WO2014073451A1 - 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 - Google Patents
耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 Download PDFInfo
- Publication number
- WO2014073451A1 WO2014073451A1 PCT/JP2013/079584 JP2013079584W WO2014073451A1 WO 2014073451 A1 WO2014073451 A1 WO 2014073451A1 JP 2013079584 W JP2013079584 W JP 2013079584W WO 2014073451 A1 WO2014073451 A1 WO 2014073451A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- synthetic resin
- microporous film
- resin microporous
- film
- heat
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/494—Tensile strength
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for producing a heat-resistant synthetic resin microporous film used for a separator of a non-aqueous electrolyte secondary battery such as a lithium ion battery, a heat-resistant synthetic resin microporous film, a separator for a non-aqueous electrolyte secondary battery, And a non-aqueous electrolyte secondary battery.
- a non-aqueous electrolyte secondary battery such as a lithium ion battery, a heat-resistant synthetic resin microporous film, a separator for a non-aqueous electrolyte secondary battery, And a non-aqueous electrolyte secondary battery.
- lithium ion secondary batteries have been used as power sources for portable electronic devices.
- This lithium ion battery is generally configured by disposing a positive electrode, a negative electrode, and a separator in an electrolytic solution.
- the positive electrode is formed by applying lithium cobalt oxide or lithium manganate to the surface of the aluminum foil.
- the negative electrode is formed by applying carbon to the surface of the copper foil.
- the separator is arrange
- lithium ions When charging the lithium ion battery, lithium ions are released from the positive electrode and move into the negative electrode. On the other hand, when the lithium ion battery is discharged, lithium ions are released from the negative electrode and move to the positive electrode.
- a polyolefin resin microporous film is used because of its excellent insulation and cost.
- the polyolefin resin microporous film undergoes large thermal shrinkage near the melting point of the polyolefin resin.
- the separator is damaged due to the mixing of a metal foreign matter or the like and a short circuit occurs between the electrodes, the battery temperature rises due to the generation of Joule heat, which causes the polyolefin resin microporous film to thermally shrink. Due to the heat shrinkage of the polyolefin resin microporous film, the short circuit further proceeds and the battery temperature further rises.
- the separator is also required to improve heat resistance.
- Patent Document 1 discloses a lithium secondary battery separator that is processed by electron beam irradiation and has a thermomechanical analysis (TMA) value at 100 ° C. of 0% to ⁇ 1%.
- TMA thermomechanical analysis
- Patent Document 2 discloses a porous film in which divinylbenzene or a crosslinked polymer composed of divinylbenzene and ethylvinylbenzene is held on at least a part of the surface of the porous film composed of polyethylene or polypropylene. Yes.
- This porous membrane is used as a separation membrane in the water purification field, the blood treatment field, the air purification field, the food industry field and the like.
- Patent Document 3 includes a porous base material having a large number of pores, and a porous coating layer coated on at least one surface of the porous base material and containing inorganic particles and a binder.
- a separator in which is cross-linked is disclosed.
- JP 2003-22793 A Japanese Patent Laid-Open No. 3-193125 Special table 2011-505663 gazette
- the present invention provides a heat-resistant synthetic resin microporous film that is excellent in both the permeability and heat resistance of ions such as lithium ions and that does not cause contamination of the production line, and a method for producing the same. Furthermore, this invention provides the separator for nonaqueous electrolyte secondary batteries and the nonaqueous electrolyte secondary battery using the said heat resistant synthetic resin microporous film.
- a radical polymerizable monomer containing a trifunctional or higher polyfunctional acrylic monomer is applied to the surface of the synthetic resin microporous film, and the synthetic resin microporous film 100 is applied. After 5 to 80 parts by weight of the radical polymerizable monomer is adhered to parts by weight, the synthetic resin microporous film is irradiated with ionizing radiation at an absorbed dose of 10 to 150 kGy.
- the synthetic resin microporous film used in the present invention contains a synthetic resin. Furthermore, the synthetic resin microporous film includes micropores penetrating in the film thickness direction. The fine pores can impart excellent ion permeability to the heat-resistant synthetic resin microporous film. Thereby, the heat-resistant synthetic resin microporous film can transmit ions such as lithium ions in the thickness direction.
- the air permeability of the synthetic resin microporous film is preferably 50 to 600 sec / 100 mL, and more preferably 100 to 300 sec / 100 mL. According to the synthetic resin microporous film having an air permeability within the above range, a heat-resistant synthetic resin microporous film excellent in both mechanical strength and ion permeability can be provided.
- the air permeability of the synthetic resin microporous film was measured at 10 points at 10 cm intervals in the length direction of the synthetic resin microporous film in an atmosphere of a temperature of 23 ° C. and a relative humidity of 65% according to JIS P8117. The value obtained by calculating the arithmetic mean value is used.
- the surface opening ratio of the synthetic resin microporous film is preferably 25 to 55%, more preferably 30 to 50%. According to the synthetic resin microporous film having a surface opening ratio in the above range, a heat-resistant synthetic resin microporous film excellent in both mechanical strength and ion permeability can be provided.
- the surface opening ratio of the synthetic resin microporous film can be measured as follows. First, in an arbitrary portion of the surface of the synthetic resin microporous film, a measurement portion having a plane rectangular shape of 9.6 ⁇ m in length and 12.8 ⁇ m in width is determined, and this measurement portion is photographed at a magnification of 10,000 times.
- each micropore formed in the measurement part is surrounded by a rectangle whose long side or short side is parallel to the length direction (stretching direction) of the synthetic resin microporous film.
- the rectangle is adjusted so that both the long side and the short side have the minimum dimension.
- the rectangular area is defined as the opening area of each microhole.
- the total opening area S ( ⁇ m 2 ) of the micropores is calculated by summing the opening areas of the micropores. This is the total opening area S of the minute hole ([mu] m 2) of 122.88 ⁇ m 2 (9.6 ⁇ m ⁇ 12.8 ⁇ m) surface porosity values multiplied by 100 and divided by the (%).
- the micropore part which exists across the measurement part and the part which is not a measurement part only the part which exists in a measurement part among micropores is set as a measuring object.
- the maximum major axis of the open end of the micropore is preferably 1 ⁇ m or less, more preferably 100 nm to 800 nm.
- the synthetic resin microporous film having a maximum long diameter of 1 ⁇ m or less at the opening end of the micropore portion the heat resistant synthetic resin microporous film having excellent mechanical strength and uniform ion permeability is obtained. Can be provided.
- Such a heat-resistant synthetic resin microporous film can reduce the occurrence of minute internal short circuits (dendritic short circuits) due to the growth of dendrites (dendritic crystals).
- the average major axis of the open ends of the micropores in the synthetic resin microporous film is preferably 500 nm or less, and more preferably 200 nm to 500 nm. According to the synthetic resin microporous film having an average major axis of the opening end of the micropores of 500 nm or less, a heat-resistant synthetic resin microporous film having uniform ion permeability can be provided.
- the maximum major axis and the average major axis of the opening end of the micropores in the synthetic resin microporous film can be measured as follows. First, the surface of the synthetic resin microporous film is coated with carbon. Next, 10 arbitrary positions on the surface of the synthetic resin microporous film are photographed at a magnification of 10,000 using a scanning electron microscope. The photographing range is a plane rectangular range of 9.6 ⁇ m long ⁇ 12.8 ⁇ m wide on the surface of the synthetic resin microporous film.
- the maximum long diameter is set as the maximum long diameter of the opening end of the microhole portion.
- the arithmetic mean value of the major axis of the open end in each micropore is defined as the average major axis of the open end of the micropore.
- the major axis of the open end of the microhole is defined as the diameter of a perfect circle having the smallest diameter that can surround the open end of the microhole. Micropores that exist across the imaging range and the non-imaging range are excluded from the measurement target.
- the pore density of the synthetic resin microporous film is preferably 15 / ⁇ m 2 or more, and more preferably 17 / ⁇ m 2 or more.
- a synthetic resin microporous film having a pore density of 15 / ⁇ m 2 or more is excellent in ion permeability.
- the pore density of the synthetic resin microporous film is measured in the following manner. First, in an arbitrary portion of the surface of the synthetic resin microporous film, a measurement portion having a plane rectangular shape of 9.6 ⁇ m in length and 12.8 ⁇ m in width is determined, and this measurement portion is photographed at a magnification of 10,000 times. Then, the number of micropores is measured in the measurement part, and the pore density can be calculated by dividing this number by 122.88 ⁇ m 2 (9.6 ⁇ m ⁇ 12.8 ⁇ m).
- the synthetic resin microporous film can be used without particular limitation as long as it is a porous film used as a separator in a conventional secondary battery such as a lithium ion battery.
- an olefin resin microporous film is preferable.
- the olefin-based resin microporous film is likely to be deformed or contracted due to melting of the olefin-based resin at high temperatures.
- excellent heat resistance can be imparted to the olefin-based resin microporous film as described later. Therefore, the effect of this invention can be exhibited more by forming a membrane
- the olefin resin microporous film contains an olefin resin.
- olefin resin ethylene resin and propylene resin are preferable, and propylene resin is more preferable.
- propylene-based resin examples include homopolypropylene and copolymers of propylene and other olefins.
- homopolypropylene is preferable.
- Propylene-type resin may be used independently, or 2 or more types may be used together.
- the copolymer of propylene and another olefin may be a block copolymer or a random copolymer.
- Examples of the olefin copolymerized with propylene include ⁇ such as ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene and 1-decene. -Olefin and the like, and ethylene is preferred.
- An index showing the crystallinity of homopolypropylene is an isotactic pendart fraction (mmmm fraction) measured by 13 C-NMR method.
- the isotactic pendant fraction of homopolypropylene measured by 13 C-NMR method is a side chain with respect to the main chain formed by carbon-carbon bonds composed of arbitrary five consecutive propylene units.
- the ratio of the three-dimensional structure in which all of the methyl groups are located in the same direction occupies the whole molecular chain of homopolypropylene.
- the isotactic pendant fraction measured by 13 C-NMR method of homopolypropylene is preferably 90% or more, and more preferably 95% or more.
- the isotactic pendant fraction is preferably 90% or more, and more preferably 95% or more.
- the weight average molecular weight of the olefin resin is preferably 250,000 to 500,000, and more preferably 280,000 to 480,000. According to the olefin resin having a weight average molecular weight within the above range, it is possible to provide an olefin resin microporous film having excellent film-forming stability and having uniform micropores.
- the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the olefin resin is preferably 7.5 to 12, and more preferably 8 to 11. According to the olefin resin having a molecular weight distribution within the above range, it is possible to provide an olefin resin microporous film having a high surface opening ratio and excellent mechanical strength.
- the weight average molecular weight and the number average molecular weight of the olefin resin are values in terms of polystyrene measured by a GPC (gel permeation chromatography) method. Specifically, 6 to 7 mg of olefin resin is sampled, the collected olefin resin is supplied to a test tube, and the test tube contains 0.05% by weight of BHT (dibutylhydroxytoluene). A diluted solution is prepared by adding a DCB (orthodichlorobenzene) solution and diluting the olefin-based resin concentration to 1 mg / mL.
- DCB orthodichlorobenzene
- the diluted solution is shaken for 1 hour at 145 ° C. and a rotational speed of 25 rpm, and the olefin resin is dissolved in the o-DCB solution to obtain a measurement sample.
- the weight average molecular weight and number average molecular weight of the olefin resin can be measured by the GPC method.
- the weight average molecular weight and the number average molecular weight in the olefin resin can be measured, for example, with the following measuring apparatus and measurement conditions.
- Product name "HLC-8121GPC / HT" manufactured by TOSOH Measurement conditions Column: TSKgelGMHHR-H (20) HT ⁇ 3 TSKguardcolumn-HHR (30) HT ⁇ 1
- Detector Blythe refractometer Standard material: Polystyrene (Molecular weight: 500-8420000, manufactured by TOSOH) Elution conditions: 145 ° C
- the melting point of the olefin resin is preferably 160 to 170 ° C., more preferably 160 to 165 ° C. According to the olefinic resin having a melting point within the above range, it is possible to provide an olefinic resin microporous film that is excellent in film forming stability and suppressed in mechanical strength at high temperatures.
- an olefin-based resin microporous film produced by a stretching method is more preferable.
- the olefin-based resin microporous film produced by the stretching method is particularly susceptible to thermal shrinkage at high temperatures due to residual strain generated by stretching.
- excellent heat resistance can be imparted to the olefin-based resin microporous film as described later. Therefore, the effect of this invention can be exhibited more by forming a membrane
- an olefin resin microporous film by a stretching method specifically, (1) a step of obtaining an olefin resin film by extruding the olefin resin, and generating a lamellar crystal in the olefin resin film And a step of growing, and a step of obtaining an olefin-based resin microporous film in which micropores are formed by stretching the olefin-based resin film and separating lamella crystals; and (2) an olefin-based method A process of obtaining an olefin resin film by extruding an olefin resin composition containing a resin and a filler, and an interface between the olefin resin and the filler by uniaxially or biaxially stretching the olefin resin film Olefin-based resin microporous film in which micropores are formed by peeling A method and a step of obtaining the like.
- the method (1) is preferable because an olefin resin film
- the method for producing an olefin-based resin microporous film particularly preferably, the following steps:
- the olefin resin was melt-kneaded at a temperature not less than 20 ° C. higher than the melting point of the olefin resin and not higher than 100 ° C. higher than the melting point of the olefin resin in an extruder, and attached to the tip of the extruder
- a first stretching step in which the olefin-based resin film after the curing step is uniaxially stretched at a stretching ratio of 1.2 to 1.6 times at a surface temperature of ⁇ 20 ° C. or more and less than 100 ° C .
- a second stretching step in which the olefin-based resin film stretched in the first stretching step is uniaxially stretched at a stretch ratio of 1.2 to 2.2 times at a surface temperature of 100 to 150 ° C .
- an annealing step of annealing the olefin-based resin film that has been stretched in the second stretching step.
- an olefin resin microporous film in which a large number of micropores penetrating in the film thickness direction are formed.
- a heat-resistant synthetic resin microporous film having excellent air permeability and capable of smoothly and uniformly transmitting ions such as lithium ions. be able to. Therefore, according to such a heat resistant synthetic resin microporous film, the internal resistance of the secondary battery can be reduced.
- Such a secondary battery can be charged and discharged at a high current density even in a high output application such as a vehicle such as an electric vehicle. Furthermore, even when the inside of the secondary battery becomes high temperature due to the occurrence of an abnormal situation such as overcharge or internal short circuit, the electrical short circuit between the electrodes can be highly suppressed. Excellent safety is ensured.
- the olefin-based resin film containing the olefin-based resin can be manufactured by supplying the olefin-based resin to an extruder, melt-kneading, and then extruding from a T-die attached to the tip of the extruder.
- the temperature of the olefin resin when melt-kneading the olefin resin with an extruder is preferably 20 ° C. higher than the melting point of the olefin resin and 100 ° C. lower than the melting point of the olefin resin. More preferably, the temperature is 25 ° C. higher than the melting point of the olefin-based resin and 80 ° C. higher than the melting point of the olefin-based resin. It is particularly preferable that the temperature be 50 ° C. or higher than the melting point.
- an olefin resin microporous film having a uniform thickness can be obtained.
- the orientation of an olefin resin can be improved and the production
- the draw ratio when extruding the olefin-based resin from the extruder into a film is preferably 50 to 300, more preferably 65 to 250, and particularly preferably 70 to 250.
- the tension applied to the olefin resin can be improved.
- the olefin resin can be sufficiently oriented to promote the production of lamellae.
- the film-forming stability of an olefin resin film can be improved by making a draw ratio into 300 or less. This makes it possible to obtain an olefin-based resin microporous film having a uniform thickness and width.
- the draw ratio is a value obtained by dividing the clearance of the lip of the T die by the thickness of the olefin resin film extruded from the T die.
- T-die lip clearance is measured using a clearance gauge in accordance with JIS B7524 (for example, JIS clearance gauge manufactured by Nagai Gauge Manufacturing Co., Ltd.) at 10 or more lip clearances, and the arithmetic mean This can be done by determining the value.
- the thickness of the olefin resin film extruded from the T die is 10 or more in the thickness of the olefin resin film extruded from the T die using a dial gauge (for example, signal ABS Digimatic Indicator manufactured by Mitutoyo Corporation). It can be performed by measuring and calculating the arithmetic mean value.
- the film forming speed of the olefin resin film is preferably 10 to 300 m / min, more preferably 15 to 250 m / min, and particularly preferably 15 to 30 m / min.
- the tension applied to the olefin resin can be improved. This makes it possible to sufficiently align the olefin resin molecules and promote the formation of lamellae.
- the film-forming stability of an olefin resin film can be improved by making the film-forming speed
- the olefin resin which comprises the olefin resin film is cooled by cooling the olefin resin film extruded from T-die until the surface temperature becomes below 100 degreeC lower than melting
- the olefin resin film constituting the olefin resin film is oriented in advance by extruding the melt-kneaded olefin resin, and then the olefin resin film is cooled. Thereby, the part where the olefin resin is oriented can promote the generation of lamellae.
- the surface temperature of the cooled olefin resin film is preferably 100 ° C. or lower than the melting point of the olefin resin, more preferably 140 to 110 ° C. lower than the melting point of the olefin resin, and more than the melting point of the olefin resin. A temperature of 135 to 120 ° C. is particularly preferable.
- the olefin resin film obtained by the extrusion process described above is cured.
- the curing process of the olefin resin film is performed to grow the lamella formed in the olefin resin film in the extrusion process.
- crystallized portions lamellar
- non-crystalline portions are alternately arranged in the extrusion direction of the olefin-based resin film. It is possible to generate a crack between lamellas, not within the lamella, and to form a minute through hole (microhole part) starting from this crack.
- the curing step is performed by curing the olefin resin film obtained by the extrusion step at a temperature not lower than 30 ° C. lower than the melting point of the olefin resin and not higher than 1 ° C. lower than the melting point of the olefin resin.
- the curing temperature of the olefin resin film is preferably 30 ° C. lower than the melting point of the olefin resin and 1 ° C. lower than the melting point of the olefin resin, preferably 25 ° C. lower than the melting point of the olefin resin. And a temperature lower by 5 ° C. than the melting point of the olefin resin is more preferable.
- collapse of the lamella structure by relaxation of the molecular orientation of an olefin resin can be reduced by making the curing temperature of an olefin resin film below 1 degreeC lower than melting
- the curing temperature of the olefin resin film is the surface temperature of the olefin resin film.
- the curing temperature of the olefin resin film is the atmospheric temperature and To do.
- the temperature inside the heating apparatus is set as the curing temperature.
- the curing of the olefin-based resin film may be performed while the olefin-based resin film is running, or may be performed in a state where the olefin-based resin film is wound up in a roll shape.
- the curing time of the olefin resin film is preferably 1 minute or more, more preferably 5 minutes to 60 minutes.
- the curing time is preferably 1 hour or longer, and more preferably 15 hours or longer.
- the curing of the olefin-based resin film as a whole can be performed sufficiently with the curing temperature described above. Thereby, a lamella can be fully grown in an olefin resin film.
- the curing time is preferably 35 hours or less, and more preferably 30 hours or less.
- the olefin resin film is cured in a roll shape, the olefin resin film is unwound from the olefin resin film roll after the curing process, and the stretching process and the annealing process described later are performed. Good.
- a first stretching process is performed in which the olefin resin film after the curing process is uniaxially stretched at a stretching ratio of 1.2 to 1.6 times at a surface temperature of ⁇ 20 ° C. or more and less than 100 ° C.
- the olefin resin film is preferably uniaxially stretched only in the extrusion direction.
- the lamellae in the olefin-based resin film are hardly melted, and by separating the lamellae by stretching, a fine crack is efficiently generated independently in the non-crystalline part between the lamellae. A large number of micropores are reliably formed starting from this crack.
- the stretching ratio of the olefin resin film is preferably 1.2 to 1.6 times, more preferably 1.25 to 1.5 times.
- the draw ratio is preferably 1.2 times or more, micropores can be formed in the non-crystalline part between lamellae.
- a micropore part can be uniformly formed in an olefin resin microporous film by making a draw ratio into 1.6 times or less.
- the stretching speed in the first stretching step of the olefin resin film is preferably 20% / min or more, more preferably 20 to 500% / min, and particularly preferably 20 to 70% / min.
- the stretching speed is preferably 20% / min or more, more preferably 20 to 500% / min, and particularly preferably 20 to 70% / min.
- stretching speed of an olefin resin film means the change rate of the dimension in the extending
- a second stretching step is performed in which the olefin resin film after the first stretching step is subjected to a uniaxial stretching treatment at a surface temperature of 100 to 150 ° C. and a stretching ratio of 1.2 to 2.2 times. Also in the second stretching step, the olefin resin film is preferably uniaxially stretched only in the extrusion direction. By performing the stretching treatment in the second stretching step, a large number of micropores formed in the olefin resin film in the first stretching step can be grown.
- the stretching rate of the olefin resin film is preferably 500% / min or less, more preferably 400% / min or less, and particularly preferably 15 to 60% / min.
- the method for stretching the olefinic resin film in the second stretching step is not particularly limited as long as the olefinic resin film can be uniaxially stretched.
- the olefinic resin film can be stretched at a predetermined temperature using a uniaxial stretching device. Examples thereof include a uniaxial stretching method.
- the annealing process which anneal-treats to the olefin resin film in which the uniaxial stretching was given in the 2nd extending process is performed.
- This annealing step is performed in order to relieve residual strain generated in the olefin resin film due to stretching applied in the above-described stretching step, and to suppress thermal shrinkage from occurring in the resulting olefin resin microporous film.
- the surface temperature of the olefin resin film in the annealing step is preferably not less than the surface temperature of the olefin resin film in the second stretching step and 10 ° C. lower than the melting point of the olefin resin.
- the shrinkage ratio of the olefin resin film in the annealing step is preferably 25% or less.
- the shrinkage of the olefin-based resin film is 100 by dividing the shrinkage length of the olefin-based resin film in the stretching direction during the annealing step by the length of the olefin-based resin film in the stretching direction after the second stretching step. The value multiplied by.
- a radical polymerizable monomer containing a trifunctional or higher polyfunctional acrylic monomer is applied to the surface of the above-mentioned synthetic resin microporous film, and the radical polymerizable property is added to 100 parts by weight of the synthetic resin microporous film. 5 to 80 parts by weight of monomer are deposited.
- the radical polymerizable monomer means a monomer having a functional group having a radical polymerizable unsaturated bond that can be radically polymerized by irradiation with ionizing radiation.
- the radically polymerizable monomer includes at least a trifunctional or higher polyfunctional acrylic monomer.
- the trifunctional or higher polyfunctional acrylic monomer contains 3 or more functional groups having a radical polymerizable unsaturated bond that can be radically polymerized by irradiation with ionizing radiation, and contains an acryloyl group or a methacryloyl group. If you do.
- the functional group having a radical polymerizable unsaturated bond capable of radical polymerization is preferably an acryloyl group or a methacryloyl group.
- polyfunctional acrylic monomer a trifunctional or higher polyfunctional acrylic monomer is used, but a trifunctional to hexafunctional polyfunctional acrylic monomer is preferably used.
- trifunctional or more polyfunctional acrylic monomers may be used alone or in combination of two or more.
- the trifunctional polyfunctional acrylic monomer is not particularly limited.
- (meth) acrylate means acrylate or methacrylate.
- the tetrafunctional polyfunctional acrylic monomer is not particularly limited, and examples thereof include pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and ethoxylated pentaerythritol tetra (meth) acrylate. .
- the pentafunctional polyfunctional acrylic monomer is not particularly limited, and examples thereof include dipentaerythritol penta (meth) acrylate.
- the hexafunctional polyfunctional acrylic monomer is not particularly limited, and examples thereof include dipentaerythritol hexa (meth) acrylate.
- trifunctional or higher polyfunctional acrylic monomers include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, And ditrimethylolpropane tetra (meth) acrylate are preferred.
- the radical polymerizable monomer preferably further contains a bifunctional polyfunctional acrylic monomer.
- a bifunctional polyfunctional acrylic monomer By using a combination of a trifunctional or higher polyfunctional acrylic monomer and a bifunctional polyfunctional acrylic monomer, the extensibility of the coating layer can be improved moderately. The mechanical strength and heat resistance of the film can be improved.
- the bifunctional polyfunctional acrylic monomer contains two functional groups having a radical polymerizable unsaturated bond that can be radically polymerized by irradiation with ionizing radiation in one molecule and an acryloyl group or a methacryloyl group. Just do it.
- the functional group having a radical polymerizable unsaturated bond capable of radical polymerization is preferably an acryloyl group or a methacryloyl group.
- bifunctional polyfunctional acrylic monomer examples include 1,9-nonanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, Tripropylene glycol di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1 , 10-decanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, glycerin di (meth) acrylate, and the like.
- the bifunctional polyfunctional acrylic monomer may be used alone or in combination of two or more.
- the content of the bifunctional polyfunctional acrylic monomer in the radical polymerizable monomer is preferably 1 to 150 parts by weight with respect to 100 parts by weight of the trifunctional or higher polyfunctional acrylic monomer, and 5 to 125 parts by weight. Is more preferable, 20 to 110 parts by weight is particularly preferable, and 50 to 110 parts by weight is most preferable.
- the stretchability of the coating layer can be improved moderately, thereby the mechanical strength and heat resistance of the heat-resistant synthetic resin microporous film. Can be improved.
- the radical polymerizable monomer can be attached to the synthetic resin microporous film by coating the surface of the synthetic resin microporous film with a radical polymerizable monomer containing a trifunctional or higher polyfunctional acrylic monomer. At this time, the radical polymerizable monomer may be directly applied to the surface of the synthetic resin microporous film. However, it is preferable to disperse or dissolve the radical polymerizable monomer in a solvent to obtain a coating solution, and to apply this coating solution to the surface of the synthetic resin microporous film.
- the film layer thus formed includes a hole formed substantially corresponding to the opening end of the microporous part of the synthetic resin microporous film. Therefore, it can suppress that the air permeability of a heat resistant synthetic resin microporous film falls by formation of a membrane
- the coating solution can be adjusted to a low viscosity. Therefore, when the coating liquid is applied to the surface of the synthetic resin microporous film, the coating liquid can smoothly flow to the wall surfaces of the micropores in the synthetic resin microporous film.
- a coating layer can be formed not only on the surface of the porous film, but also on the wall surface of the open end of the micropores continuous with the surface.
- the coating layer portion extending on the wall surface of the opening end portion of the minute hole portion can play a role of an anchor effect. Therefore, the coating layer can be firmly integrated with the surface of the synthetic resin microporous film.
- Such a coating layer can impart excellent heat resistance to the heat resistant synthetic resin microporous film. Thereby, even when the heat-resistant microporous film is unexpectedly exposed to heating conditions, the synthetic resin microporous film can be prevented from shrinking or melting due to the coating layer.
- a film layer can be formed not only on the upper surface but also on the lower surface of the porous film.
- the solvent used in the coating liquid is not particularly limited as long as it can dissolve or disperse the radical polymerizable monomer.
- alcohols such as methanol, ethanol, propanol, isopropyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone Ketones such as, ethers such as tetrahydrofuran and dioxane, ethyl acetate, chloroform and the like. Of these, ethyl acetate, ethanol, methanol, and acetone are preferable. These solvents can be removed smoothly after the coating solution is applied to the surface of the synthetic resin microporous film. Furthermore, the solvent has low reactivity with an electrolyte solution constituting a secondary battery such as a lithium ion battery, and is excellent in safety.
- the content of the radical polymerizable monomer in the coating solution is preferably 3 to 20% by weight, more preferably 3 to 15% by weight, and particularly preferably 5 to 12% by weight.
- the method for applying the radical polymerizable monomer to the synthetic resin microporous film is not particularly limited.
- the coating liquid is prepared, the synthetic resin microporous film is immersed in the coating liquid, and the coating liquid is applied in the synthetic resin microporous film, and then the synthetic resin microporous film is applied. How heated to remove the solvent.
- the methods (3) and (4) are preferred. According to these methods, the radical polymerizable monomer can be uniformly applied and adhered to the surface of the synthetic resin microporous film. Moreover, according to the said method, the coating amount of a radically polymerizable monomer can also be adjusted easily.
- the heating temperature of the synthetic resin microporous film for removing the solvent can be set according to the type and boiling point of the solvent used.
- the heating temperature of the synthetic resin microporous film for removing the solvent is preferably 50 to 140 ° C, more preferably 70 to 130 ° C.
- the heating time of the synthetic resin microporous film for removing the solvent is not particularly limited, and can be set according to the type and boiling point of the solvent used.
- the heating time of the synthetic resin microporous film for removing the solvent is preferably 0.02 to 60 minutes, more preferably 0.1 to 30 minutes.
- the radical polymerizable monomer can be attached to the surface of the synthetic resin microporous film by coating the surface of the synthetic resin microporous film with the radical polymerizable monomer or the coating liquid.
- the adhesion amount of the radical polymerizable monomer to the synthetic resin microporous film is limited to 5 to 80 parts by weight with respect to 100 parts by weight of the synthetic resin microporous film, but preferably 7 to 50 parts by weight. Part by weight is more preferred.
- the coating layer can be uniformly formed on the surface of the synthetic resin microporous film without blocking the micropores. This makes it possible to produce a heat-resistant synthetic resin microporous film with improved heat resistance without reducing air permeability.
- the synthetic resin microporous film coated with the radical polymerizable monomer is irradiated with ionizing radiation at an absorbed dose of 10 to 150 kGy.
- the radically polymerizable monomer is polymerized to form a film layer containing a polymer of the radically polymerizable monomer integrally on at least a part of the surface of the synthetic resin microporous film, preferably on the entire surface. it can.
- a coating layer can be formed on the wall surface of the opening end portion of the microporous portion that is continuous with the surface of the synthetic resin microporous film.
- the coating layer contains a polymer of a radical polymerizable monomer containing a trifunctional or higher polyfunctional acrylic monomer.
- a coating layer can be formed without blocking the micropores of the synthetic resin microporous film. . Therefore, by forming a coating layer on at least a part of the surface of the synthetic resin microporous film, excellent heat resistance can be imparted to the synthetic resin microporous film without lowering the air permeability.
- the surface of the synthetic resin microporous film is irradiated with ionizing radiation after a radical polymerizable monomer containing a trifunctional or higher polyfunctional acrylic monomer is applied.
- a radical polymerizable monomer containing a trifunctional or higher polyfunctional acrylic monomer is applied.
- the ionizing radiation since the ionizing radiation has high energy, the ionizing radiation reaches the synthetic resin microporous film, and radicals can be generated also in the synthetic resin in the synthetic resin microporous film.
- a part of the synthetic resin and a part of the polymer of the radical polymerizable monomer can be chemically bonded.
- the heat resistance of the synthetic resin microporous film can be further improved.
- a part of the synthetic resin is decomposed to lower the molecular weight, and as a result, the stress relaxation of the synthetic resin microporous film can proceed. It is considered that such stress relaxation effectively prevents thermal shrinkage of the heat-resistant synthetic resin microporous film at high temperatures.
- a synthetic resin microporous film in which such an effect is particularly obtained a polypropylene resin microporous film can be mentioned.
- the ionizing radiation is not particularly limited, and examples thereof include ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays. Of these, an electron beam is preferable. According to the electron beam, since it has a moderately high energy, sufficient radicals are also generated in the synthetic resin in the synthetic resin microporous film by irradiation of the electron beam, and a part of the synthetic resin and radical polymerizability are generated. Many chemical bonds can be formed with a portion of the monomer polymer.
- the absorbed dose of ionizing radiation to the synthetic resin microporous film is limited to 10 to 150 kGy, and preferably 10 to 100 kGy. If the absorbed dose of ionizing radiation is too low, the radically polymerizable monomer cannot be sufficiently polymerized, so that the heat resistance of the heat resistant synthetic resin microporous film may not be sufficiently improved. Moreover, if the absorbed dose of ionizing radiation is too high, the synthetic resin in the synthetic resin microporous film may deteriorate, and the mechanical strength of the resulting heat-resistant synthetic resin microporous film may be reduced.
- the acceleration voltage of ionizing radiation for the synthetic resin microporous film is preferably 50 to 300 kV, more preferably 50 to 250 kV, and particularly preferably 50 to 100 kV. If the accelerating voltage of ionizing radiation is too low, the amount of ionizing radiation that reaches the synthetic resin microporous film is reduced. Therefore, the chemical reaction between the synthetic resin in the synthetic resin microporous film and the polymer of the radical polymerizable monomer is reduced. The bond may not be formed sufficiently. Moreover, when the acceleration voltage of ionizing radiation is too high, the synthetic resin in the synthetic resin microporous film may deteriorate, and the mechanical strength of the resulting heat-resistant synthetic resin microporous film may be reduced.
- a heat-resistant synthetic resin microporous film having excellent heat resistance can be provided.
- Such heat-resistant synthetic resin microporous film is 100 parts by weight of a synthetic resin microporous film containing a synthetic resin; And 5 to 80 parts by weight of a coating layer formed on at least a part of the surface of the synthetic resin microporous film,
- the coating layer is a polymer of a radical polymerizable monomer containing a trifunctional or higher polyfunctional acrylic monomer.
- the coating layer contains a polymer of a radical polymerizable monomer containing a trifunctional or higher polyfunctional acrylic monomer.
- the synthetic resin microporous film and the coating layer are integrated. And it is preferable that a part of polymer in a membrane
- the coating layer can improve the heat resistance of the heat-resistant synthetic resin microporous film without using inorganic particles. Therefore, it is preferable that the coating layer does not contain inorganic particles.
- the inorganic particles include inorganic particles generally used for porous coating layers. Examples of the material constituting the inorganic particles include Al 2 O 3 , SiO 2 , TiO 2 , and MgO.
- Part of the polymer in the coating layer and part of the synthetic resin in the synthetic resin microporous film are chemically bonded.
- Such chemical bonds are not particularly limited, and include covalent bonds, ionic bonds, and intermolecular bonds.
- the content of the coating layer in the heat resistant synthetic resin microporous film is limited to 5 to 80 parts by weight with respect to 100 parts by weight of the synthetic resin microporous film, but preferably 7 to 50 parts by weight. Part by weight is more preferred.
- the gel fraction of the heat resistant synthetic resin microporous film is preferably 5% or more, and more preferably 10% or more. By setting the gel fraction to 5% or more, a strong film layer is formed, and thereby heat shrinkage of the heat resistant synthetic resin microporous film can be reduced. Further, the gel fraction of the heat resistant synthetic resin microporous film is preferably 99% or less, and more preferably 60% or less. By making the gel fraction 99% or less, the heat-resistant synthetic resin microporous film can be prevented from becoming brittle.
- the gel fraction of the heat-resistant synthetic resin microporous film can be measured according to the following procedure. First, a heat resistant synthetic resin microporous film is cut to obtain about 0.1 g of a test piece. After weighing the weight [W 1 (g)] of the test piece, the test piece is filled into a test tube. Next, 20 ml of xylene is poured into the test tube, and the entire test piece is immersed in xylene. The test tube is covered with an aluminum lid and immersed in an oil bath heated to 130 ° C. for 24 hours. The contents in the test tube taken out from the oil bath are immediately opened in a stainless steel mesh basket (# 200) before the temperature drops, and insoluble matter is filtered.
- a stainless steel mesh basket # 200
- the air permeability of the heat resistant synthetic resin microporous film is not particularly limited, but is preferably 50 to 600 sec / 100 mL, more preferably 100 to 300 sec / 100 mL. As described above, in the heat-resistant synthetic resin microporous film of the present invention, the decrease in air permeability due to the formation of the coating layer is reduced. Therefore, the air permeability of the heat resistant synthetic resin microporous film of the present invention can be within the above range.
- the air permeability of the heat-resistant synthetic resin microporous film can be measured by the same method as the method for measuring the air permeability of the synthetic resin microporous film described above.
- the maximum heat shrinkage rate of the heat-resistant synthetic resin microporous film is preferably 25% or less, % Or less is more preferable, and 5 to 17% is particularly preferable.
- the heat resistant synthetic resin microporous film is provided with excellent heat resistance by the coating layer. Therefore, the heat-resistant synthetic resin microporous film can have a maximum heat shrinkage of 25% or less.
- the maximum heat shrinkage rate of a heat resistant synthetic resin microporous film can be measured by the same method as the method for measuring the maximum heat shrinkage rate of a heat resistant homopolypropylene microporous film described in Examples described later.
- the heat-resistant synthetic resin microporous film of the present invention is suitably used as a separator for non-aqueous electrolyte secondary batteries.
- the non-aqueous electrolyte secondary battery include a lithium ion secondary battery. Since the heat-resistant synthetic resin microporous film of the present invention is excellent in heat resistance, even when the inside of the battery becomes high temperature by using such a heat-resistant synthetic resin microporous film as a separator, It is possible to provide a non-aqueous electrolyte secondary battery in which an electrical short circuit between electrodes is highly suppressed.
- a nonaqueous electrolytic solution is an electrolytic solution in which an electrolyte salt is dissolved in a solvent that does not contain water.
- the non-aqueous electrolyte used in the lithium ion secondary battery include a non-aqueous electrolyte obtained by dissolving a lithium salt in an aprotic organic solvent.
- the aprotic organic solvent include a mixed solvent of a cyclic carbonate such as propylene carbonate and ethylene carbonate and a chain carbonate such as diethyl carbonate, methyl ethyl carbonate, and dimethyl carbonate.
- the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , and LiN (SO 2 CF 3 ) 2 .
- the heat-resistant synthetic resin microporous film of the present invention has a coating layer containing a polymer of a radical polymerizable monomer containing a trifunctional or higher polyfunctional acrylic monomer. According to this coating layer, the wettability of the heat-resistant synthetic resin microporous film with respect to the non-aqueous electrolyte can also be improved. For this reason, the heat-resistant synthetic resin microporous film allows the nonaqueous electrolytic solution to easily enter into the micropores, and can uniformly hold a large amount of the nonaqueous electrolytic solution.
- the heat-resistant synthetic resin microporous film produced by the method for producing a synthetic resin microporous film of the present invention does not require the use of a porous coating layer containing inorganic particles, and thus has excellent lightweight properties and a production process. There is no contamination of the production line due to the dropping of inorganic particles.
- Examples 1 to 16, Comparative Examples 1 to 9 Production of homopolypropylene microporous film (extrusion process) Homopolypropylene (weight average molecular weight: 400,000, number average molecular weight: 37000, melt flow rate: 3.7 g / 10 min, isotactic pendart fraction measured by 13 C-NMR method: 97%, melting point: 165 ° C. ) was fed to a single screw extruder and melt kneaded at a resin temperature of 200 ° C.
- Homopolypropylene weight average molecular weight: 400,000, number average molecular weight: 37000, melt flow rate: 3.7 g / 10 min, isotactic pendart fraction measured by 13 C-NMR method: 97%, melting point: 165 ° C.
- melt-kneaded homopolypropylene was extruded from a T die attached to the tip of a single-screw extruder onto a cast roll at 95 ° C., and cooled to a surface temperature of 30 ° C. by applying cold air.
- the extrusion rate was 10 kg / hour
- the film forming speed was 22 m / min
- the draw ratio was 83.
- the obtained long homopolypropylene film 50 m was wound around a cylindrical core having an outer diameter of 3 inches in a roll shape to obtain a homopolypropylene film roll.
- the homopolypropylene film roll was allowed to cure for 24 hours in a hot air oven where the atmospheric temperature of the place where the roll was installed was 150 ° C. At this time, the temperature of the homopolypropylene film as a whole from the surface of the roll to the inside was the same as the temperature inside the hot stove.
- the homopolypropylene film fed from the second stretching roll was supplied into the heating furnace.
- seven stretching rolls were arranged in a zigzag manner in the conveying direction of the homopolypropylene film with a predetermined interval in the vertical direction.
- the surface temperature of the homopolypropylene film supplied into the heating furnace was set to 120 ° C., and then passed over each of the seven stretching rolls in a zigzag manner in the conveying direction, and the respective peripheral speeds of the stretching rolls were homogenized.
- the homopolypropylene film was uniaxially stretched only in the transport direction at a stretch ratio of 2.0 times at a stretch rate of 42% / min by rotating the polypropylene film so as to increase gradually in the transport direction.
- the homopolypropylene film is sequentially supplied to the first roll and the second roll that are arranged above and below in the hot air furnace so that the surface temperature of the homopolypropylene film becomes 155 ° C. and tension is applied to the homopolypropylene film.
- the homopolypropylene film was annealed by being conveyed in a hot air oven for 4 minutes to obtain a homopolypropylene microporous film (thickness: 25 ⁇ m, basis weight: 11 g / m 2 ).
- the shrinkage ratio of the homopolypropylene film in the annealing process was 5%.
- the resulting homopolypropylene microporous film has an air permeability of 190 sec / 100 mL, a surface opening ratio of 30%, a maximum major axis of the open end of the microporous part is 530 nm, an average major axis of the open end of the microporous part is 320 nm, The pore density was 20 / ⁇ m 2 .
- TMPTA trimethylolpropane triacrylate
- DPHA dipentaerythritol hexaacrylate
- PETA pentaerythritol tetraacrylate
- DTMPTA ditrimethylolpropane tetraacrylate
- NPDMA 1,9-nonanediol dimethacrylate
- BDDMA 1,4-butanediol dimethacrylate
- TPGDA trimethylolpropane trimethacrylate
- TMPTMA triallyl isocyanurate
- TAIC triallyl isocyanurate
- VB divinylbenzene
- Example 11 2.5 parts by weight of TMPTA and 2.5 parts by weight of NDDMA were used as the radical polymerizable monomer.
- Example 12 4 parts by weight of PETTA and 1 part by weight of BDDMA were used as the radical polymerizable monomer.
- Example 13 4 parts by weight of DPHA and 1 part by weight of TPGDA were used.
- the homopolypropylene microporous film was heated at 80 ° C. for 2 minutes to evaporate and remove ethyl acetate.
- the amount of the radical polymerizable monomer shown in Tables 1 and 2 was attached to 100 parts by weight of the homopolypropylene microporous film.
- the homopolypropylene microporous film was irradiated with an electron beam at an acceleration voltage and absorbed dose shown in Tables 1 and 2 under a nitrogen atmosphere.
- the radical polymerizable monomer was polymerized to integrally form a coating layer containing a polymer of the radical polymerizable monomer on the entire surface of the homopolypropylene microporous film.
- a part of homopolypropylene contained in the homopolypropylene microporous film and a part of the polymer contained in the coating layer were chemically bonded.
- the heat-resistant homopolypropylene microporous film had the thicknesses shown in Tables 1 and 2.
- Tables 1 and 2 show the content (parts by weight) of the coating layer in 100 parts by weight of the homopolypropylene microporous film in the heat-resistant homopolypropylene microporous film.
- Heat shrinkage A flat rectangular test piece having a width of 3 mm and a length of 30 mm was cut out from the heat-resistant homopolypropylene microporous film. At this time, the length direction (extrusion direction) of the heat-resistant homopolypropylene microporous film was made parallel to the length direction of the test piece. Both ends in the length direction of the test piece were held by a gripper and attached to a TMA measuring apparatus (trade name “TMA-SS6000” manufactured by Seiko Instruments Inc.). At this time, the distance between the gripping tools was set to 10 mm, and the gripping tools were allowed to move along with the thermal contraction of the test piece. The test piece was heated from 25 ° C. to 180 ° C.
- a positive electrode forming composition containing nickel-cobalt-lithium manganate (1: 1: 1) as a positive electrode active material was prepared. This positive electrode forming composition was applied to one surface of an aluminum foil as a positive electrode current collector and dried to prepare a positive electrode active material layer. Thereafter, a positive electrode current collector having a positive electrode active material layer formed on one surface was punched out to obtain a positive electrode having a plane rectangular shape of 48 mm long ⁇ 117 mm wide.
- a negative electrode forming composition containing natural graphite as a negative electrode active material was prepared.
- This negative electrode forming composition was applied to one surface of an aluminum foil as a negative electrode current collector and dried to prepare a negative electrode active material layer. Thereafter, a negative electrode current collector in which the negative electrode active material layer was formed on one surface was punched out to obtain a flat rectangular negative electrode having a length of 50 mm and a width of 121 mm.
- a laminated body was obtained by laminating 10 positive electrode layers and 11 negative electrode layers alternately through a heat-resistant homopolypropylene microporous film. Thereafter, a tab lead was joined to each electrode by ultrasonic welding. After storing the laminate in an exterior material made of aluminum laminate foil, the exterior material was heat sealed to obtain a laminate element. A surface pressure of 1 kgf / cm 2 was applied to the obtained laminate element, and it was confirmed by resistance measurement that there was no short circuit.
- electrolyte solution was inject
- a LiPF 6 solution (1 mol / L) containing ethylene carbonate (E) and dimethyl carbonate (D) at a volume ratio (E: D) of 3: 7 was used as a solvent.
- the laminate element after provisional vacuum sealing was stored at 20 ° C. for 24 hours, and then 0.2 CA, constant current constant voltage (CC-CV), 4.2 V, 12 hours. Initial charging was performed under cut-off conditions.
- CC-CV constant current constant voltage
- the laminated body element was degassed under reduced pressure and sealed, and then aged for one week in a charged state (SOC 100%). Subsequently, the multilayer element was subjected to initial discharge at 0.2 CA, 2nd charge / discharge at 0.2 CA, and a 5-cycle capacity confirmation test at 1 CA. Subsequently, AC resistance (ACR) and DC resistance (DCR) were measured under the following conditions for each cell. ACR (SOC 50% 1kHz), DCR (SOC 50% 1CA, 2CA, 3CA x 10 seconds discharge)
- the multilayer element is charged until it reaches a fully charged state (SOC 100%) under the conditions of 0.2 CA, constant current and constant voltage (CC-CV), 4.2 V, and 10 hours cutoff. did. Thereafter, a nail penetration test was performed in which a nail having a thickness of 3 ⁇ mm and a tip angle of 60 ° was pierced at a piercing speed of 10 mm / sec.
- “excellent” and “inferior” are as follows. Excellent: Smoke and fire did not occur in the laminate element after the test. Inferior: At least one of smoke and ignition occurred in the laminate element after the test.
- the heat-resistant synthetic resin microporous film of the present invention is suitably used as a separator for non-aqueous electrolyte secondary batteries.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Cell Separators (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Materials Engineering (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
測定装置 TOSOH社製 商品名「HLC-8121GPC/HT」
測定条件 カラム:TSKgelGMHHR-H(20)HT×3本
TSKguardcolumn-HHR(30)HT×1本
移動相:o-DCB 1.0mL/分
サンプル濃度:1mg/mL
検出器:ブライス型屈折計
標準物質:ポリスチレン(TOSOH社製 分子量:500~8420000)
溶出条件:145℃
SEC温度:145℃
オレフィン系樹脂を、押出機にてオレフィン系樹脂の融点よりも20℃高い温度以上で且つオレフィン系樹脂の融点よりも100℃高い温度以下にて溶融混練し、上記押出機の先端に取り付けたTダイから押出すことにより、オレフィン系樹脂フィルムを得る押出工程と、
上記押出工程後の上記オレフィン系樹脂フィルムを上記オレフィン系樹脂の融点よりも30℃低い温度以上で且つ上記オレフィン系樹脂の融点よりも1℃低い温度以下で養生する養生工程と、
上記養生工程後の上記オレフィン系樹脂フィルムを、その表面温度が-20℃以上100℃未満にて延伸倍率1.2~1.6倍に一軸延伸する第一延伸工程と、
上記第一延伸工程において延伸が施された上記オレフィン系樹脂フィルムを、その表面温度が100~150℃にて延伸倍率1.2~2.2倍に一軸延伸する第二延伸工程と、
上記第二延伸工程において延伸が施されたオレフィン系樹脂フィルムをアニールするアニーリング工程と
を有する方法が挙げられる。
オレフィン系樹脂を含むオレフィン系樹脂フィルムは、オレフィン系樹脂を押出機に供給して溶融混練した上で、押出機の先端に取り付けたTダイから押出すことにより製造することができる。
次いで、上述した押出工程により得られたオレフィン系樹脂フィルムを養生する。このオレフィン系樹脂フィルムの養生工程は、押出工程においてオレフィン系樹脂フィルム中に生成したラメラを成長させるために行う。このことにより、オレフィン系樹脂フィルムの押出方向に結晶化部分(ラメラ)と非結晶部分とが交互に配列している積層ラメラ構造を形成することができ、後述するオレフィン系樹脂フィルムの延伸工程において、ラメラ内ではなく、ラメラ間において亀裂を発生させ、この亀裂を起点として微小な貫通孔(微小孔部)を形成することができる。
次に、養生工程後のオレフィン系樹脂フィルムに、その表面温度が-20℃以上100℃未満にて延伸倍率1.2~1.6倍に一軸延伸を施す第一延伸工程を実施する。第一延伸工程では、オレフィン系樹脂フィルムを好ましくは押出方向にのみ一軸延伸する。第一延伸工程において、オレフィン系樹脂フィルム中のラメラは殆ど溶融しておらず、延伸によってラメラ同士を離間させることによって、ラメラ間の非結晶部において効率的に微細な亀裂を独立して生じさせ、この亀裂を起点として多数の微小孔部を確実に形成させる。
次いで、第一延伸工程後のオレフィン系樹脂フィルムに、その表面温度が100~150℃にて延伸倍率1.2~2.2倍に一軸延伸処理を施す第二延伸工程を実施する。第二延伸工程においても、オレフィン系樹脂フィルムを好ましくは押出方向にのみ一軸延伸する。このような第二延伸工程における延伸処理を行うことによって、第一延伸工程にてオレフィン系樹脂フィルムに形成された多数の微小孔部を成長させることができる。
次に、第二延伸工程において一軸延伸が施されたオレフィン系樹脂フィルムにアニール処理を施すアニーリング工程を行う。このアニーリング工程は、上述した延伸工程において加えられた延伸によってオレフィン系樹脂フィルムに生じた残存歪みを緩和して、得られるオレフィン系樹脂微多孔フィルムに熱収縮が生じるのを抑えるために行われる。
本発明の方法では、上述した合成樹脂微多孔フィルム表面に3官能以上の多官能性アクリル系モノマーを含むラジカル重合性モノマーを塗工し、上記合成樹脂微多孔フィルム100重量部に上記ラジカル重合性モノマー5~80重量部を付着させる。
次に、本発明の方法では、ラジカル重合性モノマーが塗工された合成樹脂微多孔フィルムに、電離放射線を吸収線量が10~150kGyで照射する。これにより、ラジカル重合性モノマーを重合させて、ラジカル重合性モノマーの重合体を含む皮膜層を、合成樹脂微多孔フィルム表面の少なくとも一部に、好ましくは表面全面に、一体的に形成することができる。また、上述した通り、合成樹脂微多孔フィルムの表面に連続する微小孔部の開口端部の壁面にも皮膜層を形成することができる。
合成樹脂を含んでいる合成樹脂微多孔フィルム100重量部と、
上記合成樹脂微多孔フィルム表面の少なくとも一部に形成された皮膜層5~80重量部とを有し、
上記皮膜層は、3官能以上の多官能性アクリル系モノマーを含むラジカル重合性モノマーの重合体であることを特徴としている。
ゲル分率[%]=100×(W2-W0)/W1
1.ホモポリプロピレン微多孔フィルムの製造
(押出工程)
ホモポリプロピレン(重量平均分子量:40万、数平均分子量:37000、メルトフローレイト:3.7g/10分、13C-NMR法で測定したアイソタクチックペンダット分率:97%、融点:165℃)を一軸押出機に供給して、樹脂温度200℃にて溶融混練した。次に、溶融混練したホモポリプロピレンを一軸押出機の先端に取り付けられたTダイから95℃のキャストロール上に押し出して、冷風を当てて表面温度が30℃となるまで冷却した。これにより、長尺状のホモポリプロピレンフィルム(幅200mm)を得た。なお、押出量は10kg/時間、製膜速度は22m/分、ドロー比は83であった。
得られた長尺状のホモポリプロピレンフィルム50mを外径が3インチの円筒状の芯体にロール状に巻取って、ホモポリプロピレンフィルムロールを得た。ホモポリプロピレンフィルムロールを、このロールを設置する場所の雰囲気温度が150℃である熱風炉中に24時間に亘って放置して養生した。このとき、ロールの表面から内部まで全体的にホモポリプロピレンフィルムの温度が熱風炉内部の温度と同じ温度になっていた。
次に、ホモポリプロピレンフィルムをロールから連続的に巻き出し、ホモポリプロピレンフィルムの表面温度を20℃とした上で、第1延伸ロール及び第2延伸ロールに順次掛け渡し、第2延伸ロールの周速度を第1延伸ロールの周速度よりも大きくなるように回転させることにより、ホモポリプロピレンフィルムを50%/分の延伸速度にて延伸倍率1.4倍に搬送方向(押出方向)にのみ一軸延伸した。
次に、第2延伸ロールから送り出されたホモポリプロピレンフィルムを、加熱炉内に供給した。加熱路内には、上下方向に所定間隔を存し且つホモポリプロピレンフィルムの搬送方向にジグザクに7本の延伸ロールが配設されていた。加熱炉内に供給したホモポリプロピレンフィルムの表面温度を120℃とした上で、7本の延伸ロールのそれぞれに上下に且つ搬送方向に向かってジグザクに掛け渡し、延伸ロールのそれぞれの周速度をホモポリプロピレンフィルムの搬送方向に向かって順次大きくなるように回転させることにより、ホモポリプロピレンフィルムを、42%/分の延伸速度にて延伸倍率2.0倍に搬送方向にのみ一軸延伸した。
次に、ホモポリプロピレンフィルムを、熱風炉内に上下に配置された第1ロール及び第2ロールに順次供給し、ホモポリプロピレンフィルムの表面温度が155℃となるように且つホモポリプロピレンフィルムに張力が加わらないようにして4分間に亘って熱風炉内を搬送することによりホモポリプロピレンフィルムにアニーリングを施してホモポリプロピレン微多孔フィルム(厚み:25μm、目付:11g/m2)を得た。なお、アニーリング工程におけるホモポリプロピレンフィルムの収縮率は5%とした。
(塗工工程)
表1及び2に示した所定量の酢酸エチルに、ラジカル重合性モノマーとして、表1及び2に示した所定量のトリメチロールプロパントリアクリレート(TMPTA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールトリアクリレート(PETA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジトリメチロールプロパンテトラアクリレート(DTMPTA)、1,9-ノナンジオールジメタクリレート(NDDMA)、1,4-ブタンジオールジメタクリレート(BDDMA)、トリプロピレングリコールジアクリレート(TPGDA)、トリメチロールプロパントリメタクリレート(TMPTMA)、トリアリルイソシアヌレート(TAIC)又はジビニルベンゼン(DVB)を溶解させて塗工液を作製した。この塗工液をホモポリプロピレン微多孔フィルムの表面に塗布した。
ホモポリプロピレン微多孔フィルムに、窒素雰囲気下、表1及び2に示した加速電圧及び吸収線量で電子線を照射した。これにより、ラジカル重合性モノマーを重合させて、ホモポリプロピレン微多孔フィルムの表面全面にラジカル重合性モノマーの重合体を含む皮膜層を一体的に形成させた。また、ホモポリプロピレン微多孔フィルムに含まれているホモポリプロピレンの一部と、皮膜層に含まれている重合体の一部とは、化学的に結合していた。耐熱性ホモポリプロピレン微多孔フィルムは、表1及び2に示す厚みを有していた。また、耐熱性ホモポリプロピレン微多孔フィルム中における、ホモポリプロピレン微多孔フィルム100重量部に対する皮膜層の含有量(重量部)を表1及び2に示した。
耐熱性ホモポリプロピレン微多孔フィルムのゲル分率を上記の要領で測定した。耐熱性ホモポリプロピレン微多孔フィルムの透気度を上述の合成樹脂微多孔フィルムの透気度の測定方法と同様の要領で測定した。耐熱性ホモポリプロピレン微多孔フィルムの熱収縮率及び引張破壊応力を下記の要領で測定した。また、耐熱性ホモポリプロピレン微多孔フィルムについて、釘刺し試験を下記の要領で実施した。これらの結果を表1及び2に示した。
耐熱性ホモポリプロピレン微多孔フィルムから幅3mm×長さ30mmの平面長方形状の試験片を切り出した。この時、耐熱性ホモポリプロピレン微多孔フィルムの長さ方向(押出方向)を試験片の長さ方向と平行にした。試験片の長さ方向の両端をつかみ具により把持して、TMA測定装置(セイコーインスツル社製 商品名「TMA-SS6000」)に取り付けた。この時、つかみ具間の距離を10mmとし、つかみ具は試験片の熱収縮に伴って移動可能とした。そして、試験片に長さ方向に19.6mN(2gf)の張力を加えた状態で、試験片を25℃から180℃まで5℃/分の昇温速度にて加熱し、各温度においてつかみ具間の距離L(mm)を測定し、下記式に基づいて熱収縮率を算出した。130℃及び150℃における熱収縮率、並びに、25℃から180℃の測定範囲内における最大熱収縮率を表1及び2に示した。
熱収縮率(%)=100×(10-L)/10
耐熱性ホモポリプロピレン微多孔フィルムにおいて、押出方向の引張破壊応力をJIS K7127/2/300に準拠して測定した。試験片は幅10mm、長さ150mmとした。また、つかみ具間の距離は50mmとした。
正極活物質として、ニッケル-コバルト-マンガン酸リチウム(1:1:1)を含む正極形成用組成物を調製した。この正極形成用組成物を正極集電体としてのアルミニウム箔の一面に塗布し、乾燥することにより正極活物質層を作製した。その後、正極活物質層が一面に形成されている正極集電体を打ち抜くことにより縦48mm×横117mmの平面長方形状の正極を得た。
ACR(SOC50% 1kHz)、DCR(SOC50% 1CA、2CA、3CA×10秒放電)
優:試験後の積層体素子に発煙及び発火の発生がなかった。
劣:試験後の積層体素子に発煙及び発火のうち少なくとも一方が発生した。
Claims (12)
- 合成樹脂微多孔フィルム表面に3官能以上の多官能性アクリル系モノマーを含むラジカル重合性モノマーを塗工し、上記合成樹脂微多孔フィルム100重量部に上記ラジカル重合性モノマー5~80重量部を付着させた後、上記合成樹脂微多孔フィルムに電離放射線を吸収線量が10~150kGyで照射することを特徴とする耐熱性合成樹脂微多孔フィルムの製造方法。
- 3官能以上の多官能アクリル系モノマーが、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、及びジトリメチロールプロパンテトラ(メタ)アクリレートよりなる群から選択される少なくとも一種であることを特徴とする請求項1に記載の耐熱性合成樹脂微多孔フィルムの製造方法。
- ラジカル重合性モノマーが溶媒中に分散又は溶解している塗工液を、合成樹脂微多孔フィルム表面に塗工することを特徴とする請求項1又は2に記載の耐熱性合成樹脂微多孔フィルムの製造方法。
- 合成樹脂微多孔フィルムに電離放射線を照射する前に、塗工液を塗工した合成樹脂微多孔フィルムを加熱して溶媒を除去することを特徴とする請求項3に記載の耐熱性合成樹脂微多孔フィルムの製造方法。
- 合成樹脂を含んでいる合成樹脂微多孔フィルム100重量部と、
上記合成樹脂微多孔フィルム表面の少なくとも一部に形成された皮膜層5~80重量部とを有し、
上記皮膜層は、3官能以上の多官能性アクリル系モノマーを含むラジカル重合性モノマーの重合体であることを特徴とする耐熱性合成樹脂微多孔フィルム。 - 合成樹脂が、プロピレン系樹脂であることを特徴とする請求項5に記載の耐熱性合成樹脂微多孔フィルム。
- 3官能以上の多官能アクリル系モノマーが、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、及びジトリメチロールプロパンテトラ(メタ)アクリレートよりなる群から選択される少なくとも一種であることを特徴とする請求項5又は6に記載の耐熱性合成樹脂微多孔フィルム。
- ゲル分率が、5%以上であることを特徴とする請求項5~7のいずれかに記載の耐熱性合成樹脂微多孔フィルム。
- 透気度が、50~600sec/100mLであることを特徴とする請求項5~8のいずれかに記載の耐熱性合成樹脂微多孔フィルム。
- 25℃から180℃まで5℃/分の昇温速度にて加熱した際の最大熱収縮率が、25%以下であることを特徴とする請求項5~9のいずれかに記載の耐熱性合成樹脂微多孔フィルム。
- 請求項5~10のいずれかに記載の耐熱性合成樹脂微多孔フィルムを含んでいることを特徴とする非水電解液二次電池用セパレータ。
- 請求項11に記載の非水電解液二次電池用セパレータを含んでいることを特徴とする非水電解液二次電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13852901.1A EP2918631A4 (en) | 2012-11-06 | 2013-10-31 | HEAT-RESISTANT MICROPOROUS ART RESIN FOIL AND METHOD FOR THE PRODUCTION THEREOF, SEPARATOR FOR A SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE AND SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE |
US14/437,850 US20150303428A1 (en) | 2012-11-06 | 2013-10-31 | Heat-resistant synthetic resin microporous film, method of producing the same, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
RU2015121358A RU2015121358A (ru) | 2012-11-06 | 2013-10-31 | Теплостойкая микропористая пленка на основе синтетической смолы, способ ее получения, сепаратор для аккумуляторной батареи с неводным электролитом и аккумуляторная батарея с неводным электролитом |
CN201380053392.1A CN104781324A (zh) | 2012-11-06 | 2013-10-31 | 耐热性合成树脂微多孔膜及其制造方法、非水电解液二次电池用隔板以及非水电解液二次电池 |
JP2013553549A JP5593003B1 (ja) | 2012-11-06 | 2013-10-31 | 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 |
KR1020157009486A KR101559709B1 (ko) | 2012-11-06 | 2013-10-31 | 내열성 합성 수지 미다공 필름 및 그의 제조 방법, 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-244121 | 2012-11-06 | ||
JP2012244121 | 2012-11-06 | ||
JP2013-192403 | 2013-09-17 | ||
JP2013192403 | 2013-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014073451A1 true WO2014073451A1 (ja) | 2014-05-15 |
Family
ID=50684559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079584 WO2014073451A1 (ja) | 2012-11-06 | 2013-10-31 | 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20150303428A1 (ja) |
EP (1) | EP2918631A4 (ja) |
JP (2) | JP5593003B1 (ja) |
KR (1) | KR101559709B1 (ja) |
CN (1) | CN104781324A (ja) |
RU (1) | RU2015121358A (ja) |
TW (1) | TWI500670B (ja) |
WO (1) | WO2014073451A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015063639A (ja) * | 2013-09-26 | 2015-04-09 | 積水化学工業株式会社 | 耐熱性プロピレン系樹脂微多孔フィルムの製造方法、耐熱性プロピレン系樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 |
CN104659313A (zh) * | 2015-02-26 | 2015-05-27 | 广东烛光新能源科技有限公司 | 一种复合多孔隔离膜、该隔离膜制备的电池及其制备方法 |
JP2015131874A (ja) * | 2014-01-09 | 2015-07-23 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 |
JP2016046096A (ja) * | 2014-08-22 | 2016-04-04 | トヨタ紡織株式会社 | 不織布セパレータ、不織布セパレータの製造方法、及び不織布セパレータを用いた二次電池 |
JP2016062642A (ja) * | 2014-09-12 | 2016-04-25 | 積水化学工業株式会社 | ポリオレフィン系樹脂微孔フィルム及びその製造方法、並びにリチウムイオン電池用セパレータ |
WO2016072420A1 (ja) * | 2014-11-05 | 2016-05-12 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及びその製造方法 |
WO2017104760A1 (ja) * | 2015-12-16 | 2017-06-22 | 積水化学工業株式会社 | 合成樹脂微多孔フィルム及びその製造方法、蓄電デバイス用セパレータ、並びに蓄電デバイス |
JP2017191777A (ja) * | 2016-04-14 | 2017-10-19 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 多孔性耐熱層組成物、多孔性耐熱層を含む分離膜、および該分離膜を用いた電気化学電池 |
JP2020513134A (ja) * | 2017-04-06 | 2020-04-30 | 旭化成株式会社 | リチウムイオン二次電池用セパレータ |
JP2021044208A (ja) * | 2019-09-13 | 2021-03-18 | 株式会社豊田中央研究所 | ポリマー膜、蓄電デバイス及び蓄電デバイスの製造方法 |
JP2022527738A (ja) * | 2019-03-22 | 2022-06-06 | エルジー・ケム・リミテッド | ポリオレフィン分離膜及びその製造方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160133399A (ko) * | 2014-03-18 | 2016-11-22 | 세키스이가가쿠 고교가부시키가이샤 | 내열성 합성수지 미다공 필름 및 그의 제조방법, 비수전해액 이차전지용 세퍼레이터, 및 비수전해액 이차전지 |
US20170047570A1 (en) * | 2014-05-01 | 2017-02-16 | Sekisui Chemical Co., Ltd. | Heat-resistant synthetic resin microporous film and method for producing the same, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
KR101618681B1 (ko) * | 2014-12-30 | 2016-05-11 | 삼성에스디아이 주식회사 | 다공성 내열층 조성물, 다공성 내열층을 포함하는 분리막, 상기 분리막을 이용한 전기 화학 전지, 및 상기 분리막의 제조 방법 |
KR101709697B1 (ko) * | 2014-12-30 | 2017-02-23 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지 |
KR101551757B1 (ko) * | 2014-12-30 | 2015-09-10 | 삼성에스디아이 주식회사 | 다공성 내열층 조성물, 다공성 내열층을 포함하는 분리막, 상기 분리막을 이용한 전기 화학 전지, 및 상기 분리막의 제조 방법 |
CN105161653A (zh) * | 2015-09-29 | 2015-12-16 | 范建国 | 单向拉伸引发生产pe/pe/pe结构高强隔膜的方法 |
CN105161654B (zh) * | 2015-09-29 | 2017-08-25 | 范建国 | 单向拉伸引发生产pp/pe/pe/pp隔膜的方法 |
US20170263908A1 (en) * | 2016-03-08 | 2017-09-14 | Giner, Inc. | Separator For Use in Electrochemical Cells and Method of Fabrication Thereof |
KR102696128B1 (ko) * | 2017-09-28 | 2024-08-16 | 니폰 제온 가부시키가이샤 | 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층, 비수계 이차 전지 부재, 및 비수계 이차 전지 |
CN111373569B (zh) * | 2017-11-21 | 2022-12-30 | 旭化成株式会社 | 蓄电装置用分隔件及蓄电装置 |
CN108963154A (zh) * | 2018-07-10 | 2018-12-07 | 福建师范大学 | 低强度辐射的涂覆膜的制备方法 |
CN108933219B (zh) * | 2018-09-29 | 2019-08-20 | 杨晓丽 | 一种锂电池隔膜的制备方法 |
CN115398735B (zh) * | 2020-04-14 | 2024-09-06 | 株式会社Lg新能源 | 用于电化学装置的复合隔板和制造其的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6327243A (ja) * | 1986-07-18 | 1988-02-04 | 大日本印刷株式会社 | 微多孔性シ−ト |
JPH03193125A (ja) | 1989-12-21 | 1991-08-22 | Mitsubishi Rayon Co Ltd | 耐熱性多孔質膜及びその製造方法 |
JPH0977900A (ja) * | 1995-09-13 | 1997-03-25 | Tonen Chem Corp | 親水性ポリエチレン微多孔膜の製造方法 |
JP2000001548A (ja) * | 1989-07-27 | 2000-01-07 | Millipore Corp | 親水性表面を有する膜の製造方法 |
JP2003022793A (ja) | 2001-07-09 | 2003-01-24 | Oji Paper Co Ltd | 電池用セパレータ及び電池 |
JP2004507584A (ja) * | 2000-08-30 | 2004-03-11 | ピーティアイ アドバンスド フィルトレイション インク | 改良された特性を有する変性ポリマー、及びその製造方法 |
JP2010121127A (ja) * | 2008-11-21 | 2010-06-03 | General Electric Co <Ge> | 永久親水多孔質皮膜及びその形成方法 |
JP2011505663A (ja) | 2007-11-29 | 2011-02-24 | エルジー・ケム・リミテッド | 多孔性コーティング層が形成されたセパレータ、その製造方法及びこれを備えた電気化学素子 |
JP2012518073A (ja) * | 2009-02-18 | 2012-08-09 | スリーエム イノベイティブ プロパティズ カンパニー | 親水性多孔質基材 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4340057A (en) * | 1980-12-24 | 1982-07-20 | S. C. Johnson & Son, Inc. | Radiation induced graft polymerization |
US4976897A (en) * | 1987-12-16 | 1990-12-11 | Hoechst Celanese Corporation | Composite porous membranes and methods of making the same |
DE69023650T2 (de) * | 1989-07-24 | 1996-11-21 | Gelman Sciences, Inc., Ann Arbor, Mich. | Verfahren zur behandlung eines porösen substrats zwecks erhaltung von verbesserten wasser- und ölabweisenden eigenschaften. |
JPH11106552A (ja) * | 1997-09-30 | 1999-04-20 | Tonen Kagaku Kk | 親水化ポリオレフィン微多孔膜及びその製造方法 |
US20020160256A1 (en) * | 2000-09-21 | 2002-10-31 | Kenichiro Kami | Non-aqueous electrolyte secondary battery |
KR101502040B1 (ko) * | 2011-09-29 | 2015-03-12 | 가부시키가이샤 히타치세이사쿠쇼 | 비수 전해질 2차 전지용 세퍼레이터, 그 제조 방법 및 비수 전해질 2차 전지 |
-
2013
- 2013-10-31 KR KR1020157009486A patent/KR101559709B1/ko active IP Right Grant
- 2013-10-31 JP JP2013553549A patent/JP5593003B1/ja active Active
- 2013-10-31 RU RU2015121358A patent/RU2015121358A/ru not_active Application Discontinuation
- 2013-10-31 WO PCT/JP2013/079584 patent/WO2014073451A1/ja active Application Filing
- 2013-10-31 CN CN201380053392.1A patent/CN104781324A/zh active Pending
- 2013-10-31 US US14/437,850 patent/US20150303428A1/en not_active Abandoned
- 2013-10-31 EP EP13852901.1A patent/EP2918631A4/en not_active Withdrawn
- 2013-11-05 TW TW102140075A patent/TWI500670B/zh active
-
2014
- 2014-03-14 JP JP2014051463A patent/JP2015083653A/ja not_active Ceased
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6327243A (ja) * | 1986-07-18 | 1988-02-04 | 大日本印刷株式会社 | 微多孔性シ−ト |
JP2000001548A (ja) * | 1989-07-27 | 2000-01-07 | Millipore Corp | 親水性表面を有する膜の製造方法 |
JPH03193125A (ja) | 1989-12-21 | 1991-08-22 | Mitsubishi Rayon Co Ltd | 耐熱性多孔質膜及びその製造方法 |
JPH0977900A (ja) * | 1995-09-13 | 1997-03-25 | Tonen Chem Corp | 親水性ポリエチレン微多孔膜の製造方法 |
JP2004507584A (ja) * | 2000-08-30 | 2004-03-11 | ピーティアイ アドバンスド フィルトレイション インク | 改良された特性を有する変性ポリマー、及びその製造方法 |
JP2003022793A (ja) | 2001-07-09 | 2003-01-24 | Oji Paper Co Ltd | 電池用セパレータ及び電池 |
JP2011505663A (ja) | 2007-11-29 | 2011-02-24 | エルジー・ケム・リミテッド | 多孔性コーティング層が形成されたセパレータ、その製造方法及びこれを備えた電気化学素子 |
JP2010121127A (ja) * | 2008-11-21 | 2010-06-03 | General Electric Co <Ge> | 永久親水多孔質皮膜及びその形成方法 |
JP2012518073A (ja) * | 2009-02-18 | 2012-08-09 | スリーエム イノベイティブ プロパティズ カンパニー | 親水性多孔質基材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2918631A4 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015063639A (ja) * | 2013-09-26 | 2015-04-09 | 積水化学工業株式会社 | 耐熱性プロピレン系樹脂微多孔フィルムの製造方法、耐熱性プロピレン系樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 |
JP2015131874A (ja) * | 2014-01-09 | 2015-07-23 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 |
JP2016046096A (ja) * | 2014-08-22 | 2016-04-04 | トヨタ紡織株式会社 | 不織布セパレータ、不織布セパレータの製造方法、及び不織布セパレータを用いた二次電池 |
JP2016062642A (ja) * | 2014-09-12 | 2016-04-25 | 積水化学工業株式会社 | ポリオレフィン系樹脂微孔フィルム及びその製造方法、並びにリチウムイオン電池用セパレータ |
US10381626B2 (en) | 2014-11-05 | 2019-08-13 | Asahi Kasei Kabushiki Kaisha | Heat-resistant synthetic resin microporous film and method for producing the same |
WO2016072420A1 (ja) * | 2014-11-05 | 2016-05-12 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及びその製造方法 |
JP6046835B2 (ja) * | 2014-11-05 | 2016-12-21 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及びセパレータの製造方法 |
JPWO2016072420A1 (ja) * | 2014-11-05 | 2017-04-27 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及びセパレータの製造方法 |
CN104659313A (zh) * | 2015-02-26 | 2015-05-27 | 广东烛光新能源科技有限公司 | 一种复合多孔隔离膜、该隔离膜制备的电池及其制备方法 |
WO2017104760A1 (ja) * | 2015-12-16 | 2017-06-22 | 積水化学工業株式会社 | 合成樹脂微多孔フィルム及びその製造方法、蓄電デバイス用セパレータ、並びに蓄電デバイス |
JP2017191777A (ja) * | 2016-04-14 | 2017-10-19 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 多孔性耐熱層組成物、多孔性耐熱層を含む分離膜、および該分離膜を用いた電気化学電池 |
JP2020513134A (ja) * | 2017-04-06 | 2020-04-30 | 旭化成株式会社 | リチウムイオン二次電池用セパレータ |
JP7185634B2 (ja) | 2017-04-06 | 2022-12-07 | 旭化成株式会社 | リチウムイオン二次電池用セパレータ |
JP2022527738A (ja) * | 2019-03-22 | 2022-06-06 | エルジー・ケム・リミテッド | ポリオレフィン分離膜及びその製造方法 |
JP7450635B2 (ja) | 2019-03-22 | 2024-03-15 | エルジー・ケム・リミテッド | ポリオレフィン分離膜及びその製造方法 |
JP2021044208A (ja) * | 2019-09-13 | 2021-03-18 | 株式会社豊田中央研究所 | ポリマー膜、蓄電デバイス及び蓄電デバイスの製造方法 |
JP7562941B2 (ja) | 2019-09-13 | 2024-10-08 | 株式会社豊田中央研究所 | ポリマー膜、蓄電デバイス及び蓄電デバイスの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI500670B (zh) | 2015-09-21 |
EP2918631A1 (en) | 2015-09-16 |
JP2015083653A (ja) | 2015-04-30 |
RU2015121358A (ru) | 2016-12-27 |
KR101559709B1 (ko) | 2015-10-12 |
EP2918631A4 (en) | 2016-07-06 |
CN104781324A (zh) | 2015-07-15 |
KR20150063428A (ko) | 2015-06-09 |
JPWO2014073451A1 (ja) | 2016-09-08 |
TW201430021A (zh) | 2014-08-01 |
JP5593003B1 (ja) | 2014-09-17 |
US20150303428A1 (en) | 2015-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5593003B1 (ja) | 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 | |
JP5934438B2 (ja) | 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 | |
KR101861408B1 (ko) | 프로필렌계 수지 미공 필름, 전지용 세퍼레이터, 전지 및 프로필렌계 수지 미공 필름의 제조 방법 | |
KR101700007B1 (ko) | 프로필렌계 수지 미공 필름, 전지용 세퍼레이터, 전지 및 프로필렌계 수지 미공 필름의 제조 방법 | |
JP2015221889A (ja) | 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 | |
WO2014175252A1 (ja) | オレフィン系樹脂微孔フィルム、電池用セパレータ、電池、及びオレフィン系樹脂微孔フィルムの製造方法 | |
JP5996801B2 (ja) | 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 | |
JP2016199734A (ja) | 耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び耐熱性合成樹脂微多孔フィルムのその製造方法 | |
JP5663040B2 (ja) | プロピレン系樹脂微孔フィルム、電池用セパレータ、電池及びプロピレン系樹脂微孔フィルムの製造方法 | |
JP2015063639A (ja) | 耐熱性プロピレン系樹脂微多孔フィルムの製造方法、耐熱性プロピレン系樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 | |
JP2017002297A (ja) | オレフィン系樹脂微多孔フィルム、非水電解液二次電池用セパレータ及び非水電解液二次電池 | |
JP5771045B2 (ja) | プロピレン系樹脂微孔フィルム及びその製造方法、並びにリチウムイオン電池用セパレータ及びリチウムイオン電池 | |
JP2015131874A (ja) | 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 | |
JP2015212322A (ja) | 耐熱性微多孔フィルムの製造方法、耐熱性微多孔フィルム、非水電解液二次電池用セパレータ及び非水電解液二次電池 | |
CN116583995A (zh) | 含交联结构的聚烯烃多孔基材、其制造方法以及包含其的锂二次电池用的含交联结构的隔膜 | |
WO2017104760A1 (ja) | 合成樹脂微多孔フィルム及びその製造方法、蓄電デバイス用セパレータ、並びに蓄電デバイス | |
WO2018147395A1 (ja) | 合成樹脂微多孔フィルム及びその製造方法、蓄電デバイス用セパレータ並びに蓄電デバイス | |
JP6660363B2 (ja) | 蓄電デバイス用セパレータ及び蓄電デバイス | |
JP2022048518A (ja) | ポリオレフィン微多孔膜、それを用いたコーティングフィルム及び二次電池 | |
JP2015214688A (ja) | 微多孔樹脂フィルム及びその製造方法、非水電解液二次電池用セパレータ、並びに非水電解液二次電池 | |
JP2014240471A (ja) | 架橋合成樹脂微多孔フィルムの製造方法、架橋合成樹脂微多孔フィルム、及びリチウムイオン電池用セパレータ | |
JP5620228B2 (ja) | プロピレン系樹脂微孔フィルム、電池用セパレータ、電池及びプロピレン系樹脂微孔フィルムの製造方法 | |
JP2016088976A (ja) | 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 | |
JP2017095576A (ja) | オレフィン系樹脂微多孔二軸延伸フィルム及びその製造方法、並びに、耐熱性オレフィン系樹脂微多孔二軸延伸フィルム及びその製造方法 | |
JP2015214689A (ja) | 耐熱性微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013553549 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13852901 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157009486 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013852901 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14437850 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015121358 Country of ref document: RU Kind code of ref document: A |