WO2016072420A1 - 耐熱性合成樹脂微多孔フィルム及びその製造方法 - Google Patents
耐熱性合成樹脂微多孔フィルム及びその製造方法 Download PDFInfo
- Publication number
- WO2016072420A1 WO2016072420A1 PCT/JP2015/081048 JP2015081048W WO2016072420A1 WO 2016072420 A1 WO2016072420 A1 WO 2016072420A1 JP 2015081048 W JP2015081048 W JP 2015081048W WO 2016072420 A1 WO2016072420 A1 WO 2016072420A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microporous film
- synthetic resin
- resin microporous
- heat
- meth
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
- C08J9/365—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/05—Forming flame retardant coatings or fire resistant coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/06—Coating with compositions not containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/123—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2435/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
- C08J2435/02—Characterised by the use of homopolymers or copolymers of esters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
- H01M50/406—Moulding; Embossing; Cutting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a heat-resistant synthetic resin microporous film and a method for producing the same.
- lithium ion secondary batteries have been used as batteries for portable electronic devices.
- This lithium ion secondary battery is generally configured by disposing a positive electrode, a negative electrode, and a separator in an electrolytic solution.
- the positive electrode is formed by applying lithium cobalt oxide or lithium manganate to the surface of the aluminum foil.
- the negative electrode is formed by applying carbon to the surface of the copper foil.
- the separator is arrange
- the separator When charging a lithium ion secondary battery, lithium ions are released from the positive electrode and move into the negative electrode. On the other hand, when the lithium ion secondary battery is discharged, lithium ions are released from the negative electrode and move into the positive electrode. Therefore, the separator is required to have ion permeability such as lithium ions.
- the separator As the separator, a synthetic resin microporous film is used because of its excellent insulation and cost.
- the synthetic resin microporous film contains a synthetic resin such as a propylene resin.
- the synthetic resin microporous film is manufactured by extending
- the synthetic resin microporous film produced by the stretching method generates high residual stress due to stretching. Therefore, it has been pointed out that such a synthetic resin microporous film thermally contracts at a high temperature, and as a result, the positive electrode and the negative electrode may be short-circuited. Therefore, it is desired to ensure the safety of the lithium ion secondary battery by improving the heat resistance of the synthetic resin microporous film.
- Patent Document 1 discloses a synthetic resin microporous film processed by electron beam irradiation and having a thermomechanical analysis (TMA) value at 100 ° C. of 0% to ⁇ 1% as a separator for a lithium ion secondary battery. ing.
- TMA thermomechanical analysis
- the heat resistance of the synthetic resin microporous film is insufficient only by treatment with electron beam irradiation. Furthermore, only by treatment with electron beam irradiation, the synthetic resin microporous film is embrittled and mechanical strength is lowered. That is, the molecular chain of the synthetic resin contained in the synthetic resin microporous film is cut by electron beam irradiation, and the mechanical strength of the synthetic resin microporous film is lowered. Furthermore, residual radicals may be generated in the synthetic resin microporous film by electron beam irradiation. When the residual radical is generated, the molecular chain of the synthetic resin contained in the synthetic resin microporous film is cut with time by the residual radical, and the mechanical strength of the synthetic resin microporous film is lowered with time.
- the synthetic resin microporous film with reduced mechanical strength may reduce the productivity and safety of the lithium ion secondary battery. For example, when a synthetic resin microporous film with reduced mechanical strength is cut in the battery manufacturing process, the synthetic resin microporous film may be torn. In addition, the synthetic resin microporous film having a reduced mechanical strength cannot prevent a short circuit between the electrodes, and may reduce the safety of the lithium ion secondary battery. Therefore, there is a need for a separator that is excellent in both heat resistance and mechanical strength and that suppresses a decrease in mechanical strength over time.
- the present invention provides a heat-resistant synthetic resin microporous film that is excellent in both heat resistance and mechanical strength and that suppresses a decrease in mechanical strength over time, and a method for producing the same.
- the heat-resistant synthetic resin microporous film of the present invention is A synthetic resin microporous film; A coating layer formed on at least a part of the surface of the synthetic resin microporous film and containing a polymer of a polymerizable compound having two or more radically polymerizable functional groups in one molecule; After heating at 25 ° C. to 180 ° C. at a heating rate of 5 ° C./min, the maximum thermal shrinkage is 15% or less, the puncture strength is 0.6 N or more, and after heating at 70 ° C. for 168 hours The puncture strength maintenance rate is 85% or more.
- the heat resistant synthetic resin microporous film by which the time-dependent fall of mechanical strength is suppressed and its manufacturing method can be provided.
- the heat-resistant synthetic resin microporous film of the present invention includes a synthetic resin microporous film and a coating layer formed on at least a part of the surface of the synthetic resin microporous film.
- the synthetic resin microporous film can be used without particular limitation as long as it is a microporous film used as a separator in a conventional secondary battery such as a lithium ion secondary battery.
- a conventional secondary battery such as a lithium ion secondary battery.
- an olefin resin microporous film is preferable.
- the olefin resin microporous film contains an olefin resin.
- olefin resin ethylene resin and propylene resin are preferable, and propylene resin is more preferable.
- propylene-based resin examples include homopolypropylene and copolymers of propylene and other olefins.
- a synthetic resin microporous film is produced by the stretching method, homopolypropylene is preferable.
- Propylene-type resin may be used independently, or 2 or more types may be used together.
- the copolymer of propylene and another olefin may be a block copolymer or a random copolymer.
- the content of the propylene component in the propylene-based resin is preferably 50% by weight or more, and more preferably 80% by weight or more.
- Examples of the olefin copolymerized with propylene include ⁇ such as ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene and 1-decene. -Olefin and the like, and ethylene is preferred.
- the ethylene-based resin examples include ultra-low density polyethylene, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultra high density polyethylene, and ethylene-propylene copolymer.
- the ethylene-based resin microporous film may contain other olefin-based resin as long as it contains an ethylene-based resin.
- the content of the ethylene component in the ethylene resin is preferably more than 50% by weight, more preferably 80% by weight or more.
- the weight average molecular weight of the olefin resin is preferably 30,000 to 500,000, and more preferably 50,000 to 480,000.
- the weight average molecular weight of the propylene-based resin is preferably 250,000 to 500,000, and more preferably 280,000 to 480,000.
- the weight average molecular weight of the ethylene-based resin is preferably 30,000 to 250,000, and more preferably 50,000 to 200,000. According to the olefin resin having a weight average molecular weight within the above range, it is possible to provide an olefin resin microporous film having excellent film-forming stability and having uniform micropores.
- the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the olefin resin is preferably 5.0 to 30, and more preferably 7.5 to 25.
- the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the propylene resin is preferably 7.5 to 12, and more preferably 8 to 11.
- the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the ethylene-based resin is preferably 5.0 to 30, and more preferably 8.0 to 25. According to the olefin resin having a molecular weight distribution within the above range, it is possible to provide an olefin resin microporous film having a high surface opening ratio and excellent mechanical strength.
- the weight average molecular weight and the number average molecular weight of the olefin resin are values in terms of polystyrene measured by a GPC (gel permeation chromatography) method. Specifically, 6 to 7 mg of olefin resin is sampled, the collected olefin resin is supplied to a test tube, and the test tube contains 0.05% by weight of BHT (dibutylhydroxytoluene). A diluted solution is prepared by adding a DCB (orthodichlorobenzene) solution and diluting the olefin-based resin concentration to 1 mg / mL.
- DCB orthodichlorobenzene
- the diluted solution is shaken for 1 hour at 145 ° C. and a rotational speed of 25 rpm, and the olefin resin is dissolved in the o-DCB solution to obtain a measurement sample.
- the weight average molecular weight and number average molecular weight of the olefin resin can be measured by the GPC method.
- the weight average molecular weight and the number average molecular weight in the olefin resin can be measured, for example, with the following measuring apparatus and measurement conditions.
- Product name "HLC-8121GPC / HT" manufactured by TOSOH Measurement conditions Column: TSKgelGMHHR-H (20) HT ⁇ 3 TSKguardcolumn-HHR (30) HT ⁇ 1
- Detector Blythe refractometer Standard material: Polystyrene (Molecular weight: 500-8420000, manufactured by TOSOH) Elution conditions: 145 ° C
- the melting point of the olefin resin is preferably 130 to 170 ° C, more preferably 133 to 165 ° C.
- the melting point of the propylene-based resin is preferably 160 to 170 ° C, and more preferably 160 to 165 ° C.
- the melting point of the ethylene-based resin is preferably 130 to 140 ° C, and more preferably 133 to 139 ° C. According to the olefinic resin having a melting point within the above range, it is possible to provide an olefinic resin microporous film that is excellent in film forming stability and suppressed in mechanical strength at high temperatures.
- the melting point of the olefin-based resin can be measured using a differential scanning calorimeter (for example, Seiko Instruments Inc. apparatus name “DSC220C”) according to the following procedure.
- a differential scanning calorimeter for example, Seiko Instruments Inc. apparatus name “DSC220C”
- 10 mg of an olefin resin is heated from 25 ° C. to 250 ° C. at a heating rate of 10 ° C./min, and held at 250 ° C. for 3 minutes.
- the olefin-based resin is cooled from 250 ° C. to 25 ° C. at a temperature decrease rate of 10 ° C./min, and held at 25 ° C. for 3 minutes.
- the olefin resin is reheated from 25 ° C. to 250 ° C. at a temperature rising rate of 10 ° C./min, and the temperature at the top of the endothermic peak in this reheating step is set as the melting point of the olef
- the synthetic resin microporous film includes micropores. It is preferable that the micropore part penetrates in the film thickness direction, and this can impart excellent air permeability to the heat resistant synthetic resin microporous film. Such a heat-resistant synthetic resin microporous film can transmit ions such as lithium ions in the thickness direction.
- the air permeability of the synthetic resin microporous film is preferably 50 to 600 sec / 100 mL, and more preferably 100 to 300 sec / 100 mL. According to the synthetic resin microporous film having an air permeability within the above range, a heat-resistant synthetic resin microporous film excellent in both mechanical strength and ion permeability can be provided.
- the air permeability of the synthetic resin microporous film was measured at 10 points at 10 cm intervals in the length direction of the synthetic resin microporous film in an atmosphere of a temperature of 23 ° C. and a relative humidity of 65% according to JIS P8117. The value obtained by calculating the arithmetic mean value is used.
- the surface opening ratio of the synthetic resin microporous film is preferably 25 to 55%, more preferably 30 to 50%. According to the synthetic resin microporous film having a surface opening ratio in the above range, a heat-resistant synthetic resin microporous film excellent in both mechanical strength and ion permeability can be provided.
- the surface opening ratio of the synthetic resin microporous film can be measured as follows. First, in an arbitrary portion of the surface of the synthetic resin microporous film, a measurement portion having a plane rectangular shape of 9.6 ⁇ m in length and 12.8 ⁇ m in width is determined, and this measurement portion is photographed at a magnification of 10,000 times.
- each micropore formed in the measurement part is surrounded by a rectangle whose long side or short side is parallel to the length direction (stretching direction) of the synthetic resin microporous film.
- the rectangle is adjusted so that both the long side and the short side have the minimum dimension.
- the rectangular area is defined as the opening area of each microhole.
- the total opening area S ( ⁇ m 2 ) of the micropores is calculated by summing the opening areas of the micropores. This is the total opening area S of the minute hole ([mu] m 2) of 122.88 ⁇ m 2 (9.6 ⁇ m ⁇ 12.8 ⁇ m) surface porosity values multiplied by 100 and divided by the (%).
- the micropore part which exists across the measurement part and the part which is not a measurement part only the part which exists in a measurement part among micropores is set as a measuring object.
- the thickness of the synthetic resin microporous film is preferably 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ m.
- the thickness of the synthetic resin microporous film can be measured according to the following procedure. That is, arbitrary 10 places of a synthetic resin microporous film are measured using a dial gauge, and the arithmetic mean value is defined as the thickness of the synthetic resin microporous film.
- an olefin-based resin microporous film produced by a stretching method is more preferable.
- the olefin-based resin microporous film produced by the stretching method is particularly susceptible to thermal shrinkage at high temperatures due to residual strain generated by stretching.
- the thermal shrinkage of the olefin-based resin microporous film can be reduced, and therefore the effects of the present invention can be particularly exhibited.
- an olefin resin microporous film by a stretching method specifically, (1) A process of obtaining an olefin resin film by extruding an olefin resin, a process of generating and growing lamella crystals in the olefin resin film, and stretching the olefin resin film to separate the lamella crystals. And a step of obtaining an olefin resin microporous film in which micropores are formed; (2) A step of obtaining an olefinic resin film by extruding an olefinic resin composition containing an olefinic resin and a filler, and an olefinic resin by uniaxially stretching or biaxially stretching the olefinic resin film.
- an olefinic resin and an extractable material for example, filler or plastic
- a step of obtaining an olefinic resin microporous film in which micropores are formed by peeling the interface with the filler A step of obtaining an olefin-based resin film by extruding an olefin-based resin composition containing an agent and the like, a step of forming a micropore by extracting an extractable material from the olefin-based resin film with a solvent, An olefin-based resin microporous film is obtained by stretching the olefin-based resin film with micropores. And the like.
- the method (1) is preferable because an olefin-based resin microporous film in which a large number of micropores are uniformly formed is obtained.
- the heat-resistant synthetic resin microporous film of the present invention has a coating layer formed on at least a part of the surface of the synthetic resin microporous film.
- This coating layer contains a polymer of a polymerizable compound having two or more radically polymerizable functional groups in one molecule.
- the coating layer containing such a polymer has high hardness and moderate elasticity and elongation. Therefore, by using the coating layer containing the polymer, a heat-resistant synthetic resin microporous film excellent in both mechanical strength such as piercing strength and heat resistance can be provided.
- the coating layer may be formed on at least a part of the surface of the synthetic resin microporous film, but is preferably formed on the entire surface of the synthetic resin microporous film, and the surface of the synthetic resin microporous film, and It is more preferable to form also on the wall surface of the micropore part which continues from the surface of a synthetic resin microporous film.
- a coating layer can be formed on the surface of the synthetic resin microporous film so as not to block the micropores of the synthetic resin microporous film.
- the polymerizable compound has two or more radical polymerizable functional groups in one molecule.
- the radical polymerizable functional group is a functional group containing a radical polymerizable unsaturated bond that can be radically polymerized by irradiation with active energy rays. Although it does not restrict
- a polyfunctional acrylic monomer having two or more radical polymerizable functional groups in one molecule a vinyl oligomer having two or more radical polymerizable functional groups in one molecule, Modified polyfunctional (meth) acrylate having two or more (meth) acryloyl groups, dendritic polymer having two or more (meth) acryloyl groups, and urethane (meth) acrylate oligomer having two or more (meth) acryloyl groups Is mentioned.
- (meth) acrylate means acrylate or methacrylate.
- (Meth) acryloyl means acryloyl or methacryloyl.
- (meth) acrylic acid means acrylic acid or methacrylic acid.
- the polyfunctional acrylic monomer only needs to have two or more radical polymerizable functional groups in one molecule, but it has three or more functional groups having three or more radical polymerizable functional groups in one molecule.
- Polyfunctional acrylic monomers are preferable, and trifunctional to hexafunctional polyfunctional acrylic monomers having 3 to 6 radical polymerizable functional groups in one molecule are more preferable.
- the vinyl oligomer is not particularly limited, and examples thereof include polybutadiene oligomers.
- the polybutadiene oligomer means an oligomer having a butadiene skeleton.
- Examples of the polybutadiene oligomer include a polymer containing a butadiene component as a monomer component.
- Examples of the monomer component of the polybutadiene oligomer include a 1,2-butadiene component and a 1,3-butadiene component. Of these, a 1,2-butadiene component is preferred.
- the vinyl oligomer may have a hydrogen atom at both ends of the main chain, and the terminal hydrogen atom is substituted with a hydroxyalkyl group such as a hydroxy group, a carboxy group, a cyano group, or a hydroxyethyl group. It may be a thing.
- a vinyl-type oligomer you may have radically polymerizable functional groups, such as an epoxy group, a (meth) acryloyl group, and a vinyl group, in the side chain or terminal of a molecular chain.
- Polybutadiene oligomers such as poly (1,2-butadiene) oligomers and poly (1,3-butadiene) oligomers;
- a polybutadiene (meth) acrylate oligomer having a butadiene skeleton and having a (meth) acryloyl group at a side chain or a terminal of the main chain; Etc. can be illustrated.
- a commercially available product can be used as the polybutadiene oligomer.
- the poly (1,2-butadiene) oligomer examples include “B-1000”, “B-2000”, and “B-3000” manufactured by Nippon Soda Co., Ltd.
- the polybutadiene oligomer having a hydroxyl group at both ends of the main chain examples include trade names “G-1000”, “G-2000”, and “G-3000” manufactured by Nippon Soda Co., Ltd.
- trade names “JP-100” and “JP-200” manufactured by Nippon Soda Co., Ltd. can be exemplified.
- the polybutadiene (meth) acrylate oligomer examples include trade names “TE-2000”, “EA-3000” and “EMA-3000” manufactured by Nippon Soda Co., Ltd.
- the polyfunctional (meth) acrylate modified product only needs to have two or more radical polymerizable functional groups in one molecule, but has three or more radical polymerizable functional groups in one molecule.
- a polyfunctional (meth) acrylate modified product having a functionality higher than that is preferable, and a trifunctional to hexafunctional polyfunctional (meth) acrylate modified product having 3 to 6 radical polymerizable functional groups in one molecule is more preferable. preferable.
- Preferred examples of the polyfunctional (meth) acrylate modified product include an alkylene oxide modified product of a polyfunctional (meth) acrylate and a caprolactone modified product of a polyfunctional (meth) acrylate.
- the alkylene oxide modified product of polyfunctional (meth) acrylate is preferably obtained by esterifying an adduct of polyhydric alcohol and alkylene oxide with (meth) acrylic acid.
- the polyfunctional (meth) acrylate-modified caprolactone is preferably obtained by esterifying an adduct of a polyhydric alcohol and caprolactone with (meth) acrylic acid.
- Examples of the polyhydric alcohol in the alkylene oxide modified product and caprolactone modified product include trimethylolpropane, glycerol, pentaerythritol, ditrimethylolpropane, and tris (2-hydroxyethyl) isocyanuric acid.
- alkylene oxide in the modified alkylene oxide examples include ethylene oxide, propylene oxide, isopropylene oxide, butylene oxide, and the like.
- caprolactone in the modified caprolactone examples include ⁇ -caprolactone, ⁇ -caprolactone, and ⁇ -caprolactone.
- the average added mole number of alkylene oxide may be 1 mol or more per radical polymerizable functional group.
- the average added mole number of alkylene oxide is preferably 1 mol or more and 4 mol or less, more preferably 1 mol or more and 3 mol or less per radical polymerizable functional group.
- Pentaerythritol tetra (meth) acrylate modified with ethylene oxide Pentaerythritol tetra (meth) acrylate modified with propylene oxide, pentaerythritol tetra (meth) acrylate modified with propylene oxide, pentaerythritol tetra (meth) acrylate butylene oxide Modified products, and alkylene oxide modified products of pentaerythritol tetra (meth) acrylates such as ethylene oxide / propylene oxide modified products of pentaerythritol tetra (meth) acrylate, and caprolactone modified products of pentaerythritol tetra (meth) acrylate; and ditrimethylol Propane tetra (meth) acrylate modified with ethylene oxide, ditrimethylolprop Of propy
- a polyfunctional (meth) acrylate modified product of 5 or more functions specifically, Dipentaerythritol poly (meth) acrylate modified with ethylene oxide, dipentaerythritol poly (meth) acrylate modified with propylene oxide, dipentaerythritol poly (meth) acrylate modified with propylene oxide, dipentaerythritol poly (meth) Butylene oxide modified products of acrylate, and alkylene oxide modified products of dipentaerythritol poly (meth) acrylate such as ethylene oxide / propylene oxide modified product of dipentaerythritol poly (meth) acrylate, and dipentaerythritol poly (meth) acrylate And caprolactone-modified products.
- Examples of the modified ethylene oxide of trimethylolpropane tri (meth) acrylate include trade names “SR454”, “SR499” and “SR502” manufactured by Sartomer, trade names “Biscoat # 360” manufactured by Osaka Organic Chemical Co., Ltd., and Miwon. Examples of such products include “Miramer M3130”, “Miramer M3160”, and “Miramer M3190”. Examples of the modified propylene oxide of trimethylolpropane tri (meth) acrylate include trade names “SR492” and “CD501” manufactured by Sartomer, and “Miramer M360” manufactured by Miwon. Examples of the modified isopropylene oxide of trimethylolpropane tri (meth) acrylate include “TPA-330” (trade name) manufactured by Nippon Kayaku Co., Ltd.
- Examples of the modified ethylene oxide of glyceryl tri (meth) acrylate include trade names “A-GYL-3E” and “A-GYL-9E” manufactured by Shin-Nakamura Chemical Co., Ltd.
- Examples of the propylene oxide-modified product of glyceryl tri (meth) acrylate include trade names “SR9020” and “CD9021” manufactured by Sartomer.
- Examples of the glyceryl tri (meth) acrylate modified isopropylene oxide include trade name “GPO-303” manufactured by Nippon Kayaku Co., Ltd.
- Examples of the modified product of tris- (2-acryloxyethyl) isocyanurate caprolactone include trade names “A-9300-1CL” and “A-9300-3CL” manufactured by Shin-Nakamura Chemical Co., Ltd.
- Examples of the ethylene oxide modified product of pentaerythritol tetra (meth) acrylate include a trade name “Miramer M4004” manufactured by Miwon.
- Examples of the ethylene oxide modified product of ditrimethylolpropane tetra (meth) acrylate include “AD-TMP-4E” manufactured by Shin-Nakamura Chemical Co., Ltd.
- Examples of the ethylene oxide modified product of dipentaerythritol polyacrylate include “A-DPH-12E” manufactured by Shin-Nakamura Chemical Co., Ltd.
- Examples of the modified isopropylene oxide of dipentaerythritol polyacrylate include trade name “A-DPH-6P” manufactured by Shin-Nakamura Chemical Co., Ltd.
- a dendritic polymer having two or more (meth) acryloyl groups in one molecule means a spherical macromolecule in which branch molecules having (meth) acryloyl groups are radially assembled.
- the dendritic polymer having a (meth) acryloyl group includes a dendrimer having two or more (meth) acryloyl groups in one molecule, and a hyperbranched polymer having two or more (meth) acryloyl groups in one molecule. Can be mentioned.
- Dendrimer means a spherical polymer obtained by integrating (meth) acrylate in a spherical shape with (meth) acrylate as a branch molecule.
- the dendrimer may have two or more (meth) acryloyl groups in one molecule, but a trifunctional or more functional dendrimer having three or more (meth) acryloyl groups in one molecule is preferable.
- a polyfunctional dendrimer having 5 to 20 (meth) acryloyl groups in one molecule is more preferable.
- the weight average molecular weight of the dendrimer is preferably 1000 to 50000, and more preferably 1500 to 25000.
- the bond density in the dendrimer molecule and the bond density between the dendrimer molecules become “dense” and “coarse”.
- a film layer having excellent elasticity and elongation can be formed.
- the weight average molecular weight of the dendrimer is a value converted by polystyrene using gel permeation chromatography (GPC).
- dendritic polymers having two or more (meth) acryloyl groups in one molecule can also be used as dendritic polymers having two or more (meth) acryloyl groups in one molecule.
- dendrimers having two or more (meth) acryloyl groups in one molecule trade names “CN2302”, “CN2303” and “CN2304” manufactured by Sartomer, and trade names “V1000” and “SUBARU” manufactured by Osaka Organic Chemical Co., Ltd. -501 ",” SIRIUS-501 ", and trade name” A-HBR-5 "manufactured by Shin-Nakamura Chemical Co., Ltd.
- a hyperbranched polymer having two or more (meth) acryloyl groups in one molecule is an ABx type polyfunctional monomer (where A and B are functional groups that react with each other, and the number X of B is 2 or more). It means a spherical polymer obtained by modifying the surface and the inside of a hyperbranched structure having an irregular branch structure obtained by polymerization with a (meth) acryloyl group.
- the urethane (meth) acrylate oligomer having a (meth) acryloyl group has two or more (meth) acryloyl groups in one molecule.
- the urethane acrylate oligomer can be obtained, for example, by reacting a polyisocyanate compound, a (meth) acrylate having a hydroxyl group or an isocyanate group, and a polyol compound.
- Examples of the urethane acrylate oligomer include (1) a urethane acrylate obtained by further reacting a hydroxyl group-containing (meth) acrylate with a terminal isocyanate group-containing urethane prepolymer obtained by reacting a polyol compound and a polyisocyanate compound. And (2) urethane acrylate oligomers obtained by further reacting a (meth) acrylate having an isocyanate group with a terminal hydroxyl group-containing urethane prepolymer obtained by reacting a polyol compound and a polyisocyanate compound.
- polyisocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, and diphenylmethane-4,4 ′. -Diisocyanates and the like.
- Examples of the (meth) acrylate having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and Examples include polyethylene glycol (meth) acrylate.
- Examples of the (meth) acrylate having an isocyanate group include methacryloyloxyethyl isocyanate.
- polyol compound examples include polyol compounds such as alkylene type, polycarbonate type, polyester type, and polyether type. Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polycarbonate diol, polyester diol, and polyether diol.
- urethane (meth) acrylate oligomers having two or more (meth) acryloyl groups in one molecule.
- trade name “UA-122P” manufactured by Shin-Nakamura Chemical Co., Ltd. product name “UF-8001G” manufactured by Kyoeisha Chemical Co., Ltd.
- product names “CN977”, “CN999”, “CN963”, “CN985” manufactured by Sartomer. “CN970”, “CN133”, “CN975” and “CN997”, trade names “IRR214-K” manufactured by Daicel Ornex, and trade names “UX-5000”, “UX-5102D” manufactured by Nippon Kayaku Co., Ltd.
- an aliphatic special oligomer such as a trade name “CN113” manufactured by Sartomer Co., Ltd. may be used.
- a polyfunctional acrylic monomer is preferable, and trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol. Hexa (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate are preferred. According to these, excellent heat resistance can be imparted to the heat-resistant synthetic resin microporous film without reducing the mechanical strength.
- the content of the polyfunctional acrylic monomer in the polymerizable compound is preferably 30% by weight or more, more preferably 80% by weight or more, and particularly 100% by weight. preferable.
- polymerizable compound only one of the above-described polymerizable compounds may be used, or two or more polymerizable compounds may be used in combination.
- the coating layer contains a polymer of the polymerizable compound described above. This polymer is preferably obtained by polymerizing a polymerizable compound by irradiation with active energy rays.
- the coating layer containing such a polymer has a high hardness, thereby reducing the heat shrinkage of the heat-resistant synthetic resin microporous film at a high temperature and improving the heat resistance.
- Active energy rays are not particularly limited, and examples thereof include electron beams, plasma, ultraviolet rays, ⁇ rays, ⁇ rays, and ⁇ rays. Of these, electron beams and ultraviolet rays are preferable.
- a part of the polymer in the coating layer and a part of the synthetic resin in the synthetic resin microporous film are chemically bonded.
- the chemical bond is not particularly limited, and examples thereof include a covalent bond, an ionic bond, and an intermolecular bond.
- the content of the coating layer in the heat-resistant synthetic resin microporous film is preferably 5 to 80 parts by weight, more preferably 5 to 60 parts by weight with respect to 100 parts by weight of the synthetic resin microporous film. Is particularly preferred.
- the coating layer can be uniformly formed without blocking the micropores on the surface of the synthetic resin microporous film. Thereby, the heat resistant synthetic resin microporous film in which heat resistance is improved, without reducing air permeability can be provided.
- the thickness of the coating layer is not particularly limited, but is preferably 1 to 100 nm, and more preferably 5 to 50 nm. By setting the thickness of the coating layer within the above range, the coating layer can be formed uniformly without blocking the micropores on the surface of the synthetic resin microporous film. Thereby, the heat resistant synthetic resin microporous film in which heat resistance is improved, without reducing air permeability can be provided.
- the coating layer does not contain inorganic particles, the heat resistance of the heat-resistant synthetic resin microporous film can be improved. Therefore, it is preferable that the coating layer does not contain inorganic particles.
- the coating layer may contain inorganic particles.
- the inorganic particles include inorganic particles generally used for heat resistant porous layers. Examples of the material constituting the inorganic particles include Al 2 O 3 , SiO 2 , TiO 2 , and MgO.
- the heat-resistant synthetic resin microporous film of the present invention includes a synthetic resin microporous film and a coating layer formed on at least a part of the surface of the synthetic resin microporous film.
- the maximum heat shrinkage rate of the heat-resistant synthetic resin microporous film is 15% or less, 5 to 15% is preferable, and 8 to 13% is more preferable.
- the heat-resistant synthetic resin microporous film has excellent heat resistance because thermal shrinkage at high temperatures is reduced by the coating layer. Therefore, the maximum heat shrinkage rate of the heat resistant synthetic resin microporous film can be made 15% or less.
- the measurement of the maximum heat shrinkage rate of a heat resistant synthetic resin microporous film can be performed as follows. First, a flat rectangular test piece (width 3 mm ⁇ length 30 mm) is obtained by cutting the heat-resistant synthetic resin microporous film. At this time, the length direction (extrusion direction) of the heat-resistant synthetic resin microporous film and the length direction of the test piece are made parallel. The both ends in the length direction of the test piece are gripped by a gripping tool and attached to a TMA measuring apparatus (for example, trade name “TMA-SS6000” manufactured by Seiko Instruments Inc.). At this time, the distance between the gripping tools is set to 10 mm, and the gripping tools can be moved along with the thermal contraction of the test piece.
- TMA measuring apparatus for example, trade name “TMA-SS6000” manufactured by Seiko Instruments Inc.
- the test piece was heated from 25 ° C. to 180 ° C. at a heating rate of 5 ° C./min with a tension of 19.6 mN (2 gf) applied to the test piece in the length direction.
- the distance L (mm) between them is measured, the heat shrinkage rate is calculated based on the following formula, and the maximum value is taken as the maximum heat shrinkage rate.
- Thermal shrinkage (%) 100 ⁇ (10 ⁇ L) / 10
- the puncture strength of the heat resistant synthetic resin microporous film is 0.6 N or more, preferably 0.8 N or more, and more preferably 1.0 to 1.2 N.
- the heat-resistant synthetic resin microporous film having a puncture strength of 0.6 N or more has excellent mechanical strength, and can thereby improve battery productivity and safety.
- the maintenance rate of the puncture strength of the heat resistant synthetic resin microporous film after heating the heat resistant synthetic resin microporous film at 70 ° C. for 168 hours is 85% or more, more preferably 90% or more.
- the heat-resistant synthetic resin microporous film having a puncture strength maintenance rate of 85% or more suppresses a decrease in mechanical strength over time, and can maintain excellent mechanical strength over a long period of time. .
- the puncture strength of the heat-resistant synthetic resin microporous film can be measured according to JIS Z1707 (1998). Specifically, a needle having a diameter of 1.0 mm and a tip having a semicircular shape with a radius of 0.5 mm is pierced into a heat-resistant synthetic resin microporous film at a speed of 50 mm / min, and the maximum stress until the needle penetrates is determined. The piercing strength.
- Puncture strength maintenance rate [%] 100 ⁇ S 2 / S 1
- the air permeability of the heat-resistant synthetic resin microporous film is not particularly limited, but is preferably 50 to 600 sec / 100 mL, and more preferably 100 to 300 sec / 100 mL.
- the air permeability of the heat resistant synthetic resin microporous film can be within the above range.
- a heat-resistant synthetic resin microporous film having an air permeability within the above range is excellent in ion permeability.
- the surface opening ratio of the heat-resistant synthetic resin microporous film is not particularly limited, but is preferably 30 to 55%, more preferably 30 to 50%. As described above, the clogging of the micropores of the synthetic resin microporous film is reduced by the formation of the coating layer, whereby the surface opening ratio of the heat resistant synthetic resin microporous film can be within the above range.
- a heat-resistant synthetic resin microporous film having a surface opening ratio within the above range is excellent in both mechanical strength and ion permeability.
- the radical amount of the heat resistant synthetic resin microporous film is preferably 2.0 ⁇ 10 16 spins / 100 mg or less, more preferably 2.0 ⁇ 10 14 to 2.0 ⁇ 10 16 spins / 100 mg, and 2.0 ⁇ 10 6. 14 to 2.0 ⁇ 10 15 spins / 100 mg is particularly preferred.
- the radical amount of the heat-resistant synthetic resin microporous film is a value measured by an electron spin resonance (ESR) method.
- the radical amount of the heat-resistant synthetic resin microporous film can be measured as follows. First, 80 mg of heat-resistant synthetic resin microporous film was used as a sample, and this sample was put into a quartz sample tube (length 10 cm, diameter 4 mm) for X-band measurement. Then, the sample is measured at room temperature using an electron spin resonance (ESR) measuring apparatus (for example, trade name “FA-200” manufactured by JEOL Ltd.). Confirm the microwave resonance dip of the sample and observe the signal. The measurement is performed under the following conditions.
- ESR electron spin resonance
- the signal wave height ratio (corrected signal wave height ratio) when the sample weight is set to 100 mg is obtained from the following formula (1) from the weight (Ws) of the sample measured in advance.
- Correction signal wave height ratio S ⁇ (100 / Ws) (1)
- Spin number TEMPOL is used as a standard substance, and the spin number of the third signal of Mn2 + when the Mn2 + digital marker is set to 850 is obtained. The number of spins of the sample is calculated from the relative intensity of the third signal of Mn2 + to the signal of the measurement sample. The number of spins per 100 mg of sample is also shown.
- g value The g value is calculated by a calculation program from the g value of the third and fourth signals of Mn2 +, the magnetic field interval, and the central magnetic field of the sample signal.
- the method for producing the heat-resistant synthetic resin microporous film of the present invention comprises the following steps: A coating step of coating a polymerizable compound having two or more radical polymerizable functional groups in one molecule on at least a part of the surface of the synthetic resin microporous film; An irradiation step of irradiating the synthetic resin microporous film coated with the polymerizable compound with an active energy ray at an irradiation dose of 40 to 70 kGy; A heating step of heat-treating the synthetic resin microporous film irradiated with the active energy ray in an atmosphere having an oxygen concentration of 300 ppm or less; It is characterized by having.
- the polymerizable compound can be adhered to the surface of the synthetic resin microporous film by applying the polymerizable compound to the surface of the synthetic resin microporous film.
- the polymerizable compound may be directly applied to the surface of the synthetic resin microporous film.
- the polymerizable compound as the coating liquid in this way, the polymerizable compound can be uniformly attached to the surface of the synthetic resin microporous film while reducing the blockage of the micropores. This makes it possible to produce a heat-resistant synthetic resin microporous film having a uniform coating layer and improved heat resistance without reducing air permeability.
- the coating liquid can smoothly flow on the wall surface of the microporous part in the synthetic resin microporous film, thereby not only the surface of the synthetic resin microporous film but also the open end of the microporous part continuous to this surface.
- a coating layer can also be formed on the wall surface of the part.
- the polymerizable compound having a radical polymerizable functional group having two or more functional groups is excellent in compatibility with the synthetic resin microporous film, the polymerizable compound can be used without blocking the micropores in the synthetic resin microporous film. Can be applied. Thereby, the membrane
- the solvent used in the coating solution is not particularly limited as long as the polymerizable compound can be dissolved or dispersed.
- alcohols such as methanol, ethanol, propanol, isopropyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like.
- ketones such as tetrahydrofuran and dioxane, ethyl acetate, and chloroform. Of these, ethyl acetate, ethanol, methanol, and acetone are preferable.
- These solvents can be removed smoothly after the coating solution is applied to the surface of the synthetic resin microporous film.
- the solvent has low reactivity with an electrolyte solution constituting a secondary battery such as a lithium ion secondary battery, and is excellent in safety.
- the content of the polymerizable compound in the coating solution is preferably 3 to 20% by weight, and more preferably 5 to 15% by weight.
- the method for applying the polymerizable compound to the surface of the synthetic resin microporous film is not particularly limited.
- a method of immersing the synthetic resin microporous film in the coating solution and applying the coating solution in the synthetic resin microporous film is followed by heating the synthetic resin microporous film to remove the solvent.
- the methods (3) and (4) are preferred. According to these methods, the polymerizable compound can be uniformly applied to the surface of the synthetic resin microporous film.
- the heating temperature of the synthetic resin microporous film for removing the solvent can be set according to the type and boiling point of the solvent used.
- the heating temperature of the synthetic resin microporous film for removing the solvent is preferably 50 to 140 ° C, more preferably 70 to 130 ° C.
- the heating time of the synthetic resin microporous film for removing the solvent is not particularly limited, and can be set according to the type and boiling point of the solvent used.
- the heating time of the synthetic resin microporous film for removing the solvent is preferably 0.02 to 60 minutes, more preferably 0.1 to 30 minutes.
- the polymerizable compound can be attached to the surface of the synthetic resin microporous film by applying the polymerizable compound or the coating liquid to the surface of the synthetic resin microporous film.
- an irradiation step of irradiating the synthetic resin microporous film coated with the polymerizable compound with active energy rays is performed.
- the polymerizable compound is polymerized, and the coating layer containing the polymer of the polymerizable compound can be integrally formed on at least a part of the surface of the synthetic resin microporous film, preferably the entire surface.
- the irradiation dose of active energy rays to the synthetic resin microporous film is 40 to 70 kGy, preferably 40 to 60 kGy, and more preferably 45 to 55 kGy.
- Active energy rays are not particularly limited, and examples thereof include electron beams, plasma, ultraviolet rays, ⁇ rays, ⁇ rays, and ⁇ rays. Of these, electron beams and ultraviolet rays are preferable.
- the acceleration voltage of the electron beam with respect to the synthetic resin microporous film is not particularly limited, but is preferably 50 to 300 kV, more preferably 100 to 250 kV.
- the coating layer can be formed while reducing deterioration of the synthetic resin in the synthetic resin microporous film.
- the accumulated light quantity of ultraviolet to the synthetic resin microporous film is preferably 1000 ⁇ 5000mJ / cm 2, more preferably 1000 ⁇ 4000mJ / cm 2, particularly preferably 1500 ⁇ 3700mJ / cm 2.
- the photoinitiator is contained in the said coating liquid.
- the photopolymerization initiator include benzophenone, benzyl, methyl-o-benzoylbenzoate, and anthraquinone.
- the energy density of plasma with respect to the synthetic resin microporous film is not particularly limited, but is preferably 5 to 50 J / cm 2, more preferably 10 to 45 J / cm 2 , and 20 to 45 J / cm 2. Is particularly preferred.
- the irradiation step it is preferable to irradiate the active energy ray to the synthetic resin microporous film coated with the polymerizable compound in an atmosphere having an oxygen concentration of 300 ppm or less.
- the oxygen concentration in the atmosphere in the irradiation step is preferably 300 ppm or less, more preferably 100 to 0 ppm, and particularly preferably 10 to 0 ppm.
- the irradiation step is preferably performed in an inert gas atmosphere.
- the inert gas is not particularly limited, and examples thereof include nitrogen, helium, neon, argon, krypton, xenon, radon, and a mixed gas thereof.
- a heating step is performed in which the synthetic resin microporous film irradiated with active energy rays is heat-treated in an atmosphere having an oxygen concentration of 300 ppm or less. According to the heating step, residual radicals generated in the synthetic resin microporous film in the irradiation step described above can be deactivated. Thereby, the time-dependent fall of the mechanical strength of a heat resistant synthetic resin microporous film can be suppressed.
- the synthetic resin microporous film irradiated with active energy rays is preferably heat-treated at 90 to 150 ° C., more preferably 110 to 150 ° C., particularly preferably 130 to 150 ° C.
- the heat treatment temperature of the synthetic resin microporous film within the above range, residual radicals can be deactivated while reducing deterioration of the synthetic resin in the synthetic resin microporous film.
- the heat treatment time of the synthetic resin microporous film irradiated with active energy rays is preferably 2 minutes to 3 hours, more preferably 20 minutes to 3 hours.
- the synthetic resin microporous film irradiated with active energy rays is subjected to heat treatment in an atmosphere having an oxygen concentration of 300 ppm or less.
- the oxygen concentration in the atmosphere in the heating step is 300 ppm or less, preferably 100 to 0 ppm, more preferably 10 to 0 ppm.
- the heating step is preferably performed in an inert gas atmosphere.
- the inert gas is not particularly limited, and examples thereof include nitrogen, helium, neon, argon, krypton, xenon, radon, and a mixed gas thereof.
- the heat-resistant synthetic resin microporous film of the present invention is suitably used as a separator for non-aqueous electrolyte secondary batteries.
- the non-aqueous electrolyte secondary battery include a lithium ion secondary battery.
- the heat-resistant synthetic resin microporous film of the present invention is excellent in heat resistance, by using such a heat-resistant synthetic resin microporous film, the inside of the battery is, for example, 100 to 150 ° C., particularly 130 to 150 ° C. Even when the temperature becomes high, electrical short-circuiting between electrodes due to shrinkage of the heat-resistant synthetic resin microporous film can be reduced.
- the heat-resistant synthetic resin microporous film of the present invention is excellent in mechanical strength and can maintain this excellent mechanical strength over a long period of time, it is excellent in non-aqueous electrolyte secondary batteries. Productivity and safety can be secured.
- the non-aqueous electrolyte secondary battery is not particularly limited as long as it includes the heat-resistant synthetic resin microporous film of the present invention as a separator, and includes a positive electrode, a negative electrode, a separator including a heat-resistant synthetic resin microporous film, Contains water electrolyte.
- the heat-resistant synthetic resin microporous film is disposed between the positive electrode and the negative electrode, thereby preventing an electrical short circuit between the electrodes.
- the nonaqueous electrolytic solution is filled at least in the micropores of the heat-resistant synthetic resin microporous film, so that lithium ions can move between the electrodes during charging and discharging.
- the positive electrode is not particularly limited, but preferably includes a positive electrode current collector and a positive electrode active material layer formed on at least one surface of the positive electrode current collector.
- the positive electrode active material layer preferably includes a positive electrode active material and voids formed between the positive electrode active materials. When the positive electrode active material layer includes voids, the voids are also filled with the non-aqueous electrolyte.
- the positive electrode active material is a material capable of occluding and releasing lithium ions, and examples of the positive electrode active material include lithium cobaltate and lithium manganate.
- Examples of the current collector used for the positive electrode include aluminum foil, nickel foil, and stainless steel foil.
- the positive electrode active material layer may further contain a binder, a conductive auxiliary agent, and the like.
- the negative electrode is not particularly limited, but preferably includes a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector.
- the negative electrode active material layer preferably includes a negative electrode active material and voids formed between the negative electrode active materials. When the negative electrode active material layer contains voids, the voids are also filled with the non-aqueous electrolyte.
- the negative electrode active material is a material capable of occluding and releasing lithium ions. Examples of the negative electrode active material include graphite, carbon black, acetylene black, and ketjen black. Examples of the current collector used for the negative electrode include copper foil, nickel foil, and stainless steel foil.
- the negative electrode active material layer may further contain a binder, a conductive auxiliary agent, and the like.
- a nonaqueous electrolytic solution is an electrolytic solution in which an electrolyte salt is dissolved in a solvent that does not contain water.
- the non-aqueous electrolyte used in the lithium ion secondary battery include a non-aqueous electrolyte obtained by dissolving a lithium salt in an aprotic organic solvent.
- the aprotic organic solvent include a mixed solvent of a cyclic carbonate such as propylene carbonate and ethylene carbonate and a chain carbonate such as diethyl carbonate, methyl ethyl carbonate, and dimethyl carbonate.
- the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , and LiN (SO 2 CF 3 ) 2 .
- Example 1 Homopolypropylene (weight average molecular weight 413000, molecular weight distribution 9.3, melting point 163 ° C., heat of fusion 96 mJ / mg) was supplied to the extruder, melt-kneaded at a resin temperature of 200 ° C., and T attached to the tip of the extruder The film was extruded from the die into a film and cooled until the surface temperature reached 30 ° C. to obtain a homopolypropylene film (thickness 30 ⁇ m). The extrusion rate was 9 kg / hour, the film formation rate was 22 m / min, and the draw ratio was 83.
- the homopolypropylene film was allowed to stand for 10 minutes so that its surface temperature was 130 ° C. and no tension was applied to the homopolypropylene film, and the homopolypropylene film was annealed. This obtained the homopolypropylene microporous film (thickness 25 micrometers) which has a micropore part.
- the shrinkage ratio of the homopolypropylene film during annealing was 20%.
- the obtained homopolypropylene microporous film has an air permeability of 110 sec / 100 mL, a surface opening ratio of 40%, a maximum major axis of the opening end of the micropore portion of 600 nm, and an opening end of the micropore portion.
- the average major axis was 360 nm and the pore density was 30 / ⁇ m 2 .
- a coating solution containing 90% by weight of ethyl acetate as a solvent and 10% by weight of trimethylolpropane triacrylate (trade name “Light Acrylate TMP-A” manufactured by Kyoei Chemical Co., Ltd.) as a polymerizable compound was prepared.
- the solvent was removed by heating the homopolypropylene microporous film at 80 ° C. for 2 minutes. Thereby, the polymerizable compound was adhered to the entire surface of the homopolypropylene microporous film.
- the homopolypropylene microporous film was put into a bag made of a polyethylene terephthalate film (thickness 25 ⁇ m) in a glove box (“Labmaster 130” manufactured by M Braun) adjusted to an oxygen concentration of 1 ppm or less. Airtightly sealed. The oxygen concentration in the sealed bag was 1 ppm or less.
- the homopolypropylene microporous film contained in the sealed bag was irradiated with an electron beam at an acceleration voltage of 110 kV and an irradiation dose of 50 kGy to polymerize the polymerizable compound.
- the homopolypropylene microporous film contained in the sealed bag was heated in an oven at 120 ° C. for 1 hour.
- the oxygen concentration in the sealed bag was 1 ppm or less.
- a heat-resistant homopolypropylene microporous film in which a film layer containing a polymer of a polymerizable compound is formed on the surface of the homopolypropylene microporous film and the wall surface of the opening end of the micropores continuous with the surface is obtained. It was.
- Example 2 In the irradiation step, a heat resistant homopolypropylene microporous film was prepared in the same manner as in Example 1 except that the oxygen concentration in the glove box was 200 ppm and the oxygen concentration in the sealed bag was 200 ppm in the irradiation step and the heating step. Obtained.
- Example 3 In the irradiation step, a heat resistant homopolypropylene microporous film was prepared in the same manner as in Example 1 except that the oxygen concentration in the glove box was 300 ppm and the oxygen concentration in the sealed bag was 300 ppm in the irradiation step and the heating step. Obtained.
- Example 1 A heat resistant homopolypropylene microporous film was obtained in the same manner as in Example 1 except that the irradiation step and the coating step were performed as follows.
- the homopolypropylene microporous film was irradiated with an electron beam at an acceleration voltage of 110 kV and an irradiation dose of 50 kGy to polymerize the polymerizable compound.
- the heat-resistant synthetic resin microporous film of the present invention is excellent in both heat resistance and mechanical strength, and the mechanical strength over time is suppressed. Therefore, this heat-resistant synthetic resin microporous film is suitably used as a separator for non-aqueous electrolyte secondary batteries.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Electrochemistry (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Toxicology (AREA)
- Cell Separators (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
Abstract
Description
合成樹脂微多孔フィルムと、
上記合成樹脂微多孔フィルムの表面の少なくとも一部に形成され且つ1分子中にラジカル重合性官能基を2個以上有する重合性化合物の重合体を含む皮膜層とを含み、
25℃から180℃まで5℃/分の昇温速度にて加熱した後の最大熱収縮率が15%以下であり、突き刺し強度が0.6N以上であり、且つ70℃で168時間加熱した後の突き刺し強度の維持率が85%以上であることを特徴とする。
合成樹脂微多孔フィルムの表面の少なくとも一部に、1分子中にラジカル重合性官能基を2個以上有する重合性化合物を塗布する塗布工程と、
上記重合性化合物を塗布した合成樹脂微多孔フィルムに、40~70kGyの照射線量で活性エネルギー線を照射する照射工程と、
上記活性エネルギー線を照射した合成樹脂微多孔フィルムを、酸素濃度が300ppm以下の雰囲気下で加熱処理する加熱工程と、
を有することを特徴とする。
合成樹脂微多孔フィルムとしては、リチウムイオン二次電池などの従来の二次電池においてセパレータとして用いられている微多孔フィルムであれば、特に制限されずに用いることができる。合成樹脂微多孔フィルムとしては、オレフィン系樹脂微多孔フィルムが好ましい。
測定装置 TOSOH社製 商品名「HLC-8121GPC/HT」
測定条件 カラム:TSKgelGMHHR-H(20)HT×3本
TSKguardcolumn-HHR(30)HT×1本
移動相:o-DCB 1.0mL/分
サンプル濃度:1mg/mL
検出器:ブライス型屈折計
標準物質:ポリスチレン(TOSOH社製 分子量:500~8420000)
溶出条件:145℃
SEC温度:145℃
(1)オレフィン系樹脂を押し出すことによりオレフィン系樹脂フィルムを得る工程と、このオレフィン系樹脂フィルム中にラメラ結晶を発生及び成長させる工程と、オレフィン系樹脂フィルムを延伸してラメラ結晶間を離間させることにより微小孔部が形成されてなるオレフィン系樹脂微多孔フィルムを得る工程とを有する方法;
(2)オレフィン系樹脂と充填剤とを含んでいるオレフィン系樹脂組成物を押し出すことによりオレフィン系樹脂フィルムを得る工程と、このオレフィン系樹脂フィルムを一軸延伸又は二軸延伸してオレフィン系樹脂と充填剤との界面を剥離させることにより微小孔部が形成されてなるオレフィン系樹脂微多孔フィルムを得る工程とを有する方法;及び
(3)オレフィン系樹脂と抽出可能物(例えば、充填剤や可塑剤など)とを含んでいるオレフィン系樹脂組成物を押し出すことによりオレフィン系樹脂フィルムを得る工程と、オレフィン系樹脂フィルムから抽出可能物を溶剤によって抽出することにより微小孔部を形成する工程と、微小孔部を形成したオレフィン系樹脂フィルムを延伸することによりオレフィン系樹脂微多孔フィルムを得る工程とを有する方法などが挙げられる。
本発明の耐熱性合成樹脂微多孔フィルムは、合成樹脂微多孔フィルム表面の少なくとも一部に形成された皮膜層を有している。この皮膜層は、1分子中にラジカル重合性官能基を2個以上有する重合性化合物の重合体を含んでいる。このような重合体を含んでいる皮膜層は、高い硬度を有していると共に、適度な弾性及び伸度を有している。したがって、上記重合体を含んでいる皮膜層を用いることによって、突き刺し強度などの機械的強度及び耐熱性の双方に優れている耐熱性合成樹脂微多孔フィルムを提供することができる。
1,9-ノナンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、及びトリシクロデカンジメタノールジ(メタ)アクリレート等の2官能の多官能性アクリル系モノマー;
トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、及びエトキシ化グリセリントリ(メタ)アクリレート等の3官能以上の多官能性アクリル系モノマー;
ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、及びエトキシ化ペンタエリスリトールテトラ(メタ)アクリレート等の4官能の多官能性アクリル系モノマー;
ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能の多官能性アクリル系モノマー;
ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能の多官能性アクリル系モノマー;
等を例示することができる。
ポリ(1,2-ブタジエン)オリゴマー、ポリ(1,3-ブタジエン)オリゴマー等のポリブタジエンオリゴマー;
ブタジエン骨格に含まれる炭素-炭素二重結合の少なくとも一部がエポキシ化されることによって、分子内にエポキシ基が導入されたエポキシ化ポリブタジエンオリゴマー;
ブタジエン骨格を有し、且つ主鎖の側鎖又は末端に(メタ)アクリロイル基を有しているポリブタジエン(メタ)アクリレートオリゴマー;
等を例示することができる。
トリメチロールプロパントリ(メタ)アクリレートのエチレンオキサイド変性物、トリメチロールプロパントリ(メタ)アクリレートのプロピレンオキサイド変性物、トリメチロールプロパントリ(メタ)アクリレートのイソプロピレンオキサイド変性物、トリメチロールプロパントリ(メタ)アクリレートのブチレンオキサイド変性物、及びトリメチロールプロパントリ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのトリメチロールプロパントリ(メタ)アクリレートのアルキレンオキサイド変性物、並びにトリメチロールプロパントリ(メタ)アクリレートのカプロラクトン変性物;
グリセリルトリ(メタ)アクリレートのエチレンオキサイド変性物、グリセリルトリ(メタ)アクリレートのプロピレンオキサイド変性物、グリセリルトリ(メタ)アクリレートのイソプロピレンオキサイド変性物、グリセリルトリ(メタ)アクリレートのブチレンオキサイド変性物、及びグリセリルトリ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのグリセリルトリ(メタ)アクリレートのアルキレンオキサイド変性物、並びにグリセリルトリ(メタ)アクリレートのカプロラクトン変性物;
ペンタエリスリトールトリ(メタ)アクリレートのエチレンオキサイド変性物、ペンタエリスリトールトリ(メタ)アクリレートのプロピレンオキサイド変性物、ペンタエリスリトールトリ(メタ)アクリレートのイソプロピレンオキサイド変性物、ペンタエリスリトールトリ(メタ)アクリレートのブチレンオキサイド変性物、及びペンタエリスリトールトリ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのペンタエリスリトールトリ(メタ)アクリレートのアルキレンオキサイド変性物、並びにペンタエリスリトールトリ(メタ)アクリレートのカプロラクトン変性物;並びに、
トリス-(2-アクリロキシエチル)イソシアヌレートのエチレンオキサイド変性物、トリス-(2-アクリロキシエチル)イソシアヌレートのプロピレンオキサイド変性物、トリス-(2-アクリロキシエチル)イソシアヌレートのイソプロピレンオキサイド変性物、トリス-(2-アクリロキシエチル)イソシアヌレートのブチレンオキサイド変性物、及びトリス-(2-アクリロキシエチル)イソシアヌレートのエチレンオキサイド・プロピレンオキサイド変性物などのトリス-(2-アクリロキシエチル)イソシアヌレートのアルキレンオキサイド変性物、並びにトリス-(2-アクリロキシエチル)イソシアヌレートのカプロラクトン変性物、などが挙げられる。
ペンタエリスリトールテトラ(メタ)アクリレートのエチレンオキサイド変性物、ペンタエリスリトールテトラ(メタ)アクリレートのプロピレンオキサイド変性物、ペンタエリスリトールテトラ(メタ)アクリレートのイソプロピレンオキサイド変性物、ペンタエリスリトールテトラ(メタ)アクリレートのブチレンオキサイド変性物、及びペンタエリスリトールテトラ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのペンタエリスリトールテトラ(メタ)アクリレートのアルキレンオキサイド変性物、並びにペンタエリスリトールテトラ(メタ)アクリレートのカプロラクトン変性物;並びに
ジトリメチロールプロパンテトラ(メタ)アクリレートのエチレンオキサイド変性物、ジトリメチロールプロパンテトラ(メタ)アクリレートのプロピレンオキサイド変性物、ジトリメチロールプロパンテトラ(メタ)アクリレートのイソプロピレンオキサイド変性物、ジトリメチロールプロパンテトラ(メタ)アクリレートのブチレンオキサイド変性物、及びジトリメチロールプロパンテトラ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのジトリメチロールプロパンテトラ(メタ)アクリレートのアルキレンオキサイド変性物、並びにジトリメチロールプロパンテトラ(メタ)アクリレートのカプロラクトン変性物、などが挙げられる。
ジペンタエリスリトールポリ(メタ)アクリレートのエチレンオキサイド変性物、ジペンタエリスリトールポリ(メタ)アクリレートのプロピレンオキサイド変性物、ジペンタエリスリトールポリ(メタ)アクリレートのイソプロピレンオキサイド変性物、ジペンタエリスリトールポリ(メタ)アクリレートのブチレンオキサイド変性物、及びジペンタエリスリトールポリ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのジペンタエリスリトールポリ(メタ)アクリレートのアルキレンオキサイド変性物、並びにジペンタエリスリトールポリ(メタ)アクリレートのカプロラクトン変性物、などが挙げられる。
本発明の耐熱性合成樹脂微多孔フィルムは、上述した通り、合成樹脂微多孔フィルムと、この合成樹脂微多孔フィルム表面の少なくとも一部に形成された皮膜層とを含んでいる。
熱収縮率(%)=100×(10-L)/10
突き刺し強度の維持率[%]=100×S2/S1
出力:1.01mW
センター磁場:336mT
掃引幅:±10mT
掃引時間:4min
モジュレーション幅(FMW):0.6mT
ゲイン:×20
タイムコンスタント:0.03sec
積算回数:1回
データポイント数:8192
Mn2+デジタルマーカー設定:850
標準物質:TEMPOL(4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl)
<データ処理条件>
ベースライン補正:Mn2+第3及び第4シグナルの2信号による補正
シグナル波高比:Mn2+(第3シグナル)は、試料のシグナルと重なるため基準のMn2+(第4シグナル)の波高を用い、試料のシグナル波高に対する波高の比で表示する。サンプルのシグナル波高比(S)を求めた後、事前に測定した試料の重量(Ws)から、サンプル重量を100mgとした時のシグナル波高比(補正シグナル波高比)を下記式(1)より求める。
補正シグナル波高比 = S×(100/Ws) (1)
スピン数:TEMPOLを標準物質として用い、Mn2+デジタルマーカーを850に設定した際の、Mn2+の第3シグナルのスピン数を求める。Mn2+の第3シグナルの測定サンプルのシグナルに対する相対強度からサンプルのスピン数を算出する。また、試料100mgあたりのスピン数も示す。
g値:Mn2+の第3及び第4シグナルのg値と磁場間隔、及びサンプルのシグナルの中心磁場から演算プログラムによりg値を算出する。
本発明の耐熱性合成樹脂微多孔フィルムの製造方法は、下記工程、
合成樹脂微多孔フィルムの表面の少なくとも一部に、1分子中にラジカル重合性官能基を2個以上有する重合性化合物を塗布する塗布工程と、
上記重合性化合物を塗布した合成樹脂微多孔フィルムに、40~70kGyの照射線量で活性エネルギー線を照射する照射工程と、
上記活性エネルギー線を照射した合成樹脂微多孔フィルムを、酸素濃度が300ppm以下の雰囲気下で加熱処理する加熱工程と、
を有することを特徴とする。
本発明の方法では、先ず、合成樹脂微多孔フィルムの表面の少なくとも一部に、1分子中にラジカル重合性官能基を2個以上有する重合性化合物を塗布する塗布工程を実施する。
本発明の方法では、次に、重合性化合物を塗布した上記合成樹脂微多孔フィルムに、活性エネルギー線を照射する照射工程を実施する。これにより重合性化合物を重合させて、重合性化合物の重合体を含む皮膜層を、合成樹脂微多孔フィルム表面の少なくとも一部、好ましくは表面全面に一体的に形成することができる。
本発明の方法では、次に、活性エネルギー線を照射した合成樹脂微多孔フィルムを、酸素濃度が300ppm以下の雰囲気下で加熱処理する加熱工程を実施する。加熱工程によれば、上述した照射工程において合成樹脂微多孔フィルム中に発生した残存ラジカルを失活させることができる。これにより耐熱性合成樹脂微多孔フィルムの機械的強度の経時的な低下を抑制することができる。
(押出工程)
ホモポリプロピレン(重量平均分子量413000、分子量分布9.3、融点163℃、融解熱量96mJ/mg)を押出機に供給して、樹脂温度200℃にて溶融混練し、押出機先端に取り付けられたTダイからフィルム状に押出し、表面温度が30℃となるまで冷却してホモポリプロピレンフィルム(厚み30μm)を得た。なお、押出量は9kg/時間、成膜速度は22m/分、ドロー比は83であった。
得られたホモポリプロピレンフィルムを雰囲気温度150℃の熱風炉中に24時間に亘って静置して養生した。
養生後のホモポリプロピレンフィルムを押出方向(長さ方向)に300mm、幅方向に160mmの短冊状に裁断した。このホモポリプロピレンフィルムを一軸延伸装置を用いて表面温度が23℃となるようにして50%/分の延伸速度にて延伸倍率1.20倍に押出方向にのみ一軸延伸した。
続いて、ホモポリプロピレンフィルムを一軸延伸装置を用いて表面温度が120℃となるようにして42%/分の延伸速度にて延伸倍率2倍に押出方向にのみ一軸延伸した。
しかる後、ホモポリプロピレンフィルムをその表面温度が130℃となるように且つホモポリプロピレンフィルムに張力が加わらないようにして10分間に亘って静置して、ホモポリプロピレンフィルムにアニールを施した。これにより、微小孔部を有するホモポリプロピレン微多孔フィルム(厚み25μm)を得た。なお、アニール時のホモポリプロピレンフィルムの収縮率は20%とした。
溶媒として酢酸エチル90重量%、及び重合性化合物としてトリメチロールプロパントリアクリレート(共栄化学社製 商品名「ライトアクリレートTMP-A」)10重量%を含んでいる塗布液を用意した。次に、塗布液をホモポリプロピレン微多孔フィルム表面に塗工した後、ホモポリプロピレン微多孔フィルムを80℃で2分間加熱することにより溶媒を除去した。これによりホモポリプロピレン微多孔フィルム表面全面に重合性化合物を付着させた。
次に、ホモポリプロピレン微多孔フィルムを、酸素濃度1ppm以下に調整したグローブボックス(M Braun社製 「Labmaster130」)中で、ポリエチレンテレフタレートフィルム(厚み25μm)からなる袋に入れて、袋の開口部を気密的に密閉した。密閉した袋中の酸素濃度は1ppm以下となっていた。この密閉された袋中に入れられているホモポリプロピレン微多孔フィルムに、加速電圧110kV、照射線量50kGyで、電子線を照射し、重合性化合物を重合させた。
続いて、密閉された袋中に入れられているホモポリプロピレン微多孔フィルムを、120℃のオーブン中で1時間加熱した。密閉された袋中の酸素濃度は1ppm以下となっていた。これにより、ホモポリプロピレン微多孔フィルムの表面及びこの表面に連続する微小孔部の開口端部の壁面に重合性化合物の重合体を含む皮膜層が形成されている耐熱性ホモポリプロピレン微多孔フィルムを得た。
照射工程において、グローブボックス内の酸素濃度を200ppmとし、照射工程及び加熱工程において密閉した袋中の酸素濃度を200ppmとした以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを得た。
照射工程において、グローブボックス内の酸素濃度を300ppmとし、照射工程及び加熱工程において密閉した袋中の酸素濃度を300ppmとした以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを得た。
照射工程及び塗布工程を下記の通りに実施した以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを得た。
酸素濃度が300ppmの雰囲気下で、ホモポリプロピレン微多孔フィルムに、加速電圧110kV、照射線量50kGyで、電子線を照射し、重合性化合物を重合させた。
続いて、ホモポリプロピレン微多孔フィルムを、120℃のオーブン中で1時間加熱した。この時、オーブン中には空気を循環させ、オーブン中の酸素濃度を2.1×105ppmとした。これにより、ホモポリプロピレン微多孔フィルムの表面及びこの表面に連続する微小孔部の開口端部の壁面に重合性化合物の重合体を含む皮膜層が形成されている耐熱性ホモポリプロピレン微多孔フィルムを得た。
照射工程において、電子線の照射線量を30kGyとした以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを得た。
照射工程において、電子線の照射線量を80kGyとした以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを得た。
耐熱性合成樹脂微多孔フィルムについて、突き刺し強度、透気度、表面開口率、及びラジカル量を、それぞれ上述した手順に従って測定した。耐熱性合成樹脂微多孔フィルムを25℃から180℃まで5℃/分の昇温速度にて加熱した際の、耐熱性合成樹脂微多孔フィルムの最大熱収縮率を上述した手順に従って測定した。さらに、耐熱性合成樹脂微多孔フィルムを70℃で168時間加熱した後の、耐熱性合成樹脂微多孔フィルムの突き刺し強度の維持率を上述した手順に従って測定した。これらの結果を表1に示した。また、ホモポリプロピレン微多孔フィルム100重量部に対する、耐熱性ホモポリプロピレン微多孔フィルム中における皮膜層の含有量も表1に示した。
本出願は、2014年11月5日に出願された日本国特許出願第2014-225066号に基づく優先権を主張し、この出願の開示はこれらの全体を参照することにより本明細書に組み込まれる。
Claims (7)
- 合成樹脂微多孔フィルムと、
上記合成樹脂微多孔フィルムの表面の少なくとも一部に形成され且つ1分子中にラジカル重合性官能基を2個以上有する重合性化合物の重合体を含む皮膜層とを含み、
25℃から180℃まで5℃/分の昇温速度にて加熱した後の最大熱収縮率が15%以下であり、突き刺し強度が0.6N以上であり、且つ70℃で168時間加熱した後の突き刺し強度の維持率が85%以上であることを特徴とする耐熱性合成樹脂微多孔フィルム。 - 透気度が50~600sec/100mLであることを特徴とする請求項1に記載の耐熱性合成樹脂微多孔フィルム。
- 表面開口率が25~55%であることを特徴とする請求項1又は2に記載の耐熱性合成樹脂微多孔フィルム。
- 電子スピン共鳴法によって測定されるラジカル量が2.0×1016spins/100mg以下であることを特徴とする請求項1~3のいずれか1項に記載の耐熱性合成樹脂微多孔フィルム。
- 皮膜層は、活性エネルギー線の照射によって重合性化合物が重合された重合体を含んでいることを特徴とする請求項1~4のいずれか1項に記載の耐熱性合成樹微多孔フィルム。
- 合成樹脂微多孔フィルムの表面の少なくとも一部に、1分子中にラジカル重合性官能基を2個以上有する重合性化合物を塗布する塗布工程と、
上記重合性化合物を塗布した合成樹脂微多孔フィルムに、40~70kGyの照射線量で活性エネルギー線を照射する照射工程と、
上記活性エネルギー線を照射した合成樹脂微多孔フィルムを、酸素濃度が300ppm以下の雰囲気下で加熱処理する加熱工程と、
を有することを特徴とする耐熱性合成樹脂微多孔フィルムの製造方法。 - 照射工程において、酸素濃度が300ppm以下の雰囲気下で、重合性化合物を塗布した合成樹脂微多孔フィルムに活性エネルギー線を照射することを特徴とする請求項6に記載の耐熱性合成樹脂微多孔フィルムの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/522,797 US10381626B2 (en) | 2014-11-05 | 2015-11-04 | Heat-resistant synthetic resin microporous film and method for producing the same |
JP2015556307A JP6046835B2 (ja) | 2014-11-05 | 2015-11-04 | 耐熱性合成樹脂微多孔フィルム及びセパレータの製造方法 |
KR1020177013132A KR20170083051A (ko) | 2014-11-05 | 2015-11-04 | 내열성 합성 수지 미세 다공 필름 및 그의 제조 방법 |
CN201580058861.8A CN107155329A (zh) | 2014-11-05 | 2015-11-04 | 耐热性合成树脂微多孔膜及其制造方法 |
EP15856838.6A EP3216826A4 (en) | 2014-11-05 | 2015-11-04 | Heat-resistant synthetic resin microporous film and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-225066 | 2014-11-05 | ||
JP2014225066 | 2014-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016072420A1 true WO2016072420A1 (ja) | 2016-05-12 |
Family
ID=55909145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081048 WO2016072420A1 (ja) | 2014-11-05 | 2015-11-04 | 耐熱性合成樹脂微多孔フィルム及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10381626B2 (ja) |
EP (1) | EP3216826A4 (ja) |
JP (1) | JP6046835B2 (ja) |
KR (1) | KR20170083051A (ja) |
CN (1) | CN107155329A (ja) |
TW (1) | TW201618945A (ja) |
WO (1) | WO2016072420A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019053989A (ja) * | 2017-09-14 | 2019-04-04 | 住友化学株式会社 | 非水電解液二次電池用セパレータ |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6288216B2 (ja) * | 2016-02-09 | 2018-03-07 | 宇部興産株式会社 | ポリオレフィン微多孔膜、蓄電デバイス用セパレータフィルム、及び蓄電デバイス |
CN113594629B (zh) * | 2021-07-13 | 2024-06-07 | 苏州捷力新能源材料有限公司 | 一种耐高温涂布膜、制备方法及其电化学装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013057010A (ja) * | 2011-09-08 | 2013-03-28 | Nippon Shokubai Co Ltd | 硬化性樹脂組成物及び硬化物 |
JP2013071939A (ja) * | 2011-09-26 | 2013-04-22 | Nippon Shokubai Co Ltd | 硬化性樹脂組成物及び硬化物 |
JP2013231878A (ja) * | 2012-04-27 | 2013-11-14 | Fujifilm Corp | 硬化層又は硬化パターンの形成方法、及び、カラーフィルタの製造方法、並びに、これらを用いて製造されるカラーフィルタ、固体撮像素子、及び、液晶表示装置 |
WO2014073451A1 (ja) * | 2012-11-06 | 2014-05-15 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 |
JP2014149936A (ja) * | 2013-01-31 | 2014-08-21 | Nippon Zeon Co Ltd | 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池 |
JP2014170661A (ja) * | 2013-03-04 | 2014-09-18 | Hitachi Maxell Ltd | 非水電解質二次電池用セパレータ、および非水電解質二次電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918143B2 (ja) | 1978-08-22 | 1984-04-25 | 株式会社クボタ | 耕耘爪の製造方法 |
JP2003022793A (ja) | 2001-07-09 | 2003-01-24 | Oji Paper Co Ltd | 電池用セパレータ及び電池 |
JP4743747B2 (ja) * | 2004-12-08 | 2011-08-10 | 日立マクセル株式会社 | セパレータおよびその製造方法、並びに非水電解質電池 |
JP2008210782A (ja) * | 2007-01-29 | 2008-09-11 | Hitachi Maxell Ltd | 電池用セパレータ、電池用セパレータの製造方法およびリチウム二次電池 |
JP5241314B2 (ja) | 2008-05-13 | 2013-07-17 | 日立マクセル株式会社 | ラミネート形非水二次電池 |
KR101229902B1 (ko) | 2008-06-09 | 2013-02-05 | 히다치 막셀 가부시키가이샤 | 세퍼레이터용 다공질막, 전지용 세퍼레이터, 전지용 전극 및 그것들의 제조방법, 및 리튬 2차전지 |
-
2015
- 2015-11-04 CN CN201580058861.8A patent/CN107155329A/zh active Pending
- 2015-11-04 EP EP15856838.6A patent/EP3216826A4/en not_active Withdrawn
- 2015-11-04 WO PCT/JP2015/081048 patent/WO2016072420A1/ja active Application Filing
- 2015-11-04 JP JP2015556307A patent/JP6046835B2/ja active Active
- 2015-11-04 KR KR1020177013132A patent/KR20170083051A/ko unknown
- 2015-11-04 US US15/522,797 patent/US10381626B2/en active Active
- 2015-11-04 TW TW104136253A patent/TW201618945A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013057010A (ja) * | 2011-09-08 | 2013-03-28 | Nippon Shokubai Co Ltd | 硬化性樹脂組成物及び硬化物 |
JP2013071939A (ja) * | 2011-09-26 | 2013-04-22 | Nippon Shokubai Co Ltd | 硬化性樹脂組成物及び硬化物 |
JP2013231878A (ja) * | 2012-04-27 | 2013-11-14 | Fujifilm Corp | 硬化層又は硬化パターンの形成方法、及び、カラーフィルタの製造方法、並びに、これらを用いて製造されるカラーフィルタ、固体撮像素子、及び、液晶表示装置 |
WO2014073451A1 (ja) * | 2012-11-06 | 2014-05-15 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 |
JP2014149936A (ja) * | 2013-01-31 | 2014-08-21 | Nippon Zeon Co Ltd | 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池 |
JP2014170661A (ja) * | 2013-03-04 | 2014-09-18 | Hitachi Maxell Ltd | 非水電解質二次電池用セパレータ、および非水電解質二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3216826A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019053989A (ja) * | 2017-09-14 | 2019-04-04 | 住友化学株式会社 | 非水電解液二次電池用セパレータ |
US10784481B2 (en) | 2017-09-14 | 2020-09-22 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery separator |
Also Published As
Publication number | Publication date |
---|---|
US20170317329A1 (en) | 2017-11-02 |
JPWO2016072420A1 (ja) | 2017-04-27 |
EP3216826A1 (en) | 2017-09-13 |
US10381626B2 (en) | 2019-08-13 |
KR20170083051A (ko) | 2017-07-17 |
JP6046835B2 (ja) | 2016-12-21 |
EP3216826A4 (en) | 2018-06-06 |
TW201618945A (zh) | 2016-06-01 |
CN107155329A (zh) | 2017-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5934438B2 (ja) | 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 | |
JP2017203145A (ja) | 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ | |
KR101559709B1 (ko) | 내열성 합성 수지 미다공 필름 및 그의 제조 방법, 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지 | |
JP2015221889A (ja) | 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 | |
JP5996801B2 (ja) | 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 | |
JP6046835B2 (ja) | 耐熱性合成樹脂微多孔フィルム及びセパレータの製造方法 | |
JP2016199734A (ja) | 耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び耐熱性合成樹脂微多孔フィルムのその製造方法 | |
JP2017078152A (ja) | 耐熱性合成樹脂微多孔フィルム及びその製造方法 | |
JP2015063639A (ja) | 耐熱性プロピレン系樹脂微多孔フィルムの製造方法、耐熱性プロピレン系樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 | |
JP2017128639A (ja) | 耐熱性合成樹脂微多孔フィルム | |
JP2017057238A (ja) | 耐熱性合成樹脂微多孔フィルム | |
JP2017132925A (ja) | 耐熱性合成樹脂微多孔フィルム | |
JP2017078153A (ja) | オレフィン系樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 | |
JP2015212322A (ja) | 耐熱性微多孔フィルムの製造方法、耐熱性微多孔フィルム、非水電解液二次電池用セパレータ及び非水電解液二次電池 | |
JP2017132107A (ja) | 耐熱性合成樹脂微多孔フィルム | |
JP2017095576A (ja) | オレフィン系樹脂微多孔二軸延伸フィルム及びその製造方法、並びに、耐熱性オレフィン系樹脂微多孔二軸延伸フィルム及びその製造方法 | |
JP2017186477A (ja) | 耐熱性合成樹脂微多孔フィルム | |
JP2015221558A (ja) | 耐熱性微多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び耐熱性微多孔フィルムの製造方法 | |
JP2016091687A (ja) | 積層型電池の製造方法 | |
JP2017132105A (ja) | 耐熱性合成樹脂微多孔フィルム | |
JP2015214689A (ja) | 耐熱性微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 | |
JP2017170723A (ja) | 耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び耐熱性合成樹脂微多孔フィルムのその製造方法 | |
JP2017132106A (ja) | 耐熱性合成樹脂微多孔フィルム | |
JP2016088976A (ja) | 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 | |
JPWO2017104760A1 (ja) | 合成樹脂微多孔フィルム及びその製造方法、蓄電デバイス用セパレータ、並びに蓄電デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015556307 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15856838 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15522797 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015856838 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177013132 Country of ref document: KR Kind code of ref document: A |