WO2014006821A1 - 導電性高分子組成物、該組成物より得られる帯電防止膜が設けられた被覆品、及び前記組成物を用いたパターン形成方法 - Google Patents

導電性高分子組成物、該組成物より得られる帯電防止膜が設けられた被覆品、及び前記組成物を用いたパターン形成方法 Download PDF

Info

Publication number
WO2014006821A1
WO2014006821A1 PCT/JP2013/003561 JP2013003561W WO2014006821A1 WO 2014006821 A1 WO2014006821 A1 WO 2014006821A1 JP 2013003561 W JP2013003561 W JP 2013003561W WO 2014006821 A1 WO2014006821 A1 WO 2014006821A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
acid
polymer composition
poly
resist
Prior art date
Application number
PCT/JP2013/003561
Other languages
English (en)
French (fr)
Inventor
澤井 俊哉
賢幸 長澤
渡邉 聡
恵一 増永
Original Assignee
信越ポリマー株式会社
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社, 信越化学工業株式会社 filed Critical 信越ポリマー株式会社
Priority to US14/408,911 priority Critical patent/US9558862B2/en
Priority to EP13813440.8A priority patent/EP2868698B1/en
Priority to KR1020147037059A priority patent/KR101851583B1/ko
Publication of WO2014006821A1 publication Critical patent/WO2014006821A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/093Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antistatic means, e.g. for charge depletion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/017Additives being an antistatic agent
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2061Electron scattering (proximity) correction or prevention methods

Definitions

  • the present invention relates to a conductive polymer composition containing a ⁇ -conjugated conductive polymer, a coated article using the same, and a pattern forming method. More specifically, the present invention relates to a conductive polymer composition suitably used for resist antistatic in lithography using ultraviolet rays, electron beams, etc., an article provided with an antistatic film obtained by using the same, and The present invention relates to a pattern forming method using the composition.
  • the surface of the chemically amplified resist is hydrophobic and it is difficult to apply the water-based antistatic agent, it is necessary to add a surfactant or the like, but it is also necessary to add a surfactant to the resist surface. In some cases, the resist is adversely affected.
  • Patent Document 1 describes the inclusion of an acid component having a molecular weight of 500 or less in a composition containing an acidic group-substituted aniline-based conductive polymer (A) and a solvent (B).
  • a conductive composition for forming a resist pattern having an amount of 0.03% by mass or less is disclosed.
  • Patent Document 2 includes a water-soluble conductive polymer (a) having a sulfonic acid group and / or a carboxyl group, and a nitrogen-containing functional group and a terminal hydrophobic group as a polymer surfactant that does not adversely affect the resist.
  • a conductive composition comprising a water-soluble polymer (b) and a solvent (c) is disclosed.
  • Patent Document 3 discloses a charge comprising a water-soluble conductive polymer, a solvent, and a water-soluble polymer having a chemical structure represented by — (N (R ′) — CH (R) —C ( ⁇ O)) —. An inhibitor is disclosed.
  • Patent Document 1 requires further purification of the conductive polymer in an organic solvent, which is not preferable in terms of the process.
  • a compound generating a malodor such as a mercapto group as a chain transfer agent for the introduction of a terminal hydrophobic group, which is not preferable in terms of work.
  • the film thickness of the resist film may be slightly reduced, which is insufficient to prevent damage to the resist film.
  • Patent Document 3 discloses a water-soluble conductive polymer, a solvent, and a chemical structure represented by — (N (R ′) — CH (R) —C ( ⁇ O)) — that is, an ⁇ -amino group and ⁇
  • An antistatic agent containing a water-soluble polymer having a polypeptide structure obtained by dehydration condensation with a carboxyl group as a repeating structure is disclosed.
  • the thickness of the resist film may be slightly reduced, which is still insufficient to prevent damage to the resist film.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a conductive polymer composition that is excellent in antistatic ability and can be suitably used particularly for lithography using an electron beam or the like.
  • the present invention provides a conductive polymer composition
  • a conductive polymer composition comprising a ⁇ -conjugated conductive polymer, a polyanion, and a gemini surfactant.
  • Such a conductive polymer composition has excellent antistatic ability, does not adversely affect the resist, and has excellent coating properties. Therefore, the conductive polymer composition can be suitably used for lithography using an electron beam or the like. It becomes a polymer composition.
  • the gemini surfactant is represented by the following general formula (1).
  • a 1 and A 2 each independently represent CH or N.
  • R 1 and R 2 each independently represents a linear or branched alkyl group or alkenyl group having 5 to 22 carbon atoms, and arbitrary hydrogen may be substituted with fluorine.
  • R 11 , R 12 , R 13 and R 14 each independently represents — (CH 2 ) n — (wherein n is any one of 0, 1, and 2).
  • R 21 is -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, and - (CH 2) m -R 22 - (CH 2) p - (wherein, m, p are each Independently, it represents an integer of 2 to 5, and R 22 represents a single bond or a divalent organic group.
  • X 1 and X 2 each independently represent any of H, Na, K, and NH 4 . ]]
  • the conductive polymer composition of the present invention contains a gemini surfactant represented by the above general formula (1), the wettability to the surface of the workpiece is good and a more uniform film is provided. be able to.
  • the conductive polymer composition may further contain a water-soluble polymer.
  • a water-soluble polymer By containing a water-soluble polymer, the strength of the coating film obtained from the conductive polymer composition of the present invention can be maintained and flatness can be imparted.
  • content of the said gemini type surfactant is 10 mass parts to 1000 mass parts with respect to 100 mass parts of composite_body
  • content of the gemini surfactant is set to such a value, the wettability to the resist surface in particular becomes better and the conductivity becomes sufficient.
  • the conductive polymer composition may be used for forming an antistatic film.
  • the present invention also provides a coated article characterized in that an antistatic film obtained by using the conductive polymer composition is provided on a workpiece.
  • the antistatic film obtained from the conductive polymer composition of the present invention is excellent in antistatic ability, and a high quality coated product is obtained by coating such an antistatic film on various workpieces. be able to.
  • the workpiece can be a substrate provided with a chemically amplified resist film. Since the conductive polymer composition of the present invention does not adversely affect the resist, a chemically amplified resist film that has conventionally been difficult to apply as a workpiece to be provided with an antistatic film obtained from the composition of the present invention It is also possible to select a substrate comprising
  • the present invention provides a step of forming an antistatic film on the resist film of a substrate provided with a chemically amplified resist film using the conductive polymer composition, a step of pattern irradiation with an electron beam, and an alkaline developer.
  • a pattern forming method is provided, comprising a step of using and developing to obtain a resist pattern.
  • a resist pattern having high sensitivity, high resolution, and good pattern shape can be obtained.
  • the conductive polymer composition of the present invention is excellent in antistatic ability, it can be suitably used for antistatic applications.
  • it does not give adverse effects such as insolubilization of the resist or film reduction, and is excellent in coating properties, so it is particularly suitable for lithography using an electron beam or the like. It is possible to obtain a resist pattern having high sensitivity, high resolution, and good pattern shape.
  • the conductive polymer composition of the present invention is characterized by containing a ⁇ -conjugated conductive polymer, a polyanion, and a gemini surfactant.
  • the ⁇ -conjugated conductive polymer can be used as long as the main chain is an organic polymer having a ⁇ -conjugated system.
  • examples thereof include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of easy polymerization and stability in air, polypyrroles, polythiophenes and polyanilines are preferred.
  • an alkyl group, a carboxy group, a sulfo group, an alkoxy group, a hydroxy group, a cyano group Or the like may be introduced into the ⁇ -conjugated conductive polymer.
  • ⁇ -conjugated conductive polymers include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole). ), Poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4 Dibutylpyrrole), poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), Poly (3-hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (3-methyl-4
  • polypyrrole from one or two selected from polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene), poly (3-methoxythiophene), and poly (3,4-ethylenedioxythiophene)
  • the (co) polymer is preferably used from the viewpoints of resistance and reactivity. Furthermore, polypyrrole and poly (3,4-ethylenedioxythiophene) are more preferable because of high conductivity.
  • the polyanion used in the present invention is a polymer having a plurality of anion groups in one molecule, and a monomer having an anion group is polymerized, or a monomer having an anion group and a monomer having no anion group Can be obtained by a copolymerization method. These monomers can be used alone or in combination of two or more. It can also be obtained by obtaining a polymer having no anionic group and then sulfonating with a sulfonating agent such as sulfuric acid, fuming sulfuric acid, sulfamic acid and the like. Further, once a polymer having an anion group is obtained, the polyanion having a higher anion group content can be obtained by further sulfonation.
  • Examples of a monomer constituting the polyanion used in the present invention -O-SO 3 - X + , -SO 3 - X +, -COO - X +, -O-PO 4 - X +, -PO 4 - X
  • Examples thereof include monomers containing a strong acid group such as + (in each formula, X + represents a hydrogen ion or an alkali metal ion).
  • —SO 3 ⁇ X + and —COO ⁇ X + are preferable from the viewpoint of the doping effect on the ⁇ -conjugated conductive polymer.
  • this anion group is arrange
  • Examples of the monomer containing a sulfonic acid group include styrene sulfonic acid, allyloxybenzene sulfonic acid, methallyloxybenzene sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, and 2- (methacryloxy) ethane.
  • Examples include sulfonic acid, 4- (methacryloxy) butanesulfonic acid, isoprenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and the like.
  • These monomers may be used alone or in combination of two or more, and may be used in the form of a salt neutralized with a base such as ammonia, triethylamine or sodium hydroxide.
  • Examples of the monomer containing a phosphoric acid group include 3-chloro-2-acid phosphoxypropyl (meth) acrylate, acid phosphooxypolyoxyethylene glycol mono (meth) acrylate, and mono (2-hydroxyethyl acrylate).
  • Acid phosphate mono (2-hydroxyethyl methacrylate) acid phosphate, mono (2-hydroxypropyl acrylate) acid phosphate, mono (2-hydroxypropyl methacrylate) acid phosphate, mono (3-hydroxypropyl acrylate) acid phosphate, mono (3 -Hydroxypropyl methacrylate) acid phosphate, diphenyl-2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate Eto, and the like.
  • These monomers may be used alone or in combination of two or more, and may be used in the form of a salt neutralized with a base such as ammonia, triethylamine or sodium hydroxide.
  • Examples of the monomer containing a carboxyl group include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; ethylenically unsaturated polyvalent carboxylic acids such as maleic acid, fumaric acid, and itaconic acid; Examples thereof include acid anhydrides thereof; partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as methyl maleate and methyl itaconate; and the like. These monomers may be used alone or in combination of two or more, and may be used in the form of a salt neutralized with a base such as ammonia, triethylamine or sodium hydroxide.
  • a base such as ammonia, triethylamine or sodium hydroxide.
  • conjugated diene monomers such as 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene, 2-methyl-1,3-butadiene; styrene, ⁇ -methylstyrene, p-methylstyrene, etc.
  • Aromatic vinyl monomers ethylenically unsaturated carboxylic acid alkyl ester monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; Ethylenically unsaturated carboxylic acid amide monomers such as acrylamide, methacrylamide, N, N-dimethylacrylamide, N-methylolacrylamide; ethylenically unsaturated carboxylic acids such as hydroxyalkyl (meth) acrylate and glycerin di (meth) acrylate Acid hydroxyalkyl ester monomer; vinyl carboxylate such as vinyl acetate Ester monomers; (meth) acrylonitrile, N- vinylpyrrolidone, (meth) acryloyl morpholine, cyclohexyl maleimide, isopropyl maleimide, and (meth) gly
  • the above monomer can be polymerized using an initiator to obtain the polyanion used in the present invention.
  • production of sulfonated polyester using sulfonated dicarboxylic acid and diol JP 2007-102224
  • manufacture of sulfonated polyimide using sulfonated diamino compound and tetracarboxylic dianhydride JP 2006-152009, JP 2007- 302743
  • production of a sulfonated polyurethane by polymerization of a sulfonated polyester polyol and a polyisocyanate JP 2002-514233
  • the polyanion used in the present invention can be obtained by sulfonation with a sulfonating agent such as sulfuric acid, fuming sulfuric acid, sulfamic acid and the like.
  • polyetherketone EP041780
  • sulfonation of polyetheretherketone JP-A-2008-108535
  • sulfonation of polyethersulfone JP-A-10-309449
  • polyphenylene polyfluorene
  • polyvinylcarbazole The polyanion used in the present invention can also be obtained by sulfonation of JP-A-2010-514161, sulfonation of polyphenylene oxide, sulfonation of polyphenylene sulfide, and the like.
  • polyisoprene sulfonic acid a copolymer containing polyisoprene sulfonic acid, a polysulfoethyl methacrylate, a copolymer containing polysulfoethyl methacrylate, and poly (4-sulfone) are preferable in view of solvent solubility and conductivity.
  • polystyrene sulfonic acid, polysulfoethyl methacrylate, and poly (4-sulfobutyl methacrylate) are more preferable.
  • the polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
  • the molecular weight of the polyanion is preferably 10,000 to 1,000,000. If it is more than the said lower limit, (pi) conjugated system conductive polymer will become a uniform solution easily, and if it is below an upper limit, electroconductivity will become better.
  • the polyanion is coordinated to the ⁇ -conjugated conductive polymer, and the ⁇ -conjugated conductive polymer and the polyanion form a complex.
  • the complex of the ⁇ -conjugated conductive polymer and the polyanion is, for example, a monomer (preferably pyrrole or a pyrrole-conjugated conductive polymer) in a polyanion aqueous solution or a polyanion water / organic solvent mixed solution.
  • a monomer preferably pyrrole or a pyrrole-conjugated conductive polymer
  • the derivative monomer, thiophene or its derivative monomer, aniline or its derivative monomer, etc. are added, and an oxidant and optionally an oxidation catalyst are added to carry out oxidative polymerization.
  • the polyanion is dissolved in the form of an alkali metal salt, ammonium salt or amine salt, add an inorganic acid or organic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or perchloric acid to the reaction solution. Is preferably acidic.
  • oxidizing agent and oxidation catalyst examples include peroxodisulfates such as ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate, transition metal compounds such as ferric chloride, ferric sulfate, and cupric chloride, silver oxide Metal oxides such as cesium oxide, peroxides such as hydrogen peroxide and ozone, organic peroxides such as benzoyl peroxide, oxygen, and the like can be used.
  • peroxodisulfates such as ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate
  • transition metal compounds such as ferric chloride, ferric sulfate, and cupric chloride
  • silver oxide Metal oxides such as cesium oxide
  • peroxides such as hydrogen peroxide and ozone
  • organic peroxides such as benzoyl peroxide, oxygen, and the like
  • reaction solvent used for oxidative polymerization water or a mixed solvent of water and a solvent can be used.
  • the solvent used here is miscible with water and is preferably a solvent capable of dissolving or dispersing a polyanion or ⁇ -conjugated conductive polymer described later.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N'-dimethylformamide, N, N'-dimethylacetamide, dimethyl sulfoxide, hexamethylene phosphortriamide, methanol, ethanol, propanol Alcohols such as butanol, ethylene glycol, propylene glycol, dipropylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, D-glucose, D-glucitol, isoprene glycol, butanediol, 1 , 5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, polyhydric aliphatic alcohols such as neopentyl glycol, carbonate compounds such as ethylene carbonate and propylene carbonate, and cyclic ethers such as dioxane and tetrahydrofuran Compounds, chain ethers such as
  • an anion capable of doping the ⁇ -conjugated conductive polymer may be used in combination.
  • an organic acid is preferable from the viewpoint of adjusting the dedoping characteristics from the ⁇ -conjugated conductive polymer, the dispersibility of the conductive composition according to the present invention, the heat resistance, and the environmental resistance characteristics.
  • the organic acid include organic carboxylic acids, phenols, and organic sulfonic acids.
  • organic carboxylic acid aliphatic, aromatic, cycloaliphatic and the like containing one or more carboxy groups
  • phenols include phenols such as cresol, phenol, and xylenol.
  • organic sulfonic acid aliphatic, aromatic, cycloaliphatic or the like containing one or more sulfonic acid groups can be used.
  • examples of those containing one sulfonic acid group include methanesulfonic acid, ethanesulfonic acid, 1-propanesulfonic acid, 1-butanesulfonic acid, 1-hexanesulfonic acid, 1-heptanesulfonic acid, and 1-octanesulfonic acid.
  • Examples of those containing two or more sulfonic acid groups include ethanedisulfonic acid, butanedisulfonic acid, pentanedisulfonic acid, decanedisulfonic acid, m-benzenedisulfonic acid, o-benzenedisulfonic acid, p-benzenedisulfonic acid, toluenedisulfone.
  • Acid xylene disulfonic acid, chlorobenzene disulfonic acid, fluorobenzene disulfonic acid, aniline-2,4-disulfonic acid, aniline-2,5-disulfonic acid, dimethylbenzene disulfonic acid, diethylbenzene disulfonic acid, dibutylbenzene disulfonic acid, naphthalene disulfonic acid , Methyl naphthalene disulfonic acid, ethyl naphthalene disulfonic acid, dodecyl naphthalene disulfonic acid, pentadecyl naphthalene disulfonic acid, butyl naphthalene disulfonic acid, 2-amino-1,4 Benzenedisulfonic acid, 1-amino-3,8-naphthalenedisulfonic acid, 3-amino-1,5-naphthalenedisulfonic acid, 8-amino-1-n
  • Anions other than these polyanions may be added to a solution containing the monomer, the polyanion, and an oxidizing agent and / or an oxidation polymerization catalyst before polymerization of the monomer that is a raw material of the ⁇ -conjugated conductive polymer. You may add to the conductive polymer composition containing the polyanion and (pi) conjugated conductive polymer after superposition
  • the complex of the ⁇ -conjugated conductive polymer and the polyanion obtained as described above can be used after being finely divided by a homogenizer, a ball mill or the like, if necessary. It is preferable to use a mixing and dispersing machine capable of applying a high shearing force for the fine graining.
  • a mixing and dispersing machine include a homogenizer, a high-pressure homogenizer, and a bead mill. Among them, a high-pressure homogenizer is preferable.
  • the high-pressure homogenizer examples include a trade name Nanomizer manufactured by Yoshida Kikai Kogyo Co., Ltd., a trade name Microfluidizer manufactured by Microfluidic Disc, and an optimizer manufactured by Sugino Machine.
  • the dispersion process using the high-pressure homogenizer examples include a process in which the complex solution before the dispersion process is subjected to a high-pressure opposing collision, a process in which the complex solution is passed through an orifice or a slit at a high pressure, and the like.
  • impurities may be removed by a technique such as filtration, ultrafiltration, dialysis, etc., and purification may be performed with a cation exchange resin, an anion exchange resin, a chelate resin, or the like.
  • the total content of the ⁇ -conjugated conductive polymer and the polyanion in the conductive polymer composition is preferably 0.05 to 5.0% by mass. If the total content of the ⁇ -conjugated conductive polymer and the polyanion is 0.05 mass or more, sufficient conductivity is obtained, and if it is 5.0 mass% or less, a uniform conductive coating film is easily obtained. can get.
  • a complex of a ⁇ -conjugated conductive polymer and a polyanion is used by adjusting pH with an aqueous ammonia solution, an aqueous alkylamine solution such as trimethylamine, an imidazole derivative aqueous solution such as imidazole, an aqueous sodium hydroxide solution, or an aqueous potassium hydroxide solution.
  • the pH is preferably in the range of 4 to 8. If it is in the range of pH 4 or more and pH 8 or less, the resist is more difficult to be damaged.
  • the content of the polyanion is preferably in an amount in the range of 0.1 to 10 mol of the anion group in the polyanion with respect to 1 mol of the ⁇ -conjugated conductive polymer, and in the range of 1 to 7 mol. Is more preferable.
  • the anion group in the polyanion is 0.1 mol or more, the doping effect on the ⁇ -conjugated conductive polymer is high, and sufficient conductivity can be ensured.
  • the anion group in a polyanion is 10 mol or less, content of (pi) conjugated system conductive polymer will also become moderate, and sufficient electroconductivity will be obtained.
  • Gemini-type surfactant is a surfactant compound in which at least two surfactant units composed of a hydrophilic head group and a hydrophobic group are bonded to each other in the vicinity of the hydrophilic group by an interval holding portion called a spacer.
  • Gemini-type surfactants have excellent interface properties such as extremely low critical micelle concentration and high surface tension reducing ability, excellent bubbling and emulsifying ability, good solubility in water and hard water resistance due to their structural characteristics. Show.
  • any known gemini surfactant can be used. Moreover, only one type of gemini type surfactant may be used, or two or more types may be mixed and used.
  • gemini type surfactant suitably used in the present invention is represented by the following general formula (1).
  • a 1 and A 2 each independently represent CH or N.
  • R 1 and R 2 each independently represents a linear or branched alkyl group or alkenyl group having 5 to 22 carbon atoms, and arbitrary hydrogen may be substituted with fluorine.
  • R 11 , R 12 , R 13 and R 14 each independently represents — (CH 2 ) n — (wherein n is any one of 0, 1, and 2).
  • R 21 is -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, and - (CH 2) m -R 22 - (CH 2) p - (wherein, m, p are each Independently, it represents an integer of 2 to 5, and R 22 represents a single bond or a divalent organic group.
  • X 1 and X 2 each independently represent any of H, Na, K, and NH 4 . ]]
  • the “organic group” means a group containing at least one carbon, and further contains hydrogen, and may contain nitrogen, oxygen, sulfur, silicon, halogen atoms and the like.
  • R 1 and R 2 include hexyl, octyl, nonyl, decyl, dodecyl, hexadecyl, octadecyl, behenyl, isostearyl, 2-ethylhexyl, oleyl, linolyl, etc. Is mentioned.
  • organic group represented by R 22 examples include —OCH 2 CH 2 O—, —OCH 2 CH 2 OCH 2 CH 2 O—, —OCH (CH 3 ) CH 2 O—, —OCH (CH 3 ).
  • Gemini type surfactants preferably used in the present invention include N, N- (bishexadecanamidoethyl) ethylenediamine-N, N-diacetic acid, N, N- (bislauramidoethyl) ethylenediamine-N, N -Diacetic acid, N, N- (bislauramidoethyl) ethylenediamine-N, N-dipropionic acid, N, N- (bisdecanamidoethyl) ethylenediamine-N, N-diacetic acid, N, N- (bis Octanamidoethyl) ethylenediamine-N, N-diacetic acid, lysine dilauroylglutamate, ethylenediamine dilauroylglutamate, propylenediamine dilauroylglutamate, and the like.
  • the content of the gemini surfactant is preferably 10 parts by mass to 1000 parts by mass and more preferably 30 parts by mass to 300 parts by mass with respect to 100 parts by mass of the complex of the ⁇ -conjugated conductive polymer and the polyanion. preferable. If it is at least the lower limit, wetting on the resist surface will be better, and if it is not more than the upper limit, the conductivity will be sufficient.
  • a water-soluble polymer may be added to maintain the strength of the coating film and to provide flatness.
  • the water-soluble polymer used in the present invention include vinyl pyrrolidone, vinyl pyridine, vinyl caprolactam, vinyl alcohol, (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxystyrene, vinylaniline, N -Methyl methacrylamide, N-ethyl methacrylamide, N-benzyl methacrylamide, N-phenyl methacrylamide, N, N-dimethyl methacrylamide, acrylic acid, sodium acrylate, propyl acrylate sulfonate, sodium propyl acrylate sulfonate, vinyl Benzoic acid, sodium vinyl benzoate, styrene sulfonic acid, sodium styrene sulfonate, maleic acid, sodium male
  • copolymerizable monomers can be copolymerized as long as the characteristics as a water-soluble resin are not lost.
  • These copolymerizable monomers are methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, phenyl acrylate, isobutyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytril.
  • Acrylic esters such as ethylene glycol acrylate and 2-ethoxyethyl acrylate, ethyl methacrylate, normal propyl methacrylate, normal pentyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, naphthyl methacrylate, phenyl methacrylate, 2-phenylethyl methacrylate, 2,2,2-tri Fluoroethyl methacrylate, 2 2,2-trichloroethyl methacrylate, methyl acrylate, isobutyl methacrylate, methoxy diethylene glycol methacrylate, methacrylate such as methoxy polyethylene glycol methacrylate, maleimide, styrene, methyl styrene, chlorostyrene, bromostyrene, and include hydroxystyrene and styrene compounds.
  • polysaccharides such as partially saponified polyvinyl alcohol, maltodextrin, polydextrose, hydroxyethyl cellulose, heparin, water-soluble epoxy resin, water-soluble phenol resin, water-soluble polyester resin, water-soluble urethane resin, etc. should be used. Can do.
  • the weight average molecular weight of the preferred water-soluble polymer is 400 to 1,000,000, particularly preferably 500 to 500,000.
  • a surfactant other than the Gemini surfactant may be added in order to improve wettability to the workpiece such as a base material.
  • surfactants include various nonionic, cationic, and anionic surfactants. Specific examples include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene carboxylic acid ester, sorbitan ester, and polyoxyethylene sorbitan ester, alkyl trimethyl ammonium chloride, alkyl benzyl ammonium.
  • Cationic surfactants such as chloride, anionic surfactants such as alkyl or alkyl allyl sulfate, alkyl or alkyl allyl sulfonate, dialkyl sulfosuccinate, amphoteric surfactants such as amino acid type and betaine type, etc. Can be mentioned.
  • the conductive polymer composition of the present invention for example, a complex of a ⁇ -conjugated conductive polymer and a polyanion, a gemini surfactant, a solvent, and optionally a water-soluble polymer, a surfactant. Etc. are mixed, pH is adjusted, and it can obtain by filtering with a filter etc. as needed.
  • a combination of polystyrene sulfonic acid-doped poly (3,4-ethylenedioxythiophene) and dilauroylglutamate lysine and pH adjustment with ammonia is particularly preferable.
  • the conductive polymer composition thus obtained can form an antistatic film by applying it to a workpiece such as a substrate.
  • a workpiece such as a substrate.
  • the method for applying the conductive polymer composition include application using a bar coater, spin coating, dipping, comma coating, spray coating, roll coating, gravure printing, and the like.
  • an antistatic film is formed by heat treatment using a hot air circulating furnace, a hot plate, or the like.
  • Examples of the workpiece include a glass substrate, a quartz substrate, a photomask blank substrate, a resin substrate, a compound semiconductor wafer such as a silicon wafer, a gallium arsenide wafer, and an indium phosphide wafer.
  • Examples of the coated article coated with the antistatic film obtained using the conductive polymer composition of the present invention include, for example, a glass substrate provided with an antistatic film, a resin film provided with an antistatic film, and an antistatic film. Examples thereof include a resist substrate provided with a film.
  • the conductive polymer composition of the present invention does not adversely affect the resist, it can be suitably used even for a substrate having a chemically amplified resist film.
  • the present invention includes a step of forming an antistatic film using the conductive polymer composition of the present invention on a resist film of a substrate provided with a chemically amplified resist film, a step of pattern irradiation with an electron beam, and an alkaline property.
  • a pattern forming method comprising a step of developing with a developer to obtain a resist pattern.
  • the pattern forming method can be performed according to a conventional method except that the conductive polymer composition of the present invention is used, and may be developed after a post-exposure heat treatment, an etching step, a resist removal step, Of course, various other processes such as a cleaning process may be performed.
  • a charging phenomenon at the time of exposure can be prevented, and a pattern having high sensitivity, high resolution, and good pattern shape can be obtained.
  • the present invention is designed for use in lithography using an electron beam or the like, it is suitable for use in antistatic applications such as lithography, film, and glass using ultraviolet rays because of its excellent antistatic ability. Can do.
  • a positive chemically amplified electron beam resist SEBP-9902 manufactured by Shin-Etsu Chemical Co., Ltd. was used. Further, SEBN-1702 manufactured by Shin-Etsu Chemical Co., Ltd. was used as a negative type chemically amplified electron beam resist.
  • a positive chemical amplification resist was spin-coated onto a 6-inch silicon wafer using MARK VIII (manufactured by Tokyo Electron Ltd., coater developer clean track), on a hot plate
  • MARK VIII manufactured by Tokyo Electron Ltd., coater developer clean track
  • a 150 nm resist film was prepared by pre-baking at 110 ° C. for 240 seconds ⁇ film thickness (T1)>.
  • the conductive polymer composition is spin-coated using MARK VIII on the obtained resist-coated wafer as described above, and baked on a hot plate at 90 ° C. for 90 seconds to prepare a 50 nm conductive polymer film. did.
  • the resist pattern obtained in each process was evaluated as follows.
  • the prepared patterned wafer is observed with a sky SEM (scanning electron microscope), and the exposure amount for resolving 400 nm line and space at 1: 1 is the optimum exposure amount (sensitivity) ( ⁇ C / cm 2 ).
  • the minimum dimension in the exposure amount was taken as the resolution.
  • the pattern shape the pattern part was cleaved whether it was a rectangle, and it determined by visual observation of the SEM image. The results are shown in Tables 2 and 3.
  • the sensitivity change rate was calculated as a deviation (%) with respect to the sensitivity of SEBP-9902.
  • the ultrafiltration conditions were as follows (the same applies to other examples). -Molecular weight cut off of ultrafiltration membrane: 30K ⁇ Cross flow type ⁇ Supply liquid flow rate: 3000 ml / min ⁇ Membrane partial pressure: 0.12 Pa
  • Production Example 2 Preparation of Polystyrenesulfonic Acid Doped Poly (3,4-ethylenedioxythiophene) Dispersion 14.2 g of 3,4-ethylenedioxythiophene and 36.7 g of polystyrenesulfonic acid obtained in Production Example 1 And a solution in which 2000 ml of ion-exchanged water was dissolved were mixed at 20 ° C. While maintaining the mixed solution thus obtained at 20 ° C. and stirring, 29.64 g of ammonium persulfate dissolved in 200 ml of ion exchange water and 8.0 g of ferric sulfate oxidation catalyst solution were slowly added, The reaction was stirred for 3 hours.
  • Example 1 The 1.2 mass% PEDOT-PSS dispersion obtained in Production Example 2 was adjusted to pH 6.5 with 1% aqueous ammonia. 20 g of this dispersion, 60 g of ion-exchanged water, 3.0 g of a 5% by mass polyvinylpyrrolidone aqueous solution (polyvinylpyrrolidone manufactured by Aldrich, average molecular weight of 55000 adjusted to 5% by mass with ion-exchanged water), and Pericea (registered trademark) L -30 (an aqueous solution containing 29% dilauroylglutamate lysine Na, manufactured by Asahi Kasei Chemicals) was mixed, and then filtered using a PVDF filter (manufactured by Millipore) having a pore size of 0.45 ⁇ m. A molecular composition was prepared.
  • Example 2 A conductive polymer composition was prepared in the same manner as in Example 1 except that Perisea (registered trademark) L-30 was changed to 0.3 g.
  • Example 3 A conductive polymer composition was prepared in the same manner as in Example 1 except that Perisea (registered trademark) L-30 was changed to 0.6 g.
  • Example 4 As in Example 1, 40 g of 1.2 mass% PEDOT-PSS dispersion adjusted to pH 6.5 with 1% aqueous ammonia, 40 g of ion-exchanged water, and 1.4 g of Perisea (registered trademark) L-30 A conductive polymer composition was prepared in the same manner as in Example 1 except for the change.
  • Example 5 As in Example 1, 50 g of 1.2 mass% PEDOT-PSS dispersion adjusted to pH 6.5 with 1% aqueous ammonia, 30 g of ion-exchanged water, and 2.5 g of Perisea (registered trademark) L-30 A conductive polymer composition was prepared in the same manner as in Example 1 except for the change.
  • Example 6 30 g of 1.2 mass% PEDOT-PSS dispersion adjusted to pH 6.5 with 1% aqueous ammonia in the same manner as in Example 1, 50 g of ion-exchanged water, and 3.0 g of Perisea (registered trademark) L-30 A conductive polymer composition was prepared in the same manner as in Example 1 except for the change.
  • Example 7 Conductive polymer composition as in Example 1 except that Perisea (registered trademark) L-30 was changed to 0.9 g of 10% N, N- (bislauramidoethyl) ethylenediamine-N, N-diacetic acid aqueous solution A product was prepared.
  • the N, N- (bislauramidoethyl) ethylenediamine-N, N-diacetic acid used in this example was synthesized by the method described in European Patent Application No. 0679244 and purified by an ion exchange resin. I used something.
  • Example 8 As in Example 1, 40 g of 1.2 mass% PEDOT-PSS dispersion adjusted to pH 6.5 with 1% aqueous ammonia, 40 g of ion-exchanged water, and 10% N, N- (bislauramidoethyl) ethylenediamine A conductive polymer composition was prepared in the same manner as in Example 7 except that the amount of the -N, N-diacetic acid aqueous solution was changed to 2.0 g.
  • Example 9 The 1.2 mass% polysulfoethyl methacrylate-doped poly (3,4-ethylenedioxythiophene) dispersion obtained in Production Example 4 was adjusted to pH 6.5 with 1% aqueous ammonia. 20 g of this dispersion, 60 g of ion-exchanged water, 3.0 g of a 5% by weight polyvinylpyrrolidone aqueous solution, and 0.3 g of Perisea (registered trademark) L-30 were mixed, and then a PVDF filter having a pore size of 0.45 ⁇ m (Millipore) The solution was filtered using a conductive polymer composition.
  • a PVDF filter having a pore size of 0.45 ⁇ m (Millipore
  • Example 10 50 g of a 1.2 mass% polysulfoethyl methacrylate-doped poly (3,4-ethylenedioxythiophene) dispersion adjusted to pH 6.5 with 1% aqueous ammonia as in Example 9, 30 g of ion-exchanged water, and A conductive polymer composition was prepared in the same manner as in Example 9, except that Perisea (registered trademark) L-30 was changed to 2.5 g.
  • Perisea registered trademark
  • Example 1 A conductive polymer composition was prepared in the same manner as in Example 1 except that Perisea (registered trademark) L-30 was not used.
  • Example 2 A conductive polymer composition was prepared in the same manner as in Example 1, except that 2.5 g of 10% sodium dodecyl sulfate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of Perisea (registered trademark) L-30.
  • Example 3 Conductivity was the same as in Example 1 except that 2.5 g of 10% Triton X-100 (manufactured by Tokyo Chemical Industry Co., Ltd.) was used in place of Perisea (registered trademark) L-30, and no 5 mass% polyvinylpyrrolidone aqueous solution was used. A functional polymer composition was prepared.
  • Example 4 A conductive polymer composition was prepared in the same manner as in Example 1 except that 2.5 g of 10% Triton X-100 (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of Perisea (registered trademark) L-30.
  • Example 5 Conductivity was the same as in Example 1, except that 0.5 g of 30% Promois W-52 aqueous solution (hydrolyzed collagen, number average molecular weight 2000, manufactured by Seiwa Kasei Co., Ltd.) was used instead of Perisea (registered trademark) L-30. A functional polymer composition was prepared.
  • Promois W-52 aqueous solution hydrolyzed collagen, number average molecular weight 2000, manufactured by Seiwa Kasei Co., Ltd.
  • Perisea registered trademark
  • Tables 1 to 5 show the contact angle of the antistatic film obtained from the conductive polymer composition prepared in each Example and Comparative Example, water peelability, resist damage, surface resistance, and lithography evaluation in an electron beam lithography machine. Indicated.
  • Examples 1 to 10 which are the compositions of the present invention, showed good wettability with respect to the resist film, and a uniform coating film could be obtained with a spin coater.
  • Comparative Examples 1 and 3 to 5 in which no gemini surfactant was used had poor wettability with respect to the resist film, and a uniform coating film could not be obtained.
  • Comparative Example 2 in which sodium dodecyl sulfate was used in place of the gemini surfactant, resist damage was observed although wettability was good. Further, resist damage was also observed in Comparative Examples 3 and 4 using the nonionic surfactant Triton X-100.
  • Comparative Examples 1 and 3 to 5 since the wettability with respect to the resist film was poor and a uniform coating film could not be obtained, the surface resistance value could not be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)
  • Paints Or Removers (AREA)

Abstract

 本発明は、π共役系導電性高分子と、ポリアニオンと、ジェミニ型界面活性剤とを含有するものであることを特徴とする導電性高分子組成物である。これにより、帯電防止能に優れ、レジストに悪影響を与えず、塗布性に優れた電子線等を用いたリソグラフィーに好適に用いることができる導電性高分子組成物が提供される。

Description

導電性高分子組成物、該組成物より得られる帯電防止膜が設けられた被覆品、及び前記組成物を用いたパターン形成方法
 本発明は、π共役系導電性高分子を含む導電性高分子組成物、これを用いた被覆品、及びパターン形成方法に関する。さらに詳しくは、本発明は、紫外線、電子線等を用いたリソグラフィーにおいて、レジストの帯電防止に好適に用いられる導電性高分子組成物、これを用いて得られる帯電防止膜を備えた物品、及び前記組成物を用いたパターン形成方法に関する。
 従来、ICやLSI等半導体素子の製造プロセスにおいては、フォトレジストを用いたリソグラフィー法による微細加工が行われている。これは、光照射により薄膜の架橋あるいは分解反応を誘起させることにより、その薄膜の溶解性を著しく変化させ、溶剤等による現像処理の結果得られるレジストパターンをマスクとして、基板をエッチングする方法である。近年、半導体素子の高集積化に伴い、短波長の光線を用いた高精度の微細加工が要求されるようになった。電子線によるリソグラフィーはその短い波長特性から次世代の技術として開発が進められている。
 電子線によるリソグラフィー特有の問題点として、露光時の帯電現象(チャージアップ)が挙げられる。これは電子線露光を行う基板が絶縁性のレジスト膜で被覆された場合、レジスト膜上、又は膜中に電荷が蓄積して帯電する現象である。この帯電により、入射した電子線の軌道が曲げられるため、描写精度を著しく低下させることになる。そのため電子線レジストの上に塗布する帯電防止膜が検討されている。
 しかし、化学増幅型レジスト上に帯電防止膜を設けた場合、露光によって生成した酸が帯電防止膜中の成分により中和され、ポジ型においてはレジスト露光部が現像時に不溶化し、ネガ型においてはレジスト露光部が現像時に一部溶解する、又は逆に帯電防止膜中の酸成分により、ポジ型においてはレジスト未露光部が現像時に一部溶解し、ネガ型においてはレジスト未露光部が現像時に不溶化する等、レジスト形状の変化や感度変動がみられる場合があった。また、化学増幅型レジストはほとんどの有機溶媒に耐性がないため、レジスト上に設ける帯電防止剤は水系のものが多い。しかし化学増幅型レジストの表面は疎水性であり、水系の帯電防止剤は塗布が困難であるため、界面活性剤等を添加する必要があるが、界面活性剤の添加によってもレジスト表面にミキシング層を形成する等レジストに悪影響を与える場合があった。
 このようなレジストに与える悪影響を低減するため、特許文献1には、酸性基置換のアニリン系導電性ポリマー(A)及び溶剤(B)を含有する組成物において、分子量500以下の酸成分の含有量が0.03質量%以下であるレジストパターン形成用導電性組成物が開示されている。
 特許文献2には、スルホン酸基及び/又はカルボキシル基を有する水溶性導電性ポリマー(a)、レジストに悪影響を与えにくい高分子系界面活性剤として、含窒素官能基及び末端疎水性基を有する水溶性高分子(b)並びに溶剤(c)を含んでなる導電性組成物が開示されている。
 特許文献3には、水溶性導電性高分子、溶媒及び、-(N(R’)-CH(R)-C(=O))-で示される化学構造を有する水溶性高分子を含む帯電防止剤が開示されている。
特開2006-301073号公報 特開2002-226721号公報 特開2009-161764号公報
 しかしながら、特許文献1に記載の方法では、有機溶媒中で導電性高分子の更なる精製が必要で、工程上好ましくない。
 特許文献2に記載の方法では、末端疎水性基の導入にはメルカプト基等悪臭を発生する化合物を連鎖移動剤として用いることが必要であり、作業上好ましくない。また、レジスト膜の膜厚がやや薄くなる場合があり、レジスト膜のダメージを防ぐには不十分であった。
 特許文献3には、水溶性導電性高分子、溶媒及び-(N(R’)-CH(R)-C(=O))-で示される化学構造、つまり、アミノ酸のαアミノ基とαカルボキシル基との脱水縮合で得られるポリペプチド構造を繰り返し構造として有する水溶性高分子を含む帯電防止剤が開示されている。しかし、用いる界面活性剤によってはレジスト膜の膜厚がやや薄くなる場合があり、やはりレジスト膜のダメージを防ぐには不十分であった。
 本発明は上記事情に鑑みなされたもので、帯電防止能に優れ、特に電子線等を用いたリソグラフィーに好適に用いることができる導電性高分子組成物を提供することを目的とする。
 上記課題を解決するため、本発明は、π共役系導電性高分子と、ポリアニオンと、ジェミニ型界面活性剤とを含有するものであることを特徴とする導電性高分子組成物を提供する。
 このような導電性高分子組成物は、帯電防止能に優れ、また、レジストに悪影響を与えず、塗布性に優れているため、電子線等を用いたリソグラフィーに好適に用いることができる導電性高分子組成物となる。
 この場合、前記ジェミニ型界面活性剤が、下記一般式(1)で表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000001
[式中、A、Aはそれぞれ独立に、CH又はNを表す。R、Rはそれぞれ独立に、直鎖又は分岐を有してもよい炭素数5~22の、アルキル基又はアルケニル基を表し、任意の水素はフッ素で置換されていても良い。R11、R12、R13、R14はそれぞれ独立に、-(CH-(式中、nは0、1、及び2のいずれかである。)を表す。R21は―CH―、―CHCH―、―CHCHCH―、及び-(CH-R22-(CH-(式中、m、pはそれぞれ独立に、2~5の整数を表し、R22は単結合又は2価の有機基を表す。)のいずれかを表す。X、Xはそれぞれ独立に、H、Na、K、及びNHのいずれかを表す。)]
 本発明の導電性高分子組成物が上記一般式(1)で表わされるジェミニ型界面活性剤を含むものであれば、被加工体表面への濡れ性が良好であり、より均一な膜を与えることができる。
 また、前記導電性高分子組成物は、水溶性高分子をさらに含有するものとすることができる。
 水溶性高分子を含有させることで、本発明の導電性高分子組成物から得られる塗膜の強度を保ち、平坦性を持たせることができる。
 また、前記ジェミニ型界面活性剤の含有量が、前記π共役系導電性高分子と前記ポリアニオンとの複合体100質量部に対して10質量部から1000質量部であることが好ましい。
 ジェミニ型界面活性剤の含有量をこのようなものとすれば、特にレジスト表面への濡れ性がより良好となり、導電性も十分なものとなる。
 また、前記導電性高分子組成物は、帯電防止膜の形成に用いられるものとすることができる。
 また本発明は、被加工体上に前記導電性高分子組成物を用いて得られる帯電防止膜が設けられたものであることを特徴とする被覆品を提供する。
 本発明の導電性高分子組成物から得られる帯電防止膜は、帯電防止能に優れており、このような帯電防止膜を様々な被加工体に被覆することにより、質の高い被覆品を得ることができる。
 この場合、前記被加工体は、化学増幅型レジスト膜を備える基板とすることができる。
 本発明の導電性高分子組成物はレジストに悪影響を与えることがないため、本発明の組成物から得られる帯電防止膜を設ける被加工体として、従来適用が困難であった化学増幅型レジスト膜を備える基板を選択することも可能となる。
 更に本発明は、化学増幅型レジスト膜を備える基板の該レジスト膜上に前記導電性高分子組成物を用いて帯電防止膜を形成する工程、電子線をパターン照射する工程、及びアルカリ性現像液を用いて現像してレジストパターンを得る工程を含むことを特徴とするパターン形成方法を提供する。
 このような本発明のパターン形成方法によれば、高感度、高解像性を有し、パターン形状も良好なレジストパターンを得ることができる。
 以上説明したように、本発明の導電性高分子組成物は、帯電防止能に優れるため、帯電防止用途に好適に用いることができる。
 また、フォトレジストを用いたリソグラフィー法に適用した場合にも、レジストの不溶化や膜減り等の悪影響を与えず、また、塗布性にも優れるため、特に電子線等を用いたリソグラフィーに好適に用いることができ、高感度、高解像性を有し、パターン形状も良好なレジストパターンを得ることができる。
 以下、本発明の実施の形態を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、近年半導体素子の製造プロセスにおいても帯電防止膜を適用することが検討されているが、従来の導電性組成物等はレジストに悪影響を与える等の問題があった。
 そこで本発明者らが上記問題点を解決するため鋭意検討を行った結果、特定の界面活性剤を用いることにより、帯電防止能に優れ、レジストに悪影響を与えず、塗布性に優れた、電子線等を用いたリソグラフィーに好適に用いることができる導電性高分子組成物を得ることができることを見出し、本発明を完成させた。
 即ち、本発明の導電性高分子組成物は、π共役系導電性高分子と、ポリアニオンと、ジェミニ型界面活性剤とを含有するものであることを特徴とする。
 以下に、本発明について更に詳しく説明する。
(π共役系導電性高分子)
 π共役系導電性高分子は、主鎖がπ共役系で構成されている有機高分子であれば使用できる。例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。
 重合の容易さ、空気中での安定性の点からは、ポリピロール類、ポリチオフェン類及びポリアニリン類が好ましい。
 π共役系導電性高分子は無置換のままでも、十分な導電性を得ることができるが、導電性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基をπ共役系導電性高分子に導入してもよい。
 このようなπ共役系導電性高分子の具体例としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)等が挙げられる。
 中でも、ポリピロール、ポリチオフェン、ポリ(N-メチルピロール)、ポリ(3-メチルチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)から選ばれる1種又は2種からなる(共)重合体が抵抗値、反応性の点から好適に用いられる。さらには、ポリピロール、ポリ(3,4-エチレンジオキシチオフェン)は導電性が高く、より好ましい。
(ポリアニオン)
 本発明に用いるポリアニオンは、一分子中に複数のアニオン基を有する高分子であり、アニオン基を有する単量体を重合、又はアニオン基を有する単量体とアニオン基を有さない単量体を共重合する方法により得ることができる。これらの単量体は単独で、あるいは2種以上を組み合わせて用いることができる。また、アニオン基を有さない高分子を得た後、硫酸、発煙硫酸、スルファミン酸等のスルホン化剤によりスルホン化することにより得ることもできる。さらに、アニオン基を有する高分子をいったん得た後に、さらにスルホン化することにより、アニオン基含量のより多いポリアニオンを得ることもできる。
 本発明に用いるポリアニオンを構成する単量体としては、-O-SO 、-SO 、-COO、-O-PO 、-PO (各式においてXは水素イオン、アルカリ金属イオンを表す。)等の強酸基を含有する単量体が挙げられる。これらの中でも、π共役系導電性高分子へのドーピング効果の点から、-SO 、-COOが好ましい。また、このアニオン基は、隣接して又は一定間隔をあけてポリアニオンの主鎖に配置されていることが好ましい。
 スルホン酸基を含有する単量体としては、例えば、スチレンスルホン酸、アリルオキシベンゼンスルホン酸、メタリルオキシベンゼンスルホン酸、ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、2-(メタクリロキシ)エタンスルホン酸、4-(メタクリロキシ)ブタンスルホン酸、イソプレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等が挙げられる。これらの単量体は、単独で、又は2種以上を組み合わせて用いてもよく、アンモニア、トリエチルアミン、水酸化ナトリウム等の塩基で中和した塩の状態で使用してもよい。
 リン酸基を含有する単量体としては、例えば、3-クロロ-2-アシッドホスホキシプロピル(メタ)アクリレート、アシッドホスホキシポリオキシエチレングリコールモノ(メタ)アクリレート、モノ(2-ヒドロキシエチルアクリレート)アシッドホスフェート、モノ(2-ヒドロキシエチルメタクリレート)アシッドホスフェート、モノ(2-ヒドロキシプロピルアクリレート)アシッドホスフェート、モノ(2-ヒドロキシプロピルメタクリレート)アシッドホスフェート、モノ(3-ヒドロキシプロピルアクリレート)アシッドホスフェート、モノ(3-ヒドロキシプロピルメタクリレート)アシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート等が挙げられる。これらの単量体は、単独で、又は2種以上を組み合わせていてもよく、アンモニア、トリエチルアミン、水酸化ナトリウム等の塩基で中和した塩の状態で使用してもよい。
 カルボキシル基を含有する単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸等のエチレン性不飽和多価カルボン酸及びそれらの酸無水物;マレイン酸メチル、イタコン酸メチル等のエチレン性不飽和多価カルボン酸の部分エステル化物;等を挙げることができる。これらの単量体は、単独で、又は2種以上を組み合わせて用いてもよく、アンモニア、トリエチルアミン、水酸化ナトリウム等の塩基で中和した塩の状態で使用してもよい。
 アニオン基含有単量体と共重合可能な、アニオン基を含まない他の単量体は、公知の化合物を何等制限なく使用することができる。例えば、1,3-ブタジエン、イソプレン、2-クロロ-1,3-ブタジエン、2-メチル-1,3-ブタジエン等の共役ジエン単量体;スチレン、α-メチルスチレン、p-メチルスチレン等の芳香族ビニル単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等のエチレン性不飽和カルボン酸アルキルエステル単量体;アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン酸アミド単量体;(メタ)アクリル酸ヒドロキシアルキル、グリセリンジ(メタ)アクリレート等のエチレン性不飽和カルボン酸ヒドロキシアルキルエステル単量体;酢酸ビニル等のカルボン酸ビニルエステル単量体;(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリロイルモルホリン、シクロヘキシルマレイミド、イソプロピルマレイミド、(メタ)アクリル酸グリシジル等が挙げられる。
 上記単量体は、開始剤を用いて重合することで本発明に用いるポリアニオンを得ることができる。
 また、スルホン化ジカルボン酸とジオールによるスルホン化ポリエステルの製造(特開2007-102224)、スルホン化ジアミノ化合物とテトラカルボン酸二無水物によるスルホン化ポリイミドの製造(特開2006-152009、特開2007-302743)、スルホン化ポリエステルポリオールとポリイソシアネートの重合によるスルホン化ポリウレタンの製造(特表2002-514233)等、公知の方法で本発明に用いるポリアニオンを得ることができる。
 あるいは、ポリスチレン、ポリメチルスチレン等を重合した後、硫酸、発煙硫酸、スルファミン酸等のスルホン化剤によりスルホン化することにより本発明に用いるポリアニオン得ることもできる。
 さらに、ポリエーテルケトンのスルホン化(EP041780)、ポリエーテルエーテルケトンのスルホン化(特開2008-108535号公報)、ポリエーテルスルホンのスルホン化(特開平10-309449)、ポリフェニレン、ポリフルオレン、ポリビニルカルバゾールのスルホン化(特表2010-514161)、ポリフェニレンオキシドのスルホン化、ポリフェニレンスルフィドのスルホン化等により本発明に用いるポリアニオン得ることもできる。
 上記ポリアニオンの中でも、溶媒溶解性及び導電性の点から、ポリイソプレンスルホン酸、ポリイソプレンスルホン酸を含む共重合体、ポリスルホエチルメタクリレート、ポリスルホエチルメタクリレートを含む共重合体、ポリ(4-スルホブチルメタクリレート)、ポリ(4-スルホブチルメタクリレート)を含む共重合体、ポリメタリルオキシベンゼンスルホン酸、ポリメタリルオキシベンゼンスルホン酸を含む共重合体、ポリスチレンスルホン酸、ポリスチレンスルホン酸を含む共重合体等が好ましい。中でもポリスチレンスルホン酸、ポリスルホエチルメタクリレート、ポリ(4-スルホブチルメタクリレート)がより好ましい。
 ポリアニオンの重合度は、モノマー単位が10~100,000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50~10,000個の範囲がより好ましい。ポリアニオンの分子量は1万~100万が好ましい。上記下限値以上であれば、π共役系導電性高分子が均一な溶液になりやすく、上限値以下であれば、導電性もより良好となる。
 本発明に係る導電性高分子組成物において、ポリアニオンは、π共役系導電性高分子に配位し、π共役系導電性高分子とポリアニオンとは複合体を形成している。
(π共役系導電性高分子とポリアニオンとの複合体の製造方法)
 π共役系導電性高分子とポリアニオンとの複合体は、例えば、ポリアニオンの水溶液又はポリアニオンの水・有機溶媒混合溶液中に、π共役系導電性高分子の原料となるモノマー(好ましくは、ピロール又はその誘導体モノマー、チオフェン又はその誘導体モノマー、アニリン又はその誘導体モノマー等)を加え、酸化剤及び場合により酸化触媒を添加し、酸化重合を行うことで得ることができる。ポリアニオンがアルカリ金属塩、アンモニウム塩又はアミン塩等の形で溶解している場合には、系中に硫酸、塩酸、硝酸、リン酸、過塩素酸等の無機酸や有機酸を加え、反応液を酸性にすることが好ましい。
 酸化剤及び酸化触媒としては、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム等のペルオキソ二硫酸塩、塩化第二鉄、硫酸第二鉄、塩化第二銅等の遷移金属化合物、酸化銀、酸化セシウム等の金属酸化物、過酸化水素、オゾン等の過酸化物、過酸化ベンゾイル等の有機過酸化物、酸素等が使用できる。
 酸化重合を行う際に用いる反応溶媒としては、水又は水と溶媒との混合溶媒を用いることができる。ここで用いられる溶媒は、水と混和可能であり、後述するポリアニオン又はπ共役導電性高分子を溶解又は分散しうる溶媒が好ましい。例えば、N-メチル-2-ピロリドン、N,N′-ジメチルホルムアミド、N,N′-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホルトリアミド等の極性溶媒、メタノ-ル、エタノ-ル、プロパノ-ル、ブタノ-ル等のアルコ-ル類、エチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、D-グルコース、D-グルシトール、イソプレングリコール、ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール等の多価脂肪族アルコール類、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、ジオキサン、テトラヒドロフラン等の環状エーテル化合物、ジアルキルエーテル、エチレングリコールモノアルキルエーテル、エチレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、3-メチル-2-オキサゾリジノン等の複素環化合物、アセトニトリル、グルタロニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種類以上の混合物としてもよい。これら水と混和可能な溶媒の水に対する混合割合は、反応溶媒全体の50質量%以下が好ましい。
 ポリアニオン以外にπ共役導電性高分子へのドーピング可能なアニオンを併用しても良い。この場合、π共役導電性高分子からの脱ドープ特性及び本発明に係る導電性組成物の分散性、及び耐熱性、耐環境特性を調整する等の観点からは、有機酸が好ましい。有機酸としては、有機カルボン酸、フェノ-ル類、有機スルホン酸等が挙げられる。
 有機カルボン酸としては、脂肪族、芳香族、環状脂肪族等にカルボキシ基を一つ又は二つ以上を含むものを使用できる。例えば、ギ酸、酢酸、シュウ酸、安息香酸、フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クエン酸、乳酸、コハク酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ニトロ酢酸、トリフェニル酢酸等が挙げられる。
 フェノ-ル類としては、クレゾ-ル、フェノ-ル、キシレノ-ル等のフェノ-ル類が挙げられる。
 有機スルホン酸としては、脂肪族、芳香族、環状脂肪族等にスルホン酸基が一つ又は二つ以上を含むものが使用できる。スルホン酸基を一つ含むものとしては、例えば、メタンスルホン酸、エタンスルホン酸、1-プロパンスルホン酸、1-ブタンスルホン酸、1-ヘキサンスルホン酸、1-ヘプタンスルホン酸、1-オクタンスルホン酸、1-ノナンスルホン酸、1-デカンスルホン酸、1-ドデカンスルホン酸、1-テトラデカンスルホン酸、1-ペンタデカンスルホン酸、2-ブロモエタンスルホン酸、3-クロロ-2-ヒドロキシプロパンスルホン酸、トリフルオロメタンスルホン酸、コリスチンメタンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、アミノメタンスルホン酸、1-アミノ-2-ナフト-ル-4-スルホン酸、2-アミノ-5-ナフト-ル-7-スルホン酸、3-アミノプロパンスルホン酸、N-シクロヘキシル-3-アミノプロパンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、キシレンスルホン酸、エチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ペンチルベンゼンスルホン酸、ヘキシルベンゼンスルホン酸、ヘプチルベンゼンスルホン酸、オクチルベンゼンスルホン酸、ノニルベンゼンスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、へキサデシルベンゼンスルホン酸、2,4-ジメチルベンゼンスルホン酸、ジプロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、4-アミノベンゼンスルホン酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、4-アミノ-2-クロロトルエン-5-スルホン酸、4-アミノ-3-メチルベンゼン-1-スルホン酸、4-アミノ-5-メトキシ-2-メチルベンゼンスルホン酸、2-アミノ-5-メチルベンゼン-1-スルホン酸、4-アミノ-2-メチルベンゼン-1-スルホン酸、5-アミノ-2-メチルベンゼン-1-スルホン酸、4-アセトアミド-3-クロロベンゼンスルホン酸、4-クロロ-3-ニトロベンゼンスルホン酸、p-クロロベンゼンスルホン酸、ナフタレンスルホン酸、メチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、ペンチルナフタレンスルホン酸、ジメチルナフタレンスルホン酸、4-アミノ-1-ナフタレンスルホン酸、8-クロロナフタレン-1-スルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物等のスルホン酸基を含むスルホン酸化合物等を例示できる。
 スルホン酸基を二つ以上含むものとしては、例えば、エタンジスルホン酸、ブタンジスルホン酸、ペンタンジスルホン酸、デカンジスルホン酸、m-ベンゼンジスルホン酸、o-ベンゼンジスルホン酸、p-ベンゼンジスルホン酸、トルエンジスルホン酸、キシレンジスルホン酸、クロロベンゼンジスルホン酸、フルオロベンゼンジスルホン酸、アニリン-2,4-ジスルホン酸、アニリン-2,5-ジスルホン酸、ジメチルベンゼンジスルホン酸、ジエチルベンゼンジスルホン酸、ジブチルベンゼンジスルホン酸、ナフタレンジスルホン酸、メチルナフタレンジスルホン酸、エチルナフタレンジスルホン酸、ドデシルナフタレンジスルホン酸、ペンタデシルナフタレンジスルホン酸、ブチルナフタレンジスルホン酸、2-アミノ-1,4-ベンゼンジスルホン酸、1-アミノ-3,8-ナフタレンジスルホン酸、3-アミノ-1,5-ナフタレンジスルホン酸、8-アミノ-1-ナフト-ル-3,6-ジスルホン酸、4-アミノ-5-ナフト-ル-2,7-ジスルホン酸、アントラセンジスルホン酸、ブチルアントラセンジスルホン酸、4-アセトアミド-4′-イソチオシアナトスチルベン-2,2′-ジスルホン酸、4-アセトアミド-4′-マレイミジルスチルベン-2,2′-ジスルホン酸、1-アセトキシピレン-3,6,8-トリスルホン酸、7-アミノ-1,3,6-ナフタレントリスルホン酸、8-アミノナフタレン-1,3,6-トリスルホン酸、3-アミノ-1,5,7-ナフタレントリスルホン酸等が挙げられる。
 これらポリアニオン以外のアニオンは、π共役系導電性高分子の原料となるモノマーの重合前に、該モノマーと、ポリアニオンと、酸化剤及び/又は酸化重合触媒とを含む溶液に添加してもよく、π共役系導電性高分子の原料となるモノマーの重合後の、ポリアニオンとπ共役導電性高分子とを含有する導電性高分子組成物に添加してもよい。
 このようにして得たπ共役系導電性高分子とポリアニオンとの複合体は、必要によりホモジナイザやボールミル等で細粒化して用いることができる。
 細粒化には、高い剪断力を付与できる混合分散機を用いることが好ましい。混合分散機としては、例えば、ホモジナイザ、高圧ホモジナイザ、ビーズミル等が挙げられ、中でも高圧ホモジナイザが好ましい。
 高圧ホモジナイザの具体例としては、吉田機械興業製の商品名ナノマイザー、マイクロフルイディスク製の商品名マイクロフルイダイザー、スギノマシン製のアルティマイザー等が挙げられる。
 高圧ホモジナイザを用いた分散処理としては、例えば、分散処理を施す前の複合体溶液を高圧で対向衝突させる処理、オリフィスやスリットに高圧で通す処理等が挙げられる。
 細粒化の前又は後に、ろ過、限外ろ過、透析等の手法により不純物を除去し、陽イオン交換樹脂、陰イオン交換樹脂、キレート樹脂等で精製しても良い。
 尚、導電性高分子組成物中のπ共役系導電性高分子とポリアニオンの合計の含有量は0.05~5.0質量%であることが好ましい。π共役系導電性高分子とポリアニオンの合計含有量が0.05質量以上であれば、十分な導電性が得られ、5.0質量%以下であれば、均一な導電性塗膜が容易に得られる。
 また、π共役系導電性高分子とポリアニオンとの複合体は、アンモニア水溶液、トリメチルアミン等アルキルアミン水溶液、イミダゾール等イミダゾール誘導体水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等でpHを調整して用いても良い。pHは4から8の範囲が好ましい。pH4以上pH8以下の範囲であれば、レジストがよりダメージを受け難くなる。
 ポリアニオンの含有量は、π共役系導電性高分子1モルに対して、ポリアニオン中のアニオン基0.1~10モルの範囲となる量であることが好ましく、1~7モルの範囲であることがより好ましい。ポリアニオン中のアニオン基が0.1モル以上であれば、π共役系導電性高分子へのドーピング効果が高く、十分な導電性を確保することができる。また、ポリアニオン中のアニオン基が10モル以下であれば、π共役系導電性高分子の含有量も適度なものとなり、十分な導電性が得られる。
(ジェミニ型界面活性剤)
 ジェミニ型界面活性剤は、親水性頭部基と疎水性基とからなる少なくとも2個の界面活性剤単位がスペーサーと呼ばれる間隔保持部により親水性基付近で相互に結合されている界面活性化合物である(例えば特表2003-509571号公報参照)。ジェミニ型界面活性剤は、その構造的な特性により極めて低い臨界ミセル濃度と高い表面張力低下能、優れた気泡力及び乳化力、水に対する良好な溶解性と耐硬水性等、優れた界面物性を示す。
 本発明においては、公知のジェミニ型界面活性剤のいずれも用いることができる。
 また、ジェミニ型界面活性剤は、1種類のみを用いても良いし、2種類以上を混合して用いても良い。
 本発明で好適に用いられるジェミニ型界面活性剤は、下記一般式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000002
[式中、A、Aはそれぞれ独立に、CH又はNを表す。R、Rはそれぞれ独立に、直鎖又は分岐を有してもよい炭素数5~22の、アルキル基又はアルケニル基を表し、任意の水素はフッ素で置換されていても良い。R11、R12、R13、R14はそれぞれ独立に、-(CH-(式中、nは0、1、及び2のいずれかである。)を表す。R21は―CH―、―CHCH―、―CHCHCH―、及び-(CH-R22-(CH-(式中、m、pはそれぞれ独立に、2~5の整数を表し、R22は単結合又は2価の有機基を表す。)のいずれかを表す。X、Xはそれぞれ独立に、H、Na、K、及びNHのいずれかを表す。)]
 ここで、本発明において「有機基」とは、少なくとも1つの炭素を含む基の意味であり、更に水素を含み、また窒素、酸素、硫黄、ケイ素、ハロゲン原子等を含んでもよい。
 R、Rの具体例としては、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基、ベヘニル基、イソステアリル基、2-エチルヘキシル基、オレイル基、リノリル基等が挙げられる。
 また、R22の有機基の具体例としては、-OCHCHO-、-OCHCHOCHCHO-、-OCH(CH)CHO-、-OCH(CH)CHOCH(CH)CHO-、-OCHCHCHO-、-OCHCH(OH)CHO-や、以下に示す基等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 本発明で好適に用いられるジェミニ型界面活性剤は、N,N-(ビスヘキサデカナミドエチル)エチレンジアミン-N,N-ジ酢酸、N,N-(ビスラウラミドエチル)エチレンジアミン-N,N-ジ酢酸、N,N-(ビスラウラミドエチル)エチレンジアミン-N,N-ジプロピオン酸、N,N-(ビスデカナミドエチル)エチレンジアミン-N,N-ジ酢酸、N,N-(ビスオクタナミドエチル)エチレンジアミン-N,N-ジ酢酸、ジラウロイルグルタミン酸リシン、ジラウロイルグルタミン酸エチレンジアミン、ジラウロイルグルタミン酸プロピレンジアミン等が挙げられる。
 ジェミニ型界面活性剤の含有量は、前記π共役系導電性高分子と前記ポリアニオンとの複合体100質量部に対して10質量部から1000質量部が好ましく、30質量部から300質量部がより好ましい。上記下限値以上であれば、レジスト表面への濡れもより良好となり、上記上限値以下であれば、導電性も十分なものとなる。
(水溶性高分子)
 本発明では、塗膜の強度を保ち、平坦性を持たせるため水溶性高分子を添加してもよい。本発明に用いられる水溶性高分子は、例えばビニルピロリドン、ビニルピリジン、ビニルカプロラクタム、ビニルアルコール、(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシスチレン、ビニルアニリン、N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-ベンジルメタクリルアミド、N-フェニルメタクリルアミド、N,N-ジメチルメタクリルアミド、アクリル酸、アクリル酸ナトリウム、スルホン酸プロピルアクリレート、スルホン酸ナトリウムプロピルアクリレート、ビニル安息香酸、ビニル安息香酸ナトリウム、スチレンスルホン酸、スチレンスルホン酸ナトリウム、マレイン酸、マレイン酸ナトリウム、トリメチル(アクリロイルオキシエチル)アンモニウム塩、トリエチル(アクリロイルオキシメチル)アンモニウム塩、トリメチル(スチリルカルボニルオキシエチル)アンモニウム塩、メチルビニルエーテル等ビニルエーテル化合物等をモノマー成分として単独重合、又は共重合することで得ることができる。
 また、水溶性樹脂としての特性が失われない限り他の共重合性モノマーを共重合することができる。これらの共重合性モノマーは、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、フェニルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート等アクリル酸エステル、エチルメタクリレート、ノルマルプロピルメタクリレート、ノルマルペンチルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、フェニルメタクリレート、2-フェニルエチルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、2,2,2-トリクロロエチルメタクリレート、メチルアクリレート、イソブチルメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート等のメタクリレート、マレイミド、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン、及びヒドロキシスチレン等スチレン化合物が挙げられる。
 上記重合体以外では、部分ケン化ポリビニルアルコール、マルトデキストリン、ポリデキストロース、ヒドロキシエチルセルロース、ヘパリン等の多糖類、水溶性エポキシ樹脂、水溶性フェノール樹脂、水溶性ポリエステル樹脂、水溶性ウレタン樹脂等を用いることができる。
 好ましい水溶性ポリマーの重量平均分子量は、400~1,000,000であり、特に好ましくは500~500,000である。
(界面活性剤)
 本発明では、基材等の被加工体への濡れ性を上げるため、上記ジェミニ型界面活性剤以外の界面活性剤を添加してもよい。このような界面活性剤としては、ノニオン系、カチオン系、アニオン系各種界面活性剤が挙げられる。具体的には例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンカルボン酸エステル、ソルビタンエステル、ポリオキシエチレンソルビタンエステル等のノニオン系界面活性剤、アルキルトリメチルアンモニウムクロライド、アルキルベンジルアンモニウムクロライド等のカチオン系界面活性剤、アルキル又はアルキルアリル硫酸塩、アルキル又はアルキルアリルスルホン酸塩、ジアルキルスルホコハク酸塩等のアニオン系界面活性剤、アミノ酸型、ベタイン型等の両性イオン型界面活性剤等を挙げることができる。
 本発明の導電性高分子組成物を得るためには、例えば、π共役系導電性高分子とポリアニオンとの複合体、ジェミニ型界面活性剤、溶剤、さらに場合により水溶性高分子、界面活性剤等を混合し、pHを調整し、必要によりフィルター等でろ過することにより、得ることができる。
 本発明の導電性高分子組成物としては、ポリスチレンスルホン酸ドープポリ(3,4-エチレンジオキシチオフェン)及びジラウロイルグルタミン酸リシンを組み合わせ、アンモニアでpH調整したものが特に好ましい。
 こうして得た導電性高分子組成物は、基材等の被加工体に塗布することにより帯電防止膜を形成できる。導電性高分子組成物の塗布方法としては、例えば、バーコーター等による塗布、回転塗布、浸漬、コンマコート、スプレーコート、ロールコート、グラビア印刷等が挙げられる。塗布後、熱風循環炉、ホットプレート等による加熱処理により帯電防止膜が形成される。
 前記被加工体としては、ガラス基板、石英基板、フォトマスクブランク基板、樹脂基板、シリコンウエハー、ガリウム砒素ウエハー、インジウムリンウエハー等の化合物半導体ウエハー等が挙げられる。
 本発明の導電性高分子組成物を用いて得られる帯電防止膜が被覆された被覆品としては、例えば、帯電防止膜が設けられたガラス基板、帯電防止膜が設けられた樹脂フィルム、帯電防止膜が設けられたレジスト基板等が挙げられる。
 特に、本発明の導電性高分子組成物は、レジストに悪影響を与える事がないため、化学増幅型レジスト膜を備える基板であっても好適に使用することが可能である。
 即ち本発明は、化学増幅型レジスト膜を備える基板の該レジスト膜上に、本発明の導電性高分子組成物を用いて帯電防止膜を形成する工程、電子線をパターン照射する工程、及びアルカリ性現像液を用いて現像してレジストパターンを得る工程を含むことを特徴とするパターン形成方法を提供する。
 上記パターン形成方法は、本発明の導電性高分子組成物を用いる以外は、常法に従って行うことができ、露光後加熱処理を加えた後に現像してもよいし、エッチング工程、レジスト除去工程、洗浄工程等その他の各種の工程が行われてももちろんよい。
 このようなパターン形成方法によれば、露光時の帯電現象を防ぐことができ、高感度で高解像性を有し、パターン形状も良好なパターンを得ることができる。
 尚、本発明は電子線等を用いたリソグラフィーに用いるためにデザインされたが、その優れた帯電防止能から、紫外線を用いたリソグラフィーやフィルム、ガラス等の帯電防止用途等にも好適に用いることができる。
 以下、実施例及び比較例を挙げて本発明を更に具体的に示すが、本発明はこれらの実施例により限定されるものではない。
 尚、各物性の測定方法及び評価方法は以下の通りである。以下において、帯電防止膜及びレジスト膜の回転塗布による作製は、K-359SD-1スピンナー(共和理研社製)を用いた。また、レジスト膜厚及び帯電防止膜厚は、それぞれ膜に幅約1mmの溝を掘り、Alpha Step IQ(KLA-Tencor社製)にてその段差を測定することで求めた。
 ポジ型化学増幅型レジストは、信越化学工業社製ポジ型化学増幅電子線レジストSEBP-9012を用いた。また、ネガ型化学増幅電子線レジストには信越化学工業社製SEBN-1702を用いた。
 また、導電性高分子組成物は、下記実施例1~10及び比較例1~6に示す導電性高分子組成物を用いた。
(1)レジストに対する濡れ性の評価(接触角の測定)
 レジスト膜は、75×75mmのソーダ石灰ガラス上にポジ型化学増幅系レジスト0.8mLを滴下後、直ちにスピンナーを用いて、500rpmにて10秒、続いて1250rpmにて30秒回転塗布した。精密恒温機にて90度、5分間プリベークを行い、溶媒を除去することによりレジスト膜を得た。
 こうして得たレジスト膜表面に導電性高分子組成物2.0マイクロLの液滴を作製し、10秒後にその液滴とレジスト膜との接触角を読み取った。接触角は、協和界面科学社製DM-301接触角測定装置にて測定した。その結果を表1に示す。
(2)水洗剥離性
 (1)で得たレジスト膜上に、導電性高分子組成物10マイクロLを滴下し、精密恒温機にて85℃、5分間加熱後、空気中常温下で5分放置した。形成された帯電防止膜を洗浄ビンに入ったイオン交換水で洗い流した。10秒以内に帯電防止膜が剥がれたものを○、10秒超20秒以内に剥がれたものを△、膜の一部が剥がれ残ったものを×とした。その結果を表1に示す。
(3)レジストダメージ
 (2)の水洗剥離性評価後の基板において、帯電防止膜が剥がれた下地のレジスト部分に色の変化が見られないものを○、色の変化が見られるものを×とした。
(4)表面抵抗
 (1)で得たレジスト膜上に、導電性高分子組成物1.0mLを滴下後、10秒後にスピンナーを用いてレジスト膜上全体に回転塗布した。回転塗布条件は、膜厚が50±5nmとなるよう調節した。精密高温機にて85度、5分間プリベークを行い、溶媒を除去することにより帯電防止膜を得た。
 得られた帯電防止膜の表面抵抗値を、Hiresta-UP MCP-HT450(三菱化学社製)を用いて測定した。その結果を表1に示す。
(5)電子線リソグラフィー評価及び膜減り変化率
・PEB前剥離プロセス評価
 ポジ型化学増幅系レジストであるSEBP-9012をMARK VIII(東京エレクトロン(株)製、コーターデベロッパークリーントラック)を用いて6インチシリコンウエハー上へスピンコーティングし、ホットプレート上で、110℃で240秒間プリベークして150nmのレジスト膜を調製した<膜厚(T1)>。得られたレジスト付きウエハー上に導電性高分子組成物を上記同様、MARK VIIIを用いてスピンコーティングし、ホットプレート上で、90℃で90秒間ベークして50nmの導電性高分子膜を調製した。更に、電子線露光装置((株)日立ハイテクノロジーズ製、HL-800D 加速電圧50keV)を用いて露光し、その後、15秒間純水をかけ流して導電性膜を剥離して、90℃で240秒間ベーク(PEB:post exposure bake)を施し、2.38質量%のテトラメチルアンモニウムヒドロキシドの水溶液で現像を行うと、ポジ型のパターンを得ることができた<未露光部の膜厚(T3)>。
・PEB後剥離プロセス評価
 ポジ型化学増幅系レジストであるSEBP-9012をMARK VIII(東京エレクトロン(株)製、コーターデベロッパークリーントラック)を用いて6インチシリコンウエハー上へスピンコーティングし、ホットプレート上で、110℃で240秒間プリベークして150nmのレジスト膜を調製した<膜厚(T1)>。得られたレジスト付きウエハー上に、導電性高分子組成物を上記同様、MARK VIIIを用いてスピンコーティングし、ホットプレート上で、90℃で90秒間ベークして50nmの導電性高分子膜を調製した。更に、電子線露光装置((株)日立ハイテクノロジーズ製、HL-800D 加速電圧50keV)を用いて露光した後、90℃で240秒間ベーク(PEB:post exposure bake)を施し、2.38質量%のテトラメチルアンモニウムヒドロキシドの水溶液で現像を行うと、ポジ型のパターンを得ることができた<未露光部の膜厚(T3)>。
 導電性高分子膜を設けないレジスト膜に対しても同様なPEB後剥離プロセス操作を行い、露光、現像後の最適露光量、未露光部におけるレジスト膜厚(T2)を求め、下記式により、PEB前剥離プロセス及びPEB後剥離プロセスそれぞれにおいて、膜厚変化率を求めた。その結果を表2、表3に示す。
   各プロセスでの膜減り変化率(%)={(T1-T3)-(T1-T2)/(T1-T2)}×100
 更に各プロセスで得られたレジストパターンを次のように評価した。
 作製したパターン付きウエハーを上空SEM(走査型電子顕微鏡)で観察し、400nmのラインアンドスペースを1:1で解像する露光量を最適露光量(感度)(μC/cm)とし、該最適露光量における最小寸法を解像度とした。パターン形状については、矩形か否かをパターン部の割断を行い、SEM画像の目視にて判定した。その結果を表2、表3に示す。尚、感度変化率は、SEBP-9012の感度に対する偏差(%)として算出した。
 また、ネガ型レジストであるSEBN-1702についても、上記同様のプロセス評価を行った。その結果を表4、表5に示す。尚、膜減り変化率については、未露光部は現像液によってなくなるため評価をしなかった。また、感度変化率は、SEBN-1702の感度に対する偏差(%)として算出した。
(製造例1)ポリスチレンスルホン酸の調製
 1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を2時間攪拌した。
 これにより得られたスチレンスルホン酸ナトリウム含有溶液に、10質量%に希釈した硫酸を1000mlと10000mlのイオン交換水とを添加し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の約10000ml溶液を除去し、残液に10000mlのイオン交換水を加え、限外ろ過法を用いて約10000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。
 さらに、得られたろ液に約10000mlのイオン交換水を添加し、限外ろ過法を用いて約10000ml溶液を除去した。この限外ろ過操作を3回繰り返した。
 得られた溶液中の水を減圧除去して、無色の固形状のポリスチレンスルホン酸を得た。
 尚、限外ろ過条件は下記の通りとした(他の例でも同様)。
  ・限外ろ過膜の分画分子量:30K
  ・クロスフロー式
  ・供給液流量:3000ml/分
  ・膜分圧:0.12Pa
(製造例2)ポリスチレンスルホン酸ドープポリ(3,4-エチレンジオキシチオフェン)分散液の調製
 14.2gの3,4-エチレンジオキシチオフェンと、36.7gの製造例1で得たポリスチレンスルホン酸を2000mlのイオン交換水に溶かした溶液とを20℃で混合した。
 これにより得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくり添加し、3時間攪拌して反応させた。
 得られた反応液に2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。
 そして、上記ろ過処理が行われた処理液に200mlの10質量%に希釈した硫酸と2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの処理液を除去し、これに2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの液を除去した。この操作を3回繰り返した。
 さらに、得られた処理液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの処理液を除去した。この操作を5回繰り返し、1.2質量%の青色のポリスチレンスルホン酸ドープポリ(3,4-エチレンジオキシチオフェン)(PEDOT-PSS)分散液を得た。
(製造例3)ポリスルホエチルメタクリレートの合成
 1000mlのイオン交換水に216gのスルホエチルメタクリレートナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を12時間攪拌した。
 得られたポリスルホエチルメタクリレート含有溶液に10質量%に希釈した硫酸を1000ml、10000mlのイオン交換水を添加し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の約10000ml溶液を除去し、残液に10000mlのイオン交換水を加え、限外ろ過法を用いて約10000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。
 さらに、得られたろ液に約10000mlのイオン交換水を添加し、限外ろ過法を用いて約10000ml溶液を除去した。この限外ろ過操作を3回繰り返し、得られた溶液中の水を減圧除去して、10質量%のポリスルホエチルメタクリレート水溶液を得た。
(製造例4)ポリスルホエチルメタクリレートドープポリ(3,4-エチレンジオキシチオフェン)分散液の調製
 36.7gのポリスチレンスルホン酸の代わりに、製造例3で得た10質量%ポリスルホエチルメタクリレート水溶液386gを用い、1614gのイオン交換水に溶解させたこと以外は製造例2と同様にして、1.2質量%のポリスルホエチルメタクリレートドープポリ(3,4-エチレンジオキシチオフェン)分散液を得た。
(実施例1)
 製造例2で得た1.2質量%のPEDOT-PSS分散液を1%アンモニア水でpH6.5に調整した。この分散液20g、イオン交換水60g、5質量%ポリビニルピロリドン水溶液3.0g(アルドリッチ社製ポリビニルピロリドン、平均分子量55000をイオン交換水で5質量%に調製したもの)、及びペリセア(登録商標)L-30(ジラウロイルグルタミン酸リシンNaを29%含有する水溶液、旭化成ケミカルズ社製)1.8gを混合し、その後、孔径0.45μmのPVDFフィルター(ミリポア社製)を用いてろ過し、導電性高分子組成物を調製した。
(実施例2)
 ペリセア(登録商標)L-30を0.3gに変更した他は、実施例1と同様に導電性高分子組成物を調製した。
(実施例3)
 ペリセア(登録商標)L-30を0.6gに変更した他は、実施例1と同様に導電性高分子組成物を調製した。
(実施例4)
 実施例1と同様に1%アンモニア水でpH6.5に調整した1.2質量%のPEDOT-PSS分散液を40g、イオン交換水40g、及びペリセア(登録商標)L-30を1.4gに変更した他は、実施例1と同様に導電性高分子組成物を調製した。
(実施例5)
 実施例1と同様に1%アンモニア水でpH6.5に調整した1.2質量%のPEDOT-PSS分散液を50g、イオン交換水30g、及びペリセア(登録商標)L-30を2.5gに変更した他は、実施例1と同様に導電性高分子組成物を調製した。
(実施例6)
 実施例1と同様に1%アンモニア水でpH6.5に調整した1.2質量%のPEDOT-PSS分散液を30g、イオン交換水50g、及びペリセア(登録商標)L-30を3.0gに変更した他は、実施例1と同様に導電性高分子組成物を調製した。
(実施例7)
 ペリセア(登録商標)L-30を10%N,N-(ビスラウラミドエチル)エチレンジアミン-N,N-ジ酢酸水溶液0.9gに変更した他は、実施例1と同様に導電性高分子組成物を調製した。
 尚、本実施例で使用したN,N-(ビスラウラミドエチル)エチレンジアミン-N,N-ジ酢酸は欧州特許出願公開第0697244号明細書に記載の方法により合成し、イオン交換樹脂により精製したものを使用した。
(実施例8)
 実施例1と同様に1%アンモニア水でpH6.5に調整した1.2質量%のPEDOT-PSS分散液を40g、イオン交換水40g、及び10%N,N-(ビスラウラミドエチル)エチレンジアミン-N,N-ジ酢酸水溶液を2.0gに変更した他は実施例7と同様に導電性高分子組成物を調製した。
(実施例9)
 製造例4で得た1.2質量%のポリスルホエチルメタクリレートドープポリ(3,4-エチレンジオキシチオフェン)分散液を1%アンモニア水でpH6.5に調整した。この分散液20g、イオン交換水60g、5質量%ポリビニルピロリドン水溶液3.0g及びペリセア(登録商標)L-30の0.3gを混合し、その後、孔径0.45μmのPVDFフィルター(ミリポア社製)を用いてろ過し、導電性高分子組成物を調製した。
(実施例10)
 実施例9と同様に1%アンモニア水でpH6.5に調整した1.2質量%のポリスルホエチルメタクリレートドープポリ(3,4-エチレンジオキシチオフェン)分散液を50g、イオン交換水30g、及びペリセア(登録商標)L-30を2.5gに変更した他は、実施例9と同様に導電性高分子組成物を調製した。
(比較例1)
 ペリセア(登録商標)L-30を使用しない他は、実施例1と同様に導電性高分子組成物を調製した。
(比較例2)
 ペリセア(登録商標)L-30の代わりに10%ドデシル硫酸ナトリウム(東京化成工業社製)水溶液2.5gを用いた他は、実施例1と同様に導電性高分子組成物を調製した。
(比較例3)
 ペリセア(登録商標)L-30の代わりに10%Triton X-100(東京化成工業社製)水溶液2.5gを用い、5質量%ポリビニルピロリドン水溶液を用いない他は、実施例1と同様に導電性高分子組成物を調製した。
(比較例4)
 ペリセア(登録商標)L-30の代わりに10%Triton X-100(東京化成工業社製)水溶液2.5gを用いた他は、実施例1と同様に導電性高分子組成物を調製した。
(比較例5)
 ペリセア(登録商標)L-30の代わりに30%プロモイス W-52水溶液(加水分解コラーゲン、数平均分子量2000、成和化成社製)0.5gを用いた他は、実施例1と同様に導電性高分子組成物を調製した。
(比較例6)
 ペリセア(登録商標)L-30の代わりに30%プロモイス W-52水溶液(加水分解コラーゲン、数平均分子量2000、成和化成社製)0.5g及び10%ドデシル硫酸ナトリウム(東京化成工業社製)水溶液2.5gを用いた他は、実施例1と同様に導電性高分子組成物を調製した。
 表1~5に、各実施例及び比較例で調製した導電性高分子組成物より得た帯電防止膜の接触角、水洗剥離性、レジストダメージ、表面抵抗、及び電子線描画機におけるリソグラフィー評価を示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、本発明の組成物である実施例1~10はレジスト膜に対する良好な濡れ性を示し、スピンコーターにより、均一な塗膜を得ることができた。
 一方、ジェミニ型界面活性剤を用いない比較例1及び3~5は、レジスト膜に対する濡れ性が悪く、均一な塗膜を得ることができなかった。
 ジェミニ型界面活性剤の代わりにドデシル硫酸ナトリウムを用いた比較例2は、濡れ性は良好であったものの、レジストダメージが認められた。また、ノニオン系界面活性剤Triton X-100を用いた比較例3及び4もレジストダメージが認められた。
 尚、比較例1及び3~5は、レジスト膜に対する濡れ性が悪く、均一な塗膜を得ることができなかったため、表面抵抗値を測定できなかった。
 また、表2~5に示すように、電子線を用いたリソグラフィー評価においても、本発明の組成物より得た帯電防止膜を用いたもの(実施例1~10)は、感度が良好で感度変化も小さく、また解像性、パターン形状が良好であった。
 一方、比較例1及び3~5は、レジスト膜に対する濡れ性が悪く、均一な塗膜を得ることができなかったため、また、比較例2は、レジスト膜がダメージを受け、パターンを形成することができなかったため、リソグラフィー評価を行うことができなかった。比較例6は、均一な膜は得られたものの、感度の低下がみられ、レジストへのミキシングも大きく、解像性及びパターン形状の劣化が確認された。
 尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  π共役系導電性高分子と、ポリアニオンと、ジェミニ型界面活性剤とを含有するものであることを特徴とする導電性高分子組成物。
  2.  前記ジェミニ型界面活性剤が、下記一般式(1)で表されるものであることを特徴とする請求項1に記載の導電性高分子組成物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、A、Aはそれぞれ独立に、CH又はNを表す。R、Rはそれぞれ独立に、直鎖又は分岐を有してもよい炭素数5~22の、アルキル基又はアルケニル基を表し、任意の水素はフッ素で置換されていても良い。R11、R12、R13、R14はそれぞれ独立に、-(CH-(式中、nは0、1、及び2のいずれかである。)を表す。R21は-CH―、―CHCH―、―CHCHCH―、及び-(CH-R22-(CH-(式中、m、pはそれぞれ独立に、2~5の整数を表し、R22は単結合又は2価の有機基を表す。)のいずれかを表す。X、Xはそれぞれ独立に、H、Na、K、及びNHのいずれかを表す。)]
  3.  水溶性高分子をさらに含有するものであることを特徴とする請求項1又は2に記載の導電性高分子組成物。
  4.  前記ジェミニ型界面活性剤の含有量が、前記π共役系導電性高分子と前記ポリアニオンとの複合体100質量部に対して10質量部から1000質量部であることを特徴とする請求項1乃至3のいずれか1項に記載の導電性高分子組成物。
  5.  請求項1乃至4のいずれか1項に記載の導電性高分子組成物であって、帯電防止膜の形成に用いられるものであることを特徴とする導電性高分子組成物。
  6.  被加工体上に請求項1乃至5のいずれか1項に記載の導電性高分子組成物を用いて得られる帯電防止膜が設けられたものであることを特徴とする被覆品。
  7.  前記被加工体は、化学増幅型レジスト膜を備える基板であることを特徴とする請求項6に記載の被覆品。
  8.  化学増幅型レジスト膜を備える基板の該レジスト膜上に請求項1乃至4のいずれか1項に記載の導電性高分子組成物を用いて帯電防止膜を形成する工程、電子線をパターン照射する工程、及びアルカリ性現像液を用いて現像してレジストパターンを得る工程を含むことを特徴とするパターン形成方法。
PCT/JP2013/003561 2012-07-02 2013-06-06 導電性高分子組成物、該組成物より得られる帯電防止膜が設けられた被覆品、及び前記組成物を用いたパターン形成方法 WO2014006821A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/408,911 US9558862B2 (en) 2012-07-02 2013-06-06 Conductive polymer composition, coated article having antistatic film formed from the composition, and patterning process using the composition
EP13813440.8A EP2868698B1 (en) 2012-07-02 2013-06-06 Conductive polymer composition, coated article which is provided with antistatic film obtained from conductive polymer composition, and pattern forming method using conductive polymer composition
KR1020147037059A KR101851583B1 (ko) 2012-07-02 2013-06-06 도전성 고분자 조성물, 이 조성물로부터 얻어지는 대전방지막이 마련된 피복품, 및 상기 조성물을 이용한 패턴 형성방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-148936 2012-07-02
JP2012148936A JP5830444B2 (ja) 2012-07-02 2012-07-02 導電性高分子組成物、該組成物より得られる帯電防止膜が設けられた被覆品、及び前記組成物を用いたパターン形成方法。

Publications (1)

Publication Number Publication Date
WO2014006821A1 true WO2014006821A1 (ja) 2014-01-09

Family

ID=49881597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003561 WO2014006821A1 (ja) 2012-07-02 2013-06-06 導電性高分子組成物、該組成物より得られる帯電防止膜が設けられた被覆品、及び前記組成物を用いたパターン形成方法

Country Status (6)

Country Link
US (1) US9558862B2 (ja)
EP (1) EP2868698B1 (ja)
JP (1) JP5830444B2 (ja)
KR (1) KR101851583B1 (ja)
TW (1) TW201418436A (ja)
WO (1) WO2014006821A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160147142A1 (en) * 2014-11-25 2016-05-26 Shin-Etsu Chemical Co., Ltd. Photomask blank, resist pattern forming process, and method for making photomask
EP3050932A1 (en) * 2015-01-30 2016-08-03 Shin-Etsu Chemical Co., Ltd. Conductive polymer composition, coated article, patterning process, and substrate
WO2020230835A1 (ja) * 2019-05-16 2020-11-19 昭和電工株式会社 導電性高分子組成物および導電性高分子溶液の安定保管方法
WO2021153678A1 (ja) * 2020-01-29 2021-08-05 三菱ケミカル株式会社 導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515609B2 (ja) * 2014-04-23 2019-05-22 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜並びに該被覆物品
TWI507474B (zh) * 2014-05-07 2015-11-11 Far Eastern New Century Corp 製造高分子透明導電膜的方法
JP6485074B2 (ja) * 2014-06-19 2019-03-20 東ソー株式会社 共重合体、その製造方法、その導電性ポリマー水溶液、及びその用途
TW201605926A (zh) * 2014-06-19 2016-02-16 東曹股份有限公司 共聚體、共聚體的製造方法以及導電性聚合物水溶液
JP6382780B2 (ja) * 2014-09-30 2018-08-29 信越化学工業株式会社 導電性高分子組成物、被覆品、パターン形成方法、及び基板。
JP6451203B2 (ja) * 2014-10-21 2019-01-16 三菱ケミカル株式会社 レジストパターンの形成方法、パターンが形成された基板の製造方法
JP6383337B2 (ja) 2015-01-30 2018-08-29 信越化学工業株式会社 導電性高分子組成物、被覆品、パターン形成方法、及び基板
JP6451469B2 (ja) * 2015-04-07 2019-01-16 信越化学工業株式会社 フォトマスクブランク、レジストパターン形成方法、及びフォトマスクの製造方法
WO2016202785A1 (en) * 2015-06-17 2016-12-22 Novozymes A/S Container
JP6499535B2 (ja) 2015-07-09 2019-04-10 信越化学工業株式会社 被覆品、及びパターン形成方法
JP6450666B2 (ja) 2015-09-25 2019-01-09 信越化学工業株式会社 導電性高分子組成物、被覆品、及びパターン形成方法
JP6556029B2 (ja) 2015-11-18 2019-08-07 Hoya株式会社 レジスト層付きマスクブランク、レジスト層付きマスクブランクの製造方法、及び、転写用マスクの製造方法
KR102096131B1 (ko) * 2016-07-04 2020-04-01 주식회사 엘지화학 전기전도성 미립자의 제조방법 및 이를 이용하여 제조된 미립자
JP6745153B2 (ja) * 2016-07-11 2020-08-26 信越ポリマー株式会社 導電性離型層形成用塗料及びその製造方法、並びに導電性離型フィルム及びその製造方法
JP2018127513A (ja) * 2017-02-06 2018-08-16 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 半導体水溶性組成物、およびその使用
WO2018147318A1 (ja) * 2017-02-10 2018-08-16 三菱ケミカル株式会社 導電性組成物、導電性組成物の製造方法及び導電体の製造方法
JP6937232B2 (ja) 2017-12-07 2021-09-22 信越化学工業株式会社 導電性高分子組成物、被覆品、及びパターン形成方法
KR102446530B1 (ko) * 2018-03-30 2022-09-22 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 광학 적층체, 점착제 조성물 및 보호재
JP2018118254A (ja) * 2018-05-14 2018-08-02 信越ポリマー株式会社 帯電防止フィルムの製造方法
JP7108565B2 (ja) * 2019-03-11 2022-07-28 信越化学工業株式会社 導電性高分子組成物、被覆品、及びパターン形成方法
KR20210012290A (ko) * 2019-07-24 2021-02-03 삼성전자주식회사 패턴 형성 방법 및 반도체 소자의 제조 방법
JP2023078552A (ja) 2021-11-26 2023-06-07 信越化学工業株式会社 導電性高分子組成物、被覆品、及びパターン形成方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041780A1 (en) 1980-06-10 1981-12-16 Imperial Chemical Industries Plc Sulphonated polyaryletherketones
JPH02103547A (ja) * 1988-10-13 1990-04-16 Fujitsu Ltd 導電性層の形成方法
JPH0432848A (ja) * 1990-05-30 1992-02-04 Hitachi Ltd 荷電粒子線照射方法及び観察方法
JPH063813A (ja) * 1992-06-17 1994-01-14 Fujitsu Ltd パターン形成用導電性組成物及び該組成物を用いたパターン形成方法
JPH0741756A (ja) * 1993-05-28 1995-02-10 Showa Denko Kk 帯電防止材料、それを用いる帯電防止方法及び観察または検査方法、及び帯電が防止された物品
EP0697244A1 (en) 1994-08-19 1996-02-21 Rhone-Poulenc Inc. Amphoteric surfactants having multiple hydrophobic and hydrophilic groups
JPH08103646A (ja) * 1994-08-19 1996-04-23 Rhone Poulenc Inc アニオン界面活性剤およびそれを含む洗浄剤組成物
JPH10309449A (ja) 1997-05-09 1998-11-24 Daicel Chem Ind Ltd 有機物分離用高分子膜及びその製造方法
JP2002514233A (ja) 1996-08-13 2002-05-14 エイチ・ビー・フラー・ライセンシング・アンド・ファイナンシング・インコーポレイテッド 水系スルホン化ポリマー組成物
JP2002226721A (ja) 2001-01-29 2002-08-14 Mitsubishi Rayon Co Ltd 導電性組成物、導電体及びその形成法
JP2003509571A (ja) 1999-09-13 2003-03-11 サゾル ジャーマニー ゲーエムベーハー ジェミニ型界面活性剤及び補助両親媒性化合物を含有する界面活性剤組成物、その製造方法及びその使用
JP2006117925A (ja) * 2004-09-22 2006-05-11 Showa Denko Kk 帯電防止処理剤、その処理剤を用いた帯電防止膜、被覆物品及びパターン形成方法
JP2006152009A (ja) 2004-11-08 2006-06-15 Yamaguchi Univ スルホン化芳香族ポリイミド及び該ポリイミドよりなる電解質膜
JP2006301073A (ja) 2005-04-18 2006-11-02 Mitsubishi Rayon Co Ltd レジストパタン形成用導電性組成物
JP2007102224A (ja) 2005-09-30 2007-04-19 Xerox Corp スルホン化ポリエステルトナー
JP2007302743A (ja) 2006-05-09 2007-11-22 Nippon Steel Chem Co Ltd スルホン化芳香族ポリイミド
JP2008108535A (ja) 2006-10-25 2008-05-08 Univ Of Tokyo プロトン伝導性固体電解質膜及びこれを用いた燃料電池
JP2008147035A (ja) * 2006-12-11 2008-06-26 Shin Etsu Polymer Co Ltd 導電性積層体及びその製造方法
JP2009161764A (ja) 2006-02-08 2009-07-23 Showa Denko Kk 帯電防止剤、帯電防止膜及び帯電防止膜被覆物品
JP2010020046A (ja) * 2008-07-10 2010-01-28 Nissan Chem Ind Ltd 電子線レジスト上層用帯電防止膜形成組成物
JP2010514161A (ja) 2006-12-13 2010-04-30 ゼネラル・エレクトリック・カンパニイ スルホン化発光コポリマーを含む光電子デバイス
JP2012088697A (ja) * 2010-09-21 2012-05-10 Dainippon Printing Co Ltd レジスト帯電防止膜積層体、レリーフパターン形成方法及び電子部品
JP2012145968A (ja) * 2012-05-08 2012-08-02 Asahi Kasei Chemicals Corp リソグラフィー材料およびレジストパターンの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211461A1 (de) * 1992-04-06 1993-10-07 Agfa Gevaert Ag Antistatische Kunststoffteile
JP4144075B2 (ja) * 1998-08-03 2008-09-03 東洋紡績株式会社 高制電性多層熱可塑性樹脂シート
JP2001281864A (ja) * 2000-03-30 2001-10-10 Fuji Photo Film Co Ltd 電子線またはx線用レジスト組成物
JP3983731B2 (ja) * 2003-01-28 2007-09-26 トッパン・フォームズ株式会社 導電性高分子ゲル及びその製造方法、アクチュエータ、イオン導入用パッチラベル並びに生体電極
US7438832B2 (en) * 2005-03-29 2008-10-21 Eastman Kodak Company Ionic liquid and electronically conductive polymer mixtures
TWI388636B (zh) * 2007-10-05 2013-03-11 Shinetsu Polymer Co 導電性高分子溶液、導電性塗膜及輸入裝置

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041780A1 (en) 1980-06-10 1981-12-16 Imperial Chemical Industries Plc Sulphonated polyaryletherketones
JPH02103547A (ja) * 1988-10-13 1990-04-16 Fujitsu Ltd 導電性層の形成方法
JPH0432848A (ja) * 1990-05-30 1992-02-04 Hitachi Ltd 荷電粒子線照射方法及び観察方法
JPH063813A (ja) * 1992-06-17 1994-01-14 Fujitsu Ltd パターン形成用導電性組成物及び該組成物を用いたパターン形成方法
JPH0741756A (ja) * 1993-05-28 1995-02-10 Showa Denko Kk 帯電防止材料、それを用いる帯電防止方法及び観察または検査方法、及び帯電が防止された物品
EP0697244A1 (en) 1994-08-19 1996-02-21 Rhone-Poulenc Inc. Amphoteric surfactants having multiple hydrophobic and hydrophilic groups
JPH08103646A (ja) * 1994-08-19 1996-04-23 Rhone Poulenc Inc アニオン界面活性剤およびそれを含む洗浄剤組成物
JP2002514233A (ja) 1996-08-13 2002-05-14 エイチ・ビー・フラー・ライセンシング・アンド・ファイナンシング・インコーポレイテッド 水系スルホン化ポリマー組成物
JPH10309449A (ja) 1997-05-09 1998-11-24 Daicel Chem Ind Ltd 有機物分離用高分子膜及びその製造方法
JP2003509571A (ja) 1999-09-13 2003-03-11 サゾル ジャーマニー ゲーエムベーハー ジェミニ型界面活性剤及び補助両親媒性化合物を含有する界面活性剤組成物、その製造方法及びその使用
JP2002226721A (ja) 2001-01-29 2002-08-14 Mitsubishi Rayon Co Ltd 導電性組成物、導電体及びその形成法
JP2006117925A (ja) * 2004-09-22 2006-05-11 Showa Denko Kk 帯電防止処理剤、その処理剤を用いた帯電防止膜、被覆物品及びパターン形成方法
JP2006152009A (ja) 2004-11-08 2006-06-15 Yamaguchi Univ スルホン化芳香族ポリイミド及び該ポリイミドよりなる電解質膜
JP2006301073A (ja) 2005-04-18 2006-11-02 Mitsubishi Rayon Co Ltd レジストパタン形成用導電性組成物
JP2007102224A (ja) 2005-09-30 2007-04-19 Xerox Corp スルホン化ポリエステルトナー
JP2009161764A (ja) 2006-02-08 2009-07-23 Showa Denko Kk 帯電防止剤、帯電防止膜及び帯電防止膜被覆物品
JP2007302743A (ja) 2006-05-09 2007-11-22 Nippon Steel Chem Co Ltd スルホン化芳香族ポリイミド
JP2008108535A (ja) 2006-10-25 2008-05-08 Univ Of Tokyo プロトン伝導性固体電解質膜及びこれを用いた燃料電池
JP2008147035A (ja) * 2006-12-11 2008-06-26 Shin Etsu Polymer Co Ltd 導電性積層体及びその製造方法
JP2010514161A (ja) 2006-12-13 2010-04-30 ゼネラル・エレクトリック・カンパニイ スルホン化発光コポリマーを含む光電子デバイス
JP2010020046A (ja) * 2008-07-10 2010-01-28 Nissan Chem Ind Ltd 電子線レジスト上層用帯電防止膜形成組成物
JP2012088697A (ja) * 2010-09-21 2012-05-10 Dainippon Printing Co Ltd レジスト帯電防止膜積層体、レリーフパターン形成方法及び電子部品
JP2012145968A (ja) * 2012-05-08 2012-08-02 Asahi Kasei Chemicals Corp リソグラフィー材料およびレジストパターンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2868698A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160147142A1 (en) * 2014-11-25 2016-05-26 Shin-Etsu Chemical Co., Ltd. Photomask blank, resist pattern forming process, and method for making photomask
KR20160062713A (ko) * 2014-11-25 2016-06-02 신에쓰 가가꾸 고교 가부시끼가이샤 포토마스크 블랭크, 레지스트 패턴의 형성 방법, 및 포토마스크의 제조 방법
KR102043484B1 (ko) 2014-11-25 2019-11-11 신에쓰 가가꾸 고교 가부시끼가이샤 포토마스크 블랭크, 레지스트 패턴의 형성 방법, 및 포토마스크의 제조 방법
EP3050932A1 (en) * 2015-01-30 2016-08-03 Shin-Etsu Chemical Co., Ltd. Conductive polymer composition, coated article, patterning process, and substrate
US9778570B2 (en) 2015-01-30 2017-10-03 Shin-Etsu Chemical Co., Ltd. Conductive polymer composition, coated article, patterning process and substrate
WO2020230835A1 (ja) * 2019-05-16 2020-11-19 昭和電工株式会社 導電性高分子組成物および導電性高分子溶液の安定保管方法
WO2021153678A1 (ja) * 2020-01-29 2021-08-05 三菱ケミカル株式会社 導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法
JPWO2021153678A1 (ja) * 2020-01-29 2021-08-05

Also Published As

Publication number Publication date
TWI563075B (ja) 2016-12-21
KR20150035815A (ko) 2015-04-07
US20150140492A1 (en) 2015-05-21
US9558862B2 (en) 2017-01-31
KR101851583B1 (ko) 2018-04-25
EP2868698B1 (en) 2016-12-07
EP2868698A4 (en) 2016-01-27
JP5830444B2 (ja) 2015-12-09
JP2014009342A (ja) 2014-01-20
TW201418436A (zh) 2014-05-16
EP2868698A1 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5830444B2 (ja) 導電性高分子組成物、該組成物より得られる帯電防止膜が設けられた被覆品、及び前記組成物を用いたパターン形成方法。
KR102276824B1 (ko) 도전성 폴리머 복합체 및 기판
JP6335138B2 (ja) 導電性ポリマー複合体及び基板
JP2016188350A (ja) 導電性ポリマー複合体及び基板
JP6382780B2 (ja) 導電性高分子組成物、被覆品、パターン形成方法、及び基板。
JP6496258B2 (ja) 導電性ポリマー複合体及び基板
CN106947221B (zh) 导电性高分子组合物、包覆品以及图案形成方法
JP2016050304A (ja) 導電性ポリマー複合体及び基板
JP6401134B2 (ja) 導電性ポリマー複合体及び基板
JP6383337B2 (ja) 導電性高分子組成物、被覆品、パターン形成方法、及び基板
JP6474358B2 (ja) 導電性ポリマー複合体及び基板
JP6275083B2 (ja) 導電性ポリマー材料並びに基板及びその製造方法
JP7352708B2 (ja) 導電性高分子組成物、被覆品、及びパターン形成方法
TWI660994B (zh) 導電性高分子組成物、被覆品、以及圖型形成方法
TWI673311B (zh) 導電性聚合物複合體及基板
JP6401130B2 (ja) 導電性ポリマー複合体及び基板
JP6343593B2 (ja) 導電性ポリマー複合体及び基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14408911

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013813440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013813440

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147037059

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE