WO2014097992A1 - 感光性樹脂組成物、耐熱性樹脂膜の製造方法および表示装置 - Google Patents

感光性樹脂組成物、耐熱性樹脂膜の製造方法および表示装置 Download PDF

Info

Publication number
WO2014097992A1
WO2014097992A1 PCT/JP2013/083491 JP2013083491W WO2014097992A1 WO 2014097992 A1 WO2014097992 A1 WO 2014097992A1 JP 2013083491 W JP2013083491 W JP 2013083491W WO 2014097992 A1 WO2014097992 A1 WO 2014097992A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
photosensitive resin
resin composition
resin
group
Prior art date
Application number
PCT/JP2013/083491
Other languages
English (en)
French (fr)
Inventor
小森悠佑
越野美加
三好一登
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201380065421.6A priority Critical patent/CN104854508B/zh
Priority to KR1020157018049A priority patent/KR101942150B1/ko
Priority to EP13864249.1A priority patent/EP2937732B1/en
Priority to US14/647,747 priority patent/US9897915B2/en
Priority to SG11201504647VA priority patent/SG11201504647VA/en
Priority to JP2014500579A priority patent/JP6332022B2/ja
Priority to KR1020197001652A priority patent/KR20190009002A/ko
Publication of WO2014097992A1 publication Critical patent/WO2014097992A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • the present invention relates to a photosensitive resin composition containing a resin having a specific structure as a main component. More specifically, a surface protective film or an interlayer insulating film of a semiconductor element, an insulating film of an organic electroluminescence (hereinafter referred to as EL) element, a driving thin film transistor (Thin Film Transistor: hereinafter referred to as a TFT) using an organic EL element.
  • a photosensitive resin composition suitable for applications such as a flattening film for a substrate, a wiring protective insulating film for a circuit board, an on-chip microlens for a solid-state image sensor, and a flattening film for various displays and solid-state image sensors.
  • Polyimide is widely used for surface protection films, interlayer insulation films, planarization films and the like of semiconductor elements, and recently, for example, is used for insulation films of organic EL elements and planarization films of TFT substrates.
  • the slit coating is a coating method using a slit nozzle, and unlike the conventional spin coating, it is not necessary to rotate the substrate. Therefore, it is widely adopted from the viewpoint of reducing the amount of resin composition used and process safety.
  • slit coating since the coating film discharged from the slit nozzle contains a large amount of solvent, it is common to quickly dry under reduced pressure after coating to remove the solvent, and then heat dry using a hot plate or the like. is there.
  • the film thickness is determined by the discharge amount from the slit nozzle and the solid content concentration in the resin composition as the coating liquid. Therefore, in order to form a thick film, it is necessary to increase the discharge amount or increase the solid content concentration in the resin composition. However, if the discharge amount is increased too much, the liquid level moves during the conveyance of the substrate, so that the film thickness uniformity deteriorates. On the other hand, in the resin composition using a polyimide or a polyimide precursor, there is a problem that if the solid content concentration in the resin composition is increased, the viscosity becomes too high.
  • the viscosity of the resin composition can be reduced by using a good solvent for the resin or a solvent having a low viscosity of the solvent itself.
  • Many of polyimides and polyimide precursors have low solubility in various solvents because of their rigid structures. So far, polyimides having improved solubility in organic solvents (for example, see Patent Document 1) and polyimide precursors (for example, see Patent Documents 2 to 3) have been proposed. However, these resins also have insufficient solubility in organic solvents. Moreover, with these resins, a resin composition having a viscosity suitable for slit coating could not be obtained.
  • the present invention includes a polyimide precursor that has high solubility in an organic solvent, and has a low viscosity and excellent coatability, thereby forming a uniform film thickness and having good pattern processability. It aims at providing a conductive resin composition.
  • the present invention provides (a1) an aromatic amide resin having an amide group, a trifluoromethyl group, and an aromatic ring, soluble in propylene glycol monomethyl ether acetate, (b) a photosensitizer, and (c) a photosensitivity containing a solvent.
  • a photosensitive resin composition having a solid content of 20% by weight and a viscosity of 1 to 15 cp at 25 ° C., or (a2) an amide group, an amic acid ester group, a trifluoromethyl group, and an aromatic ring.
  • a photosensitive resin composition comprising an aromatic amide resin soluble in propylene glycol monomethyl ether acetate, (b) a photosensitizer, and (c) a solvent, having a solid content concentration of 20% by weight and a viscosity at 25 ° C. of 1
  • R 1 to R 3 may be mixed with different groups in a plurality of repeating units.
  • R 1 is a tetravalent organic group
  • R 1 in all repeating units 95 to 100 mol% is a group represented by the following formula (2):
  • R 2 is a divalent organic group, and 50 to 99 mol% of R 2 in all repeating units is represented by the following formula (3).
  • 1 to 50 mol% is a group represented by the following formula (4):
  • the method for producing a heat resistant resin film of the present invention includes a step of applying the photosensitive resin composition of the present invention to a substrate to form a photosensitive resin film, a step of drying the photosensitive resin film, and a dried photosensitive film.
  • a method for producing a heat-resistant resin film comprising: a step of exposing a photosensitive resin film; a step of developing the exposed photosensitive resin film; and a step of heat-treating the developed photosensitive resin film, wherein the photosensitive resin of the present invention is used.
  • a coating apparatus in which a photosensitive resin composition other than the composition has been fed, and the coating apparatus is used without cleaning the liquid feeding path of the coating apparatus. It is a manufacturing method of the heat resistant resin film which apply
  • a photosensitive resin composition comprising a polyimide precursor having high solubility in an organic solvent, having a low viscosity and excellent coatability, thereby forming a uniform film thickness and having good pattern processability.
  • the photosensitive resin composition of the present invention comprises (a1) an aromatic amide resin soluble in propylene glycol monomethyl ether acetate having an amide group, a trifluoromethyl group, and an aromatic ring, (b) a photosensitive agent, and (c) a solvent.
  • a photosensitive resin composition comprising an aromatic amide resin soluble in propylene glycol monomethyl ether acetate, (b) a photosensitizer, and (c) a solvent, having a solid content concentration of 20% by weight and a viscosity at 25 ° C. of 1
  • a resin having a structure represented by the general formula (1) as a main repeating unit (b) a photosensitive agent, and (c) a solvent. Containing.
  • (A1) Resin, (a2) Resin, and (a) Resin As an embodiment of the photosensitive resin composition of the present invention, (a1) propylene glycol monomethyl ether acetate having an amide group, a trifluoromethyl group, and an aromatic ring may be used. Contains a soluble aromatic amide resin.
  • the amide group is amide (CONH), amide (-CONHCOOH) acid, or hydroxyamide (CONHOH).
  • a plurality of different amide groups may be contained.
  • the amic acid ester group is CONHCOOR (R is an organic group).
  • aromatic amide resins examples include resins having a structure such as polyhydroxyamide, polyaminoamide, polyamideimide, which is a polybenzoxazole precursor, polyamic acid which is a polyimide precursor, and polyamic acid ester.
  • a resin having a structure of hydroxyamide or polyamic acid ester is preferably used. More preferably, a resin having a structural unit represented by the general formula (1) is used.
  • resin which has the structure represented by General formula (1) as a main repeating unit is contained.
  • R 1 to R 3 in the plurality of repeating units may be mixed with different groups, and have at least two types of R 2 as will be described later. Therefore, the resin in (a) is different in two or more types.
  • (a) resin may mean (a1) resin, (a2) resin, and (a) resin.
  • the resin having the structure represented by the general formula (1) as a main repeating unit is a polyimide precursor that is closed by heating and becomes a polyimide having excellent heat resistance and solvent resistance.
  • the polyimide precursor can be obtained by reacting a tetracarboxylic acid as a monomer component and a derivative thereof (hereinafter referred to as an acid component) with a diamine compound (hereinafter referred to as a diamine component).
  • R 1 to R 3 may be mixed with different groups in a plurality of repeating units.
  • R 1 is a tetravalent organic group, and 95 to 100 mol% of R 1 in all repeating units is a group represented by the following formula (2).
  • R 2 is a divalent organic group, and 50 to 99 mol% of R 2 in all repeating units is a group represented by the following formula (3), and 1 to 50 mol% is represented by the following formula (4).
  • R 1 represents a group derived from an acid component, and the acid component in which R 1 is a group represented by the above formula (2) includes 2,2-bis (3,4-di ()). Carboxyphenyl) hexafluoropropane and 2,2-bis (2,3-dicarboxyphenyl) hexafluoropropane.
  • R 1 has 95 mol% or more of the group represented by the above formula (2), solubility in an organic solvent can be improved and the viscosity of the resin composition can be reduced.
  • R 1 in the general formula (1) may be a tetravalent organic group having 2 or more carbon atoms having 95 to 100 mol% of the group represented by the formula (2), and the remaining R 1 is As a case where the group represented by the formula (2) is not included, first, a group other than the formula (2) may be included. In this case, groups other than formula (2) are not particularly limited.
  • the acid component in this case include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid, 2,2 ′, 3,3′-benzophenone tetracarboxylic acid, 1,1-bis (3,4 Dicarboxyphenyl) ethane, 1,1-bis (2,3-dicarboxyphenyl) ethane, bis (3,4-dicarboxyphenyl) methane, bis (2,3-dicarboxyphenyl) methane, bis (3 4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) ether, 1,2,5,6-naphthalenetetracarboxylic
  • dicarboxylic acids include terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis (carboxyphenyl) hexafluoropropane, biphenyl dicarboxylic acid, benzophenone dicarboxylic acid, and triphenyl dicarboxylic acid.
  • tricarboxylic acid examples include tricarboxylic acid. Examples include merit acid, trimesic acid, diphenyl ether tricarboxylic acid, and biphenyl tricarboxylic acid.
  • Preferred examples of the acid component when R 1 does not have the group represented by the above formula (2) include silicon atoms such as dimethylsilane diphthalic acid and 1,3-bis (phthalic acid) tetramethyldisiloxane Tetracarboxylic acid can be used, and by using these, the adhesion to the substrate, the oxygen plasma used for cleaning, and the resistance to UV ozone treatment can be enhanced.
  • R 2 in the general formula (1) represents a group derived from a diamine component, and when R 2 has a group represented by the formula (3) in an amount of 50 mol% or more, the resulting resin has solubility in an aqueous alkali solution. Is maintained in an appropriate range, and a photosensitive resin composition having good pattern processability can be obtained.
  • the group represented by the formula (3) is preferably 55 mol% or more, more preferably 60 mol% or more.
  • R 2 in the general formula (1) has 1 mol% or more, preferably 5 mol% or more, more preferably 10 mol% or more of the group represented by the general formula (4), so that it can be dissolved in an organic solvent. Improves. More preferably, it is 15 mol% or more, More preferably, it is 20 mol% or more. On the other hand, the solubility with respect to aqueous alkali solution is maintained appropriately by setting it as 50 mol% or less. Preferably it is 45 mol% or less, More preferably, it is 40 mol% or less.
  • the concentration of phenolic hydroxyl group in the resin becomes high, so that the solubility of the resulting resin in an alkaline aqueous solution becomes too high, and the photosensitive resin composition.
  • the amount of development film reduction becomes larger.
  • the amount of development film reduction is large, the in-plane film thickness uniformity deteriorates and the development margin becomes narrow, which is not preferable.
  • the imidization rate is increased, the transmittance of the film at the exposure wavelength is deteriorated, and the sensitivity is also decreased.
  • the proportion having a group R 2 in proportion to the general formula (1) having a group R 2 in the general formula (1) is represented by the formula (3) is represented by the general formula (4) Is not more than 100 mol%.
  • Examples of the diamine component in which R 2 is represented by the general formula (4) include 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-methylphenyl) Examples include hexafluoropropane and 2,2-bis (4-aminophenyl) hexafluoropropane. Of these, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane is particularly preferred from the viewpoint of solubility of the resulting resin in an aqueous alkali solution.
  • R 2 in the general formula (1) has a group represented by the formula (3) in an amount of 50 to 99 mol%, preferably 50 to 90 mol%, and a group represented by the general formula (4).
  • the divalent organic group having 2 or more carbon atoms and having 1 to 50 mol%, preferably 10 to 50 mol%, may be used, and other groups are not particularly limited.
  • diamine compounds can be used as they are or as corresponding diisocyanate compounds or trimethylsilylated diamines.
  • R 3 is an organic group having 1 to 20 carbon atoms.
  • M is preferably 1 or more from the viewpoint of the stability of the photosensitive resin composition using the obtained resin and appropriate solubility in an alkaline aqueous solution.
  • the resin having the structure represented by the general formula (1) as a main repeating unit used in the photosensitive resin composition of the present invention has at least one end of a molecular chain sealed with a monoamine or acid anhydride. Preferably it is.
  • a terminal sealing agent By using a terminal sealing agent, it becomes easy to adjust the photosensitive resin composition using the obtained resin to an appropriate viscosity. Moreover, it has the effect of suppressing the hydrolysis of the resin by the acid terminal, or suppressing the deterioration of the quinonediazide compound, which is a photosensitizer, by the amine terminal when a positive photosensitive resin composition is formed.
  • the monoamine used for terminal blocker is not particularly limited, a compound having a group represented by the following general formula (5) is preferable.
  • R 5 represents a saturated hydrocarbon group having 1 to 6 carbon atoms, and r represents 0 or 1.
  • a and B may be the same or different and each represents a hydroxyl group, a carboxyl group or a sulfonic acid group.
  • s and t each represent 0 or 1, and s + t ⁇ 1 from the viewpoint of the solubility of the resulting resin in an alkaline aqueous solution.
  • Preferred examples of the monoamine having the group represented by the general formula (5) include 2-aminophenol, 3-aminophenol, 2-amino-m-cresol, 2-amino-p-cresol, 3-amino-o -Cresol, 4-amino-o-cresol, 4-amino-m-cresol, 5-amino-o-cresol, 6-amino-m-cresol, 4-amino-2,3-xylenol, 4-amino-3 , 5-xylenol, 6-amino-2,4-xylenol, 2-amino-4-ethylphenol, 3-amino-4-ethylphenol, 2-amino-4-tert-butylphenol, 2-amino-4-phenyl Phenol, 4-amino-2,6-diphenylphenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, -Aminobenzoic acid, 3-aminobenzoic
  • the introduction ratio of the monoamine used as the end-capping agent is preferably 10 to 100 mol%, more preferably 40 to 80 mol% with respect to 100 mol% of tetracarboxylic acid which is a monomer component of the resin.
  • the solubility of the resulting resin in an organic solvent is improved, and the viscosity when a photosensitive resin composition is made using the obtained resin is appropriately adjusted. can do.
  • it is preferably 100 mol% or less, more preferably 80 mol% or less, and even more preferably 70 mol% or less.
  • the acid anhydride used for the end-capping agent is not particularly limited, but an acid anhydride having a cyclic structure or an acid anhydride having a crosslinkable group is preferable from the viewpoint of heat resistance of the obtained resin.
  • Examples include phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, and the like.
  • the introduction ratio of the acid anhydride used as the end-capping agent is preferably 10 to 100 mol%, more preferably 50 to 100 mol% with respect to 100 mol% of the diamine which is the monomer component of the resin.
  • the solubility of the resulting resin in an organic solvent is improved, and the viscosity when a photosensitive resin composition is made using the obtained resin is appropriately adjusted. can do.
  • 100 mol% or less is preferable and 90 mol% or less is more preferable from a viewpoint of the solubility with respect to the aqueous alkali solution of the resin obtained, and the mechanical strength of a cured film.
  • the end-capping agent introduced into the resin can be easily detected by the following method.
  • a resin having a terminal blocking agent introduced therein is dissolved in an acidic solution and decomposed into an amine component and an acid component, which are constituent units of the resin, and this is measured by gas chromatography (GC) or NMR measurement.
  • GC gas chromatography
  • NMR nuclear magnetic resonance
  • n is preferably 5 to 100, particularly preferably 10 ⁇ 70. If n is less than 5, the strength of the resulting cured resin film may be reduced. On the other hand, when n exceeds 100, the solubility of the resulting resin in an organic solvent may be reduced, or the viscosity of the resin composition may be too high.
  • the number of repetitions n in the present invention can be easily calculated by measuring the weight average molecular weight (Mw) by gel permeation chromatography (GPC) measurement in terms of polystyrene.
  • the weight average molecular weight (Mw) of the resin is preferably in the range of 5,000 to 100,000, and more preferably in the range of 10,000 to 50,000.
  • the resin having the structure represented by the general formula (1) as a main repeating unit can be produced according to a known method for producing polyamic acid or polyamic acid ester, and the method is not particularly limited.
  • a method of reacting a tetracarboxylic dianhydride and a diamine compound at a low temperature a method of obtaining a diester with a tetracarboxylic dianhydride and an alcohol, and then reacting in the presence of a diamine compound and a condensing agent can be mentioned. .
  • the end-capping agent can be used in place of a part of the diamine compound and acid dianhydride, the method of adding the end-capping agent simultaneously with the diamine compound and tetracarboxylic dianhydride, the diamine compound and tetracarboxylic acid
  • a method of adding a terminal blocking agent after reacting a dianhydride, a method of adding a diamine compound or a tetracarboxylic dianhydride after reacting a terminal blocking agent with a tetracarboxylic dianhydride or a diamine compound is there.
  • the introduction ratio of the end capping agent exceeds 50 mol%, the end capping agent and the tetracarboxylic dianhydride or diamine compound are reacted and then the diamine compound or tetracarboxylic dianhydride is added. Since formation of oligomers, such as a dimer and a trimer, is suppressed, it is preferable. Furthermore, it is desirable that the polymer obtained by the above method is poured into a large amount of water or a methanol / water mixture, precipitated, filtered, dried and isolated. By this precipitation operation, unreacted monomers and oligomer components such as dimers and trimers are removed, and the film properties after thermosetting are improved.
  • a tetracarboxylic dianhydride having an R 1 group is dissolved in a polymerization solvent, and a monoamine is added to this solution, followed by stirring with a mechanical stirrer. After a predetermined time, a diamine compound having an R 2 group is added and further stirred for a predetermined time.
  • the reaction temperature is 0 to 100 ° C., preferably 20 to 50 ° C., and the reaction time is 0.5 to 50 hours, preferably 2 to 24 hours.
  • the solvent used for the polymerization reaction is not particularly limited as long as it can dissolve the acid component and the diamine component, which are raw material monomers, and a protic solvent is preferable.
  • a protic solvent is preferable.
  • the resin mainly composed of the structure represented by the general formula (1) is preferably a resin that dissolves in propylene glycol monomethyl ether acetate at a concentration of 30% by weight or more.
  • a resin that dissolves in propylene glycol monomethyl ether acetate at a concentration of 30% by weight or more has high solubility in an organic solvent, and the selectivity of the solvent when a photosensitive resin composition is obtained increases.
  • the solution viscosity at 25 ° C. when the resin having the structure represented by the general formula (1) of the present invention as a main component is dissolved in 30% by weight in propylene glycol monomethyl ether acetate is 150 mPa ⁇ s or less. It is preferable.
  • a resin with a solution viscosity of 150 mPa ⁇ s or less a low viscosity suitable for slit coating can be maintained even when the solid content concentration of the photosensitive resin composition is increased, and a thick film is formed by slit coating.
  • the film thickness uniformity can be increased.
  • the photosensitive resin composition of the present invention may contain (a) an alkali-soluble resin other than the resin component having the structure represented by the general formula (1) as a main repeating unit.
  • the alkali-soluble resin refers to a resin having an acidic group that is soluble in alkali, and specifically includes a radical polymerizable polymer having acrylic acid, a phenol-novolak resin, polyhydroxystyrene, polysiloxane, and the like. Moreover, you may protect the acidic group of these resin and adjust alkali solubility.
  • Such a resin is soluble in an aqueous solution of alkali such as choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate in addition to tetramethylammonium hydroxide. .
  • alkali such as choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate in addition to tetramethylammonium hydroxide.
  • Two or more of these resins may be contained, but the proportion of the total amount of the resin including the component (a) is preferably 50% by weight or less.
  • the photosensitive resin composition of the present invention contains (b) a photosensitizer.
  • the photosensitive agent include (b-1) a photoacid generator, (b-2) a photopolymerization initiator, and (b-3) a combination of compounds having two or more ethylenically unsaturated bonds.
  • B-1 By containing a photoacid generator, an acid is generated in the light irradiation part to increase the solubility of the light irradiation part in an alkaline aqueous solution, thereby obtaining a positive relief pattern in which the light irradiation part dissolves. be able to.
  • (b-1) by containing a photoacid generator and an epoxy compound or a thermal crosslinking agent described later, the acid generated in the light irradiation part promotes the crosslinking reaction of the epoxy compound and the thermal crosslinking agent, and the light irradiation part A negative-type relief pattern in which is insolubilized can be obtained.
  • (b-2) containing a photopolymerization initiator and (b-3) a compound having two or more ethylenically unsaturated bonds, the active radical generated in the light irradiation part is a radical of ethylenically unsaturated bonds.
  • a negative relief pattern in which polymerization is advanced and the light irradiation part is insolubilized can be obtained.
  • the photosensitive resin composition of the present invention preferably contains (b-1) a photoacid generator as (b) a photosensitizer and exhibits positive photosensitivity.
  • the positive photosensitive resin composition can easily obtain a forward-tapered pattern by firing after obtaining a fine pattern by an exposure / development process. This forward tapered pattern is excellent in the coverage of the upper electrode when used as an insulating film of an organic EL element, can prevent disconnection, and can increase the reliability of the element.
  • Photoacid generators include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, iodonium salts, and the like.
  • the quinonediazide compound includes a polyhydroxy compound in which a sulfonic acid of quinonediazide is bonded with an ester, a polyamino compound in which a sulfonic acid of quinonediazide is bonded to a sulfonamide, a sulfonic acid of quinonediazide in an ester bond and / or sulfone Examples include amide-bonded ones. It is preferable that 50 mol% or more of the total functional groups of these polyhydroxy compounds and polyamino compounds are substituted with quinonediazide. Further, it is preferable to contain two or more (b-1) photoacid generators, and a highly sensitive photosensitive resin composition can be obtained.
  • quinonediazide is preferably a 5-naphthoquinonediazidesulfonyl group or a 4-naphthoquinonediazidesulfonyl group.
  • the 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinonediazide sulfonyl ester compound has an absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • it may contain a naphthoquinone diazide sulfonyl ester compound having a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound. You may contain.
  • sulfonium salts Of the photoacid generators, sulfonium salts, phosphonium salts, and diazonium salts are preferable because they moderately stabilize the acid components generated by exposure. Of these, sulfonium salts are preferred. Furthermore, it can also contain a sensitizer etc. as needed.
  • Photopolymerization initiators include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy- 2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 1-phenyl-1,2-propanedione-2 -(O-ethoxycarbonyl) oxime, 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -Butanone-1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin Sopropyl ether, benzoin isobutyl ether, benzophenone, methyl o-
  • (B-3) As a compound having two or more ethylenically unsaturated bonds, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene Glycol dimethacrylate, tetraethylene glycol dimethacrylate, ethylene oxide modified bisphenol A diacrylate, ethylene oxide modified bisphenol A dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, 1, 3-diisopropenylbenzene, , 3-butanediol diacrylate, 1,3-butanediol dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1,4-butanedi
  • the content of (b) the photosensitizer is preferably 0.05 to 50 parts by weight with respect to 100 parts by weight of the resin of component (a).
  • the content of the (b-1) photoacid generator is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the component (a) resin from the viewpoint of increasing sensitivity.
  • the quinonediazide compound is preferably 3 to 40 parts by weight.
  • the total amount of the sulfonium salt, phosphonium salt and diazonium salt is preferably 0.5 to 20 parts by weight.
  • the content of the (b-2) photopolymerization initiator is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the component (a) resin.
  • the content of the compound having two or more ethylenically unsaturated bonds is preferably 5 to 50 parts by weight with respect to 100 parts by weight of the resin of component (a).
  • a compound having only one ethylenically unsaturated bond may be contained in an amount of 1 to 50 parts by weight with respect to 100 parts by weight of the resin as component (a) for adjusting the solubility.
  • examples of such compounds are acrylate, methacrylate, methyl acrylate, methyl methacrylate, butyl acrylate, butyl methacrylate, isobutyl acrylate, hexyl acrylate, isooctyl acrylate, isobornyl acrylate, isobornyl methacrylate, cyclohexyl methacrylate, hydroxyethyl acrylate , Hydroxyethyl methacrylate, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N, N-dimethylaminopropylacrylamide,
  • the photosensitive resin composition of the present invention contains (c) a solvent.
  • a solvent ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether and other ethers, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, Esters such as ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, butyl lactate, alcohols such as ethanol, isopropanol, butanol, pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, methyl ethyl ketone , Methyl isobutyl ketone, methyl amyl ketone, diisobutyl ketone, Ketones
  • the content of the solvent (c) is preferably 50 parts by weight or more, more preferably 100 parts by weight or more, and preferably 2000 parts by weight or less, more preferably 100 parts by weight of the resin of the component (a). Is 1500 parts by weight or less.
  • the photosensitive resin composition of the present invention may contain components other than (a) to (c), and (d) preferably contains a thermal crosslinking agent.
  • the thermal crosslinking agent include (d-1) an alkoxymethyl group or methylol group-containing compound, and (d-2) an epoxy group or oxetanyl group-containing compound. Two or more of these may be contained.
  • the thermal crosslinking agent of component (d) can increase the chemical resistance of the cured film by crosslinking reaction with the resin of component (a) by heating.
  • (D-1) As the alkoxymethyl group or methylol group-containing compound, a compound represented by the general formula (6) or a compound having a group represented by the general formula (7) is preferable, and these may be used in combination. .
  • R represents a direct bond or a monovalent to tetravalent linking group.
  • R 7 represents a monovalent organic group having 1 to 20 carbon atoms, Cl, Br, I or F.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms include monovalent hydrocarbons having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclopentyl group, and cyclohexyl group. Groups are preferred.
  • R 8 and R 9 represent CH 2 OR 11 (R 11 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms).
  • R 10 represents a hydrogen atom, a methyl group or an ethyl group.
  • h represents an integer of 0 to 2
  • i represents an integer of 1 to 4.
  • the plurality of R 7 ⁇ R 10 may be identical or different, but if the same benzene ring has two R 7, R 7 are the same. Examples of the linking group R are shown below.
  • R 13 to R 35 represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, Cl, Br, I or F.
  • a monovalent organic group having 1 to 20 carbon atoms a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, benzyl group, naphthyl group and the like are preferable.
  • R 12 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • j represents 1 or 2
  • k represents 0 or 1.
  • j + k is 1 or 2.
  • R 8 and R 9 represent CH 2 OR 11 (R 11 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms) which is a thermal crosslinking group.
  • R 11 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms because it retains moderate reactivity and is excellent in storage stability.
  • R 11 is more preferably a methyl group or an ethyl group.
  • the number of functional groups of the thermal crosslinking group in one molecule is 2 to 8.
  • the number of functional groups is preferably 4 or more from the viewpoint of increasing the crosslinking density and improving the mechanical properties.
  • the number of functional groups exceeds 8, it is difficult to obtain a high-purity product, and the stability of the compound itself and the storage stability in the resin composition are lowered.
  • the purity of the compound represented by the general formula (6) is preferably 75% or more, and more preferably 85% or more. If purity is 85% or more, it is excellent in storage stability and can fully perform the crosslinking reaction of a resin composition. Moreover, since the unreacted group used as a water absorbing group can be decreased, the water absorption of a resin composition can be made small. Examples of the method for obtaining a high-purity thermal crosslinking agent include recrystallization and distillation. The purity of the thermal crosslinking agent can be determined by a liquid chromatography method.
  • R 12 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms. Further, from the viewpoint of the stability of the compound and the storage stability in the resin composition, in the photosensitive resin composition containing a photoacid generator, R 12 is preferably a methyl group or an ethyl group, and is contained in the compound (CH 2 OR 12 ) The number of groups is preferably 8 or less.
  • thermal crosslinking agent having a group represented by the general formula (7) are shown below.
  • (D-2) As the epoxy group or oxetanyl group-containing compound, a compound containing two or more epoxy groups or oxetanyl groups in one molecule is preferable from the viewpoint of chemical resistance and heat resistance of the resulting cured film.
  • VG3101L (trade name, manufactured by Printec Co., Ltd.), “Tepic” S, “Tepic” G, “Tepic” P (above trade names, Nissan Chemical Industries, Ltd.) have three or more epoxy groups.
  • the content of the thermal crosslinking agent as the component (d) is preferably 5 parts by weight or more and more preferably 10 parts by weight or more with respect to 100 parts by weight of the resin of the component (a). If it is 5 parts by weight or more, the crosslink density of the cured film is increased and the chemical resistance is improved, which is preferable. Furthermore, when it is 10 parts by weight or more, chemical resistance is improved and higher mechanical properties are obtained. On the other hand, from the viewpoint of storage stability and mechanical strength of the composition, it is preferably 50 parts by weight or less, more preferably 40 parts by weight or less, and even more preferably 30 parts by weight or less. In addition, when it contains 2 or more types of (a) component or (d) component, it is preferable that those total amount is the said range.
  • the photosensitive resin composition of the present invention may contain (e) a compound having a phenolic hydroxyl group.
  • a compound having a phenolic hydroxyl group By containing the compound which has a phenolic hydroxyl group, the solubility with respect to the aqueous alkali solution of the photosensitive resin composition obtained improves, and it can achieve high sensitivity.
  • Examples of the compound having a phenolic hydroxyl group include BisP-AF, BisP-AP, BisP-BA, Bis-Z, Ph-CC-AP, HDP-244, BisOC-Z, BisOPP-Z, BisP- CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, BisP-MZ, BisP-EZ, Bis26X-CP, BisP-PZ, BisP-IPZ, BisCR-IPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (Tetrakis P-DO-BPA), TrisP-HAP, TrisP-PA, TrisP-PHBA, TrisP-SA, TrisOCR-PA, BisOFP-Z, BisRS-2P, Bi PG-26X, BisRS-3P, BisOC-OCHP, BisPC-OCHP, Bis25X-OCHP, Bis26X-OCHP, BisOCHP-
  • the content of the compound having a phenolic hydroxyl group is preferably 1 to 40 parts by weight, more preferably 3 to 30 parts by weight with respect to 100 parts by weight of the resin of component (a).
  • component may contain 2 or more types, and when it contains 2 or more types, it is preferable that those total amount is the said range.
  • the resin composition of the present invention may contain a thermal acid generator.
  • the thermal acid generator generates an acid by heating after development, which will be described later, and promotes a crosslinking reaction between the resin of the component (a) and the thermal crosslinking agent of the component (d), and the imide ring of the resin of the component (a). Promotes cyclization of the oxazole ring. For this reason, the chemical resistance of the cured film is improved, and film loss can be reduced.
  • the acid generated from the thermal acid generator is preferably a strong acid.
  • the thermal acid generator is preferably an aliphatic sulfonic acid compound represented by the general formula (8) or (9), and may contain two or more of these.
  • R 36 to R 38 each represents an alkyl group having 1 to 10 carbon atoms or a monovalent aromatic group having 7 to 12 carbon atoms.
  • the alkyl group and the aromatic group may be substituted, and examples of the substituent include an alkyl group and a carbonyl group.
  • the content of the thermal acid generator is preferably 0.1 parts by weight or more, more preferably 0.3 parts by weight or more with respect to 100 parts by weight of the resin of component (a), from the viewpoint of further promoting the crosslinking reaction. 0.5 parts by weight or more is more preferable. On the other hand, from the viewpoint of maintaining the electrical insulation of the cured film, it is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and even more preferably 10 parts by weight or less. In addition, when 2 or more types of thermal acid generators are contained, it is preferable that those total amount is the said range.
  • thermochromic compound that develops color when heated and exhibits an absorption maximum at 350 nm to 700 nm, or has an absorption maximum at 500 nm to 750 nm without an absorption maximum at 350 nm to less than 500 nm.
  • Organic pigments or dyes can be included.
  • the coloring temperature of the thermochromic compound is preferably 120 ° C. or higher, more preferably 150 ° C. or higher. The higher the coloring temperature of the thermochromic compound, the better the heat resistance under high temperature conditions, and the better the light resistance without fading due to prolonged ultraviolet-visible light irradiation.
  • thermochromic compounds include thermal dyes, pressure sensitive dyes, and hydroxyl group-containing compounds having a triarylmethane skeleton.
  • the photosensitive resin composition of the present invention may contain an adhesion improving agent.
  • adhesion improvers vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling agents such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy groups Examples thereof include compounds obtained by reacting silicon compounds.
  • adhesion improving agents By containing these adhesion improving agents, adhesion to an underlying substrate such as a silicon wafer, ITO, SiO 2 , or silicon nitride can be enhanced when developing a photosensitive resin film. Further, resistance to oxygen plasma and UV ozone treatment used for cleaning or the like can be increased.
  • the content of the adhesion improving agent is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the component (a) resin.
  • the photosensitive resin composition of the present invention may contain an adhesion improver.
  • the adhesion improving agent include an alkoxysilane-containing aromatic amine compound, an aromatic amide compound, or an aromatic non-containing silane compound. Two or more of these may be contained. By containing these compounds, the adhesiveness with the base material after curing can be improved. Specific examples of the alkoxysilane-containing aromatic amine compound and aromatic amide compound are shown below.
  • a compound obtained by reacting an aromatic amine compound and an alkoxy group-containing silicon compound may be used. For example, an aromatic amine compound and a group that reacts with an amino group such as an epoxy group or a chloromethyl group. The compound etc. which are obtained by making the alkoxysilane compound which has it react are mentioned.
  • Non-aromatic silane compounds include vinyl silane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, 3-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyl.
  • vinyl silane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, 3-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyl.
  • carbon-carbon unsaturated bond-containing silane compounds such as trimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropylmethyldiethoxysilane.
  • vinyltrimethoxysilane and vinyltriethoxysilane are preferable.
  • the total content of the alkoxysilane-containing aromatic amine compound, aromatic amide compound, or non-aromatic silane compound is preferably 0.01 to 15 parts by weight with respect to 100 parts by weight of the component (a) resin.
  • the photosensitive resin composition of the present invention may contain inorganic particles.
  • Preferred specific examples include, but are not limited to, silicon oxide, titanium oxide, barium titanate, alumina, talc and the like.
  • the primary particle diameter of these inorganic particles is preferably 100 nm or less, more preferably 60 nm or less.
  • the photosensitive resin composition of the present invention may contain a surfactant and can improve the wettability with the substrate.
  • Fluorosurfactants such as Fluorard (trade name, manufactured by Sumitomo 3M Co., Ltd.), MegaFac (trade name, manufactured by DIC Corporation), Sulflon (trade name, manufactured by Asahi Glass Co., Ltd.), etc. , KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), DBE (trade name, manufactured by Chisso Co., Ltd.), Polyflow, Granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), BYK (trade name, BYK Chemie Corp.) ) And other organic siloxane surfactants, and acrylic polymer surfactants such as Polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.).
  • a photosensitive resin composition can be obtained by mixing uniformly.
  • the dissolution method include stirring and heating.
  • the heating temperature is preferably set in a range that does not impair the performance of the resin composition, and is usually room temperature to 80 ° C.
  • the dissolution order of each component is not particularly limited, and for example, there is a method of sequentially dissolving compounds having low solubility.
  • components that tend to generate bubbles when stirring and dissolving such as surfactants and some adhesion improvers, by dissolving other components and adding them last, poor dissolution of other components due to the generation of bubbles Can be prevented.
  • the obtained photosensitive resin composition is preferably filtered using a filtration filter to remove dust and particles.
  • the filter pore diameter is 0.5 to 0.02 ⁇ m, for example, 0.5 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, 0.05 ⁇ m, 0.02 ⁇ m, but is not limited thereto.
  • the material for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), and polyethylene and nylon are preferable.
  • PP polypropylene
  • PE polyethylene
  • nylon NY
  • PTFE polytetrafluoroethylene
  • polyethylene and nylon are preferable.
  • the photosensitive resin composition of the present invention is particularly suitable for slit coating as described above, but the coating method is not limited, and spin coating method, slit coating method, dip coating method, spray coating method, ink jet method and nozzle coating. It is applied by a printing method such as a method to obtain a photosensitive resin composition film. Prior to the application, the substrate on which the photosensitive resin composition is applied may be pretreated with the adhesion improving agent described above in advance.
  • a method of treating the substrate surface examples include spin coating, slit die coating, bar coating, dip coating, spray coating, and steam treatment. If necessary, it can be dried under reduced pressure, and then the reaction between the base material and the adhesion improving agent can proceed by a heat treatment at 50 ° C. to 300 ° C.
  • the apparatus for applying the photosensitive resin composition of the present invention has a plurality of types, that is, the photosensitive resin composition of the present invention and the photosensitive resin composition of the present invention, without washing the liquid feeding path with one liquid feeding path. Photosensitive resin compositions other than the product can be sequentially fed.
  • washing means washing with a washing liquid having a capacity of 10 times or more the total volume of the liquid feeding pump, the liquid feeding line and the mouthpiece from the liquid feeding tank to the tip of the mouthpiece.
  • the photosensitive resin composition of the present invention is excellent in solubility in low-polarity solvents typified by propylene glycol monomethyl ether acetate, a plurality of types of photosensitive resin compositions can be prepared without performing a step of washing with thinner. Can be refilled by continuously feeding.
  • the photosensitive resin composition other than the photosensitive resin composition of the present invention is not particularly limited, but is used for the photosensitive resin composition of the present invention.
  • the above-mentioned problem is likely to occur when a solvent having the same or lower polarity than the solvent used is present, and the method for producing a heat-resistant resin film of the present invention is preferably applied.
  • a photosensitive resin composition containing at least one solvent selected from -ethoxypropionate, methyl-3-methoxypropionate, 2-heptanone, propylene glycol monomethyl ether acetate, and cyclohexanone for example, ethylene glycol monoethyl ether acetate, ethyl-3
  • the substrate coated with the photosensitive resin composition is dried to obtain a photosensitive resin film. Drying is preferably performed using an oven, a hot plate, infrared rays, or the like in the range of 50 ° C. to 150 ° C. for 1 minute to several hours.
  • the photosensitive resin film is exposed to actinic radiation through a mask having a desired pattern.
  • actinic radiation used for exposure there are ultraviolet rays, visible rays, electron beams, X-rays and the like.
  • the exposed portion may be removed using a developer after exposure.
  • the developer is an aqueous solution of tetramethylammonium, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethylamino
  • An aqueous solution of a compound exhibiting alkalinity such as ethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine and the like is preferable.
  • these alkaline aqueous solutions may contain polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol,
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol,
  • One or more alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone and methyl isobutyl ketone may be added.
  • alcohols such as ethanol and isopropyl alcohol, and esters such as eth
  • a cured film can be obtained by heat-treating the obtained photosensitive resin composition film.
  • a method of heat treatment at 230 ° C. for 60 minutes a method of heat treatment at 120 to 400 ° C. for 1 minute to 10 hours, a method of heat treatment at a low temperature of about room temperature to 100 ° C. with addition of a curing catalyst, ultrasonic waves or electromagnetic waves
  • a method of curing at a low temperature of about room temperature to 100 ° C. by treatment examples thereof include a method of curing at a low temperature of about room temperature to 100 ° C. by treatment.
  • the heat-resistant resin film (cured film) formed by the photosensitive resin composition of the present invention includes a semiconductor passivation film, a protective film for semiconductor elements, an interlayer insulating film for multilayer wiring for high-density mounting, an insulating film for organic EL elements, It is suitably used for applications such as a planarization film on a TFT substrate.
  • Viscosity Evaluation (2-1) Polymer Solution Viscosity Polymer powder was dissolved in PGMEA at 30% by weight and measured at 25 ° C. using an E-type viscometer. In order to maintain a viscosity suitable for slit coating even when the solid content concentration in the photosensitive resin composition is increased, the viscosity of the polymer solution is preferably less than 150 mPa ⁇ s.
  • Appropriate evaluation for forming a uniform thick film by slit coating is “A” when the polymer powder is dissolved in PGMEA at 30% by weight and the solution viscosity is less than 150 mPa ⁇ s. Although it melt
  • the photosensitive resin composition (varnish) having a solid content concentration of 20% prepared in Examples and Comparative Examples was measured at 25 ° C. using an E-type viscometer.
  • the solution viscosity is preferably 1 to 15 cp, and more preferably 1 to 10 cp.
  • a varnish having a viscosity of less than 10 cp at 25 ° C. was judged as “S”, a varnish of 10 cp to less than 15 cp as “A”, and a varnish having a viscosity of 15 cp or more as “C”.
  • the solid content concentration of the photosensitive resin composition is not 20%, the solvent composition of the photosensitive resin composition does not change or the photosensitive resin composition does not change, so that the solid content concentration is 20%. % Can be measured.
  • the positive photosensitive resin composition is exposed after exposure, and the negative photosensitive resin composition is post-exposure baked and then 2.38 wt% tetramethylammonium (TMAH) aqueous solution (manufactured by Mitsubishi Gas Chemical Co., Ltd., ELM- D) was developed for 60 seconds and then rinsed with pure water to obtain a developed film.
  • TMAH tetramethylammonium
  • Film thickness measurement method The film thickness after pre-baking and development was measured using a light interference type film thickness measuring device Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd., with a refractive index of 1.63.
  • the amount of development film reduction is preferably less than 0.50 ⁇ m.
  • the developed film reduction amount was less than 0.50 ⁇ m, it was determined as “A”, when it was 0.51 to 0.59 ⁇ m, “B”, and when it was 0.60 ⁇ m or more, “C”.
  • Developed film reduction ( ⁇ m) film thickness after pre-baking ⁇ film thickness after development Sensitivity calculation After exposure and development, exposure that forms a 20 ⁇ m line and space pattern (1L / 1S) with a one-to-one width The amount (referred to as the optimum exposure amount Eop) was taken as the sensitivity. If Eth is 200 mJ / cm 2 or less, it can be determined that the sensitivity is high. 150 mJ / cm 2 or less is more preferable.
  • Synthesis Example 1 Synthesis of Diamine Compound ( ⁇ ) 18.3 g (0.05 mol) of BAHF (manufactured by Central Glass Co., Ltd.) in 100 mL of acetone and 17.4 g (0.3 mol of propylene oxide (manufactured by Tokyo Chemical Industry Co., Ltd.)) ) And cooled to -15 ° C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) in 100 mL of acetone was added dropwise thereto. After completion of dropping, the mixture was stirred at ⁇ 15 ° C. for 4 hours and then returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50 ° C.
  • Synthesis Example 2 Synthesis of quinonediazide compound (b-1) TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), 21.22 g (0.05 mol) and 5-naphthoquinonediazidesulfonic acid chloride under a dry nitrogen stream 26.8 g (0.1 mol) of NAC-5 (manufactured by Toyo Gosei Co., Ltd.) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. To this, 12.65 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system would not exceed 35 ° C.
  • Needle-like white crystals formed in the solution after standing were collected by filtration and washed with 100 mL of water.
  • the white crystals were vacuum dried at 50 ° C. for 48 hours.
  • NMR manufactured by JEOL Ltd., GX-270
  • DMSO-d6 a heavy solvent
  • thermal crosslinking agents and compounds having a phenolic hydroxyl group used in the examples are as follows.
  • Example 1 Under a dry nitrogen stream, 15.1 g (0.025 mol) of the diamine compound ( ⁇ ) obtained in Synthesis Example 1, 3.66 g (0.01 mol) of BAHF and 0.62 g of SiDA (manufactured by Shin-Etsu Chemical Co., Ltd.) (0.0025 mol) was dissolved in 200 g of NMP.
  • 22.2 g (0.05 mol) of 6FDA manufactured by Daikin Industries, Ltd.
  • was added together with 50 g of NMP followed by stirring at 40 ° C. for 1 hour.
  • 2.73 g (0.025 mol) of MAP (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 40 ° C. for 1 hour.
  • Example 2 Polyamic acid ester resin as in Example 1 except that 3.62 g (0.01 mol) of BIS-AT-AF (manufactured by Central Glass Co., Ltd.) was used instead of 3.66 g (0.01 mol) of BAHF. (B) was obtained. Using the obtained resin (B), the solubility evaluation with respect to the organic solvent and the measurement of the polymer solution viscosity were performed by the above-described methods. The results are shown in Table 2.
  • Example except that 10 g of the resin (B) obtained above was added instead of the resin (A), and 1.0 g of the alkoxymethyl group-containing thermal crosslinking agent (d-1) obtained in Synthesis Example 3 was further added.
  • a varnish (B) of a positive photosensitive resin composition was produced.
  • the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 3 Diamine compound ( ⁇ ) 15.1 g (0.025 mol) 19.3 g (0.032 mol), BAHF 3.66 g (0.01 mol) 2.01 g (0.0055 mol) and MAP 2.73 g (0 0.025 mol) was changed to 2.18 g (0.02 mol) in the same manner as in Example 1 to obtain a polyamic acid ester resin (C). Using the obtained resin (C), solubility evaluation in an organic solvent and measurement of the polymer solution viscosity were performed by the above-described methods. The results are shown in Table 2.
  • a varnish (C) of the composition was prepared. Using the obtained varnish (C), the amount of developed film was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 4 Under a dry nitrogen stream, 22.2 g (0.05 mol) of 6FDA was dissolved in 200 g of NMP. ABP (product made from Tokyo Chemical Industry Co., Ltd.) 6.60g (0.04mol) was added here, and it stirred at 40 degreeC for 1 hour. Thereafter, 9.06 g (0.015 mol) of the diamine compound ( ⁇ ), 4.53 g (0.0125 mol) of BIS-AT-AF and 0.62 g (0.0025 mol) of SiDA were added together with 50 g of NMP, and the mixture was heated at 40 ° C. for 2 hours. Stir.
  • ABP product made from Tokyo Chemical Industry Co., Ltd.
  • a varnish (D) of the composition was prepared. Using the obtained varnish (D), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 5 Under a dry nitrogen stream, 21.2 g (0.035 mol) of the diamine compound ( ⁇ ), 4.58 g (0.0125 mol) of BAHF, and 0.62 g (0.0025 mol) of SiDA were dissolved in 200 g of NMP. To this, 13.3 g (0.03 mol) of 6FDA was added together with 50 g of NMP, followed by stirring at 40 ° C. for 1 hour. Then, 3.92 g (0.04 mol) of MA (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred at 40 ° C. for 1 hour.
  • MA manufactured by Wako Pure Chemical Industries, Ltd.
  • a varnish (E) of the composition was prepared. Using the obtained varnish (E), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 6 Diamine compound ( ⁇ ) 21.2 g (0.035 mol) 25.7 g (0.0425 mol), BAHF 4.58 g (0.0125 mol) 1.83 g (0.005 mol), 6FDA 13.3 g (0 0.03 mol) was changed to 16.7 g (0.0375 mol) and MA 3.92 g (0.04 mol) was changed to 2.45 g (0.025 mol). F) was obtained. Using the obtained resin (F), solubility evaluation in an organic solvent and measurement of polymer solution viscosity were performed by the above-described methods. The results are shown in Table 2.
  • a varnish (F) of the composition was prepared. Using the resulting varnish (F), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 7 Under a dry nitrogen stream, 15.1 g (0.025 mol) of the diamine compound ( ⁇ ), 8.24 g (0.0225 mol) of BAHF, and 0.62 g (0.0025 mol) of SiDA were dissolved in 200 g of NMP. MA 4.90g (0.05mol) was added here with NMP50g, and it stirred at 40 degreeC for 1 hour. Then, 11.1 g (0.025 mol) of 6FDA was added and stirred at 40 ° C. for 2 hours. Further, a solution prepared by diluting 11.9 g (0.1 mol) of DFA with 5 g of NMP was added dropwise over 10 minutes, and then stirring was continued at 40 ° C. for 2 hours.
  • a varnish (G) of the composition was prepared. Using the obtained varnish (G), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 8 To 10 g of the resin (A) obtained in Example 1, 1,2-octanedione-1- [4- (phenylthio) -2- (o-benzoyloxime)] (ODPTBO) (manufactured by BASF Japan Ltd.) 0 0.1 g, ethylene oxide-modified bisphenol A dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester BPE-100) 2.0 g, trimethylolpropane triacrylate (TPT) 0.5 g, alkoxy obtained in Synthesis Example 3
  • a negative photosensitive resin composition varnish (A-2) was obtained by adding 1.0 g of a methyl group-containing thermal crosslinking agent (d-3) and 50 g of GBL. Using the obtained varnish (A-2), the amount of development film reduction was evaluated as described above. The results are shown in Table 2.
  • Example 9 Example 3 was repeated except that 2.01 g (0.0055 mol) of BAHF was changed to 2.93 g (0.008 mol) and 2.18 g (0.02 mol) of MAP was changed to 1.63 g (0.015 mol).
  • a polyamic acid ester resin (H) was obtained. Using the obtained resin (H), solubility evaluation in an organic solvent and measurement of polymer solution viscosity were performed by the above-described methods. The results are shown in Table 2.
  • a positive photosensitive resin composition varnish (H) was prepared in the same manner as in Example 3 except that 10 g of the resin (H) obtained above was added instead of the resin (A). Using the obtained varnish (H), the solubility in organic solvents, the viscosity of the polymer solution, and the amount of development film reduction were evaluated in the same manner as in Example 3. The results are shown in Table 3.
  • Example 10 Example 4 except that 4.53 g (0.0125 mol) of BIS-AT-AF was changed to 3.62 g (0.01 mol) and 6.60 g (0.04 mol) of ABP was changed to 7.43 g (0.045 mol).
  • a polyamic acid ester resin (I) was obtained.
  • solubility evaluation in an organic solvent and measurement of the polymer solution viscosity were performed by the above-described methods. The results are shown in Table 2.
  • a positive photosensitive resin composition varnish (I) was prepared in the same manner as in Example 4 except that 10 g of the resin (I) obtained above was added instead of the resin (A). Using the obtained varnish (I), the amount of development film loss was evaluated in the same manner as in Example 4. The results are shown in Table 3.
  • Example 11 6FDA 16.7 g (0.0375 mol) was the same as Example 6 except that 17.8 g (0.04 mol) and MA 2.45 g (0.025 mol) were changed to 1.96 g (0.02 mol).
  • a polyamic acid ester resin (J) was obtained. Using the obtained resin (J), solubility evaluation in an organic solvent and measurement of the polymer solution viscosity were performed by the above-described methods. The results are shown in Table 2.
  • a positive photosensitive resin composition varnish (J) was prepared in the same manner as in Example 6 except that 10 g of the resin (J) obtained above was added instead of the resin (A). Using the obtained varnish (J), the amount of development film loss was evaluated in the same manner as in Example 6. The results are shown in Table 3.
  • Example 12 Except that 11.1 g (0.025 mol) of 6FDA was changed to 9.99 g (0.0225 mol), and 4.90 g (0.05 mol) of MA was changed to 5.39 g (0.055 mol), the same as in Example 7.
  • Resin polyamic acid ester (K) was obtained. Using the obtained resin (K), solubility evaluation in an organic solvent and measurement of the polymer solution viscosity were performed by the above-described methods. The results are shown in Table 2.
  • a positive photosensitive resin composition varnish (K) was prepared in the same manner as in Example 7 except that 10 g of the resin (K) obtained above was added instead of the resin (A). Using the resulting varnish (K), the amount of development film loss was evaluated in the same manner as in Example 7. The results are shown in Table 3.
  • Comparative Example 1 A polyamic acid ester resin (L) was obtained in the same manner as in Example 1 except that 15.5 g (0.05 mol) of ODPA (manac) was used instead of 22.2 g (0.05 mol) of 6FDA. It was. Using the obtained resin (L), solubility evaluation in an organic solvent and measurement of a polymer solution viscosity were performed by the above-described methods. The results are shown in Table 2.
  • a positive photosensitive resin composition varnish (L) was produced in the same manner as in Example 1 except that 10 g of the resin (L) obtained above was added instead of the resin (A). Using the resulting varnish (L), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • a positive photosensitive resin composition varnish (M) was prepared in the same manner as in Example 1 except that 10 g of the resin (M) obtained above was added instead of the resin (A). Using the obtained varnish (M), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • a positive photosensitive resin composition varnish (N) was produced in the same manner as in Example 1 except that 10 g of the resin (N) obtained above was added instead of the resin (A). Using the obtained varnish (N), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • a positive photosensitive resin composition varnish (O) was produced in the same manner as in Example 1 except that 10 g of the resin (O) obtained above was added instead of the resin (A). Using the obtained resin (O) and varnish (O), the amount of development film reduction was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Comparative Example 5 Example except that 15.1 g (0.025 mol) of the diamine compound ( ⁇ ) was changed to 6.05 g (0.01 mol) and 3.66 g (0.01 mol) of BAHF was changed to 9.15 g (0.025 mol).
  • a polyamic acid ester resin (P) was obtained.
  • solubility evaluation in an organic solvent and measurement of a polymer solution viscosity were performed by the above-described methods. The results are shown in Table 2.
  • a positive photosensitive resin composition varnish (P) was produced in the same manner as in Example 1 except that 10 g of the resin (P) obtained above was added instead of the resin (A). Using the obtained varnish (P), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • a positive photosensitive resin composition varnish (Q) was prepared in the same manner as in Example 1 except that 10 g of the resin (Q) obtained above was added instead of the resin (A). Using the obtained varnish (Q), the amount of development film reduction was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • pyridine manufactured by Tokyo Chemical Industry Co., Ltd.
  • 15 g of toluene manufactured by Tokyo Chemical Industry Co., Ltd.
  • a condenser was attached to remove water from the system azeotropically with toluene.
  • the temperature of the solution was raised to 120 ° C. for 2 hours and further at 180 ° C. for 2 hours.
  • the temperature of this solution was lowered to room temperature, the solution was poured into 2 L of water, and a polymer solid precipitate was collected by filtration.
  • a positive photosensitive resin composition varnish (R) was produced in the same manner as in Example 1 except that 10 g of the resin (R) obtained above was added instead of the resin (A). Using the obtained varnish (R), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • a positive photosensitive resin composition varnish (S) was prepared in the same manner as in Example 1 except that 10 g of the resin (S) obtained above was added instead of the resin (A). Using the obtained varnish (S), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • a positive photosensitive resin composition varnish (T) was produced in the same manner as in Example 1 except that 10 g of the resin (T) obtained above was added instead of the resin (A). Using the obtained varnish (T), the amount of development film loss was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • a positive photosensitive resin composition varnish (U) was prepared in the same manner as in Example 1 except that 10 g of the resin (U) obtained above was added instead of the resin (A). Using the obtained varnish (U), the solubility with respect to the organic solvent, the polymer solution viscosity, and the development film reduction amount were evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
  • Table 1 shows the monomers and end-capping agent compositions used in the resins A to U used in Examples and Comparative Examples
  • Table 2 shows the evaluation results of the organic solvent solubility and polymer solution viscosity of the resins A to U.
  • Table 3 shows the evaluation results of the varnish compositions and developing film reduction amounts of Examples and Comparative Examples.
  • Example 13 Under a dry nitrogen stream, 16.6 g (0.0275 mol) of diamine compound ( ⁇ ) obtained in Synthesis Example 1, 1.83 g (0.005 mol) of BAHF, and 0.62 g of SiDA (manufactured by Shin-Etsu Chemical Co., Ltd.) (0.0025 mol) was dissolved in 200 g of NMP. To this, 22.2 g (0.05 mol) of 6FDA (manufactured by Daikin Industries, Ltd.) was added together with 50 g of NMP, followed by stirring at 40 ° C. for 1 hour. Then, 3.27 g (0.03 mol) of MAP (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 40 ° C.
  • 6FDA manufactured by Daikin Industries, Ltd.
  • Example 14 Under a dry nitrogen stream, 22.2 g (0.05 mol) of 6FDA was dissolved in 200 g of NMP. ABP (product made from Tokyo Chemical Industry Co., Ltd.) 4.95g (0.03mol) was added here, and it stirred at 40 degreeC for 1 hour. Thereafter, 16.6 g (0.0275 mol) of the diamine compound ( ⁇ ), 1.83 g (0.005 mol) of BAHF and 0.62 g (0.0025 mol) of SiDA were added together with 50 g of NMP, and the mixture was stirred at 40 ° C. for 2 hours.
  • ABP product made from Tokyo Chemical Industry Co., Ltd.
  • a positive photosensitive resin composition varnish (AB) was produced in the same manner as in Example 13 except that 7.0 g of the resin (AB) obtained above was added instead of the resin (AA). Viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13 using the obtained varnish (AB). The results are shown in Table 5.
  • Example 15 Example 13 was repeated except that 1.83 g (0.005 mol) of BAHF was changed to 0.91 g (0.0025 mol) and 3.27 g (0.03 mol) of MAP was changed to 3.81 g (0.035 mol). Thus, a polyamic acid ester resin (AC) was obtained. Using the obtained resin (AC), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Example 5 In the same manner as in Example 1 except that 7.0 g of the resin (AC) obtained above was added instead of the resin (AA), a varnish (AC) having a positive solid content concentration of 20% was prepared. Created. Using the obtained varnish (AC), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 16 Example 14: ABP 4.95 g (0.03 mol) was changed to 5.73 g (0.035 mol), and BAHF 1.83 g (0.005 mol) was changed to 0.915 g (0.0025 mol). Thus, a polyamic acid ester resin (AD) was obtained. Using the obtained resin (AD), solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • AD polyamic acid ester resin
  • a varnish (AD) of the composition was prepared. Using the obtained varnish (AD), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 17 Under a dry nitrogen stream, 25.7 g (0.0425 mol) of the diamine compound ( ⁇ ), 1.83 g (0.005 mol) of BAHF and 0.62 g (0.0025 mol) of SiDA were dissolved in 200 g of NMP. To this, 17.8 g (0.04 mol) of 6FDA was added together with 50 g of NMP, and the mixture was stirred at 40 ° C. for 1 hour. Then, 1.96 g (0.02 mol) of MA (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred at 40 ° C. for 1 hour.
  • MA manufactured by Wako Pure Chemical Industries, Ltd.
  • a solution prepared by diluting 11.9 g (0.1 mol) of DFA with 5 g of NMP was added dropwise over 10 minutes, and then stirring was continued at 40 ° C. for 2 hours. After the completion of stirring, the solution was poured into 2 L of water, and a precipitate of polymer solid was collected by filtration. Further, it was washed 3 times with 2 L of water, and the collected polymer solid was dried with a vacuum dryer at 50 ° C. for 72 hours to obtain a polyamic acid ester resin (AE). Using the obtained resin (AE), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • a positive photosensitive resin composition varnish (AE) was produced in the same manner as in Example 13 except that 7.0 g of the resin (AE) obtained above was added instead of the resin (AA). Using the obtained varnish (AE), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 18 2.48 g (0.015 mol) of ABP 4.95 g (0.03 mol), 18.1 g (0.03 mol) of 16.6 g (0.0275 mol) of the diamine compound ( ⁇ ), 1.83 g of BAHF (0 0.005 mol) was changed to 3.66 g (0.01 mol), and a polyamic acid ester resin (AF) was obtained in the same manner as in Example 14. Using the obtained resin (AF), solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Example 13 In the same manner as in Example 13 except that 7.0 g of the resin (AF) obtained above was added instead of the resin (AA), a positive varnish (AF) of a photosensitive resin composition having a solid content concentration of 20% was obtained. Created. Using the obtained varnish (AF), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 19 13.6 g (0.0225 mol) of the diamine compound ( ⁇ ), 7.32 g (0.02 mol) of BAHF 1.83 g (0.005 mol), and 3.27 g of MAP ( A polyamic acid ester resin (AG) was obtained in the same manner as in Example 13 except that 0.03 mol) was changed to 1.09 g (0.01 mol). Using the obtained resin (AG), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Example 13 In the same manner as in Example 13 except that 7.0 g of the resin (AG) obtained above was added instead of the resin (AA), a varnish (AG) having a positive solid content concentration of 20% was prepared. Created. Using the obtained varnish (AG), the viscosity evaluation and the photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 20 4.13 g (0.025 mol) of ABP 4.95 g (0.03 mol), 3.02 g (0.005 mol) of 16.6 g (0.0275 mol) of the diamine compound ( ⁇ ), and 1.83 g of BAHF (0 0.005 mol) was changed to 10.98 g (0.03 mol), and a polyamic acid ester resin (AH) was obtained in the same manner as in Example 14. Using the obtained resin (AH), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Example 5 In the same manner as in Example 1 except that 7.0 g of the resin (AH) obtained above was added instead of the resin (AA), a varnish (AH) having a positive solid content concentration of 20% was prepared. Created. Using the obtained varnish (AH), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 21 The diamine compound ( ⁇ ) 16.6 g (0.0275 mol) 3.02 g (0.005 mol), BAHF 1.83 g (0.005 mol) 12.81 g (0.035 mol), and MAP 3.27 g ( A polyamic acid ester resin (AI) was obtained in the same manner as in Example 13, except that 0.03 mol) was changed to 1.64 g (0.015 mol). Using the obtained resin (AI), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • AI polyamic acid ester resin
  • Example 13 In the same manner as in Example 13 except that 7.0 g of the resin (AI) obtained above was added instead of the resin (A), a varnish (AI) having a positive solid content concentration of 20% was prepared. Created. Using the obtained varnish (AI), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 22 instead of 1.83 g (0.005 mol) of BAHF, 3.62 g (0.01 mol) of BIS-AT-AF (manufactured by Central Glass Co., Ltd.) and 16.6 g (0.0275 mol) of diamine compound ( ⁇ )
  • a polyamic acid ester resin (AJ) was obtained in the same manner as in Example 13 except that 15.1 g (0.025 mol) and 3.27 g (0.03 mol) of MAP were changed to 2.73 g (0.025 mol). It was. Using the obtained resin (AJ), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Example 23 4.60 g (0.04 mol) of ABP 4.95 g (0.03 mol), 4.53 g (0.0125 mol) of BIS-AT-AF instead of 1.83 g (0.005 mol) of BAHF, diamine compound ( ⁇ )
  • a polyamic acid ester resin (AK) was obtained in the same manner as in Example 14 except that 16.6 g (0.0275 mol) was changed to 9.06 g (0.015 mol). Using the obtained resin (AK), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Example 13 In the same manner as in Example 13 except that 7.0 g of the resin (AK) obtained above was added instead of the resin (AA), a varnish (AK) having a positive solid content concentration of 20% photosensitive resin composition was obtained. Created. Using the obtained varnish (AK), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 24 Diamine compound ( ⁇ ) 25.7 g (0.0425 mol) 21.1 g (0.035 mol), BAHF 1.83 g (0.005 mol) 4.57 g (0.0125 mol), 6FDA 17.8 g (0 (.04 mol) was changed to 13.3 g (0.03 mol) and 1.96 g (0.02 mol) of MA was changed to 3.92 g (0.04 mol). AL). Using the obtained resin (AL), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13 using the obtained varnish (AL). The results are shown in Table 5.
  • Example 25 Except that 16.8 g (0.04 mol) of 6FDA was changed to 16.6 g (0.0375 mol) and 1.96 g (0.02 mol) of MA was changed to 2.45 g (0.025 mol), the same as in Example 17.
  • a polyamic acid ester resin (AM) was obtained. Using the obtained resin (AM), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • a varnish (AM) having a positive solid content concentration of 20% was prepared in the same manner as in Example 13 except that 7.0 g of the resin (AM) obtained above was added instead of the resin (AA). Produced. Using the obtained varnish (AM), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 26 Diamine compound ( ⁇ ) 25.7 g (0.0425 mol) 15.1 g (0.025 mol), BAHF 1.83 g (0.005 mol) 8.23 g (0.0225 mol), 6FDA 17.8 g (0 (.04 mol) was changed to 11.1 g (0.025 mol) and MA 1.96 g (0.02 mol) was changed to 4.90 g (0.05 mol).
  • AN Using the obtained resin (AN), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Example 27 Diamine compound ( ⁇ ) 16.6 g (0.0275 mol) 7.56 g (0.0125 mol), BAHF 1.83 g (0.005 mol) 8.24 g (0.0225 mol), and MAP 3.27 g ( A polyamic acid ester resin (AO) was obtained in the same manner as in Example 13 except that 0.03 mol) was changed to 2.73 g (0.025 mol). Using the obtained resin (AO), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Example 13 In the same manner as in Example 13 except that 7.0 g of the resin (AO) obtained above was added instead of the resin (AA), a varnish (AO) having a positive solid content concentration of 20% was prepared. Created. Using the obtained varnish (AO), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 28 Under a dry nitrogen stream, 7.32 g (0.02 mol) of BAHF, 7.24 g (0.02 mol) of BIS-AT-AF, and 2.18 g (0.02 mol) of MAP were mixed with 50 g of NMP and 26.4 g (0,0) of glycidyl methyl ether. 3 mol) and the temperature of the solution was cooled to -15 ° C. A solution prepared by dissolving 14.7 g of diphenyl ether dicarboxylic acid chloride (manufactured by Nippon Agricultural Chemicals Co., Ltd., 0.050 mol) in 25 g of GBL was added dropwise so that the internal temperature did not exceed 0 ° C.
  • diphenyl ether dicarboxylic acid chloride manufactured by Nippon Agricultural Chemicals Co., Ltd., 0.050 mol
  • a varnish (AP) of a positive type solid content concentration 20% photosensitive resin composition was prepared in the same manner as in Example 13 except that 7.0 g of the resin (AP) obtained above was added instead of the resin (AA). Created. Using the obtained varnish (AP), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Example 29 7.0 g of the resin (AA) obtained in Example 13 was added to 2.0 g of the quinonediazide compound (b-1), 2.0 g of the phenol compound (e-1), and the alkoxymethyl group-containing thermal bridge obtained in Synthesis Example 3 2.0 g of the agent (d-1), 0.01 g of Megafac F554 (manufactured by DIC) and 52 g of PGMEA were added to obtain a varnish (AA-2) having a positive solid content concentration of 20%. Using the varnish (AA-2), viscosity evaluation and photosensitivity evaluation were performed as described above. The results are shown in Table 5.
  • Example 30 7.0 g of the resin (AA) obtained in Example 13 was added to 2.0 g of the quinonediazide compound (b-1), 2.0 g of the phenol compound (e-1), and an alkoxymethyl group-containing thermal crosslinking agent (d-2) 2 0.0 g, Megafuck F554 (manufactured by DIC) 0.01 g and PGMEA 52 g were added to obtain a positive type varnish (AA-3) having a solid content concentration of 20%. Using varnish (AA-3), viscosity evaluation and photosensitivity evaluation were performed as described above. The results are shown in Table 5.
  • Example 31 7.0 g of the resin (AA) obtained in Example 13 was added to 2.0 g of a quinonediazide compound (b-1), 2.0 g of a phenol compound (e-1), 2.0 g of a thermal crosslinking agent (d-3), mega Facs F554 (manufactured by DIC) (0.01 g) and PGMEA (52 g) were added to obtain a positive type varnish (AA-4) having a solid content concentration of 20%. Using varnish (AA-4), viscosity evaluation and photosensitivity evaluation were performed as described above. The results are shown in Table 5.
  • Example 32 To 10 g of the resin (AA) obtained in Example 13, 1,2-octanedione-1- [4- (phenylthio) -2- (o-benzoyloxime)] (ODPTBO) (manufactured by BASF Japan Ltd.) 0 0.1 g, ethylene oxide-modified bisphenol A dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester BPE-100) 2.0 g, trimethylolpropane triacrylate (TPT) 0.5 g, thermal crosslinking agent (d-3) 1.0 g, 0.01 g of Megafac F554 (manufactured by DIC) and 54.4 g of PGMEA were added to obtain a negative photosensitive resin composition varnish (A-5). Using the obtained varnish (AA-5), viscosity evaluation and photosensitivity evaluation were performed as described above. The results are shown in Table 5.
  • Example 13 In the same manner as in Example 13 except that 7.0 g of the resin (AQ) obtained above was added instead of the resin (AA), a varnish (Q) having a positive solid content concentration of 20% photosensitive resin composition was obtained. Created. Using the obtained varnish (AQ), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • the temperature of the solution was raised to 120 ° C. for 2 hours and further at 180 ° C. for 2 hours.
  • the temperature of this solution was lowered to room temperature, the solution was poured into 2 L of water, and a polymer solid precipitate was collected by filtration. Furthermore, it wash
  • AS polyimide resin
  • Example 13 In the same manner as in Example 13 except that 7.0 g of the resin (AS) obtained above was added instead of the resin (AA), a varnish (AS) having a positive solid content concentration of 20% was prepared. Created. Using the obtained varnish (AS), viscosity evaluation and photosensitivity evaluation were performed in the same manner as in Example 13. The results are shown in Table 5.
  • Comparative Example 14 Instead of 22.2 g (0.05 mol) of 6FDA, 15.5 g (0.05 mol) of ODPA, 15.1 g (0.025 mol) of diamine compound ( ⁇ ) 16.5 g (0.0275 mol), 1.83 g of BAHF (0.005 mol) in the same manner as in Example 13 except that 3.66 g (0.01 mol) and 3.27 g (0.03 mol) of MAP were changed to 2.73 g (0.025 mol). An ester resin (AT) was obtained. Using the obtained resin (AT), the solubility in an organic solvent was evaluated in the same manner as in Example 13.
  • Table 4 shows the monomer and end-capping agent compositions used in Resins AA to AZ used in Examples and Comparative Examples, and Table 4 shows the evaluation results of organic solvent solubility, varnish composition, varnish solution viscosity and sensitivity of Resins AA to AZ. As shown in FIG.
  • Example 33 7.0 g of the resin (AA) obtained in Example 13 was added to 2.0 g of the quinonediazide compound (b-1), 2.0 g of the phenol compound (e-1), 0.01 g of Megafac F554 (manufactured by DIC) and 99 g of GBL. Was added to obtain a varnish (AA-6) of a positive photosensitive resin composition.
  • Switch the slit coater (TS coater manufactured by Toray Engineering Co., Ltd.) to which the positive resist (“OFPR-800” manufactured by Tokyo Ohka Co., Ltd.) was transferred to the varnish (AA-6), and start the pressurized liquid supply.
  • the photosensitive resin composition was applied on a 1100 mm ⁇ 960 mm chromium film formation substrate so that the film thickness after drying was 5 ⁇ m.
  • Example 34 Liquid feed pump, liquid feed line and cap from the feed tank to the tip of the slit coater (TS coater manufactured by Toray Engineering Co., Ltd.) that fed positive resist (“OFPR-800” manufactured by Tokyo Ohka Co., Ltd.) After washing with a 1 L thinner for a volume of 200 mL, the varnish (AA-6) used in Example 33 was switched to start the pressurized liquid feeding, and the 1100 mm ⁇ 960 mm chromium film-forming substrate was exposed to light. The conductive resin composition was applied so that the film thickness after drying was 5 ⁇ m.
  • Comparative Example 22 Liquid feed pump, liquid feed line and cap from the feed tank to the tip of the slit coater (TS coater manufactured by Toray Engineering Co., Ltd.) that fed positive resist (“OFPR-800” manufactured by Tokyo Ohka Co., Ltd.) After washing with a 1 L thinner for a volume of 200 mL, switching to the varnish (AR) used in Comparative Example 21 and starting pressurized liquid feeding, liquid feeding pump, liquid feeding line, and mouthpiece Precipitation of the solid component was confirmed.
  • TS coater manufactured by Toray Engineering Co., Ltd. that fed positive resist (“OFPR-800” manufactured by Tokyo Ohka Co., Ltd.)
  • OFPR-800 manufactured by Tokyo Ohka Co., Ltd.
  • the photosensitive resin composition of the present invention is preferably used for applications such as a surface protective film for semiconductor elements, an interlayer insulating film, an insulating layer for organic EL elements, and a planarizing film for driving TFT substrates of display devices using organic EL elements. Can be used.

Abstract

有機溶剤に対する溶解性に優れ、得られる樹脂組成物の粘度を低減することのできるポリイミド前駆体を用いた感光性樹脂組成物を提供するものであり、アミド基とトリフルオロメチル基と芳香環を有する特定の構造を主な繰り返し単位として有する芳香族アミド樹脂、(b)感光剤および(c)溶剤を含有する感光性樹脂組成物を解決手段とする。

Description

感光性樹脂組成物、耐熱性樹脂膜の製造方法および表示装置
 本発明は、特定の構造を主成分とする樹脂を含む感光性樹脂組成物に関する。より詳しくは半導体素子の表面保護膜や層間絶縁膜、有機エレクトロルミネッセンス(Electroluminescence:以下ELと記す)素子の絶縁膜、有機EL素子を用いた表示装置の駆動用薄膜トランジスタ(Thin Film Transistor:以下TFTと記す)基板の平坦化膜、回路基板の配線保護絶縁膜、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化膜などの用途に適した感光性樹脂組成物に関する。
 ポリイミドは半導体素子の表面保護膜や層間絶縁膜、平坦化膜などに広く使用されており、最近では、例えば有機EL素子の絶縁膜やTFT基板の平坦化膜などに使用されている。これらの用途においては、半導体用途に比べて基板サイズが非常に大きいため、スリット塗布により樹脂組成物を塗布することが一般的である。スリット塗布はスリットノズルを用いた塗布方式で、従来のスピン塗布と異なり基板を回転する必要がないことから、樹脂組成物の使用量削減と工程安全の観点から広く採用されている。スリット塗布において、スリットノズルから吐出された塗布膜は多量の溶媒を含んでいるため、塗布後速やかに減圧乾燥して溶媒を除去し、その後ホットプレートなどを用いて加熱乾燥することが一般的である。
 スリット塗布ではスリットノズルからの吐出量および塗液となる樹脂組成物中の固形分濃度により膜厚が決まる。そのため、厚膜を形成するには吐出量を多くするか、樹脂組成物中の固形分濃度を高くする必要がある。しかしながら、吐出量を多くしすぎると基板搬送中に液面が動いてしまうため、膜厚均一性が悪化してしまう。一方、ポリイミドまたはポリイミド前駆体を用いた樹脂組成物では、樹脂組成物中の固形分濃度を高くすると粘度が高くなりすぎてしまう問題がある。
 樹脂組成物の粘度は、樹脂に対する良溶媒や溶剤そのものの粘度が低い溶剤を使用することで低減することができる。ポリイミドやポリイミド前駆体はその剛直な構造から、種々の溶剤への溶解性は低いものが多かった。これまでに有機溶剤への溶解性を改善したポリイミド(例えば、特許文献1参照)や、ポリイミド前駆体(例えば、特許文献2~3参照)が提案されている。しかしながら、これらの樹脂においても、有機溶剤への溶解性は不十分であった。また、これら樹脂では、スリット塗布に適した粘度の樹脂組成物が得られなかった。
特開2005-41936号公報 特開2011-42701号公報 特開2011-202059号公報
 本発明は、上記した課題に鑑みて、有機溶剤に対する溶解性が高いポリイミド前駆体を含み、低粘度で塗布性に優れ、それにより均一な膜厚を形成し、良好なパターン加工性を有する感光性樹脂組成物を提供することを目的とする。
 すなわち本発明は、(a1)アミド基とトリフルオロメチル基と芳香環を有する、プロピレングリコールモノメチルエーテルアセテートに可溶な芳香族アミド樹脂、(b)感光剤、および(c)溶剤を含む感光性樹脂組成物であって、固形分濃度20重量%、25℃における粘度が1~15cpである感光性樹脂組成物、または(a2)アミド基とアミド酸エステル基とトリフルオロメチル基と芳香環を有するプロピレングリコールモノメチルエーテルアセテートに可溶な芳香族アミド樹脂、(b)感光剤、および(c)溶剤を含む感光性樹脂組成物であって、固形分濃度20重量%、25℃における粘度が1~15cpである感光性樹脂組成物、または(a)一般式(1)で表される構造を主な繰り返し単位として有する樹脂、(b)感光剤および(c)溶剤を含有する感光性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000004
(一般式(1)中、複数の繰り返し単位においてR~Rはそれぞれ異なる基が混在していてもよい。Rは4価の有機基であって、全ての繰り返し単位におけるRの95~100モル%が下記式(2)で表される基である。Rは2価の有機基であって、全ての繰り返し単位におけるRの50~99モル%が下記式(3)で表される基、1~50モル%が下記式(4)で表される基である。Rは炭素数1~20の有機基を示す。lおよびmはそれぞれ0~2の整数を示し、l+m=2である。)
Figure JPOXMLDOC01-appb-C000005
(一般式(4)中、Zは水酸基またはメチル基を示し、pおよびqはそれぞれ0または1である。)
 また、本発明の耐熱性樹脂膜の製造方法は、本発明の感光性樹脂組成物を、基板に塗布し感光性樹脂膜を形成する工程、該感光性樹脂膜を乾燥する工程、乾燥した感光性樹脂膜を露光する工程、露光した感光性樹脂膜を現像する工程、および現像した感光性樹脂膜を加熱処理する工程を含む耐熱性樹脂膜の製造方法であって、本発明の感光性樹脂組成物以外の感光性樹脂組成物が送液されていた塗布装置を用いて、該塗布装置の送液経路内の洗浄を行わずに、該塗布装置を用いて請求項1~7いずれかに記載の感光性樹脂組成物を基板に塗布する耐熱性樹脂膜の製造方法である。
 本発明によれば、有機溶剤に対する溶解性が高いポリイミド前駆体を含み、低粘度で塗布性に優れ、それにより均一な膜厚を形成し、良好なパターン加工性を有する感光性樹脂組成物を得ることができる。
 本発明の感光性樹脂組成物は、(a1)アミド基とトリフルオロメチル基と芳香環を有するプロピレングリコールモノメチルエーテルアセテートに可溶な芳香族アミド樹脂、(b)感光剤、および(c)溶剤を含む感光性樹脂組成物であって、固形分濃度20重量%、25℃における粘度が1~15cpであるか、または(a2)アミド基とアミド酸エステル基とトリフルオロメチル基と芳香環を有するプロピレングリコールモノメチルエーテルアセテートに可溶な芳香族アミド樹脂、(b)感光剤、および(c)溶剤を含む感光性樹脂組成物であって、固形分濃度20重量%、25℃における粘度が1~15cpであるか、または(a)一般式(1)で表される構造を主な繰り返し単位として有する樹脂、(b)感光剤および(c)溶剤を含有する。以下、各成分について詳細に説明するが、本発明はこれらに制限されない。
 (a1)樹脂、(a2)樹脂および(a)樹脂
 本発明の感光性樹脂組成物の一態様としては、(a1)アミド基とトリフルオロメチル基と芳香環を有するプロピレングリコールモノメチルエーテルアセテートに可溶な芳香族アミド樹脂を含有する。
 本発明の感光性樹脂組成物の別の一態様としては、(a2)アミド基とアミド酸エステル基とトリフルオロメチル基と芳香環を有するプロピレングリコールモノメチルエーテルアセテートに可溶な芳香族アミド樹脂を含有する。
 アミド基は、アミド(CONH)、アミド(-CONHCOOH)酸、ヒドロキシアミド(CONHOH)である。異なるアミド基が複数含まれていても構わない。アミド酸エステル基はCONHCOOR(Rは有機基)である。
 このような芳香族アミド樹脂としては、ポリベンゾオキサゾール前駆体となり得るポリヒドロキシアミド、ポリアミノアミド、ポリアミドイミド、ポリイミド前駆体であるポリアミド酸、ポリアミド酸エステルなどの構造を有する樹脂が挙げられるが、ポリヒドロキシアミド、ポリアミド酸エステルの構造を有する樹脂が好ましく用いられる。より好ましくは、一般式(1)で表される構造単位を有する樹脂が用いられる。
 本発明の感光性樹脂組成物のさらに別の一態様としては、一般式(1)で表される構造を主な繰り返し単位として有する樹脂を含有する。なお、複数の繰り返し単位におけるR~Rはそれぞれ異なる基が混在していてもよく、後述のように少なくとも2種類のRを有することから、(a)の樹脂は2種類以上の異なる繰り返し単位を有する共重合体である。また、一般式(1)で表される構造を主な繰り返し単位として有する樹脂2種以上を含有してもよい。
 以下、(a)樹脂という記載は、(a1)樹脂、(a2)樹脂および(a)樹脂を意味する場合がある。
 一般式(1)で表される構造を主な繰り返し単位として有する樹脂は、加熱により閉環し、耐熱性および耐溶剤性に優れたポリイミドとなるポリイミド前駆体である。ポリイミド前駆体は、モノマー成分であるテトラカルボン酸およびその誘導体(以下酸成分と記す)と、ジアミン化合物(以下ジアミン成分と記す)とを反応させて得ることができる。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(1)中、複数の繰り返し単位においてR~Rはそれぞれ異なる基が混在していてもよい。Rは4価の有機基であって、全ての繰り返し単位におけるRの95~100モル%が下記式(2)で表される基である。Rは2価の有機基であって、全ての繰り返し単位におけるRの50~99モル%が下記式(3)で表される基、1~50モル%が下記式(4)で表される基である。Rは炭素数1~20の有機基を示す。lおよびmはそれぞれ0~2の整数を示し、l+m=2である。
Figure JPOXMLDOC01-appb-C000007
(一般式(4)中、Zは水酸基またはメチル基を示し、pおよびqはそれぞれ0または1である。)
 前記一般式(1)におけるRは酸成分に由来する基を示し、Rが上記式(2)で表される基となる酸成分としては、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパンが挙げられる。
 Rが上記式(2)で表される基を95モル%以上有することにより、有機溶剤への溶解性が向上するとともに、樹脂組成物の粘度を低減することができる。
 前記一般式(1)におけるRは、前記式(2)で表される基を95~100モル%有する炭素数2以上の4価の有機基であればよく、残りの、Rが、上記式(2)で表される基を有さない場合としては、まず、式(2)以外の基を有する場合がある。この場合、式(2)以外の基は特に限定されない。
 この場合の酸成分の好ましい例としては、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸などの芳香族テトラカルボン酸や、ブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸などの脂肪族のテトラカルボン酸などを挙げることができる
 また、Rが、上記式(2)で表される基を有さない場合としては、酸成分が、ジカルボン酸またはトリカルボン酸の場合もある。
 ジカルボン酸の例としては、テレフタール酸、イソフタール酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸が挙げられ、トリカルボン酸の例としては、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸が挙げられる。
 Rが上記式(2)で表される基を有さない場合の酸成分の好ましい例として、ジメチルシランジフタル酸、1,3-ビス(フタル酸)テトラメチルジシロキサンなどのシリコン原子含有テトラカルボン酸を挙げることができ、これらを用いることにより、基板に対する接着性や、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。
 これらの酸は、そのまま、あるいは酸無水物や活性エステルとして使用できる。
 前記一般式(1)におけるRはジアミン成分に由来する基を示し、Rが前記式(3)で表される基を50モル%以上有することにより、得られる樹脂のアルカリ水溶液に対する溶解性が適正な範囲に保たれ、良好なパターン加工性を有する感光性樹脂組成物を得ることができる。感光性樹脂組成物のパターン加工性の観点から、前記式(3)で表される基は55モル%以上が好ましく、より好ましくは60モル%以上である。
 前記一般式(1)におけるRは、前記一般式(4)で表される基を1モル%以上、好ましくは5モル%以上、より好ましくは10モル%以上有することにより、有機溶剤に対する溶解性が向上する。さらに好ましくは15モル%以上、より好ましくは20モル%以上である。一方、50モル%以下とすることで、アルカリ水溶液に対する溶解性が適正に保たれる。好ましくは45モル%以下、より好ましくは40モル%以下である。前記一般式(4)で表される基が50モル%より多くなると、樹脂中のフェノール性水酸基濃度が高くなるため、得られる樹脂のアルカリ水溶液に対する溶解性が高くなりすぎ、感光性樹脂組成物としたときの現像膜減り量が大きくなる。現像膜減り量が大きくなると、面内の膜厚均一性が悪化したり、現像マージンが狭くなったりするため好ましくない。また、イミド化率も上昇し、露光波長における膜の透過率が悪化し感度も低下するため好ましくない。そして、前記一般式(1)におけるRが前記式(3)で表される基を有する割合と前記一般式(1)におけるRが前記一般式(4)で表される基を有する割合の和は100モル%を超えることはない。
 Rが前記一般式(4)となるジアミン成分としては、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパンが挙げられる。このうち、得られる樹脂のアルカリ水溶液への溶解性の観点から、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンが特に好ましい。
 前記一般式(1)におけるRは、前記式(3)で表される基を50~99モル%、好ましくは50~90モル%有し、前記一般式(4)で表される基を1~50モル%好ましくは10~50モル%有する炭素数2以上の2価の有機基であればよく、それ以外の基は特に限定されない。
 併用できるジアミン成分の好ましい例として、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アニリノ)テトラメチルジシロキサンなどのシリコン原子含有ジアミンを挙げることができ、これらを用いることにより、基板に対する接着性や、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。これらシリコン原子含有ジアミンは、全ジアミン成分の1~30モル%用いることが好ましい。
 これらのジアミン化合物は、そのまま、あるいは対応するジイソシアネート化合物やトリメチルシリル化ジアミンとして使用できる。
 前記一般式(1)中、Rは炭素数1~20の有機基である。lおよびmはそれぞれ0~2の整数を示し、l+m=2である。得られる樹脂を用いた感光性樹脂組成物の安定性とアルカリ水溶液に対する適度な溶解性の観点から、mは1以上であることが好ましい。
 本発明の感光性樹脂組成物に用いられる、一般式(1)で表される構造を主な繰り返し単位として有する樹脂は、分子鎖の少なくとも一方の末端がモノアミンまたは酸無水物により封止されていることが好ましい。末端封止剤を使用することにより、得られる樹脂を用いた感光性樹脂組成物を適正な粘度に調整し易くなる。また、酸末端により樹脂が加水分解するのを抑制したり、ポジ型の感光性樹脂組成物にしたときにアミン末端により感光剤であるキノンジアジド化合物が劣化するのを抑制したりする効果がある。
 末端封止剤に用いられるモノアミンは特に制限されないが、下記一般式(5)で表される基を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(5)中、Rは炭素数1~6の飽和炭化水素基を示し、rは0または1を示す。AおよびBはそれぞれ同じでも異なっていてもよく、水酸基、カルボキシル基またはスルホン酸基を示す。sおよびtはそれぞれ0または1を示し、得られる樹脂のアルカリ水溶液に対する溶解性の観点から、s+t≧1である。
 上記一般式(5)で表される基を有するモノアミンの好ましい例として、2-アミノフェノール、3-アミノフェノール、2-アミノ-m-クレゾール、2-アミノ-p-クレゾール、3-アミノ-o-クレゾール、4-アミノ-o-クレゾール、4-アミノ-m-クレゾール、5-アミノ-o-クレゾール、6-アミノ-m-クレゾール、4-アミノ-2,3-キシレノール、4-アミノ-3,5-キシレノール、6-アミノ-2,4-キシレノール、2-アミノ-4-エチルフェノール、3-アミノ-4-エチルフェノール、2-アミノ-4-tert-ブチルフェノール、2-アミノ-4-フェニルフェノール、4-アミノ-2,6-ジフェニルフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノ-m-トルエン酸、3-アミノ-o-トルエン酸、3-アミノ-p-トルエン酸、4-アミノ-m-トルエン酸、6-アミノ-o-トルエン酸、6-アミノ-m-トルエン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、4-アミノトルエン-3-スルホン酸などを挙げることができる。これらを2種以上用いてもよく、それ以外の末端封止剤を併用しても良い。
 末端封止剤として用いられるモノアミンの導入割合は、樹脂のモノマー成分であるテトラカルボン酸100モル%に対して10~100モル%が好ましく、40~80モル%がさらに好ましい。10モル%以上、好ましくは40モル%以上にすることで、得られる樹脂の有機溶剤に対する溶解性が向上するとともに、得られる樹脂を用いて感光性樹脂組成物としたときの粘度を適正に調整することができる。また、得られる樹脂のアルカリ水溶液に対する溶解性および硬化膜の機械強度の観点から、100モル%以下が好ましく、80モル%以下がさらに好ましく、70モル%以下がより好ましい。
 末端封止剤に用いられる酸無水物は特に制限されないが、得られる樹脂の耐熱性の観点から、環状構造を有する酸無水物または架橋性基を有する酸無水物が好ましい。例として、無水フタル酸、無水マレイン酸、無水ナジック酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などが挙げられる。
 末端封止剤として用いられる酸無水物の導入割合は、樹脂のモノマー成分であるジアミン100モル%に対して10~100モル%が好ましく、50~100モル%がさらに好ましい。10モル%以上、好ましくは50モル%以上にすることで、得られる樹脂の有機溶剤に対する溶解性が向上するとともに、得られる樹脂を用いて感光性樹脂組成物としたときの粘度を適正に調整することができる。また、得られる樹脂のアルカリ水溶液に対する溶解性および硬化膜の機械強度の観点から、100モル%以下が好ましく、90モル%以下がより好ましい。
 樹脂中に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された樹脂を、酸性溶液に溶解し、樹脂の構成単位であるアミン成分と酸成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13CNMRスペクトル測定で検出することが可能である。
 (a)一般式(1)で表される構造を主な繰り返し単位として有する樹脂における一般式(1)の繰り返し数をnとすると、nは5~100であることが好ましく、特に好ましくは10~70である。nが5より小さいと得られる樹脂の硬化膜の強度が低下する場合がある。一方、nが100を越えると得られる樹脂の有機溶剤への溶解性が低下したり、樹脂組成物とした時の粘度が高くなりすぎる場合がある。本発明における繰り返し数nは、ポリスチレン換算によるゲルパーミエーションクロマトグラフィー(GPC)測定により重量平均分子量(Mw)を測定することで容易に算出できる。繰り返し単位の分子量をM、樹脂の重量平均分子量をMwとすると、n=Mw/Mである。樹脂の重量平均分子量(Mw)は、5,000~100,000の範囲が好ましく、10,000~50,000の範囲がより好ましい。
 前記一般式(1)で表される構造を主な繰り返し単位として有する樹脂は、公知のポリアミド酸またはポリアミド酸エステルの製造方法に準じて製造することができ、その方法は特に限定されない。例えば、低温中でテトラカルボン酸二無水物とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後ジアミン化合物と縮合剤の存在下で反応させる方法などが挙げられる。末端封止剤はジアミン化合物および酸二無水物の一部と置き換えて使用することができ、末端封止剤をジアミン化合物やテトラカルボン酸二無水物と同時に添加する方法、ジアミン化合物とテトラカルボン酸二無水物を反応させてから末端封止剤を添加する方法、末端封止剤とテトラカルボン酸二無水物あるいはジアミン化合物を反応させてからジアミン化合物あるいはテトラカルボン酸二無水物を添加する方法がある。末端封止剤の導入割合が50モル%を超える場合には、末端封止剤とテトラカルボン酸二無水物あるいはジアミン化合物を反応させてからジアミン化合物あるいはテトラカルボン酸二無水物を添加することで、2量体や3量体などのオリゴマーの生成が抑制されるため好ましい。さらに、上記の方法で得られたポリマーを、多量の水やメタノール/水の混合液などに投入し、沈殿させてろ別乾燥し、単離することが望ましい。この沈殿操作によって、未反応のモノマーや、2量体や3量体などのオリゴマー成分が除去され、熱硬化後の膜特性が向上する。
 以下、好ましい具体例としてポリイミド前駆体を製造する方法について述べる。
 まずR基を有するテトラカルボン酸二無水物を重合溶媒中に溶解し、この溶液にモノアミンを添加してメカニカルスターラーで撹拌する。所定時間経過後、R基を有するジアミン化合物を添加し、さらに所定時間撹拌する。反応温度は0~100℃、好ましくは20~50℃で、反応時間は0.5~50時間、好ましくは2~24時間である。
 重合反応に用いられる溶媒は、原料モノマーである酸成分とジアミン成分を溶解できればよく、その種類は特に限定されないが、プロトン性溶媒が好ましい。具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンのアミド類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンなどの環状エステル類、エチレンカーボネート、プロピレンカーボネートなどのカーボネート類、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、トリエチレングリコールなどのグリコール類、m-クレゾール、p-クレゾールなどのフェノール類、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどを挙げることができる。重合溶媒量は、得られる樹脂100重量部に対して、好ましくは100~1900重量部使用することが好ましく、150~950重量部がより好ましい。
 本発明の(a)一般式(1)で表される構造を主成分とする樹脂がプロピレングリコールモノメチルエーテルアセテートに30重量%以上の濃度で溶解する樹脂であることが好ましい。プロピレングリコールモノメチルエーテルアセテートに30重量%以上の濃度で溶解する樹脂は有機溶剤に対する溶解性が高く、感光性樹脂組成物としたときの溶剤の選択性が高くなる。
 また、本発明の(a)一般式(1)で表される構造を主成分とする樹脂をプロピレングリコールモノメチルエーテルアセテートに30重量%溶解したときの25℃における溶液粘度が150mPa・s以下であることが好ましい。溶液粘度が150mPa・s以下となる樹脂を用いることで、感光性樹脂組成物の固形分濃度を上げてもスリット塗布に適した低い粘度を保つことができ、スリット塗布で厚膜を形成する場合の膜厚均一性を高くすることができる。
 本発明の感光性樹脂組成物は、(a)一般式(1)で表される構造を主な繰り返し単位として有する樹脂成分以外のアルカリ可溶性樹脂を含有してもよい。アルカリ可溶性樹脂とは、アルカリに可溶となる酸性基を有する樹脂を言い、具体的にはアクリル酸を有するラジカル重合性ポリマー、フェノール-ノボラック樹脂、ポリヒドロキシスチレン、ポリシロキサンなどが挙げられる。また、これら樹脂の酸性基を保護してアルカリ溶解性を調節してもよい。このような樹脂は、テトラメチルアンモニウムヒドロキシド以外に、コリン、トリエチルアミン、ジメチルアミノピリジン、モノエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどのアルカリの水溶液に溶解するものである。これらの樹脂を2種以上含有してもよいが、(a)成分を含む樹脂全体に占める割合は50重量%以下が好ましい。
 (b)感光剤
 本発明の感光性樹脂組成物は(b)感光剤を含有する。感光剤としては、(b-1)光酸発生剤や、(b-2)光重合開始剤および(b-3)エチレン性不飽和結合を2個以上有する化合物の組み合わせが挙げられる。(b-1)光酸発生剤を含有することで、光照射部に酸が発生して光照射部のアルカリ水溶液に対する溶解性が増大し、光照射部が溶解するポジ型のレリーフパターンを得ることができる。また、(b-1)光酸発生剤とエポキシ化合物または後述する熱架橋剤を含有することで、光照射部に発生した酸がエポキシ化合物や熱架橋剤の架橋反応を促進し、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。また、(b-2)光重合開始剤および(b-3)エチレン性不飽和結合を2個以上有する化合物を含有することで、光照射部に発生した活性ラジカルがエチレン性不飽和結合のラジカル重合を進行させ、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。本発明の感光性樹脂組成物は、(b)感光剤として(b-1)光酸発生剤を含みポジ型の感光性を示すものが好ましい。ポジ型感光性樹脂組成物は、露光・現像工程により微細パターンを得た後、焼成することにより、順テーパー形状のパターンを容易に得ることができる。この順テーパー形状パターンは、有機EL素子の絶縁膜として用いる際に上部電極の被覆性に優れ、断線を防止し素子の信頼性を高めることができる。
 (b-1)光酸発生剤としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。
 キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。また、(b-1)光酸発生剤を2種以上含有することが好ましく、高感度な感光性樹脂組成物を得ることができる。
 本発明において、キノンジアジドは5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基、5-ナフトキノンジアジドスルホニル基を有するナフトキノンジアジドスルホニルエステル化合物を含有してもよいし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を含有してもよい。
 (b-1)光酸発生剤のうち、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩は、露光によって発生した酸成分を適度に安定化させるため好ましい。中でもスルホニウム塩が好ましい。さらに増感剤などを必要に応じて含有することもできる。
 (b-2)光重合開始剤としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロペンアミニウムクロリド一水塩、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサンテン-2-イロキシ)-N,N,N-トリメチル-1-プロパナミニウムクロリド、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2-ビイミダゾール、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、メチルフェニルグリオキシエステル、η5-シクロペンタジエニル-η6-クメニル-アイアン(1+)-ヘキサフルオロフォスフェイト(1-)、ジフェニルスルフィド誘導体、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、4-ベンゾイル-4-メチルフェニルケトン、ジベンジルケトン、フルオレノン、2,3-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニル-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、ベンジルメトキシエチルアセタール、アントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、2-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、ナフタレンスルフォニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4-アゾビスイソブチロニトリル、ベンズチアゾールジスルフィド、トリフェニルホスフィン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイルおよびエオシン、メチレンブルーなどの光還元性の色素とアスコルビン酸、トリエタノールアミンなどの還元剤の組み合わせなどが挙げられる。これらを2種以上含有してもよい。
 (b-3)エチレン性不飽和結合を2個以上有する化合物として、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3-ジイソプロペニルベンゼン、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、1,3-ジアクリロイルオキシ-2-ヒドロキシプロパン、1,3-ジメタクリロイルオキシ-2-ヒドロキシプロパン、メチレンビスアクリルアミド、グリセリンジメタクリレート、トリプロピレングリコールジメタクリレート、グリセリントリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、エトキシ化イソシアヌール酸トリアクリレートなどのアクリルモノマーを挙げることができる。これらを2種以上含有してもよい。
 本発明において、(b)感光剤の含有量は、(a)成分の樹脂100重量部に対して0.05~50重量部が好ましい。(b-1)光酸発生剤の含有量は、高感度化の観点から、(a)成分の樹脂100重量部に対して0.01~50重量部が好ましい。このうち、キノンジアジド化合物は3~40重量部が好ましい。また、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩の総量は0.5~20重量部が好ましい。(b-2)光重合開始剤の含有量は、(a)成分の樹脂100重量部に対して0.1~20重量部が好ましい。0.1重量部以上であれば、光照射により十分なラジカルが発生し、感度が向上する。また、20重量部以下であれば、過度なラジカルの発生による光未照射部の硬化がなく、アルカリ現像性が向上する。(b-3)エチレン性不飽和結合を2個以上有する化合物の含有量は、(a)成分の樹脂100重量部に対して5~50重量部が好ましい。
 また、溶解性の調整などのためにエチレン性不飽和結合を1個だけ有する化合物を、(a)成分の樹脂100重量部に対して1~50重量部含有してもよい。このような化合物の例として、アクリレート、メタクリレート、メチルアクリレート、メチルメタクリレート、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、ヘキシルアクリレート、イソオクチルアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノエチルメタクリレート、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、アクリロイルモロフォリン、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、1-ヒドロキシプロピルメタクリレート、1-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルアクリレート、1-ヒドロキシ-1-メチルエチルメタクリレート、1-ヒドロキシ-1-メチルエチルアクリレート、2-ヒドロキシ-1-メチルエチルメタクリレート、2-ヒドロキシ-1-メチルエチルアクリレート、1-ヒドロキシブチルメタクリレート、1-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、2-ヒドロキシブチルアクリレート、3-ヒドロキシブチルメタクリレート、3-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルアクリレート、1-ヒドロキシ-1-メチルプロピルメタクリレート、1-ヒドロキシ-1-メチルプロピルアクリレート、2-ヒドロキシ-1-メチルプロピルメタクリレート、2-ヒドロキシ-1-メチルプロピルアクリレート、1-ヒドロキシ-2-メチルプロピルメタクリレート、1-ヒドロキシ-2-メチルプロピルアクリレート、2-ヒドロキシ-2-メチルプロピルメタクリレート、2-ヒドロキシ-2-メチルプロピルアクリレート、2-ヒドロキシ-1,1-ジメチルエチルメタクリレート、2-ヒドロキシ-1,1-ジメチルエチルアクリレート、1,2-ジヒドロキシプロピルメタクリレート、1,2-ジヒドロキシプロピルアクリレート、2,3-ジヒドロキシプロピルメタクリレート、2,3-ジヒドロキシプロピルアクリレート、2,3-ジヒドロキシブチルメタクリレート、2,3-ジヒドロキシブチルアクリレート、スチレン、α-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-ビニルナフタレン、p-ヒドロキシスチレン、p-イソプロペニルフェノール、フェネチルメタクリレート、フェネチルアクリレート、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム、クロトン酸、4-ペンテン酸、5-ヘキセン酸、6-ヘプテン酸、7-オクテン酸、8-ノナン酸、9-デカン酸、10-ウンデシレン酸、ブラシジン酸、リシノール酸、2-(メタクリロイロキシ)エチルイソシアネート、2-(アクリロイロキシ)エチルイソシアネートなどを挙げることができる。
 (c)溶剤
 本発明の感光性樹脂組成物は、(c)溶剤を含有する。溶剤としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテルなどのエーテル類、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル類、エタノール、イソプロパノール、ブタノール、ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、ジイソブチルケトン、シクロペンタノン、ジアセトンアルコールなどのケトン類、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンなどの極性の非プロトン性溶媒、トルエン、キシレンなどの芳香族炭化水素類などが挙げられる。これらを2種以上含有してもよい。(c)溶剤の含有量は、(a)成分の樹脂100重量部に対して、好ましくは50重量部以上、より好ましくは100重量部以上であり、また、好ましくは2000重量部以下、より好ましくは1500重量部以下である。
 本発明の感光性樹脂組成物は(a)~(c)以外の成分を含有してもよく、(d)熱架橋剤を含有することが好ましい。熱架橋剤としては(d-1)アルコキシメチル基またはメチロール基含有化合物、(d-2)エポキシ基またはオキセタニル基含有化合物などが挙げられる。これらを2種以上含有してもよい。(d)成分の熱架橋剤は、加熱により(a)成分の樹脂と架橋反応して硬化膜の耐薬品性を高めることができる。
 (d-1)アルコキシメチル基またはメチロール基含有化合物としては、一般式(6)で表される化合物または一般式(7)で表される基を有する化合物が好ましく、これらを併用してもよい。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(6)中、Rは直接結合または1~4価の連結基を示す。Rは炭素数1~20の1価の有機基、Cl、Br、IまたはFを示す。炭素数1~20の1価の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基などの炭素数1~6の1価の炭化水素基が好ましい。RおよびRは、CHOR11(R11は水素原子または炭素数1~6の1価の炭化水素基)を示す。R10は水素原子、メチル基またはエチル基を示す。hは0~2の整数、iは1~4の整数を示す。iが2~4の場合、複数のR~R10はそれぞれ同じでも異なってもよいが、同一のベンゼン環がRを2つ有する場合は、Rは同じである。連結基Rの例を下に示す。
Figure JPOXMLDOC01-appb-C000010
 上記式中、R13~R35は水素原子、炭素数1~20の1価の有機基、Cl、Br、IまたはFを示す。炭素数1~20の1価の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基、ベンジル基、ナフチル基などが好ましい。
 -N(CHOR12(H)  (7)
 上記一般式(7)中、R12は水素原子または炭素数1~6の1価の炭化水素基を示す。jは1または2、kは0または1を示す。ただし、j+kは1または2である。
 前記一般式(6)中、RおよびRは、熱架橋基であるCHOR11(R11は水素原子または炭素数1~6の1価の炭化水素基)を表している。適度な反応性を残し、保存安定性に優れることから、R11は炭素数1~4の1価の炭化水素基が好ましい。また、光酸発生剤を含む感光性樹脂組成物においては、R11はメチル基またはエチル基がより好ましい。
 前記一般式(6)で表される化合物において、一分子中に占める熱架橋基の官能基数は2~8である。架橋密度を上げ、機械特性を向上させる点から、官能基数は4以上であることが好ましい。一方、官能基数が8を超えると高純度のものを得ることが困難であり、また化合物自体の安定性や樹脂組成物における保存安定性が低下する。
 前記一般式(6)で表される化合物の純度は、75%以上が好ましく、85%以上がより好ましい。純度が85%以上であれば、保存安定性に優れ、樹脂組成物の架橋反応を十分に行うことができる。また吸水性基となる未反応基を少なくすることができるため、樹脂組成物の吸水性を小さくすることができる。高純度の熱架橋剤を得る方法としては、再結晶、蒸留などが挙げられる。熱架橋剤の純度は液体クロマトグラフィー法により求めることができる。
 前記一般式(6)で表される化合物の好ましい例を下記に示す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 前記一般式(7)中、R12は水素原子または炭素数1~6の1価の炭化水素基であるが、炭素数1~4の1価の炭化水素基が好ましい。また、化合物の安定性や樹脂組成物における保存安定性の観点から、光酸発生剤を含む感光性樹脂組成物においては、R12はメチル基またはエチル基が好ましく、化合物中に含まれる(CHOR12)基の数が8以下であることが好ましい。
 前記一般式(7)で表される基を有する熱架橋剤の好ましい例を下記に示す。
Figure JPOXMLDOC01-appb-C000013
 (d-2)エポキシ基またはオキセタニル基含有化合物としては得られる硬化膜の耐薬品性と耐熱性の観点から、一分子内にエポキシ基またはオキセタニル基を2つ以上含有する化合物が好ましい。一分子内にエポキシ基を2つ有するものとして“エピコート”807、“エピコート”828、“エピコート”1002、“エピコート”1750、“エピコート”1007、YX8100-BH30、E1256、E4250、E4275(以上商品名、ジャパンエポキシ(株)製)、“エピクロン”EXA-4880、“エピクロン”EXA-4822、“エピクロン”EXA-9583、HP4032(以上商品名、大日本インキ化学工業(株)製)、“エポライト”40E、“エポライト”100E、“エポライト”200E、“エポライト”400E、“エポライト”70P、“エポライト”200P、“エポライト”400P、“エポライト”1500NP、“エポライト”80MF、“エポライト”4000、“エポライト”3002(以上商品名、共栄社化学(株)製)、“デナコール”EX-212L、“デナコール”EX-214L、“デナコール”EX-216L、“デナコール”EX-252、“デナコール”EX-850L(以上商品名、ナガセケムテックス(株)製)、GAN、GOT(以上商品名、日本化薬(株)製)、“セロキサイド”2021P(商品名、(株)ダイセル製)、“リカレジン”DME-100、“リカレジン”BEO-60E(以上商品名、新日本理化(株)製)などが挙げられる。
 また、エポキシ基を3つ以上有するものとして、VG3101L(商品名、(株)プリンテック製)、“テピック”S、“テピック”G、“テピック”P(以上商品名、日産化学工業(株)製)、“エピクロン”N660、“エピクロン”N695、HP7200(以上商品名、大日本インキ化学工業(株)製)、“デナコール”EX-321L(商品名、ナガセケムテックス(株)製)、NC6000、EPPN502H、NC3000(以上商品名、日本化薬(株)製)、“エポトート”YH-434L(商品名、東都化成(株)製)、EHPE-3150(商品名、(株)ダイセル製)、オキセタニル基を2つ以上有する化合物としては、OXT-121、OXT-221、OX-SQ-H、OXT-191、PNOX-1009、RSOX(以上商品名、東亜合成(株)製)、“エタナコール”OXBP、“エタナコール”OXTP(以上商品名、宇部興産(株)製)などが挙げられるが、本発明はこれらに限定されない。
 (d)成分の熱架橋剤の含有量は、(a)成分の樹脂100重量部に対して5重量部以上が好ましく、10重量部以上がより好ましい。5重量部以上であると、硬化膜の架橋密度が高くなり、耐薬品性が向上するため好ましい。さらに10重量部以上であると、耐薬品性が向上すると共に、より高い機械特性が得られる。一方、組成物の保存安定性、機械強度の観点から、50重量部以下が好ましく、40重量部以下がより好ましく、30重量部以下がさらに好ましい。なお、(a)成分または(d)成分を2種以上含有する場合は、それらの総量が上記範囲であることが好ましい。
本発明の感光性樹脂組成物は、(e)フェノール性水酸基を有する化合物を含有してもよい。フェノール性水酸基を有する化合物を含有することで、得られる感光性樹脂組成物のアルカリ水溶液に対する溶解性が向上し、高感度化を図ることができる。
 (e)フェノール性水酸基を有する化合物としては、例えば、BisP-AF、BisP-AP、BisP-BA、Bis-Z、Ph-CC-AP、HDP-244、BisOC-Z、BisOPP-Z、BisP-CP、Bis26X-Z、BisOTBP-Z、BisOCHP-Z、BisOCR-CP、BisP-MZ、BisP-EZ、Bis26X-CP、BisP-PZ、BisP-IPZ、BisCR-IPZ、BisOCP-IPZ、BisOIPP-CP、Bis26X-IPZ、BisOTBP-CP、TekP-4HBPA(テトラキスP-DO-BPA)、TrisP-HAP、TrisP-PA、TrisP-PHBA、TrisP-SA、TrisOCR-PA、BisOFP-Z、BisRS-2P、BisPG-26X、BisRS-3P、BisOC-OCHP、BisPC-OCHP、Bis25X-OCHP、Bis26X-OCHP、BisOCHP-OC、Bis236T-OCHP、メチレントリス-FR-CR、BisRS-26X、BisRS-OCHP、(以上商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A(以上商品名、旭有機材工業(株)製)、4,4’-スルホニルジフェノール、ビスフェノールF、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,4-ジヒドロキシキノリン、2,6-ジヒドロキシキノリン、2,3-ジヒドロキシキノキサリン、アントラセン-1,2,10-トリオール、アントラセン-1,8,9-トリオール、8-キノリノールなどが挙げられる。
 (e)フェノール性水酸基を有する化合物の含有量は、(a)成分の樹脂100重量部に対して、好ましくは1~40重量部、より好ましくは3~30重量部である。なお、(e)成分は2種以上を含有してもよく、2種以上含有する場合は、それらの総量が上記範囲であることが好ましい。
 本発明の樹脂組成物は、熱酸発生剤を含有してもよい。熱酸発生剤は、後述する現像後加熱により酸を発生し、(a)成分の樹脂と(d)成分の熱架橋剤との架橋反応を促進するほか、(a)成分の樹脂のイミド環、オキサゾール環の環化を促進する。このため、硬化膜の耐薬品性が向上し、膜減りを低減することができる。熱酸発生剤から発生する酸は強酸が好ましく、例えば、p-トルエンスルホン酸、ベンゼンスルホン酸などのアリールスルホン酸、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸などのアルキルスルホン酸などが好ましい。本発明において、熱酸発生剤は一般式(8)または(9)で表される脂肪族スルホン酸化合物が好ましく、これらを2種以上含有してもよい。
Figure JPOXMLDOC01-appb-C000014
 上記一般式(8)および(9)中、R36~R38は炭素数1~10のアルキル基または炭素数7~12の1価の芳香族基を示す。アルキル基および芳香族基は置換されていてもよく、置換基としては、アルキル基、カルボニル基などが挙げられる。
 前記一般式(8)で表される化合物の具体例としては以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 前記一般式(9)で表される化合物の具体例としては以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
 熱酸発生剤の含有量は、架橋反応をより促進する観点から、(a)成分の樹脂100重量部に対して、0.1重量部以上が好ましく、0.3重量部以上がより好ましく、0.5重量部以上がより好ましい。一方、硬化膜の電気絶縁性保持の観点から、20重量部以下が好ましく、15重量部以下がより好ましく、10重量部以下がより好ましい。なお、熱酸発生剤を2種以上含有する場合は、それらの総量が上記範囲であることが好ましい。
 本発明の感光性樹脂組成物には、加熱により発色し、350nm以上700nm以下に吸収極大を示す熱発色性化合物や、350nm以上500nm未満に吸収極大を持たず500nm以上750nm以下に吸収極大を有する有機顔料または染料を含有することができる。熱発色性化合物の発色温度は120℃以上が好ましく、150℃以上が好ましい。熱発色性化合物の発色温度が高いほど、高温条件下での耐熱性に優れ、また長時間の紫外-可視光照射により退色することなく耐光性に優れる。
 熱発色性化合物としては、感熱色素、感圧色素や、トリアリールメタン骨格を有する水酸基含有化合物などが挙げられる。
 本発明の感光性樹脂組成物は、密着改良剤を含有してもよい。密着改良剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物などが挙げられる。これらを2種以上含有してもよい。これらの密着改良剤を含有することにより、感光性樹脂膜を現像する場合などに、シリコンウエハ、ITO、SiO、窒化ケイ素などの下地基材との密着性を高めることができる。また、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。密着改良剤の含有量は、(a)成分の樹脂100重量部に対して、0.1~10重量部が好ましい。
 本発明の感光性樹脂組成物は、接着改良剤を含有してもよい。接着改良剤としては、アルコキシシラン含有芳香族アミン化合物、芳香族アミド化合物または芳香族非含有シラン化合物などが挙げられる。これらを2種以上含有してもよい。これらの化合物を含有することにより、硬化後の基材との接着性を向上させることができる。アルコキシシラン含有芳香族アミン化合物および芳香族アミド化合物の具体例を以下に示す。この他に、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物であってもよく、例えば、芳香族アミン化合物と、エポキシ基、クロロメチル基などのアミノ基と反応する基を有するアルコキシシラン化合物を反応させて得られる化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000017
 芳香族非含有シラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シランなどのビニルシラン化合物、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシランなどの炭素-炭素不飽和結合含有シラン化合物などが挙げられる。これらの中でも、ビニルトリメトキシシラン、ビニルトリエトキシシランが好ましい。
 アルコキシシラン含有芳香族アミン化合物、芳香族アミド化合物、または芳香族非含有シラン化合物の総含有量は、(a)成分の樹脂100重量部に対して、0.01~15重量部が好ましい。
 本発明の感光性樹脂組成物は無機粒子を含んでもよい。好ましい具体例としては酸化珪素、酸化チタン、チタン酸バリウム、アルミナ、タルクなどが挙げられるがこれらに限定されない。これら無機粒子の一次粒子径は100nm以下、より好ましくは60nm以下が好ましい。
 本発明の感光性樹脂組成物は、界面活性剤を含有してもよく、基板との塗れ性を向上させることができる。
 界面活性剤としては、フロラード(商品名、住友3M(株)製)、メガファック(商品名、DIC(株)製)、スルフロン(商品名、旭硝子(株)製)などのフッ素系界面活性剤、KP341(商品名、信越化学工業(株)製)、DBE(商品名、チッソ(株)製)、ポリフロー、グラノール(商品名、共栄社化学(株)製)、BYK(商品名、ビックケミー(株)製)などの有機シロキサン界面活性剤、ポリフロー(商品名、共栄社化学(株)製)などのアクリル重合物界面活性剤などが挙げられる。
 次に、本発明の感光性樹脂組成物の製造方法について説明する。例えば、前記(a)~(c)成分と、必要により(d)~(e)成分、熱酸発生剤、熱発色性化合物、密着改良剤、接着改良剤、無機粒子または界面活性剤などを均一に混合させることにより、感光性樹脂組成物を得ることができる。溶解方法としては、撹拌や加熱が挙げられる。加熱する場合、加熱温度は樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、室温~80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法がある。また、界面活性剤や一部の密着改良剤など、撹拌溶解時に気泡を発生しやすい成分については、他の成分を溶解してから最後に添加することで、気泡の発生による他成分の溶解不良を防ぐことができる。
 得られた感光性樹脂組成物は、濾過フィルターを用いて濾過し、ゴミや粒子を除去することが好ましい。フィルター孔径は、0.5~0.02μm、例えば0.5μm、0.2μm、0.1μm、0.05μm、0.02μmなどがあるが、これらに限定されない。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあるが、ポリエチレンやナイロンが好ましい。感光性樹脂組成物中に無機粒子を含有する場合、これらの粒子径より大きな孔径の濾過フィルターを用いることが好ましい。
 次に、本発明の感光性樹脂組成物を用いて耐熱性樹脂パターン(硬化膜)を形成する方法について説明する。
 本発明の感光性樹脂組成物は上述のようにスリット塗布に特に適しているが、塗布方法は限定されず、スピンコート法、スリットコート法、ディップコート法、スプレーコート法ならびにインクジェット法やノズルコート法などの印刷法などで塗布し、感光性樹脂組成物膜を得る。塗布に先立ち、感光性樹脂組成物を塗布する基材を予め前述した密着改良剤で前処理してもよい。例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20重量%溶解させた溶液を用いて、基材表面を処理する方法が挙げられる。基材表面の処理方法としては、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法が挙げられる。必要に応じて、減圧乾燥処理を施し、その後50℃~300℃の熱処理により基材と密着改良剤との反応を進行させることができる。
 本発明の感光性樹脂組成物を塗布する装置は、一つの送液経路で送液経路を洗浄することなく、複数種類の、すなわち本発明の感光性樹脂組成物および本発明の感光性樹脂組成物以外の感光性樹脂組成物を順にそれぞれ送液することができる。
 通常、一つの送液経路で複数種類の感光性樹脂組成物を順にそれぞれ送液する場合、感光性樹脂組成物を詰め替える際には、一旦シンナー等の溶剤で送液経路を洗浄した後、次の感光性樹脂組成物を送液する必要がある。これは、送液対象とする複数種類の感光性樹脂組成物を混合して、どちらか一方かまたは両方の固体成分が析出する性質を有する場合に必須であり、シンナー等の溶剤で洗浄を実施しないと、送液経路内で固体成分の析出を起こし問題となる。洗浄とは、送液タンクから口金先端までの送液ポンプ、送液ラインおよび口金の総容量に対して10倍以上の容量の洗浄液で洗浄することである。本発明の感光性樹脂組成物および本発明の感光性樹脂組成物以外の感光性樹脂組成物を順にそれぞれ送液する場合、どちらが先でも構わない。
 本発明の感光性樹脂組成物は、プロピレングリコールモノメチルエーテルアセテートに代表される低極性溶剤への溶解性に優れるため、シンナーで洗浄する工程を実施することなく、複数種類の感光性樹脂組成物を連続して送液して詰め替えることができる。
 前記複数種類の感光性樹脂組成物のうち、本発明の感光性樹脂組成物以外の感光性樹脂組成物としては、特に限定されるものではないが、本発明の感光性樹脂組成物に用いられている溶媒よりも同等あるいは低極性な溶媒を含有する場合に上記の問題が生じやすく、本発明の耐熱性樹脂膜の製造方法が好ましく適用され、例えば、エチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、メチル-3-メトキシプロピオネート、2-ヘプタノン、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノンから選ばれる少なくとも1種類の溶媒を含有する感光性樹脂組成物が挙げられる。
 次に、感光性樹脂組成物を塗布した基板を乾燥して、感光性樹脂膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用し、50℃~150℃の範囲で1分~数時間行うことが好ましい。
 次に、この感光性樹脂膜上に所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。
 感光性樹脂膜にパターンを形成するには、露光後、現像液を用いて露光部を除去すればよい。現像液は、テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを1種または2種以上添加してもよい。現像後は水にてリンス処理をすることが一般的である。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 得られた感光性樹脂組成物膜を加熱処理することにより、硬化膜を得ることができる。例えば、230℃で60分間加熱処理する方法、120~400℃で1分~10時間加熱処理する方法、硬化触媒などを加えて室温~100℃程度の低温で加熱処理する方法、超音波や電磁波処理により室温~100℃程度の低温で硬化する方法などが挙げられる。
 本発明の感光性樹脂組成物により形成した耐熱性樹脂被膜(硬化膜)は、半導体のパッシベーション膜、半導体素子の保護膜、高密度実装用多層配線の層間絶縁膜、有機EL素子の絶縁膜やTFT基板の平坦化膜などの用途に好適に用いられる。
 以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例および比較例中の樹脂および感光性樹脂組成物の評価は以下の方法により行った。
 (1)有機溶剤に対する樹脂の溶解性評価
 PGMEA(プロピレングリコールモノメチルエーテルアセテート)にポリマー粉末を30重量%の固形分濃度になるように添加して室温で1時間撹拌した後、目視で状態を観察し、不溶物の樹脂の有無を確認した。不溶の樹脂が観察されなかったものを溶解、不溶の樹脂が確認された樹脂を不要と判定した。
 (2)粘度評価
 (2-1)ポリマー溶液粘度
 PGMEAにポリマー粉末を30重量%で溶解し、E型粘度計を用いて25℃で測定した。感光性樹脂組成物中の固形分濃度を高くしてもスリット塗布に適した粘度を保つためには、ポリマー溶液の粘度は150mPa・s未満であることが好ましい。
 スリット塗布により均一な厚膜を形成するための適性評価として、ポリマー粉末がPGMEAに30重量%で溶解し、かつ溶液粘度が150mPa・s未満であった場合は「A」、ポリマー粉末はPGMEAに30重量%で溶解するが、溶液粘度が150mPa・s以上であった場合は「B」、ポリマー粉末がPGMEAに30重量%で溶解しなかった場合は「C」と判定した。
 (2-2)ワニスの溶液粘度
 実施例および比較例で作製した固形分濃度20%の感光性樹脂組成物(ワニス)をE型粘度計を用いて25℃で測定した。スリット塗布により均一な膜厚を形成するためには溶液粘度が1~15cpであることが好ましく、1~10cpであることがより好ましい。25℃におけるワニスの粘度が10cp未満のものを「S」、10cp以上15cp未満のものを「A」、15cp以上のものを「C」と判定した。
 感光性樹脂組成物の固形分濃度が20%でない場合は、感光性樹脂組成物の溶媒組成が変化したり、感光性樹脂組成物が変質しないようにして、濃縮や希釈して固形分濃度20%にし測定すれば良い。
 (3)現像膜減り量評価および感度評価
 現像膜の作製
 実施例および比較例で作製した感光性樹脂組成物(ワニス)を8インチシリコンウエハ上に回転塗布し、次いで、ホットプレート(東京エレクトロン(株)製、塗布現像装置Mark-7)を用いて、120℃で2分間熱処理(プリベーク)し、厚さ2.5μmのプリベーク膜を作製した。得られたプリベーク膜を、i線ステッパー((株)ニコン製、NSR-2005i9C)を用いて50~400mJ/cmの露光量にて10mJ/cmステップで露光した。露光後、ネガ型感光性樹脂組成物については100℃で1分間露光後ベークを行った。ポジ型感光性樹脂組成物については露光後、ネガ型感光性樹脂組成物については露光後ベーク後、2.38重量%のテトラメチルアンモニウム(TMAH)水溶液(三菱ガス化学(株)製、ELM-D)で60秒間現像し、次いで純水でリンスし、現像膜を得た。
 膜厚の測定方法
 プリベーク後および現像後の膜厚は、大日本スクリーン製造(株)製光干渉式膜厚測定装置ラムダエースSTM-602を使用し、屈折率1.63として測定した。
 現像膜減り量の算出
 現像膜減り量は以下の式に従って算出した。プリベーク後の膜厚が2.5μmであることから、現像膜減り量は0.50μm未満であることが好ましい。現像膜減り量が0.50μm未満の場合は「A」、0.51~0.59μmの場合は「B」、0.60μm以上の場合は「C」と判定した。
 現像膜減り量(μm)=プリベーク後の膜厚-現像後の膜厚
 感度の算出
 露光および現像後、20μmのライン・アンド・スペースパターン(1L/1S)を1対1の幅に形成する露光量(最適露光量Eopという)を感度とした。Ethが200mJ/cm以下であれば高感度であると判断できる。150mJ/cm以下がより好ましい。
 以下の実施例および比較例に示す酸二無水物、ジアミン化合物、末端封止剤および溶剤の略記号の名称は下記の通りである。
6FDA:2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物
ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物
BSAA:2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物
BAHF:2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン
SiDA:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
BIS-AT-AF:2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン
3,3’-DDS:3,3’-ジアミノジフェニルスルホン
MAP:3-アミノフェノール
ABP:2-アミノ-4-tert-ブチルフェノール
MA:無水マレイン酸
DFA:N,N-ジメチルホルムアミドジメチルアセタール
NMP:N-メチル-2-ピロリドン
PGMEA:プロピレングリコールモノメチルエーテルアセテート
GBL:γ-ブチロラクトン
 また、6FDA、ODPA、BSAA、BAHF、SiDA、BIS-AT-AF、3,3’-DDS、MAP、ABPおよびMAについては構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000018
 合成例1 ジアミン化合物(α)の合成
 BAHF(セントラル硝子(株)製)18.3g(0.05モル)をアセトン100mL、プロピレンオキシド(東京化成(株)製)17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド(東京化成(株)製)20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間撹拌し、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
 得られた白色固体30gを300mLのステンレスオートクレーブに入れ、メチルセルソルブ250mLに分散させ、5%パラジウム-炭素(和光純薬工業(株)製)を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、濾過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるジアミン化合物(α)を得た。
Figure JPOXMLDOC01-appb-C000019
 合成例2 キノンジアジド化合物(b-1)の合成
 乾燥窒素気流下、TrisP-PA(商品名、本州化学工業(株)製)、21.22g(0.05モル)と5-ナフトキノンジアジドスルホン酸クロリド(東洋合成(株)製、NAC-5)26.8g(0.1モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合したトリエチルアミン12.65gを、系内が35℃以上にならないように滴下した。滴下後40℃で2時間撹拌した。トリエチルアミン塩を濾過し、濾液を水に投入した。その後、析出した沈殿を濾過で集め、さらに1%塩酸水1Lで洗浄した。その後、さらに水2Lで2回洗浄した。この沈殿を真空乾燥機で乾燥し、下記式で表されるキノンジアジド化合物(b-1)を得た。
Figure JPOXMLDOC01-appb-C000020
 合成例3 アルコキシメチル基含有熱架橋剤(d-1)の合成
 (1)TrisP-HAP(商品名、本州化学工業(株)製)103.2g(0.4モル)を、水酸化ナトリウム80g(2.0モル)を純水800gに溶解させた溶液に溶解させた。完全に溶解させた後、20~25℃で36~38重量%のホルマリン水溶液686gを2時間かけて滴下した。その後20~25℃で17時間撹拌した。これに硫酸98gと水552gを加えて中和を行い、そのまま2日間放置した。放置後に溶液に生じた針状の白色結晶をろ過で集め、水100mLで洗浄した。この白色結晶を50℃で48時間真空乾燥した。乾燥した白色結晶を島津製作所(株)製の高速液体クロマトグラフィーで、カラムにODSを、展開溶媒にアセトニトリル/水=70/30を用い、254nmで分析したところ、出発原料は完全に消失し、純度92%であることがわかった。さらに、重溶媒にDMSO-d6を用いてNMR(日本電子(株)製、GX-270)により分析したところ、ヘキサメチロール化したTrisP-HAPであることがわかった。
 (2)次に、このようにして得た化合物をメタノール300mLに溶解させ、硫酸2gを加えて室温で24時間撹拌した。この溶液にアニオン型イオン交換樹脂(Rohm and Haas社製、アンバーリストIRA96SB)15gを加え1時間撹拌し、濾過によりイオン交換樹脂を除いた。その後、乳酸エチル500mLを加え、ロータリーエバポレーターでメタノールを除き、乳酸エチル溶液にした。この溶液を室温で2日間放置したところ、白色結晶が生じた。得られた白色結晶を高速液体クロマトグラフィー法により分析したところ、下記式で表される純度99%のTrisP-HAPのヘキサメトキシメチル化合物(アルコキシメチル基含有熱架橋剤(d-1))であることがわかった。
Figure JPOXMLDOC01-appb-C000021
 実施例で使用したその他の熱架橋剤およびフェノール性水酸基を有する化合物は以下のとおりである。
アルコキシメチル基含有熱架橋剤(d-2):“ニカラック(登録商標)”MX-270
熱架橋剤(d-3):VG-3101L
フェノール化合物(e-1):BisP-AF
Figure JPOXMLDOC01-appb-C000022
 実施例1
 乾燥窒素気流下、合成例1で得られたジアミン化合物(α)15.1g(0.025モル)、BAHF3.66g(0.01モル)およびSiDA(信越化学工業(株)製)0.62g(0.0025モル)をNMP200gに溶解した。ここに6FDA(ダイキン工業(株)製)22.2g(0.05モル)をNMP50gとともに加えて、40℃で1時間撹拌した。その後、MAP(東京化成(株)製)2.73g(0.025モル)を加え、40℃で1時間撹拌した。さらに、DFA(三菱レーヨン(株)製)11.9g(0.1モル)をNMP5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステル樹脂(A)を得た。得られた樹脂(A)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
得られた樹脂(A)10gに合成例2で得られたキノンジアジド化合物(b-1)3.0g、フェノール化合物(e-1)1.0gおよびGBL(三菱化学(株)製)50gを加えてポジ型の感光性樹脂組成物のワニス(A-1)を得た。ワニス(A-1)を用いて、前記のように現像膜減り量の評価を行った。結果を表3に示す。
 実施例2
 BAHF3.66g(0.01モル)の代わりにBIS-AT-AF(セントラル硝子(株)製)3.62g(0.01モル)を用いた以外は実施例1と同様にしてポリアミド酸エステル樹脂(B)を得た。得られた樹脂(B)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(B)10gを加え、さらに合成例3で得られたアルコキシメチル基含有熱架橋剤(d-1)1.0gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(B)を作製した。得られたワニス(B)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 実施例3
 ジアミン化合物(α)15.1g(0.025モル)を19.3g(0.032モル)、BAHF3.66g(0.01モル)を2.01g(0.0055モル)およびMAP2.73g(0.025モル)を2.18g(0.02モル)とした以外は実施例1と同様にしてポリアミド酸エステル樹脂(C)を得た。得られた樹脂(C)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(C)10gを加え、さらに熱架橋剤(d-2)0.5gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(C)を作製した。得られたワニス(C)を用いて、実施例1と同様に有現像膜減り量の評価を行った。結果を表3に示す。
 実施例4
 乾燥窒素気流下、6FDA22.2g(0.05モル)をNMP200gに溶解した。ここにABP(東京化成(株)製)6.60g(0.04モル)を加えて40℃で1時間撹拌した。その後、ジアミン化合物(α)9.06g(0.015モル)、BIS-AT-AF4.53g(0.0125モル)およびSiDA0.62g(0.0025モル)をNMP50gとともに加え、40℃で2時間撹拌した。さらに、DFA11.9g(0.1モル)をNMP5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステル樹脂(D)を得た。得られた樹脂(D)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(D)10gを加え、さらに熱架橋剤(d-3)0.5gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(D)を作製した。得られたワニス(D)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 実施例5
 乾燥窒素気流下、ジアミン化合物(α)21.2g(0.035モル)、BAHF4.58g(0.0125モル)およびSiDA0.62g(0.0025モル)をNMP200gに溶解した。ここに6FDA13.3g(0.03モル)をNMP50gとともに加えて、40℃で1時間撹拌した。その後、MA(和光純薬工業(株)製)3.92g(0.04モル)を加え、40℃で1時間撹拌した。さらに、DFA11.9g(0.1モル)をNMP5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステル樹脂(E)を得た。得られた樹脂(E)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
樹脂(A)の代わりに上記で得られた樹脂(E)10gを加え、さらに熱架橋剤(d-1)1.0gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(E)を作製した。得られたワニス(E)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 実施例6
 ジアミン化合物(α)21.2g(0.035モル)を25.7g(0.0425モル)、BAHF4.58g(0.0125モル)を1.83g(0.005モル)、6FDA13.3g(0.03モル)を16.7g(0.0375モル)およびMA3.92g(0.04モル)を2.45g(0.025モル)とした以外は実施例5と同様にしてポリアミド酸エステル樹脂(F)を得た。得られた樹脂(F)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(F)10gを加え、さらに熱架橋剤(d-2)0.5gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(F)を作製した。得られたワニス(F)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 実施例7
 乾燥窒素気流下、ジアミン化合物(α)15.1g(0.025モル)、BAHF8.24g(0.0225モル)およびSiDA0.62g(0.0025モル)をNMP200gに溶解した。ここにMA4.90g(0.05モル)をNMP50gとともに加えて、40℃で1時間撹拌した。その後、6FDA11.1g(0.025モル)を加え、40℃で2時間撹拌した。さらに、DFA11.9g(0.1モル)をNMP5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステル樹脂(G)を得た。得られた樹脂(G)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(G)10gを加え、さらに熱架橋剤(d-3)0.5gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(G)を作製した。得られたワニス(G)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 実施例8
 実施例1で得られた樹脂(A)10gに1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)](ODPTBO)(BASFジャパン(株)製)0.1g、エチレンオキサイド変性ビスフェノールAジメタクリレート(新中村化学工業(株)製、NKエステルBPE-100)2.0g、トリメチロールプロパントリアクリレート(TPT)0.5g、合成例3で得られたアルコキシメチル基含有熱架橋剤(d-3)1.0gおよびGBL50gを加えてネガ型の感光性樹脂組成物のワニス(A-2)を得た。得られたワニス(A-2)を用いて、前記のように現像膜減り量の評価を行った。結果を表2に示す。
 実施例9
 BAHF2.01g(0.0055モル)を2.93g(0.008モル)およびMAP2.18g(0.02モル)を1.63g(0.015モル)とした以外は実施例3と同様にしてポリアミド酸エステル樹脂(H)を得た。得られた樹脂(H)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(H)10gを加えた以外は実施例3と同様にしてポジ型の感光性樹脂組成物のワニス(H)を作製した。得られたワニス(H)を用いて、実施例3と同様に有機溶剤に対する溶解性、ポリマー溶液粘度、現像膜減り量の評価を行った。結果を表3に示す。
 実施例10
 BIS-AT-AF4.53g(0.0125モル)を3.62g(0.01モル)およびABP6.60g(0.04モル)を7.43g(0.045モル)とした以外は実施例4と同様にしてポリアミド酸エステル樹脂(I)を得た。得られた樹脂(I)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(I)10gを加えた以外は実施例4と同様にしてポジ型の感光性樹脂組成物のワニス(I)を作製した。得られたワニス(I)を用いて、実施例4と同様に現像膜減り量の評価を行った。結果を表3に示す。
 実施例11
 6FDA16.7g(0.0375モル)を17.8g(0.04モル)およびMA2.45g(0.025モル)を1.96g(0.02モル)とした以外は実施例6と同様にしてポリアミド酸エステル樹脂(J)を得た。得られた樹脂(J)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(J)10gを加えた以外は実施例6と同様にしてポジ型の感光性樹脂組成物のワニス(J)を作製した。得られたワニス(J)を用いて、実施例6と同様に現像膜減り量の評価を行った。結果を表3に示す。
 実施例12
 6FDA11.1g(0.025モル)を9.99g(0.0225モル)、MA4.90g(0.05モル)を5.39g(0.055モル)とした以外は実施例7と同様にして樹脂ポリアミド酸エステル(K)を得た。得られた樹脂(K)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(K)10gを加えた以外は実施例7と同様にしてポジ型の感光性樹脂組成物のワニス(K)を作製した。得られたワニス(K)を用いて、実施例7と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例1
 6FDA22.2g(0.05モル)の代わりにODPA(マナック(株)製)15.5g(0.05モル)を用いた以外は実施例1と同様にしてポリアミド酸エステル樹脂(L)を得た。得られた樹脂(L)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(L)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(L)を作製した。得られたワニス(L)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例2
 ジアミン化合物(α)15.1g(0.025モル)を21.2g(0.035モル)とし、BAHFを加えなかった以外は実施例1と同様にしてポリアミド酸エステル樹脂(M)を得た。得られた樹脂(M)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(M)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(M)を作製した。得られたワニス(M)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例3
 BAHF3.66g(0.01モル)の代わりに3,3’-DDS(三井化学ファイン(株)製)2.48g(0.01モル)を用いた以外は実施例1と同様にしてポリアミド酸エステル樹脂(N)を得た。得られた樹脂(N)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(N)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(N)を作製した。得られたワニス(N)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例4
 ジアミン化合物(α)15.1g(0.025モル)の代わりに3,3’-DDS6.20g(0.025モル)を用いた以外は実施例1と同様にしてポリアミド酸エステル樹脂(O)を得た。得られた樹脂(O)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(O)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(O)を作製した。得られた樹脂(O)およびワニス(O)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例5
 ジアミン化合物(α)15.1g(0.025モル)を6.05g(0.01モル)およびBAHF3.66g(0.01モル)を9.15g(0.025モル)とした以外は実施例1と同様にしてポリアミド酸エステル樹脂(P)を得た。得られた樹脂(P)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(P)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(P)を作製した。得られたワニス(P)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例6
 ジアミン化合物(α)21.2g(0.035モル)を28.7g(0.0475モル)とし、BAHFを加えなかった以外は実施例5と同様にしてポリアミド酸エステル樹脂(Q)を得た。得られた樹脂(Q)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(Q)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(Q)を作製した。得られたワニス(Q)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例7
 乾燥窒素気流下、ジアミン化合物(α)24.2g(0.04モル)、SiDA0.62g(0.0025モル)をNMP250gに溶解させた。ここに6FDA22.2g(0.05モル)をNMP50gとともに加えて、30℃で2時間撹拌した。その後、MAP1.09g(0.01モル)を加え、40℃で2時間撹拌を続けた。さらにピリジン(東京化成(株)製)2.5gをトルエン(東京化成(株)製)15gに希釈して溶液に加え、冷却管を付けて系外に水をトルエンとともに共沸で除去しながら溶液の温度を120℃にして2時間、さらに180℃で2時間反応させた。この溶液の温度を室温まで低下させ、水2Lに溶液を投入し、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥させ、ポリイミド樹脂(R)を得た。得られた樹脂(R)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(R)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(R)を作製した。得られたワニス(R)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例8
 ジアミン化合物(α)24.2g(0.04モル)をBAHF10.4g(0.0285モル)、MAP1.09g(0.01モル)を4.09g(0.0375モル)および6FDA22.2g(0.05モル)をODPA15.5g(0.05モル)とした以外は比較例7と同様にしてポリイミド樹脂(S)を得た。得られた樹脂(S)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(S)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(S)を作製した。得られたワニス(S)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例9
 乾燥窒素気流下、ジアミン化合物(α)12.1g(0.02モル)、BAHF8.24g(0.0225モル)およびSiDA0.62g(0.0025モル)をNMP200gに溶解した。ここに6FDA6.66g(0.015モル)およびODPA10.9g(0.035モル)をNMP50gとともに加えて、40℃で2時間撹拌した。その後、DFA11.9g(0.1モル)をNMP5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステル樹脂(T)を得た。得られた樹脂(T)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(T)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(T)を作製した。得られたワニス(T)を用いて、実施例1と同様に現像膜減り量の評価を行った。結果を表3に示す。
 比較例10
 ジアミン化合物(α)12.1g(0.02モル)を19.3g(0.032モル)、BAHF8.24g(0.0225モル)を2.01g(0.0055モル)および6FDA6.66g(0.015モル)を15.5g(0.035モル)とし、ODPA10.9g(0.035モル)の代わりにBSAA(サビック・ジャパン(株)製)7.81g(0.015モル)を用いた以外は比較例9と同様にしてポリアミド酸エステル樹脂(U)を得た。得られた樹脂(U)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。結果を表2に示す。
 樹脂(A)の代わりに上記で得られた樹脂(U)10gを加えた以外は実施例1と同様にしてポジ型の感光性樹脂組成物のワニス(U)を作製した。得られたワニス(U)を用いて、実施例1と同様に有機溶剤に対する溶解性、ポリマー溶液粘度、現像膜減り量の評価を行った。結果を表1および表2に示す。
 実施例および比較例で用いた樹脂A~Uに用いたモノマーおよび末端封止剤組成を表1に、樹脂A~Uの有機溶剤溶解性およびポリマー溶液粘度の評価結果を表2に示す。また、実施例および比較例のワニス組成および現像膜減り量の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 実施例13
 乾燥窒素気流下、合成例1で得られたジアミン化合物(α)16.6g(0.0275モル)、BAHF1.83g(0.005モル)およびSiDA(信越化学工業(株)製)0.62g(0.0025モル)をNMP200gに溶解した。ここに6FDA(ダイキン工業(株)製)22.2g(0.05モル)をNMP50gとともに加えて、40℃で1時間撹拌した。その後、MAP(東京化成(株)製)3.27g(0.03モル)を加え、40℃で1時間撹拌した。さらに、DFA(三菱レーヨン(株)製)11.9g(0.1モル)をNMP5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステル樹脂(AA)を得た。得られた樹脂(AA)を用いて、上述の方法により有機溶剤に対する溶解性評価を行った。
 得られた樹脂(AA)7.0gに合成例2で得られたキノンジアジド化合物(b-1)2.0g、フェノール化合物(e-1)2.0g、メガファックF554(DIC製)0.01gおよびPGMEA44gを加えてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AA-1)を得た。ワニス(AA-1)を用いて、前記のように粘度評価と感光性評価を行った。結果を表5に示す。
 実施例14
 乾燥窒素気流下、6FDA22.2g(0.05モル)をNMP200gに溶解した。ここにABP(東京化成(株)製)4.95g(0.03モル)を加えて40℃で1時間撹拌した。その後、ジアミン化合物(α)16.6g(0.0275モル)、BAHF1.83g(0.005モル)およびSiDA0.62g(0.0025モル)をNMP50gとともに加え、40℃で2時間撹拌した。さらに、DFA11.9g(0.1モル)をNMP5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステル樹脂(AB)を得た。得られた樹脂(AB)を用いて、実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AB)7.0gを加えた以外は実施例13と同様にしてポジ型の感光性樹脂組成物のワニス(AB)を作製した。得られたワニス(AB)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例15
 BAHF1.83g(0.005モル)を0.91g(0.0025モル)、およびMAP3.27g(0.03モル)を3.81g(0.035モル)とした以外は実施例13と同様にしてポリアミド酸エステル樹脂(AC)を得た。得られた樹脂(AC)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AC)7.0gを加えた以外は実施例1と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AC)を作成した。得られたワニス(AC)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例16
 ABP4.95g(0.03モル)を5.73g(0.035モル)、BAHF1.83g(0.005モル)を0.915g(0.0025モル)、とした以外は実施例14と同様にしてポリアミド酸エステル樹脂(AD)を得た。得られた樹脂(AD)を用いて、実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AD)10gを加え、さらに熱架橋剤(d-3)0.5gを加えた以外は実施例13と同様にしてポジ型の感光性樹脂組成物のワニス(AD)を作製した。得られたワニス(AD)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例17
 乾燥窒素気流下、ジアミン化合物(α)25.7g(0.0425モル)、BAHF1.83g(0.005モル)およびSiDA0.62g(0.0025モル)をNMP200gに溶解した。ここに6FDA17.8g(0.04モル)をNMP50gとともに加えて、40℃で1時間撹拌した。その後、MA(和光純薬工業(株)製)1.96g(0.02モル)を加え、40℃で1時間撹拌した。さらに、DFA11.9g(0.1モル)をNMP5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステル樹脂(AE)を得た。得られた樹脂(AE)を用いて、実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AE)7.0gを加えた以外は実施例13と同様にしてポジ型の感光性樹脂組成物のワニス(AE)を作製した。得られたワニス(AE)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例18
 ABP4.95g(0.03モル)を2.48g(0.015モル)、ジアミン化合物(α)16.6g(0.0275モル)を18.1g(0.03モル)、BAHF1.83g(0.005モル)を3.66g(0.01モル)、とした以外は実施例14と同様にしてポリアミド酸エステル樹脂(AF)を得た。得られた樹脂(AF)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AF)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AF)を作成した。得られたワニス(AF)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例19
 ジアミン化合物(α)16.6g(0.0275モル)を13.6g(0.0225モル)、BAHF1.83g(0.005モル)を7.32g(0.02モル)、およびMAP3.27g(0.03モル)を1.09g(0.01モル)とした以外は実施例13と同様にしてポリアミド酸エステル樹脂(AG)を得た。得られた樹脂(AG)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AG)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AG)を作成した。得られたワニス(AG)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例20
 ABP4.95g(0.03モル)を4.13g(0.025モル)、ジアミン化合物(α)16.6g(0.0275モル)を3.02g(0.005モル)、BAHF1.83g(0.005モル)を10.98g(0.03モル)、とした以外は実施例14と同様にしてポリアミド酸エステル樹脂(AH)を得た。得られた樹脂(AH)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AH)7.0gを加えた以外は実施例1と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AH)を作成した。得られたワニス(AH)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例21
 ジアミン化合物(α)16.6g(0.0275モル)を3.02g(0.005モル)、BAHF1.83g(0.005モル)を12.81g(0.035モル)、およびMAP3.27g(0.03モル)を1.64g(0.015モル)とした以外は実施例13と同様にしてポリアミド酸エステル樹脂(AI)を得た。得られた樹脂(AI)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(A)の代わりに上記で得られた樹脂(AI)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AI)を作成した。得られたワニス(AI)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例22
 BAHF1.83g(0.005モル)の代わりにBIS-AT-AF(セントラル硝子(株)製)3.62g(0.01モル)、ジアミン化合物(α)16.6g(0.0275モル)を15.1g(0.025モル)、およびMAP3.27g(0.03モル)を2.73g(0.025モル)とした以外は実施例13と同様にしてポリアミド酸エステル樹脂(AJ)を得た。得られた樹脂(AJ)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AJ)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AJ)を作成した。得られたワニス(AJ)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例23
 ABP4.95g(0.03モル)を6.60g(0.04モル)、BAHF1.83g(0.005モル)の代わりにBIS-AT-AF4.53g(0.0125モル)、ジアミン化合物(α)16.6g(0.0275モル)を9.06g(0.015モル)とした以外は実施例14と同様にしてポリアミド酸エステル樹脂(AK)を得た。得られた樹脂(AK)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AK)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AK)を作成した。得られたワニス(AK)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例24
 ジアミン化合物(α)25.7g(0.0425モル)を21.1g(0.035モル)、BAHF1.83g(0.005モル)を4.57g(0.0125モル)、6FDA17.8g(0.04モル)を13.3g(0.03モル)、MA1.96g(0.02モル)を3.92g(0.04モル)とした以外は実施例17と同様にしてポリアミド酸エステル樹脂(AL)を得た。得られた樹脂(AL)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AL)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AL)を作製した。得られたワニス(AL)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例25
 6FDA17.8g(0.04モル)を16.6g(0.0375モル)、MA1.96g(0.02モル)を2.45g(0.025モル)とした以外は実施例17と同様にしてポリアミド酸エステル樹脂(AM)を得た。得られた樹脂(AM)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AM)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AM)を作製した。得られたワニス(AM)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例26
 ジアミン化合物(α)25.7g(0.0425モル)を15.1g(0.025モル)、BAHF1.83g(0.005モル)を8.23g(0.0225モル)、6FDA17.8g(0.04モル)を11.1g(0.025モル)、MA1.96g(0.02モル)を4.90g(0.05モル)とした以外は実施例17と同様にしてポリアミド酸エステル樹脂(AN)を得た。得られた樹脂(AN)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AN)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AN)を作製した。得られたワニス(AN)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例27
 ジアミン化合物(α)16.6g(0.0275モル)を7.56g(0.0125モル)、BAHF1.83g(0.005モル)を8.24g(0.0225モル)、およびMAP3.27g(0.03モル)を2.73g(0.025モル)とした以外は実施例13と同様にしてポリアミド酸エステル樹脂(AO)を得た。得られた樹脂(AO)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AO)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AO)を作成した。得られたワニス(AO)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例28
 乾燥窒素気流下、BAHF7.32g(0.02モル)、BIS-AT-AF7.24g(0.02モル)、およびMAP2.18g(0.02モル)をNMP50g、グリシジルメチルエーテル26.4g(0.3モル)に溶解させ、溶液の温度を-15℃まで冷却した。ここにジフェニルエーテルジカルボン酸クロリド14.7g(日本農薬(株)製、0.050モル)をGBL25gに溶解させた溶液を、内部の温度が0℃を超えないように滴下した。滴下終了後、6時間-15℃で撹拌を続けた、反応終了後、溶液をメタノールを10重量%含んだ水3Lに投入して白色の沈殿を析出させた。この沈殿をろ過で集めて、水で3回洗浄した後、50℃の真空管早期で72時間乾燥し、アルカリ可溶性のポリベンゾオキサゾール前駆体(AP)を得た。得られた樹脂(AP)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AP)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AP)を作成した。得られたワニス(AP)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 実施例29
 実施例13で得られた樹脂(AA)7.0gにキノンジアジド化合物(b-1)2.0g、フェノール化合物(e-1)2.0g、合成例3で得られたアルコキシメチル基含有熱架橋剤(d-1)2.0g、メガファックF554(DIC製)0.01gおよびPGMEA52gを加えてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AA-2)を得た。ワニス(AA-2)を用いて、前記のように粘度評価と感光性評価を行った。結果を表5に示す。
 実施例30
 実施例13で得られた樹脂(AA)7.0gにキノンジアジド化合物(b-1)2.0g、フェノール化合物(e-1)2.0g、アルコキシメチル基含有熱架橋剤(d-2)2.0g、メガファックF554(DIC製)0.01gおよびPGMEA52gを加えてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AA-3)を得た。ワニス(AA-3)を用いて、前記のように粘度評価と感光性評価を行った。結果を表5に示す。
 実施例31
 実施例13で得られた樹脂(AA)7.0gにキノンジアジド化合物(b-1)2.0g、フェノール化合物(e-1)2.0g、熱架橋剤(d-3)2.0g、メガファックF554(DIC製)0.01gおよびPGMEA52gを加えてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AA-4)を得た。ワニス(AA-4)を用いて、前記のように粘度評価と感光性評価を行った。結果を表5に示す。
 実施例32
 実施例13で得られた樹脂(AA)10gに1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)](ODPTBO)(BASFジャパン(株)製)0.1g、エチレンオキサイド変性ビスフェノールAジメタクリレート(新中村化学工業(株)製、NKエステルBPE-100)2.0g、トリメチロールプロパントリアクリレート(TPT)0.5g、熱架橋剤(d-3)1.0g、メガファックF554(DIC製)0.01gおよびPGMEA54.4gを加えてネガ型の感光性樹脂組成物のワニス(A-5)を得た。得られたワニス(AA-5)を用いて、前記のように粘度評価と感光性評価を行った。結果を表5に示す。
 比較例11
 乾燥窒素気流下、BAHF18.3g(0.05モル)をNMP50g、グリシジルメチルエーテル26.4g(0.3モル)に溶解させ、溶液の温度を-15℃まで冷却した。ここにジフェニルエーテルジカルボン酸クロリド14.7g(日本農薬(株)製、0.050モル)をGBL25gに溶解させた溶液を、内部の温度が0℃を超えないように滴下した。滴下終了後、6時間-15℃で撹拌を続けた、反応終了後、溶液をメタノールを10重量%含んだ水3Lに投入して白色の沈殿を析出させた。この沈殿をろ過で集めて、水で3回洗浄した後、50℃の真空管早期で72時間乾燥し、アルカリ可溶性のポリベンゾオキサゾール前駆体(AQ)を得た。得られた樹脂(AQ)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AQ)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(Q)を作成した。得られたワニス(AQ)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 比較例12
 6FDA22.2g(0.05モル)の代わりにODPA15.5g(0.05モル)、ジアミン化合物(α)16.6g(0.0275モル)を24.18g(0.04モル)、MAP3.27g(0.03モル)を1.09g(0.01モル)とし、BAHFを加えなかった以外は実施例13と同様にしてポリアミド酸エステル樹脂(AR)を得た。得られた樹脂(AR)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 比較例13
 乾燥窒素気流下、BAHF15.46g(0.04225モル)、SiDA0.62g(0.0025モル)をNMP250gに溶解した。ここにODPA15.5g(0.05モル)をNMP50gとともに加えて、30℃で2時間撹拌した。その後、MAP(東京化成(株)製)1.09g(0.01モル)を加え、40℃で2時間撹拌を続けた。さらにピリジン(東京化成(株)製)2.5gをトルエン(東京化成(株)製)15gに希釈して溶液に加え、冷却管を付けて系外に水をトルエンとともに共沸で除去しながら溶液の温度を120℃にして2時間、さらに180℃で2時間反応させた。この溶液の温度を室温まで低下させ、水2Lに溶液を投入し、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥させ、ポリイミド樹脂(AS)を得た。得られた樹脂(AS)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 樹脂(AA)の代わりに上記で得られた樹脂(AS)7.0gを加えた以外は実施例13と同様にしてポジ型の固形分濃度20%感光性樹脂組成物のワニス(AS)を作成した。得られたワニス(AS)を用いて、実施例13と同様に粘度評価と感光性評価を行った。結果を表5に示す。
 比較例14
 6FDA22.2g(0.05モル)の代わりにODPA15.5g(0.05モル)、ジアミン化合物(α)16.6g(0.0275モル)を15.1g(0.025モル)、BAHF1.83g(0.005モル)を3.66g(0。01モル)、およびMAP3.27g(0.03モル)を2.73g(0.025モル)とした以外は実施例13と同様にしてポリアミド酸エステル樹脂(AT)を得た。得られた樹脂(AT)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 比較例15
 ジアミン化合物(α)16.6g(0.0275モル)を21.1g(0.035モル)、MAP3.27g(0.03モル)を2.73g(0.025モル)とし、BAHFを加えなかった以外は実施例13と同様にしてポリアミド酸エステル樹脂(AU)を得た。得られた樹脂(AU)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 比較例16
 ジアミン化合物(α)16.6g(0.0275モル)を15.1g(0.0225モル)、BAHF1.83g(0.005モル)の代わりに3,3’-DDS(三井化学ファイン(株)製)を2.48g(0.01モル)、およびMAP3.27g(0.03モル)を2.73g(0.025モル)とした以外は実施例13と同様にしてポリアミド酸エステル樹脂(AV)を得た。得られた樹脂(AV)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 比較例17
 ジアミン化合物(α)16.6g(0.0275モル)の代わりに3,3’-DDSを6.20g(0.025モル)、BAHF1.83g(0.005モル)を3.66g(0.01モル)、およびMAP3.27g(0.03モル)を2.73g(0.025モル)とした以外は実施例13と同様にしてポリアミド酸エステル樹脂(AW)を得た。得られた樹脂(AW)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 比較例18
 ジアミン化合物(α)25.7g(0.0425モル)を28.7g(0.0475モル)、6FDA17.8g(0.04モル)を13.3g(0.03モル)、MA1.96g(0.02モル)を3.92g(0.04モル)とし、BAHFを加えなかった以外は実施例17と同様にしてポリアミド酸エステル樹脂(AX)を得た。得られた樹脂(AX)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 比較例19
 乾燥窒素気流下、ジアミン化合物(α)12.1g(0.02モル)、BAHF8.24g(0.0225モル)およびSiDA0.62g(0.0025モル)をNMP200gに溶解した。ここに6FDA6.66g(0.015モル)およびODPA10.9g(0.035モル)をNMP50gとともに加えて、40℃で2時間撹拌した。その後、DFA11.9g(0.1モル)をNMP5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステル樹脂(AY)を得た。得られた樹脂(AY)を用いて実施例13と同様に有機溶剤に対する溶解性評価を行った。
 比較例20
 ジアミン化合物(α)12.1g(0.02モル)を19.3g(0.032モル)、BAHF8.24g(0.0225モル)を2.01g(0.0055モル)および6FDA6.66g(0.015モル)を15.5g(0.035モル)とし、ODPA10.9g(0.035モル)の代わりにBSAA(サビック・ジャパン(株)製)7.81g(0.015モル)を用いた以外は比較例19と同様にしてポリアミド酸エステル樹脂(AZ)を得た。得られた樹脂(AZ)を用いて、上述の方法により有機溶剤に対する溶解性評価とポリマー溶液粘度の測定を行った。
 実施例および比較例で用いた樹脂AA~AZに用いたモノマーおよび末端封止剤組成を表4に、樹脂AA~AZの有機溶剤溶解性、ワニス組成、ワニス溶液粘度および感度の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 実施例33
 実施例13で得られた樹脂(AA)7.0gに、キノンジアジド化合物(b-1)2.0g、フェノール化合物(e-1)2.0g、メガファックF554(DIC製)0.01gおよびGBL99gを加えてポジ型の感光性樹脂組成物のワニス(AA-6)を得た。ポジ型レジスト(東京応化(株)製“OFPR-800”)を送液したスリットコーター(東レエンジニアリング(株)製TSコーター)を上記ワニス(AA-6)に切り替えて、加圧送液を開始し、1100mm×960mmのクロム成膜基板に感光性樹脂組成物を乾燥後の膜厚が5μmとなるように塗布した。
 実施例34
 ポジ型レジスト(東京応化(株)製“OFPR-800”)を送液したスリットコーター(東レエンジニアリング(株)製TSコーター)の送液タンクから口金先端までの送液ポンプ、送液ラインおよび口金の容量200mLに対して、1Lのシンナーで洗浄を行った後、実施例33で用いたワニス(AA-6)に切り替えて、加圧送液を開始し、1100mm×960mmのクロム成膜基板に感光性樹脂組成物を乾燥後の膜厚が5μmとなるように塗布した。
 比較例21
 比較例12で得られた樹脂(AR)7.0gに、キノンジアジド化合物(b-1)2.0g、フェノール化合物(e-1)2.0g、メガファックF554(DIC製)0.01gおよびGBL99gを加えてポジ型の感光性樹脂組成物のワニス(AR)を得た。実施例33と同様にしてポジ型レジスト(東京応化(株)製“OFPR-800”)を送液したスリットコーター(東レエンジニアリング(株)製TSコーター)を上記ワニス(AR)に切り替えて加圧送液を開始したところ、送液ポンプ内、送液ライン内および口金内において固体成分の析出を確認した。
 比較例22
 ポジ型レジスト(東京応化(株)製“OFPR-800”)を送液したスリットコーター(東レエンジニアリング(株)製TSコーター)の送液タンクから口金先端までの送液ポンプ、送液ラインおよび口金の容量200mLに対して、1Lのシンナーで洗浄を行った後、比較例21で用いたワニス(AR)に切り替えて加圧送液を開始したところ、送液ポンプ内、送液ライン内および口金内において固体成分の析出を確認した。
 本発明の感光性樹脂組成物は、半導体素子の表面保護膜や層間絶縁膜、有機EL素子の絶縁層、有機EL素子を用いた表示装置の駆動用TFT基板の平坦化膜などの用途に好ましく用いることができる。

Claims (12)

  1. (a1)アミド基とトリフルオロメチル基と芳香環を有する、プロピレングリコールモノメチルエーテルアセテートに可溶な芳香族アミド樹脂、(b)感光剤、および(c)溶剤を含む感光性樹脂組成物であって、固形分濃度20重量%、25℃における粘度が1~15cpである感光性樹脂組成物。
  2. (a2)アミド基とアミド酸エステル基とトリフルオロメチル基と芳香環を有する、プロピレングリコールモノメチルエーテルアセテートに可溶な芳香族アミド樹脂、(b)感光剤、および(c)溶剤を含む感光性樹脂組成物であって、固形分濃度20重量%、25℃における粘度が1~15cpである感光性樹脂組成物。
  3. (a)一般式(1)で表される構造を主な繰り返し単位として有する樹脂、(b)感光剤および(c)溶剤を含有する感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、複数の繰り返し単位においてR~Rはそれぞれ異なる基が混在していてもよい。Rは4価の有機基であって、全ての繰り返し単位におけるRの95~100モル%が下記式(2)で表される基である。Rは2価の有機基であって、全ての繰り返し単位におけるRの50~99モル%が下記式(3)で表される基、1~50モル%が下記式(4)で表される基である。Rは炭素数1~20の有機基を示す。lおよびmはそれぞれ0~2の整数を示し、l+m=2である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(4)中、Zは水酸基またはメチル基を示し、pおよびqはそれぞれ0または1である。)
  4. 前記(a)一般式(1)で表される構造を主な繰り返し単位として有する樹脂が、モノマー成分であるテトラカルボン酸100モル%に対して10~100モル%のモノアミンにより末端封止されたものである請求項3記載の感光性樹脂組成物。
  5. 前記(a)一般式(1)で表される構造を主な繰り返し単位として有する樹脂が、モノマー成分であるジアミン100モル%に対して10~100モル%の酸無水物により末端封止されたものである請求項3記載の感光性樹脂組成物。
  6. 前記モノアミンが一般式(5)で表される基を有するモノアミンである請求項4記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(5)中、Rは炭素数1~6の飽和炭化水素基を示し、rは0または1を示す。AおよびBはそれぞれ同じでも異なっていてもよく、水酸基、カルボキシル基またはスルホン酸基を示す。sおよびtはそれぞれ0または1を示し、s+t≧1である。)
  7. 前記(b)感光剤がキノンジアジド化合物である請求項1~6のいずれかに記載の感光性樹脂組成物。
  8. 請求項1~7いずれかに記載の感光性樹脂組成物を基板に塗布し感光性樹脂膜を形成する工程、該感光性樹脂膜を乾燥する工程、乾燥した感光性樹脂膜を露光する工程、露光した感光性樹脂膜を現像する工程、および現像した感光性樹脂膜を加熱処理する工程を含む耐熱性樹脂膜の製造方法。
  9. 請求項1~7いずれかに記載の感光性樹脂組成物を、基板に塗布し感光性樹脂膜を形成する工程、該感光性樹脂膜を乾燥する工程、乾燥した感光性樹脂膜を露光する工程、露光した感光性樹脂膜を現像する工程、および現像した感光性樹脂膜を加熱処理する工程を含む耐熱性樹脂膜の製造方法であって、請求項1~7いずれかに記載の感光性樹脂組成物以外の感光性樹脂組成物が送液されていた塗布装置を用いて、該塗布装置の送液経路内の洗浄を行わずに、該塗布装置を用いて請求項1~7いずれかに記載の感光性樹脂組成物を基板に塗布する耐熱性樹脂膜の製造方法。
  10. 前記請求項1~7いずれかに記載の感光性樹脂組成物以外の感光性樹脂組成物が、エチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、メチル-3-メトキシプロピオネート、2-ヘプタノン、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノンから選ばれる少なくとも1種類の溶媒を含有する感光性樹脂組成物である請求項9に記載の耐熱性樹脂膜の製造方法。
  11. 基板上に形成された第一電極と第一電極を部分的に露出せしめるように第一電極上に形成された絶縁層と、第一電極に対向して設けられた第二電極とを含む表示装置であって、前記絶縁層が、請求項8~10いずれかに記載の耐熱性樹脂膜の製造方法により得られる耐熱性樹脂膜であることを特徴とする表示装置。
  12. 薄膜トランジスタ(TFT)が形成された基板上の凹凸を覆う状態で設けられた平坦化膜と、平坦化膜上に設けられた表示素子とを備えてなる表示装置であって、前記平坦化膜が請求項8~10いずれかに記載の耐熱性樹脂膜の製造方法により得られる耐熱性樹脂膜であることを特徴とする表示装置。
     
PCT/JP2013/083491 2012-12-20 2013-12-13 感光性樹脂組成物、耐熱性樹脂膜の製造方法および表示装置 WO2014097992A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380065421.6A CN104854508B (zh) 2012-12-20 2013-12-13 感光性树脂组合物、耐热性树脂膜的制造方法及显示装置
KR1020157018049A KR101942150B1 (ko) 2012-12-20 2013-12-13 감광성 수지 조성물, 내열성 수지막의 제조 방법 및 표시 장치
EP13864249.1A EP2937732B1 (en) 2012-12-20 2013-12-13 Photosensitive resin composition, method for producing heat-resistant resin film and display device
US14/647,747 US9897915B2 (en) 2012-12-20 2013-12-13 Photosensitive resin composition, method for producing heat-resistant resin film and display device
SG11201504647VA SG11201504647VA (en) 2012-12-20 2013-12-13 Photosensitive resin composition, method for producing heat-resistant resin film and display device
JP2014500579A JP6332022B2 (ja) 2012-12-20 2013-12-13 感光性樹脂組成物、耐熱性樹脂膜の製造方法および表示装置
KR1020197001652A KR20190009002A (ko) 2012-12-20 2013-12-13 감광성 수지 조성물, 내열성 수지막의 제조 방법 및 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012277743 2012-12-20
JP2012-277743 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014097992A1 true WO2014097992A1 (ja) 2014-06-26

Family

ID=50978324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083491 WO2014097992A1 (ja) 2012-12-20 2013-12-13 感光性樹脂組成物、耐熱性樹脂膜の製造方法および表示装置

Country Status (8)

Country Link
US (1) US9897915B2 (ja)
EP (1) EP2937732B1 (ja)
JP (2) JP6332022B2 (ja)
KR (2) KR101942150B1 (ja)
CN (2) CN110147031A (ja)
SG (1) SG11201504647VA (ja)
TW (1) TWI568797B (ja)
WO (1) WO2014097992A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133741A (ja) * 2015-01-21 2016-07-25 住友ベークライト株式会社 感光性樹脂組成物、および電子装置
WO2016158406A1 (ja) * 2015-03-27 2016-10-06 東レ株式会社 薄膜トランジスタ用感光性樹脂組成物、硬化膜、薄膜トランジスタ、液晶表示装置または有機電界発光表示装置、硬化膜の製造方法、薄膜トランジスタの製造方法および液晶表示装置または有機電界発光表示装置の製造方法
US9740101B2 (en) * 2015-11-13 2017-08-22 Globalfoundries Inc. Additions of organic species to facilitate crosslinker removal during PSPI cure
CN107428935A (zh) * 2015-03-27 2017-12-01 东丽株式会社 二胺化合物、使用其的耐热性树脂或耐热性树脂前体
KR20180012308A (ko) 2015-06-30 2018-02-05 후지필름 가부시키가이샤 전구체 조성물, 감광성 수지 조성물, 전구체 조성물의 제조 방법, 경화막, 경화막의 제조 방법 및 반도체 디바이스
WO2018066395A1 (ja) * 2016-10-05 2018-04-12 東レ株式会社 樹脂組成物、硬化膜、半導体装置およびそれらの製造方法
WO2020059485A1 (ja) * 2018-09-18 2020-03-26 東レ株式会社 感光性樹脂組成物、樹脂シート、硬化膜、有機el表示装置、半導体電子部品、半導体装置、および有機el表示装置の製造方法
CN117186403A (zh) * 2023-09-01 2023-12-08 明士(北京)新材料开发有限公司 一种负性光敏性树脂、树脂组合物及其制备方法与应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194892A1 (ko) * 2014-06-20 2015-12-23 코오롱인더스트리 주식회사 광가교성 수지 조성물, 이로부터 형성된 절연막 및 유기발광소자
JP6711273B2 (ja) * 2014-11-27 2020-06-17 東レ株式会社 樹脂および感光性樹脂組成物
JP6658548B2 (ja) 2015-01-23 2020-03-04 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、パターン硬化膜及び電子部品
EP3270664A4 (en) * 2015-03-11 2018-10-31 Toray Industries, Inc. Organic el display device and method for manufacturing same
WO2016152794A1 (ja) * 2015-03-24 2016-09-29 東レ株式会社 感光性樹脂組成物
JP6743692B2 (ja) * 2015-03-27 2020-08-19 東レ株式会社 感光性樹脂組成物、感光性シート、半導体装置および半導体装置の製造方法
TWI704418B (zh) * 2015-06-30 2020-09-11 日商富士軟片股份有限公司 負型感光性樹脂組成物、硬化膜、硬化膜的製造方法及半導體元件
WO2017038828A1 (ja) * 2015-09-03 2017-03-09 東レ株式会社 ポジ型感光性樹脂組成物、その樹脂組成物により形成された未硬化の樹脂パターン、硬化樹脂パターン、およびそれを用いた半導体装置とその製造方法
TWI634135B (zh) 2015-12-25 2018-09-01 日商富士軟片股份有限公司 樹脂、組成物、硬化膜、硬化膜的製造方法及半導體元件
KR102309954B1 (ko) * 2016-03-18 2021-10-08 도레이 카부시키가이샤 경화막 및 포지티브형 감광성 수지 조성물
JP6699661B2 (ja) * 2016-03-28 2020-05-27 東レ株式会社 感光性樹脂成物
KR102654926B1 (ko) * 2016-08-10 2024-04-05 삼성디스플레이 주식회사 포토레지스트 조성물 및 이를 이용한 금속 패턴의 형성 방법
KR102460973B1 (ko) * 2016-11-10 2022-11-02 도레이 카부시키가이샤 디아민 화합물, 그것을 사용한 내열성 수지 및 수지 조성물
KR102299419B1 (ko) * 2018-02-28 2021-09-06 주식회사 엘지화학 감광성 수지 조성물 및 경화막
CN110776586B (zh) * 2019-10-24 2022-05-20 安庆飞凯新材料有限公司 一种烷氧基苯绕蒽酮光引发剂的制备方法及其应用
KR20220112366A (ko) * 2021-02-04 2022-08-11 주식회사 엘지화학 폴리이미드 수지 및 이를 포함하는 포지티브형 감광성 수지 조성물
KR102473464B1 (ko) * 2021-12-13 2022-12-05 신진유지건설 주식회사 하수관거의 파손부위 및 균열부위 보수공법
KR20240009689A (ko) * 2022-07-14 2024-01-23 주식회사 동진쎄미켐 감광성 수지 조성물, 경화막 및 이를 포함하는 표시장치
CN116178716B (zh) * 2023-05-04 2023-08-01 广州奥松电子股份有限公司 一种聚异酰亚胺及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041936A (ja) 2003-07-24 2005-02-17 Toray Ind Inc 熱硬化性樹脂組成物およびそれを用いた電子部品
JP2007156243A (ja) * 2005-12-07 2007-06-21 Nissan Chem Ind Ltd ポジ型感光性樹脂組成物及びその硬化膜
JP2007183388A (ja) * 2006-01-06 2007-07-19 Toray Ind Inc 感光性樹脂組成物、耐熱性樹脂パターンの製造方法および有機電界発光素子
JP2008033283A (ja) * 2006-07-05 2008-02-14 Ist Corp 感光性ポリイミド前駆体組成物及びこれを用いた電子部品
WO2008123053A1 (ja) * 2007-03-30 2008-10-16 Toray Industries, Inc. ポジ型感光性樹脂組成物
JP2011042701A (ja) 2009-08-19 2011-03-03 Toray Ind Inc 樹脂およびポジ型感光性樹脂組成物
WO2011030744A1 (ja) * 2009-09-10 2011-03-17 東レ株式会社 感光性樹脂組成物および感光性樹脂膜の製造方法
JP2011202059A (ja) 2010-03-26 2011-10-13 Toray Ind Inc 樹脂およびポジ型感光性樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100522A1 (fr) * 2002-05-29 2003-12-04 Toray Industries, Inc. Composition de resine photosensible et procede de preparation d'une couche mince de resine thermoresistante
SG135954A1 (en) * 2003-04-07 2007-10-29 Toray Industries Positive-type photosensitive resin composition
JP4483371B2 (ja) * 2003-04-07 2010-06-16 東レ株式会社 感光性樹脂組成物
JP4034691B2 (ja) 2003-05-09 2008-01-16 ミネベア株式会社 回転角度センサー
KR101674654B1 (ko) * 2007-04-02 2016-11-09 닛산 가가쿠 고교 가부시키 가이샤 포지티브형 감광성 수지 조성물, 이의 경화막 및 표시소자
JP2009020246A (ja) * 2007-07-11 2009-01-29 Toray Ind Inc 感光性樹脂組成物、これを用いた絶縁性樹脂パターンの製造方法および有機電界発光素子
KR101588364B1 (ko) * 2007-12-14 2016-01-25 닛산 가가쿠 고교 가부시키 가이샤 폴리히드록시이미드의 제조방법 및 그 제조방법으로부터 얻어진 폴리히드록시이미드를 함유하는 포지티브형 감광성 수지 조성물
JP5477527B2 (ja) * 2008-09-30 2014-04-23 日産化学工業株式会社 末端官能基含有ポリイミドを含むポジ型感光性樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041936A (ja) 2003-07-24 2005-02-17 Toray Ind Inc 熱硬化性樹脂組成物およびそれを用いた電子部品
JP2007156243A (ja) * 2005-12-07 2007-06-21 Nissan Chem Ind Ltd ポジ型感光性樹脂組成物及びその硬化膜
JP2007183388A (ja) * 2006-01-06 2007-07-19 Toray Ind Inc 感光性樹脂組成物、耐熱性樹脂パターンの製造方法および有機電界発光素子
JP2008033283A (ja) * 2006-07-05 2008-02-14 Ist Corp 感光性ポリイミド前駆体組成物及びこれを用いた電子部品
WO2008123053A1 (ja) * 2007-03-30 2008-10-16 Toray Industries, Inc. ポジ型感光性樹脂組成物
JP2011042701A (ja) 2009-08-19 2011-03-03 Toray Ind Inc 樹脂およびポジ型感光性樹脂組成物
WO2011030744A1 (ja) * 2009-09-10 2011-03-17 東レ株式会社 感光性樹脂組成物および感光性樹脂膜の製造方法
JP2011202059A (ja) 2010-03-26 2011-10-13 Toray Ind Inc 樹脂およびポジ型感光性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937732A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133741A (ja) * 2015-01-21 2016-07-25 住友ベークライト株式会社 感光性樹脂組成物、および電子装置
CN107431020B (zh) * 2015-03-27 2020-07-24 东丽株式会社 薄膜晶体管用感光性树脂组合物、固化膜、薄膜晶体管
WO2016158406A1 (ja) * 2015-03-27 2016-10-06 東レ株式会社 薄膜トランジスタ用感光性樹脂組成物、硬化膜、薄膜トランジスタ、液晶表示装置または有機電界発光表示装置、硬化膜の製造方法、薄膜トランジスタの製造方法および液晶表示装置または有機電界発光表示装置の製造方法
KR20170131382A (ko) * 2015-03-27 2017-11-29 도레이 카부시키가이샤 박막 트랜지스터용 감광성 수지 조성물, 경화막, 박막 트랜지스터, 액정 표시 장치 또는 유기 전계 발광 표시 장치, 경화막의 제조 방법, 박막 트랜지스터의 제조 방법 및 액정 표시 장치 또는 유기 전계 발광 표시 장치의 제조 방법
CN107428935A (zh) * 2015-03-27 2017-12-01 东丽株式会社 二胺化合物、使用其的耐热性树脂或耐热性树脂前体
CN107431020A (zh) * 2015-03-27 2017-12-01 东丽株式会社 薄膜晶体管用感光性树脂组合物、固化膜、薄膜晶体管、液晶显示装置或有机场致发光显示装置、固化膜的制造方法、薄膜晶体管的制造方法以及液晶显示装置或有机场致发光显示装置的制造方法
JPWO2016158406A1 (ja) * 2015-03-27 2018-01-18 東レ株式会社 薄膜トランジスタ用感光性樹脂組成物、硬化膜、薄膜トランジスタ、液晶表示装置または有機電界発光表示装置、硬化膜の製造方法、薄膜トランジスタの製造方法および液晶表示装置または有機電界発光表示装置の製造方法
KR102245394B1 (ko) 2015-03-27 2021-04-28 도레이 카부시키가이샤 박막 트랜지스터용 감광성 수지 조성물, 경화막, 박막 트랜지스터, 액정 표시 장치 또는 유기 전계 발광 표시 장치, 경화막의 제조 방법, 박막 트랜지스터의 제조 방법 및 액정 표시 장치 또는 유기 전계 발광 표시 장치의 제조 방법
CN107428935B (zh) * 2015-03-27 2019-04-02 东丽株式会社 二胺化合物、使用其的耐热性树脂或耐热性树脂前体
KR20180012308A (ko) 2015-06-30 2018-02-05 후지필름 가부시키가이샤 전구체 조성물, 감광성 수지 조성물, 전구체 조성물의 제조 방법, 경화막, 경화막의 제조 방법 및 반도체 디바이스
US10526448B2 (en) 2015-06-30 2020-01-07 Fujifilm Corporation Precursor composition, photosensitive resin composition, method for producing precursor composition, cured film, method for producing cured film, and semiconductor device
US9740101B2 (en) * 2015-11-13 2017-08-22 Globalfoundries Inc. Additions of organic species to facilitate crosslinker removal during PSPI cure
JPWO2018066395A1 (ja) * 2016-10-05 2019-07-25 東レ株式会社 樹脂組成物、硬化膜、半導体装置およびそれらの製造方法
WO2018066395A1 (ja) * 2016-10-05 2018-04-12 東レ株式会社 樹脂組成物、硬化膜、半導体装置およびそれらの製造方法
JP7013872B2 (ja) 2016-10-05 2022-02-15 東レ株式会社 樹脂組成物、硬化膜、半導体装置およびそれらの製造方法
WO2020059485A1 (ja) * 2018-09-18 2020-03-26 東レ株式会社 感光性樹脂組成物、樹脂シート、硬化膜、有機el表示装置、半導体電子部品、半導体装置、および有機el表示装置の製造方法
JPWO2020059485A1 (ja) * 2018-09-18 2021-08-30 東レ株式会社 感光性樹脂組成物、樹脂シート、硬化膜、有機el表示装置、半導体電子部品、半導体装置、および有機el表示装置の製造方法
JP7272268B2 (ja) 2018-09-18 2023-05-12 東レ株式会社 感光性樹脂組成物、樹脂シート、硬化膜、有機el表示装置、半導体電子部品、半導体装置、および有機el表示装置の製造方法
TWI811446B (zh) * 2018-09-18 2023-08-11 日商東麗股份有限公司 感光性樹脂組成物、樹脂片材、硬化膜、有機el顯示裝置、半導體電子零件、半導體裝置及有機el顯示裝置之製造方法
US11852973B2 (en) 2018-09-18 2023-12-26 Toray Industries, Inc. Photosensitive resin composition, resin sheet, cured film, organic EL display device, semiconductor electronic component, semiconductor device, and method for producing organic EL display device
CN117186403A (zh) * 2023-09-01 2023-12-08 明士(北京)新材料开发有限公司 一种负性光敏性树脂、树脂组合物及其制备方法与应用
CN117186403B (zh) * 2023-09-01 2024-04-02 明士(北京)新材料开发有限公司 一种负性光敏性树脂、树脂组合物及其制备方法与应用

Also Published As

Publication number Publication date
JP2018146969A (ja) 2018-09-20
US20150301453A1 (en) 2015-10-22
EP2937732B1 (en) 2020-08-19
CN110147031A (zh) 2019-08-20
JPWO2014097992A1 (ja) 2017-01-12
TW201434972A (zh) 2014-09-16
KR20150097578A (ko) 2015-08-26
EP2937732A4 (en) 2017-03-08
CN104854508B (zh) 2019-05-07
SG11201504647VA (en) 2015-07-30
KR101942150B1 (ko) 2019-01-24
TWI568797B (zh) 2017-02-01
JP6332022B2 (ja) 2018-05-30
US9897915B2 (en) 2018-02-20
KR20190009002A (ko) 2019-01-25
EP2937732A1 (en) 2015-10-28
CN104854508A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
JP6332022B2 (ja) 感光性樹脂組成物、耐熱性樹脂膜の製造方法および表示装置
JP4911248B2 (ja) 感光性樹脂組成物および感光性樹脂膜の製造方法
JP5699602B2 (ja) 樹脂組成物およびこれを用いた表示装置
JP6787123B2 (ja) 感光性樹脂組成物、樹脂硬化膜の製造方法および半導体装置
JP6286834B2 (ja) 耐熱性樹脂組成物および耐熱性樹脂膜の製造方法
JP6780501B2 (ja) 耐熱性樹脂組成物、耐熱性樹脂膜の製造方法、層間絶縁膜または表面保護膜の製造方法、および電子部品または半導体部品の製造方法
TWI820180B (zh) 感光性樹脂組成物、感光性薄片、以及彼等之硬化膜及其製造方法、電子零件
JP7406181B2 (ja) 感光性樹脂組成物
KR102266587B1 (ko) 수지 조성물, 그 경화막과 그 제조방법, 및 고체촬상소자
US20210109443A1 (en) Photosensitive polyimide resin composition and polyimide film thereof
JP6020129B2 (ja) ポリアミド酸組成物
JP2018111773A (ja) 樹脂組成物
TW202244611A (zh) 感光性樹脂組成物、硬化物、顯示裝置、有機el顯示裝置及半導體裝置
TWI791518B (zh) 感光性樹脂組合物
TW202231722A (zh) 感光性聚醯亞胺樹脂組成物、樹脂膜、及電子裝置
KR20140073759A (ko) 광가교성 수지 조성물, 이로부터 형성된 절연막 및 유기발광소자
CN116507654A (zh) 感光性聚酰亚胺树脂组合物、树脂膜和电子装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014500579

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864249

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013864249

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14647747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157018049

Country of ref document: KR

Kind code of ref document: A