JP5934438B2 - 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 - Google Patents

耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 Download PDF

Info

Publication number
JP5934438B2
JP5934438B2 JP2015514271A JP2015514271A JP5934438B2 JP 5934438 B2 JP5934438 B2 JP 5934438B2 JP 2015514271 A JP2015514271 A JP 2015514271A JP 2015514271 A JP2015514271 A JP 2015514271A JP 5934438 B2 JP5934438 B2 JP 5934438B2
Authority
JP
Japan
Prior art keywords
synthetic resin
microporous film
meth
resin microporous
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015514271A
Other languages
English (en)
Other versions
JPWO2015141477A1 (ja
Inventor
順一 中楯
順一 中楯
澤田 貴彦
貴彦 澤田
博士 多田
博士 多田
友季 櫻井
友季 櫻井
泰衡 趙
泰衡 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Application granted granted Critical
Publication of JP5934438B2 publication Critical patent/JP5934438B2/ja
Publication of JPWO2015141477A1 publication Critical patent/JPWO2015141477A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/20Polymers characterized by their physical structure
    • C08J2400/202Dendritic macromolecules, e.g. dendrimers or hyperbranched polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Secondary Cells (AREA)

Description

本発明は、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び耐熱性合成樹脂微多孔フィルムの製造方法に関する。
従来から携帯用電子機器の電源としてリチウムイオン二次電池が用いられている。このリチウムイオン二次電池は、一般的に正極と、負極と、セパレータとを電解液中に配設することによって構成されている。正極は、アルミニウム箔の表面にコバルト酸リチウム又はマンガン酸リチウムが塗布されることで形成される。負極は、銅箔の表面にカーボンが塗布されることで形成される。そして、セパレータは、正極と負極とを仕切るように配設され、電極間の電気的な短絡を防止している。
そして、リチウムイオン二次電池の充電時には、正極からリチウムイオンが放出されて負極内に移動する。一方、リチウムイオン二次電池の放電時には、負極からリチウムイオンが放出されて正極に移動する。したがって、セパレータには、リチウムイオンなどのイオン透過性に優れていることが必要とされている。
セパレータとしては、絶縁性及びコスト性に優れていることから、合成樹脂微多孔フィルムが用いられている。合成樹脂微多孔フィルムは、プロピレン系樹脂などの合成樹脂を含んでいる。そして、合成樹脂フィルムを延伸することによって、合成樹脂微多孔フィルムが製造されている。
延伸法によって製造された合成樹脂微多孔フィルムは、延伸による高い残留応力が発生している。そのため、このような合成樹脂微多孔フィルムは高温下で熱収縮し、その結果、正極と負極とが短絡する可能性が指摘されている。したがって、合成樹脂微多孔フィルムの耐熱性を向上させることにより、リチウムイオン二次電池の安全性を確保することが望まれている。
そこで、特許文献1には、電子線の照射により、合成樹脂微多孔フィルムの熱収縮を低減して、耐熱性を向上できることが開示されている。
特開2003−22793号公報
しかしながら、電子線照射による処理だけでは、合成樹脂微多孔フィルムの耐熱性を十分に向上させることができなかった。
さらに、電子線照射による処理だけでは合成樹脂微多孔フィルムが脆くなって突き刺し強度などの機械的強度が低下し、僅かな衝撃によって割れ易くなる。このような合成樹脂微多孔フィルムは、繰り返して行われる充放電に伴って負極表面に発生したデンドライト(樹枝状結晶)によって容易に突き破られ、電極間の電気的短絡を発生させ易くなる。また、機械的強度が低下した合成樹脂微多孔フィルムでは、セパレータの製造時や電池組立時に、破断や裂けを生じ易くもなる。
したがって、本発明は、機械的強度の低下を低減しつつ、耐熱性が向上された耐熱性合成樹脂微多孔フィルム及びその製造方法を提供する。さらに、本発明は、上記耐熱性合成樹脂微多孔フィルムを用いた非水電解液二次電池用セパレータ及び非水電解液二次電池を提供する。
本発明の耐熱性合成樹脂微多孔フィルムは、
合成樹脂を含んでいる合成樹脂微多孔フィルムと、
上記合成樹脂微多孔フィルム表面の少なくとも一部に形成されてなると共に、2官能以上のラジカル重合性官能基を有する重合性化合物の重合体を含んでいる皮膜層と、を有し、
表面開口率が30〜55%であり、透気度が50〜600sec/100mLであり、25℃から180℃まで5℃/分の昇温速度で加熱した際の最大熱収縮率が20%以下であり、且つ突き刺し強度が0.7N以上であることを特徴とする。
本発明の耐熱性合成樹脂微多孔フィルムは、
合成樹脂を含んでいる合成樹脂微多孔フィルムと、
上記合成樹脂微多孔フィルム表面の少なくとも一部に形成されてなると共に、2官能以上のラジカル重合性官能基を有する重合性化合物の重合体を含んでおり、上記重合性化合物が、多官能性(メタ)アクリレート変性物、2官能以上の(メタ)アクリロイル基を有する樹枝状ポリマー、及び2官能以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートオリゴマーよりなる群から選択される少なくとも一種である皮膜層と、を有し、
表面開口率が30〜55%であり、透気度が50〜600sec/100mLであり、25℃から180℃まで5℃/分の昇温速度で加熱した際の最大熱収縮率が20%以下であることを特徴とする。
[合成樹脂微多孔フィルム]
本発明に用いられる合成樹脂微多孔フィルムとしては、従来の非水電解液二次電池においてセパレータとして用いられている微多孔フィルムであれば、特に制限されずに用いることができる。合成樹脂微多孔フィルムとしては、オレフィン系樹脂微多孔フィルムが好ましい。オレフィン系樹脂微多孔フィルムは、高温時に変形や熱収縮を生じやすい。一方、本発明の耐熱性合成樹脂微多孔フィルムの皮膜層によれば、後述する通り、オレフィン系樹脂微多孔フィルムに優れた耐熱性を付与することができる。したがって、オレフィン系樹脂微多孔フィルムに皮膜層を一体的に形成することによって、本発明の効果をより発揮することができる。
オレフィン系樹脂微多孔フィルムはオレフィン系樹脂を含んでいる。オレフィン系樹脂としては、エチレン系樹脂及びプロピレン系樹脂が好ましく、プロピレン系樹脂がより好ましい。オレフィン系樹脂微多孔フィルムは、オレフィン系樹脂を50重量%以上含有していることが好ましく、70重量%以上含有していることがより好ましく、90重量%以上していることが特に好ましい。
プロピレン系樹脂としては、例えば、ホモポリプロピレン、プロピレンと他のオレフィンとの共重合体などが挙げられる。合成樹脂微多孔フィルムが後述する延伸法によって製造される場合には、ホモポリプロピレンが好ましい。プロピレン系樹脂は、単独で用いられても二種以上が併用されてもよい。又、プロピレンと他のオレフィンとの共重合体は、ブロック共重合体、ランダム共重合体の何れであってもよい。
なお、プロピレンと共重合されるオレフィンとしては、例えば、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−ノネン、1−デセンなどのα−オレフィンなどが挙げられ、エチレンが好ましい。
オレフィン系樹脂の重量平均分子量は、25万〜50万が好ましく、28万〜48万がより好ましい。重量平均分子量が上記範囲内であるオレフィン系樹脂によれば、成膜安定性に優れていると共に、微小孔部が均一に形成されているオレフィン系樹脂微多孔フィルムを提供することができる。
オレフィン系樹脂の分子量分布(重量平均分子量Mw/数平均分子量Mn)は、7.5〜12が好ましく、8〜11がより好ましい。分子量分布が上記範囲内であるオレフィン系樹脂によれば、高い表面開口率を有し、イオン透過性に優れていると共に、機械的強度にも優れているオレフィン系樹脂微多孔フィルムを提供することができる。
ここで、オレフィン系樹脂の重量平均分子量及び数平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)法によって測定されたポリスチレン換算した値である。具体的には、オレフィン系樹脂6〜7mgを採取し、採取したオレフィン系樹脂を試験管に供給した上で、試験管に0.05重量%のBHT(ジブチルヒドロキシトルエン)を含むo−DCB(オルトジクロロベンゼン)溶液を加えてプロピレン系樹脂濃度が1mg/mLとなるように希釈して希釈液を作製する。
溶解濾過装置を用いて145℃にて回転数25rpmにて1時間に亘って上記希釈液を振とうさせてオレフィン系樹脂をBHTのo−DCB溶液に溶解させて測定試料とする。この測定試料を用いてGPC法によってオレフィン系樹脂の重量平均分子量及び数平均分子量を測定することができる。
オレフィン系樹脂における重量平均分子量及び数平均分子量は、例えば、下記測定装置及び測定条件にて測定することができる。
測定装置 TOSOH社製 商品名「HLC−8121GPC/HT」
測定条件 カラム:TSKgelGMHHR−H(20)HT×3本
TSKguardcolumn−HHR(30)HT×1本
移動相:o−DCB 1.0mL/分
サンプル濃度:1mg/mL
検出器:ブライス型屈折計
標準物質:ポリスチレン(TOSOH社製 分子量:500〜8420000)
溶出条件:145℃
SEC温度:145℃
オレフィン系樹脂の融点は、160〜170℃が好ましく、160〜165℃がより好ましい。融点が上記範囲内であるオレフィン系樹脂によれば、成膜安定性に優れていると共に、高温下における機械的強度の低下が抑制されているオレフィン系樹脂微多孔フィルムを提供することができる。
なお、本発明において、オレフィン系樹脂の融点は、示差走査熱量計(例えば、セイコーインスツル社 装置名「DSC220C」など)を用い、下記手順に従って測定することができる。先ず、オレフィン系樹脂10mgを25℃から昇温速度10℃/分にて250℃まで加熱し、250℃にて3分間に亘って保持する。次に、オレフィン系樹脂を250℃から降温速度10℃/分にて25℃まで冷却して25℃にて3分間に亘って保持する。続いて、オレフィン系樹脂を25℃から昇温速度10℃/分にて250℃まで再加熱し、この再加熱工程における吸熱ピークの頂点の温度を、オレフィン系樹脂の融点とする。
[合成樹脂微多孔フィルムの製造方法]
合成樹脂微多孔フィルムとしては、延伸法によって製造されたオレフィン系樹脂微多孔フィルムがより好ましい。延伸法によって製造されたオレフィン系樹脂微多孔フィルムは、延伸によって発生した残留歪みによって、高温時に特に熱収縮を生じやすい。従って、このようなオレフィン系樹脂微多孔フィルムを用いることによって、本発明による効果を特に発揮することができる。
オレフィン系樹脂微多孔フィルムを延伸法により製造する方法として、具体的には、(1)オレフィン系樹脂を押し出すことによりオレフィン系樹脂フィルムを得る工程と、このオレフィン系樹脂フィルム中にラメラ結晶を発生及び成長させる工程と、オレフィン系樹脂フィルムを延伸してラメラ結晶間を離間させることにより微小孔部が形成されてなるオレフィン系樹脂微多孔フィルムを得る工程とを有する方法;及び(2)オレフィン系樹脂と充填剤とを含んでいるオレフィン系樹脂組成物を押し出すことによりオレフィン系樹脂フィルムを得る工程と、このオレフィン系樹脂フィルムを一軸延伸又は二軸延伸してオレフィン系樹脂と充填剤との界面を剥離させることにより微小孔部が形成されてなるオレフィン系樹脂微多孔フィルムを得る工程とを有する方法などが挙げられる。微小孔部が均一に且つ多数形成されているオレフィン系樹脂微多孔フィルムが得られることから、(1)の方法が好ましい。
オレフィン系樹脂微多孔フィルムの製造方法として、特に好ましくは、下記工程;
オレフィン系樹脂を、押出機にて(オレフィン系樹脂の融点+20℃)〜(オレフィン系樹脂の融点+100℃)にて溶融混練し、上記押出機の先端に取り付けたTダイから押出すことにより、オレフィン系樹脂フィルムを得る押出工程と、
上記押出工程後の上記オレフィン系樹脂フィルムを(オレフィン系樹脂の融点−30℃)〜(オレフィン系樹脂の融点−1℃)で養生する養生工程と、
上記養生工程後の上記オレフィン系樹脂フィルムを、その表面温度が−20℃以上100℃未満にて延伸倍率1.2〜1.6倍に一軸延伸する第一延伸工程と、
上記第一延伸工程において延伸が施された上記オレフィン系樹脂フィルムを、その表面温度が100〜150℃にて延伸倍率1.2〜2.2倍に一軸延伸する第二延伸工程と、
上記第二延伸工程において延伸が施されたオレフィン系樹脂フィルムをアニールするアニーリング工程と
を有する方法が挙げられる。
上記方法によれば、フィルム厚み方向に貫通する微小孔部が多数形成されているオレフィン系樹脂微多孔フィルムを得ることができる。このようなオレフィン系樹脂微多孔フィルム表面の少なくとも一部に皮膜層が形成されても、皮膜層によって微小孔部が閉塞され難く、耐熱性合成樹脂微多孔フィルムの透気性やイオン透過性の低下を高く低減することができる。
(押出工程)
オレフィン系樹脂を含むオレフィン系樹脂フィルムは、オレフィン系樹脂を押出機に供給して溶融混練した上で、押出機の先端に取り付けたTダイから押出すことにより製造することができる。
オレフィン系樹脂を押出機にて溶融混練する際のオレフィン系樹脂の温度は、(オレフィン系樹脂の融点+20℃)〜(オレフィン系樹脂の融点+100℃)が好ましく、(オレフィン系樹脂の融点+25℃)〜(オレフィン系樹脂の融点+80℃)がより好ましく、(オレフィン系樹脂の融点+25℃)〜(オレフィン系樹脂の融点+50℃)が特に好ましい。溶融混練時のオレフィン系樹脂の温度を(オレフィン系樹脂の融点+20℃)以上とすることにより、均一な厚みを有するオレフィン系樹脂微多孔フィルムを得ることができる。また、溶融混練時のオレフィン系樹脂の温度を(オレフィン系樹脂の融点+100℃)以下とすることにより、オレフィン系樹脂の配向性を向上させて、ラメラの生成を促進させることができる。
オレフィン系樹脂を押出機からフィルム状に押出す際におけるドロー比は、50〜300が好ましく、65〜250がより好ましく、70〜250が特に好ましい。ドロー比を50以上とすることにより、オレフィン系樹脂に加わる張力を向上させることができる。これによりオレフィン系樹脂を十分に配向させてラメラの生成を促進させることが可能となる。また、ドロー比を300以下とすることによって、オレフィン系樹脂フィルムの成膜安定性を向上させることができる。これにより均一な厚みや幅を有するオレフィン系樹脂微多孔フィルムを得ることが可能となる。
なお、ドロー比とは、TダイのリップのクリアランスをTダイから押出されたオレフィン系樹脂フィルムの厚みで除した値をいう。Tダイのリップのクリアランスの測定は、JIS B7524に準拠したすきまゲージ(例えば、株式会社永井ゲージ製作所製 JISすきまゲージ)を用いてTダイのリップのクリアランスを10箇所以上測定し、その相加平均値を求めることにより行うことができる。又、Tダイから押出されたオレフィン系樹脂フィルムの厚みは、ダイヤルゲージ(例えば、株式会社ミツトヨ製 シグナルABSデジマチックインジケータ)を用いてTダイから押出されたオレフィン系樹脂フィルムの厚みを10箇所以上測定し、その相加平均値を求めることにより行うことができる。
オレフィン系樹脂フィルムの成膜速度は、10〜300m/分が好ましく、15〜250m/分がより好ましく、15〜30m/分が特に好ましい。オレフィン系樹脂フィルムの成膜速度を10m/分以上とすることによって、オレフィン系樹脂に加わる張力を向上させることができる。これによりオレフィン系樹脂分子を十分に配向させてラメラの生成を促進させることが可能となる。また、オレフィン系樹脂フィルムの成膜速度を300m/分以下とすることによって、オレフィン系樹脂フィルムの成膜安定性を向上させることができる。これにより均一な厚みや幅を有するオレフィン系樹脂微多孔フィルムを得ることが可能となる。
そして、Tダイから押出されたオレフィン系樹脂フィルムをその表面温度が(オレフィン系樹脂の融点−100℃)以下となるまで冷却することにより、オレフィン系樹脂フィルムを構成しているオレフィン系樹脂が結晶化してラメラが高度に生成する。本発明では、溶融混練したオレフィン系樹脂を押出すことにより、オレフィン系樹脂フィルムを構成しているオレフィン系樹脂分子を予め配向させた上で、オレフィン系樹脂フィルムを冷却する。これによりオレフィン系樹脂が配向している部分がラメラの生成を促進させることができる。
冷却されたオレフィン系樹脂フィルムの表面温度は、オレフィン系樹脂の融点よりも100℃低い温度以下が好ましく、オレフィン系樹脂の融点よりも140〜110℃低い温度がより好ましく、オレフィン系樹脂の融点よりも135〜120℃低い温度が特に好ましい。オレフィン系樹脂フィルムの表面温度を上記範囲内まで冷却することによって、オレフィン系樹脂を結晶化させてラメラを高度に生成させることができる。
(養生工程)
次いで、上述した押出工程により得られたオレフィン系樹脂フィルムを養生する。このオレフィン系樹脂の養生工程は、押出工程においてオレフィン系樹脂フィルム中に生成させたラメラを成長させるために行う。このことにより、オレフィン系樹脂フィルムの押出方向に結晶化部分(ラメラ)と非結晶部分とが交互に配列してなる積層ラメラ構造を形成させることができ、後述するオレフィン系樹脂フィルムの延伸工程において、ラメラ内ではなく、ラメラ間において亀裂を発生させ、この亀裂を起点として微小な微小孔部を形成することができる。
養生工程は、押出工程により得られたオレフィン系樹脂フィルムを、(オレフィン系樹脂の融点−30℃)〜(オレフィン系樹脂の融点−1℃)にて養生することにより行う。
オレフィン系樹脂フィルムの養生温度は、(オレフィン系樹脂の融点−30℃)〜(オレフィン系樹脂の融点−1℃)が好ましく、(オレフィン系樹脂の融点−25℃)〜(オレフィン系樹脂の融点−10℃)がより好ましい。オレフィン系樹脂フィルムの養生温度を(オレフィン系樹脂の融点−30℃)以上とすることによって、オレフィン系樹脂フィルムの結晶化を充分に促進させることができる。また、オレフィン系樹脂フィルムの養生温度を(オレフィン系樹脂の融点−1℃)以下にすることによって、オレフィン系樹脂の分子配向の緩和によるラメラ構造の崩壊を低減することができる。
なお、オレフィン系樹脂フィルムの養生温度とは、オレフィン系樹脂フィルムの表面温度である。しかしながら、オレフィン系樹脂フィルムの表面温度を測定できないような場合、例えば、オレフィン系樹脂フィルムをロール状に巻き取った状態で養生させる場合には、オレフィン系樹脂フィルムの養生温度とは、雰囲気温度とする。例えば、熱風炉などの加熱装置内部でオレフィン系樹脂フィルムをロール状に巻き取った状態で養生を行う場合には、加熱装置内部の温度を養生温度とする。
オレフィン系樹脂フィルムの養生は、オレフィン系樹脂フィルムを走行させながら行ってもよく、オレフィン系樹脂フィルムをロール状に巻き取った状態で行ってもよい。
オレフィン系樹脂フィルムを走行させながら養生を行う場合、オレフィン系樹脂フィルムの養生時間は、1分以上が好ましく、5分〜60分がより好ましい。
オレフィン系樹脂フィルムをロール状に巻き取った状態で養生させる場合、養生時間は、1時間以上が好ましく、15時間以上がより好ましい。このような養生時間でロール状に巻き取った状態のオレフィン系樹脂フィルムを養生させることにより、全体的にオレフィン系樹脂フィルムの温度を上述した養生温度にして十分に養生を行うことができる。これによりオレフィン系樹脂フィルム中にラメラを十分に成長させることができる。また、オレフィン系樹脂フィルムの熱劣化を低減する観点から、養生時間は、35時間以下が好ましく、30時間以下がより好ましい。
なお、オレフィン系樹脂フィルムをロール状に巻き取った状態で養生させた場合、養生工程後のオレフィン系樹脂フィルムロールからオレフィン系樹脂フィルムを巻き出して、後述する延伸工程及びアニーリング工程を実施すればよい。
(第一延伸工程)
次に、養生工程後のオレフィン系樹脂フィルムに、その表面温度が−20℃以上100℃未満にて延伸倍率1.2〜1.6倍に一軸延伸を施す第一延伸工程を実施する。第一延伸工程では、オレフィン系樹脂フィルムを好ましくは押出方向にのみ一軸延伸する。第一延伸工程において、オレフィン系樹脂フィルム中のラメラは殆ど溶融しておらず、延伸によってラメラ同士を離間させることによって、ラメラ間の非結晶部において効率的に微細な亀裂を独立して生じさせ、この亀裂を起点として多数の微小孔部を確実に形成させる。
第一延伸工程において、オレフィン系樹脂フィルムの表面温度は、−20℃以上100℃未満が好ましく、0〜80℃がより好ましく、10〜40℃が特に好ましい。オレフィン系樹脂フィルムの表面温度を−20℃以上とすることにより、延伸時におけるオレフィン系樹脂フィルムの破断を低減することができる。また、オレフィン系樹脂フィルムの表面温度を100℃未満とすることにより、ラメラ間の非結晶部において亀裂を発生させることができる。
第一延伸工程において、オレフィン系樹脂フィルムの延伸倍率は、1.2〜1.6倍が好ましく、1.25〜1.5倍がより好ましい。延伸倍率を1.2倍以上とすることにより、ラメラ間の非結晶部において微小孔部を形成することができる。また、延伸倍率を1.6倍以下とすることにより、オレフィン系樹脂微多孔フィルムに微小孔部を均一に形成することができる。
なお、本発明において、オレフィン系樹脂フィルムの延伸倍率とは、延伸方向において、延伸後のオレフィン系樹脂フィルムの長さを延伸前のオレフィン系樹脂フィルムの長さで除した値をいう。
オレフィン系樹脂フィルムの第一延伸工程における延伸速度は、20%/分以上が好ましく、20〜500%/分がより好ましく、20〜70%/分が特に好ましい。延伸速度を20%/分以上とすることにより、ラメラ間の非結晶部において微小孔部を均一に形成することができる。延伸速度を500%/分以下とすることにより、第一延伸工程におけるオレフィン系樹脂フィルムの破断を抑制することができる。
なお、本発明において、オレフィン系樹脂フィルムの延伸速度とは、単位時間当たりのオレフィン系樹脂フィルムの延伸方向における寸法の変化割合をいう。
上記第一延伸工程におけるオレフィン系樹脂フィルムの延伸方法としては、オレフィン系樹脂フィルムを一軸延伸することができれば、特に限定されず、例えば、オレフィン系樹脂フィルムを周速度が異なる複数のロールを用いた延伸装置を用いて所定温度にて一軸延伸する方法などが挙げられる。
(第二延伸工程)
次いで、第一延伸工程後のオレフィン系樹脂フィルムに、その表面温度が100〜150℃にて延伸倍率1.2〜2.2倍に一軸延伸処理を施す第二延伸工程を実施する。第二延伸工程においても、オレフィン系樹脂フィルムを好ましくは押出方向にのみ一軸延伸する。このような第二延伸工程における延伸処理を行うことによって、第一延伸工程にてオレフィン系樹脂フィルムに形成された多数の微小孔部を成長させることができる。
第二延伸工程において、オレフィン系樹脂フィルムの表面温度は、100〜150℃が好ましく、110〜140℃がより好ましい。オレフィン系樹脂フィルムの表面温度を100℃以上とすることによって、第一延伸工程においてオレフィン系樹脂フィルムに形成された微小孔部を高度に成長させることができる。また、オレフィン系樹脂フィルムの表面温度を150℃以下とすることによって、第一延伸工程においてオレフィン系樹脂フィルムに形成された微小孔部の閉塞を高く低減することができる。
第二延伸工程において、オレフィン系樹脂フィルムの延伸倍率は、1.2〜2.2倍が好ましく、1.5〜2倍がより好ましい。オレフィン系樹脂フィルムの延伸倍率を1.2倍以上とすることによって、第一延伸工程時にオレフィン系樹脂フィルムに形成された微小孔部を成長させることができる。これにより優れた透気性を有するオレフィン系樹脂微多孔フィルムを提供することができる。また、オレフィン系樹脂フィルムの延伸倍率を2.2倍以下とすることによって、第一延伸工程においてオレフィン系樹脂フィルムに形成された微小孔部の閉塞を抑制することが可能となる。
第二延伸工程において、オレフィン系樹脂フィルムの延伸速度は、500%/分以下が好ましく、400%/分以下がより好ましく、15〜60%/分が特に好ましい。オレフィン系樹脂フィルムの延伸速度を上記範囲内とすることによって、オレフィン系樹脂フィルムに微小孔部を均一に形成することができる。
上記第二延伸工程におけるオレフィン系樹脂フィルムの延伸方法としては、オレフィン系樹脂フィルムを一軸延伸することができれば、特に限定されず、例えば、オレフィン系樹脂フィルムを周速度が異なる複数のロールを用いた延伸装置を用いて所定温度にて一軸延伸する方法などが挙げられる。
(アニーリング工程)
次に、第二延伸工程において一軸延伸が施されたオレフィン系樹脂フィルムにアニール処理を施すアニーリング工程を行う。このアニーリング工程は、上述した延伸工程において加えられた延伸によってオレフィン系樹脂フィルムに生じた残存歪みを緩和して、得られるオレフィン系樹脂微多孔フィルムに加熱による熱収縮が生じるのを抑えるために行われる。
アニーリング工程におけるオレフィン系樹脂フィルムの表面温度は、(第二延伸工程時のオレフィン系樹脂フィルムの表面温度)〜(オレフィン系樹脂の融点−10℃)が好ましい。オレフィン系樹脂フィルムの表面温度を第二延伸工程時のオレフィン系樹脂フィルムの表面温度以上とすることによって、オレフィン系樹脂フィルム中に残存した歪みを十分に緩和することができる。これによりオレフィン系樹脂微多孔フィルムの加熱時における寸法安定性を向上させることが可能となる。また、オレフィン系樹脂フィルムの表面温度を(オレフィン系樹脂の融点−10℃)以下とすることによって、延伸工程で形成された微小孔部の閉塞を抑制することができる。
アニーリング工程におけるオレフィン系樹脂フィルムの収縮率は、25%以下が好ましい。オレフィン系樹脂フィルムの収縮率を25%以下とすることによって、オレフィン系樹脂フィルムのたるみの発生を低減して、オレフィン系樹脂フィルムを均一にアニールすることができる。
なお、オレフィン系樹脂フィルムの収縮率とは、アニーリング工程時における延伸方向におけるオレフィン系樹脂フィルムの収縮長さを、第二延伸工程後の延伸方向におけるオレフィン系樹脂フィルムの長さで除して100を乗じた値をいう。
合成樹脂微多孔フィルムは、フィルム厚み方向に貫通する微小孔部を含んでいる。微小孔部によって、耐熱性合成樹脂微多孔フィルムに優れたイオン透過性を付与することができる。これにより耐熱性合成樹脂微多孔フィルムはその厚み方向にリチウムイオンなどのイオンを透過させることが可能となる。
合成樹脂微多孔フィルムの表面開口率は、25〜55%が好ましく、30〜50%がより好ましい。表面開口率が上記範囲内である合成樹脂微多孔フィルムによれば、機械的強度とイオン透過性の双方に優れている耐熱性合成樹脂微多孔フィルムを提供することができる。
なお、合成樹脂微多孔フィルムの表面開口率は下記の要領で測定することができる。先ず、合成樹脂微多孔フィルム表面の任意の部分において、縦9.6μm×横12.8μmの平面長方形状の測定部分を定め、この測定部分を倍率1万倍にて写真撮影する。
次いで、測定部分内に形成された各微小孔部を、長辺と短辺の何れか一方が延伸方向に平行となる長方形で囲む。この長方形は、長辺及び短辺が共に最小寸法となるように調整する。上記長方形の面積を各微小孔部の開口面積とする。各微小孔部の開口面積を合計して微小孔部の総開口面積S(μm2)を算出する。この微小孔部の総開口面積S(μm2)を122.88μm2(9.6μm×12.8μm)で除して100を乗じた値を表面開口率(%)とする。なお、測定部分と、測定部分でない部分とに跨がって存在している微小孔部については、微小孔部のうち、測定部分内に存在している部分のみを測定対象とする。
合成樹脂微多孔フィルムにおける微小孔部の開口端の最大長径は、100nm〜1μmが好ましく、100nm〜800nmがより好ましい。開口端の最大長径が上記範囲内である微小孔部は、皮膜層によって閉塞され難く、皮膜層の形成による耐熱性合成樹脂微多孔フィルムの透気性の低下を高く低減することができる。
合成樹脂微多孔フィルムにおける微小孔部の開口端の平均長径は、100nm〜500nmが好ましく、200nm〜500nmがより好ましい。開口端の平均長径が上記範囲内である微小孔部は、皮膜層によって閉塞され難く、皮膜層の形成による耐熱性合成樹脂微多孔フィルムの透気性の低下を高く低減することができる。
なお、合成樹脂微多孔フィルムにおける微小孔部の開口端の最大長径及び平均長径は次のようにして測定される。先ず、合成樹脂微多孔フィルムの表面をカーボンコーティングする。次に、合成樹脂微多孔フィルムの表面における任意の10個所を走査型電子顕微鏡を用いて倍率1万にて撮影する。なお、撮影範囲は、合成樹脂微多孔フィルムの表面において縦9.6μm×横12.8μmの平面長方形の範囲とする。
得られた写真に現れている各微小孔部の開口端の長径を測定する。微小孔部における開口端の長径のうち、最大の長径を微小孔部の開口端の最大長径とする。各微小孔部における開口端の長径の相加平均値を微小孔部の開口端の平均長径とする。なお、微小孔部の開口端の長径とは、この微小孔部の開口端を包囲し得る最小径の真円の直径とする。撮影範囲と、撮影範囲でない部分とに跨がって存在している微小孔部については、測定対象から除外する。
合成樹脂微多孔フィルムの孔密度は、15個/μm2以上が好ましく、17個/μm2以上がより好ましい。孔密度が15個/μm2以上である合成樹脂微多孔フィルムによれば、機械的強度及びイオン透過性に優れている耐熱性合成樹脂微多孔フィルムを提供することができる。
なお、合成樹脂微多孔フィルムの孔密度は、下記の要領で測定する。先ず、合成樹脂微多孔フィルム表面の任意の部分において、縦9.6μm×横12.8μmの平面長方形状の測定部分を定め、この測定部分を倍率1万倍にて写真撮影する。そして、測定部分において微小孔部の個数を測定し、この個数を122.88μm2(9.6μm×12.8μm)で除すことによって孔密度を算出することができる。
合成樹脂微多孔フィルムの厚みは、5〜100μmが好ましく、10〜50μmがより好ましい。
なお、本発明において、合成樹脂微多孔フィルムの厚みの測定は、次の要領に従って行うことができる。すなわち、合成樹脂微多孔フィルムの任意の10箇所をダイヤルゲージを用いて測定し、その相加平均値を合成樹脂微多孔フィルムの厚みとする。
合成樹脂微多孔フィルムの透気度は、50〜600sec/100mLが好ましく、100〜300sec/100mLがより好ましい。透気度が上記範囲内である合成樹脂微多孔フィルムによれば、機械的強度とイオン透過性の双方に優れている耐熱性合成樹脂微多孔フィルムを提供することができる。
なお、合成樹脂微多孔フィルムの透気度は、温度23℃、相対湿度65%の雰囲気下でJIS P8117に準拠して、合成樹脂微多孔フィルムの長さ方向に10cm間隔で10箇所測定し、その相加平均値を算出することにより得られた値とする。
[皮膜層]
本発明の耐熱性合成樹脂微多孔フィルムは、上述した合成樹脂微多孔フィルム表面の少なくとも一部に形成された皮膜層を含んでいる。皮膜層は、2官能以上のラジカル重合性官能基を有する重合性化合物の重合体を含んでいる。このような重合体を含んでいる皮膜層は、高い硬度を有していると共に、適度な弾性及び伸度を有している。したがって、上記重合体を含んでいる皮膜層を用いることによって、突き刺し強度などの機械的強度の低下が低減されつつ、耐熱性が向上された耐熱性合成樹脂微多孔フィルムを提供することができる。皮膜層中において、2官能以上のラジカル重合性官能基を有する重合性化合物の重合体の含有量は、50重量%が好ましく、60重量%が好ましく、70重量%以上がより好ましく、90重量%以上が特に好ましく、100重量%が最も好ましい。
皮膜層は、無機粒子を含んでいなくても、耐熱性合成樹脂微多孔フィルムの耐熱性を高く向上させることができる。なお、本発明においては、必要に応じて、皮膜層が無機粒子を含んでいてもよい。無機粒子としては、耐熱性多孔質層に一般的に用いられている無機粒子が挙げられる。無機粒子を構成する材料としては、例えば、Al23、SiO2、TiO2、及びMgOなどが挙げられる。
皮膜層は、2官能以上のラジカル重合性官能基を有する重合性化合物の重合体を含んでいる。2官能以上のラジカル重合性官能基を有する重合性化合物は、活性エネルギー線の照射によってラジカル重合可能なラジカル重合性不飽和結合を含んでいる官能基(ラジカル重合性官能基)を、1分子中に2個以上有していればよい。ラジカル重合可能なラジカル重合性不飽和結合を有する官能基としては、特に制限されないが、例えば、(メタ)アクリロイル基やビニル基などが挙げられ、(メタ)アクリロイル基が好ましい。
重合性化合物としては、多官能性アクリル系モノマー、ビニル基を有するビニル系オリゴマー、多官能性(メタ)アクリレート変性物、2官能以上の(メタ)アクリロイル基を有する樹枝状ポリマー、2官能以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートオリゴマー、及びトリシクロデカンジメタノールジ(メタ)アクリレートが挙げられる。
なお、本発明において、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。(メタ)アクリロイルとは、アクリロイル又はメタクリロイルを意味する。また、(メタ)アクリル酸とは、アクリル酸又はメタクリル酸を意味する。
多官能性アクリル系モノマーは、ラジカル重合性官能基を1分子中に2個以上有していればよいが、ラジカル重合性官能基を1分子中に3個以上有している3官能以上の多官能性アクリル系モノマーが好ましく、3官能〜6官能の多官能性アクリル系モノマーがより好ましい。
多官能性アクリル系モノマーとしては、
1,9−ノナンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、及びグリセリンジ(メタ)アクリレート等の2官能の多官能性アクリル系モノマー;
トリメチロールプロパントリ(メタ)アクリレート、及びペンタエリスリトールトリ(メタ)アクリレート等の3官能の多官能性アクリル系モノマー;
ペンタエリスリトールテトラ(メタ)アクリレート、及びジトリメチロールプロパンテトラ(メタ)アクリレート等の4官能の多官能性アクリル系モノマー;
ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能の多官能性アクリル系モノマー;
ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能の多官能性アクリル系モノマー;
等を例示することができる。
ビニル系オリゴマーとしては、特に限定されず、例えば、ポリブタジエン系オリゴマー等を例示することができる。なお、ポリブタジエン系オリゴマーとは、ブタジエン骨格を有するオリゴマーを意味する。ポリブタジエン系オリゴマーは、単量体成分として、ブタジエン成分を含む重合体が挙げられる。ポリブタジエン系オリゴマーの単量体成分としては、1,2−ブタジエン成分、及び1,3−ブタジエン成分が挙げられる。なかでも、1,2−ブタジエン成分が好ましい。
ビニル系オリゴマーとしては、主鎖の両末端に水素原子を有するものであってもよく、また、末端の水素原子が、ヒドロキシ基、カルボキシ基、シアノ基、ヒロドキシエチル基などのヒドロキシアルキル基によって置換されたものであっても構わない。また、ビニル系オリゴマーとしては、分子鎖の側鎖又は末端に、エポキシ基、(メタ)アクリロイル基、及びビニル基などラジカル重合性官能基を有するものであっても構わない。
ポリブタジエン系オリゴマーとしては、
ポリ(1,2−ブタジエン)オリゴマー、ポリ(1,3−ブタジエン)オリゴマー等のポリブタジエンオリゴマー;
ブタジエン骨格に含まれる炭素−炭素二重結合の少なくとも一部がエポキシ化されることによって、分子内にエポキシ基が導入されたエポキシ化ポリブタジエンオリゴマー;
ブタジエン骨格を有し、且つ主鎖の側鎖又は末端に(メタ)アクリロイル基を有しているポリブタジエン(メタ)アクリレートオリゴマー;
等を例示することができる。
ポリブタジエン系オリゴマーは市販されている製品を用いることができる。ポリ(1,2−ブタジエン)オリゴマーとしては、日本曹達社製 商品名「B−1000」、「B−2000」及び「B−3000」等を例示することができる。主鎖の両末端にヒドロキシ基を有するポリブタジエンオリゴマーとしては、日本曹達社製 商品名「G−1000」、「G−2000」及び「G−3000」等を例示することができる。エポキシ化ポリブタジエンオリゴマーとしては、日本曹達社製 商品名「JP−100」及び「JP−200」等を例示することができる。ポリブタジエン(メタ)アクリレートオリゴマーとしては、日本曹達社製 商品名「TE−2000」、「EA−3000」及び「EMA−3000」等を例示することができる。
多官能性(メタ)アクリレート変性物は、ラジカル重合性官能基を1分子中に2個以上有していればよいが、ラジカル重合性官能基を1分子中に3個以上有している3官能以上の多官能性(メタ)アクリレート変性物が好ましく、ラジカル重合性官能基を1分子中に3〜6個有している3官能〜6官能の多官能性(メタ)アクリレート変性物がより好ましい。
多官能性(メタ)アクリレート変性物としては、多官能性(メタ)アクリレートのアルキレンオキサイド変性物、及び多官能性(メタ)アクリレートのカプロラクトン変性物が好ましく挙げられる。
多官能性(メタ)アクリレートのアルキレンオキサイド変性物は、好ましくは、多価アルコールとアルキレンオキサイドとの付加物を(メタ)アクリル酸でエステル化することにより得られる。また、多官能性(メタ)アクリレートのカプロラクトン変性物は、好ましくは、多価アルコールとカプロラクトンとの付加物を(メタ)アクリル酸でエステル化することにより得られる。
アルキレンオキサイド変性物及びカプロラクトン変性物における多価アルコールとしては、トリメチロールプロパン、グリセロール、ペンタエリスリトール、ジペンタエリスリトール、ジトリメチロールプロパン、及びトリス(2−ヒドロキシエチル)イソシアヌル酸などが挙げられ、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ジペンタエリスリトールが好ましい。
アルキレンオキサイド変性物におけるアルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、イソプロピレンオキサイド、及びブチレンオキサイドなどが挙げられ、エチレンオキサイド、プロピレンオキサイド、イソプロピレンオキサイドが好ましい。
カプロラクトン変性物におけるカプロラクトンとしては、ε−カプロラクトン、δ−カプロラクトン、及びγ−カプロラクトンなどが挙げられる。
多官能性(メタ)アクリレートのアルキレンオキサイド変性物において、アルキレンオキサイドの平均付加モル数は、1モル以上が好ましい。アルキレンオキサイドの平均付加モル数は、1〜10モルが好ましく、1〜6モルがより好ましく、1〜4モルが特に好ましく、1〜3モルが最も好ましい。
3官能の多官能性(メタ)アクリレート変性物としては、
トリメチロールプロパントリ(メタ)アクリレートのエチレンオキサイド変性物、トリメチロールプロパントリ(メタ)アクリレートのプロピレンオキサイド変性物、トリメチロールプロパントリ(メタ)アクリレートのイソプロピレンオキサイド変性物、トリメチロールプロパントリ(メタ)アクリレートのブチレンオキサイド変性物、及びトリメチロールプロパントリ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのトリメチロールプロパントリ(メタ)アクリレートのアルキレンオキサイド変性物、並びにトリメチロールプロパントリ(メタ)アクリレートのカプロラクトン変性物;
グリセリルトリ(メタ)アクリレートのエチレンオキサイド変性物、グリセリルトリ(メタ)アクリレートのプロピレンオキサイド変性物、グリセリルトリ(メタ)アクリレートのイソプロピレンオキサイド変性物、グリセリルトリ(メタ)アクリレートのブチレンオキサイド変性物、及びグリセリルトリ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのグリセリルトリ(メタ)アクリレートのアルキレンオキサイド変性物、並びにグリセリルトリ(メタ)アクリレートのカプロラクトン変性物;
ペンタエリスリトールトリ(メタ)アクリレートのエチレンオキサイド変性物、ペンタエリスリトールトリ(メタ)アクリレートのプロピレンオキサイド変性物、ペンタエリスリトールトリ(メタ)アクリレートのイソプロピレンオキサイド変性物、ペンタエリスリトールトリ(メタ)アクリレートのブチレンオキサイド変性物、及びペンタエリスリトールトリ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのペンタエリスリトールトリ(メタ)アクリレートのアルキレンオキサイド変性物、並びにペンタエリスリトールトリ(メタ)アクリレートのカプロラクトン変性物;並びに、
トリス−(2−アクリロキシエチル)イソシアヌレートのエチレンオキサイド変性物、トリス−(2−アクリロキシエチル)イソシアヌレートのプロピレンオキサイド変性物、トリス−(2−アクリロキシエチル)イソシアヌレートのイソプロピレンオキサイド変性物、トリス−(2−アクリロキシエチル)イソシアヌレートのブチレンオキサイド変性物、及びトリス−(2−アクリロキシエチル)イソシアヌレートのエチレンオキサイド・プロピレンオキサイド変性物などのトリス−(2−アクリロキシエチル)イソシアヌレートのアルキレンオキサイド変性物、並びにトリス−(2−アクリロキシエチル)イソシアヌレートのカプロラクトン変性物、などが挙げられる。
3官能の多官能性(メタ)アクリレート変性物としては、トリメチロールプロパントリ(メタ)アクリレートのアルキレンオキサイド変性物、グリセリルトリ(メタ)アクリレートのアルキレンオキサイド変性物が好ましく、トリメチロールプロパントリ(メタ)アクリレートのエチレンオキサイド変性物、トリメチロールプロパントリ(メタ)アクリレートのプロピレンオキサイド変性物、グリセリルトリ(メタ)アクリレートのエチレンオキサイド変性物がより好ましい。
4官能の多官能性(メタ)アクリレート変性物として、
ペンタエリスリトールテトラ(メタ)アクリレートのエチレンオキサイド変性物、ペンタエリスリトールテトラ(メタ)アクリレートのプロピレンオキサイド変性物、ペンタエリスリトールテトラ(メタ)アクリレートのイソプロピレンオキサイド変性物、ペンタエリスリトールテトラ(メタ)アクリレートのブチレンオキサイド変性物、及びペンタエリスリトールテトラ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのペンタエリスリトールテトラ(メタ)アクリレートのアルキレンオキサイド変性物、並びにペンタエリスリトールテトラ(メタ)アクリレートのカプロラクトン変性物;並びに
ジトリメチロールプロパンテトラ(メタ)アクリレートのエチレンオキサイド変性物、ジトリメチロールプロパンテトラ(メタ)アクリレートのプロピレンオキサイド変性物、ジトリメチロールプロパンテトラ(メタ)アクリレートのイソプロピレンオキサイド変性物、ジトリメチロールプロパンテトラ(メタ)アクリレートのブチレンオキサイド変性物、及びジトリメチロールプロパンテトラ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのジトリメチロールプロパンテトラ(メタ)アクリレートのアルキレンオキサイド変性物、並びにジトリメチロールプロパンテトラ(メタ)アクリレートのカプロラクトン変性物、などが挙げられる。
4官能の多官能性(メタ)アクリレート変性物としては、ペンタエリスリトールテトラ(メタ)アクリレートのアルキレンオキサイド変性物が好ましく、ペンタエリスリトールテトラ(メタ)アクリレートのエチレンオキサイド変性物がより好ましい。
5官能以上の多官能性(メタ)アクリレート変性物として、具体的には、
ジペンタエリスリトールポリ(メタ)アクリレートのエチレンオキサイド変性物、ジペンタエリスリトールポリ(メタ)アクリレートのプロピレンオキサイド変性物、ジペンタエリスリトールポリ(メタ)アクリレートのイソプロピレンオキサイド変性物、ジペンタエリスリトールポリ(メタ)アクリレートのブチレンオキサイド変性物、及びジペンタエリスリトールポリ(メタ)アクリレートのエチレンオキサイド・プロピレンオキサイド変性物などのジペンタエリスリトールポリ(メタ)アクリレートのアルキレンオキサイド変性物、並びにジペンタエリスリトールポリ(メタ)アクリレートのカプロラクトン変性物、などが挙げられる。
5官能以上の多官能性(メタ)アクリレート変性物としては、ジペンタエリスリトールポリ(メタ)アクリレートのアルキレンオキサイド変性物が好ましく、ジペンタエリスリトールポリ(メタ)アクリレートのイソプロピレンオキサイド変性物がより好ましく、ジペンタエリスリトールヘキサ(メタ)アクリレートのイソプロピレンオキサイド変性物が特に好ましい。
多官能性(メタ)アクリレート変性物として、市販されている商品を用いることもできる。
トリメチロールプロパントリ(メタ)アクリレートのエチレンオキサイド変性物としては、サートマー社製の商品名「SR454」、「SR499」及び「SR502」、大阪有機化学社製の商品名「ビスコート#360」、並びにMiwon社製の商品名「Miramer M3130」、「Miramer M3160」及び「Miramer M3190」などが挙げられる。トリメチロールプロパントリ(メタ)アクリレートのプロピレンオキサイド変性物としては、サートマー社製の商品名「SR492」「SR501」及び「CD501」、並びにMiwon社製の商品名「Miramer M360」などが挙げられる。トリメチロールプロパントリ(メタ)アクリレートのイソプロピレンオキサイド変性物としては、日本化薬社製の商品名「TPA−330」などが挙げられる。
グリセリルトリ(メタ)アクリレートのエチレンオキサイド変性物としては、新中村化学社製の商品名「A−GYL−3E」及び「A−GYL−9E」などが挙げられる。グリセリルトリ(メタ)アクリレートのプロピレンオキサイド変性物としては、サートマー社製の商品名「SR9020」及び「CD9021」などが挙げられる。グリセリルトリ(メタ)アクリレートのイソプロピレンオキサイド変性物としては、日本化薬社製の商品名「GPO−303」などが挙げられる。
トリス−(2−アクリロキシエチル)イソシアヌレートのカプロラクトン変性物としては、新中村化学社製の商品名「A−9300−1CL」、「A−9300−3CL」などが挙げられる。
ペンタエリスリトールテトラ(メタ)アクリレートのエチレンオキサイド変性物としては、Miwon社製の商品名「Miramer M4004」などが挙げられる。ジトリメチロールプロパンテトラ(メタ)アクリレートのエチレンオキサイド変性物としては、新中村化学社製の商品名「AD−TMP−4E」などが挙げられる。
ジペンタエリスリトールポリアクリレートのエチレンオキサイド変性物としては、新中村化学社製の商品名「A−DPH−12E」などが挙げられる。ジペンタエリスリトールポリアクリレートのイソプロピレンオキサイド変性物としては、新中村化学社製の商品名「A−DPH−6P」などが挙げられる。
2官能以上の(メタ)アクリロイル基を有する樹枝状ポリマーとは、(メタ)アクリロイル基を配置した枝分子を放射状に組み立てた球状の巨大分子を意味する。
(メタ)アクリロイル基を有する樹枝状ポリマーとしては、2官能以上の(メタ)アクリロイル基を有するデンドリマー、及び2官能以上の(メタ)アクリロイル基を有するハイパーブランチポリマーが挙げられる。
2官能以上の(メタ)アクリロイル基を有するデンドリマーとは、2官能以上の(メタ)アクリレートを枝分子とし、(メタ)アクリレートを球状に集積することによって得られる球状高分子を意味する。
デンドリマーは、1分子中に2個以上の(メタ)アクリロイル基を有していればよいが、1分子中に3個以上の(メタ)アクリロイル基を有している3官能以上のデンドリマーが好ましく、1分子中に5〜20個の(メタ)アクリロイル基を有している多官能デンドリマーがより好ましい。
デンドリマーの重量平均分子量は、1000〜50000が好ましく、1500〜25000がより好ましい。デンドリマーの重量平均分子量を上記範囲内とすることによって、デンドリマー分子内の結合密度とデンドリマー分子同士の結合密度とが「密」と「粗」となり、これにより高い高度を有していると共に、適度な弾性及び伸度を有している皮膜層を形成することができる。
なお、デンドリマーの重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)を用いてポリスチレンにより換算された値とする。
2官能以上の(メタ)アクリロイル基を有する樹枝状ポリマーとして、市販されている商品を用いることもできる。2個以上の(メタ)アクリロイル基を有するデンドリマーとして、サートマー社製の商品名「CN2302」、「CN2303」及び「CN2304」、大阪有機化学社製の商品名「V1000」、「SUBARU−501」、及び「SIRIUS−501」、並びに新中村化学社製の商品名「A−HBR−5」などが挙げられる。
2官能以上の(メタ)アクリロイル基を有するハイパーブランチポリマーとは、ABx型の多官能性モノマー(ここでAとBは互いに反応する官能基、Bの数Xは2以上)を重合させて得られる不規則な分岐構造を有する高分岐構造体の表面および内部を(メタ)アクロイル基によって修飾することによって得られる球状高分子を意味する。
2官能以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートオリゴマーは、1分子内に2個以上の(メタ)アクリロイル基を有する。
ウレタンアクリレートオリゴマーは、例えば、ポリイソシアネート化合物と、ヒドロキシル基またはイソシアネート基を有する(メタ)アクリレートと、ポリオール化合物とを反応させることにより得られる。
ウレタンアクリレートオリゴマーとしては、例えば、(1)ポリオール化合物とポリイソシアネート化合物とを反応させて得られる末端イソシアネート基含有ウレタンプレポリマーに、ヒドロキシル基を有する(メタ)アクリレートを更に反応させて得られるウレタンアクリレート、及び(2)ポリオール化合物とポリイソシアネート化合物とを反応させて得られる末端ヒドロキシル基含有ウレタンプレポリマーに、イソシアネート基を有する(メタ)アクリレートを更に反応させて得られるウレタンアクリレートオリゴマーなどが挙げられる。
ポリイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、1,3−キシリレンジイソシアネート、1,4−キシリレンジイソシアネート、及びジフェニルメタン−4,4’−ジイソシアネートなどが挙げられる。
ヒドロキシル基を有する(メタ)アクリレートとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、及びポリエチレングリコール(メタ)アクリレートが挙げられる。イソシアネート基を有する(メタ)アクリレートとしては、例えば、メタクリロイルオキシエチルイソシアネートが挙げられる。
ポリオール化合物としては、例えば、アルキレン型、ポリカーボネート型、ポリエステル型またはポリエーテル型などのポリオール化合物が挙げられる。具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール、ポリエステルジオール、及びポリエーテルジオールなどが挙げられる。
2官能以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートオリゴマーとして、市販されている商品を用いることもできる。例えば、新中村化学社製の商品名「UA−122P」、共栄社化学社製の商品名「UF−8001G」、サートマー社製の商品名「CN977」、「CN999」、「CN963」、「CN985」、「CN970」、「CN133」、「CN975」及び「CN997」、ダイセルオルネクス社製の商品名「IRR214−K」、並びに日本化薬社製の商品名「UX−5000」、「UX−5102D−M20」、「UX−5005」、及び「DPHA−40H」などが挙げられる。また、重合性化合物として、サートマー社製 商品名「CN113」などの脂肪族特殊オリゴマーを用いることもできる。
本発明においては、上記した重合性化合物のうち、多官能性(メタ)アクリレート変性物、2官能以上の(メタ)アクリロイル基を有する樹枝状ポリマー、及び2官能以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートオリゴマーが好ましい。さらに、重合性化合物としては、多官能性(メタ)アクリレート変性物がより好ましく、4官能の多官能性(メタ)アクリレート変性物が特に好ましく、ペンタエリスリトールテトラ(メタ)アクリレートのエチレンオキサイド変性物が最も好ましい。これらの重合性化合物によれば、高い硬度を有していると共に、適度な弾性及び伸度を有する皮膜層を形成することができる。これにより、耐熱性合成樹脂微多孔フィルムに機械強度を低下させることなく、優れた耐熱性を付与することができる。
重合性化合物として多官能性(メタ)アクリレート変性物を用いる場合、重合性化合物中における多官能性(メタ)アクリレート変性物の含有量は、30重量%以上が好ましく、80重量%以上がより好ましく、100重量%が特に好ましい。多官能性(メタ)アクリレート変性物を30重量%以上含んでいる重合性化合物を用いることにより、得られる耐熱性合成樹脂微多孔フィルムに、透気性を低下させることなく優れた耐熱性を付与することができる。
なお、本発明においては、重合性化合物としては、上記した重合性化合物のうちの一種のみを用いてもよく、二種以上の重合性化合物を併用しても構わない。
耐熱性合成樹脂微多孔フィルム中における皮膜層の含有量は、合成樹脂微多孔フィルム100重量部に対して、5〜80重量部が好ましく、5〜60重量部がより好ましく、7〜50重量部が特に好ましく、10〜40重量部が最も好ましい。皮膜層の含有量を上記範囲内とすることによって、合成樹脂微多孔フィルム表面の微小孔部を閉塞させることなく皮膜層を均一に形成することができる。これにより、透気性を低下させることなく耐熱性が向上されている耐熱性合成樹脂微多孔フィルムを提供することができる。
皮膜層の厚みは、特に制限されないが、1〜100nmが好ましく、5〜50nmがより好ましい。皮膜層の厚みを上記範囲内とすることによって、合成樹脂微多孔フィルム表面に微小孔部を閉塞させることなく皮膜層を均一に形成することができる。これにより、透気性を低下させることなく耐熱性が向上されている耐熱性合成樹脂微多孔フィルムを提供することができる。
皮膜層は、合成樹脂微多孔フィルム表面の少なくとも一部に形成されるが、皮膜層は合成樹脂微多孔フィルム表面全面に形成されていることが好ましく、合成樹脂微多孔フィルム表面全面、及びこの表面に続く微小孔部の内壁表面の少なくとも一部を被覆するように形成されていることがより好ましい。これにより、耐熱性合成樹脂微多孔フィルムの耐熱性をより向上させることができる。なお、合成樹脂微多孔フィルム表面とは、微小孔部が中実部であると仮定したときの合成樹脂微多孔フィルムの両面全面から微小孔部の開口端に相当する部分を除外した部分をいう。
[皮膜層の形成方法]
皮膜層の形成方法としては、合成樹脂微多孔フィルム表面の少なくとも一部に、2官能以上のラジカル重合性官能基を有する重合性化合物を塗工した後、上記合成樹脂微多孔フィルムに活性エネルギー線を照射する方法が用いられる。
(塗工工程)
合成樹脂微多孔フィルム表面に2官能以上のラジカル重合性官能基を有する重合性化合物を塗工する。この時、重合性化合物をそのまま合成樹脂微多孔フィルム表面に塗工してもよい。重合性化合物を溶媒中に分散又は溶解させて塗工液を得、この塗工液を合成樹脂微多孔フィルム表面に塗工することが好ましい。このように重合性化合物を塗工液として用いることによって、合成樹脂微多孔フィルム表面に重合性化合物を均一に付着させることができる。これにより皮膜層が均一に形成され、耐熱性が向上された耐熱性合成樹脂微多孔フィルムを製造することが可能となる。さらに、重合性化合物を塗工液として用いることによって、重合性化合物によって合成樹脂微多孔フィルム中の微小孔部が閉塞されることを低減することができる。したがって、透気性を低下させることなく、耐熱性合成樹脂微多孔フィルムの耐熱性を向上させることが可能となる。
塗工液に用いられる溶媒としては、重合性化合物を溶解又は分散させることができれば、特に限定されず、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸エチル、クロロホルムなどが挙げられる。なかでも、酢酸エチル、エタノール、メタノール、アセトンが好ましい。これらの溶媒は、塗工液を合成樹脂微多孔フィルム表面に塗工した後に円滑に除去することができる。さらに、上記溶媒は、リチウムイオン二次電池などの二次電池を構成している電解液との反応性が低く、安全性にも優れている。
塗工液中における重合性化合物の含有量は、3〜20重量%が好ましく、5〜15重量%がより好ましい。重合性化合物の含有量を上記範囲内とすることによって、合成樹脂微多孔フィルム表面に微小孔部を閉塞させることなく皮膜層を均一に形成することができ、したがって、透気性を低下させることなく耐熱性が向上されている耐熱性合成樹脂微多孔フィルムを製造することができる。
合成樹脂微多孔フィルム表面への重合性化合物の塗工方法としては、特に制限されず、例えば、(1)合成樹脂微多孔フィルム表面に重合性化合物を塗布する方法;(2)重合性化合物中に合成樹脂微多孔フィルムを浸漬して、合成樹脂微多孔フィルム表面に重合性化合物を塗工する方法;(3)重合性化合物を溶媒中に溶解又は分散させて塗工液を作製し、この塗工液を合成樹脂微多孔フィルムの表面に塗布した後、合成樹脂微多孔フィルムを加熱して溶媒を除去する方法;及び(4)重合性化合物を溶媒中に溶解又は分散させて塗工液を作製し、この塗工液中に合成樹脂微多孔フィルムを浸漬して、塗工液を合成樹脂微多孔フィルム中に塗工した後、合成樹脂微多孔フィルムを加熱して溶媒を除去する方法が挙げられる。なかでも、上記(3)(4)の方法が好ましい。これらの方法によれば、ラジカル重合性モノマーを合成樹脂微多孔フィルム表面に均一に塗工することができる。
上記(3)及び(4)の方法において、溶媒を除去するための合成樹脂微多孔フィルムの加熱温度は、用いられる溶媒の種類や沸点によって設定することができる。溶媒を除去するための合成樹脂微多孔フィルムの加熱温度は、50〜140℃が好ましく、70〜130℃がより好ましい。加熱温度を上記範囲内とすることによって、合成樹脂微多孔フィルムの熱収縮や微小孔部の閉塞を低減しつつ、塗工された溶媒を効率的に除去することができる。
上記(3)及び(4)の方法において、溶媒を除去するための合成樹脂微多孔フィルムの加熱時間は、特に制限されず、用いられる溶媒の種類や沸点によって設定することができる。溶媒を除去するための合成樹脂微多孔フィルムの加熱時間は、0.02〜60分が好ましく、0.1〜30分がより好ましい。
上述の通り、合成樹脂微多孔フィルム表面に重合性化合物又は塗工液を塗工することによって、合成樹脂微多孔フィルム表面に重合性化合物を付着させることができる。
(照射工程)
次に、重合性化合物が塗工された合成樹脂微多孔フィルムに活性エネルギー線を照射する。これにより重合性化合物を重合させて、重合性化合物の重合体を含む皮膜層を、合成樹脂微多孔フィルム表面の少なくとも一部、好ましくは表面全面に一体的に形成することができる。
皮膜層は、上述の通り、2官能以上のラジカル重合性官能基を有する重合性化合物の重合体を含んでいる。このような重合体を含んでいる皮膜層は高い硬度を有しており、これにより耐熱性合成樹脂微多孔フィルムの高温下における熱収縮が低減し、耐熱性を向上させることができる。
更に、活性エネルギー線を照射することで、合成樹脂微多孔フィルム中に含まれている合成樹脂の一部が分解して、合成樹脂微多孔フィルムの引き裂き強度などの機械的強度が低下する可能性がある。しかしながら、2官能以上のラジカル重合性官能基を有する重合性化合物の重合体を含む皮膜層は、高い硬度を有していると共に、適度な弾性及び伸度を有している。したがって、皮膜層の適度な弾性及び伸度によって、合成樹脂微多孔フィルムの機械的強度の低下を補うことができ、これにより耐熱性合成樹脂微多孔フィルムの機械的強度の低下を高く低減しつつ、耐熱性を向上させることが可能となる。
また、2官能以上のラジカル重合性官能基を有する重合性化合物は合成樹脂微多孔フィルムに対する馴染み性に優れていることから、合成樹脂微多孔フィルムに微小孔部を閉塞させることなく重合性化合物を塗工することができる。これにより、合成樹脂微多孔フィルムの微小孔部に対応する箇所に、厚み方向に貫通する貫通孔を有している皮膜層を形成することができる。したがって、このような皮膜層によれば、透気性を低下させることなく、耐熱性が向上された耐熱性合成樹脂微多孔フィルムを提供することができる。
活性エネルギー線としては、特に限定されず、例えば、電子線、プラズマ、紫外線、α線、β線、γ線などが挙げられる。
活性エネルギー線として電子線を用いる場合、合成樹脂微多孔フィルムに対する電子線の加速電圧は、特に制限されないが、50〜300kVが好ましく、100〜250kVがより好ましい。電子線の加速電圧を上記範囲内とすることによって、合成樹脂微多孔フィルム中の合成樹脂の劣化を低減しながら皮膜層を形成することができる。
活性エネルギー線として電子線を用いる場合、合成樹脂微多孔フィルムに対する電子線の照射線量は、特に制限されないが、10〜150kGyが好ましく、10〜100kGyがより好ましい。電子線の照射線量を上記範囲内とすることによって、合成樹脂微多孔フィルム中の合成樹脂の劣化を低減しながら皮膜層を形成することができる。
活性エネルギー線としてプラズマを用いる場合、合成樹脂微多孔フィルムに対するプラズマのエネルギー密度は、特に限定されないが、5〜50J/cm2が好ましく、5〜48J/cm2がより好ましく、10〜45J/cm2が特に好ましい。
活性エネルギー線として紫外線を用いる場合、合成樹脂微多孔フィルムに対する紫外線の積算光量は、1000〜5000mJ/cm2が好ましく、1000〜4000mJ/cm2がより好ましく、1500〜3700mJ/cm2が特に好ましい。なお、活性エネルギー線として紫外線を用いる場合、上記塗工液に光重合開始剤が含まれていることが好ましい。光重合開始剤としては、例えば、ベンゾフェノン、ベンジル、メチル−o−ベンゾイルベンゾエート、及びアントラキノンなどが挙げられる。
活性エネルギー線としては、紫外線、電子線、プラズマが好ましく、電子線が特に好ましい。電子線によれば、適度に高いエネルギーを有していることから、電子線の照射によって合成樹脂微多孔フィルム中の合成樹脂にもラジカルを充分に発生させて、合成樹脂の一部と重合性化合物の重合体の一部との化学的な結合を多く形成することができる。
[耐熱性合成樹脂微多孔フィルム]
本発明の耐熱性合成樹脂微多孔フィルムでは、合成樹脂微多孔フィルム表面に皮膜層が積層一体化されている。2官能以上のラジカル重合性官能基を有する重合性化合物を用いることによって、上述した通り、合成樹脂微多孔フィルムの微小孔部に対応する箇所に、厚み方向に貫通する貫通孔を有している皮膜層を形成することができる。これにより、皮膜層の形成による合成樹脂微多孔フィルムの微小孔部の閉塞を低減することができる。
耐熱性合成樹脂微多孔フィルムの表面開口率は、特に限定されないが、30〜55%が好ましく、30〜50%がより好ましい。上述した通り、皮膜層の形成によって合成樹脂微多孔フィルムの微小孔部の閉塞が低減されており、これにより耐熱性合成樹脂微多孔フィルムの表面開口率を上記範囲内にすることができる。表面開口率が上記範囲内である耐熱性合成樹脂微多孔フィルムは、機械的強度とイオン透過性の双方に優れている。なお、耐熱性合成樹脂微多孔フィルムの表面開口率は、上述した合成樹脂微多孔フィルムの表面開口率の測定方法と同じ方法により測定することができる。
耐熱性合成樹脂微多孔フィルムの透気度は、特に限定されないが、50〜600sec/100mLが好ましく、100〜300sec/100mLがより好ましい。本発明の耐熱性合成樹脂微多孔フィルムは、上述の通り、皮膜層の形成による透気性の低下が低減されている。したがって、本発明の耐熱性合成樹脂微多孔フィルムの透気度を上記範囲内にすることができる。なお、耐熱性合成樹脂微多孔フィルムの透気度は、上述した合成樹脂微多孔フィルムの透気度の測定方法と同じ方法により測定することができる。
耐熱性合成樹脂微多孔フィルムを25℃から180℃まで5℃/分の昇温速度にて加熱した際の、耐熱性合成樹脂微多孔フィルムの最大熱収縮率は、特に限定されないが、20%以下が好ましく、5〜20%がより好ましく、8〜17%が特に好ましい。耐熱性合成樹脂微多孔フィルムは、皮膜層によって高温下における熱収縮が低減されており、優れた耐熱性を有している。したがって、耐熱性合成樹脂微多孔フィルムは最大熱収縮率を20%以下とすることができる。
なお、耐熱性合成樹脂微多孔フィルムの最大熱収縮率の測定は、次の通りに行うことができる。まず、耐熱性合成樹脂微多孔フィルムから幅3mm×長さ30mmの平面長方形状の試験片を切り出す。この時、耐熱性合成樹脂微多孔フィルムの長さ方向(押出方向)を試験片の長さ方向と平行にする。試験片の長さ方向の両端をつかみ具により把持して、TMA測定装置(例えば、セイコーインスツル社製 商品名「TMA−SS6000」など)に取り付ける。この時、つかみ具間の距離を10mmとし、つかみ具は試験片の熱収縮に伴って移動可能とする。そして、試験片に長さ方向に19.6mN(2gf)の張力を加えた状態で、試験片を25℃から180℃まで5℃/分の昇温速度にて加熱し、各温度においてつかみ具間の距離を測定し、つかみ具間の距離が最も短かった距離Lmax(mm)から下記式に基づいて熱収縮率を算出する。
熱収縮率(%)=100×(10−Lmax)/10
耐熱性合成樹脂微多孔フィルムの突き刺し強度は、0.7N以上が好ましく、0.8N以上がより好ましく、1.0N以上が特に好ましい。耐熱性合成樹脂微多孔フィルムの突き刺し強度は、3.0N以下が好ましく、2.5N以下がより好ましく、2.0N以下が特に好ましい。耐熱性合成樹脂微多孔フィルムには、皮膜層によって、機械的強度の低下を高く低減しつつ耐熱性を付与することができる。したがって、耐熱性合成樹脂微多孔フィルムは、機械的強度に優れており、突き刺し強度を0.7N以上とすることができる。このような耐熱性合成樹脂微多孔フィルムは、デンドライトにより突き破られ難く、デンドライト(樹枝状結晶)による微小な内部短絡(デンドライトショート)の発生を低減することができる。さらに、上記耐熱性合成樹脂微多孔フィルムは、セパレータの製造時や電池組立時に破断や裂けが発生し難い。
なお、本発明において、耐熱性合成樹脂微多孔フィルムの突き刺し強度は、JIS Z1707(1998)に準拠して測定することができる。具体的には、直径1.0mm、先端形状が半径0.5mmの半円形である針を50mm/分の速度で耐熱性合成樹脂微多孔フィルムに突刺し、針が貫通するまでの最大応力を突き刺し強度とする。
耐熱性合成樹脂微多孔フィルムのゲル分率は、5重量%以上が好ましく、10重量%以上がより好ましく、30重量%以上が特に好ましい。ゲル分率を5重量%以上とすることによって、2官能以上のラジカル重合性官能基を有する重合性化合物を含む皮膜層が強固に形成されており、これにより耐熱性合成樹脂微多孔フィルムの熱収縮を低減することができる。また、耐熱性合成樹脂微多孔フィルムのゲル分率は、99重量%以下が好ましく、60重量%以下がより好ましい。ゲル分率を99重量%以下とすることによって、耐熱性合成樹脂微多孔フィルムの機械的強度の低下を低減することができる。
本発明において、耐熱性合成樹脂微多孔フィルムのゲル分率の測定は、次の手順に従って行うことができる。先ず、耐熱性合成樹脂微多孔フィルムを切断することにより、約0.1gの試験片を得る。この試験片の重量[W1(g)]を秤量した後に、試験片を試験管に充填する。次に、試験管に20mLのキシレンを注ぎ、試験片全体をキシレンに浸す。試験管にアルミ製のフタを被せて、130℃に加熱した油浴中に試験管を24時間浸漬する。油浴から取り出した試験管内の内容物を温度が下がる前に速やかにステンレス製メッシュかご(#200)にあけて不溶物をろ過する。なお、メッシュかごの重量[W0(g)]は事前に秤量しておく。メッシュかご及びろ過物を80℃で7時間で減圧乾燥した後、メッシュかご及びろ過物の重量[W2(g)]を秤量する。そして、次式に従いゲル分率を計算する。
ゲル分率[重量%]=100×(W2−W0)/W1
本発明の耐熱性合成樹脂微多孔フィルムは、非水電解液二次電池用セパレータとして好適に用いられる。非水電解液二次電池としては、リチウムイオン二次電池などが挙げられる。本発明の耐熱性合成樹脂微多孔フィルムは、耐熱性に優れていることから、このような耐熱性合成樹脂微多孔フィルムをセパレータとして用いることによって、電池内部が高温となった場合であっても電極間の電気的な短絡が抑制されている非水電解液二次電池を提供することができる。
非水電解液とは、水を含まない溶媒に電解質塩を溶解させた電解液である。リチウムイオン二次電池に用いられる非水電解液としては、例えば、非プロトン性有機溶媒に、リチウム塩を溶解した非水電解液が挙げられる。非プロトン性有機溶媒としては、プロピレンカーボネート、及びエチレンカーボネートなどの環状カーボネートと、ジエチルカーボネート、メチルエチルカーボネート、及びジメチルカーボネートなどの鎖状カーボネートとの混合溶媒などが挙げられる。また、リチウム塩としては、LiPF6、LiBF4、LiClO4、及びLiN(SO2CF32などが挙げられる。
本発明では、2官能以上のラジカル重合性官能基を有する重合性化合物の重合体を含んでいる皮膜層を用いることによって、機械的強度の低下を低減しつつ、耐熱性が向上された耐熱性合成樹脂微多孔フィルムを提供することができる。
以下に、本発明を実施例を用いてより具体的に説明するが、本発明はこれに限定されない。
[実施例1]
1.ホモポリプロピレン微多孔フィルムの作製
(押出工程)
ホモポリプロピレン(重量平均分子量413000、分子量分布9.3、融点163℃、融解熱量96mJ/mg)を押出機に供給して、樹脂温度200℃にて溶融混練し、押出機先端に取り付けられたTダイからフィルム状に押出し、表面温度が30℃となるまで冷却してホモポリプロピレンフィルム(厚み30μm)を得た。なお、押出量は9kg/時間、成膜速度は22m/分、ドロー比は83であった。
(養生工程)
得られたホモポリプロピレンフィルムを雰囲気温度150℃の熱風炉中に24時間に亘って静置して養生した。
(第1延伸工程)
養生したホモポリプロピレンフィルムを一軸延伸装置を用いて、表面温度が23℃となるようにして50%/分の延伸速度にて延伸倍率1.2倍に押出方向にのみ一軸延伸した。
(第2延伸工程)
続いて、ホモポリプロピレンフィルムを一軸延伸装置を用いて、表面温度が120℃となるようにして42%/分の延伸速度にて延伸倍率2倍に押出方向にのみ一軸延伸した。
(アニーリング工程)
しかる後、ホモポリプロピレンフィルムをその表面温度が130℃となるように且つホモポリプロピレンフィルムに張力が加わらないようにして10分間に亘って加熱し、ホモポリプロピレンフィルムにアニールを施して、ホモポリプロピレン微多孔フィルム(厚み25μm)を得た。なお、アニール時のホモポリプロピレンフィルムの収縮率は20%とした。
得られたホモポリプロピレン微多孔フィルムは、透気度が110sec/100mL、表面開口率が40%、微小孔部の開口端の最大長径が600nm、微小孔部の開口端の平均長径が360nm、孔密度が30個/μm2であった。
2.皮膜層の形成
(塗工工程)
溶媒として酢酸エチル90重量%、及び重合性化合物としてトリメチロールプロパントリ(メタ)アクリレートのエチレンオキサイド変性物(1分子中のラジカル重合性官能基数3、エチレンオキサイドの平均付加モル数3.5モル、大阪有機化学社製 商品名「ビスコート#360」)10重量%を含んでいる塗工液を用意した。次に、塗工液をホモポリプロピレン微多孔フィルム表面に塗工した後、ホモポリプロピレン微多孔フィルムを80℃で2分間加熱することにより溶媒を除去した。これによりホモポリプロピレン微多孔フィルム表面全面に重合性化合物を付着させた。
(照射工程)
次に、窒素雰囲気下、ホモポリプロピレン微多孔フィルムに、加速電圧200kV、照射線量35kGyで、電子線を照射し、重合性化合物を重合させた。これにより、ホモポリプロピレン微多孔フィルムの表面及びこの表面に連続する微小孔部の開口端部の壁面にラジカル重合性モノマーの重合体を含む皮膜層が形成されている耐熱性ホモポリプロピレン微多孔フィルムを得た。
[実施例2]
溶媒として酢酸エチル90重量%、及び重合性化合物として2官能以上の(メタ)アクリロイル基を有する樹枝状ポリマー(重量平均分子量2000、大阪有機化学社製 商品名「ビスコート#1000」)10重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[実施例3]
溶媒として酢酸エチル90重量%、及び重合性化合物として2官能以上の(メタ)アクリロイル基を有する樹枝状ポリマー(重量平均分子量20000、大阪有機化学社製 商品名「SUBARU−501」)10重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[実施例4]
溶媒として酢酸エチル90重量%、及び重合性化合物としてペンタエリスリトールテトラアクリレートのエチレンオキサイド変性物(1分子中のラジカル重合性官能基数4、エチレンオキサイドの平均付加モル数4モル、Miwon社製、商品名「Miramer M4004」)10重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[実施例5]
溶媒として酢酸エチル90重量%、及び重合性化合物としてトリメチロールプロパントリアクリレートのエチレンオキサイド変性物(1分子中のラジカル重合性官能基数3、エチレンオキサイドの平均付加モル数6モル、Miwon社製、商品名「Miramer M3160」)10重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[実施例6]
溶媒として酢酸エチル90重量%、及び重合性化合物としてトリメチロールプロパントリアクリレートのエチレンオキサイド変性物(1分子中のラジカル重合性官能基数3、エチレンオキサイドの平均付加モル数9モル、Miwon社製、商品名「Miramer M3190」、)10重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[実施例7]
溶媒として酢酸エチル90重量%、及び重合性化合物としてトリメチロールプロパントリアクリレートのプロピレンオキサイド変性物(1分子中のラジカル重合性官能基数3、プロピレンオキサイドの平均付加モル数3モル、サートマー社製 商品名「SR492」)10重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[実施例8]
溶媒として酢酸エチル90重量%、及び重合性化合物としてトリメチロールプロパントリアクリレートのプロピレンオキサイド変性物(1分子中のラジカル重合性官能基数3、プロピレンオキサイドの平均付加モル数6モル、サートマー社製 商品名「SR501」)10重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[実施例9]
溶媒として酢酸エチル90重量%、及び重合性化合物としてグリセリルトリアクリレートのエチレンオキサイド変性物(1分子中のラジカル重合性官能基数3、エチレンオキサイドの平均付加モル数3モル、新中村化学社製 商品名「A−GYL−3E」)10重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[実施例10]
溶媒として酢酸エチル90重量%、及び重合性化合物としてジペンタエリスリトールヘキサアクリレートのイソプロピレンオキサイド変性物(1分子中のラジカル重合性官能基数6、イソプロピレンオキサイドの平均付加モル数6モル、新中村化学社製 商品名「A−DPH−6P」)10重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[比較例1]
溶媒として酢酸エチル90重量%、並びに重合性化合物として、ペンタエリスリトールテトラキス(3−メルカプトブチレート)[カレンズMT(登録商標)PE−1]3.8重量%、及びトリアリルイソシアヌレート(TAIC)6.2重量%を含んでいる塗工液を用いた以外は、実施例1と同様にして、耐熱性ホモポリプロピレン微多孔フィルムを作製した。
[評価]
実施例及び比較例において作製した耐熱性ホモポリプロピレン微多孔フィルムについて、表面開口率、透気度、25℃から180℃まで5℃/分の昇温速度にて加熱した際の最大熱収縮率、突き刺し強度、ゲル分率を、上述した方法により測定し、結果を表1に示した。また、耐熱性ホモポリプロピレン微多孔フィルム中における、ホモポリプロピレン微多孔フィルム100重量部に対する、皮膜層の含有量を表1に示した。
Figure 0005934438
(関連出願の相互参照)
本出願は、2014年3月18日に出願された日本国特許出願第2014−55478号に基づく優先権を主張し、この出願の開示はその全体を参照することにより本明細書に組み込まれる。
本発明の耐熱性合成樹脂微多孔フィルムは、機械的強度の低下を低減しつつ、耐熱性が向上されており、非水電解液二次電池のセパレータとして好適に用いることができる。

Claims (9)

  1. 合成樹脂を含んでいる合成樹脂微多孔フィルムと、
    上記合成樹脂微多孔フィルム表面の少なくとも一部に形成されてなると共に、2官能以上のラジカル重合性官能基を有し且つ上記ラジカル重合性官能基が(メタ)アクリロイル基である重合性化合物の重合体を含んでいる皮膜層と、を有し、
    表面開口率が30〜55%であり、透気度が50〜600sec/100mLであり、25℃から180℃まで5℃/分の昇温速度で加熱した際の最大熱収縮率が20%以下であり、且つ突き刺し強度が0.7N以上であることを特徴とする耐熱性合成樹脂微多孔フィルム。
  2. 突き刺し強度が1.0N以上であることを特徴とする請求項1に記載の耐熱性合成樹脂微多孔フィルム。
  3. 重合性化合物が、多官能性(メタ)アクリレート変性物、2官能以上の(メタ)アクリロイル基を有する樹枝状ポリマー、及び2官能以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートオリゴマーよりなる群から選択される少なくとも一種であることを特徴とする請求項1又は請求項2に記載の耐熱性合成樹脂微多孔フィルム。
  4. ゲル分率が5重量%以上であることを特徴とする請求項1〜のいずれか1項に記載の耐熱性合成樹脂微多孔フィルム。
  5. 合成樹脂が、プロピレン系樹脂を含んでいることを特徴とする請求項1〜の何れか1項に記載の耐熱性合成樹脂微多孔フィルム。
  6. 請求項1〜のいずれか1項に記載の耐熱性合成樹脂微多孔フィルムを含んでいることを特徴とする非水電解液二次電池用セパレータ。
  7. 請求項に記載の非水電解液二次電池用セパレータを含んでいることを特徴とする非水電解液二次電池。
  8. 合成樹脂を含んでいる合成樹脂微多孔フィルム表面の少なくとも一部に、2官能以上のラジカル重合性官能基を有し且つ上記ラジカル重合性官能基が(メタ)アクリロイル基である重合性化合物を塗工した後、上記合成樹脂微多孔フィルムに活性エネルギー線を照射することにより、25℃から180℃まで5℃/分の昇温速度で加熱した際の最大熱収縮率が20%以下であり、且つ突き刺し強度が0.7N以上である耐熱性合成樹脂微多孔フィルムを得ることを特徴とする耐熱性合成樹脂微多孔フィルムの製造方法。
  9. 重合性化合物が、多官能性(メタ)アクリレート変性物、2官能以上の(メタ)アクリロイル基を有する樹枝状ポリマー、及び2官能以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートオリゴマーよりなる群から選択される少なくとも一種であることを特徴とする請求項に記載の耐熱性合成樹脂微多孔フィルムの製造方法。
JP2015514271A 2014-03-18 2015-03-05 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池 Active JP5934438B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014055478 2014-03-18
JP2014055478 2014-03-18
PCT/JP2015/056473 WO2015141477A1 (ja) 2014-03-18 2015-03-05 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池

Publications (2)

Publication Number Publication Date
JP5934438B2 true JP5934438B2 (ja) 2016-06-15
JPWO2015141477A1 JPWO2015141477A1 (ja) 2017-04-06

Family

ID=54144451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015514271A Active JP5934438B2 (ja) 2014-03-18 2015-03-05 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池

Country Status (8)

Country Link
US (1) US20170012265A1 (ja)
EP (1) EP3121872A4 (ja)
JP (1) JP5934438B2 (ja)
KR (1) KR20160133399A (ja)
CN (1) CN105830252A (ja)
RU (1) RU2016140618A (ja)
TW (1) TW201539843A (ja)
WO (1) WO2015141477A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170155114A1 (en) * 2015-11-30 2017-06-01 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
JP6657055B2 (ja) * 2015-11-30 2020-03-04 住友化学株式会社 非水電解液二次電池用セパレータ
WO2018155287A1 (ja) * 2017-02-23 2018-08-30 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
US11094997B2 (en) * 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
WO2019151271A1 (ja) * 2018-01-31 2019-08-08 富士フイルム株式会社 親水性多孔質膜
KR102190247B1 (ko) * 2018-12-21 2020-12-11 삼성에스디아이 주식회사 다공성 내열층 조성물, 이로부터 형성된 내열층을 포함하는 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
CN113904058B (zh) * 2021-10-09 2023-08-29 远景动力技术(江苏)有限公司 隔膜及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106552A (ja) * 1997-09-30 1999-04-20 Tonen Kagaku Kk 親水化ポリオレフィン微多孔膜及びその製造方法
JP2001151834A (ja) * 1999-06-07 2001-06-05 Toshiba Corp パターン形成材料、多孔質構造体の製造方法、パターン形成方法、電気化学セル、中空糸フィルター、多孔質カーボン構造体の製造方法、キャパシタの製造方法、および燃料電池の触媒層の製造方法
JP2003059480A (ja) * 2001-08-16 2003-02-28 Yuasa Corp 電池用セパレータおよびそれを用いた電池
JP2006179278A (ja) * 2004-12-22 2006-07-06 Nitto Denko Corp 電池用セパレータとこれを用いる電池の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022793A (ja) 2001-07-09 2003-01-24 Oji Paper Co Ltd 電池用セパレータ及び電池
CN101226994B (zh) * 2007-12-21 2010-06-30 成都中科来方能源科技有限公司 无纺布增强微孔聚合物隔膜及其制备方法和用途
WO2009119436A1 (ja) * 2008-03-27 2009-10-01 藤倉化成株式会社 プラスチック基材用塗料組成物、それより形成された塗膜、および形成体
KR101502040B1 (ko) * 2011-09-29 2015-03-12 가부시키가이샤 히타치세이사쿠쇼 비수 전해질 2차 전지용 세퍼레이터, 그 제조 방법 및 비수 전해질 2차 전지
US9287544B2 (en) * 2011-10-03 2016-03-15 Hitachi Maxell, Ltd. Heat-resistant porous film, separator for nonaqueous battery, and nonaqueous battery
WO2013080876A1 (ja) * 2011-11-29 2013-06-06 積水化学工業株式会社 プロピレン系樹脂微孔フィルム、電池用セパレータ、電池及びプロピレン系樹脂微孔フィルムの製造方法
KR101559709B1 (ko) * 2012-11-06 2015-10-12 세키스이가가쿠 고교가부시키가이샤 내열성 합성 수지 미다공 필름 및 그의 제조 방법, 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106552A (ja) * 1997-09-30 1999-04-20 Tonen Kagaku Kk 親水化ポリオレフィン微多孔膜及びその製造方法
JP2001151834A (ja) * 1999-06-07 2001-06-05 Toshiba Corp パターン形成材料、多孔質構造体の製造方法、パターン形成方法、電気化学セル、中空糸フィルター、多孔質カーボン構造体の製造方法、キャパシタの製造方法、および燃料電池の触媒層の製造方法
JP2003059480A (ja) * 2001-08-16 2003-02-28 Yuasa Corp 電池用セパレータおよびそれを用いた電池
JP2006179278A (ja) * 2004-12-22 2006-07-06 Nitto Denko Corp 電池用セパレータとこれを用いる電池の製造方法

Also Published As

Publication number Publication date
WO2015141477A1 (ja) 2015-09-24
KR20160133399A (ko) 2016-11-22
TW201539843A (zh) 2015-10-16
EP3121872A1 (en) 2017-01-25
CN105830252A (zh) 2016-08-03
JPWO2015141477A1 (ja) 2017-04-06
EP3121872A4 (en) 2017-08-09
US20170012265A1 (en) 2017-01-12
RU2016140618A (ru) 2018-04-19

Similar Documents

Publication Publication Date Title
JP5934438B2 (ja) 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池
JP5593003B1 (ja) 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池
JP2017203145A (ja) 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ
JP2015221889A (ja) 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5996801B2 (ja) 耐熱性合成樹脂微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池
JP2016199734A (ja) 耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び耐熱性合成樹脂微多孔フィルムのその製造方法
JP6046835B2 (ja) 耐熱性合成樹脂微多孔フィルム及びセパレータの製造方法
JP2015063639A (ja) 耐熱性プロピレン系樹脂微多孔フィルムの製造方法、耐熱性プロピレン系樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2017078152A (ja) 耐熱性合成樹脂微多孔フィルム及びその製造方法
JP2017078153A (ja) オレフィン系樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2015212322A (ja) 耐熱性微多孔フィルムの製造方法、耐熱性微多孔フィルム、非水電解液二次電池用セパレータ及び非水電解液二次電池
JP2015214689A (ja) 耐熱性微多孔フィルム及びその製造方法、非水電解液二次電池用セパレータ並びに非水電解液二次電池
JP2015221558A (ja) 耐熱性微多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び耐熱性微多孔フィルムの製造方法
JP2016088976A (ja) 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2017057238A (ja) 耐熱性合成樹脂微多孔フィルム
JP2017095576A (ja) オレフィン系樹脂微多孔二軸延伸フィルム及びその製造方法、並びに、耐熱性オレフィン系樹脂微多孔二軸延伸フィルム及びその製造方法
JP2017132107A (ja) 耐熱性合成樹脂微多孔フィルム
JP2016091687A (ja) 積層型電池の製造方法
JPWO2017104760A1 (ja) 合成樹脂微多孔フィルム及びその製造方法、蓄電デバイス用セパレータ、並びに蓄電デバイス
JP2015131874A (ja) 耐熱性合成樹脂微多孔フィルムの製造方法、耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2017186477A (ja) 耐熱性合成樹脂微多孔フィルム
JP2017132105A (ja) 耐熱性合成樹脂微多孔フィルム
JP2017170723A (ja) 耐熱性合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び耐熱性合成樹脂微多孔フィルムのその製造方法
JP2017132106A (ja) 耐熱性合成樹脂微多孔フィルム
JP2015209619A (ja) 耐熱性合成樹脂繊維集合体、非水電解液二次電池用セパレータ、非水電解液二次電池及び耐熱性合成樹脂繊維集合体の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R151 Written notification of patent or utility model registration

Ref document number: 5934438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350