを明示するためであり、本明細書においては単位面積当たりのSn付着量(単位:μg/cm)は単位面積当たりのSn付着量(単位:as SnOμg/cm)と同義である。
3.成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、下記式(3-1)により求められるW1が56以下である化学強化用フロートガラス。
  W1=-16×(ΔH/Si)-6.47×(Sn濃度差)-43.8×(Δイオン交換量1)…式(3-1)
 式(3-1)において、ΔH/Siは、トップ面における規格化水素濃度からボトム面における規格化水素濃度を減じた値である。規格化水素濃度とは、深さ0~10μmにおける平均水素濃度を深さ105~110μmにおける平均水素濃度で除した値であり、深さ0~10μmにおける平均水素濃度および深さ105~110μmにおける平均水素濃度は、以下の分析条件下で測定した値である。
 (分析条件)
  測定装置:四重極型質量分析器を有する二次イオン質量分析装置
  一次イオン種:Cs
  一次加速電圧:5.0kV
  一次イオンカレント:1μA
  一次イオン入射角(試料面垂直方向からの角度):60°
  ラスターサイズ:200×200μm
  検出領域:40×40μm
  二次イオン極性:マイナス中和用の電子銃使用有
 式(3-1)において、Sn濃度差はボトム面単位面積当たりのSn付着量(単位:as SnOμg/cm)からトップ面単位面積当たりのSn付着量(単位:μg/cm)を減じた差であり、ガラスがSnOを含有しない場合はボトム面単位面積当たりのSn付着量に等しい。
 式(3-1)において、Δイオン交換量1はトップ面におけるイオン交換量1から該ボトム面におけるイオン交換量1を減じた値である。
 ここで、イオン交換量1は下記式により求められる。
  イオン交換量1=5.51×(規格化NaO表面濃度)-0.038×(Sn濃度)
 前記式において、規格化NaO表面濃度は、表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値である。ここで、NaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。
4.成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、下記式(4-1)により求められるW2の絶対値が56以下である化学強化用フロートガラス。
  W2=9.18×Δ[(イオン交換量)/(H/Si)]+49…式(4-1)
 式(4-1)において、Δ[(イオン交換量)/(H/Si)]は、トップ面におけるイオン交換量1を同面における規格化水素濃度H/Siで除した値からボトム面におけるイオン交換量1を同面における規格化水素濃度H/Siで除した値を減じた値である。
 ここで、イオン交換量1は下記式により求められる。
  イオン交換量1=5.51×(規格化NaO表面濃度)-0.038×(Sn濃度)
 前記式において、規格化NaO表面濃度は、表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値である。ここで、NaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。また、Sn濃度はトップ面およびボトム面単位面積当たりのSn付着量(単位:as SnOμg/cm)である。
 規格化水素濃度とは、深さ1~10μmにおける平均水素濃度を深さ105~110μmにおける平均水素濃度で除した値であり、深さ1~10μmにおける平均水素濃度および深さ105~110μmにおける平均水素濃度は、以下の分析条件下で測定した値である。
 (分析条件)
  測定装置:四重極型質量分析器を有する二次イオン質量分析装置
  一次イオン種:Cs
  一次加速電圧:5.0kV
  一次イオンカレント:1μA
  一次イオン入射角(試料面垂直方向からの角度):60°
  ラスターサイズ:200×200μm
  検出領域:40×40μm
  二次イオン極性:マイナス中和用の電子銃使用有
5.成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、下記式(5-1)により求められるW3が58以下である化学強化用フロートガラス。
  W3=744×[(ΔN-NaO)+0.01×(Sn濃度差)]…式(5-1)
 式(5-1)において、ΔN-NaOは、トップ面における表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値であるトップ面の規格化NaO表面濃度からボトム面における表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値であるボトム面の規格化NaO表面濃度を減じた値である。ここで、それぞれのNaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。
 式(5-1)において、Sn濃度差は、ボトム面単位面積当たりのSn付着量(単位:as SnOμg/cm)からトップ面単位面積当たりのSn付着量(単位:as SnOμg/cm)を減じた差であり、ガラスがSnOを含有しない場合はボトム面単位面積当たりのSn付着量に等しい。
6.成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、該トップ面におけるイオン交換量2から該ボトム面におけるイオン交換量2を減じた値であるΔイオン交換量2が0.33以下である化学強化用フロートガラス。イオン交換量2は下記式(6-1)により求められる値である。
  イオン交換量2=-0.02×(H/Si)+5.54×(N-NaO濃度)-0.037×(Sn濃度)…式(6-1)
 式(6-1)において、H/Siは規格化水素濃度であり、規格化水素濃度とは深さ0~10μmにおける平均水素濃度を深さ105~110μmにおける平均水素濃度で除した値であり、深さ0~10μmにおける平均水素濃度および深さ105~110μmにおける平均水素濃度は、以下の分析条件下で測定した値である。
 (分析条件)
  測定装置:四重極型質量分析器を有する二次イオン質量分析装置
  一次イオン種:Cs
  一次加速電圧:5.0kV
  一次イオンカレント:1μA
  一次イオン入射角(試料面垂直方向からの角度):60°
  ラスターサイズ:200×200μm
  検出領域:40×40μm
  二次イオン極性:マイナス中和用の電子銃使用有
 式(6-1)においてN-NaO濃度は表面NaO濃度を深さ100μm位置のNaO濃度で除した値である規格化NaO表面濃度である。ここで、NaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。
 Sn濃度は、単位面積当たりのSn付着量(単位:as SnOμg/cm)である。
7.成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、該トップ面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるトップ面の規格化NaO表面濃度から該ボトム面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるボトム面の規格化NaO表面濃度を減じた差ΔN-NaOの2乗(ΔN-NaO)が5.0×10-4以下である化学強化用フロートガラス。それぞれのNaO濃度はNa-Kα線を用いる蛍光X線分析により測定した値である。
8.化学強化温度がT(単位:K)、化学強化時間がt(単位:時間)である化学強化に用いられ、且つSiOを含有し、SiO、Al、MgO、CaO、SrO、BaO、ZrO、NaOおよびKOの各質量百分率表示含有量を用いて次式で求められるdolが20以下である前項1~7のいずれか1に記載の化学強化用フロートガラス。
  dol=-0.13×Al-1.88×MgO-2.41×CaO-1.85×SrO-1.35×BaO-1.59×ZrO+1.50×NaO+2.42×KO-129359/T+9.28×t0.5+182.88
 なお、Al、MgO、CaO、SrO、BaO、ZrO、NaOおよびKOは必須成分ではない。化学強化に用いられる塩はKNO濃度が95~100質量%であるものが典型的である。
9.質量百分率表示で、SiOを60~80%、Alを0~8%、NaOを8~22%、KOを0~7%、MgOを0~17%、CaOを0~22%、SrOを0~8%、BaOを0~8%、ZrOを0~5%含有する前項1~8のいずれか1項に記載の化学強化用フロートガラス。ここでたとえば、「KOを0~7%」含有する、とはKOは必須ではないが7%まで含有してもよい、の意である。
 好ましい組成範囲としては、SiOを64~77%、Alを0.01~7%、NaOを10~18%、KOを0~5%、MgOを1~10%、CaOを1~12%、SrOを0~5%、BaOを0~5%、ZrOを0~3%である。
10.前項1~9のいずれか1に記載の化学強化用フロートガラスであって、質量百分率表示で、SiOを60~80%、Alを0.01~8%、NaOを8~22%、KOを0~7%、ZrOを0~5%含有し、MgO、CaO、SrOまたはBaOを含有する場合MgO、CaO、SrOおよびBaOの含有量の合計が5~25%であり、NaOおよびAlの含有量の比NaO/Alが1.5以上である化学強化用フロートガラス。
11.前項10に記載の化学強化用フロートガラスであって、NaO/Alが6以下である化学強化用フロートガラス。
12.前項9、10または11に記載の化学強化用フロートガラスであって、CaO、SrOまたはBaOを含有しCaO、SrOおよびBaOの含有量の合計が1~7%である化学強化用フロートガラス。
13.圧縮応力深さが20μm以下である化学強化ガラスを製造する方法であって、前項1~12のいずれか1に記載の化学強化用ガラスを化学強化することを特徴とする化学強化ガラスの製造方法。
 本発明の化学強化用フロートガラスは、トップ面とボトム面とのヤケ程度の差が小さいため、化学強化による応力を小さくすることなく、また化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるフロートガラスの反りを低減し、優れた平坦度を得ることができる。
図1は、化学強化前のソーダライムガラス板(素板)の表層の規格化水素濃度[(SIMS分析による(H/Si)0~10μmの平均H/Siを105~110μmの平均H/Siで除したもの]と規格化NaO表面濃度(蛍光X線分析による表面NaO濃度を100μm深さ位置のNaO濃度で除したもの)との相関関係を示す図である。 図2は、化学強化前のガラスにおいて、ガラス中のNaと大気中のHがイオン交換するメカニズムを示している。 図3は、化学強化後のソーダライムガラス板のイオン交換量(KO、wt%)(蛍光X線分析)と、化学強化前(素板)の規格化NaO表面濃度(蛍光X線分析による表面NaO濃度を100μm深さ位置のNaO濃度で除したもの)との相関関係を示す図である。なお、wt%は質量%である。 図4は、蛍光X線分析によるイオン交換量の算出方法を示す模式図である。 図5(a)~(d)は、NaとHがイオン交換しているソーダライムガラス板をKNOの混合溶融塩に浸漬して化学強化した場合にイオン交換量が低下するメカニズムを示す模式図である。 図6は、化学強化に供するガラスのトップ面とボトム面における規格化NaO表面濃度の二乗の差であるΔ(N-Na)(Top-Bottom)を横軸に、Δ反り量を縦軸にプロットしたグラフである。 図7は、横軸にトップ面とボトム面におけるイオン交換量の差、縦軸にΔ反り量をプロットしたグラフである。 図8は、トップ面とボトム面におけるイオン交換量を水素濃度で除した値の差を横軸に、Δ反り量を縦軸にプロットしたグラフを示す。 図9は、化学強化前のトップ面とボトム面における規格化NaO表面濃度差(ΔNaO)およびSn濃度差(単位面積当たり付着量)およびΔ反り量を因子として重回帰分析したグラフを示す。 図10は、本発明の化学強化用フロートガラスの製造装置の縦断面図である。 図11は、本発明の化学強化用フロートガラスを化学強化した後、フラットパネルディスプレイ用のカバーガラスとして用いたフラットパネルディスプレイの断面図である。 図12は、横軸にW1、縦軸にΔ反り量をプロットしたグラフを示す。 図13は、横軸にW2、縦軸にΔ反り量をプロットしたグラフを示す。 図14は、横軸にW3、縦軸にΔ反り量をプロットしたグラフを示す。 図15は、横軸にトップ面およびボトム面におけるイオン交換量2の差(Δイオン交換量2)、縦軸にΔ反り量をプロットしたグラフを示す。 図16は、横軸にトップ面の規格化NaO表面濃度からボトム面の規格化NaO表面濃度を減じた差の2乗[ΔN-NaO(Top-Bottom)]、縦軸にΔ反り量をプロットしたグラフを示す。 図17は、横軸に[(ΔN-NaO)+0.01×(Sn濃度差)]、縦軸にW3をプロットしたグラフを示す。
1.ガラスのヤケ
 フロート法により製造したソーダライムガラスの表面のHプロファイル(30Si)を二次イオン質量分析装置(SIMS)により分析したところ、ヤケ(水和および脱アルカリ)層の深さは約3μmであった。したがって、イオン交換深さを20μm以下に化学強化する際には、ボトム面とトップ面の化学強化の入り方に差が生じて反る原因として、トップ面とボトム面におけるヤケ程度の差が重要であると考えられる。
 本発明において、「ヤケ」とは、ガラス表面が大気による侵食、通常は湿度の影響で劣化する現象をいうが、本発明においてはガラスの表層のアルカリ金属成分、典型的にはNaOが脱離している現象をいう。ガラスのヤケの程度は、蛍光X線分析によりNaO濃度を測定することにより、分析することができる。
 図1に化学強化前のソーダライムガラス板(素板)の表層における規格化水素濃度(SIMS分析)と規格化NaO表面濃度(蛍光X線分析による表面NaO濃度を100μm深さ位置のNaO濃度で除したもの)との相関関係を示す。図1に示すように、化学強化前のソーダライムガラス板の表層の規格化水素濃度と規格化NaO表面濃度とは反比例の関係にある。
 図1のグラフは、図2に示すように、化学強化前のガラスにおいて、ガラスを構成するSi-O-Naと大気中のHOが反応し、NaとHがイオン交換していることを示している。したがって、ガラスのヤケ程度が大きい程、ガラス表層の規格化水素濃度が増加すると考えられる。
 図3に化学強化後のソーダライムガラス板のイオン交換量(wt%)(蛍光X線分析)と、素板の規格化NaO表面濃度との相関関係を示す。ここで、イオン交換量は、図4に示すように、化学強化後のKO分析値から化学強化前(素板)のKO分析値を減じた値をイオン交換量とする。
 図3のグラフから、化学強化前のガラスにおけるNaO濃度が高いほど、すなわち、ガラスのヤケ程度が小さいほど、化学強化後のイオン交換量が増えることがわかる。
 図3のグラフから、次のことも考察される。すなわち、図5に示すように、図2に示すようなNaとHがイオン交換しているソーダライムガラス板をKNOの溶融塩に浸漬して化学強化すると、ガラス中にNaとKのイオン交換はエントロピー支配の下でイオン交換するが、HとKとが交換する場合、ガラス中のHはSiOH(弱酸)としての存在であり、仮にHとKがイオン交換した場合HNO(強酸)が生成することになるため、エンタルピー的にイオン交換しないと考えられる。
 したがって、ソーダライムガラスの化学強化前のヤケ程度はイオン交換量に影響し、イオン交換量がトップ面とボトム面とで異なることで化学強化後の反りが生じると考えられる。このことから、ソーダライムガラスの化学強化後の反りを制御するためには、化学強化前のガラスのトップ面およびボトム面における、ガラス表層のヤケの程度の差(トップ面とボトム面とにおけるNaO濃度差)のコントロールが重要であると考えられる。
2.Sn濃度
 フロート法により製造したソーダライムガラスのボトム面におけるSn(錫)のプロファイル(120Sn30Si)を二次イオン質量分析装置(SIMS)により分析したところ、イオン交換された層の深さとSnが侵入した深さは、約7μmであった。したがって、イオン交換深さしたがってDOLが典型的には20μm以下となるような低DOLの化学強化をする際には、ボトム面とトップ面の化学強化の入り方に差が生じて反る原因として、Sn濃度を考慮する必要がある場合があると考えられる。
 なお、前記Δ(N-Na)および(ΔN-NaO)はいずれもヤケ程度の差には依存するがSn濃度には直接には依存していない。しかし、フロートバス内でのボトム面へのSnの侵入はガラス表層のNaとのイオン交換によるものと考えられる。そのため、Sn付着量の多いガラスは表層のNa濃度が低くなると考えられる。したがって規格化NaO表面濃度はSn濃度と関係がある。すなわち、Δ(N-Na)および(ΔN-NaO)はいずれも明示的ではないがSn濃度に依存しているということができる。
 フロート成形時においてガラスにSnが侵入することにより、ガラスが高密度化すると、NaイオンとKイオンとがイオン交換する際の経路が小さくなり、イオン交換反応が阻害され、Snが侵入した面(ボトム面)における化学強化が阻害される。このことにより、トップ面とボトム面との化学強化の入り方が異なり、ガラスの反りが生じると考えられる。
 ガラスのSn濃度は単位面積あたりのSn付着量を測定することにより求める。具体的には、例えば、フッ化水素酸溶液でエッチングして溶液中のSn濃度をICP発光分光分析法により定量して求めることができる。
3.水素濃度
 本発明の化学強化用フロートガラスは、フロート法により成形され、成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する。以下に述べるように、トップ面とボトム面との水素濃度差はフロートガラスを化学強化することにより生じる反りの原因の一つである場合があると考えられる。
 フロート法によるガラスの製造においては、フロートバスに貯留された溶融金属の表面に上流側から溶融ガラスを連続的に供給してガラスリボンを成形しつつ該フロートバスの下流側端部から成形後のガラスリボンを引き出し、レアーで徐冷することにより板ガラスを製造する。
 フロート法によるガラスの製造において通常は、ガラス槽窯とフロートバスとの間が、キャナルおよびスパウトでつながっている、流路が絞られるタイプの装置が用いられる。この場合、フロートバス内でガラスを広げる必要があるため、後述する別のタイプの装置に比べてより高温の溶融ガラスを溶融金属表面に流し出して成形する。
 ところで、ガラス中の水素濃度が高いと、ガラスのSi-O-Siの結合ネットワークの中に水素がSiOHの形で入り、Si-O-Siの結合が切れる。ガラス中の水素濃度が高いとSi-O-Siの結合が切れる部分が多くなり、ガラス転移点などの熱特性が下がるため、高温でガラスを加熱する化学強化の際に応力緩和し、応力が低下する。
 そのため、フロートガラスにおけるトップ面およびボトム面のうち、水素濃度が高いガラス面には化学強化の際に応力の入り方が小さく、水素濃度が低いガラス面には化学強化の際に応力が入りやすいこととなる。
 すなわち、ボトム面よりもトップ面の水素濃度が低いフロートガラスを化学強化すると、水素濃度が高いボトム面よりも水素濃度が低いトップ面に応力が強く入り、トップ面側に凸になるようにガラスが反ってしまい、反りが生じると考えられる。
 したがって、フロートガラスにおけるトップ面とボトム面とにおける水素濃度が近いほど、すなわち、トップ面とボトム面との水素濃度差の絶対値の値が小さければ小さいほど、化学強化後のトップ面とボトム面との応力の入り方が均衡する状態に近づき、反りが低減されることとなる。
 なお、本発明においては平均水素濃度そのものおよび前記平均水素濃度差そのものを精度よく測定することは困難であるので、平均水素濃度に比例する[30Si](H/Siともいう。)を平均水素濃度の直接的な指標として、前記平均水素濃度差に比例する「規格化水素濃度のトップ面とボトム面との差」および「規格化強度のトップ面とボトム面との差」を前記平均水素濃度差の直接的な指標としてそれぞれ用いる。
 ここで、本明細書において、[30Si]とは、以下の分析条件下で測定した値である。
 (分析条件)
  測定装置:四重極型質量分析器を有する二次イオン質量分析装置
  一次イオン種:Cs
  一次加速電圧:5.0kV
  一次イオンカレント:1μA
  一次イオン入射角(試料面垂直方向からの角度):60°
  ラスターサイズ:200×200μm
  検出領域:40×40μm
  二次イオン極性:マイナス
  中和用の電子銃使用有
 次に、[30Si]、規格化強度および規格化水素濃度について説明する。二次イオン質量分析における元素Mの同位体Mの二次イオン強度IM1は、一次イオン強度I、マトリックスのスパッタ率Y、元素Mの濃度C(全濃度に対する比)、同位体Mの存在確率α、元素Mの二次イオン化率β、および質量分析計の透過効率η(検出器の検出効率を含む)に比例する。
 IM1=A・I・Y・C・α・β・η (式1)
 ここで、Aは一次イオンビームの走査範囲に対する二次イオンの検出面積の比である。一般的には装置のηを求めるのは困難なためβの絶対値を求めることができない。そこで、同じ試料の中の主成分元素などを参照元素として用い、(式1)との比をとることによりηを消去する。
 ここで参照元素をR、その同位体をRとした場合、(式2)が得られる。
 IM1/IRj=(C・α・β)/(C・α・β)=C/K (式2)
 ここでKは元素Mの元素Rに対する相対感度因子である。
 K=(C・α・β)/(α・β) (式3)
 この場合、元素Mの濃度は(式4)より求められる。
 C=K・IM1/IRj (式4)
 本発明においては、はMに、30SiはRにそれぞれ対応する。したがって、(式2)より両者の強度比[30Si]は平均水素濃度CをKで除したものに等しい。すなわち、[30Si]は平均水素濃度の直接的な指標である。
 規格化強度はある深さxにおける[30Si]を深さ105~110μmにおける[30Si]で除した値、すなわちある深さxにおけるC/Kを深さ105~110μmにおけるC/Kで除した値である。Kは消去されるので結局規格化強度は深さxにおけるCを深さ105~110μmにおけるCで除したものと同じであり、すなわち、深さxにおける規格化水素濃度である。
 なお、規格化水素濃度を算出する際に深さ105~110μmにおける平均水素濃度を基準としたのは、深さ105~110μmの領域は平均水素濃度が変動しない内部領域と考えられるからである。
 フロートガラスにおけるトップ面およびボトム面の規格化強度(Normalized Intensity)の差の絶対値は、二次イオン質量分析(Secondary Ion Mass Spectrometry、SIMS分析)により、例えば、以下の(i)~(iii)の手順で求められる。なお、以下で示す分析条件は例示であり、測定装置、サンプルなどによって適宜変更されるべきものである。
(i)トップ面およびボトム面のそれぞれにおいて、二次イオン質量分析を下記分析条件により、表層からの深さ20μmまで行う。
 (分析条件)
  測定装置:四重極型質量分析器を有する二次イオン質量分析装置
  一次イオン種:Cs
  一次加速電圧:5.0kV
  一次イオンカレント:1μA
  一次イオン入射角(試料面垂直方向からの角度):60°
  ラスターサイズ:200×200μm
  検出領域:40×40μm
  二次イオン極性:マイナス
  中和用の電子銃使用有
 なお、深さ5μmにおける30Siの強度よりも深さ55μmにおける30Siの強度が3%超小さいような場合には、あらかじめガラス基板の表面を45μm程度エッチングしたサンプルで分析することが好ましい。
 より具体的な分析条件は、例えば、以下である。
 (分析条件)
  測定装置:四重極型質量分析器を有する二次イオン質量分析装置
  一次イオン種:Cs
  一次加速電圧:5.0kV
  一次イオンカレント:1μA
  一次イオン入射角(試料面垂直方向からの角度):60°
  ラスターサイズ:200×200μm
  検出領域:40×40μm
  スパッタレート:14nm/sec
  二次イオン極性:マイナス
  中和用の電子銃使用有
 四重極型質量分析器を有する二次イオン質量分析装置としては、例えば、アルバック・ファイ社製ADEPT1010が挙げられる。
(ii)二次イオン質量分析により得られた[30Si]プロファイルの深さ0~10μmにおける[30Si]を、深さ105~110μmの[30Si]で除した値を、深さ0~10μmの二次イオン質量分析における規格化強度とする。
(iii)二次イオン質量分析により得られた深さ0~10μmにおける規格化強度について、トップ面とボトム面との差の絶対値を算出する。
4.イオン交換量
 イオン交換量は応力発生因子であり、化学強化後のガラスにおけるKO濃度と比例関係にある。したがって、トップ面とボトム面におけるイオン交換量の差はKO濃度の差で分析することができる。KO濃度は蛍光X線分析により分析することができる。
5.反り量
 本発明の化学強化用フロートガラスは、化学強化後の反り量の小さいフロートガラスである。フロートガラスの反り量は、接触式表面形状測定器[例えば株式会社東京精密製サーフコム(商品名)]で測定することができる。
 反り量は、接触式表面形状測定器で測定した際、測定開始点と測定終了点が同レベルになるようにベースライン補正を実施後、最高点と最下点の差として測定する。トップ面凸方向に反った場合はプラス、ボトム面凸方向に反る場合はマイナスとして表現する。
 化学強化前後におけるフロートガラスの反り量の変化は、下記式により測定することができる。
(式)Δ反り量=(化学強化後反り量)-(化学強化前反り量)
 本発明においては、10cm角のフロートガラスの中央9cm角の部分について測定し、板厚0.7mmに換算した際のΔ反り量の絶対値が58μm以下、56μm以下、54μm以下または52μm以下であることが好ましい。Δ反り量の絶対値を当該上限以下とすることにより、化学強化後の反りを小さくすることができる。
 CS(表面圧縮応力)とDOL(圧縮応力層の深さ)は、表面応力計により測定することができる。本発明の化学強化用フロートガラスは化学強化したガラスの表面圧縮応力が650MPa以上であることが好ましく、圧縮応力層の深さは20μm以下であるところに用いるのに特に好適である。圧縮応力層の深さは20μm以下とすることにより、化学強化後の製品について切断することができ、好ましい。この観点からは圧縮応力層の深さは15μm以下であることがより好ましい。
6.パラメータ
 上記考察から、以下のパラメータが考えられる。
(1)化学強化前のトップ面とボトム面におけるNaO濃度差とΔ反り量
 ソーダライムガラスの化学強化後の反りを制御するためには、化学強化前のガラス表層におけるヤケ程度、水素濃度およびSn濃度のコントロールが重要であると考えられる。
 ここで、図1に示すように、化学強化前のガラスにおける表層の規格化水素濃度と規格化NaO表面濃度とは反比例の関係にある。また、図3に示すように、化学強化前のガラスにおける規格化NaO表面濃度が高いほど化学強化後のイオン交換量が増えており、化学強化前のガラスにおける規格化NaO表面濃度とイオン交換量とは反比例の関係にある。
 また、ガラス表層の水素濃度の増加が高いとSi-O-Siの結合が切れる部分が多くなり、ガラス転移点などの熱特性が下がるため、高温でガラスを加熱する化学強化の際に応力緩和し、応力が低下する。そのため、化学強化による応力発生はイオン交換量と緩和程度によると考えられる。したがって、化学強化前のガラスにおけるトップ面とボトム面における規格化NaO表面濃度差とΔ反り量とは相関関係があると考えられる。
(1A)トップ面およびボトム面における規格化NaO表面濃度の2乗の差とΔ反り量
 図6に横軸にトップ面の規格化NaO表面濃度の2乗からボトム面の規格化NaO表面濃度の2乗を減じた差Δ(N-Na)(Top-Bottom)、縦軸にΔ反り量をプロットしたグラフを示す。
 図6に示すグラフから、化学強化前のソーダライムガラス板のトップ面とボトム面における規格化NaO表面濃度の2乗の差Δ(N-Na)とΔ反り量とには下記式(1-1)で表される相関関係があることがわかる。
Δ反り量=370×Δ(N-Na)+45…式(1-1)
 式(1-1)においてΔ(N-Na)は、化学強化に供するガラスのトップ面とボトム面における規格化NaO表面濃度を蛍光X線分析により測定した値の2乗の差であり、下記式(1-2)により求められる。
Δ(N-Na)=(化学強化前のトップ面における規格化NaO表面濃度)-(化学強化前のボトム面における規格化NaO表面濃度)…式(1-2)
 ここでの規格化NaO表面濃度は表面NaO濃度を深さ100μm位置のNaO濃度で除した値である。それぞれのNaO濃度は蛍光X線法によりNa-Kα線強度を測定し標準試料との相対強度比から算出した値である。なお、深さ100μm位置のNaO濃度は、表面から100μmの深さまでガラスを削り取った後の表面を蛍光X線で測定したNaO濃度である。また、Na-Kα線を用いる蛍光X線分析により測定した値の分析深さは典型的には3μmである。
 化学強化に供するガラスのトップ面とボトム面における規格化NaO表面濃度の2乗の差は、0.040以下であり、好ましくは0.035以下、0.030以下または0.025以下である。化学強化に供するガラスのトップ面とボトム面における規格化NaO表面濃度の2乗の差を0.040以下とすることにより、化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるフロートガラスの反りを低減し、優れた平坦度を得ることができる。
(1B)トップ面およびボトム面における規格化NaO表面濃度の差の2乗とΔ反り量
 図16に横軸にトップ面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるトップ面の規格化NaO表面濃度から該ボトム面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるボトム面の規格化NaO表面濃度を減じた差の2乗[ΔN-NaO(Top-Bottom)]、縦軸にΔ反り量をプロットしたグラフを示す。
 図16に示すグラフから、トップ面の規格化NaO表面濃度からボトム面の規格化NaO表面濃度を減じた差の2乗[ΔN-NaO(Top-Bottom)]とΔ反り量とには下記式(7-1)で表される相関関係があることがわかる。
Δ反り量=18000×(ΔN-NaO)+51…式(7-1)
 式(7-1)において(ΔN-NaO)は、化学強化に供するガラスのトップ面とボトム面における規格化NaO表面濃度を蛍光X線分析により測定した値の差の2乗であり、下記式(7-2)により求められる。
(ΔN-NaO)=[(化学強化前のトップ面における規格化NaO表面濃度)-(化学強化前のボトム面における規格化NaO表面濃度)]…式(7-2)
 化学強化に供するガラスのトップ面とボトム面における規格化NaO濃度の差の2乗の差は5.0×10-4以下であり、好ましくは4.5×10-4以下、4.0×10-4以下または3.5×10-4以下である。化学強化に供するガラスのトップ面とボトム面における規格化NaO濃度の差の2乗を5.0×10-4以下とすることにより、化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるフロートガラスの反りを低減し、優れた平坦度を得ることができる。
 「7.ガラスの製造方法」の(A)において後述する方法によりNaO濃度を調整することにより、化学強化に供するガラスのトップ面とボトム面における規格化NaO表面濃度を調整し、Δ(N-Na)または(ΔN-NaO)を調整することができる。具体的には、例えば、ガラス徐冷時にトップ面に水蒸気やSOガスを吹き付けてトップ面のNaO濃度を下げる、ボトム面に傷防止を目的として吹付けられるSOガス流量を下げてボトム面のNaO濃度を上げることが好ましい。
(2)化学強化後のトップ面とボトム面におけるイオン交換量差とΔ反り量
 化学強化後のトップ面とボトム面におけるイオン交換量の差であるΔイオン交換量1とΔ反り量には相関関係があると考えられる。
 イオン交換量は化学強化前のNaO濃度に比例すること、Snにより阻害されることから、下記式(2-1)により求めることができる。
イオン交換量1=5.51×(規格化NaO表面濃度)-0.038×(Sn濃度)…式(2-1)
 以下、イオン交換量という語はイオン交換量1を表すためにも用いることがある。
 式(2-1)において、規格化NaO表面濃度は表面NaO濃度を深さ100μm位置のNaO濃度で除した値である。ここで、それぞれのNaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。また、Sn濃度は、トップ面およびボトム面単位面積当たりのSn付着量(単位:as SnOμg/cm)である。
 トップ面とボトム面におけるイオン交換量1の差は下記式(2-2)により求めることができる。
イオン交換量1の差=(トップ面におけるイオン交換量1)-(ボトム面におけるイオン交換量1)…式(2-2)
 図7に、横軸にトップ面とボトム面におけるイオン交換量の差Δイオン交換量1、縦軸にΔ反り量をプロットしたグラフを示す。図7に示すグラフから、Δイオン交換量1とΔ反り量には下記式(2-3)で表される相関関係があることがわかる。
Δ反り量=103×(Δイオン交換量1)+24…式(2-3)
 Δイオン交換量1は、0.32以下であり、好ましくは、0.30以下、0.28以下、0.26以下または0.24以下である。
 上記式(2-1)および(2-2)により求められる化学強化後のトップ面とボトム面におけるイオン交換量1の差を0.32以下とすることにより、化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるフロートガラスの反りを低減し、優れた平坦度を得ることができる。
 「7.ガラスの製造方法」の(A)において後述する方法によりNaO濃度、ボトム面におけるSn濃度を調整することにより、化学強化後のトップ面とボトム面におけるイオン交換量1の差であるΔイオン交換量1を調整することができる。具体的には、例えば、ガラス徐冷時にトップ面に水蒸気やSOガスを吹き付けてトップ面のNaO濃度を下げる、ボトム面に傷防止を目的として吹付けられるSOガス流量を下げてボトム面のNaO濃度を上げる、フロートバス上流の温度を下げるまたは雰囲気水素濃度を上げてボトム面へのSn侵入量を下げることが好ましい。
(3)化学強化前のトップ面とボトム面における水素濃度差、Sn濃度差およびイオン交換量差とΔ反り量との相関関係
 化学強化前のトップ面とボトム面における水素濃度差、Sn濃度差、イオン交換量差およびにΔ反り量を因子として重回帰分析すると、下記式(3-1)が求められる。
W1=-16×(ΔH/Si)-6.47×(Sn濃度差)-43.8×(Δイオン交換量1)…式(3-1)
 式(3-1)において、ΔH/Siは化学強化前のトップ面とボトム面における水素濃度差をSIMS分析により測定した値の差(規格化水素濃度の差)であり、下記式(3-2)により求められる。
ΔH/Si=(化学強化前のトップ面における規格化水素濃度)-(化学強化前のボトム面における規格化水素濃度)…式(3-2)
 式(3-1)において、また、Sn濃度差は、ボトム面単位面積当たりのSn付着量(単位:as SnOμg/cm)からトップ面単位面積当たりのSn付着量(単位:as SnOμg/cm)を減じた差であり、ガラスがSnOを含有しない場合はボトム面単位面積当たりのSn付着量に等しい。
 Δイオン交換量1はトップ面におけるイオン交換量1から該ボトム面におけるイオン交換量を減じた値である。イオン交換量は前記式(2-1)により求められる。
 図12に横軸にW1、縦軸にΔ反り量をプロットしたグラフを示す。図12に示すグラフから、W1とΔ反り量には相関関係があることがわかる。
 式(3-1)において、W1は56以下であり、好ましくは54以下、52以下または50以下である。W1を56以下とすることにより、化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるフロートガラスの反りを低減し、優れた平坦度を得ることができる。
 「7.ガラスの製造方法」の(A)において後述する方法により、水素濃度、ボトム面におけるSn濃度を調整することにより、式(3-1)において、W1を調整することができる。具体的には、例えば、ガラス徐冷時にトップ面に水蒸気やSOガスを吹き付けてトップ面のNaO濃度を下げる、ボトム面に傷防止を目的として吹付けられるSOガス流量を下げてボトム面のNaO濃度を上げる、フロートバス上流の温度を下げるまたは雰囲気水素濃度を上げてボトム面へのSn侵入量を下げることが好ましい。
(4)トップ面とボトム面におけるイオン交換量差および化学強化前のトップ面とボトム面における水素濃度差とΔ反り量との相関関係 
 イオン交換量は応力発生因子であり、ガラス表層の水素濃度は応力緩和因子であると考えられる。すなわち、ガラス表層の水素濃度が高くなるほどガラスの密度は下がると考えられる。ガラス中のHはSiOHの状態で存在しており、SiOHはガラス中の連続的な架橋構造Si-O-Siが切断されて生成するため、ガラス表層の水素濃度が増える程ガラスの密度が下がり応力が緩和すると考えられる。
 化学強化後のガラスの反りは、トップ面とボトム面との応力差のアンバランスによると考えられることから、イオン交換量を水素濃度で除した値と反り量には相関関係があると考えられる。
 図8に、横軸にトップ面とボトム面におけるイオン交換量を化学強化前のトップ面とボトム面における規格化水素濃度で除した値の差、縦軸にΔ反り量をプロットしたグラフを示す。
 図8に示すグラフから、トップ面とボトム面におけるイオン交換量(イオン交換量)を化学強化前のトップ面とボトム面における規格化水素濃度(H/Si)で除した値の差とΔ反り量には下記式(4-1)で表される相関関係があることがわかる。
 また、規格化水素濃度、イオン交換量差およびにΔ反り量を因子として、重回帰分析すると、下記式(4-1)が求められる。
W2=9.18×Δ[(イオン交換量)/(H/Si)]+49…式(4-1)
 式(4-1)において、Δ[(イオン交換量)/(H/Si)]は、トップ面におけるイオン交換量を規格化水素濃度H/Siで除した値からボトム面におけるイオン交換量を規格化水素濃度H/Siで除した値を減じた値である。
 式(4-1)において、イオン交換量は前記式(2-1)により求められる。
 図13に横軸にW2、縦軸にΔ反り量をプロットしたグラフを示す。図13に示すグラフから、W2とΔ反り量には相関関係があることがわかる。
 式(4-1)において、W2は56以下であり、好ましくは54以下、52以下または50以下である。W2を56以下とすることにより、化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるフロートガラスの反りを低減し、優れた平坦度を得ることができる。
 「7.ガラスの製造方法」の(A)において後述する方法により、水素濃度を調整することにより、式(4-1)において、W2を調整することができる。具体的には、例えば、ガラス徐冷時にトップ面に水蒸気やSOガスを吹き付けてトップ面のNaO濃度を下げる、ボトム面に傷防止を目的として吹付けられるSOガス流量を下げてボトム面のNaO濃度を上げる、フロートバス上流の温度を下げるまたは雰囲気水素濃度を上げてボトム面へのSn侵入量を下げることが好ましい。
(5)化学強化前のトップ面とボトム面におけるNaO濃度差およびSn濃度差とΔ反り量
 ソーダライムガラスの化学強化後の反りを制御するためには、化学強化前のガラス表層のヤケの程度およびSn濃度のコントロールが重要であることから、化学強化前のトップ面とボトム面におけるNaO濃度差およびSn濃度とΔ反り量には相関関係があると考えられる。
 化学強化前のトップ面とボトム面における規格化NaO表面濃度差(ΔN-NaO)およびSn濃度差およびにΔ反り量を因子として重回帰分析すると、図9に示すように、化学強化前のトップ面とボトム面における規格化NaO表面濃度差およびSn濃度差には下記式(5-1)で表される相関関係があることがわかる。
W3=744×[(ΔN-NaO)+0.01×(Sn濃度差)]…式(5-1)
 式(5-1)においてΔN-NaOは、化学強化に供するガラスのトップ面とボトム面における表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値である規格化NaO表面濃度の差であり、下記式(5-2)により求められる。ここで、それぞれのNaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。
ΔN-NaO=(トップ面における規格化NaO表面濃度)-(ボトム面における規格化NaO表面濃度)…式(5-2)
 また、Sn濃度差は、化学強化前のトップ面とボトム面におけるSn濃度差であり、ボトム面単位面積当たりのSn付着量(単位:as SnOμg/cm)からトップ面単位面積当たりのSn付着量(単位:as SnOμg/cm)を減じた差であり、ガラスがSnOを含有しない場合はボトム面単位面積当たりのSn付着量に等しい。
 図13に横軸にW3、縦軸にΔ反り量をプロットしたグラフを示す。図12に示すグラフから、W3とΔ反り量には相関関係があることがわかる。
 式(5-1)において、W3は58以下であり、好ましくは56以下、54以下または52以下である。W3を58以下とすることにより、化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるフロートガラスの反りを低減し、優れた平坦度を得ることができる。
 「7.ガラスの製造方法」の(A)において後述する方法により、NaO濃度差、Sn濃度差を調整することにより、式(5-1)において、W3を調整することができる。具体的には、例えば、ガラス徐冷時にトップ面に水蒸気やSOガスを吹き付けてトップ面のNaO濃度を下げる、ボトム面に傷防止を目的として吹付けられるSOガス流量を下げてボトム面のNaO濃度を上げる、フロートバス上流の温度を下げるまたは雰囲気水素濃度を上げてボトム面へのSn侵入量を下げることが好ましい。
(6)イオン交換量(水素濃度、NaO濃度およびSn濃度)の差とΔ反り量
 化学強化後のガラスの反りには、トップ面及びボトム面におけるイオン交換量の差が影響しており、イオン交換量には水素濃度、NaO濃度およびSn濃度が関与していると考えられる。したがって、イオン交換量と規格化水素濃度、規格化NaO表面濃度およびSn濃度は以下の式(6-1)で表される相関関係を示す。
イオン交換量2=-0.02×(H/Si)+5.54×(N-NaO濃度)-0.037×(Sn濃度)…式(6-1)
 図15に横軸にトップ面およびボトム面におけるイオン交換量2の差(Δイオン交換量2)、縦軸にΔ反り量をプロットしたグラフを示す。図15に示すグラフから、Δイオン交換量2とΔ反り量には相関関係があることがわかる。
 Δイオン交換量2は、下記式(6-2)により求められる値である。
Δイオン交換量2=(トップ面におけるΔイオン交換量2)-(ボトム面におけるΔイオン交換量2)…式(6-2)
 式(6-1)において、Δイオン交換量2は0.33以下であり、好ましくは0.31以下、0.29以下または0.27以下である。Δイオン交換量2を0.33以下とすることにより、化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるフロートガラスの反りを低減し、優れた平坦度を得ることができる。
 「7.ガラスの製造方法」の(A)において後述する方法により、水素濃度、NaO濃度、Sn濃度を調整することにより、式(6-1)において、イオン交換量2を調整することができる。具体的には、例えば、ガラス徐冷時にトップ面に水蒸気やSOガスを吹き付けてトップ面のNaO濃度を下げる、ボトム面に傷防止を目的として吹付けられるSOガス流量を下げてボトム面のNaO濃度を上げる、フロートバス上流の温度を下げるまたは雰囲気水素濃度を上げてボトム面へのSn侵入量を下げることが好ましい。
7.ガラスの製造方法
 フロートガラスにおけるトップ面とボトム面とのヤケ程度の差が小さく、且つフロート成形時において溶融金属と接触するガラス面に侵入する金属量の差が小さくしてΔ反り量を低減するための方法としては、例えば、以下の(A)~(D)に示す方法が挙げられる。これらの方法は単独で用いても、組み合わせてもよい。
(A)フロートバスから出てきたガラスを徐冷する際、SOガスをガラスに吹きつけることによりガラスのアルカリ成分NaOをNaSOとしてガラスから取り出す。ガラスに吹き付けるSOガスの量を調整することで、トップ面とボトム面におけるアルカリの量を同程度にし、ガラスのヤケ程度の差を低減することができる。
(B)レアーにて、ガラスのトップ面側に水蒸気を吹き付ける。
(C)フロートバスにおける溶融ガラスの滞在時間を短くする。
(D)フロートバス上流域の温度を下げる。
 以下、図面に基づいて説明するが本発明はこれに限定されない。図10は本発明によるフロートガラスの製造装置の縦断面図である。図10において、12はツイール、22はツイールの下方にある固定耐火物、23はスパウトのリップである。
 図面には省略されているが、原料をガラス槽窯内へ連続的供給し、ガラス槽窯内の高温領域で原料を溶解し、得られた溶融ガラスを冷却領域に導き温度を調整する。次いで、温度の調整された溶融ガラス1は、接続溝11を通過し、ツイール12とその下方にある固定耐火物22とで形成される間隙2を通過する。次いで、スパウトのリップ23を経て溶融金属浴5へ供給され、ガラスリボン4に成形される。
 フロートガラスは、板厚が1.5mm以下であることが好ましく、1.1mm以下であることがより好ましい。また、典型的には0.7mm以上であるが必要に応じてこれより薄いものも使用される。
 本発明の化学強化用フロートガラスは、組成によらずに化学強化後の反りを低減することができるが、化学強化用フロートガラスの組成としては、例えば、以下のガラスの組成が挙げられる。
(i)質量%で表示した組成で、SiOを60~80%、Alを0.01~8%、NaOを8~22%、KOを0~7%、RO(R=Mg、Ca、Sr、Ba)を合量で5~25%、ZrOを0~5%を含むガラス
(ii)質量%で表示した組成で、SiOを64~77%、Alを0.01~7%、NaOを10~18%、KOを0~5%、MgOを1~10%、CaOを1~12%、SrOを0~5%、BaOを0~5%、ZrOを0~3%であるガラス
(iii)質量%で表示した組成で、SiOを60~80%、Alを0.01~8%、NaOを8~22%、KOを0~7%、ZrOを0~5%含有し、MgO、CaO、SrOまたはBaOを含有する場合MgO、CaO、SrOおよびBaOの含有量の合計が5~25%であり、NaOおよびAlの含有量の比NaO/Alが1.5以上であるガラス
(iv)質量%で表示した組成で、SiOを60~80%、Alを0.01~8%、NaOを8~22%、KOを0~7%、ZrOを0~5%含有し、MgO、CaO、SrOまたはBaOを含有する場合MgO、CaO、SrOおよびBaOの含有量の合計が5~25%であり、NaOおよびAlの含有量の比NaO/Alが1.5以上6以下であるガラス 
(v)質量%で表示した組成で、SiOを60~80%、Alを0.01~8%、NaOを8~22%、KOを0~7%、ZrOを0~5%含有し、MgO、CaO、SrOまたはBaOを含有する場合MgO、CaO、SrOおよびBaOの含有量の合計が5~25%であり、CaO、SrOおよびBaOの含有量の合計が1~7%であり、NaOおよびAlの含有量の比NaO/Alが1.5以上であるガラス 
 成形されたフロートガラスを、不図示の切断機で所定のサイズに切断した後、化学強化することにより化学強化フロートガラスを得ることができる。
 化学強化は、ガラス転移点以下の温度でイオン交換によりガラス表面のイオン半径が小さなアルカリ金属イオン(典型的には、LiイオンまたはNaイオン)をイオン半径のより大きなアルカリイオン(典型的には、Kイオン)に交換することで、ガラス表面に圧縮応力層を形成する処理である。化学強化処理は従来公知の方法によって行うことができる。
 以下、本発明のフロートガラスを化学強化した後、フラットパネルディスプレイ用のカバーガラスとして用いた例について説明する。図2は、カバーガラスが配置されたディスプレイ装置の断面図である。なお、以下の説明において、前後左右は図中の矢印の向きを基準とする。
 ディスプレイ装置10は、図11に示すように、概して筐体15内に設けられた表示パネル20と、表示パネル20の全面を覆い筐体15の前方を囲うように設けられるカバーガラス30とを備える。
 カバーガラス30は、主として、ディスプレイ装置10の美観や強度の向上、衝撃破損防止などを目的として設置されるものであり、全体形状が略平面形状の一枚の板状ガラスから形成される。カバーガラス30は、図11に示すように、表示パネル20の表示側(前側)から離間するように(空気層を有するように)設置されていてもよく、透光性を有する接着膜(図示せず)を介して表示パネル20の表示側に貼り付けられてもよい。
 カバーガラス30の表示パネル20からの光を出射する前面には機能膜41が設けられ、表示パネル20からの光が入射する背面には、表示パネル20と対応する位置に機能膜42が設けられている。なお、機能膜41、42は、図2では両面に設けたが、これに限らず前面または背面に設けてもよく、省略してもよい。
 機能膜41、42は、例えば、周囲光の反射防止、衝撃破損防止、電磁波遮蔽、近赤外線遮蔽、色調補正、および/または耐傷性向上などの機能を有し、厚さおよび形状などは用途に応じて適宜選択される。機能膜41、42は、例えば、樹脂製の膜をカバーガラス30に貼り付けることにより形成される。あるいは、蒸着法、スパッタ法またはCVD法などの薄膜形成法により形成されてもよい。
 符号44は、黒色層であり、例えば、顔料粒子を含むインクをカバーガラス30に塗布し、これを紫外線照射、または加熱焼成した後、冷却することによって形成された被膜であり、筐体15の外側からは表示パネル等が見えなくなり、外観の審美性を向上させる。なお、符号44は黒色層に限らずたとえば白色層であってもよい。
 以下に本発明の実施例について具体的に説明するが、本発明はこれらに限定されない。
[実施例1]
〔フロートガラスの製造〕
 以下に示す組成のガラスを板厚が0.7mmとなるようにフロート法で製造し、10cm×10cmに切断して、例1~4のフロート板ガラスを作製した。
組成A:質量%表示の組成が、SiO:71.5%、Al:1.8%、NaO:13.5%、KO:0.26%、MgO:4.64%、CaO:7.83%、ZrO:0.03%
組成B:SiO:71.5%、Al:1.8%、NaO:13.5%、KO:0.26%、MgO:4.64%、CaO:7.83%、ZrO:0.03%
組成C:SiO:71.5%、Al:1.8%、NaO:13.5%、KO:0.26%、MgO:4.64%、CaO:7.83%、ZrO:0.03%
〔評価方法〕
(1)ガラス表層の水素濃度の測定
 また、実施例1、2および比較例1~3の各フロートガラスの水素濃度を、二次イオン質量分析により深さ20μmまで分析した。フロートガラスの二次イオン質量分析による[30Si]プロファイルを示すが、このプロファイルは水素濃度プロファイルと同視してよいものである。
 二次イオン質量分析の分析条件は以下とした。
  測定装置:アルバック・ファイ社製 ADEPT1010
  一次イオン種:Cs
  一次加速電圧:5.0kV
  一次イオンカレント:1μA
  一次イオン入射角(試料面垂直方向からの角度):60°
  ラスターサイズ:200×200μm
  検出領域:40×40μm
  スパッタレート:14nm/sec
  二次イオン極性:マイナス
  中和用の電子銃使用有
 深さ0~10μmおよび105~110μmの[30Si]を測定し、深さ0~10μmにおける規格化強度のボトム面(B面)とトップ面(T面)との差を算出した。表1において、「H/Si」は、深さ0~10μm平均値を深さ105~110μm平均値で除した値を表す。
 なお、検出器のField Aperture:1、検出器のESA Input Lens:550とした。
(2)反り量の測定
 化学強化前に株式会社東京精密製接触式表面形状測定器(サーフコム1400D(商品名))で反り量を測定した後、各フロートガラスを硝酸カリウム溶融塩により、425℃にて150分化学強化し、化学強化後の反り量も同様に測定し、(式)Δ反り量=化学強化後反り量-化学強化前反り量で表されるΔ反り量を算出した。なお、Δ反り量は、9cm角のフロートガラスにおけるΔ反り量を測定とした。
(3)NaO濃度およびKO濃度の測定
 ガラス表層のNaO濃度およびKO濃度は、株式会社リガク社製ZSX PrimusIIを用いて蛍光X線分析によりそれぞれNa-Kα線、K-Kα線強度を測定し、標準試料との相対強度比から濃度を求めた。
 表1において、「N-NaO」とは、NaO濃度をその深さ100μm位置のNaO濃度で除した値である規格化NaO表面濃度である。なお、NaO濃度は蛍光X線法によりNa-Kα線強度を測定し標準試料との相対強度比から算出した値である。また、化学強化後のイオン交換量(KO濃度)は、表1のKOイオン交換量の欄に示す。
(4)Sn濃度の測定
 ガラス表面のSn濃度は、ガラス表面をフッ化水素酸溶液でエッチングして溶液中のSn濃度をICP発光分光分析法により定量した。ICP発光分光分析装置はエスアイアイ・ナノテクノロジー株式会社製SPS3100を用いた。
 表1において、組成A~CのガラスはSnOを含有しないことから、トップ面のSnOは0であることが明らかであり測定しなかった。以下の表2~6においても同様である。
 例1~4のガラスの化学強化前における規格化水素濃度[0~10μm平均(H/Si)/105~110μm(平均H/Si)]、N-NaO濃度(表面濃度/100μm深さ位置濃度、以下規格化NaO表面濃度ともいう)、KO濃度およびSn濃度(単位面積当たり付着量)並びに化学強化後のイオン交換量(KO濃度)およびΔ反り量を求めた結果を表1に示す。
 トップ面のN-NaO濃度が1未満であるのは、ボトム面に吹付けられたSOガスがトップ面側に回り込んだためと考えられる。また、トップ面のN-NaO濃度がたとえば例1と例4で異なるのはSOガスの吹付け状態が変動していることによると考えられる。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
化学強化前のトップ面とボトム面におけるNaO濃度差とΔ反り量
 化学強化前のソーダライムガラス板のトップ面とボトム面におけるNaO濃度差とΔ反り量とは相関関係があると考えられることから、表1に示すデータからトップ面とボトム面における規格化NaO表面濃度の2乗の差Δ(N-Na)を求め、Δ反り量との相関関係について検討した。
 その結果を表2および図6に示す。図6は、横軸に化学強化に供するガラスのトップ面とボトム面における規格化NaO表面濃度の2乗の差Δ(N-Na)(Top-Bottom)、縦軸にΔ反り量をプロットしたグラフである。
 図6に示すグラフから、化学強化前のソーダライムガラス板のトップ面とボトム面における規格化NaO表面濃度の差の二乗(ΔN-NaO)とΔ反り量とには下記式(1-1)で表される相関関係があることがわかった。
Δ反り量=370×Δ(N-Na)+45…式(1-1)
 式(1-1)においてΔ(N-Na)は、化学強化に供するガラスのトップ面とボトム面における規格化NaO表面濃度を蛍光X線分析により測定した値の2乗の差であり、下記式(1-2)により求められる。
ΔNaO=(化学強化前のトップ面における規格化NaO表面濃度)-(化学強化前のボトム面における規格化NaO表面濃度)…式(1-2)
 表2および図6に示す結果から、式(1-1)において、Δ(N-Na)を0.040以下とすることにより、Δ反り量を58μm以下とすることができることがわかった。
Figure JPOXMLDOC01-appb-T000002
[実施例3]
化学強化後のトップ面とボトム面におけるイオン交換量差とΔ反り量
 トップ面とボトム面におけるイオン交換量の差とΔ反り量には相関関係があると考えられることから、表1に示すデータからイオン交換量の差(Δイオン交換量1)を求め、Δ反り量との相関関係について検討した。
 Δイオン交換量1は、トップ面におけるイオン交換量1から該ボトム面におけるイオン交換量1を減じた値である。イオン交換量1は下記式(2-1)により求めた。
イオン交換量1=5.51×(規格化NaO表面濃度)-0.038×(Sn濃度)…式(2-1)
イオン交換量1の差=(トップ面におけるイオン交換量)-(ボトム面におけるイオン交換量)…式(2-2)
 その結果を表3および図7に示す。図7は、横軸にトップ面とボトム面におけるイオン交換量1の差Δイオン交換量1、縦軸にΔ反り量をプロットしたグラフである。
 図7に示すグラフから、Δイオン交換量1とΔ反り量には下記式(2-3)で表される相関関係があることがわかった。
Δ反り量=103×(Δイオン交換量1)+24…式(2-3)
 表3および図7に示す結果から、Δイオン交換量1を0.32以下とすることにより、Δ反り量を58μm以下とすることができることがわかった。
Figure JPOXMLDOC01-appb-T000003
[実施例4]
化学強化前のトップ面とボトム面における水素濃度差、Sn濃度差およびイオン交換量差とΔ反り量
 化学強化前のトップ面とボトム面における水素濃度差、Sn濃度差、イオン交換量差およびにΔ反り量に相関関係があると考えられることから、これらを因子として、表1に示すデータを元に重回帰分析した結果、下記式(3-1)が求められた。表4に、表1に示すデータから用いたデータを示す。
W1=-16×(ΔH/Si)-6.47×(Sn濃度差)-43.8×(Δイオン交換量1)…式(3-1)
 式(3-1)において、ΔH/Siは化学強化前のトップ面とボトム面における水素濃度差をSIMS分析により測定した値の差(規格化水素濃度の差)であり、下記式(3-2)により求めた。
ΔH/Si=(化学強化前のトップ面における規格化水素濃度)-(化学強化前のボトム面における規格化水素濃度)…式(3-2)
 Δイオン交換量1はトップ面におけるイオン交換量から該ボトム面におけるイオン交換量を減じた値である。イオン交換量は前記式(2-1)により求めた。
 図12に横軸にW1、縦軸にΔ反り量をプロットしたグラフを示す。図12に示すグラフから、W1とΔ反り量には相関関係があることがわかった。表4および図12に示す結果から、W1を56以下とすることにより、Δ反り量を58μm以下とすることができることがわかった。
Figure JPOXMLDOC01-appb-T000004
[実施例4]
トップ面とボトム面におけるイオン交換量差および化学強化前のトップ面とボトム面における水素濃度差とΔ反り量
 トップ面とボトム面におけるイオン交換量の差および化学強化前のトップ面とボトム面における水素濃度差とΔ反り量には相関関係があると考えられることから、表1に示すデータから、トップ面とボトム面におけるイオン交換量差および化学強化前のトップ面とボトム面における水素濃度差とΔ反り量の相関関係について検討した。
 その結果を表5および図8に示す。図8は、横軸にトップ面とボトム面におけるイオン交換量の差を化学強化前のトップ面とボトム面における水素濃度の差で除した値、縦軸にΔ反り量をプロットしたグラフである。
 また、水素濃度、イオン交換量およびにΔ反り量に相関関係があると考えられることから、これらを因子として、表1に示すデータを元に重回帰分析した結果、下記式(4-1)が求められた。
W2=9.18×Δ[(イオン交換量)/(H/Si)]+49…式(4-1)
 式(4-1)において、Δ[(イオン交換量)/(H/Si)]は、トップ面におけるイオン交換量を規格化水素濃度H/Siで除した値からボトム面におけるイオン交換量を規格化水素濃度H/Siで除した値を減じた値である。イオン交換量は前記式(2-1)により求めた。
 図13に横軸にW2、縦軸にΔ反り量をプロットしたグラフを示す。図13に示すグラフから、W2とΔ反り量には相関関係があることがわかった。表5および図13に示す結果から、W2を56以下とすることにより、Δ反り量を58μm以下とすることができることがわかった。
Figure JPOXMLDOC01-appb-T000005
[実施例5]
化学強化前のトップ面とボトム面におけるNaO濃度差およびSn濃度差とΔ反り量
 化学強化前のトップ面とボトム面における規格化NaO表面濃度差およびSn濃度とΔ反り量には相関関係があると考えられることから、これらを因子として、表1に示すデータを元に重回帰分析した。その結果を表6、図9および図17に示す。
 図17に示すように、化学強化前のトップ面とボトム面における規格化NaO表面濃度差およびSn濃度差には下記式(5-1)で表される相関関係があることがわかった。W3=744×[(ΔN-NaO)+0.01×(Sn濃度差)]…式(5-1)
 式(5-1)において、ΔN-NaOは、トップ面における規格化NaO表面濃度からボトム面における規格化NaO表面濃度を減じた値を表面から100μm位置のNaO濃度で除した値の差であり、下記式(5-2)により求められる。
ΔN-NaO=(化学強化前のトップ面における規格化NaO表面濃度)-(化学強化前のボトム面における規格化NaO表面濃度)…式(5-2)
 図14に横軸にW3、縦軸にΔ反り量をプロットしたグラフを示す。図14に示すグラフから、W3とΔ反り量には相関関係があることがわかった。表6および図14に示す結果から、W3を58以下とすることにより、Δ反り量を58μm以下とすることができることがわかった。
Figure JPOXMLDOC01-appb-T000006
[実施例6]
イオン交換量(水素濃度、NaO濃度およびSn濃度)の差とΔ反り量
 イオン交換量には水素濃度、NaO濃度およびSn濃度が関与していると考えられることから、表7に示すデータから相関式を求めた結果、下記式(6-1)が得られた。
イオン交換量2=-0.02×(H/Si)+5.54×(N-NaO濃度)-0.037×(Sn濃度)…式(6-1)
 式(6-1)で求められるイオン交換量2のトップ面とボトム面との差Δイオン交換量2と化学強化後のガラスの反りには、トップ面及びボトム面におけるイオン交換量の差が影響していると考えられることから、式(6-2)で求められるイオン交換量2のトップ面とボトム面との差Δイオン交換量2とΔ反り量との相関関係を調べた。
Δイオン交換量2=(トップ面におけるΔイオン交換量2)-(ボトム面におけるΔイオン交換量2)…式(6-2)
 図15に横軸にトップ面およびボトム面におけるイオン交換量2の差(Δイオン交換量2)、縦軸にΔ反り量をプロットしたグラフを示す。図15に示すグラフから、Δイオン交換量2とΔ反り量には相関関係があることがわかった。
 表7および図15に示す結果から、式(6-1)において、Δイオン交換量2を0.33以下とすることにより、Δ反り量を58μm以下とすることができることがわかった。
Figure JPOXMLDOC01-appb-T000007
[実施例7]
化学強化前のトップ面とボトム面におけるNaO濃度差とΔ反り量
 化学強化前のソーダライムガラス板のトップ面とボトム面におけるNaO濃度差とΔ反り量とは相関関係があると考えられることから、表1に示すデータからトップ面の規格化NaO表面濃度からボトム面の規格化NaO表面濃度を減じた差の2乗[ΔN-NaO(Top-Bottom)]を求め、Δ反り量との相関関係について検討した。
 その結果を表8および図16に示す。表8中のたとえば「5.9.E-04」は5.9×10-4の意である。図16は、横軸に化学強化に供するトップ面の規格化NaO表面濃度からボトム面の規格化NaO表面濃度を減じた差の2乗[ΔN-NaO(Top-Bottom)]、縦軸にΔ反り量をプロットしたグラフである。
 図16に示すグラフから、化学強化前のソーダライムガラス板のトップ面とボトム面における規格化NaO表面濃度の差の二乗(ΔN-NaO)とΔ反り量とには下記式(7-1)で表される相関関係があることがわかった。
Δ反り量=18000×(ΔN-NaO)+51…式(7-1)
 式(7-1)において(ΔN-NaO)は、化学強化に供するガラスのトップ面とボトム面における規格化NaO表面濃度を蛍光X線分析により測定した値の差の2乗であり、下記式(7-2)により求めた。
(ΔN-NaO)=[(化学強化前のトップ面における規格化NaO表面濃度)-(化学強化前のボトム面における規格化NaO表面濃度)]…式(7-2)
 表8および図16に示す結果から、式(7-1)において、(ΔN-NaO)を5.0×10-4以下とすることにより、Δ反り量を58μm以下とすることができることがわかった。
Figure JPOXMLDOC01-appb-T000008
[ガラス組成例]
 本発明の化学強化用フロートガラスの質量百分率表示の組成例G1~G16並びにそれらについて化学強化したときの圧縮応力CS(単位:MPa)および圧縮応力深さDOL(単位:μm)を表9、表10に示す。
 表中のNaO/AlはNaOおよびAlの含有量の比、ROはMgO、CaO、SrOおよびBaOの含有量の合計、CaO+SrO+BaOはCaO、SrOおよびBaOの含有量の合計、強化温度(単位:℃)および強化時間(単位:h)は前記化学強化についてのもの、KNOは化学強化に用いられる溶融塩中のKNOの濃度(単位:質量%)、dolは前記dolである。なお、溶融塩中のKNOの濃度が100%でないものの残りの成分はNaNOである。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2012年12月27日付で出願された日本特許出願(特願2012-285511)に基づいており、その全体が引用により援用される。
1 溶融ガラス
5 溶融金属浴
10 ディスプレイ装置
15 筐体
20 表示パネル
30 カバーガラス

Claims (13)

  1.  成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、該トップ面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるトップ面の規格化NaO表面濃度の2乗から該ボトム面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるボトム面の規格化NaO表面濃度の2乗を減じた差Δ(N-Na)が0.040以下である化学強化用フロートガラス。
     ここで、それぞれのNaO濃度はNa-Kα線を用いる蛍光X線分析により測定した値である。
  2.  成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、該トップ面におけるイオン交換量1から該ボトム面におけるイオン交換量1を減じた値であるΔイオン交換量1が0.32以下である化学強化用フロートガラス。
     ここで、イオン交換量1は下記式(2-1)により求められる値である。
      イオン交換量1=5.51×(規格化NaO表面濃度)-0.038×(Sn濃度)…式(2-1)
     式(2-1)において、規格化NaO表面濃度は表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値である。ここで、NaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。
     また、Sn濃度はトップ面およびボトム面単位面積当たりのSn付着量(単位:μg/cm)であり、単位面積当たりのSn付着量はSnがSnOの形で存在するとしたときの1cmあたりのSnO換算付着質量である。
  3.  成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、下記式(3-1)により求められるW1が56以下である化学強化用フロートガラス。
      W1=-16×(ΔH/Si)-6.47×(Sn濃度差)-43.8×(Δイオン交換量1)…式(3-1)
     式(3-1)において、ΔH/Siは、トップ面における規格化水素濃度からボトム面における規格化水素濃度を減じた値である。規格化水素濃度とは、深さ0~10μmにおける平均水素濃度を深さ105~110μmにおける平均水素濃度で除した値であり、深さ0~10μmにおける平均水素濃度および深さ105~110μmにおける平均水素濃度は、以下の分析条件下で測定した値である。
     (分析条件)
      測定装置:四重極型質量分析器を有する二次イオン質量分析装置
      一次イオン種:Cs
      一次加速電圧:5.0kV
      一次イオンカレント:1μA
      一次イオン入射角(試料面垂直方向からの角度):60°
      ラスターサイズ:200×200μm
      検出領域:40×40μm
      二次イオン極性:マイナス
      中和用の電子銃使用有
     式(3-1)において、Sn濃度差はボトム面単位面積当たりのSn付着量(単位:μg/cm)からトップ面単位面積当たりのSn付着量(単位:μg/cm)を減じた差であり、単位面積当たりのSn付着量はSnがSnOの形で存在するとしたときの1cmあたりのSnO換算付着質量である。
     式(3-1)において、Δイオン交換量1はトップ面におけるイオン交換量1から該ボトム面におけるイオン交換量1を減じた値である。イオン交換量1は下記式により求められる。
      イオン交換量1=5.51×(規格化NaO表面濃度)-0.038×(Sn濃度)
     前記式において、規格化NaO表面濃度は、表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値である。ここで、NaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。
  4.  成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、下記式(4-1)により求められるW2の絶対値が56以下である化学強化用フロートガラス。
      W2=9.18×Δ[(イオン交換量1)/(H/Si)]+49…式(4-1)
     式(4-1)において、Δ[(イオン交換量1)/(H/Si)]は、トップ面におけるイオン交換量1を同面における規格化水素濃度H/Siで除した値からボトム面におけるイオン交換量1を同面における規格化水素濃度H/Siで除した値を減じた値である。
     ここで、イオン交換量1は下記式により求められる。
      イオン交換量1=5.51×(規格化NaO表面濃度)-0.038×(Sn濃度)
     前記式において、規格化NaO表面濃度は、表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値である。ここで、NaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。また、Sn濃度はトップ面およびボトム面単位面積当たりのSn付着量(単位:μg/cm)であり、単位面積当たりのSn付着量はSnがSnOの形で存在するとしたときの1cmあたりのSnO換算付着質量である。
     規格化水素濃度とは、深さ1~10μmにおける平均水素濃度を深さ105~110μmにおける平均水素濃度で除した値であり、深さ1~10μmにおける平均水素濃度および深さ105~110μmにおける平均水素濃度は、以下の分析条件下で測定した値である。
     (分析条件)
      測定装置:四重極型質量分析器を有する二次イオン質量分析装置
      一次イオン種:Cs
      一次加速電圧:5.0kV
      一次イオンカレント:1μA
      一次イオン入射角(試料面垂直方向からの角度):60°
      ラスターサイズ:200×200μm
      検出領域:40×40μm
      二次イオン極性:マイナス
      中和用の電子銃使用有
  5.  成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、下記式(5-1)により求められるW3が58以下である化学強化用フロートガラス。
      W3=744×[(ΔN-NaO)+0.01×(Sn濃度差)]…式(5-1)
     式(5-1)において、ΔN-NaOは、トップ面における表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値であるトップ面の規格化NaO表面濃度からボトム面における表面のNaO濃度をその深さ100μm位置のNaO濃度で除した値であるボトム面の規格化NaO表面濃度を減じた値である。ここで、それぞれのNaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。
     式(5-1)において、Sn濃度差は、ボトム面単位面積当たりのSn付着量(単位:μg/cm)からトップ面単位面積当たりのSn付着量(単位:μg/cm)を減じた差であり、単位面積当たりのSn付着量はSnがSnOの形で存在するとしたときの1cmあたりのSnO換算付着質量である。
  6.  成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、該トップ面におけるイオン交換量2から該ボトム面におけるイオン交換量2を減じた値であるΔイオン交換量2が0.33以下である化学強化用フロートガラス。
     ここで、イオン交換量2は下記式(6-1)により求められる値である。
      イオン交換量2=-0.02×(H/Si)+5.54×(N-NaO濃度)-0.037×(Sn濃度)…式(6-1)
     式(6-1)において、H/Siは規格化水素濃度であり、規格化水素濃度とは深さ0~10μmにおける平均水素濃度を深さ105~110μmにおける平均水素濃度で除した値であり、深さ0~10μmにおける平均水素濃度および深さ105~110μmにおける平均水素濃度は、以下の分析条件下で測定した値である。
     (分析条件)
      測定装置:四重極型質量分析器を有する二次イオン質量分析装置
      一次イオン種:Cs
      一次加速電圧:5.0kV
      一次イオンカレント:1μA
      一次イオン入射角(試料面垂直方向からの角度):60°
      ラスターサイズ:200×200μm
      検出領域:40×40μm
      二次イオン極性:マイナス
      中和用の電子銃使用有
     式(6-1)においてN-NaO濃度は表面NaO濃度を深さ100μm位置のNaO濃度で除した値である規格化NaO表面濃度である。ここで、NaO濃度はNa-Kα線を用いる蛍光X線分析による測定値である。
     Sn濃度は、単位面積当たりのSn付着量(単位:μg/cm)であり、Sn付着量はSnがSnOの形で存在するとしたときのSnO換算付着質量である。
  7.  成形時に溶融金属と接するボトム面と、該ボトム面に対向するトップ面とを有する化学強化用フロートガラスであって、該トップ面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるトップ面の規格化NaO表面濃度から該ボトム面におけるNaO濃度をその深さ100μm位置のNaO濃度で除した値であるボトム面の規格化NaO表面濃度を減じた差ΔN-NaOの2乗(ΔN-NaO)が5.0×10-4以下である化学強化用フロートガラス。それぞれのNaO濃度はNa-Kα線を用いる蛍光X線分析により測定した値である。
  8.  化学強化温度がT(単位:K)、化学強化時間がt(単位:時間)である化学強化に用いられ、且つSiOを含有し、SiO、Al、MgO、CaO、SrO、BaO、ZrO、NaOおよびKOの各質量百分率表示含有量を用いて次式で求められるdolが20以下である請求項1~7のいずれか1項に記載の化学強化用フロートガラス。
      dol=-0.13×Al-1.88×MgO-2.41×CaO-1.85×SrO-1.35×BaO-1.59×ZrO+1.50×NaO+2.42×KO-129359/T+9.28×t0.5+182.88
  9.  質量百分率表示で、SiOを60~80%、Alを0~8%、NaOを8~22%、KOを0~7%、MgOを0~17%、CaOを0~22%、SrOを0~8%、BaOを0~8%、ZrOを0~5%含有する請求項1~8のいずれか1項に記載の化学強化用フロートガラス。
  10.  請求項1~9のいずれか1項に記載の化学強化用フロートガラスであって、質量百分率表示で、SiOを60~80%、Alを0.01~8%、NaOを8~22%、KOを0~7%、ZrOを0~5%含有し、MgO、CaO、SrOまたはBaOを含有する場合MgO、CaO、SrOおよびBaOの含有量の合計が5~25%であり、NaOおよびAlの含有量の比NaO/Alが1.5以上である化学強化用フロートガラス。
  11.  請求項10に記載の化学強化用フロートガラスであって、NaO/Alが6以下である化学強化用フロートガラス。
  12.  請求項9、10または11に記載の化学強化用フロートガラスであって、CaO、SrOまたはBaOを含有しCaO、SrOおよびBaOの含有量の合計が1~7%である化学強化用フロートガラス。
  13.  圧縮応力深さが20μm以下である化学強化ガラスを製造する方法であって、請求項1~12のいずれか1項に記載の化学強化用ガラスを化学強化することを特徴とする化学強化ガラスの製造方法。
PCT/JP2013/085125 2012-12-27 2013-12-27 化学強化用フロートガラス WO2014104302A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157016964A KR20150103004A (ko) 2012-12-27 2013-12-27 화학 강화용 플로트 유리
CN201380068393.3A CN104884398B (zh) 2012-12-27 2013-12-27 化学强化用浮法玻璃
JP2014554596A JP6112122B2 (ja) 2012-12-27 2013-12-27 化学強化用フロートガラス
US14/753,416 US9714193B2 (en) 2012-12-27 2015-06-29 Float glass for chemical strengthening

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012285511 2012-12-27
JP2012-285511 2012-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/753,416 Continuation US9714193B2 (en) 2012-12-27 2015-06-29 Float glass for chemical strengthening

Publications (1)

Publication Number Publication Date
WO2014104302A1 true WO2014104302A1 (ja) 2014-07-03

Family

ID=51021371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085125 WO2014104302A1 (ja) 2012-12-27 2013-12-27 化学強化用フロートガラス

Country Status (5)

Country Link
US (1) US9714193B2 (ja)
JP (1) JP6112122B2 (ja)
KR (1) KR20150103004A (ja)
CN (1) CN104884398B (ja)
WO (1) WO2014104302A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205658A1 (de) * 2014-03-26 2015-10-01 Schott Ag Floatverfahren zur Herstellung einer Floatglasscheibe und Floatglasscheibe
WO2016088652A1 (ja) * 2014-12-02 2016-06-09 旭硝子株式会社 化学強化用ガラス及び化学強化用ガラスの製造方法、並びに化学強化ガラス及びそれを備える画像表示装置
WO2016152848A1 (ja) * 2015-03-25 2016-09-29 旭硝子株式会社 ガラス板
WO2016177592A1 (en) * 2015-05-05 2016-11-10 Agc Glass Europe Glass sheet capable of having controlled warping through chemical strengthening
WO2016198249A1 (en) * 2015-06-08 2016-12-15 Agc Glass Europe Glass sheet capable of having controlled warping through chemical strengthening
JP2017206434A (ja) * 2016-05-18 2017-11-24 ショット アクチエンゲゼルシャフトSchott AG 水素含有量の非対称化方法および高度に化学強化可能な板状のガラス物品の製造方法およびその方法に従って得られたガラス物品
JP2017537051A (ja) * 2014-12-09 2017-12-14 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板
JP2018505117A (ja) * 2014-12-09 2018-02-22 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板
JP2018510834A (ja) * 2015-03-26 2018-04-19 ピルキントン グループ リミテッド ガラス
CN113945598A (zh) * 2021-09-07 2022-01-18 河北光兴半导体技术有限公司 一种玻璃强化离子交换效率的评价方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6377604B2 (ja) * 2013-03-19 2018-08-22 日本板硝子株式会社 ガラス板及びガラス板の製造方法
CN105753338B (zh) * 2015-09-23 2017-04-05 中国南玻集团股份有限公司 浮法玻璃的制备方法及浮法玻璃
KR102500473B1 (ko) * 2015-10-26 2023-02-16 삼성디스플레이 주식회사 플로트 유리 및 이의 제조방법
TWI750298B (zh) 2017-01-18 2021-12-21 美商康寧公司 具有設計的應力輪廓之玻璃基物件以及製造方法
NL2020896B1 (en) * 2018-05-08 2019-11-14 Corning Inc Water-containing glass-based articles with high indentation cracking threshold
CN112789169A (zh) * 2018-11-20 2021-05-11 三井金属矿业株式会社 层叠体
JP7331628B2 (ja) * 2019-10-29 2023-08-23 Agc株式会社 カバーガラスの製造方法及びカバーガラス
CN113620569B (zh) * 2021-08-29 2023-07-11 咸宁南玻光电玻璃有限公司 一种改善浮法工艺玻璃油墨附着力的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236635A (ja) * 1985-04-11 1986-10-21 Toyo Glass Kk ガラスの表面処理法
JPS63159238A (ja) * 1986-12-04 1988-07-02 グラヴルベル 脱アルカリシートガラスおよびその製造方法
JPH09501647A (ja) * 1993-08-19 1997-02-18 カーディナル・アイジー・カンパニー 耐汚染性ガラス及びそれを製造する方法
JPH11278875A (ja) * 1998-03-26 1999-10-12 Asahi Glass Co Ltd ガラスの表面処理方法
WO2011068225A1 (ja) * 2009-12-04 2011-06-09 旭硝子株式会社 ガラス板およびその製造方法
JP2012236737A (ja) * 2011-05-11 2012-12-06 Asahi Glass Co Ltd ガラスの製造方法及びガラス

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473908A (en) * 1966-08-18 1969-10-21 Libbey Owens Ford Co Sulfur trioxide glass surface treatment process
JPH0651580B2 (ja) * 1985-03-09 1994-07-06 セントラル硝子株式会社 フロ−トガラスの化学強化方法
US5292354A (en) * 1986-12-04 1994-03-08 Glaverbel, Societe Anonyme Method of producing dealkalized sheet glass
JPH0772093A (ja) 1993-06-30 1995-03-17 Hitachi Ltd 異物等の欠陥検出方法および検査装置
JP2000268349A (ja) 1999-03-19 2000-09-29 Asahi Techno Glass Corp 磁気ディスク用ガラス基板およびその製造方法
JP2004131314A (ja) 2002-10-09 2004-04-30 Asahi Glass Co Ltd 透明導電膜付き化学強化ガラス基板、およびその製造方法
JP4276021B2 (ja) * 2003-08-04 2009-06-10 セントラル硝子株式会社 ディスプレイ基板用フロートガラス板及びその製造方法
JP2007204295A (ja) * 2006-01-31 2007-08-16 Asahi Glass Co Ltd ディスプレイ基板用ガラス板及びその製造方法
WO2008056527A1 (fr) * 2006-11-10 2008-05-15 Asahi Glass Company, Limited Substrat de verre pour un dispositif d'affichage à panneau plat, procédé de fabrication de celui-ci et panneau d'affichage employant ledit substrat
JP5115545B2 (ja) 2009-09-18 2013-01-09 旭硝子株式会社 ガラスおよび化学強化ガラス
JP2011201711A (ja) 2010-03-24 2011-10-13 Hoya Corp ディスプレイ用カバーガラスおよびディスプレイ
CN102906814B (zh) 2010-05-20 2016-03-02 旭硝子株式会社 信息记录介质用玻璃基板的制造方法及磁盘的制造方法
US20120196110A1 (en) * 2011-01-19 2012-08-02 Takashi Murata Tempered glass and tempered glass sheet
JP2012203941A (ja) 2011-03-24 2012-10-22 Konica Minolta Advanced Layers Inc 情報記録媒体用ガラス基板の製造方法
JP5967999B2 (ja) 2011-03-31 2016-08-10 Hoya株式会社 磁気ディスク用ガラス基板の製造方法
WO2013005588A1 (ja) * 2011-07-01 2013-01-10 旭硝子株式会社 化学強化用フロートガラス
WO2013005608A1 (ja) * 2011-07-01 2013-01-10 旭硝子株式会社 化学強化用フロートガラス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236635A (ja) * 1985-04-11 1986-10-21 Toyo Glass Kk ガラスの表面処理法
JPS63159238A (ja) * 1986-12-04 1988-07-02 グラヴルベル 脱アルカリシートガラスおよびその製造方法
JPH09501647A (ja) * 1993-08-19 1997-02-18 カーディナル・アイジー・カンパニー 耐汚染性ガラス及びそれを製造する方法
JPH11278875A (ja) * 1998-03-26 1999-10-12 Asahi Glass Co Ltd ガラスの表面処理方法
WO2011068225A1 (ja) * 2009-12-04 2011-06-09 旭硝子株式会社 ガラス板およびその製造方法
JP2012236737A (ja) * 2011-05-11 2012-12-06 Asahi Glass Co Ltd ガラスの製造方法及びガラス

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205658B4 (de) * 2014-03-26 2020-11-12 Schott Ag Floatverfahren zur Herstellung einer Floatglasscheibe und Floatglasscheibe
DE102014205658A1 (de) * 2014-03-26 2015-10-01 Schott Ag Floatverfahren zur Herstellung einer Floatglasscheibe und Floatglasscheibe
JP6191786B2 (ja) * 2014-12-02 2017-09-06 旭硝子株式会社 化学強化用ガラス及び化学強化用ガラスの製造方法、並びに化学強化ガラス及びそれを備える画像表示装置
CN107001109A (zh) * 2014-12-02 2017-08-01 旭硝子株式会社 化学强化用玻璃和化学强化用玻璃的制造方法、以及化学强化玻璃和具有该化学强化玻璃的图像显示装置
US20170260077A1 (en) * 2014-12-02 2017-09-14 Asahi Glass Company, Limited Glass for chemical strengthening and method for manufacturing glass for chemical strengthening, and chemically strengthened glass and image display device provided with same
JPWO2016088652A1 (ja) * 2014-12-02 2017-10-05 旭硝子株式会社 化学強化用ガラス及び化学強化用ガラスの製造方法、並びに化学強化ガラス及びそれを備える画像表示装置
WO2016088652A1 (ja) * 2014-12-02 2016-06-09 旭硝子株式会社 化学強化用ガラス及び化学強化用ガラスの製造方法、並びに化学強化ガラス及びそれを備える画像表示装置
JP2018505117A (ja) * 2014-12-09 2018-02-22 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板
JP2017537051A (ja) * 2014-12-09 2017-12-14 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板
WO2016152848A1 (ja) * 2015-03-25 2016-09-29 旭硝子株式会社 ガラス板
JPWO2016152848A1 (ja) * 2015-03-25 2018-01-18 旭硝子株式会社 ガラス板
CN107406309A (zh) * 2015-03-25 2017-11-28 旭硝子株式会社 玻璃板
JP2018510834A (ja) * 2015-03-26 2018-04-19 ピルキントン グループ リミテッド ガラス
CN107531547A (zh) * 2015-05-05 2018-01-02 旭硝子欧洲玻璃公司 能够通过化学强化而具有受控的翘曲的玻璃板
US10370288B2 (en) 2015-05-05 2019-08-06 Agc Glass Europe Glass sheet capable of having controlled warping through chemical strengthening
WO2016177592A1 (en) * 2015-05-05 2016-11-10 Agc Glass Europe Glass sheet capable of having controlled warping through chemical strengthening
TWI756171B (zh) * 2015-05-05 2022-03-01 比利時商Agc歐洲玻璃公司 可經由化學強化而具有經控制翹曲之玻璃片材
CN107683268A (zh) * 2015-06-08 2018-02-09 旭硝子欧洲玻璃公司 能够通过化学强化而具有受控的翘曲的玻璃板
WO2016198249A1 (en) * 2015-06-08 2016-12-15 Agc Glass Europe Glass sheet capable of having controlled warping through chemical strengthening
JP2018518443A (ja) * 2015-06-08 2018-07-12 エージーシー グラス ユーロップAgc Glass Europe 化学強化による制御された反りを有することができるガラス板
US10377660B2 (en) 2015-06-08 2019-08-13 Agc Glass Europe Glass sheet capable of having controlled warping through chemical strengthening
JP2017206434A (ja) * 2016-05-18 2017-11-24 ショット アクチエンゲゼルシャフトSchott AG 水素含有量の非対称化方法および高度に化学強化可能な板状のガラス物品の製造方法およびその方法に従って得られたガラス物品
JP7206034B2 (ja) 2016-05-18 2023-01-17 ショット アクチエンゲゼルシャフト 水素含有量の非対称化方法および高度に化学強化可能な板状のガラス物品の製造方法およびその方法に従って得られたガラス物品
CN113945598A (zh) * 2021-09-07 2022-01-18 河北光兴半导体技术有限公司 一种玻璃强化离子交换效率的评价方法

Also Published As

Publication number Publication date
CN104884398B (zh) 2017-05-31
JPWO2014104302A1 (ja) 2017-01-19
US9714193B2 (en) 2017-07-25
US20160023945A1 (en) 2016-01-28
KR20150103004A (ko) 2015-09-09
CN104884398A (zh) 2015-09-02
JP6112122B2 (ja) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6112122B2 (ja) 化学強化用フロートガラス
JP5929999B2 (ja) 化学強化用フロートガラス
US20120238435A1 (en) Glass plate and its production process
WO2013005608A1 (ja) 化学強化用フロートガラス
TW201331142A (zh) 降低由化學強化處理引起之玻璃基板之彎曲之方法、及化學強化玻璃基板之製造方法
US10377660B2 (en) Glass sheet capable of having controlled warping through chemical strengthening
EP3385236A1 (en) Glass plate with antireflection film
JP2015113268A (ja) 化学強化用フロートガラス
JP2007204295A (ja) ディスプレイ基板用ガラス板及びその製造方法
WO2015046118A1 (ja) ガラス板
WO2015046116A1 (ja) ガラス板
KR20170121081A (ko) 유리판, 디스플레이용 유리 기판 및 태양 전지용 유리 기판
WO2014084096A1 (ja) 強化ガラスおよびその製造方法
WO2015046109A1 (ja) ガラス板
KR20210057055A (ko) 침입 이온 표면 농도가 감소된 화학 강화 유리 기판 및 이를 제조하는 방법
WO2015046113A1 (ja) ガラス板及び化学強化ガラス板
WO2015046112A1 (ja) ガラス板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554596

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157016964

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868783

Country of ref document: EP

Kind code of ref document: A1