WO2014019513A2 - 稀土金属、稀土金属合金及熔融盐电解制备稀土金属、稀土金属合金的方法 - Google Patents

稀土金属、稀土金属合金及熔融盐电解制备稀土金属、稀土金属合金的方法 Download PDF

Info

Publication number
WO2014019513A2
WO2014019513A2 PCT/CN2013/080522 CN2013080522W WO2014019513A2 WO 2014019513 A2 WO2014019513 A2 WO 2014019513A2 CN 2013080522 W CN2013080522 W CN 2013080522W WO 2014019513 A2 WO2014019513 A2 WO 2014019513A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis
rare earth
earth metal
alloy
cathode
Prior art date
Application number
PCT/CN2013/080522
Other languages
English (en)
French (fr)
Other versions
WO2014019513A3 (zh
Inventor
栾文洲
苗睿瑛
李宗安
陈德宏
王志强
张志琦
张小伟
郭栩毅
周林
Original Assignee
有研稀土新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司 filed Critical 有研稀土新材料股份有限公司
Priority to JP2014551524A priority Critical patent/JP5993957B2/ja
Publication of WO2014019513A2 publication Critical patent/WO2014019513A2/zh
Publication of WO2014019513A3 publication Critical patent/WO2014019513A3/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32

Definitions

  • the present invention relates to the field of preparation of rare earth metal alloys, and more particularly to a method for preparing rare earth metals and rare earth metal alloys by electrolytic treatment of rare earth metals, rare earth metal alloys and molten salts, and more particularly to directly preparing rare earth metals by molten salt electrolysis.
  • Rare earth metals/alloys play a decisive role in the field of new materials, such as rare earth permanent magnet materials, rare earth hydrogen storage materials, rare earth core materials, giant magnetostrictive materials, magnetic refrigeration materials, etc., rare earth metals/alloys or high An essential basic raw material for new functional materials of pure rare earth metals/alloys as the main component or additive.
  • Rare earth metals/alloys are not only widely used in traditional industries such as metallurgy and petrochemical industry, but also indispensable in the fields of magnetism, fiber optic communication, hydrogen storage energy, superconductivity, etc., directly affecting optical instruments, electronics, aerospace, nuclear industry. The speed and level of development of emerging high-tech industries.
  • rare earth metals/alloys There are three main methods for preparing rare earth metals/alloys, including pure metal melt-on-doping, reduction-diffusion, and molten salt electrolysis.
  • pure metal melting requires pure metal as raw material, long processing process, high cost and easy segregation; the process of reduction diffusion method is complicated and long, and the final product has low purity and easy to mix impurities. Due to the large atomic radius of rare earth elements, the shielding effect of the inner electrons on the outer electrons weakens the attraction of the nucleus to the outer electrons.
  • the rare earth elements are very active, and the electrode potential is relatively negative (-2.52 ⁇ - 2.25V), and it is difficult to electrodeposit in an aqueous solution, so the electrolysis of rare earth metals and alloys is usually carried out in a molten salt system.
  • the conventional molten salt electrolysis method uses a fluorine salt system oxide co-deposition method to prepare a rare earth metal/alloy, which is economical and convenient, can be continuously produced without a reducing agent.
  • the conventional molten salt electrolysis method can hardly obtain the rare-earth rare earth metal, and it is difficult to continuously produce the variable-value rare earth metal alloy in a large amount.
  • a new metal and alloy preparation technique of the invention - FRY-Farthing-Chen Cambridge Process 0 This method is simple in process, low in cost and environmentally friendly, and is also called molten salt electro-deoxidation method.
  • the core of the FFC Cambridge process is to make a solid oxide into a cathode and electrolyze at a temperature below the melting point of the metal and the melting salt decomposition voltage, during which the metal oxide is electrolytically reduced, oxygen ions enter the molten salt and migrate to the anode discharge, at the cathode. It leaves a pure solid metal or alloy.
  • the reaction rate is faster, the current or energy efficiency is higher, and the obtained pure metal is precipitated at the cathode, but as the reaction progresses, the obtained pure metal is enriched on the surface of the cathode, and a solid metal hard shell is gradually formed.
  • DJ Fray and Chen Zheng introduced a method for preparing a metal and alloy powder, that is, a metal compound (MIX) powder is formed into a cathode by, for example, slip casting, pressing and/or sintering, and immersed in a molten salt. Electrodeoxygenation is carried out by applying a cathode potential. This invention is similar to FFC.
  • the cathode was taken out and placed in a vacuum induction furnace, and the ingot was remelted to obtain a final product. Since the electrolysis temperature is lower than 800 ° C, the obtained DyFe and TbFe alloys exhibit a solid state. In the above method, the obtained alloys are all solid, as described above, and in a sense, it is such a form which causes an inefficiency in the electrolysis reaction.
  • the alloy product or the near-end alloy product can be made into a liquid state, and the formation of the liquid alloy is invaluable for the efficiency of the electrolysis reaction.
  • Fa Lu Guangwen introduced the method of preparing bismuth-iron alloy by electrolysis in the first phase of "Rare Earths" in 1974, "Methods for preparing bismuth alloys and high-purity bismuth", using iron-based metals as cathodes, The ruthenium is obtained from the oxide, and then alloyed with iron, nickel, and cobalt.
  • the electrolyte used is barium fluoride (the weight composition of barium fluoride is about 40-90% of the electrolyte) and two or two of lithium fluoride, barium fluoride, calcium fluoride, magnesium fluoride or barium fluoride. More than one mixture.
  • the fluorine salt system oxide co-deposition method has the following disadvantages: using a rare earth fluoride as a main body of an electrolyte system, using an oxide as a raw material, an alloy is obtained by dissolving an oxide first in a rare earth fluoride and then depositing it at a cathode, but Since the rare earth metal has high solubility in its corresponding fluoride electrolyte system, the dissolution loss is large, and the current efficiency is only 41%.
  • the above methods mainly have the following two problems: 1. Most of the inventions are based on the FFC process and are combined by electrochemical deoxidation, active element reduction deoxidation or two deoxygenation processes. However, the cathode products are all solid.
  • the solid cathode product is continuously enriched on the surface of the cathode, which inevitably affects the diffusion of non-metallic elements inside the cathode and the desorption behavior on the cathode surface, thereby affecting the efficiency and purification effect. Although it can be compensated and improved by means of post-treatment of active elements or cathode products, it also brings about complicated process and product pollution problems.
  • Fluoride salt system Oxide electrolysis co-precipitation process is a widely used preparation process of rare earth iron alloy. The oxide is first dissolved in the electrolyte system and then electrically resolved at the cathode.
  • an object of the present invention is to provide a simple and efficient method for preparing a rare earth metal alloy by molten salt electrolysis.
  • a first object of the present invention is to provide a simple and efficient method for preparing a rare earth metal alloy by molten salt electrolysis.
  • a second object of the present invention is to provide a rare earth metal alloy.
  • a third object of the present invention is to provide a simple and efficient method for preparing rare earth metals by molten salt electrolysis.
  • a fourth object of the present invention is to provide a rare earth metal.
  • the present invention adopts the following technical solution: A method for preparing a rare earth metal alloy by molten salt electrolysis, in which the electrolyte is an alkali metal or alkaline earth metal chloride molten salt, the anode is graphite, and the cathode Made of rare earth metal oxides and oxides or metal powders of other alloy components, electrolysis is carried out by direct current electrolysis; the electrolysis temperature during electrolysis is higher than the melting point of the rare earth metal alloy formed and lower than the melting point of the cathode, and the surface of the cathode is first Electrolyzed into a metal liquid film, accumulated to a certain amount and then falls into the bottom of the crucible; the cathode current density satisfies the precipitation of the rare earth metal alloy component at the cathode; the electrolysis voltage is lower than the electrolyte decomposition potential and higher than the corresponding components of the rare earth metal alloy The decomposition potential of the oxide.
  • the rare earth metal alloy product produced by the cathode is in a liquid state.
  • the surface of the solid cathode gradually forms a rare earth metal alloy liquid film, and the liquid alloy that continues to precipitate is condensed by gravity to form an alloy ball dropping below the cathode.
  • the rare earth metal alloy liquid can be collected under the cathode and the rare earth metal alloy liquid can be taken out and cast into a rare earth metal alloy product after a period of time.
  • the rare earth metal alloy of the present invention is selected from the class of rare earth metal bismuth (Sm;), ruthenium (Eu), ruthenium (Tm) or yttrium (Yb).
  • the cathode is solid under electrolytic conditions and insoluble in the electrolyte; the rare earth metal alloy produced by electrolysis is poorly soluble in the electrolyte.
  • the other alloy component is one or more of Fe, Co, Ni, Mg, Al or Mn.
  • the electrolyte is a chloride molten salt of any one or several of Ca, Ba, Li.
  • the present invention adopts another technical solution - a method for preparing a rare earth metal alloy by molten salt electrolysis, in which the electrolyte is an alkali metal or alkaline earth metal chloride molten salt, and the anode is inert.
  • the cathode is made of oxides and/or metal powders of rare earth metal oxides and other alloy components, and is subjected to electrolysis by direct current electrolysis; the electrolysis temperature during electrolysis is higher than the melting point of the rare earth metal alloy formed and lower than The melting point of the cathode, the surface layer of the cathode is first electrolyzed into a metal liquid film, which accumulates to a certain amount and then falls into the crucible at the bottom; the cathode current density satisfies the precipitation of the rare earth metal alloy component at the cathode; the electrolysis voltage is lower than the electrolyte decomposition potential and higher than the rare earth metal The decomposition potential of the oxide corresponding to each component in the alloy.
  • the electrolytic voltage during the electrolysis of the direct current supplied in the above method is 2.8 to 4.9 V, preferably 3.1 to 3.6 V.
  • the rare earth metal in the rare earth metal alloy is lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum or cerium; ⁇ , ⁇ , ⁇ or ⁇ .
  • the cathode is solid under electrolytic conditions and insoluble in the electrolyte; the rare earth metal alloy produced by electrolysis is poorly soluble in the electrolyte.
  • the other alloy component in the above method is one or more of Fe, Cu, Cr, Ti, V, Co, Ni, Mg, Al and Mn; preferably Fe, Co, Ni, Mg, Al And one or more of Mn.
  • the electrolyte is a chloride molten salt of one or more elements of Ca, Ba, Na, K, Li, and Mg; preferably a chloride of any one or more of Ca, Ba, and Li. Molten salt.
  • the present invention adopts the following technical solution: A rare earth metal alloy product prepared by the above method for preparing a rare earth metal alloy by molten salt electrolysis.
  • the present invention adopts a technical solution: a method for preparing a rare earth metal by molten salt electrolysis, in which the electrolyte is an alkali metal or alkaline earth metal chloride molten salt, and the anode is a carbon material or inert.
  • the electrode and the cathode are rare earth metal oxides; electrolysis is carried out by direct current electrolysis, wherein the electrolysis temperature is higher than the melting point of the generated rare earth metal and lower than the melting point of the cathode, and the surface layer of the cathode is first electrolyzed into a metal liquid film to accumulate a certain amount.
  • the cathode current density satisfies the precipitation of the rare earth metal component at the cathode; the electrolysis voltage is lower than the electrolyte decomposition potential and higher than the decomposition potential of the rare earth metal oxide.
  • the electrolytic voltage during the electrolysis of the direct current supplied in the above method is 2.8V-4.0V, preferably 3.1-3.6V.
  • the rare earth metal is lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum or cerium; ⁇ or ⁇ .
  • the cathode is solid under electrolytic conditions and insoluble in the electrolyte; the rare earth metal formed by electrolysis is poorly soluble in the electrolyte.
  • the electrolyte is a chloride molten salt of one or more elements of Ca, Ba, Na, K, Li, and Mg; preferably a chloride of any one or more of Ca, Ba, and Li. Molten salt.
  • the present invention adopts the following technical solution: A rare earth metal product prepared by the above method for preparing a rare earth metal by molten salt electrolysis. Applying the technical solution of the present invention, the advantages are:
  • the present invention ensures that the reaction is continuously and efficiently carried out by controlling the electrolysis temperature and the composition ratio of the cathode product to make the cathode product liquid under electrolysis conditions.
  • the electrolyte is a molten salt system of a binary fluoride of a rare earth fluoride and a lithium fluoride, wherein the rare earth fluoride content accounts for 60 wt% or more.
  • the rare earth fluoride is used as a carrier for the current and the oxidation raw material, on the one hand, the electrolysis process proceeds smoothly, and on the other hand, the dissolution loss and the secondary reaction of the rare earth metal are inevitably caused.
  • the electrolyte of the present invention does not contain rare earth elements, and the rare earth metals and oxides are slightly soluble or insoluble in the electrolyte system, which can greatly reduce the dissolution loss and secondary reaction of the rare earth metal in the molten salt, and improve the electrolysis. Efficiency and rare earth yield.
  • the present invention provides a novel method for preparing a rare earth metal alloy by molten salt electrolysis in order to solve the problems of the prior art process for preparing a rare earth metal alloy, which is complicated, low in efficiency, and easy to pollute the environment.
  • the electrolyte is an alkali metal or alkaline earth metal chloride molten salt
  • the anode is an inert electrode or graphite
  • the cathode is composed of a rare earth metal oxide and other alloy components (in addition to the rare earth metal in the rare earth metal alloy to be prepared)
  • the other components are made of oxides and/or metal powders
  • electrolysis is performed by direct current electrolysis; the electrolysis temperature during electrolysis is higher than the melting point of the generated rare earth metal alloy and lower than the melting point of the cathode (ie, lower than each of the cathodes)
  • the lowest melting point of the material, the surface of the cathode is first electrolyzed into a metal liquid film, which accumulates to a certain amount and
  • the inert electrode includes, but is not limited to, a tungsten electrode, a silver electrode, or a platinum electrode.
  • the rare earth metal alloy product produced by the cathode is in a liquid state.
  • the surface of the solid cathode gradually forms a rare earth metal alloy liquid film, and the liquid alloy that continues to precipitate is aggregated under gravity to form an alloy ball falling below the cathode.
  • a rare earth metal alloy liquid can be collected by placing a dry pot under the cathode, and after a period of time, the metal alloy liquid is taken out and burned into a rare earth metal alloy product.
  • the above method provided by the present invention ensures the continuous and efficient reaction of the reaction by controlling the electrolysis temperature and the composition of the cathode product to make the cathode product liquid under electrolysis conditions.
  • an alloy liquid film insoluble in the molten salt is formed at the cathode, and as the alloy liquid film continues to precipitate, the alloy ball is condensed under the action of gravity to separate from the cathode, and the surface of the solid cathode is not formed by the inclusion, so that the oxygen migration and Desorption is unconstrained, which is beneficial to increase the reaction speed and electrical efficiency.
  • this liquid alloying process promotes the reaction to the direction of metal deposition, which inhibits the formation of stable divalent rare earth ions to a certain extent, and makes the deoxidation process more thorough and efficient.
  • the electrolyte in the present invention does not contain a rare earth element, and the rare earth metal and the oxide are slightly soluble or insoluble in the electrolyte system, which can greatly reduce the dissolution loss and secondary reaction of the rare earth metal in the molten salt, and improve the electrolysis efficiency and Rare earth yield.
  • Those skilled in the art have the ability to perform a liquid phase analysis of a liquid rare earth metal alloy to obtain a ratio between the rare earth metal and the non-rare earth, and then to form a desired cathode material according to the ratio between the two. And selecting a suitable electrolysis temperature based on the cathode material produced and the target metal alloy. For example: yield is 95%, at 890 ° C, a liquid SmFe alloy with a Sm mass content of 81-93 wt.% is obtained. At this time, the cathode is made of Sm oxide and metal powder, and the ratio of the two is Sm.
  • the electrolytic voltage is lower than the decomposition potential of the electrolyte and higher than the decomposition potential of the oxide corresponding to each component in the rare earth metal alloy.
  • the electrolysis voltage is 2.8 to 4.9 V; more preferably, the electrolysis voltage is 3.1 to 3.6 V. In this range, it has the effects of high electrolysis efficiency, stable electrolyte, energy saving and environmental protection.
  • the rare earths selected in the rare earth metal alloys of the present invention include, but are not limited to, ruthenium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium or osmium.
  • the alloy prepared by the above method provided by the present invention is simple, easy to handle, and environmentally friendly.
  • the rare earth metal alloy which can be prepared by the present invention contains other alloy components other than the rare earth metal, including but not limited to one or more of Fe, Cu, Cr, Ti, V, Co, Ni, Mg, Al and Mn. Among them, preferred are Fe, Co, Ni, One or more of Mg, Al and Mn. The use of these components has the effects of high stability, high market demand, and good market prospects.
  • the electrolyte which can be employed in the method for producing a rare earth metal alloy by the molten salt electrolysis of the present invention includes, but is not limited to, a chloride molten salt of any one or more of Ca, Ba, Na, K, Li and Mg. Among them, a chloride molten salt of any one or several of Ca, Ba, and Li is preferable.
  • the cathode is solid under electrolytic conditions and insoluble in the electrolyte; the rare earth metal alloy formed by electrolysis is insoluble in the electrolyte.
  • the present invention provides a rare earth metal alloy product prepared by the method for preparing a rare earth metal alloy by the above molten salt electrolysis. According to this method, the rare earth metals Sm, Eu, Tm and Yb which cannot be prepared by the process can be prepared, and the method has high electrolysis efficiency, high yield, energy saving and environmental protection. At the same time, due to the single raw material, the obtained alloy has high purity and the required content is easy to obtain.
  • the electrolyte is a chloride molten salt of an alkali metal or an alkaline earth metal
  • the anode is a carbon material or an inert electrode, and preferably Graphite
  • the cathode is a rare earth metal oxide
  • electrolysis is carried out by direct current electrolysis, in which the electrolysis temperature is higher than the melting point of the generated rare earth metal and lower than the melting point of the cathode (ie, the melting point of the cathode material), and the cathode surface layer is first electrolyzed into metal
  • the liquid film after accumulating to a certain amount, falls into the crucible at the bottom; the cathode current density satisfies the precipitation of the rare earth metal component at the cathode; the electrolysis voltage is lower than the decomposition potential of the electrolyte and higher than the decomposition potential of the rare earth metal oxide.
  • the inert electrode includes, but is not limited to, a tungsten electrode, a silver electrode, or a platinum electrode.
  • Carbon materials include, but are not limited to, graphite electrodes or carbon electrodes.
  • a molten metal film which is insoluble in the molten salt is formed at the cathode, and as the molten metal film continues to precipitate, it is condensed into a metal ball from the cathode under the action of gravity, and the surface of the solid cathode is not formed by the inclusion, so that the migration of oxygen and Desorption is unconstrained, which is beneficial to increase the reaction speed and electrical efficiency.
  • the metal liquid process promotes the reaction to the direction of metal deposition, which inhibits the formation of stable divalent rare earth ions to a certain extent, and makes the deoxidation process more thorough and efficient.
  • the electrolyte in the present invention does not contain a rare earth element, and the rare earth metal and the oxide are slightly soluble or insoluble in the electrolyte system, which can greatly reduce the dissolution loss and secondary reaction of the rare earth metal in the molten salt, and improve the electrolysis efficiency and Rare earth yield.
  • the electrolysis voltage is lower than the decomposition potential of the electrolyte and higher than the decomposition potential of the oxide corresponding to each component in the rare earth metal alloy.
  • the electrolysis voltage in the preferred electrolysis process is 2.8V - 4.0V, and more preferably, the electrolysis voltage is 3.1 - 3.6V.
  • the rare earth metal prepared by the method for preparing the rare earth metal by the molten salt electrolysis includes, but not limited to, ruthenium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, ⁇ , ⁇ or ⁇ , which is preferably a valence rare earth metal lanthanum, cerium, lanthanum or cerium.
  • the electrolyte which can be employed in the method for preparing a rare earth metal by molten salt electrolysis according to the present invention includes, but is not limited to, a chloride molten salt of any one or more of Ca, Ba, Na, K, Li and Mg, wherein Ca is preferred. a chloride molten salt of any one or several of Ba, Li.
  • the cathode is solid under electrolytic conditions and insoluble in the electrolyte; the rare earth metal formed by electrolysis is insoluble in the electrolyte.
  • the present invention provides a rare earth metal prepared by the method for preparing a rare earth metal by the above molten salt electrolysis.
  • the rare earth metals Sm, Eu, Tm and Yb which cannot be prepared by the process can be prepared, and the method has high electrolysis efficiency, high yield, energy saving and environmental protection. At the same time, the purity of the obtained metal is high due to the single raw material.
  • the method for preparing a rare earth metal and a rare earth metal alloy by electrolysis of the molten salt of the present invention will be further described below by using Examples 1-33 and Comparative Examples 1-24.
  • Example 1 CaCl 2 was used as the molten salt electrolyte
  • graphite was used as the anode
  • the cathode was made of cerium oxide and iron powder.
  • Electrolysis was carried out at 890 ° C, the electrolysis potential was 4.8 V, and the cathode current density was 1.8 A/cm 2 .
  • a liquid SmFe alloy film is obtained on the surface of the solid cathode.
  • the content of bismuth in the alloy is 81 wt.%. After the alloy liquid film accumulates to a certain amount, it falls into the bottom iron shovel. After electrolysis for a while, the bismuth is removed and the alloy is poured into the mold.
  • the main technical indicators are: current efficiency of 78%, yield of 95%, metal consumption per kilogram of 6.210kW-h.
  • Comparative Example 1 A mixture of SmF 3 and CaF 2 was used as a molten salt electrolyte, wherein the content of SmF 3 was 50 wt.%, graphite was used as the anode, and Fe rod was used as the cathode.
  • the cerium oxide was dissolved in the electrolyte for electrolysis, and the electrolysis temperature was 800 ° C.
  • the electrolysis potential is 2.8V
  • the cathode current density is 1.8A/cm 2
  • the niobium content in the control alloy is 87wt.%.
  • the liquid SmFe alloy is obtained. After the alloy liquid film accumulates to a certain amount, it falls into the bottom iron shovel and is electrolyzed for a period of time.
  • Example 2 CaCl 2 is used as molten salt electrolyte, graphite is used as anode, cathode is made of cerium oxide and iron powder, electrolysis is performed at 1000 ° C, electrolysis potential is 4.9 V, cathode current density is 3.2 A/cm 2 , and the content of bismuth in the control alloy is 87wt.%, a liquid TmFe alloy film is obtained on the surface of the solid cathode under the action of direct current.
  • Example 3 CaCl 2 was used as the molten salt electrolyte, graphite was used as the anode, and the cathode was made of cerium oxide and aluminum oxide. Electrolysis was carried out at 900 ° C, the electrolysis potential was 4.9 V, and the cathode current density was 5.2 A/cm 2 . The content of niobium is 88wt.%.
  • the liquid TmAl alloy is obtained on the surface of the solid cathode. After the alloy liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom. After electrolysis for a period of time, the niobium is taken out and the alloy is poured into the mold.
  • the main technical indicators are: current efficiency of 76%, yield of 95%, and electricity consumption per kilogram of metal is 7.211kW-h.
  • Example 4 CaCl 2 was used as the molten salt electrolyte, graphite was used as the anode, and the cathode was made of cerium oxide and cobalt oxide.
  • the electrolysis was carried out at 800 ° C, the electrolysis potential was 2.8 V, and the cathode current density was 1.7 A/cm 2 .
  • the content of niobium is 80 wt.%, and a liquid SmCo alloy is obtained on the surface of the solid cathode. After the alloy liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, the niobium is taken out and the alloy is poured into the mold.
  • the main technical indicators are: current efficiency 72%, yield 95%, metal consumption per kilogram is 7.122kW-h.
  • Comparative Example 3 Using CaCl 2 as the molten salt electrolyte, graphite as the anode, cathode as the yttrium oxide and cobalt oxide, electrolysis at 800 ° C, electrolytic potential 2.8 V, cathode current density 1.7 A / cm 2 , in the control alloy The cerium content was 52 wt.%, and a solid SmCo alloy was obtained on the surface of the solid cathode. After remelting by distillation, it is cast into an alloy product.
  • the main technical indicators are: current efficiency 22%, yield 87%, and electricity consumption per kilogram of metal is 8.532kW-h.
  • Example 5 In a 5% LiCl and 95% CaCl 2 mixed molten salt electrolyte, graphite was used as an anode, and the cathode was made of yttrium oxide and nickel oxide, and electrolyzed at 1040 ° C, electrolytic potential 2.8 V, cathode current density. 2.0 A/cm 2 , the content of niobium in the control alloy is 77wt.%, and the liquid YbNi alloy is obtained on the surface of the solid cathode. After the alloy liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom, and the alloy is taken out after electrolysis for a period of time. Cast into the mold.
  • the main technical indicators are: current efficiency of 77%, yield of 95%, metal consumption per kilogram of 6.981kW-h. Comparative Example 4 Using CaCl 2 as the molten salt electrolyte, graphite as the anode, cathode as the yttrium oxide and nickel oxide, electrolysis at 1040 ° C, electrolytic potential 2.8 V, cathode current density 2.0 A / cm 2 , in the control alloy The niobium content was 58 wt.%, and a solid YbNi alloy was obtained on the surface of the solid cathode. After remelting by distillation, it is cast into an alloy product. The main technical indicators are: current efficiency 20%, yield 86%, metal consumption per kilogram is 8.361kW-h.
  • Example 6 In a 5% BaCl 2 and 95% CaCl 2 mixed molten salt electrolyte, graphite was used as an anode, and the cathode was made of ruthenium oxide and nickel oxide, and electrolyzed at 980 ° C, an electrolytic potential of 2.8 V, a cathode current. The density is 1.9 A/cm 2 , and the content of antimony in the alloy is 79wt.%. The liquid SmNi alloy is obtained on the surface of the solid cathode. After the alloy liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom. The alloy is poured into the mold.
  • the main technical indicators are: current efficiency of 72%, yield of 95%, and electricity consumption per kilogram of metal is 7.211kW-h.
  • Comparative example 6 CaCl 2 is used as molten salt electrolyte, graphite is used as anode, cathode is made of yttrium oxide and nickel oxide, electrolysis at 980 ° C, electrolysis potential is 2.8 V, cathode current density is 1.9 A/cm 2 , and the content of niobium in the control alloy is 50 wt.%, a solid SmNi alloy was obtained on the surface of the solid cathode. After remelting by distillation, it is cast into an alloy product.
  • the main technical indicators are: current efficiency 22%, yield 86%, and electricity consumption per kilogram of metal is 7.211kW-h.
  • Example 7 In a mixed molten salt electrolyte containing 3% BaCl 2 , 5% LiCl and 92% CaCl 2 , graphite was used as an anode, and the cathode was made of cerium oxide and magnesium oxide, and electrolysis was carried out at 800 ° C. 2.8V, cathode current density 1.6 A/cm 2 , control alloy has a niobium content of 70wt.%, and a liquid EuMg alloy is obtained on the surface of the solid cathode.
  • Example 8 CaCl 2 was used as the molten salt electrolyte, graphite was used as the anode, and the cathode was made of cerium oxide and aluminum oxide. The electrolysis was carried out at 1000 ° C, the electrolysis potential was 2.8 V, the cathode current density was 2.1 A/cm 2 , and the alloy was controlled.
  • the content of the middle bismuth is 38wt.%, and the liquid SmAl alloy is obtained on the surface of the solid cathode. After the alloy liquid film accumulates to a certain amount, it falls into the tungsten bismuth at the bottom, and after electrolysis for a period of time, the bismuth is taken out and the alloy is poured into the mold.
  • the main technical indicators are: current efficiency 70%, yield 95%, and electricity consumption per kilogram of metal is 7.211kW-h.
  • Comparative Example 7 CaCl 2 was used as the molten salt electrolyte, graphite was used as the anode, and the cathode was made of yttrium oxide and alumina.
  • the electrolysis was carried out at 1000 ° C, the electrolysis potential was 2.8 V, and the cathode current density was 2.1 A/cm 2 .
  • the niobium content was 70 wt.%, and a solid SmAl alloy was obtained on the surface of the solid cathode. After remelting by distillation, it is cast into an alloy product.
  • the main technical indicators are: current efficiency 23%, yield 96%, electricity consumption per kilogram of metal is 8.215kW-h.
  • Comparative Example 8 Using CaCl 2 as the molten salt electrolyte, graphite as the anode, cathode as the yttrium oxide and alumina, electrolysis at 800 ° C, electrolytic potential 2.8 V, cathode current density 2.1 A / cm 2 , in the control alloy The cerium content was 38 wt.%, and a solid SmAl alloy was obtained on the surface of the solid cathode. After remelting by distillation, it is cast into an alloy product. The main technical indicators are: current efficiency 19%, yield 86%, metal consumption per kilogram of 8.914kW-h.
  • Example 9 CaCl 2 was used as the molten salt electrolyte, graphite was used as the anode, and the cathode was made of cerium oxide and manganese oxide.
  • the electrolysis was carried out at 900 ° C, the electrolysis potential was 2.8 V, and the cathode current density was 2.0 A/cm 2 .
  • the content of niobium is 82 wt.%, and a liquid SmMn alloy is obtained on the surface of the solid cathode. After the alloy liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, the niobium is taken out and the alloy is poured into the mold.
  • the main technical indicators are: current efficiency of 73%, yield of 95%, and electricity consumption per kilogram of metal is 7.215kW-h.
  • Comparative Example 9 Using CaCl 2 as the molten salt electrolyte, graphite as the anode, cathode as the yttrium oxide and manganese oxide, electrolysis at 900 ° C, electrolytic potential 2.8 V, cathode current density 2.0 A / cm 2 , in the control alloy The cerium content was 38 wt.%, and a solid SmMn alloy was obtained on the surface of the solid cathode. After remelting by distillation, it is cast into an alloy product.
  • the main technical indicators are: current efficiency of 13%, yield of 86%, metal consumption per kilogram of 9.011kW-h.
  • Comparative Example 10 CaCl 2 was used as the molten salt electrolyte, graphite was used as the anode, and the cathode was made of cerium oxide and manganese oxide. The electrolysis was carried out at 790 ° C, the electrolysis potential was 2.8 V, and the cathode current density was 2.0 A/cm 2 .
  • the cerium content was 86 wt.%, and a solid SmMn alloy was obtained on the surface of the solid cathode. After remelting by distillation, it is cast into an alloy product.
  • the main technical indicators are: current efficiency of 15%, yield of 87%, and electricity consumption per kilogram of metal is 8.718kW-h.
  • Example 10 CaCl 2 was used as a molten salt electrolyte, graphite was used as an anode, and the cathode was made of ruthenium oxide and iron. Electrolysis was carried out at 890 ° C, the electrolysis potential was 2.8 V, and the cathode current density was 1.8 A/cm 2 . The content is 81wt.%, and a liquid SmFe alloy is obtained on the surface of the solid cathode.
  • Example 11 Using CaCl 2 as a molten salt electrolyte, graphite as an anode, ruthenium oxide, iron oxide and iron as solid cathodes, electrolysis at 890 ° C, electrolysis potential 2.8 V, cathode current density 1.8 A/cm 2 , control The content of antimony in the alloy is 93wt.%, A liquid SmFe alloy is obtained on the surface of the solid cathode.
  • the alloy liquid film After the alloy liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, the crucible is taken out and the alloy is poured into the mold.
  • the main technical indicators are: current efficiency of 73%, yield of 95%, and electricity consumption per kilogram of metal is 7.211kW-h.
  • the main technical indicators are: current efficiency of 85%, yield of 96%.
  • Example 13 CaCl 2 was used as a molten salt electrolyte, graphite was used as an anode, and the cathode was made of ruthenium oxide. Electrolysis was carried out at 830 ° C, and the electrolysis potential was 3.2 V. Under the action of direct current, a liquid Yb film was obtained on the surface of the solid cathode, and the liquid film was accumulated. After a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, the crucible is taken out and poured into the mold.
  • the main technical indicators are: current efficiency 80%, yield 95%.
  • the main technical indicators are: current efficiency of 85%, yield of 95%.
  • the main technical indicators are: current efficiency of 85%, yield of 96%. Comparative Example 130 0 with CaCl 2 as the molten salt electrolyte, graphite as the anode, and ruthenium oxide and nickel oxide as the solid cathode, wherein
  • Nd 2 0 3 :Fe 2 0 3 (82wt.%): (18wt.%), electrolysis at 930 ° C, electrolytic potential 3.3V, control alloy containing The amount is 85 wt.%, and a liquid NdFe alloy is obtained on the surface of the solid cathode. After the alloy liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, the alloy is poured into the mold.
  • the main technical indicators are: current efficiency of 87%, yield of 95%.
  • the electrolysis potential is 3.2V
  • the niobium content in the alloy is controlled to be 75wt.%.
  • the liquid CeCo alloy is obtained on the surface of the solid cathode. After the alloy liquid film accumulates to a certain amount, it falls into the bottom tungsten crucible, and after electrolysis for a period of time, the niobium alloy is taken out.
  • the main technical indicators are: current efficiency of 83%, yield of 94%.
  • the electrolysis potential is 3.2V
  • the content of antimony in the alloy is 55wt.%.
  • the solid CeCo alloy is obtained on the surface of the solid cathode, and is remelted by distillation to be cast into an alloy product.
  • the main technical indicators are: current efficiency is 56%, and yield is 82%.
  • Example 19 Using CaCl 2 as a molten salt electrolyte, graphite as an anode, ruthenium oxide and nickel oxide as a solid cathode, wherein PrsO ⁇ NiO (79 wt.%): (21 wt.%), electrolysis at 960 ° C, electrolysis The potential is 2.8V, and the content of antimony in the alloy is 80wt.%.
  • the liquid PrNi alloy is obtained on the surface of the solid cathode. After the alloy liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom. After electrolysis for a period of time, the alloy is poured and poured into the alloy. In the mold.
  • the main technical indicators are: current efficiency is 80%, and yield is 85%. Comparative Example 16 CaCl 2 was used as the molten salt electrolyte, graphite was used as the anode, and cerium oxide and nickel oxide were used as the solid cathode, wherein PreO ⁇ NiO S wt. 1 ⁇ : (58 wt.%), electrolysis at 960 ° C, electrolysis The potential is 2.8V, and the content of antimony in the alloy is 43wt.%. A solid PrNi alloy is obtained on the surface of the solid cathode, and is remelted by distillation to be cast into an alloy product. The main technical indicators are: current efficiency of 61%, yield of 73%.
  • the main technical indicators are: current efficiency of 85%, yield of 93%.
  • the main technical indicators are: current efficiency of 83%, yield of 94%.
  • Example 22 Using CaCl 2 as a molten salt electrolyte, graphite as an anode, and ruthenium oxide and iron as a solid cathode, wherein
  • Nd 2 0 3 :Fe (87wt.%): (13wt.%), electrolysis at 930°C, electrolytic potential 3.3V, control of cerium content in the alloy is 85 wt.%, liquid NdFe alloy obtained on the surface of solid cathode After the alloy liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, the crucible is taken out and the alloy is poured into the mold.
  • the main technical indicators are: current efficiency is 83%, yield is 93%.
  • Table 1 The main technical indicators are as follows: Table 1
  • Table 2 The main technical indicators are as follows: Table 2
  • the content of niobium in the control alloy is 70 wt.%, and a liquid ScFe alloy is obtained on the surface of the solid cathode. After the liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, the crucible is taken out and poured into the mold.
  • the main technical indicators are as follows: table 3
  • the content of niobium in the control alloy is 72 wt.%, and a liquid DyFe alloy is obtained on the surface of the solid cathode. After the liquid film accumulates to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a period of time, the crucible is taken out and poured into the mold. .
  • the main technical indicators are as follows: Table 4
  • the main technical indicators are: current efficiency is 72%, yield is 66%.
  • Example 28 CaCl 2 was used as a molten salt electrolyte, graphite was used as an anode, and the cathode was made of ruthenium oxide. Electrolysis was carried out at 830 ° C, and the electrolysis potential was 3.0 V. Under the action of direct current, a liquid Yb film was obtained on the surface of the solid cathode, and the liquid film was accumulated. After a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, the crucible is taken out and poured into the mold. The main technical indicators are: current efficiency of 65%, yield of 88%.
  • Example 29 Using CaCl 2 as a molten salt electrolyte, a tungsten electrode as an anode, a cathode made of ruthenium oxide, and electrolysis at 1080 ° C, the electrolysis potential is as shown in Table 5, and a liquid Sm film was obtained on the surface of the solid cathode under direct current. After the liquid film has accumulated to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, the crucible is taken out and poured into the mold.
  • Table 5 The main technical indicators are as follows: table 5
  • Example 30 Using CaCl 2 as a molten salt electrolyte, graphite as an anode, and a cathode made of ruthenium oxide, electrolysis at 850 ° C, the electrolysis potential is as shown in Table 6, and a liquid Eu film was obtained on the surface of the solid cathode under direct current. After the liquid film has accumulated to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, it is taken out and cast into a mold.
  • the main technical indicators are as follows: Table 6
  • Example 32 CaCl 2 was used as a molten salt electrolyte, graphite was used as an anode, and a cathode was made of ruthenium oxide. Electrolysis was carried out at 1080 ° C. The electrolysis potential was as shown in Table 8. Under the action of direct current, a solid Sm film was obtained on the surface of the solid cathode. After the liquid film has accumulated to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, it is taken out and cast into a mold.
  • Table 8 The main technical indicators are as follows: Table 8
  • Example 33 Using CaCl 2 as a molten salt electrolyte, graphite as an anode, and a cathode made of ruthenium oxide, electrolysis at 1080 ° C, the electrolysis potential is as shown in Table 9, and a liquid Pr film was obtained on the surface of the solid cathode under direct current. After the liquid film has accumulated to a certain amount, it falls into the tungsten crucible at the bottom, and after electrolysis for a while, it is taken out and cast into a mold.
  • the main technical indicators are as follows: Table 9

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种稀土金属、稀土金属合金及熔融盐电解制备稀土金属、稀土金属合金的方法。其中熔融盐电解制备稀土金属合金的方法,在该方法中,电解质为碱金属或碱土金属的氯化物熔盐,阳极为惰性电极或石墨,阴极由稀土金属氧化物与其他合金组分的氧化物和/或金属粉末制成,通入直流电实施电解;电解过程中电解温度高于所生成的稀土金属合金的熔点且低于阴极的熔点,阴极表层首先被电解成金属液膜,累积到一定量后落入底部的坩埚中;阴极电流密度满足稀土金属合金成分在阴极析出;电解电压低于电解质分解电位并高于稀土金属合金中各组分对应的氧化物的分解电位。采用该方法所得稀土金属和合金为液态,采用坩埚收集。该方法工艺简单、能耗低、电流效率高、成本低、环境友好。

Description

稀土金属、 稀土金属合金及熔融盐电解制备稀土金属、
稀土金属合金的方法
技术领域 本发明属于稀土金属合金制备领域, 具体而言, 涉及一种稀土金属、 稀土金属合 金及熔融盐电解制备稀土金属、 稀土金属合金的方法, 特别涉及一种熔融盐电解直接 制备稀土金属、 稀土金属合金的方法。 背景技术 稀土金属 /合金在新材料领域中起着举足轻重的作用, 是稀土永磁材料、 稀土贮氢 材料、 稀土核材料、 超磁致伸缩材料、 磁致冷材料等以稀土金属 /合金或高纯稀土金属 /合金作为主要成分或添加剂的新功能材料重要的基础原材料。稀土金属 /合金不仅广泛 用于冶金、 石油化工等传统产业, 而且在磁性、 光纤通讯、 贮氢能源、 超导等材料领 域也是不可缺少的, 直接影响着光学仪器、 电子、 航空航天、 核工业等新兴高技术产 业发展的速度和水平。 传统的稀土金属 /合金制备方法主要有三种, 包括纯金属熔融对掺法、 还原扩散法 以及熔盐电解法。 其中纯金属熔融对掺法需要以纯金属为原料, 加工工序长, 成本高, 易偏析; 还 原扩散法的加工过程工序复杂冗长, 最终产品纯度低, 易混入杂质。 由于稀土元素原子半径较大, 其内层电子对外层电子的屏蔽作用, 使其原子核对 外层电子的吸引力减弱。 因此稀土元素都很活泼, 其电极电势较负 (-2.52〜- 2.25V), 在 水溶液中很难电沉积, 故稀土金属及合金的电解通常都是在熔盐体系中进行的。 传统 的熔盐电解法采用氟盐体系氧化物共沉积法制备稀土金属 /合金, 比较经济方便, 不用 还原剂, 又可连续生产。 但对于变价稀土金属钐 (Sm)、 铕 (Eu)、 铥 (Tm)或镱 (Yb)来说, 由于它们的 +2价离 子的电子结构保持或接近半充满或全充满状态, 即 Sm2+离子 ( )、 Eu2+离子 (4f7)、 Tm2+ 离子 (4f13)和 Yb2+离子 (4f14), 因此其稳定氧化态不仅有 +3价, 还有 +2价。 在实际电解 过程中, 它们在阴极不完全放电, 成为低价离子, 而后又被氧化为高价态, 发生 +3价 与 +2价的循环氧化还原反应, 空耗电解电流。 因此生产实践中, 采用传统熔盐电解法 基本得不到变价稀土金属, 难以大量连续生产变价稀土金属合金。 专利申请 W099/64638中, 英国剑桥大学材料科学与冶金学系的 D J Fray, T W Farthing, Z Chen等三人介绍了一种熔盐电脱氧制备金属或合金的方法, 这是他们在二 十世纪末发明的一种新的金属及合金制备技术一 FFC 剑桥法 (Fray-Farthing-Chen Cambridge Process) 0这种方法工艺简单、成本低廉、环境友好, 也称为熔盐电脱氧法。 FFC剑桥工艺的核心是将固态氧化物制成阴极并在低于金属熔点的温度和熔盐分解电 压下电解, 其间金属氧化物被电解还原, 氧离子进入熔盐并迁移至阳极放电, 在阴极 则留下纯净的固态金属或合金。 该方法在电解初期, 反应速度较快, 电流或能量效率 较高, 得到的纯金属在阴极析出, 但是随着反应的进行, 得到的纯金属在阴极表面富 集, 逐渐形成固态金属硬壳, 严重阻碍了阴极内部氧迁移到表面的速度, 妨碍了电解 的正常进行, 造成了后期除氧速度显著下降, 同时效率显著降低。 美国专利 US 20040052672 A1中, D J Fray和陈政介绍了一种金属及合金粉末制 备方法, 即将金属化合物 (MIX)粉末通过例如粉浆浇注、 压制和 /或烧结制成阴极, 浸 入熔盐中, 施加阴极电位实施电脱氧。 该发明与 FFC相似, 随着电解进行, 阴极析出 的固态产物不断累积, 最终阻碍 X的迁移和脱附过程, 降低效率和最终产品纯度。 为克服上述两发明专利的缺点, 在欧洲专利 EP 1448802 B1中, Fray等人介绍了 一种固体材料处理方法, 其最大的创新点是在 FFC工艺基础上, 引入活性元素, 在电 解反应进行到一定程度, 效率降低后, 停止通电。 之后通过该活性元素与固态氧化物 阴极发生还原反应, 夺取氧, 使阴极的脱氧反应继续进行, 以期达到最佳的脱氧效果。 但活性元素的引入容易污染阴极产物, 同时活性元素引入方法也较为复杂。 与 EP 1448802 B1类似, 日本 Kyoto大学在 2002年提出了一种 OS法, 在 FFC工 艺基础上, 将少量 Ca单质与氧化物共同制成阴极, 利用活性 Ca作为电解开始的引发 剂和催化剂, 与电化学脱氧共同进行。 中国专利 200910031208.9介绍了一种熔盐电脱氧制备镝铁、铽铁及镝铽铁合金的 方法, 其工艺原理与 FFC 较为接近, 在<800 条件下进行电脱氧反应, 至电流低于 1.0安培时结束反应, 在电解结束后, 取出阴极放入真空感应炉内, 重熔铸锭得到最终 产品。 由于电解温度低于 800°C, 因此得到的 DyFe和 TbFe合金呈现固态。 在上述方法中, 所得合金均为固态, 如前所述, 某种意义上讲, 正是这种形态造 成了电解反应的低效率。 而当改变温度或者改变合金组成时, 结合相图, 完全可以使 合金产品或近终型合金产品成为液态, 而这种液态合金的形成对于电解反应的效率提 高具有不可估量的意义。
法 路广文在 1974年《稀土》第一期关于《钐合金及高纯钐的制取方法》中介绍了用 电解法制备钐 -铁系合金的方法, 采用铁系金属作为阴极, 从钐的氧化物中得到钐, 接 着与铁、 镍、 钴形成合金。 但其采用的电解质为氟化钐 (氟化钐的重量组成约为电解 质的 40-90%)与氟化锂、 氟化钡、 氟化钙、 氟化镁或氟化铯的两种或两种以上的混合 物。 这种氟盐体系氧化物共沉积法的缺点在于: 以氟化稀土作为电解质体系的主体, 以氧化物为原料, 通过氧化物先溶解于氟化稀土, 然后在阴极析出的方法获得合金, 但由于稀土金属在其对应的氟化物电解质体系内溶解度高, 溶解损失大, 电流效率仅 为 41%。 综上所述, 以上方法主要存在以下两个问题: 一、 多数发明以 FFC工艺为基础, 通过电化学脱氧、 活性元素还原脱氧或两种脱 氧过程结合。 但阴极产物均为固态, 如前所述, 固态阴极产物在阴极表面不断富集, 必然会影响非金属元素在阴极内部的扩散和在阴极表面的脱附行为, 进而影响效率和 提纯效果。 虽然可以通过活性元素或阴极产物后处理的手段进行弥补和完善, 但也带 来了工艺过程复杂和产品污染问题。 二、氟盐体系氧化物电解共析出工艺, 是目前广泛采用的稀土铁合金的制备工艺。 氧化物先溶解于电解质体系内, 然后在阴极电解析出。 虽然控制工艺, 使阴极产物以 液态形式析出, 但因目前普遍采用的电解质体系均以氟化稀土作为电解质主成份, 溶 解损失大, 收率低, 同时对于钐、 铕等为变价元素, 电解过程的二次反应剧烈, 效率 和产品中稀土含量都低于期望值。 发明内容 针对现有技术中存在的不足, 本发明的目的在于提供一种简单易行、 高效的熔融 盐电解制备稀土金属合金的方法。 具体而言: 本发明的第一个目的是提供一种简单易行、 高效的熔融盐电解制备稀土金属合金 的方法。 本发明的第二个目的是提供一种稀土金属合金 本发明的第三个目的是提供一种简单易行、 高效的熔融盐电解制备稀土金属的方 本发明的第四个目的是提供一种制备稀土金属。 为实现上述第一个目的, 本发明采用以下技术方案: 一种熔融盐电解制备稀土金属合金的方法, 在该方法中, 电解质为碱金属或碱土 金属的氯化物熔盐, 阳极为石墨, 阴极由稀土金属氧化物与其他合金组分的氧化物或 金属粉末制成, 通入直流电实施电解; 电解过程中电解温度高于所生成的稀土金属合金的熔点且低于阴极的熔点, 阴极 表层首先被电解成金属液膜, 累积到一定量后落入底部的坩埚中; 阴极电流密度满足 稀土金属合金成分在阴极析出; 电解电压低于电解质分解电位并高于稀土金属合金中 各组分对应的氧化物的分解电位。 在上述电解条件下, 阴极产生的稀土金属合金产物为液态。 随着电解的进行, 固 态阴极表面逐渐形成稀土金属合金液膜, 继续析出的液态合金在重力作用下凝聚成合 金球滴落到阴极下方。 可以在阴极下方放置坩埚收集稀土金属合金液, 经一段时间后 将稀土金属合金液取出浇注成稀土金属合金产品。 本发明稀土金属合金中选用的是变价稀土金属钐 (Sm;)、 铕 (Eu)、 铥 (Tm)或镱 (Yb)。 所述阴极在电解条件下为固态, 不溶于电解质; 电解生成的稀土金属合金在电解 质中难溶。 所述其他合金组分为 Fe、 Co、 Ni、 Mg、 Al或 Mn中的一种或几种。 所述电解质为 Ca、 Ba、 Li中任何一种或几种元素的氯化物熔盐。 为实现上述第二个目的, 本发明采用以下技术方案: 一种上述熔融盐电解制备稀 土金属合金的方法制备的稀土金属合金产品。 为实现上述第一个目的, 本发明采用另一种技术方案- 一种熔融盐电解制备稀土金属合金的方法, 在该方法中, 电解质为碱金属或碱土 金属的氯化物熔盐, 阳极为惰性电极或石墨, 阴极由稀土金属氧化物与其他合金组分 的氧化物和 /或金属粉末制成, 通入直流电实施电解; 电解过程中电解温度高于所生成 的稀土金属合金的熔点且低于阴极的熔点, 阴极表层首先被电解成金属液膜, 累积到 一定量后落入底部的坩埚中; 阴极电流密度满足稀土金属合金成分在阴极析出; 电解 电压低于电解质分解电位并高于稀土金属合金中各组分对应的氧化物的分解电位。 进一步地, 上述方法中通入的直流电实施电解的过程中电解电压为 2.8〜4.9V,, 优选为 3.1〜3.6V。 进一步地, 上述方法中稀土金属合金中稀土金属为钪、 钇、 镧、 铈、 镨、 钕、 钆、 铽、 镝、 钬、 铒、 镥、 钐、 铕、 铥或镱; 优选为变价稀土金属钐、 铕、 铥或镱。 进一步地, 上述方法中阴极在电解条件下为固态, 不溶于电解质; 电解生成的稀 土金属合金在电解质中难溶。 进一步地, 上述方法中其他合金组分为 Fe、 Cu、 Cr、 Ti、 V、 Co、 Ni、 Mg、 Al 禾口 Mn中的一种或几种; 优选为 Fe、 Co、 Ni、 Mg、 Al和 Mn中的一种或几种。 进一步地, 上述方法中电解质为 Ca、 Ba、 Na、 K、 Li和 Mg中一种或几种元素的 氯化物熔盐; 优选为 Ca、 Ba、 Li中任何一种或几种元素的氯化物熔盐。 为实现上述第二个目的, 本发明采用以下技术方案: 一种稀土金属合金产品, 该 稀土金属合金产品通过上述的熔融盐电解制备稀土金属合金的方法制备而成。 为实现上述第三个目的, 本发明采用技术方案: 一种熔融盐电解制备稀土金属的 方法, 在该方法中, 电解质为碱金属或碱土金属的氯化物熔盐, 阳极为碳素材料或惰 性电极, 阴极为稀土金属氧化物; 通入直流电实施电解, 电解过程中电解温度高于所 生成的稀土金属的熔点且低于阴极的熔点, 阴极表层首先被电解成金属液膜, 累积到 一定量后落入底部的坩埚中; 阴极电流密度满足稀土金属成分在阴极析出; 电解电压 低于电解质分解电位并高于稀土金属氧化物的分解电位。 进一步地, 上述方法中通入的直流电实施电解的过程中电解电压为 2.8V-4.0V, 优 选为 3.1-3.6V。 进一步地, 上述方法中稀土金属为钪、 钇、 镧、 铈、 镨、 钕、 钆、 铽、 镝、 钬、 铒、 镥、 钐、 铕、 铥或镱; 优选为变价稀土金属钐、 铕、 铥或镱。 进一步地, 上述方法中阴极在电解条件下为固态, 不溶于电解质; 电解生成的稀 土金属在电解质中难溶。 进一步地, 上述方法中电解质为 Ca、 Ba、 Na、 K、 Li和 Mg中一种或几种元素的 氯化物熔盐; 优选为 Ca、 Ba、 Li中任何一种或几种元素的氯化物熔盐。 为实现上述第四个目的, 本发明采用以下技术方案: 一种稀土金属产品, 该稀土 金属产品通过上述的熔融盐电解制备稀土金属的方法制备而成。 应用本发明的技术方案, 优点在于:
1、 在 FFC法中, 由于阴极产物为固态, 电解速度慢, 电流密度低, 即使加入活 性金属, 仍不能从根本上加快反应速度, 提高脱氧效率。 而本发明通过控制电解温度 和阴极产物构成比例,使阴极产物电解条件下为液态,保证了反应的连续高效地进行。 随着反应的进行在阴极形成不溶于熔盐的合金液膜, 并随着合金液膜的继续析出, 在 重力作用下凝聚成合金球脱离阴极, 固态阴极表面无包裹形成, 使氧的迁移与脱附不 受约束, 有利于提高反应速度和电效率。 同时这种金属液态化或液态合金化过程促使 反应不断向金属沉积的方向进行, 一定程度上抑制了稳定二价稀土离子的形成, 使脱 氧过程更彻底、 更高效。 2、在现行氟盐体系氧化物电解共析出工艺中, 电解质为氟化稀土与氟化锂的二元 氟化物的熔盐体系, 其中氟化稀土含量占到 60wt%以上。 氟化稀土作为电流和氧化原 料的载体, 一方面使得电解过程顺利进行, 另一方面也不可避免的造成稀土金属的溶 解损失和二次反应。 与之相比, 本发明中的电解质不含有稀土元素, 稀土金属和氧化 物在此电解质体系中微溶或不溶, 这样可以大大降低稀土金属在熔盐中的溶解损失以 及二次反应, 提高电解效率和稀土收率。 具体实施方式 应该指出, 以下详细说明都是示例性的, 旨在对本申请提供进一步的说明。 除非 另有指明, 本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人 员通常理解的相同含义。 本发明为了解决背景技术中所指出的现有制备稀土金属合金工艺复杂、 效率低、 以及易污染环境的问题, 提供了一种新的熔融盐电解制备稀土金属合金的方法。 在该 方法中, 电解质为碱金属或碱土金属的氯化物熔盐, 阳极为惰性电极或石墨, 阴极由 稀土金属氧化物与其他合金组分 (为所欲制备的稀土金属合金中出除了稀土金属以外 的其他成分) 的氧化物和 /或金属粉末制成, 通入直流电实施电解; 电解过程中电解温 度高于所生成的稀土金属合金的熔点且低于阴极的熔点 (即低于阴极中各种材料的最 低熔点), 阴极表层首先被电解成金属液膜, 累积到一定量后落入底部的坩埚中; 阴极 电流密度满足稀土金属合金成分在阴极析出; 电解电压低于电解质分解电位并高于稀 土金属合金中各组分对应的氧化物的分解电位。 其中惰性电极包括但不限于钨电极、 银电极或铂电极。 在上述电解条件下, 阴极产生的稀土金属合金产物为液态。 随着电解的进行, 固 态阴极表面逐渐形成稀土金属合金液膜, 继续析出的液态合金在重力作用下凝聚成合 金球落到阴极下方。 可以在阴极下方放置干锅收集稀土金属合金液, 经一段时间后将 金属合金液取出烧注成稀土金属合金产品。 本发明所提供的上述方法通过控制电解温度和阴极产物构成, 使阴极产物电解条 件下为液态, 保证了反应的连续高效地进行。 随着反应的进行在阴极形成不溶于熔盐 的合金液膜, 并随着合金液膜的继续析出, 在重力作用下凝聚成合金球脱离阴极, 固 态阴极表面无包裹形成,使氧的迁移与脱附不受约束,有利于提高反应速度和电效率。 同时这种液态合金化过程促使反应不断向金属沉积的方向进行, 一定程度上抑制了稳 定二价稀土离子的形成, 使脱氧过程更彻底、 更高效。 同时, 在本发明中的电解质不 含有稀土元素, 稀土金属和氧化物在此电解质体系中微溶或不溶, 这样可以大大降低 稀土金属在熔盐中的溶解损失以及二次反应, 提高电解效率和稀土收率。 本领域技术人员在本发明的教导下有能力对液态的稀土金属合金进行液态相分 析, 以获取其中稀土金属与非稀土之间的比例, 进而根据两者之间的比例制成所需阴 极材料, 并根据所制成的阴极材料以及目标金属合金选择合适的电解温度。 例如: 收 率以 95%计, 890°C下, 获得 Sm质量含量为 81-93wt.%的液态 SmFe合金, 此时阴极 由 Sm的氧化物与金属粉末制成,两者的配比为 Sm203 : Fe=( 83-94wt.%): (6-17wt.%)。 再例如: 收率以 95%计, 900°C下, 获得镧含量为 57-98^.%的 LaNi合金的阴极配比 为 La203 : Fe= (61-98wt.%): (2-39wt.%)。 对于本领域技术人员常用技术手段, 在此 不再赘述。 本发明熔融盐电解制备稀土金属合金的方法中电解电压低于电解质分解电位并高 于稀土金属合金中各组分对应的氧化物的分解电位。 优选地, 电解电压为 2.8〜4.9V; 更为优选地, 电解电压为 3.1〜3.6V。 在此范围内具有电解效率高, 电解质稳定, 节能 环保的效果。 本发明稀土金属合金中选用的稀土包括但不限于钪、 钇、 镧、 铈、 镨、 钕、 钆、 铽、 镝、 钬、 铒、 镥、 钐、 铕、 铥或镱。 其中, 特别优选不易制备的变价稀土金属钐、 铕、 铥或镱。 采用本发明所提供的上述方法制备金属钐、铕、铥或镱的合金工艺简单, 易于操作, 且环境友好。 本发明所能制备的稀土金属合金中出稀土金属外其他合金组分包括但不限于 Fe、 Cu、 Cr、 Ti、 V、 Co、 Ni、 Mg、 Al和 Mn中的一种或几种。 其中优选为 Fe、 Co、 Ni、 Mg、 Al和 Mn中的一种或几种。 采用这些组分具有稳定性高、 市场需求量大、 市场前 景好等的效果。 本发明熔融盐电解制备稀土金属合金的方法中能够采用的电解质包括但不限于 Ca、 Ba、 Na、 K、 Li和 Mg中任何一种或几种元素的氯化物熔盐。, 其中优选为 Ca、 Ba、 Li中任何一种或几种元素的氯化物熔盐。 本发明熔融盐电解制备稀土金属合金的方法中阴极在电解条件下为固态, 不溶于 电解质; 电解生成的稀土金属合金在电解质中难溶。 本发明所提供了一种通过上述熔融盐电解制备稀土金属合金的方法制备的稀土金 属合金产品。 采用这种方法可以制备出现有工艺无法制备出的变价稀土金属 Sm、 Eu、 Tm和 Yb等, 且这种方法的电解效率高, 收率高, 节能环保。 同时由于原料单一, 故 所得合金纯度较高, 要求含量易于获得。 同时, 在本发明中还提供了一种熔融盐电解制备稀土金属的方法, 在该方法中, 电解质为碱金属或碱土金属的氯化物熔盐, 阳极为碳素材料或惰性电极, 其中优选为 石墨, 阴极为稀土金属氧化物; 通入直流电实施电解, 电解过程中电解温度高于所生 成的稀土金属的熔点且低于阴极的熔点(即阴极材料的熔点), 阴极表层首先被电解成 金属液膜, 累积到一定量后落入底部的坩埚中; 阴极电流密度满足稀土金属成分在阴 极析出; 电解电压低于所述电解质分解电位并高于稀土金属氧化物的分解电位。 其中 惰性电极包括但不限于钨电极、 银电极或铂电极。 碳素材料包括但不限于石墨电极或 碳电极。 本发明所提供的上述方法通过控制电解温度和阴极产物构成, 使阴极产物电解条 件下为液态, 保证了反应的连续高效地进行。 随着反应的进行在阴极形成不溶于熔盐 的金属液膜, 并随着金属液膜的继续析出, 在重力作用下凝聚成金属球脱离阴极, 固 态阴极表面无包裹形成,使氧的迁移与脱附不受约束,有利于提高反应速度和电效率。 同时这种金属液态过程促使反应不断向金属沉积的方向进行, 一定程度上抑制了稳定 二价稀土离子的形成, 使脱氧过程更彻底、 更高效。 同时, 在本发明中的电解质不含 有稀土元素, 稀土金属和氧化物在此电解质体系中微溶或不溶, 这样可以大大降低稀 土金属在熔盐中的溶解损失以及二次反应, 提高电解效率和稀土收率。 本发明熔融盐电解制备稀土金属的方法的电解过程中电解电压低于电解质分解电 位并高于稀土金属合金中各组分对应的氧化物的分解电位。 优选的电解过程中电解电 压为 2.8V-4.0V, 更为优选地, 电解电压为 3.1-3.6V。 在此范围内具有电解效率高, 电 解质稳定, 节能环保的效果。 优选地, 适用于本发明所提供熔融盐电解制备稀土金属的方法制备的稀土金属包 括但不限于钪、 钇、 镧、 铈、 镨、 钕、 钆、 铽、 镝、 钬、 铒、 镥钐、 铕、 铥或镱, 其 中优选为变价稀土金属钐、 铕、 铥或镱。 本发明所提供熔融盐电解制备稀土金属的方法中能够采用的电解质包括但不限于 Ca、 Ba、 Na、 K、 Li和 Mg中任何一种或几种元素的氯化物熔盐, 其中优选为 Ca、 Ba、 Li中任何一种或几种元素的氯化物熔盐。 本发明熔融盐电解制备稀土金属的方法中阴极在电解条件下为固态, 不溶于电解 质; 电解生成的稀土金属在电解质中难溶。 本发明所提供了一种通过上述熔融盐电解制备稀土金属的方法制备的稀土金属。 采用这种方法可以制备出现有工艺无法制备出的变价稀土金属 Sm、 Eu、 Tm和 Yb等, 且这种方法的电解效率高, 收率高, 节能环保。 同时由于原料单一, 故所得金属纯度 较高。 以下通过实施例 1-33,对比例 1-24对本发明熔融盐电解制备稀土金属及稀土金属 合金的方法做进一步说明。 实施例 1 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与铁粉制成, 在 890°C下 电解, 电解电位 4.8V, 阴极电流密度 1.8A/cm2, 在直流电作用下固态阴极表面得到液 态 SmFe合金膜, 合金中钐含量 81wt.%, 合金液膜累积到一定量后, 落入底部的铁坩 埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 78%, 收得率 95%, 每公斤金属电耗为 6.210kW-h。 对比例 1 以 SmF3与 CaF2混合物作为熔盐电解质, 其中 SmF3含量为 50wt.%, 以石墨为阳 极, 以 Fe棒为阴极, 将氧化钐溶解于电解质中进行电解, 电解温度 800°C, 电解电位 2.8V, 阴极电流密度 1.8A/cm2, 控制合金中钐含量为 87wt.%, 得到液态 SmFe合金, 合金液膜累积到一定量后, 落入底部的铁坩埚中, 电解一段时间后取出坩埚将合金浇 注到模具中。 主要技术指标为: 电流效率 41%, 收得率 86%, 每公斤金属电耗为 7.810kW-h。 实施例 2 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化铥与铁粉制成, 在 1000°C 下电解, 电解电位 4.9V, 阴极电流密度 3.2A/cm2, 控制合金中铥含量为 87wt.%, 在 直流电作用下固态阴极表面得到液态 TmFe合金膜, 合金液膜累积到一定量后, 落入 底部的铁坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 83%, 收得率 95%, 每公斤金属电耗为 6.510kW-h。 实施例 3 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化铥与氧化铝制成, 在 900°C 下电解, 电解电位 4.9V, 阴极电流密度 5.2A/cm2, 控制合金中铥含量为 88wt.%, 在 直流电作用下固态阴极表面得到液态 TmAl合金, 合金液膜累积到一定量后, 落入底 部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 76%, 收得率 95%, 每公斤金属电耗为 7.211kW-h。 对比例 2 以 CaCl2作为熔盐电解质,以石墨为阳极,阴极由氧化铥与氧化铁制成,在 1000°C 下电解, 电解电位 2.9V, 阴极电流密度 2.2A/cm2, 控制合金中铥含量为 60wt.%, 在 固态阴极表面得到固态 TmFe合金。 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率 18%, 收得率 88%, 每公斤金属电耗为 8.212kW-h。 实施例 4 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与氧化钴制成, 在 800°C 下电解, 电解电位 2.8V, 阴极电流密度 1.7 A/cm2, 控制合金中钐含量为 80wt.%, 在 固态阴极表面得到液态 SmCo合金,合金液膜累积到一定量后,落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 72%, 收得率 95%, 每公斤金属电耗为 7.122kW-h。 对比例 3 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与氧化钴制成, 在 800°C 下电解, 电解电位 2.8V, 阴极电流密度 1.7 A/cm2, 控制合金中钐含量为 52wt.%, 在 固态阴极表面得到固态 SmCo合金。 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率 22%, 收得率 87%, 每公斤金属电耗为 8.532kW-h。 实施例 5 在含 5%的 LiCl和 95%CaCl2混合熔盐电解质中, 以石墨为阳极, 阴极由氧化镱与 氧化镍制成, 在 1040°C下电解, 电解电位 2.8V, 阴极电流密度 2.0 A/cm2, 控制合金 中镱含量为 77wt.%,在固态阴极表面得到液态 YbNi合金,合金液膜累积到一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 77%, 收得率 95%, 每公斤金属电耗为 6.981kW-h。 对比例 4 以 CaCl2作为熔盐电解质,以石墨为阳极,阴极由氧化镱与氧化镍制成,在 1040°C 下电解, 电解电位 2.8V, 阴极电流密度 2.0 A/cm2, 控制合金中镱含量为 58wt.%, 在 固态阴极表面得到固态 YbNi合金。 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率 20%, 收得率 86%, 每公斤金属电耗为 8.361kW-h。 对比例 5 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化镱与氧化镍制成, 在 970°C 下电解, 电解电位 2.8V, 阴极电流密度 1.9 A/cm2, 控制合金中镱含量为 75wt.%, 在 固态阴极表面得到固态 YbNi合金。 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率 22%, 收得率 88%, 每公斤金属电耗为 8.271kW-h。 实施例 6 在含 5%的 BaCl2和 95%CaCl2混合熔盐电解质中, 以石墨为阳极, 阴极由氧化钐 与氧化镍制成, 在 980°C下电解, 电解电位 2.8V, 阴极电流密度 1.9 A/cm2, 控制合金 中钐含量为 79wt.%,在固态阴极表面得到液态 SmNi合金,合金液膜累积到一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标 为: 电流效率 72%, 收得率 95%, 每公斤金属电耗为 7.211kW-h。 对比例 6 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与氧化镍制成, 在 980°C 下电解, 电解电位 2.8V, 阴极电流密度 1.9 A/cm2, 控制合金中钐含量为 50wt.%, 在 固态阴极表面得到固态 SmNi合金。 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率 22%, 收得率 86%, 每公斤金属电耗为 7.211kW-h。 实施例 7 在含 3%的 BaCl2、 5%的 LiCl及 92%CaCl2混合熔盐电解质中, 以石墨为阳极, 阴 极由氧化铕与氧化镁制成,在 800°C下电解, 电解电位 2.8V, 阴极电流密度 1.6 A/cm2, 控制合金中铕含量为 70wt.%, 在固态阴极表面得到液态 EuMg合金, 合金液膜累积到 一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 70%, 收得率 95%, 每公斤金属电耗为 7.211kW-h。 实施例 8 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与氧化铝制成, 控在 1000°C下电解,电解电位 2.8V,阴极电流密度 2.1 A/cm2,控制合金中钐含量为 38wt.%, 在固态阴极表面得到液态 SmAl合金, 合金液膜累积到一定量后, 落入底部的钨坩埚 中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 70%, 收得率 95%, 每公斤金属电耗为 7.211kW-h。 对比例 7 以 CaCl2作为熔盐电解质,以石墨为阳极,阴极由氧化钐与氧化铝制成,在 1000°C 下电解, 电解电位 2.8V, 阴极电流密度 2.1 A/cm2, 控制合金中钐含量为 70wt.%, 在 固态阴极表面得到固态 SmAl合金。 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率 23%, 收得率 96%, 每公斤金属电耗为 8.215kW-h。 对比例 8 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与氧化铝制成, 在 800°C 下电解, 电解电位 2.8V, 阴极电流密度 2.1 A/cm2, 控制合金中钐含量为 38wt.%, 在 固态阴极表面得到固态 SmAl合金。 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率 19%, 收得率 86%, 每公斤金属电耗为 8.914kW-h。 实施例 9 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与氧化锰制成, 在 900°C 下电解, 电解电位 2.8V, 阴极电流密度 2.0 A/cm2, 控制合金中钐含量为 82wt.%, 在 固态阴极表面得到液态 SmMn合金,合金液膜累积到一定量后,落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 73%, 收得率 95%, 每公斤金属电耗为 7.215kW-h。 对比例 9 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与氧化锰制成, 在 900°C 下电解, 电解电位 2.8V, 阴极电流密度 2.0 A/cm2, 控制合金中钐含量为 38wt.%, 在 固态阴极表面得到固态 SmMn合金。 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率 13%, 收得率 86%, 每公斤金属电耗为 9.011kW-h。 对比例 10 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与氧化锰制成, 在 790°C 下电解, 电解电位 2.8V, 阴极电流密度 2.0 A/cm2, 控制合金中钐含量为 86wt.%, 在 固态阴极表面得到固态 SmMn合金。 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率 15%, 收得率 87%, 每公斤金属电耗为 8.718kW-h。 实施例 10 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐与铁制成, 在 890°C下电 解, 电解电位 2.8V, 阴极电流密度 1.8A/cm2, 控制合金中钐含量为 81wt.%, 在固态 阴极表面得到液态 SmFe合金, 合金液膜累积到一定量后, 落入底部的钨坩埚中, 电 解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 70%, 收得率 95%, 每公斤金属电耗为 7.241kW-h。 实施例 11 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钐、 氧化铁和铁作为固态阴极, 在 890°C下电解,电解电位 2.8V,阴极电流密度 1.8A/cm2,控制合金中钐含量为 93wt.%, 在固态阴极表面得到液态 SmFe合金, 合金液膜累积到一定量后, 落入底部的钨坩埚 中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 73%, 收得率 95%, 每公斤金属电耗为 7.211kW-h。 实施例 12 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐、 氧化镁和氧化铝制成, 其中 Sm203:MgO:Al203=94%: 2.8%: 3.2%, 在 830°C下电解, 电解电位 3.4V, 在直流 电作用下固态阴极表面得到液态 SmMgAl合金膜,合金中钐含量 96wt.%,合金液膜累 积到一定量后,落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率 85%, 收得率 96%。 实施例 13 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化镱制成, 在 830°C下电解, 电解电位 3.2V, 在直流电作用下固态阴极表面得到液态 Yb膜, 液膜累积到一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚浇注到模具中。 主要技术指标为: 电流效率 80%, 收得率 95%。 实施例 14 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镨与氧化钕作为固态阴极, 其 中 Pr6011 : Nd203=(57 wt.%):(43wt.%), 在 1000°C下电解, 电解电位 3.4V, 控制合金中 镨含量为 56wt.%, 在固态阴极表面得到液态 PrNd合金, 合金液膜累积到一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 85%, 收得率 95%。 对比例 11 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镨与氧化钕作为固态阴极, 其 中氧化镨: 氧化钕 =C10wt.%):C90wt.%), 在 1000°C下电解, 电解电位 3.4V, 控制合金 中镨含量为 10 wt.%, 在固态阴极表面得到固态 PrNd合金, 经蒸馏重熔后浇注成合金 产品。 主要技术指标为: 电流效率为 49%, 收得率 85%。 对比例 12 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镨与氧化钕作为固态阴极, 其 中氧化镨: 氧化钕 =(81wt.%):(19wt.%), 在 800°C下电解, 电解电位 3.4V, 控制合金中 镨含量为 80 wt.%, 在固态阴极表面得到固态 PrNd合金, 经蒸馏重熔后浇注成合金产 a a
J 口口。 主要技术指标为: 电流效率为 51%, 收得率 87%。 实施例 15 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化铈与氧化钆为固态阴极, 其中 Ce02: Gd203=(81wt.%):(19wt.%), 在 900°C下电解, 电解电位 3.3V, 控制合金中钆含0 量为 20wt.%, 在固态阴极表面得到液态 CeGd合金, 合金液膜累积到一定量后, 落入 底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 81%, 收得率 95%。 实施例 16 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镧与氧化镍为固态阴极, 其中5 La203: NiO=(24wt.%):(76wt.%), 在 890°C下电解, 电解电位 3.2V, 控制合金中镧含量 为 25wt.%, 在固态阴极表面得到液态 LaNi合金, 合金液膜累积到一定量后, 落入底 部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 85%, 收得率 96%。 对比例 13 0 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镧与氧化镍为固态阴极, 其中
La203: NiO=(63wt.%):(37wt.%), 在 890°C下电解, 电解电位 3.2V, 控制合金中镧含量 为 65 wt.%, 在固态阴极表面得到固态 LaNi合金, 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率为 42%, 收得率 85%。 实施例 17 5 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钕与氧化铁为固态阴极, 其中
Nd203:Fe203= (82wt.%): (18wt.%), 在 930°C下电解, 电解电位 3.3V, 控制合金中钕含 量为 85 wt.%, 在固态阴极表面得到液态 NdFe合金, 合金液膜累积到一定量后, 落入 底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 87%, 收得率 95%。 对比例 14 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钕与氧化铁作为固态阴极, 其 中 Nd203:Fe203= (17wt.%): (83wt.%), 在 930°C下电解, 电解电位 3.3V, 控制合金中 钕含量为 20 wt.%, 在固态阴极表面得到固态 NdFe合金, 经蒸馏重熔后浇注成合金产
主要技术指标为: 电流效率为 58%, 收得率 78%。 实施例 18 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化铈与氧化钴作为固态阴极, 其 中 Ce02:CoO= (75wt.%): (25wt.%), 在 1000°C下电解, 电解电位 3.2V, 控制合金中铈 含量为 75wt.%, 在固态阴极表面得到液态 CeCo合金, 合金液膜累积到一定量后, 落 入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 83%, 收得率 94%。 对比例 15 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化铈与氧化钴作为固态阴极, 其 中 Ce02:CoO= (54wt.%): (46wt.%), 在 1000°C下电解, 电解电位 3.2V, 控制合金中铈 含量为 55wt.%,在固态阴极表面得到固态 CeCo合金,经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率为 56%, 收得率 82%。 实施例 19 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镨与氧化镍作为固态阴极, 其 中 PrsO^NiO (79wt.%): (21wt.%), 在 960°C下电解, 电解电位 2.8V, 控制合金中镨 含量为 80wt.%, 在固态阴极表面得到液态 PrNi合金, 合金液膜累积到一定量后, 落 入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 80%, 收得率 85%。 对比例 16 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镨与氧化镍作为固态阴极, 其 中 PreO^NiO S wt.1^: (58wt.%), 在 960°C下电解, 电解电位 2.8V, 控制合金中镨 含量为 43wt.%, 在固态阴极表面得到固态 PrNi合金, 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率为 61%, 收得率 73%。 实施例 20 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镧与氧化铝为固态阴极, 其中 La203:Al203= (13 wt.%): (87wt.%), 在 890°C下电解, 电解电位 3.2V, 控制合金中镧 含量为 20wt.%, 在固态阴极表面得到液态 LaAl合金, 合金液膜累积到一定量后, 落 入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 85%, 收得率 93%。 对比例 17 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镧与氧化铝为固态阴极, La203:Al203= (54 wt.%): (46wt.%), 在 890°C下电解, 电解电位 3.2V, 控制合金中镧 含量为 65 wt.%,在固态阴极表面得到固态 LaAl合金,经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率为 50%, 收得率 77%。 实施例 21 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钕、 氧化铁和铁作为固态阴极, 其中 Nd203:Fe203:Fe= (85wt.%): (7wt.%): (8wt.%), 在 930°C下电解, 电解电位 3.3V, 控制合金中钕含量为 85 wt.%, 在固态阴极表面得到液态 NdFe合金, 合金液膜累积到 一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 83%, 收得率为 94%。 对比例 18 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钕、 氧化铁和铁作为固态阴极, 其中 Nd203:Fe203:Fe= (19wt.%): (74wt.%): (7wt.%),在 930°C下电解, 电解电位 3.3V, 控制合金中钕含量为 22wt.%, 在固态阴极表面得到固态 NdFe合金, 经蒸馏重熔后浇 注成合金产品。 主要技术指标为: 电流效率为 53%, 收得率 76%。 实施例 22 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钕与铁为固态阴极, 其中
Nd203:Fe= (87wt.%): (13wt.%), 在 930°C下电解, 电解电位 3.3V, 控制合金中钕含量 为 85 wt.%, 在固态阴极表面得到液态 NdFe合金, 合金液膜累积到一定量后, 落入底 部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 83%, 收得率 93%。 对比例 19 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钕与铁作为固态阴极, 其中 Nd203:Fe= (23wt.%): (77wt.%), 在 930°C下电解, 电解电位 3.3V, 控制合金中钕含量 为 20 wt.%, 在固态阴极表面得到固态 NdFe合金, 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率为 58%, 收得率 75%。 实施例 23 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化铒与氧化镍作为固态阴极, 其 中 Er203:NiO=(85 wt.%): (15 wt.%), 在 900°C下电解, 电解电位如表 1所示, 控制合 金中铒含量为 86wt.%, 在固态阴极表面得到液态 ErNi合金, 合金液膜累积到一定量 后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 如表 1所示。 表 1
Figure imgf000019_0001
对比例 20 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化铒与氧化镍作为固态阴极, 其 中 Er203:NiO=(63wt.%): (37wt.%), 在 900°C下电解, 电解电位 2.8V, 控制合金中铒 含量为 65wt.%, 在固态阴极表面得到固态 ErNi合金, 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率为 48%, 收得率 77%。 实施例 24 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钇与氧化镁为固态阴极, 其中 Y203:MgO=(64wt.%): (36wt.%), 在 940°C下电解, 电解电位 3.3V, 控制合金中钇含量 为 70wt.%, 在固态阴极表面得到液态 YMg合金, 合金液膜累积到一定量后, 落入底 部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 电流效率为 87%, 收率 95%。 对比例 21 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钇与氧化镁为固态阴极, 其中 Y203:MgO=(79wt.%): (21wt.%), 在 940°C下电解, 电解电位 3.3V, 控制合金中钇含量 为 83wt.%, 在固态阴极表面得到固态 YMg合金, 经蒸馏重熔后浇注成合金产品。 主要技术指标为: 电流效率为 55%, 收率 77%。 实施例 25 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钇与氧化镁为固态阴极, 其中 Y203:MgO=(64wt.%): (36wt.%), 在 940°C下电解, 电解电位如表 2所示, 控制合金中 钇含量为 70wt.%, 在固态阴极表面得到液态 YMg合金, 合金液膜累积到一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚将合金浇注到模具中。 主要技术指标为: 如表 2所示。 表 2
Figure imgf000020_0001
实施例 26 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钪、 氧化铁和铁作为固态阴极, 其中 Sc203: Fe203: Fe=(72wt.%): (27wt.%): (1%), 在 1000°C下电解, 电解电位如表
3所示, 控制合金中钪含量为 70wt.%, 在固态阴极表面得到液态 ScFe合金, 液膜累积 到一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚浇注到模具中。 主要技术指标为: 如表 3所示。 表 3
Figure imgf000021_0001
对比例 22 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化钪、 氧化铁和铁作为固态阴极, 其中 Sc203 : Fe203: Fe=(72wt.%): (27wt.%): (1%), 在 900°C下电解, 电解电位 3.6V, 控制合金中钪含量为 70 wt.%, 在固态阴极表面得到固态 ScFe合金, 经蒸馏重熔后浇 注成合金产品。 主要技术指标为: 电流效率为 71%, 收得率 68%。 实施例 27 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镝、 氧化铁和铁作为固态阴极, 其中 Dy203 : Fe203: Fe=(68wt%): (30wt.%): (2%), 在 1000°C下电解, 电解电位如表
4所示, 控制合金中镝含量为 72 wt.%, 在固态阴极表面得到液态 DyFe合金, 液膜累 积到一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚浇注到模具中。 主要技术指标为: 如表 43所示。 表 4
Figure imgf000021_0002
对比例 23 以 CaCl2作为熔盐电解质, 以石墨为阳极, 以氧化镝、 氧化铁和铁作为固态阴极, 其中 Dy203 : Fe203: Fe=(86wt.%): (12wt.%): (2%),在 1000°C下电解, 电解电位 3.6V, 控制合金中镝含量为 88 wt.%, 在固态阴极表面得到固态 DyFe合金, 经蒸馏重熔后浇 注成合金产品。 主要技术指标为: 电流效率为 72%, 收得率 66%。 实施例 28 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化镱制成, 在 830°C下电解, 电解电位 3.0V, 在直流电作用下固态阴极表面得到液态 Yb膜, 液膜累积到一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚浇注到模具中。 主要技术指标为: 电流效率 65%, 收得率 88%。 实施例 29 以 CaCl2作为熔盐电解质, 以钨电极为阳极, 阴极由氧化钐制成, 在 1080°C下电 解, 电解电位如表 5所示, 在直流电作用下固态阴极表面得到液态 Sm膜, 液膜累积 到一定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚浇注到模具中。 主要技术指标为: 如表 5所示。 表 5
Figure imgf000022_0001
实施例 30 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化铕制成, 在 850°C下电解, 电解电位如表 6所示, 在直流电作用下固态阴极表面得到液态 Eu膜, 液膜累积到 定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚浇注到模具中。 主要技术指标为: 如表 6所示。 表 6
电解电压 电流效率 (%) 收得率 (%)
3.4 88 93
2.9 70 81
3.1 85 90
3.6 87 92 实施例 31 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化铈制成, 在 850°C下电解, 电解电位如表 7所示, 在直流电作用下固态阴极表面得到液态 Ce膜, 液膜累积到一 定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚浇注到模具中。 主要技术指标为: 如表 7所示。 表 7
Figure imgf000023_0001
实施例 32 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化钐制成, 在 1080°C下电解, 电解电位如表 8所示, 在直流电作用下固态阴极表面得到液态 Sm膜, 液膜累积到 定量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚浇注到模具中。 主要技术指标为: 如表 8所示。 表 8
Figure imgf000023_0002
实施例 33 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化镨制成, 在 1080°C下电解, 电解电位如表 9所示, 在直流电作用下固态阴极表面得到液态 Pr膜, 液膜累积到一定 量后, 落入底部的钨坩埚中, 电解一段时间后取出坩埚浇注到模具中。 主要技术指标为: 如表 9所示。 表 9
Figure imgf000024_0001
对比例 24 以 CaCl2作为熔盐电解质, 以石墨为阳极, 阴极由氧化镨制成, 在 900°C下电解, 电解电位 4.0V, 在直流电作用下固态阴极表面得到固态 Pr, 经蒸馏重熔后浇注成型。 主要技术指标为: 电流效率 60%, 收得率 82%。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种熔融盐电解制备稀土金属合金的方法, 其特征在于, 在该方法中, 电解质 为碱金属或碱土金属的氯化物熔盐, 阳极为惰性电极或石墨, 阴极由稀土金属 氧化物与其他合金组分的氧化物和 /或金属粉末制成, 通入直流电实施电解, 电解过程中电解温度高于所生成的稀土金属合金的熔点且低于阴极的熔 点, 阴极表层首先被电解成金属液膜, 累积到一定量后落入底部的坩埚中; 阴 极电流密度满足稀土金属合金成分在阴极析出; 电解电压低于电解质分解电位 并高于稀土金属合金中各组分对应的氧化物的分解电位。
2. 根据权利要求 1所述的方法, 其特征在于, 所述通入的直流电实施电解的过程 中电解电压为 2.8〜4.9V, 优选为 3.1〜3.6V。
3. 根据权利要求 1所述的方法,其特征在于,所述稀土金属合金中稀土金属为钪、 钇、 镧、 铈、 镨、 钕、 钆、 铽、 镝、 钬、 铒、 镥、 钐、 铕、 铥或镱; 优选为变 价稀土金属钐、 铕、 铥或镱。
4. 根据权利要求 1所述的方法, 其特征在于, 所述阴极在电解条件下为固态, 不 溶于电解质; 电解生成的稀土金属合金在电解质中难溶。
5. 根据权利要求 1所述的方法, 其特征在于, 所述其他合金组分为 Fe、 Cu、 Cr、 Ti、 V、 Co、 Ni、 Mg、 Al和 Mn中的一种或几种; 优选为 Fe、 Co、 Ni、 Mg、 Al和 Mn中的一种或几种。
6. 根据权利要求 1至 5中任一项所述的方法,其特征在于,所述电解质为 Ca、 Ba、 Na、 K、 Li和 Mg中一种或几种元素的氯化物熔盐; 优选为 Ca、 Ba、 Li中任何 一种或几种元素的氯化物熔盐。
7. 一种稀土金属合金产品, 其特征在于, 所述稀土金属合金产品通过权利要求 1 至 6中任一项所述的熔融盐电解制备稀土金属合金的方法制备而成。
8. 一种熔融盐电解制备稀土金属的方法, 其特征在于, 在该方法中, 电解质为碱 金属或碱土金属的氯化物熔盐, 阳极为碳素材料或惰性电极, 阴极为稀土金属 氧化物; 通入直流电实施电解, 电解过程中电解温度高于所生成的稀土金属的熔点且低于所述阴极的熔 点, 阴极表层首先被电解成金属液膜, 累积到一定量后落入底部的坩埚中; 阴 极电流密度满足稀土金属成分在所述阴极析出; 电解电压低于所述电解质分解 电位并高于稀土金属氧化物的分解电位。
9. 根据权利要求 8所述的方法, 其特征在于, 所述通入的直流电实施电解的过程 中电解电压为 2.8V-4.0V, 优选为 3.1-3.6V。
10. 根据权利要求 8所述的方法, 其特征在于, 所述稀土金属为钪、 钇、 镧、 铈、 镨、 钕、 钆、 铽、 镝、 钬、 铒、 镥、 钐、 铕、 铥或镱; 优选为变价稀土金属钐、 铕、 铥或镱
11. 根据权利要求 8所述的方法, 其特征在于, 所述阴极在电解条件下为固态, 不 溶于电解质; 电解生成的稀土金属在电解质中难溶。
12. 根据权利要求 8至 11中任一项所述的方法, 其特征在于, 所述电解质为 Ca、 Ba、 Na、 K、 Li和 Mg中一种或几种元素的氯化物熔盐; 优选为 Ca、 Ba、 Li 中任何一种或几种元素的氯化物熔盐。
13. 一种稀土金属产品,其特征在于,所述稀土金属产品通过权利要求 8至 12中任 一项所述的熔融盐电解制备稀土金属的方法制备而成。
PCT/CN2013/080522 2012-07-31 2013-07-31 稀土金属、稀土金属合金及熔融盐电解制备稀土金属、稀土金属合金的方法 WO2014019513A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551524A JP5993957B2 (ja) 2012-07-31 2013-07-31 希土類金属、希土類金属合金及び溶融塩電解による希土類金属と希土類金属合金製造の方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210271317.X 2012-07-31
CN201210271317.XA CN103572329B (zh) 2012-07-31 2012-07-31 一种熔融盐电解制备稀土金属合金的方法

Publications (2)

Publication Number Publication Date
WO2014019513A2 true WO2014019513A2 (zh) 2014-02-06
WO2014019513A3 WO2014019513A3 (zh) 2014-04-10

Family

ID=50028591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080522 WO2014019513A2 (zh) 2012-07-31 2013-07-31 稀土金属、稀土金属合金及熔融盐电解制备稀土金属、稀土金属合金的方法

Country Status (4)

Country Link
JP (1) JP5993957B2 (zh)
CN (1) CN103572329B (zh)
MY (1) MY167225A (zh)
WO (1) WO2014019513A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834970A (zh) * 2014-03-05 2014-06-04 中国科学院青海盐湖研究所 熔盐电解法制备镁-锌中间合金的方法
CN112921361A (zh) * 2019-12-05 2021-06-08 有研稀土新材料股份有限公司 一种钇铝中间合金及其制备方法
CN113279018A (zh) * 2016-12-16 2021-08-20 包头稀土研究院 镨钕铁合金的制备方法
CN113430579A (zh) * 2016-12-16 2021-09-24 包头稀土研究院 镧铁合金的制备方法
CN113897640A (zh) * 2021-09-29 2022-01-07 内蒙金属材料研究所 涂覆阴极的组合物及制备方法、用途和钨阴极的制备方法
CN114635162A (zh) * 2022-04-26 2022-06-17 江西理工大学 一种自耗阴极熔盐电解制备铝稀土多元合金的方法
CN114934298A (zh) * 2022-05-24 2022-08-23 江西理工大学 一种镨钕镝合金中非金属杂质的脱除方法
CN114941079A (zh) * 2022-05-24 2022-08-26 国瑞科创稀土功能材料(赣州)有限公司 一种镝铁合金中氧化物夹杂的脱除方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849900B (zh) * 2014-02-25 2016-08-17 广东省工业技术研究院(广州有色金属研究院) 一种稀土合金的制备方法
CN104451215B (zh) * 2014-12-12 2016-08-24 东北大学 一种熔盐电脱氧-铸锭冶金制备铝合金的方法
CN106702434B (zh) * 2015-07-13 2018-11-06 有研稀土新材料股份有限公司 电解装置及电解方法
CN105624737B (zh) * 2015-12-31 2017-09-29 包头稀土研究院 一种制备稀土镁合金的方法及稀土钇钕镁合金
CN105543900A (zh) * 2015-12-31 2016-05-04 包头稀土研究院 一种稀土钬合金的制备方法及稀土钬合金
CN105671591B (zh) * 2016-03-28 2017-09-29 北京科技大学 一种熔盐电解直接制备Sm2Fe17合金方法
CN106757171A (zh) * 2016-12-16 2017-05-31 包头稀土研究院 镨铁合金及其制备方法
CN106978612A (zh) * 2017-03-16 2017-07-25 广东省稀有金属研究所 一种金属化合物的冶金方法
KR101878652B1 (ko) * 2017-07-12 2018-07-16 충남대학교산학협력단 전해환원 및 전해정련 일관공정에 의한 금속 정련 방법
CN110205652B (zh) * 2019-05-16 2020-11-27 东北大学 一种铜钪中间合金的制备方法和应用
CN111440978A (zh) * 2020-03-24 2020-07-24 龙南龙钇重稀土科技股份有限公司 一种镧铈钇镁中间合金及其制备方法
CN114214670B (zh) * 2022-01-13 2023-03-31 内蒙古科技大学 一体化稀土金属电解工艺和稀土电解装置
CN114672851A (zh) * 2022-04-26 2022-06-28 江西理工大学 一种自耗阴极熔盐电解制备铝-钪-过渡金属合金的方法
CN114807637B (zh) * 2022-05-24 2023-07-07 江西理工大学 一种镨钕合金中氧化物杂质的电脱除方法
CN115354176A (zh) * 2022-08-25 2022-11-18 萍乡鑫森新材料有限责任公司 一种制备稀土金属或稀土合金的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128786A (ja) * 1992-10-15 1994-05-10 Mitsubishi Kasei Corp サマリウム金属又はサマリウム合金の製造法
CN101629308A (zh) * 2009-04-29 2010-01-20 江苏江南铁合金有限公司 一种电脱氧制备铽铁、镝铁、铽镝铁合金的方法
CN101629307A (zh) * 2009-04-29 2010-01-20 江苏江南铁合金有限公司 一种电脱氧制备稀土金属铽、镝的方法
CN101886197A (zh) * 2010-07-09 2010-11-17 哈尔滨工程大学 一种铝锂钐合金及其熔盐电解制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2574434B1 (fr) * 1984-12-07 1989-04-21 Rhone Poulenc Spec Chim Procede de preparation electrolytique de terres rares ou de leurs alliages et dispositif pour la mise en oeuvre de ce procede
JPS61270384A (ja) * 1985-05-24 1986-11-29 Sumitomo Light Metal Ind Ltd ランタン―ニッケル合金の連続的製造方法
JPS62146290A (ja) * 1985-12-19 1987-06-30 Sumitomo Light Metal Ind Ltd ジスプロシウム−鉄合金の製造方法並びにその製造装置
JPS62224693A (ja) * 1986-03-26 1987-10-02 Sumitomo Light Metal Ind Ltd テルビウム−ガドリニウム系合金の製造方法並びにその製造装置
JPS62224692A (ja) * 1986-03-26 1987-10-02 Sumitomo Light Metal Ind Ltd テルビウム合金の製造方法並びにその製造装置
WO1997015701A1 (fr) * 1995-10-25 1997-05-01 Santoku Metal Industry Co., Ltd. Procede pour produire des metaux de terres rares
JP2004315891A (ja) * 2003-04-16 2004-11-11 Toyohashi University Of Technology 希土類金属を含むマグネシウム合金の製造方法
JP5504515B2 (ja) * 2008-05-01 2014-05-28 独立行政法人産業技術総合研究所 希土類金属の回収方法
CN101613864B (zh) * 2009-07-29 2011-12-21 中国科学院青海盐湖研究所 熔盐电解法制备镁稀土合金的方法
JP2012136766A (ja) * 2010-12-28 2012-07-19 Kyoto Univ 電気分解による金属の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128786A (ja) * 1992-10-15 1994-05-10 Mitsubishi Kasei Corp サマリウム金属又はサマリウム合金の製造法
CN101629308A (zh) * 2009-04-29 2010-01-20 江苏江南铁合金有限公司 一种电脱氧制备铽铁、镝铁、铽镝铁合金的方法
CN101629307A (zh) * 2009-04-29 2010-01-20 江苏江南铁合金有限公司 一种电脱氧制备稀土金属铽、镝的方法
CN101886197A (zh) * 2010-07-09 2010-11-17 哈尔滨工程大学 一种铝锂钐合金及其熔盐电解制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, DEHONG ET AL.: 'Key Technologies of 3000A Submerged-Liquid Cathodic Rare Earth Electrolysis Process' JOURNAL OF THE CHINESE RARE EARTH SOCIETY vol. 29, no. 6, December 2011, ISSN 1000-4343 pages 769 - 771 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834970A (zh) * 2014-03-05 2014-06-04 中国科学院青海盐湖研究所 熔盐电解法制备镁-锌中间合金的方法
CN113279018A (zh) * 2016-12-16 2021-08-20 包头稀土研究院 镨钕铁合金的制备方法
CN113430579A (zh) * 2016-12-16 2021-09-24 包头稀土研究院 镧铁合金的制备方法
CN113430579B (zh) * 2016-12-16 2023-07-14 包头稀土研究院 镧铁合金的制备方法
CN112921361A (zh) * 2019-12-05 2021-06-08 有研稀土新材料股份有限公司 一种钇铝中间合金及其制备方法
CN112921361B (zh) * 2019-12-05 2022-02-22 有研稀土新材料股份有限公司 一种钇铝中间合金及其制备方法
CN113897640A (zh) * 2021-09-29 2022-01-07 内蒙金属材料研究所 涂覆阴极的组合物及制备方法、用途和钨阴极的制备方法
CN114635162A (zh) * 2022-04-26 2022-06-17 江西理工大学 一种自耗阴极熔盐电解制备铝稀土多元合金的方法
CN114934298A (zh) * 2022-05-24 2022-08-23 江西理工大学 一种镨钕镝合金中非金属杂质的脱除方法
CN114941079A (zh) * 2022-05-24 2022-08-26 国瑞科创稀土功能材料(赣州)有限公司 一种镝铁合金中氧化物夹杂的脱除方法
CN114934298B (zh) * 2022-05-24 2024-04-19 江西理工大学 一种镨钕镝合金中非金属杂质的脱除方法

Also Published As

Publication number Publication date
MY167225A (en) 2018-08-14
JP5993957B2 (ja) 2016-09-21
JP2015513604A (ja) 2015-05-14
CN103572329B (zh) 2016-01-20
WO2014019513A3 (zh) 2014-04-10
CN103572329A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2014019513A2 (zh) 稀土金属、稀土金属合金及熔融盐电解制备稀土金属、稀土金属合金的方法
CN100562608C (zh) 一种高稀土含量镁中间合金的制备方法
CN101901893B (zh) 电池用铝合金阳极材料及其制造方法
CN101200806B (zh) 一种熔盐电解制备钆铁合金的方法
CN102864468B (zh) 一种超细金属粉末的生产方法
CN1837411B (zh) 一种难熔活泼金属或合金的制备方法
CN103924266B (zh) 一种共沉积法制备稀土钆合金的方法
CN112941396B (zh) 高熵合金纳米框架及其制备方法
CN101240392A (zh) 一种稀土合金
US20240191382A1 (en) Method for preparing rare earth alloys
CN106978612A (zh) 一种金属化合物的冶金方法
CA2881811A1 (en) Recovery of rare earth metals
CN101603182B (zh) 一种从m1的氧化物中除氧的电化学方法
CN109136598A (zh) 一种镁铝铟稀土阳极材料及其制备方法、镁空气电池
WO2013185539A1 (zh) 一种电解铝用惰性合金阳极及其制备方法
CN112921360B (zh) 一种熔盐电解制备稀土金属的方法
CN101985763A (zh) 一种熔盐电解制备钨基合金粉末的方法
CN107794551B (zh) 一种熔盐电解共沉积制备的铜镝中间合金及其制备方法
CN105714332A (zh) 一种熔盐电沉积钒的方法
CN1865514A (zh) 熔盐电解法生产电池级混合稀土金属工艺及设备
CN107287470B (zh) 一种包含纳米碳化钨材料的铅蓄电池板栅合金及制备方法
CN103484895B (zh) 一种电解铝用惰性合金阳极及其制备方法
CN112921361B (zh) 一种钇铝中间合金及其制备方法
JPH0713314B2 (ja) 希土類金属および希土類合金の製造方法
CN105177632B (zh) 稀土改性制备铜‑铝‑稀土中间合金熔盐电解方法及合金

Legal Events

Date Code Title Description
ENP Entry into the national phase in:

Ref document number: 2014551524

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13824855

Country of ref document: EP

Kind code of ref document: A2