WO2013172025A1 - 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置 - Google Patents

波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置 Download PDF

Info

Publication number
WO2013172025A1
WO2013172025A1 PCT/JP2013/003103 JP2013003103W WO2013172025A1 WO 2013172025 A1 WO2013172025 A1 WO 2013172025A1 JP 2013003103 W JP2013003103 W JP 2013003103W WO 2013172025 A1 WO2013172025 A1 WO 2013172025A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
zinc oxide
wavelength conversion
light
conversion element
Prior art date
Application number
PCT/JP2013/003103
Other languages
English (en)
French (fr)
Inventor
濱田 貴裕
鈴木 信靖
折田 賢児
長尾 宣明
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to DE112013002508.6T priority Critical patent/DE112013002508B4/de
Priority to CN201380001356.0A priority patent/CN103534824B/zh
Priority to JP2013537959A priority patent/JP6132204B2/ja
Priority to US14/070,882 priority patent/US8854725B2/en
Publication of WO2013172025A1 publication Critical patent/WO2013172025A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present application relates to a wavelength conversion element including phosphor particles, a manufacturing method thereof, an LED element using the same, and a semiconductor laser light emitting device.
  • LEDs Light Emitting Diodes
  • a wavelength conversion element including a phosphor layer for white LED has been formed by curing a resin mixture in which phosphor particles are mixed with a silicone resin or the like.
  • the silicone resin tends to deteriorate due to heat generated from the LED chip and high-brightness ultraviolet rays.
  • Patent Document 1 discloses a phosphor layer in which phosphor particles carrying cerium oxide as a heat resistant material are dispersed in a silicone resin in order to improve the heat resistance and ultraviolet resistance of the silicone resin.
  • phosphors for LEDs such as YAG (yttrium, aluminum, garnet) phosphors and TAG (terbium, aluminum, garnet) phosphors, have a high refractive index of 1.8 or more.
  • a phosphor is embedded in a silicone resin having a refractive index of 1.4 to form a phosphor layer. Therefore, the refractive index (1.8) of the phosphor and the refraction of the silicone resin are included.
  • the difference in refractive index (0.4) from the refractive index (1.4) describes that a significant proportion of light is scattered at the phosphor-resin interface in the phosphor layer. .
  • Patent Document 3 after forming a phosphor particle layer on a substrate from a solution in which phosphor particles are dispersed using electrophoresis, a sol-gel method is used for voids inside the phosphor particle layer.
  • a technique for filling a light-transmitting substance serving as an inorganic matrix is disclosed. It is disclosed that the translucent substance is preferably glass, is in a glass state, and is a translucent substance.
  • Ca- ⁇ SiAlON sialon
  • Eu phosphor reffractive index 1.9
  • silica silica
  • YAG phosphor refractive index 1.8
  • zinc oxide zinc oxide
  • Patent Document 4 when a cavity without phosphor particles or a light-transmitting material as a matrix is generated inside the phosphor layer, the presence of this cavity attenuates the light from the LED and the light from the phosphor. Is disclosed.
  • Patent Document 5 discloses that a phosphor having a composition of CaAlSiN 3 (kazun): Eu 2+ has a refractive index of 2.0, and a phosphor having a composition of CaSc 2 O 4 : Ce 3+ has a refractive index of 1. 9 is disclosed.
  • Non-Patent Document 1 discloses that SiAlON (sialon), which is generally used as LED phosphor particles, has a refractive index in the range of 1.855 to 1.897, depending on the composition.
  • a non-limiting exemplary embodiment includes a wavelength conversion element having high light output and high heat resistance and ultraviolet resistance, a method of manufacturing the same, and an LED element and a semiconductor laser light emitting device using the wavelength conversion element. provide.
  • a wavelength conversion element is a matrix composed of a plurality of phosphor particles and zinc oxide that is located between the plurality of phosphor particles and oriented in the c-axis or is a single crystal. Including.
  • zinc oxide which is an inorganic matrix having a high refractive index and high heat resistance and ultraviolet resistance
  • light scattering in the phosphor layer is reduced, and light output is reduced.
  • High LED elements, semiconductor laser light emitting devices and phosphor layers can be realized.
  • FIG. 3 is a cross-sectional view of the wavelength conversion element in the first embodiment.
  • (A) to (c) are cross-sectional views in order of steps of the method of manufacturing a wavelength conversion element in the first embodiment. It is sectional drawing which shows the crystal growth process of the zinc oxide using the solution growth method.
  • 5 is a cross-sectional view of a wavelength conversion element in a second embodiment.
  • FIG. (A) to (c) are cross-sectional views in order of steps of the method of manufacturing a wavelength conversion element in the second embodiment.
  • (A) And (b) is sectional drawing of the wavelength conversion element in Embodiment 3, and a top view of a two-dimensional periodic structure.
  • FIG. 10 is a cross-sectional view of a semiconductor laser light emitting device in a seventh embodiment.
  • FIG. 20 shows a configuration of a light source unit of a projector device in an eighth embodiment.
  • (A) And (b) is a figure which shows the structure of the vehicle in Embodiment 9, and a headlight. It is a figure which shows the XRD (X-ray diffraction) measurement result (2 (theta) / (omega) scan) of the wavelength conversion element in Example 1.
  • FIG. It is a figure which shows the XRD measurement result (2 (theta) / (omega) scan) of the wavelength conversion element in the comparative example 3.
  • FIG. 2 is a diagram showing a cross-sectional SEM (scanning electron microscope) observation image of a phosphor layer in Example 1.
  • FIG. (A) is a figure which shows the cross-sectional SEM observation image near the board
  • (b) is a figure which shows the cross-sectional SEM observation image near the center of the fluorescent substance layer in Example 1. It is. It is a figure which shows the result of having measured the emission spectrum of the LED element in Example 1 and Comparative Example 1.
  • FIG. It is a figure which shows the XRD measurement result (omega scan) of the wavelength conversion element in Example 1.
  • FIG. 6 is a view showing a cross-sectional SEM observation image of a phosphor layer in Example 5.
  • FIG. 10 is a view showing a cross-sectional SEM observation image near the center of the phosphor layer in Example 5.
  • 6 is a diagram showing a cross-sectional TEM (transmission electron microscope) observation image of a phosphor layer in Example 5.
  • FIG. It is a figure which shows the electron beam diffraction image by TEM in the range shown in FIG. It is a figure which shows the result of having measured the emission spectrum of the LED element in Example 5, Example 1, and Comparative Example 4.
  • FIG. It is a figure which shows the XRD measurement result (2 (theta) / (omega) scan) of the wavelength conversion element in Example 6.
  • FIG. It is a figure which shows the cross-sectional SEM observation image of the board
  • FIG. It is a figure which shows the result of having measured the emission spectrum of the LED element in Example 6 and Comparative Example 5.
  • FIG. It is a figure which shows the result of having measured the emission spectrum of the semiconductor laser light-emitting device in Example 7 and Comparative Example 6, Comprising: (a) is an enlarged view near excitation light from a semiconductor laser chip, (b) is excitation light. It is an enlarged view of the fluorescence vicinity excited by. It is a figure which shows the result of having measured the emission spectrum of the semiconductor laser light-emitting device in Example 8 and Comparative Example 7, Comprising: (a) is an enlarged view near the excitation light from a semiconductor laser chip, (b) It is an enlarged view near the fluorescence excited by excitation light. It is a figure which shows the result of having measured the transmission spectrum of the zinc oxide film
  • the refractive index of the phosphor In the phosphor layer composed of phosphor particles and a matrix such as a silicone resin in which the phosphor particles are dispersed, the refractive index of the phosphor generally used for LEDs (1.8 to 2.0) And the refractive index difference (0.4 to 0.6) between the refractive index of the silicone resin as a matrix and the refractive index (1.4), light is scattered at the interface between the phosphor particles and the matrix. For this reason, light cannot be efficiently extracted outside.
  • the matrix for forming the phosphor layer is not a matrix of an organic substance such as a silicone resin having low heat resistance or ultraviolet resistance, A method using glass as an inorganic matrix having high ultraviolet resistance has been proposed (see, for example, Patent Document 3).
  • glass Since glass is in a glass state (amorphous), there is no crystal grain boundary. Therefore, when glass is used as the inorganic matrix, light scattering due to crystal grain boundaries of the inorganic matrix in the phosphor layer does not occur. Furthermore, since glass is an amorphous material rather than a crystal, glass is used as an inorganic matrix, such as low-melting glass that can be melted by low-temperature heating and freely changed in shape, or liquid glass that can be heated and cured in a liquid state at room temperature. In the case, the degree of freedom of the shape is high.
  • the void when a void remains inside the phosphor layer, the void is usually filled with air.
  • the refractive index of air is 1.0, which is as large as the refractive index of phosphors commonly used for LEDs (1.8 to 2.0) and the refractive index of silicone resins (1.4). Different. Therefore, the subject that light is scattered inside a fluorescent substance layer also arises by the refractive index difference between a void and fluorescent substance, and the refractive index difference between a void and a matrix.
  • the phosphor layer can be formed by potting a mixture in which phosphor particles are dispersed in the silicone resin in advance on the LED chip and curing the mixture by heating.
  • the mixture can be deformed before heating, it is possible to prevent voids from remaining inside the phosphor layer by forming the phosphor layer after sufficient defoaming and other operations. it can.
  • a phosphor particle layer made of phosphor particles is formed in advance.
  • a raw material solution in which a raw material (or precursor) of an inorganic matrix is dissolved in a solvent is filled in the voids inside the phosphor particle layer, and an inorganic matrix is formed from the raw material solution.
  • an inorganic matrix is formed by volatilization of the solvent in the raw material solution. For this reason, (1) When the conversion ratio from the raw material solution to the inorganic matrix per volume is small, the inorganic material converted in the pores of the phosphor particle layer rather than the volume of the raw material solution filled in the voids of the phosphor particle layer Since the volume of the matrix is smaller, voids are likely to occur inside the phosphor layer. (2) Increasing the concentration of the raw material (or precursor) in order to increase the conversion rate from the raw material solution to the inorganic matrix per volume increases the viscosity of the raw material solution, and the voids inside the phosphor particle layer It becomes difficult for the raw material solution to be impregnated. As a result, a portion where the raw material solution does not reach the voids inside the phosphor particle layer is generated, and voids are likely to be generated inside the phosphor layer.
  • Zinc oxide can also be formed by vacuum film forming methods such as electron beam evaporation, reactive plasma evaporation, sputtering, and pulsed laser deposition.
  • vacuum film forming methods such as electron beam evaporation, reactive plasma evaporation, sputtering, and pulsed laser deposition.
  • the inorganic matrix of the phosphor layer As described above, as the inorganic matrix of the phosphor layer, it has a high refractive index, but has a low degree of freedom in shape and uses crystalline zinc oxide, and forms crystal grain boundaries and voids inside the phosphor layer. There is a contradiction between not doing it.
  • the present inventors have conceived a novel wavelength conversion element, a manufacturing method thereof, an LED element using the wavelength conversion element, and a semiconductor laser device in view of such problems.
  • a zinc oxide thin film (underlying ZnO layer) is formed on a substrate, and a phosphor particle layer composed of phosphor particles is formed on the underlying ZnO layer.
  • the voids inside the phosphor particle layer are filled with zinc oxide crystal-grown in the c-axis orientation as a matrix from the underlying ZnO layer.
  • Zinc oxide constituting the matrix has a wurtzite type crystal structure, and the c-axis oriented zinc oxide means that the plane parallel to the substrate is the c-plane.
  • the substrate means a semiconductor light emitting device, a substrate of the semiconductor light emitting device, a thin film surface formed thereon, a phosphor layer, in addition to a so-called substrate such as a glass substrate, a sapphire substrate, a gallium nitride (GaN) substrate Including the main surface of
  • Zinc oxide grown in c-axis orientation becomes columnar crystals, and there are few crystal grain boundaries in the c-axis direction. Furthermore, since crystals are grown in the c-axis direction from the c-axis-oriented underlying ZnO layer formed on the substrate, columnar crystals with few crystal grain boundaries are arranged in the light emission direction from the LED chip perpendicular to the substrate. it can. Therefore, light scattering in the phosphor layer can be suppressed.
  • the c-axis oriented columnar crystal means that the growth of zinc oxide in the c-axis direction is faster than the growth of zinc oxide in the a-axis direction, and a vertically long zinc oxide crystallite is formed on the substrate.
  • a crystallite means the minimum area
  • the voids inside the phosphor particle layer can be filled with a matrix composed of single crystalline zinc oxide epitaxially grown from the underlying ZnO layer. it can.
  • Epitaxially grown single crystal zinc oxide has very few crystal grain boundaries, and therefore light scattering due to zinc oxide crystal grain boundaries does not occur.
  • a solution growth method is used for the process of filling the space inside the phosphor particle layer with a matrix composed of c-axis oriented zinc oxide.
  • a solution containing Zn ions as a raw material solution
  • c-axis oriented zinc oxide can be grown using the underlying ZnO layer as a seed crystal serving as a nucleus for crystal growth of zinc oxide. Since the raw material solution is a dilute aqueous solution, the viscosity is low, and the raw material solution can easily reach the space inside the phosphor particle layer.
  • the outline of one embodiment of the wavelength conversion element and the manufacturing method thereof, the LED element using the wavelength conversion element and the semiconductor laser light emitting device according to the present invention is as follows.
  • a wavelength conversion element is configured by a plurality of phosphor particles and zinc oxide that is located between the plurality of phosphor particles and oriented in the c-axis or is a single crystal.
  • a matrix is configured by a plurality of phosphor particles and zinc oxide that is located between the plurality of phosphor particles and oriented in the c-axis or is a single crystal.
  • the wavelength conversion element may include a phosphor layer including the plurality of phosphor particles and the matrix.
  • the half width by the X-ray rocking curve method of the c-axis of the zinc oxide may be 4 ° or less.
  • the wavelength conversion element may further include a thin film made of zinc oxide in contact with the phosphor layer.
  • the wavelength conversion element may further include a substrate in contact with the thin film, and the thin film may be positioned between the phosphor layer and the substrate.
  • the wavelength conversion element may further include a substrate in contact with the phosphor layer.
  • the substrate may be made of one selected from the group consisting of glass, quartz, silicon oxide, sapphire, gallium nitride, and zinc oxide.
  • the zinc oxide may be a columnar crystal.
  • the single crystal zinc oxide may be c-axis oriented.
  • the phosphor particles may contain at least one selected from the group consisting of YAG (yttrium, aluminum, garnet) phosphor and ⁇ -SiAlON (sialon).
  • An LED element includes a semiconductor light emitting element that emits excitation light, and the wavelength conversion element according to any one of the above, into which the excitation light emitted from the semiconductor light emitting element is incident.
  • the wavelength conversion element may be formed directly on the semiconductor light emitting element.
  • the LED element may further include a crystal separation layer positioned between the wavelength conversion element and the semiconductor light emitting element.
  • the crystal separation layer may be made of an amorphous material mainly composed of silicon dioxide.
  • the crystal separation layer may be formed by a plasma chemical vapor deposition method.
  • the semiconductor light emitting element may include an n-type GaN layer, a p-type GaN layer, and a light-emitting layer made of InGaN sandwiched between the n-type GaN layer and the p-type GaN layer.
  • the excitation light may be blue or blue-violet wavelength band light.
  • the plurality of phosphor particles include a blue phosphor and a yellow phosphor, the excitation light is light in a blue-violet wavelength band, and the blue phosphor is excited by the excitation light exciting the blue phosphor.
  • the yellow phosphor may emit yellow light by emitting blue light and the excitation light or the blue light exciting the yellow phosphor.
  • a semiconductor laser light emitting device includes: a semiconductor laser chip that emits excitation light; and the wavelength conversion element according to any one of the above that receives the excitation light emitted from the semiconductor laser chip. Prepare.
  • the excitation light may be blue or blue-violet wavelength band light.
  • the plurality of phosphor particles include a blue phosphor and a yellow phosphor, the excitation light is light in a blue-violet wavelength band, and the blue phosphor is excited by the excitation light exciting the blue phosphor.
  • the yellow phosphor may emit yellow light by emitting blue light and the excitation light or the blue light exciting the yellow phosphor.
  • a headlight or a vehicle includes any of the semiconductor laser light emitting devices described above and a power supply source that supplies power to the semiconductor laser light emitting device.
  • the manufacturing method of the wavelength conversion element concerning one Embodiment of this invention uses the process (a) and the solution growth method of forming the fluorescent substance particle layer which consists of fluorescent substance particles on the thin film of zinc oxide by which c-axis orientation was carried out. And (b) forming a phosphor layer by filling the voids inside the phosphor particle layer with zinc oxide.
  • the half width of the zinc oxide thin film according to the c-axis X-ray rocking curve method may be 4.5 ° or less.
  • the zinc oxide thin film may be an epitaxially grown single crystal.
  • the step of forming the phosphor particle layer may be an electrophoresis method.
  • the phosphor particles may contain at least one selected from the group consisting of YAG (yttrium, aluminum, garnet) phosphor and ⁇ -SiAlON (sialon).
  • FIG. 1 is a cross-sectional view of the wavelength conversion element according to the first embodiment.
  • the wavelength conversion element 6 of this embodiment includes a phosphor layer 7 including a plurality of phosphor particles 3 and a matrix 5 positioned between the plurality of phosphor particles 3.
  • the wavelength conversion element 6 converts at least a part of the incident light into light having a wavelength band different from the wavelength band of the incident light and emits it.
  • phosphors having various excitation wavelengths, emission light wavelengths, and particle diameters generally used for light emitting elements can be used.
  • YAG yttrium, aluminum, garnet
  • ⁇ -SiAlON sialon
  • the wavelength for exciting the phosphor and the wavelength of the emitted light can be arbitrarily selected according to the application of the wavelength conversion element 6.
  • an element doped into YAG or ⁇ -SiAlON can be selected according to these wavelengths.
  • the phosphor when blue-violet light or blue light is selected as the wavelength of excitation light for exciting the phosphor layer 7, the phosphor can be excited efficiently, so that light emission from a high-power LED element, a high-power semiconductor laser light-emitting device, etc. An element and a light emitting device can be realized.
  • the blue phosphor may be excited with blue-violet light emitted from the light emitting element, and the phosphor particles 3 of the wavelength conversion element 6 may be excited with the generated blue light. For this reason, the blue light incident on the wavelength conversion element 6 includes blue light from the blue phosphor.
  • the light emitted from the wavelength conversion element 6 is a white light obtained by combining the blue light of the excitation light and the yellow light from the phosphor.
  • light having a wavelength of 400 nm to 420 nm is defined as blue-violet light
  • light having a wavelength of 420 nm to 470 nm is defined as blue light
  • light having a wavelength of 500 nm to 700 nm is defined as yellow light.
  • the blue phosphor is defined as a phosphor that is excited by blue-violet light and emits blue light.
  • the yellow phosphor is defined as a phosphor that is excited by blue light or blue-violet light and emits yellow light.
  • the wavelength conversion element 6 emits white light in which blue light and yellow light from the phosphor are combined.
  • the wavelength conversion element 6 emits white light in which blue light and yellow light from the phosphor are combined.
  • the matrix 5 is composed of zinc oxide oriented in the c-axis. More specifically, the zinc oxide oriented in the c-axis is a columnar crystal having a wurtzite crystal structure or a single crystal. As shown by a schematic line in FIG. 1, the c-axis of zinc oxide in the matrix 5 is parallel to the normal direction of the substrate 1 or the inclination of the c-axis with respect to the normal direction of the substrate 1 is 4 ° or less. is there.
  • the inclination of the c-axis is 4 ° or less
  • the distribution of the inclination of the c-axis is 4 ° or less, and the inclination of all crystallites is not necessarily 4 ° or less.
  • the “c-axis inclination” can be evaluated by a half-value width according to the c-axis X-ray rocking curve method. As described above, c-axis oriented columnar crystals have few crystal grain boundaries in the c-axis direction.
  • the phosphor particles 3 are in contact with each other in the phosphor layer 7.
  • the matrix 5 is filled so as to fill the space between the phosphor particles 3, and the matrix 5 and the phosphor particles 3 are in contact with each other. That is, the phosphor particles 3 are in contact with the adjacent phosphor particles 3 and are also in contact with the matrix 5.
  • the phosphor layer 7 there are substantially no voids.
  • the wavelength conversion element 6 may further include a substrate 1 and a thin film 2.
  • the thin film 2 is in contact with, for example, the main surface 7 a of the phosphor layer 7.
  • the substrate 1 is in contact with the thin film 2, and the thin film 2 is located between the substrate 1 and the phosphor layer 7.
  • the substrate 1 is composed of one selected from the group consisting of glass, quartz, silicon oxide, sapphire, gallium nitride, and zinc oxide.
  • the main surface of the substrate 1 may be the c-plane of these crystals.
  • the thin film 2 is composed of single crystal zinc oxide or polycrystalline zinc oxide.
  • the thin film 2 functions as a seed crystal serving as a nucleus of crystal growth of zinc oxide constituting the matrix 5, the above-described zinc oxide matrix 5 oriented in the c-axis can be formed.
  • the substrate 1 and the thin film 2 may be removed after the formation of the matrix 5, and the wavelength conversion element 6 may not include both the substrate 1 or the substrate 1 and the thin film 2. Further, the wavelength conversion element 6 may include the substrate 1 and may not include the thin film 2 as long as it is possible to form zinc oxide oriented in the c-axis directly on the substrate 1.
  • the c-axis oriented zinc oxide when the substrate 1 is removed is that the c-axis of the zinc oxide of the matrix 5 is parallel to the normal direction of the main surface 7a or 7b of the phosphor layer 7 or the phosphor layer 7
  • the inclination of the c-axis with respect to the normal direction of the main surface 7a or 7b is 4 ° or less. More specifically, if the half width by the c-axis X-ray rocking curve method is 4 ° or less, zinc oxide with few crystal grain boundaries in the c-axis direction can be formed.
  • the space between the phosphor particles is filled with the matrix composed of zinc oxide, and thus has high heat resistance. Moreover, since the refractive index of zinc oxide is large, scattering of light incident on the wavelength conversion element can be suppressed on the surface of the phosphor particles, and light can be efficiently extracted outside.
  • FIGS. 2A, 2B, and 2C are cross-sectional views in the order of steps of the method according to the first embodiment.
  • the voids inside the phosphor particle layer 4 composed of the phosphor particles 3 are filled with the matrix 5 composed of c-axis oriented zinc oxide that is crystal-grown from the zinc oxide thin film 2. To do.
  • a zinc oxide thin film 2 is formed on a substrate 1.
  • the substrate 1 is preferably a highly transparent substrate.
  • a glass substrate, a quartz substrate, or the like can be used.
  • a PEN (polyethylene naphthalate) film, a PET (polyethylene terephthalate) film, or the like may be used.
  • a thin film 2 composed of polycrystalline zinc oxide is formed.
  • the c-axis oriented zinc oxide thin film 2 can be formed by film-forming conditions such as the substrate temperature and plasma density during film-forming, and heat annealing treatment after film-forming.
  • elements such as Ga, Al, and B may be added to the zinc oxide thin film.
  • a phosphor particle layer 4 made of phosphor particles 3 is formed on the zinc oxide thin film 2 formed on the substrate 1.
  • a phosphor dispersion solution in which the phosphor particles 3 are dispersed can be prepared, and the phosphor particles 3 can be accumulated on the zinc oxide thin film 2 by using electrophoresis.
  • the phosphor particle layer 4 may be formed by precipitating the phosphor particles 3 in the phosphor dispersion solution.
  • a matrix 5 made of c-axis-oriented zinc oxide is crystal-grown from the c-axis-oriented zinc oxide thin film 2 by a solution growth method using a solution containing Zn ions.
  • the solution growth method includes a chemical bath deposition method under atmospheric pressure, a hydrothermal synthesis method under a pressure higher than atmospheric pressure, and an electrolytic deposition method in which a voltage or a current is applied (electrochemical deposition method). ) Etc. are used.
  • aqueous solution of zinc nitrate (Zinc nitrate) (Zn (NO 3 ) 2 ) containing hexamethylenetetramine ((C 6 H 12 N 4 )) is used.
  • Zinc nitrate zinc nitrate
  • Zn (NO 3 ) 2 zinc nitrate
  • hexamethylenetetramine (C 6 H 12 N 4 )
  • pH of the aqueous solution are from 5 to 7.
  • FIG. 3 shows a process in the middle of forming a matrix 5 made of c-axis-oriented zinc oxide from the c-axis-oriented zinc oxide thin film 2 of FIG. 2C by crystal growth.
  • the zinc oxide does not grow directly from the phosphor particles 3, but the thin film 2 is used as a seed crystal, and from the thin film 2 formed below the phosphor particle layer 4, upward.
  • C-axis oriented zinc oxide can grow in order.
  • zinc oxide grows through the voids inside the phosphor particle layer, rod-like oxidation grown from narrow gaps between the phosphor particles on the surface of the phosphor layer. An uneven structure made of zinc may be formed. In this case, reflection of light due to a difference in refractive index between the phosphor layer and air can be reduced.
  • the phosphor layer 7 is formed by forming the matrix 5 so as to fill the voids inside the phosphor particle layer 4 as shown in FIG. Thereby, the wavelength conversion element 6 is produced. As described above, the substrate 1 or the substrate 1 and the thin film 2 may then be removed from the phosphor layer 7.
  • FIG. 4 shows a cross-sectional view of the wavelength conversion element of the second embodiment.
  • the wavelength conversion element 46 of this embodiment includes a substrate 41, a thin film 42, and a phosphor layer 7 '.
  • the substrate 41 is a single crystal substrate, and the thin film 42 is composed of single crystal zinc oxide.
  • the matrix 45 is made of single crystal zinc oxide.
  • the voids inside the phosphor particle layer 4 constituted by the phosphor particles 3 are filled with single crystal zinc oxide grown from a single crystal zinc oxide thin film 42.
  • the wavelength conversion element of the present embodiment since the matrix 45 is composed of single crystal zinc oxide, the grain boundaries in the matrix 45 are further reduced, and scattering of light incident on the phosphor layer is reduced. Is further reduced. Therefore, the wavelength conversion element of the present embodiment can extract light to the outside more efficiently.
  • FIGS. 5A, 5B, and 5C are cross-sectional views in order of steps of the method according to the second embodiment.
  • a single crystal substrate having a small lattice mismatch rate between the crystal structure of zinc oxide and the crystal structure of the substrate is used.
  • this growth is referred to as epitaxial growth.
  • the crystals are oriented in the same direction as a whole, and basically no crystal grain boundaries are generated except for crystal defects.
  • a single crystal means a crystal that is epitaxially grown and has very few crystal grain boundaries.
  • a sapphire substrate, a GaN substrate, a zinc oxide substrate, or the like can be used as the substrate 41 on which the single-crystal zinc oxide thin film 42 can be epitaxially grown.
  • the substrate 41 the single crystal substrate described above in which a buffer layer for relaxing the lattice mismatch rate between the crystal structure of the substrate and zinc oxide is formed may be used.
  • a sapphire substrate on which a single crystal GaN thin film is formed may be used as the substrate 41.
  • a thin film 42 is formed on the substrate 41.
  • the same vacuum film forming method as that of the first embodiment is used.
  • a single crystal zinc oxide thin film 42 may be formed by a solution growth method.
  • a single crystal zinc oxide thin film 42 may be formed on a sapphire substrate on which a single crystal GaN thin film is formed by a solution growth method.
  • the phosphor particle layer 4 made of the phosphor particles 3 is formed on the single-crystal zinc oxide thin film 42 formed on the substrate 41.
  • a method for forming the phosphor particle layer 4 the same method as in the first embodiment is used.
  • a matrix 45 composed of single crystal zinc oxide can be formed from the single crystal zinc oxide thin film 42 by a solution growth method using a solution containing Zn ions. .
  • the same method as in the first embodiment is used.
  • FIG. 6A is a cross-sectional view of the wavelength conversion element according to the third embodiment.
  • the wavelength conversion element 200 of this embodiment includes a substrate 210, a thin film 220, a phosphor layer 230, and a two-dimensional periodic body 240.
  • the substrate 210 includes a support 211 and a reflective layer 212.
  • a material having high thermal conductivity such as aluminum, metal, or ceramic can be used in order to efficiently exhaust the heat generated in the phosphor particles 231.
  • a material that reflects light having a visible wavelength including fluorescence can be used, and a metal such as aluminum or silver can be used from the viewpoint of exhaust heat.
  • the thin film 220 is composed of polycrystalline or single crystal zinc oxide, as in the first and second embodiments.
  • the phosphor layer 230 includes phosphor particles 231 and a matrix 232 located between the phosphor particles 231 as in the first and second embodiments.
  • the matrix 232 is configured by c-axis oriented zinc oxide.
  • the two-dimensional periodic body 240 is provided on the main surface 230 a of the phosphor layer 230 and includes a plurality of rods 241.
  • the plurality of rods 241 are made of zinc oxide oriented along the c-axis.
  • FIG. 6B shows the arrangement of the rods 241 of the two-dimensional periodic body 240 on the main surface 230a.
  • the two-dimensional periodic body 240 is configured by arranging rods 241 in a triangular lattice shape.
  • the two-dimensional periodic structure provided on the phosphor layer functions as a two-dimensional diffraction grating, and the fluorescence emitted from the surface on which the two-dimensional periodic structure of the phosphor layer is provided.
  • the full width at half maximum of the radiation angle distribution is narrowed. That is, the radiation angle of the light emitted from the wavelength conversion element is reduced. Therefore, when the light emitted from the wavelength conversion element is used via the lens, the light collection efficiency by the lens is improved.
  • FIGS. 7A to 7G are cross-sectional views in order of steps of the method according to the wavelength conversion element 200 in the third embodiment.
  • a reflective layer 212 is placed on a support 211 to obtain a substrate 210.
  • a material having high thermal conductivity such as aluminum, metal, or ceramic can be used in order to efficiently exhaust the heat generated in the phosphor particles 231.
  • a material that reflects light having a visible wavelength including fluorescence can be used.
  • a metal such as aluminum or silver can be used.
  • a thin film 220 made of c-axis oriented zinc oxide is provided on the substrate 210.
  • vacuum film formation such as an electron beam vapor deposition method, a resistance heating vapor deposition method, a reactive plasma vapor deposition method, a sputtering method, a metal organic chemical vapor deposition method, a molecular beam epitaxy method, and a pulsed laser deposition method. The method is used. Further, as described above, a solution growth method using a solution containing Zn ions is also used.
  • the solution growth method examples include a chemical bath deposition method under atmospheric pressure, a hydrothermal synthesis method under atmospheric pressure, an electrolytic deposition method in which voltage or current is applied (electrochemical deposition), and the like. Is used. Since zinc oxide tends to grow c-axis, the thin film 220 can be easily obtained by controlling film formation conditions such as temperature and film formation rate.
  • a dopant such as Ga, Al, In, or B may be added to zinc oxide constituting the thin film 220 in order to obtain the thin film 220 with low electrical resistance.
  • a phosphor particle layer 235 made of phosphor particles 231 is formed on the thin film 220.
  • a method for forming the phosphor particle layer 235 for example, a technique of integrating the phosphor particles 231 on the thin film 220 by electrophoresis using a phosphor dispersion solution in which the phosphor particles 231 are dispersed is used. it can.
  • the phosphor particle layer 235 may be formed by precipitating the phosphor particles 231 on the thin film 220 in the phosphor dispersion solution.
  • the phosphor dispersion solution may be applied on the thin film 220 and the solution may be dried.
  • the phosphor particles 231 are aggregated in the phosphor particle layer 235 produced. Form the body.
  • the amount of fluorescence can be controlled only by adjusting the amount of phosphor particles 231. Therefore, a wavelength conversion element with stable fluorescence characteristics can be easily obtained.
  • crystal growth of c-axis oriented zinc oxide is performed from the thin film 220 by a solution growth method using a solution containing Zn ions, and the voids of the phosphor particles 231 are c-axis. It is filled with a matrix 232 composed of oriented zinc oxide.
  • a chemical bath deposition method, an electrolytic deposition method performed at atmospheric pressure, a hydrothermal synthesis method performed at atmospheric pressure or higher, and the like are used.
  • a crystal growth solution for example, a zinc nitrate solution containing hexamethylenetetramine is used. Examples of the pH of the zinc nitrate solution are 5 or more and 7 or less.
  • the ability to grow in a neutral solution in this way is also a feature of zinc oxide not found in other oxides. Unlike glass filling, which requires an alkaline reaction solution, by carrying out solution growth of zinc oxide in the vicinity of neutrality, non-radiative recombination does not occur on the surface of the phosphor particles 231 by chemical etching. The internal quantum efficiency of the phosphor particles 231 is not lowered.
  • the thin film 220 can be used as a crystal growth nucleus, that is, a seed crystal, and the crystal growth can be performed with the c-axis-oriented zinc oxide matrix 232 sequentially from the thin film 220 in the lower region of the phosphor particles 231 upward .
  • the zinc oxide constituting the matrix 232 maintains the crystalline state of the thin film 220 that is the base. Therefore, like the thin film 220, the matrix 232 has a dense crystal structure.
  • the matrix 232 grown from the lower region of the phosphor particles 231 is also formed in the upper region of the phosphor particles 231 by lateral growth after growing so as to fill the voids of the phosphor particles 231. Furthermore, since the raw material solution is a dilute aqueous solution and has a low viscosity, the raw material solution can easily reach the inside of the phosphor particle layer 235. Further, since the Zn ions of the raw material for growing zinc oxide are small, even if Zn ions are consumed by the crystal growth of the matrix 232, Zn ions are transferred from the raw material solution outside the phosphor particle layer 235 to the inside of the phosphor particle layer 235. Ions can be easily diffused and reached. Therefore, it is possible to suppress the generation of voids inside the phosphor particle layer 235 caused by the shortage of raw materials.
  • a selective growth mask 250 made of a resin such as a photoresist is provided on the c-axis oriented zinc oxide matrix 232.
  • the selective growth mask 250 has a mask pattern in which openings exposing the surface of a matrix 232 made of the underlying c-axis oriented zinc oxide are arranged in a two-dimensional cycle in a triangular lattice pattern.
  • a technique of applying a photoresist on the phosphor layer 230 and patterning it by photolithography, electron beam exposure, optical nanoimprinting, or a method of transferring a resin pattern by thermal nanoimprinting is used. it can.
  • the selective growth mask 250 is provided, in order to facilitate fine patterning, the surface of the phosphor layer 230 is subjected to a pretreatment such as a planarization process by a chemical mechanical polishing (CMP) method. Also good.
  • CMP chemical mechanical polishing
  • rods 241 made of zinc oxide oriented in the c-axis from the matrix 232 of the phosphor layer 230 are selectively grown in the openings of the selective growth mask 250.
  • a solution growth method is used for selective growth of the rod 241.
  • a chemical bath deposition method, an electrolytic deposition method performed at atmospheric pressure, a hydrothermal synthesis method performed at atmospheric pressure or higher, and the like are used.
  • a crystal growth solution for example, a zinc nitrate solution containing hexamethylenetetramine is used. Examples of the pH of the zinc nitrate solution are 5 or more and 7 or less.
  • the temperature of the crystal growth solution is set to be equal to or lower than the softening point of the resin used, for example, 120 degrees or lower so that the pattern of the selective growth mask 250 is not deformed.
  • the selective growth mask 250 is removed to obtain the wavelength conversion element 200.
  • an organic solvent such as acetone or methanol can be used.
  • the two-dimensional periodic body 240 of the wavelength conversion element 200 may have another structure.
  • the two-dimensional periodic body 240 may include a plurality of rods 241 arranged in a square lattice pattern.
  • the two-dimensional periodic body 240 may have a plurality of openings 242.
  • the two-dimensional periodic body 240 is provided on the main surface 230a of the phosphor layer 230, and the opening 242 exposes the main surface 230a.
  • the plurality of openings 242 are arranged in a square lattice shape or a triangular lattice shape.
  • the two-dimensional periodic body 240 shown in FIGS. 8A and 8B is a selective growth mask 250 having a pattern having a plurality of openings arranged in a square lattice pattern in the step shown in FIG.
  • the selective growth mask 250 having island-shaped patterns arranged in a triangular lattice pattern can be used.
  • FIG. 9A shows the wavelength conversion element 6 shown in Embodiment 1 in an inverted state.
  • FIG. 9B is a cross-sectional view of the LED element according to the fourth embodiment.
  • the electrode of the LED chip, the internal structure of the LED chip, etc. are simplified for easy understanding.
  • the LED element 60 includes a support 61, an LED chip 62, and a wavelength conversion element 50.
  • the support body 61 supports the LED chip 62.
  • the LED element 60 has a structure capable of surface mounting. Since this embodiment is suitably used for a high-brightness LED element, even if the support 61 has a high thermal conductivity so that heat generated by the LED element can be efficiently diffused to the outside. Good.
  • ceramics made of alumina or aluminum nitride may be used as the support 61.
  • the LED chip 62 emits excitation light that excites the phosphor of the wavelength conversion element 50.
  • the LED chip 62 includes, for example, a substrate 62a, an n-type GaN layer 62b, a p-type GaN layer 62d, and a light emitting layer 62c made of InGaN sandwiched between the n-type GaN layer 62b and the p-type GaN layer 62d.
  • the LED chip 62 emits blue light, for example.
  • the LED chip 62 is fixed to the support body 61 with solder 64 or the like so that the light emission surface 63 of the LED chip is on the support body 61.
  • the LED chip 62 is electrically connected to an electrode 66 provided on the support by a bonding wire 65.
  • the periphery of the LED chip 62 is surrounded by a support body 61, and the wavelength conversion element 50 is fixed to the support body 61. If the wavelength conversion element 50 is arranged on the light emission surface 67 side of the light from the LED element as in the arrangement shown in FIG. 9A, the phosphor layer 7 is not exposed to the outside. . However, the substrate 1 of the wavelength conversion element 50 may be disposed on the light incident surface 68 side from the LED chip 62.
  • the excitation light emitted from the LED chip 62 is incident on the wavelength conversion element 50.
  • the wavelength conversion element 50 a part of the incident excitation light is incident on the phosphor particles 3 and excites the phosphor, thereby emitting light having a wavelength band different from that of the excitation light. For example, when the phosphor is a yellow phosphor, blue light is incident as the excitation light and emits yellow light.
  • Excitation light that has not entered the phosphor particles 3 passes through the wavelength conversion element 50 as it is. Thereby, the light emitted from the wavelength conversion element 50 includes blue light and yellow light, and the LED element 60 emits white light.
  • LED element 5 Another embodiment of the LED device according to the present invention will be described.
  • an LED element using a wavelength conversion element formed by the same method as in the first embodiment will be described.
  • a matrix used for the phosphor layer of the wavelength conversion element is formed of zinc oxide of columnar crystals with c-axis orientation.
  • FIGS 10 and 11 are cross-sectional views of the LED elements in the fifth embodiment.
  • the electrode of the LED chip, the support of the LED element, the electrode, the wiring, etc. are simplified for the sake of easy understanding.
  • the LED element shown in FIG. 10A includes an LED chip 70 and a wavelength conversion element 75.
  • the LED chip 70 includes a substrate 71 and a semiconductor light emitting element 72 located on the substrate 71.
  • the semiconductor light emitting device 72 further has a light emitting layer 73.
  • the wavelength conversion element 75 is directly formed on the semiconductor light emitting element 72 and has a structure in which the substrate 1 is removed from the wavelength conversion element 6 of the first embodiment. That is, the wavelength conversion element 75 includes the thin film 2 formed on the semiconductor light emitting element 72 and the phosphor layer 7.
  • the LED element shown in FIG. 10 (b) also includes an LED chip 70 and a wavelength conversion element 75, and the top and bottom of the LED chip 70 are reversed from the LED element shown in FIG. 10 (a). That is, the light emitting layer 73 of the LED chip 70 is located on the side opposite to the wavelength conversion element 75.
  • the wavelength conversion element 75 includes the thin film 2 formed on the substrate 71 and the phosphor layer 7.
  • a sapphire substrate, a GaN substrate, or the like can be used as the substrate 71. These substrates have high translucency, and a light-emitting layer made of n-type GaN and InGaN and p-type GaN having good characteristics can be formed on these substrates.
  • the LED chip 70 is used as a substrate, and the semiconductor light emitting device 72 side or the substrate 71 side of the semiconductor light emitting device is mounted.
  • the wavelength conversion element 75 can be formed by the same method as in the first mode.
  • the LED element of the present embodiment may be configured using the LED chip 80 including the crystal separation layer 74 and the wavelength conversion element 75.
  • the semiconductor light emitting element 72 or the LED chip 80 in which the crystal separation layer 74 is formed on the substrate 71 of the semiconductor light emitting element is used as the substrate.
  • the wavelength conversion element 75 can be formed by the same method as in the first embodiment.
  • the crystal separation layer 74 is an underlayer for forming the thin film 2 composed of c-axis-oriented zinc oxide.
  • amorphous silicon dioxide having no crystal structure plasma chemical vapor deposition method
  • It can be formed of a material whose main component is SiO 2 .
  • the crystal separation layer 74 Glass formed from a liquid glass material such as polysilazane may be used.
  • the crystal separation layer 74 is Since it is an amorphous material having no crystal structure similar to that of the glass substrate, the c-axis oriented zinc oxide thin film 2 can be formed regardless of the crystal structure of the substrate 71. Since the zinc oxide thin film 2 is c-axis oriented, the matrix 5 of the wavelength conversion element 75 can be formed of c-axis oriented zinc oxide in the same manner as in the first embodiment.
  • FIG. 12 shows a cross-sectional view of the LED element in the sixth embodiment.
  • the electrode of the LED chip, the support of the LED element, the electrode, the wiring, etc. are simplified for the sake of easy understanding.
  • the LED element of Embodiment 6 includes an LED chip 70 and a wavelength conversion element 95.
  • the wavelength conversion element 95 includes a single-crystal zinc oxide thin film 42 and a phosphor layer including the phosphor particles 3 and the matrix 45.
  • the phosphor layer is composed of single crystal zinc oxide.
  • the LED chip includes a semiconductor light emitting element 72 and a substrate 71.
  • FIG. 12B a c-axis oriented single crystal zinc oxide thin film 42 is formed on the semiconductor light emitting element 72 side or the semiconductor light emitting element substrate 71 side with the LED chip 70 as a substrate. Can be formed. Since the zinc oxide thin film 42 is a c-axis oriented single crystal, the matrix 45 of the wavelength conversion element 95 can be formed of c-axis oriented single crystal zinc oxide in the same manner as in the second embodiment.
  • a c-plane sapphire substrate, a c-plane GaN substrate, or the like can be used as the substrate 71 of the semiconductor light emitting device.
  • both zinc oxide and gallium nitride have a wurtzite crystal structure.
  • the mismatch rate of these a-axis lattices is 1.8%, and the mismatch rate of c-axis lattices is 0.4%, both of which are very small. Therefore, the thin film 2 made of c-axis oriented single crystal zinc oxide can be epitaxially grown on the semiconductor light emitting element side or the substrate side.
  • FIG. 13 is a sectional view of the semiconductor laser light emitting device 330 according to the seventh embodiment.
  • the internal structure, electrodes, connection wiring, etc. of the semiconductor laser chip are simplified for easy understanding.
  • the semiconductor laser light emitting device 330 includes a semiconductor laser chip 310, a wavelength conversion element 50, and a stem 301 that supports the semiconductor laser chip 310 and the wavelength conversion element 50.
  • the semiconductor laser chip 310 is supported on the stem 301 by the block 302, and the wavelength conversion element 50 is supported on the stem 301 through the cap 303.
  • the stem 301 and the block 302 are made of, for example, a metallic material mainly containing Fe or Cu, and are integrally molded by a mold, and efficiently exhaust heat generated in the semiconductor laser chip 310 during operation.
  • the cap 303 is molded from a metallic material mainly containing Fe and Ni, and is fused to the stem 301 by welding or the like.
  • the semiconductor laser chip 310 is mounted on the block 302 and performs electrical connection between the semiconductor laser chip 310 and the leads 305 by bonding wires.
  • the cap 303 is provided with an opening 304, and a wavelength conversion element is provided so as to cover the opening 304.
  • Excitation light from the semiconductor laser chip 310 is incident from the incident surface 307 of the wavelength conversion element 50.
  • the semiconductor laser light emitting device 330 emits light obtained by synthesizing the excitation light transmitted through the wavelength conversion element 50 and the fluorescence converted from the excitation light.
  • the semiconductor laser chip 310 is directly mounted on the block 302 in FIG. 13, it may be mounted on the block 302 via a submount made of AlN, Si, or the like.
  • the substrate of the wavelength conversion element 50 is disposed on the emission surface 308 side, there is an advantage that the phosphor layer is not exposed to the outside.
  • the substrate may be disposed on the incident surface 307 side.
  • FIGS. 14A and 14B are diagrams showing a color wheel 400 used in the projector apparatus according to the present embodiment.
  • FIG. 14A shows the position of the color wheel 400 and the light emitted from the light source.
  • FIG. 14B shows the configuration of the color wheel 400.
  • the color wheel 400 includes a disk 410 and a wavelength conversion element 200, and the wavelength conversion element 200 is held by the disk 410.
  • An opening 411 is provided in the disk 410.
  • the wavelength conversion element 200 is irradiated with the blue light B, which is collimated excitation light, collected by the lens 420 and the fluorescent green light G emitted from the wavelength conversion element 200 is collected by the lens 420 and collimated. It becomes.
  • the disk 410 is rotated by the wheel motor 430 and the position where the high-brightness blue light B is collected moves, the region of the wavelength conversion element 200 where the blue light B is collected and the temperature rises is cooled, and the wavelength is increased. The temperature rise of the conversion element 200 is suppressed.
  • the blue light B irradiates the opening 411, the blue light B passes through the disk 410 and is condensed and collimated by the lens 421.
  • the wavelength conversion element 200 and the opening 411 are arranged in an arc shape.
  • the light shielding region 412 in which neither the wavelength conversion element 200 nor the opening 411 is provided corresponds to the time for displaying red in the spatial light modulation of the projector.
  • the area ratio and arrangement of the wavelength conversion element 200, the opening 411, and the light shielding region 412 can be designed in a timely manner corresponding to the spatial light modulation of the projector.
  • FIG. 15 shows a light source 500 for a projector using the color wheel 400 in the eighth embodiment.
  • the light source 500 uses the red light R from the red light source 501, the blue light B from the blue light source 502, and the green light G from the wavelength conversion element 200 on the color wheel 400 to determine the light emission timing of the light source and the color wheel 400.
  • the output light 510 is generated in a time division manner.
  • the output light 510 is irradiated onto the spatial light modulator, and a color image is generated by synchronizing with the RGB time division timing of the output light 510.
  • the red light source 501 is composed of a red LED or a red laser diode (LD).
  • the red light source 501 emits the red light R by performing a light emission operation only in a time zone in which the red light R is necessary in the time division.
  • the red light R emitted from the red light source 501 passes through the dichroic mirrors 511 and 512 that transmit the red wavelength light, and is output.
  • the blue light source 502 is composed of a blue LED or a blue laser diode (LD).
  • the blue light source 502 performs a light emission operation only in a time zone in which the blue light B and the green light G are necessary in time division.
  • the blue light B emitted from the blue light source 502 passes through the dichroic mirror 511 that transmits the light having the blue wavelength, and reaches the color wheel 400.
  • the blue light B passes through the opening 411 of the color wheel 400 by the rotation of the color wheel 400 in a time zone where the blue light B is required in the time division.
  • the blue light B that has passed through the color wheel 400 is reflected by the mirrors 521 and 522.
  • the red light R is reflected by the dichroic mirror 512 that reflects the light of the blue wavelength, so that the optical axis is aligned with the red light R and output as the output light 510.
  • Green light G is generated from the color wheel 400 when the blue light B excites the wavelength conversion element 200 only in a time zone in which the green light G is required in time division.
  • the green light G emitted from the color wheel 400 reaches the dichroic mirror 511.
  • the red light R and the optical axis are aligned by a dichroic mirror 511 that reflects light of green wavelength.
  • the green light G is output as output light 510 via a dichroic mirror 512 that transmits green wavelength light.
  • Embodiments of a headlight and a vehicle according to the present invention will be described.
  • a headlight and a vehicle using any one of the wavelength conversion elements of the first to third embodiments will be described.
  • FIG. 16A schematically shows the configuration of the vehicle of this embodiment.
  • the vehicle 601 includes a vehicle body 605, a headlight 602 provided at the front of the vehicle body 605, a power supply source 603, and a generator 604.
  • the generator 604 is rotationally driven by a driving source such as an engine (not shown) to generate electric power.
  • the generated power is stored in the power supply source 603.
  • power supply source 603 is a secondary battery that can be charged and discharged.
  • the motor that drives the vehicle may be the generator 604.
  • the headlight 602 is turned on by power from a power supply source.
  • FIG. 16B shows a schematic configuration of the headlight 602.
  • the headlight 602 includes a semiconductor laser chip 611, an optical system 612, an optical fiber 613, a wavelength conversion element 614, and an optical system 615.
  • the semiconductor laser chip 611 has a structure in which a transparent plate is provided instead of the wavelength conversion element 50 in the semiconductor laser light emitting device 330 of the seventh embodiment, for example.
  • the light emitted from the semiconductor laser chip 611 is collected on one end of the optical fiber 613 by the optical system 612 and passes through the optical fiber 613.
  • the light emitted from the other end of the optical fiber 613 enters the wavelength conversion element 614, and at least part of the wavelength is converted and emitted. Further, the irradiation range is controlled by the optical system 615. Thereby, the headlight 602 irradiates the front of the vehicle 601.
  • the matrix of the phosphor layer of the wavelength conversion element is composed of an inorganic material having high thermal conductivity and high heat resistance, it is preferable to emit light with high intensity. Even when used for a headlight, it has excellent exhaust heat resistance and heat resistance, and the phosphor layer is prevented from being deteriorated by heat over a long period of time. Moreover, since the emission efficiency is high, the power consumption of the power supply source is small. Furthermore, since the light emitted from the semiconductor laser chip is guided to the wavelength conversion element by the optical fiber, there is no restriction on the arrangement of the semiconductor laser chip and the wavelength conversion element in the headlight.
  • the voids inside the phosphor layer particle layer are formed into c-axis oriented columnar crystal zinc oxide. It can be filled with dense. Thereby, the crystal grain boundary of the zinc oxide in the light emission direction in the phosphor layer can be suppressed, and voids in the phosphor layer can be suppressed.
  • the voids inside the phosphor particle layer can be densely filled with single crystal zinc oxide grown epitaxially.
  • the light scattering by the crystal grain boundary of zinc oxide in a fluorescent substance layer does not generate
  • the matrix of the phosphor layer is formed by directly growing crystals of zinc oxide, which is the same material, from a thin film composed of zinc oxide. Therefore, the adhesiveness between the phosphor layer and the substrate is high.
  • crystals of zinc oxide grow from a thin film composed of zinc oxide through gaps inside the phosphor particle layer.
  • rod-shaped zinc oxide can be formed in a self-organized manner from a narrow gap between phosphor particles on the surface. Since an uneven structure composed of zinc oxide rods can be formed on the surface of the phosphor layer, reflection of light due to a difference in refractive index between the phosphor layer and air can be reduced.
  • the surface of the phosphor layer is further provided with a two-dimensional periodic structure, the directivity of light emitted from the phosphor layer can be further increased.
  • an LED element in which the above-described wavelength conversion element is formed on a semiconductor light emitting element or a substrate of the semiconductor light emitting element via a crystal separation layer can be configured. According to this configuration, even if the crystal structure of the semiconductor light emitting element or the substrate of the semiconductor light emitting element prevents the c-axis orientation of zinc oxide, a thin film composed of c-axis oriented zinc oxide can be formed. . As a result, the matrix of the phosphor layer can be constituted by c-axis oriented zinc oxide.
  • the matrix of the phosphor layer can be composed of single crystal zinc oxide using the semiconductor light emitting element or the crystal structure of the substrate of the semiconductor light emitting element. There is no need to separately prepare an expensive single crystal substrate, and the cost of the LED element can be reduced.
  • the seventh embodiment it is possible to configure a light emitting device that excites the phosphor layer of the wavelength conversion element described above with the laser light emitted from the semiconductor laser chip.
  • the semiconductor laser chip has higher directivity and luminance than the LED chip.
  • the semiconductor laser light emitting device of this embodiment can realize a light source with high directivity or high luminance.
  • the phosphor layer of the wavelength conversion element described above can be used for a color wheel that is excited by light emitted from an LED chip or laser light emitted from a semiconductor laser chip. Since the color wheel of this embodiment can suppress light scattering in the phosphor layer, it can constitute a highly efficient projector light source.
  • Embodiment 9 a highly reliable headlight having excellent heat resistance and suppressing deterioration of the phosphor layer due to heat over a long period of time is realized.
  • the wavelength conversion element, the LED element, and the semiconductor laser light emitting device of this embodiment will be described in detail using the following examples.
  • Example 1 Formation of zinc oxide thin film on glass substrate
  • a soda glass substrate having a thickness of 1 mm was prepared as the substrate.
  • a c-axis oriented zinc oxide thin film (underlying ZnO layer) having a thickness of 150 nm and doped with 3 at% Ga was formed on a glass substrate.
  • the substrate temperature during film formation was 180 ° C., and after film formation, the temperature was raised from room temperature to 500 ° C. in 30 minutes in the air, and annealing was performed at 500 ° C. for 20 minutes.
  • a phosphor dispersion solution was prepared using a Y 3 Al 5 O 12 : Ce (YAG: Ce) phosphor having a refractive index of 1.8 and an average particle diameter of 3 ⁇ m.
  • Ce YAG: Ce
  • phosphoric acid ester 0.0003 g
  • polyethyleneimine 0.0003 g
  • a phosphor particle layer was formed by electrophoresis on a substrate on which a base ZnO layer was formed.
  • the deposition conditions of the phosphor particle layer were an applied voltage of 100 V and an applied time of 3 minutes, with the underlying ZnO layer as the cathode and the Pt electrode as the anode.
  • the solvent ethanol was dried to complete the phosphor particle layer (thickness: about 17 ⁇ m).
  • the phosphor weight per unit area was 3.3 mg / cm 2 .
  • a chemical bath deposition method was used as a solution growth method for zinc oxide serving as a matrix.
  • a zinc oxide growth solution an aqueous solution in which zinc nitrate (0.1 mol / L) and hexamethylenetetramine (0.1 mol / L) were dissolved was prepared. The pH value of the solution was 5-7.
  • the substrate on which the phosphor particle layer was formed was immersed in a zinc oxide growth solution, the temperature of the zinc oxide growth solution was maintained at 90 ° C., and zinc oxide was crystal-grown in the voids inside the phosphor particle layer. Thereafter, the substrate was taken out, washed with pure water, and dried.
  • a plurality of blue LED chips having an emission wavelength of 465 nm and the same emission intensity were prepared.
  • the phosphor layer in which the voids inside the phosphor particle layer were filled with zinc oxide was cut by dicing so as to match the size of the support 61, and a wavelength conversion element separated into pieces was prepared.
  • the blue LED chip was attached to the support 61 using solder 64, and wiring between the electrode 66 provided on the support 61 and the blue LED chip was performed.
  • the wavelength conversion element cut so as to fit the size of the support 61 is arranged so that the substrate side is the light emission surface 67 side of the LED element.
  • the edge part of the wavelength conversion element was fixed with the adhesive agent of silicone resin, and the LED element of FIG.9 (b) was completed.
  • the completed LED element was attached to an integrating sphere and driven with a constant current of 20 mA, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 1.
  • a glass substrate on which the same base ZnO layer as in Example 1 was formed was formed by crystal growth of only the zinc oxide film by the same solution growth method as in Example 1 without forming the phosphor particle layer.
  • the refractive index of this zinc oxide film measured by spectroscopic ellipsometry was 2.0.
  • Example 1 A soda glass substrate having a thickness of 1 mm was prepared as the substrate.
  • the same phosphor as in Example 1 was mixed with the silicone resin in which the A and B agents of dimethyl silicone resin were mixed at the same weight so that the phosphor layer was 8 vol%, and the mixture was mixed three times in a three-roll kneader. Through the vacuum degassing, a silicone resin mixture was obtained. Thereafter, the obtained silicone resin mixture was applied onto a glass substrate, and the silicone resin mixture was cured at 150 ° C. for 4 hours to obtain a phosphor layer (thickness: 90 ⁇ m) using a silicone resin as a matrix.
  • the phosphor weight per unit area calculated from the volume fraction of the phosphor in the phosphor layer and the thickness of the phosphor layer was 3.3 mg / cm 2 .
  • an LED element was completed by the same method as in Example 1, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 1.
  • Example 2 A phosphor particle layer was formed on the glass substrate on which the same base ZnO layer as in Example 1 was formed by the same method as in Example 1. The phosphor weight per unit area was 3.3 mg / cm 2 . Using this phosphor layer, an LED element was completed in the same manner as in Example 1, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 1.
  • Example 3 A glass substrate with ITO was prepared by depositing ITO (tin-doped indium oxide) on a soda glass substrate having a thickness of 1 mm by an electron beam evaporation method. In the same manner as in Example 1, a phosphor particle layer was formed on a glass substrate with ITO. The phosphor weight per unit area was 3.3 mg / cm 2 .
  • the space inside the phosphor particle layer was filled with zinc oxide by a sol-gel method.
  • Zinc acetate dihydrate Zn (CH 3 COO) 2 .2H 2 O
  • ethanol as a solvent
  • diethanolamine HN (CH 2 CH 2 OH) 2
  • a sol-gel raw material solution was prepared in which 0.5 mol / L of zinc acetate was dissolved in ethanol with the same molar ratio of Zn 2+ .
  • the obtained sol-gel raw material solution is dropped onto the phosphor particle layer, vacuumed by a rotary pump, impregnated into the voids inside the phosphor particle layer, heated at 400 ° C. for 1 hour, and zinc oxide from the raw material solution. Converted to.
  • an LED element was completed in the same manner as in Example 1, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 1.
  • FIG. 17 shows the XRD measurement result (2 ⁇ / ⁇ scan) of the wavelength conversion element of Example 1.
  • This measurement can detect a crystal lattice plane parallel to the substrate.
  • extremely large peaks of zinc oxide (002) and (004) were detected as compared with the peak of the phosphor and the diffraction peak other than the c-plane of zinc oxide.
  • the XRD measurement result (2 ⁇ / ⁇ scan) of the wavelength conversion element since the diffraction peak of the c-plane of zinc oxide is larger than the diffraction peak of the zinc oxide other than the c-plane, this zinc oxide is c-axis. It can be confirmed that the crystal is oriented.
  • FIG. 18 shows the XRD measurement result (2 ⁇ / ⁇ scan) of the wavelength conversion element of Comparative Example 3.
  • the peak intensity of the phosphor and the peak intensity of zinc oxide were comparable.
  • each peak of zinc oxide (100), (002), (101) was detected with the peak intensity comparable. This confirmed that the zinc oxide of the wavelength conversion element of Comparative Example 3 was in a random orientation.
  • Table 1 summarizes the results of the light emission intensity of the LED elements.
  • the weight of the phosphor per unit area was adjusted for all samples.
  • the light emission intensity indicates the light emission intensity of other LED elements with the light emission intensity of the LED element of Comparative Example 1 being 100.
  • the emission intensity of Example 1 was 120, and an emission intensity 1.2 times that of the LED element of Comparative Example 1 using a phosphor layer in which phosphor particles were dispersed in a silicone resin was obtained.
  • the light emission intensity of the LED element using the phosphor layer in which the phosphor particles of Comparative Example 2 are simply integrated on the substrate is 60, and Example 1 has twice the light emission intensity of Comparative Example 2. .
  • the luminous intensity of the LED element using the phosphor layer in which the inside of the phosphor particle layer of Comparative Example 3 is filled with randomly oriented zinc oxide is 73, and Comparative Example 3 is 1.2 times that of Comparative Example 2. Although the emission intensity was obtained, Comparative Example 3 obtained only lower emission intensity than Example 1 and Comparative Example 1. This is because when the inside of the phosphor particle layer is filled with randomly oriented zinc oxide, light scattering in the phosphor layer is large due to the presence of many zinc oxide crystal grain boundaries in the light exit direction. It is.
  • FIG. 19 shows a cross-sectional SEM observation image in which the phosphor layer of Example 1 was broken.
  • 20 shows an enlarged image of a cross-sectional SEM observation image obtained by breaking the phosphor layer of Example 1.
  • FIG. 20A shows the vicinity of the substrate interface
  • FIG. 20B shows the center portion.
  • zinc oxide rods grew on the surface of the phosphor layer, and irregularities were formed by the zinc oxide rods in a self-organizing manner.
  • FIGS. 19, 20A and 20B it can be seen that the inside of the phosphor layer is densely filled with zinc oxide throughout the phosphor layer.
  • crystal grain boundaries are seen in the vertical direction in the zinc oxide inside the phosphor layer. This indicates that zinc oxide has grown into columnar crystals by solution growth.
  • FIG. 20A shows that the zinc oxide as the matrix is in close contact with the zinc oxide thin film, and the zinc oxide has grown from the zinc oxide thin film.
  • FIG. 20B it can be seen that zinc oxide columnar crystals are buried around the phosphor particles. Since columnar crystal zinc oxide with few crystal grain boundaries could be arranged in the light emission direction, light scattering in the phosphor layer could be suppressed.
  • FIG. 21 shows emission spectra of the LED elements of Example 1 and Comparative Example 1.
  • Example 1 since the inside of the phosphor particle layer could be densely filled with columnar crystal zinc oxide, light scattering in the phosphor layer was suppressed more than in Comparative Example 1, and blue light from the LED chip was It was possible to take out the LED element efficiently.
  • Example 2 The film formation conditions for forming the underlying ZnO layer on the glass substrate were substrate heating during film formation, and annealing after film formation was not performed. Except for these, the LED element was completed in the same manner as in Example 1, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 2. The phosphor weight per unit area was 3.3 mg / cm 2 .
  • Example 3 The film formation conditions for forming a base ZnO layer on a glass substrate were as follows: the substrate temperature during film formation was 180 ° C., and annealing after film formation was not performed. Except for these, the LED element was completed in the same manner as in Example 1, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 2. The phosphor weight per unit area was 3.3 mg / cm 2 .
  • Example 4 The film formation conditions for forming the underlying ZnO layer on the glass substrate are as follows: the substrate temperature during film formation is 180 ° C., and after film formation, the temperature is raised in the air from room temperature to 300 ° C. in 30 minutes, to 300 ° C. For 20 minutes. Except for these, the LED element was completed in the same manner as in Example 1, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 2. The phosphor weight per unit area was 3.3 mg / cm 2 .
  • FIG. 22 shows an XRD measurement result ( ⁇ scan) in which the tilt (tilt of crystal axis) of zinc oxide (002) of the wavelength conversion element of Example 1 was evaluated by the X-ray rocking curve method.
  • ⁇ scan the tilt (tilt of crystal axis) of zinc oxide (002) of the wavelength conversion element of Example 1 was evaluated by the X-ray rocking curve method.
  • the distribution of the crystal orientation is measured, and this is an index to the extent that the crystal orientation is aligned.
  • the full width at half maximum of the rocking curve of zinc oxide (002) of Example 1 was 2.7 °. This is defined as the inclination of the c-axis of zinc oxide in the phosphor layer.
  • Table 2 summarizes the results of the inclination of the c-axis of zinc oxide in the phosphor layer and the light emission intensity of the LED element.
  • the weight of the phosphor per unit area was adjusted for all samples.
  • Table 2 for ease of understanding, examples are shown in order of the inclination of the c-axis of zinc oxide in the phosphor layer.
  • the light emission intensity indicates the light emission intensity of other LED elements with the light emission intensity of the LED element of Comparative Example 1 being 100.
  • the inclination of the c-axis of zinc oxide in the phosphor layer is preferably 2.9 ° or less, and the inclination of the c-axis of the zinc oxide thin film at that time is 4.2 ° or less. preferable.
  • the inclination of the c-axis of zinc oxide of the phosphor layer is preferably 2.7 ° or less, and the inclination of the c-axis of the underlying ZnO layer at that time is preferably 4.0 ° or less.
  • FIG. 23A shows an SEM observation image of the phosphor layer in Example 2
  • FIG. 23B shows an SEM observation image of the phosphor layer in Example 1.
  • FIB focused ion beam
  • FIG. 24 shows a schematic diagram of a process in the process of filling phosphor particles with solution-grown zinc oxide.
  • FIG. 24A shows a case where the inclination of the c-axis of zinc oxide in the phosphor layer is large
  • FIG. 24B shows a case where the inclination of the c-axis of zinc oxide in the phosphor layer is small.
  • the phosphor particles are simplified to one in the drawing.
  • the phosphor In zinc oxide growth by the solution growth method, the phosphor cannot become a seed crystal, and zinc oxide does not grow directly from the phosphor particles.
  • the zinc oxide inside the phosphor layer grows in the c-axis direction from the underlying ZnO layer.
  • zinc oxide that has grown in the c-axis direction from below the phosphor particles hits the phosphor particles, the crystal growth stops there.
  • zinc oxide grows in the lateral direction (lateral direction) to fill the phosphor particles.
  • the inclination of the c-axis of the underlying ZnO layer is large, the inclination of the c-axis of zinc oxide of the phosphor layer is increased. If the inclination of the c-axis of zinc oxide in the phosphor layer is large, the crystal growth direction in the lateral direction of zinc oxide is not aligned. Therefore, when the phosphor particles are filled with zinc oxide, voids are formed on the phosphor particles. Remain.
  • the c-axis inclination of zinc oxide of the phosphor layer is small.
  • the crystal growth direction in the lateral direction of zinc oxide is aligned. Therefore, when the phosphor particles are filled with zinc oxide, voids remain on the top of the phosphor particles. Absent. Thus, voids in the phosphor layer could be suppressed by reducing the inclination of the c-axis of zinc oxide filling the voids inside the phosphor particle layer.
  • Example 5 As a substrate, a sapphire c-plane substrate on which a c-axis oriented single crystal GaN thin film was formed was prepared. The thickness of the sapphire substrate was 0.43 mm, and the thickness of the GaN thin film was 5 ⁇ m. On the GaN / sapphire substrate, a c-axis oriented single crystal underlayer ZnO layer was formed by a solution growth method. A chemical bath deposition method was used as a solution growth method for zinc oxide. As a zinc oxide growth solution, an aqueous solution in which zinc nitrate (0.1 mol / L) and hexamethylenetetramine (0.1 mol / L) were dissolved was prepared.
  • the ph value of the solution was 5-7.
  • the substrate was immersed in a zinc oxide growth solution, the temperature of the zinc oxide growth solution was maintained at 90 ° C., and single crystal zinc oxide was grown to 0.7 ⁇ m on the GaN thin film / sapphire substrate. Thereafter, the substrate was taken out, washed with pure water, and dried.
  • the LED element was completed by the same method as in Example 1, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 3.
  • the phosphor weight per unit area was 3.3 mg / cm 2 .
  • Comparative Example 4 A sapphire c-plane substrate having a thickness of 0.43 mm was prepared as the substrate. Thereafter, the LED element was completed by the same method as in Comparative Example 1, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 3. The phosphor weight per unit area calculated in the same manner as in Comparative Example 1 was 3.3 mg / cm 2 .
  • FIG. 25 shows the XRD measurement result (2 ⁇ / ⁇ scan) of the wavelength conversion element of Example 5.
  • very large peaks of zinc oxide (002) and (004) were detected as compared with the peak of the phosphor and the diffraction peak other than the c-plane of zinc oxide. Thereby, it was confirmed that the zinc oxide of the phosphor layer of Example 5 has very strong c-axis orientation.
  • zinc oxide and GaN have the same crystal structure and close lattice constants, in (002) and (004), the peaks of zinc oxide and GaN are close and clearly separated. Difficult to do.
  • FIG. 26 shows the XRD measurement result (2 ⁇ / ⁇ scan) of the wavelength conversion element of Example 5 on the high angle side. As shown in FIG. 26, the peaks of zinc oxide (006) and GaN (006) were clearly separated and detected.
  • FIG. 27 shows the XRD measurement results ( ⁇ scan) in which the tilt (tilt of crystal axis) of zinc oxide (006) of the wavelength conversion element of Example 5 was evaluated by the X-ray rocking curve method. This evaluated the inclination of the c-axis of zinc oxide. As shown in FIG. 27, the full width at half maximum of the rocking curve of zinc oxide (006) was 0.2 °. This is defined as the inclination of the c-axis of zinc oxide in the phosphor layer. It was confirmed that the inclination of the c-axis crystal axis of the zinc oxide of Example 5 was very small as compared with the zinc oxide of the columnar crystal of Example 1.
  • the full width at half maximum of the rocking curve of zinc oxide (006) of the single-crystal underlayer ZnO layer on the GaN / sapphire substrate of Example 5 was measured by the same method. Its full width at half maximum was 0.2 °. This is defined as the inclination of the c-axis of the underlying ZnO layer. The inclination of the c-axis of the underlying ZnO layer of Example 5 was also confirmed to be very small compared to the underlying ZnO layer of Example 1. From the results of XRD measurement (2 ⁇ / ⁇ scan) of the single-crystal underlayer ZnO layer on the GaN / sapphire substrate of Example 5, it was confirmed that zinc oxide was c-axis oriented.
  • FIG. 28 shows the XRD measurement result ( ⁇ scan) of the wavelength conversion element of Example 5.
  • in-plane crystal orientation can be evaluated by rotating the sample 360 ° in the in-plane direction. Evaluation was made with zinc oxide (202), GaN (202), and Al 2 O 3 (113).
  • zinc oxide 202
  • GaN 202
  • Al 2 O 3 113
  • the crystal orientation of zinc oxide is relative to the crystal orientation of the sapphire substrate and GaN thin film. This shows an epitaxial relationship, and it was confirmed that zinc oxide was epitaxially grown on the sapphire substrate and the GaN thin film.
  • FIG. 29 shows a cross-sectional SEM observation image in which the phosphor layer of Example 5 was broken.
  • FIG. 30 shows an enlarged image near the center of a cross-sectional SEM observation image obtained by breaking the phosphor layer of Example 5. Since the sample with the phosphor layer fractured is observed, the portion that appears to be a round recess as shown in the observation image shows the trace that the phosphor particles were buried, and the opposite surface of the fractured sample. It is thought that there is a phosphor. As shown in FIG. 29, zinc oxide rods grew on the surface of the phosphor layer, and irregularities were formed by the zinc oxide rods in a self-organizing manner. As is clear from FIGS.
  • FIG. 31 shows a cross-sectional TEM observation image of the phosphor layer of Example 5. As is clear from FIG. 31, it was confirmed that the internal voids of the phosphor particle layer could be densely filled with zinc oxide by using c-axis oriented single crystal zinc oxide for the underlying ZnO layer.
  • FIG. 32 shows a micrograph showing an electron diffraction pattern by TEM in the range shown in FIG. As shown in FIG. 32, a clear diffraction spot of zinc oxide was observed. From this, it was confirmed that the zinc oxide inside the phosphor layer of Example 5 was a single crystal.
  • Table 3 summarizes the results of the light emission intensities of the LED elements of Example 5 and Comparative Example 4.
  • the weight of the phosphor per unit area was adjusted for all samples.
  • the light emission intensity indicates the light emission intensity of other LED elements with the light emission intensity of the LED element of Comparative Example 4 being 100.
  • the emission intensity of Example 5 was 127, and the emission intensity of 1.27 times that of the LED element using the phosphor layer in which the phosphor particles were dispersed in the silicone resin of Comparative Example 4 was obtained.
  • Example 1 in which the inside of the phosphor layer was filled with zinc oxide of c-axis oriented columnar crystals, the emission intensity was 1.20 times that of Comparative Example 1.
  • Example 5 the emission intensity is higher in Example 5 in which the inside of the phosphor layer is filled with single crystal zinc oxide than in Example 1 in which the inside of the phosphor layer is filled with columnar crystal zinc oxide.
  • the improvement is great. This is because the inside of the phosphor layer could be densely filled with single crystal zinc oxide having no crystal grain boundaries. Therefore, light scattering in the phosphor layer could be suppressed as compared with the phosphor layer filled with columnar crystal zinc oxide.
  • FIG. 33 shows emission spectra of the LED elements of Example 5, Example 1, and Comparative Example 4.
  • Example 5 the inside of the phosphor particle layer could be densely filled with single crystal zinc oxide having no crystal grain boundary, so that the phosphor layer was more than in Example 1 and Comparative Example 4. Scattering of light was suppressed, and blue light from the LED chip could be efficiently extracted outside the LED element.
  • Example 6 A plurality of blue LED chips having an emission wavelength of 446 nm and the same emission intensity were prepared.
  • YAG Ce phosphor of Example 1
  • ⁇ -SiAlON Sialon
  • Eu phosphor having a refractive index of 1.9 and an average particle diameter of 6 ⁇ m was used in the same manner as in Example 1 to obtain fluorescence.
  • a phosphor layer in which voids inside the body particle layer were filled with zinc oxide was formed.
  • the phosphor particle layer had a thickness of about 30 ⁇ m, and the phosphor weight per unit area was 5.0 mg / cm 2 .
  • the LED element was completed by the same method as in Example 1, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 4.
  • Comparative Example 5 Similar to Example 6, using a blue LED chip having an emission wavelength of 446 nm and the same emission intensity, and a ⁇ -SiAlON: Eu phosphor having a refractive index of 1.9 and an average particle size of 6 ⁇ m, the same as in Comparative Example 1.
  • the LED element was completed by this method, and the emission intensity of the total radiant flux of the LED element was measured. The results are shown in Table 4.
  • the thickness of the fluorescent substance layer using a silicone resin was 180 micrometers, and the fluorescent substance weight per unit area computed similarly to the comparative example 1 was 5.0 mg / cm ⁇ 2 >.
  • FIG. 34 shows the XRD measurement result (2 ⁇ / ⁇ scan) of the wavelength conversion element of Example 6.
  • very large peaks of zinc oxide (002) and (004) were detected as compared to the peak of the phosphor and the diffraction peak other than the c-plane of zinc oxide. Thereby, it was confirmed that the zinc oxide of the phosphor layer of Example 6 has very strong c-axis orientation.
  • the full width at half maximum of the rocking curve of zinc oxide (002) of the wavelength conversion element of Example 6 was measured in the same manner as in Example 1.
  • the full width at half maximum of the rocking curve of zinc oxide (002) of Example 6 was 2.5 °.
  • FIG. 35 shows a cross-sectional SEM observation image near the substrate interface where the phosphor layer of Example 6 was broken. Since the sample with the phosphor layer broken is observed, the portion that appears to be a recess, as shown in the observation image, shows the trace that the phosphor particles were buried, on the opposite surface of the broken sample. It is thought that there is a phosphor. As can be seen from FIG. 35, the inside of the phosphor layer is densely filled with zinc oxide. In addition, crystal grain boundaries are seen in the vertical direction in the zinc oxide inside the phosphor layer. This indicates that zinc oxide has grown into columnar crystals by solution growth. From FIG.
  • Table 4 summarizes the results of the emission intensity of the LED elements of Example 6 and Comparative Example 5.
  • the weight of the phosphor per unit area was matched with two samples.
  • the light emission intensity indicates the light emission intensity of other LED elements with the light emission intensity of the LED element of Comparative Example 5 being 100.
  • the emission intensity of Example 6 was 122, and the emission intensity 1.22 times that of the LED element using the phosphor layer in which the phosphor particles were dispersed in the silicone resin of Comparative Example 5 was obtained. This is because the inside of the phosphor layer could be densely filled with columnar crystal zinc oxide with few c-axis oriented crystal grain boundaries. Therefore, light scattering at the phosphor layer could be suppressed.
  • FIG. 36 shows the emission spectra of the LED elements of Example 6 and Comparative Example 5.
  • Example 6 since the inside of the phosphor particle layer could be densely filled with zinc oxide of c-axis oriented columnar crystals, the light scattering in the phosphor layer was higher than that in Comparative Example 5. As a result, the excitation light from the LED chip could be efficiently extracted outside the LED element.
  • Example 7 A plurality of semiconductor laser chips having an emission wavelength of 446 nm and the same emission intensity were prepared.
  • a phosphor layer in which the voids inside the phosphor particle layer were filled with zinc oxide was formed.
  • the phosphor weight per unit area was 3.3 mg / cm 2 .
  • the phosphor layer was cut by dicing so that the phosphor layer fits the size of the opening 304 of the cap 303, thereby preparing an individual wavelength conversion element.
  • the semiconductor laser chip was attached to the block 302 using solder, and electrical connection was made between the semiconductor laser chip 310 and the lead 305 provided on the stem 301 using a bonding wire.
  • the semiconductor laser light emitting device of FIG. 13 was completed.
  • the completed semiconductor laser light emitting device was attached to an integrating sphere and driven with a constant current of 30 mA, and the emission intensity of the total radiant flux of the semiconductor laser light emitting device was measured. The results are shown in Table 5.
  • Comparative Example 6 In the same manner as in Comparative Example 1, a phosphor layer in which a phosphor was dispersed in a silicone resin was formed. Thereafter, as in Example 7, a semiconductor laser light emitting device was completed using a semiconductor laser chip chip having a light emission wavelength of 446 nm and the same light emission intensity, and the light emission intensity of the total radiant flux of the semiconductor laser light emitting device was measured. The results are shown in Table 5. In addition, the thickness of the fluorescent substance layer using a silicone resin was 90 micrometers, and the fluorescent substance weight per unit area computed similarly to the comparative example 1 was 3.3 mg / cm ⁇ 2 >.
  • Table 5 summarizes the results of the emission intensity of the semiconductor laser light emitting devices of Example 7 and Comparative Example 6.
  • the weight of the phosphor per unit area was matched with two samples.
  • the light emission intensity indicates the light emission intensity of another semiconductor laser light emitting device with the light emission intensity of the semiconductor laser light emitting device of Comparative Example 6 being 100.
  • the emission intensity of Example 7 was 119, which was 1.19 times higher than that of the semiconductor laser light emitting device using the phosphor layer in which the phosphor particles were dispersed in the silicone resin of Comparative Example 6. . This is because the inside of the phosphor layer could be densely filled with columnar crystal zinc oxide with few c-axis oriented crystal grain boundaries. Therefore, light scattering at the phosphor layer could be suppressed.
  • FIGS. 37 (a) and 37 (b) show the emission spectra of the semiconductor laser light emitting devices of Example 7 and Comparative Example 6, respectively.
  • FIG. 37A is an enlarged view of the vicinity of the excitation light from the semiconductor laser chip
  • FIG. 37B is an enlarged view of the vicinity of the fluorescence excited by the excitation light.
  • the inside of the phosphor particle layer could be densely filled with zinc oxide of c-axis-oriented columnar crystals, so that it was more fluorescent than Comparative Example 6. Light scattering at the body layer was suppressed, and excitation light from the semiconductor laser chip could be efficiently extracted outside the semiconductor laser light emitting device.
  • Example 8 Using a ⁇ -SiAlON: Eu phosphor having a refractive index of 1.9 and an average particle diameter of 6 ⁇ m, a phosphor layer in which the voids inside the phosphor particle layer are filled with zinc oxide in the same manner as in Example 6. Formed. The phosphor weight per unit area was 5.0 mg / cm 2 . Further, the semiconductor laser light emitting device was completed by the same method as in Example 7, and the emission intensity of the total radiant flux of the semiconductor laser light emitting device was measured. The results are shown in Table 6.
  • Table 6 summarizes the results of the emission intensity of the semiconductor laser light emitting devices of Example 8 and Comparative Example 7.
  • the weight of the phosphor per unit area was matched with two samples.
  • the light emission intensity indicates the light emission intensity of another semiconductor laser light emitting device with the light emission intensity of the semiconductor laser light emitting device of Comparative Example 7 as 100.
  • the emission intensity of Example 8 was 141, which was 1.41 times higher than that of the semiconductor laser light emitting device using the phosphor layer in which the phosphor particles were dispersed in the silicone resin of Comparative Example 7. . This is because the inside of the phosphor layer could be densely filled with columnar crystal zinc oxide with few c-axis oriented crystal grain boundaries. Therefore, light scattering at the phosphor layer could be suppressed.
  • FIGS. 38A and 38B show emission spectra of the semiconductor laser light emitting devices of Example 8 and Comparative Example 7, respectively.
  • FIG. 38A is an enlarged view of the vicinity of the excitation light from the semiconductor laser chip
  • FIG. 38B is an enlarged view of the vicinity of the fluorescence excited by the excitation light.
  • the fluorescence was higher than that in Comparative Example 7. Light scattering at the body layer was suppressed, and excitation light from the semiconductor laser chip could be efficiently extracted outside the semiconductor laser light emitting device.
  • Example 9 A plurality of blue LED chips having an emission wavelength of 430 nm and the same emission intensity were prepared.
  • the LED element was completed by the same method as in Example 1, and the emission intensity of the total radiant flux of the LED element was measured.
  • the phosphor weight per unit area was 3.3 mg / cm 2 . The results are shown in Table 7.
  • Example 8 As in Example 9, using a blue LED chip with an emission wavelength of 430 nm and the same emission intensity, the LED element was completed in the same manner as in Comparative Example 1, and the emission intensity of the total radiant flux of the LED element was measured. . The results are shown in Table 7. In addition, the thickness of the fluorescent substance layer using a silicone resin was 90 micrometers, and the fluorescent substance weight per unit area computed similarly to the comparative example 1 was 3.3 mg / cm ⁇ 2 >. In Table 7, the result about the emitted light intensity of the LED element of Example 9 and Comparative Example 8 is shown collectively.
  • the weight of the phosphor per unit area was matched with two samples.
  • the light emission intensity indicates the light emission intensity of other LED elements with the light emission intensity of the LED element of Comparative Example 8 being 100.
  • the emission intensity of Example 9 was 112, which was 1.12 times higher than that of the LED element using the phosphor layer in which the phosphor particles were dispersed in the silicone resin of Comparative Example 8. This is because the inside of the phosphor layer could be densely filled with columnar crystal zinc oxide with few c-axis oriented crystal grain boundaries. Therefore, light scattering at the phosphor layer could be suppressed.
  • Example 10 A plurality of blue LED chips having an emission wavelength of 430 nm and the same emission intensity were prepared. Using a ⁇ -SiAlON: Eu phosphor having a refractive index of 1.9 and an average particle diameter of 6 ⁇ m, an LED element is completed in the same manner as in Example 6, and the emission intensity of the total radiant flux of the LED element is measured. did. The phosphor weight per unit area was 5.0 mg / cm 2 . The results are shown in Table 8.
  • Comparative Example 9 Similar to Example 10, using a blue LED chip having an emission wavelength of 430 nm and the same emission intensity, a ⁇ -SiAlON: Eu phosphor having a refractive index of 1.9 and an average particle size of 6 ⁇ m, the same as in Comparative Example 5
  • the LED element was completed by the method, and the luminescence intensity of the total radiant flux of the LED element was measured. The results are shown in Table 8.
  • the thickness of the fluorescent substance layer using a silicone resin was 180 micrometers, and the fluorescent substance weight per unit area computed similarly to the comparative example 1 was 5.0 mg / cm ⁇ 2 >.
  • Table 8 summarizes the results of the emission intensity of the LED elements of Example 10 and Comparative Example 9.
  • the weight of the phosphor per unit area was matched with two samples.
  • the light emission intensity indicates the light emission intensity of other LED elements with the light emission intensity of the LED element of Comparative Example 9 being 100.
  • the emission intensity of Example 10 was 115, which was 1.15 times higher than that of the LED element using the phosphor layer in which the phosphor particles were dispersed in the silicone resin of Comparative Example 9. This is because the inside of the phosphor layer could be densely filled with columnar crystal zinc oxide with few c-axis oriented crystal grain boundaries. Therefore, light scattering at the phosphor layer could be suppressed.
  • a glass substrate on which the same base ZnO layer as in Example 1 was formed was formed by crystal growth of only the zinc oxide film by the same solution growth method as in Example 1 without forming the phosphor particle layer.
  • the thickness of the zinc oxide film was about 20 ⁇ m.
  • the transmittance of the zinc oxide film was measured using a glass substrate on which no zinc oxide film was formed as a reference in the wavelength range of 330 nm to 800 nm. Instead of the glass substrate, an underlying ZnO layer was formed on the sapphire substrate by the same method as in Example 1, and a zinc oxide film having a thickness of about 20 ⁇ m was formed by the same solution growth method as in Example 1. Similarly, the transmittance of the zinc oxide film on the sapphire substrate was measured using the sapphire substrate as a reference.
  • FIG. 39 shows transmittance spectra of a zinc oxide film on a glass substrate and a sapphire substrate, respectively.
  • the transmittance of the zinc oxide film on the glass substrate was 90%, and the transmittance of the zinc oxide film on the sapphire substrate was 95%.
  • the transmittance of the zinc oxide film on the glass substrate was 88%, and the transmittance of the zinc oxide film on the sapphire substrate was 94%.
  • the transmittance of the zinc oxide film on the glass substrate was 87%, and the transmittance of the zinc oxide film on the sapphire substrate was 92%.
  • the transmittance of the zinc oxide film on the glass substrate was 72%, and the transmittance of the zinc oxide film on the sapphire substrate was 75%.
  • the transmittance of the zinc oxide film formed by solution growth is very high, and the transmittance is 72% or more in the wavelength range of 400 nm to 420 nm of blue-violet light, so that the fluorescence of the present invention can be obtained even when the excitation light is blue-violet light.
  • the body layer can be excited.
  • the transmittance is 87% or more, so that the blue light can excite the phosphor layer of the present invention more efficiently than the blue-violet light.
  • the phosphor layer in which the voids inside the phosphor particle layer are filled with columnar crystal zinc oxide having a c-axis orientation and a c-axis inclination of 4 ° or less Light scattering in the phosphor layer was suppressed, and the LED element using the wavelength conversion element including the phosphor layer achieved high emission intensity.
  • the phosphor layer in which the voids inside the phosphor particle layer are filled with single crystal zinc oxide has no crystal grain boundary, and light in the phosphor layer is further increased than the phosphor layer filled with columnar crystal zinc oxide. Scattering is suppressed, and the LED element using the wavelength conversion element including the phosphor layer achieves higher emission intensity.
  • the phosphor layer filled with columnar crystal zinc oxide having a c-axis orientation and a c-axis inclination of 4 ° or less in the voids inside the phosphor particle layer suppresses light scattering in the phosphor layer.
  • the semiconductor laser light emitting device using the wavelength conversion element including the phosphor layer achieved high emission intensity.
  • the voids inside the phosphor particle layer have a columnar shape with c-axis orientation and c-axis inclination of 4 ° or less.
  • the phosphor layer filled with crystalline zinc oxide suppresses light scattering in the phosphor layer, and the LED element and the semiconductor laser light emitting device using the wavelength conversion element including the phosphor layer achieve high emission intensity. .
  • the wavelength conversion element, the LED element, and the semiconductor laser light emitting device including the phosphor layer disclosed in the present application are incorporated into lighting, automotive HD (Head Light), automotive DRL (Daytime Running Light), a display, or a projector.
  • the color wheel according to the present invention is incorporated in a projector.
  • Wavelength conversion element 7 formed of c-axis oriented zinc oxide, 7 'Phosphor layers 7a, 7b Phosphor Main surface 42 of layer Single crystal zinc oxide thin film 45 Single crystal zinc oxide 46
  • Wavelength conversion element 50 formed of single crystal zinc oxide Wavelength conversion element 60
  • Support body 62 LED chip 62a
  • Semiconductor light emitting element 73 Light emitting layer 74 of semiconductor light emitting element Crystal separation layer 75
  • Wavelength converting element 95 formed of c-axis oriented zinc oxide Wavelength conversion element 301 made of crystal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 本願に開示された波長変換素子は、複数の蛍光体粒子と、前記複数の蛍光体粒子の間に位置する酸化亜鉛によって構成されるマトリックスとを含む蛍光体層を備え、酸化亜鉛はc軸配向の柱状結晶または単結晶である。

Description

波長変換素子およびその製造方法ならびに波長変換素子を用いたLED素子および半導体レーザ発光装置
 本願は、蛍光体粒子を含む波長変換素子およびその製造方法、ならびに、それを用いたLED素子、半導体レーザ発光装置に関する。
 近年、LED(Light Emitting Diode)が照明に用いられるようになってきており、より高輝度、長寿命のLEDの開発が望まれている。従来、白色LED用の蛍光体層を含む波長変換素子は、蛍光体粒子をシリコーン樹脂などと混合した樹脂混合物を硬化させて形成されてきた。しかし、近年実用化されている高輝度LEDチップに大電流を流すと、LEDチップから発生する熱や高輝度の紫外線によって、シリコーン樹脂が劣化しやすい。このため、蛍光体粒子が分散された蛍光体層を形成するマトリックスとして、熱や紫外線で劣化しやすいシリコーン樹脂などの有機物ではなく、熱や紫外線で劣化しにくい無機物のマトリックスの実現が求められている。
 特許文献1は、シリコーン樹脂の耐熱性および耐紫外線性を向上させるために、耐熱性材料として酸化セリウムを担持した蛍光体粒子をシリコーン樹脂に分散させた蛍光体層を開示している。
 特許文献2は、LED用の蛍光体、例えばYAG(イットリウム・アルミニウム・ガーネット)蛍光体、TAG(テルビウム・アルミニウム・ガーネット)蛍光体は、1.8または、それ以上の高い屈折率を有していること、LEDにおいて、通常、蛍光体は、屈折率が1.4のシリコーン樹脂に埋め込まれて蛍光体層を構成しているため、蛍光体の屈折率(1.8)とシリコーン樹脂の屈折率(1.4)との間の屈折率の差(0.4)により、蛍光体層において、かなりの割合の光が、蛍光体と樹脂との界面で散乱されることを記載している。
 特許文献3は、電気泳動法を用いて、蛍光体粒子を分散させた溶液から、基板上に蛍光体粒子層を形成した後、蛍光体粒子層の内部の空隙に、ゾルゲル法を用いて、無機物のマトリックスとなる透光性物質を充填する技術を開示している。透光性物質として、好ましくは、ガラスであり、ガラス状態となり、かつ、透光性のある物質であると開示している。また、蛍光体粒子と無機マトリックスとの組み合わせとして、Ca-αSiAlON(サイアロン):Eu蛍光体(屈折率1.9)とシリカ(屈折率1.45)、YAG蛍光体(屈折率1.8)と酸化亜鉛(屈折率1.95)等の例を開示している。
 特許文献4は、蛍光体層の内部に、蛍光体粒子や、マトリックスとなる透光性材料が存在しない空洞が生じると、この空洞の存在によって、LEDからの光や蛍光体からの光が減衰することを開示している。
 特許文献5は、CaAlSiN3(カズン):Eu2+の組成を有する蛍光体の屈折率が2.0であり、CaSc24:Ce3+の組成を有する蛍光体の屈折率が1.9であることを開示している。
 非特許文献1は、LED蛍光体粒子として、一般的に用いられているSiAlON(サイアロン)が、組成によって、1.855から1.897の範囲の屈折率を有することを開示している。
国際公開第2011/111293号 特表2011-503266号公報(特に段落番号0002) 特開2011-168627号公報(特に段落番号0028、段落番号0032) 特開2008-66365号公報(特に段落番号0003) 特開2011-111506号公報(特に段落番号0027)
Hiroyo Segawa et.al., Opt. Mater. 33(2010) 170 Mingsong Wang et.al., Phys. Stat. Sol. (a) 203/10 (2006) 2418
 従来の発光素子用の波長変換素子には、より高い光出力および高い耐熱性や耐紫外線性が求められていた。本願の限定的ではないある例示的な実施形態は、高い光出力および高い耐熱性や耐紫外線性を備えた波長変換素子およびその製造方法、ならびに、それを用いたLED素子、半導体レーザ発光装置を提供する。
 本発明の1つの態様の波長変換素子は、複数の蛍光体粒子と、前記複数の蛍光体粒子の間に位置し、c軸に配向した酸化亜鉛または単結晶である酸化亜鉛によって構成されたマトリックスとを含む。
 本願に開示された技術によれば、高い屈折率を有し、耐熱性や耐紫外線性の高い無機マトリックスである酸化亜鉛を用いることで、蛍光体層での光散乱が減少し、光出力が高いLED素子、半導体レーザ発光装置および蛍光体層を実現することができる。
実施の形態1における波長変換素子の断面図である。 (a)から(c)は、実施の形態1における波長変換素子の製造方法の工程順の断面図である。 溶液成長法を用いた酸化亜鉛の結晶成長過程を示す断面図である。 実施の形態2における波長変換素子の断面図である。 (a)から(c)は、実施の形態2における波長変換素子の製造方法の工程順の断面図である。 (a)および(b)は、実施の形態3における波長変換素子の断面図および2次元周期構造の平面図である。 (a)から(g)は、実施の形態3における波長変換素子の製造方法の工程順の断面図である。 (a)および(b)は、実施の形態3における波長変換素子の2次元周期構造の他の形態を示す平面図である。 (a)および(b)は、実施の形態4における波長変換素子およびLED素子の断面図である。 (a)および(b)は、実施の形態5におけるLED素子の断面図である。 (a)および(b)は、実施の形態5におけるLED素子の他の断面図である。 (a)および(b)は、実施の形態6におけるLED素子の断面図である。 実施の形態7における半導体レーザ発光装置の断面図である。 (a)は、実施の形態8におけるカラーホイールの断面図であり、(b)は、実施の形態7におけるカラーホイールの平面図である。 実施の形態8におけるプロジェクタ装置の光源部の構成を示す図である。 (a)および(b)は、実施の形態9における車両およびヘッドライトの構成を示す図である。 実施例1における波長変換素子のXRD(X線回折)測定結果(2θ/ωスキャン)を示す図である。 比較例3における波長変換素子のXRD測定結果(2θ/ωスキャン)を示す図である。 実施例1における蛍光体層の断面SEM(走査型電子顕微鏡)観察像を示す図である。 (a)は、実施例1における蛍光体層の基板界面付近の断面SEM観察像を示す図であり、(b)は、実施例1における蛍光体層の中央付近の断面SEM観察像を示す図である。 実施例1と比較例1におけるLED素子の発光スペクトルを測定した結果を示す図である。 実施例1における波長変換素子のXRD測定結果(ωスキャン)を示す図である。 集束イオンビーム(FIB)を用いて、蛍光体層の断面を加工したSEM観察像であって、(a)は、実施例2における蛍光体層を、(b)は、実施例1における蛍光体層を示す図である。 溶液成長法を用いた蛍光体粒子層の内部での酸化亜鉛の結晶成長過程を示す断面図であって、(a)は、蛍光体層の酸化亜鉛のc軸の傾きが大きい例を示し、(b)は、蛍光体層の酸化亜鉛のc軸の傾きが小さい例を示す図である。 実施例5における波長変換素子のXRD測定結果(2θ/ωスキャン)を示す図である。 実施例5における波長変換素子の高角度側のXRD測定結果(2θ/ωスキャン)を示す図である。 実施例5における波長変換素子のXRD測定結果(ωスキャン)を示す図である。 実施例5における波長変換素子のXRD測定結果(Φスキャン)を示す図である。 実施例5における蛍光体層の断面SEM観察像を示す図である。 実施例5における蛍光体層の中央付近の断面SEM観察像を示す図である。 実施例5における蛍光体層の断面TEM(透過型電子顕微鏡)観察像を示す図である。 図31に示した範囲におけるTEMによる電子線回折像を示す図である。 実施例5、実施例1と比較例4におけるLED素子の発光スペクトルを測定した結果を示す図である。 実施例6における波長変換素子のXRD測定結果(2θ/ωスキャン)を示す図である。 実施例6における蛍光体層の基板界面付近の断面SEM観察像を示す図である。 実施例6と比較例5におけるLED素子の発光スペクトルを測定した結果示す図である。 実施例7と比較例6における半導体レーザ発光装置の発光スペクトルを測定した結果を示す図であって、(a)は半導体レーザチップからの励起光付近の拡大図であり、(b)は励起光によって励起された蛍光付近の拡大図である。 実施例8と比較例7における半導体レーザ発光装置の発光スペクトルを測定した結果を示す図であって、(a)は、半導体レーザチップからの励起光付近の拡大図であり、(b)は、励起光によって励起された蛍光付近の拡大図である。 ガラス基板上、サファイア基板上の酸化亜鉛膜の透過スペクトルを測定した結果を示す図である。
 まず、本発明者らが見出した課題を詳細に説明する。
 蛍光体粒子と、蛍光体粒子を分散させるシリコーン樹脂などのマトリックスとから構成される蛍光体層では、LED用に一般的に用いられている蛍光体の屈折率(1.8~2.0)と、マトリックスなるシリコーン樹脂の屈折率(1.4)との間の屈折率差(0.4~0.6)によって、蛍光体粒子とマトリックスとの間の界面で光が散乱される。このため、光を効率良く外部に取り出すことができない。
 また、耐熱性や耐紫外線性に優れた蛍光体層を実現するために、蛍光体層を形成するマトリックスとして、耐熱性や耐紫外線性が低いシリコーン樹脂などの有機物のマトリックスではなく、耐熱性や耐紫外線性が高い無機物のマトリックスとして、ガラスを用いる方法が提案されている(例えば、特許文献3参照)。
 ガラスは、ガラス状態(アモルファス)であるために、結晶粒界がない。そのため無機マトリックスとして、ガラスを用いた場合、蛍光体層中の無機マトリックスの結晶粒界による光散乱が発生しない。さらに、ガラスは、結晶ではなくアモルファス材料であるため、低温加熱で溶融し自由に形状が変えられる低融点ガラスや、常温では液体状態で加熱硬化できる液状のガラスなど、無機のマトリックスとしてガラスを用いる場合は、その形状の自由度が高い。
 しかしながら、蛍光体とマトリックスとの間の屈折率差を小さくするために、無機のマトリックスとして、ガラス(屈折率1.45)よりも高い屈折率(2.0)を有する酸化亜鉛を用いる場合、酸化亜鉛は結晶性であるために、結晶粒界が形成される。例えば、ゾルゲル法によって形成された酸化亜鉛は微結晶の集合体となり、ランダムな配向の多結晶である(例えば、非特許文献2参照)。蛍光体層の内部に、ランダムな配向の多結晶が形成されると、結晶粒界において、LEDチップからの光、LEDチップからの光によって励起された蛍光体からの光が散乱される。以降、このような散乱を蛍光体層での光散乱とよぶ。蛍光体層での光散乱が生じると、蛍光体層で散乱された光がLEDチップや、LEDチップを固定するパッケージなどに戻り、吸収されて、LED素子から外部へ取り出す割合が低下するという大きな課題が生じる。
 さらに、蛍光体層の内部にボイドが残存する場合、ボイドの中は、通常空気で満たされる。空気の屈折率は、1.0であり、LED用に一般的に用いられている蛍光体の屈折率(1.8~2.0)や、シリコーン樹脂の屈折率(1.4)と大きく異なる。そのため、ボイドと蛍光体との間の屈折率差、およびボイドとマトリックスとの間の屈折率差によって、蛍光体層の内部で光が散乱されるという課題も生じる。
 シリコーン樹脂を蛍光体層のマトリックスとして用いる場合、シリコーン樹脂中に蛍光体粒子を予め分散させた混合物を、LEDチップ上にポッティングし、加熱によって混合物を硬化させることによって蛍光体層を形成できる。この場合、加熱前は混合物の変形が可能であるため、脱泡などの操作を充分に行った上で、蛍光体層を形成することにより、蛍光体層の内部にボイドが残存するのを抑制できる。
 これに対し、成形等によって形状を自由に制御し難い無機物のマトリックスを蛍光体層として用いる場合、予め蛍光体粒子からなる蛍光体粒子層を形成する。次に、蛍光体粒子層の内部の空隙に、無機マトリックスの原料(あるいは前駆体)を溶媒に溶解させた原料溶液を充填し、原料溶液から無機マトリックスを形成する。
 この場合、原料溶液中の溶媒が揮発することにより、無機マトリックスが形成される。このため、(1)体積あたりの原料溶液から無機マトリックスへの変換割合が小さいと、蛍光体粒子層の空隙に充填した原料溶液の体積よりも、蛍光体粒子層の空隙内で変換された無機マトリックスの体積の方が小さくなるため、蛍光体層の内部にボイドが発生しやすい。(2)体積あたりの原料溶液から無機マトリックスへの変換割合を大きくするために、原料(あるいは前駆体)の濃度を上げると、原料溶液の粘度が高くなり、蛍光体粒子層の内部の空隙に、原料溶液が含浸するのが困難になる。その結果、蛍光体粒子層の内部の空隙に原料溶液が到達しなかった部分が生じ、蛍光体層の内部にボイドが発生しやすくなる。
 酸化亜鉛は、電子ビーム蒸着法、反応性プラズマ蒸着法、スパッタリング法、パルスレーザ堆積法のような真空成膜法によっても形成することができる。しかし、蛍光体層を形成するために、蛍光体粒子層の内部の空隙に真空成膜法による酸化亜鉛を到達させることは困難である。
 このように、蛍光体層の無機マトリックスとして、高い屈折率を有するが、形状の自由度が低く、かつ結晶性の酸化亜鉛を用いることと、蛍光体層の内部に結晶粒界やボイドを形成しないこととの間に矛盾が存在する。
 本願発明者らはこのような課題に鑑み新規な波長変換素子及びその製造方法ならびに波長変換素子を用いたLED素子、半導体レーザ装置を想到した。
 本発明の1つの態様の波長変換素子は、基板上に酸化亜鉛の薄膜(下地ZnO層)を形成し、その下地ZnO層上に、蛍光体粒子で構成された蛍光体粒子層を形成し、下地ZnO層から、マトリックスとしてc軸配向に結晶成長した酸化亜鉛で、蛍光体粒子層の内部の空隙を充填する。
 マトリックスを構成する酸化亜鉛は、ウルツ鉱型の結晶構造を有し、c軸配向の酸化亜鉛とは、基板に対し、平行な面がc面であることを意味する。また本発明では、基板とは、ガラス基板、サファイア基板、窒化ガリウム(GaN)基板などのいわゆる基板の他に、半導体発光素子、半導体発光素子の基板、またそれらに形成した薄膜表面、蛍光体層の主面などを含む。
 c軸配向に結晶成長した酸化亜鉛は、柱状結晶となり、c軸方向の結晶粒界は少ない。さらに、基板に形成されたc軸配向の下地ZnO層からc軸方向に結晶成長しているため、基板に垂直であるLEDチップからの光の出射方向に、結晶粒界の少ない柱状結晶が配置できる。そのため蛍光体層での光散乱を抑制できる。c軸配向の柱状結晶とは、c軸方向の酸化亜鉛成長が、a軸方向の酸化亜鉛成長よりも速く、基板に対し、縦長の酸化亜鉛結晶子が形成されていることを意味する。結晶子とは、多結晶体の中で単結晶と見なせる最小の領域を意味する。
 また、下地ZnO層に、エピタキシャル成長した単結晶の酸化亜鉛薄膜を用いることによって、蛍光体粒子層内部の空隙を、下地ZnO層からエピタキシャル成長した単結晶の酸化亜鉛で構成されるマトリックスで充填することができる。エピタキシャル成長した単結晶の酸化亜鉛は、結晶粒界が非常に少ないため、酸化亜鉛の結晶粒界による光散乱が発生しない。
 蛍光体粒子層の内部の空間を、c軸配向の酸化亜鉛で構成されるマトリックスによって充填するプロセスには、溶液成長法を用いる。溶液成長法では、原料溶液としてZnイオンを含有する溶液を用いて、下地ZnO層を酸化亜鉛の結晶成長の核となる種結晶として、c軸配向の酸化亜鉛を成長できる。原料溶液が希薄な水溶液であるために粘度が低く、蛍光体粒子層の内部の空間にまで、原料溶液が容易に到達できる。さらに蛍光体粒子層を形成した基板を、原料溶液に浸漬させた状態で酸化亜鉛の結晶成長反応を行うことが可能であり、かつ、酸化亜鉛を成長させる原料がZnイオンであるため、酸化亜鉛の結晶成長でZnイオンが消費されても、蛍光体粒子層の外部の原料溶液から、蛍光体粒子層の内部まで、Znイオンは容易に拡散し、到達する。そのため、原料不足によって、蛍光体粒子層の内部の空隙にボイドが発生するのを抑制できる。さらに、以下において、説明するように、溶液成長法では、蛍光体の表面からではなく、下地ZnO層から酸化亜鉛が結晶成長するため、蛍光体層の内部にボイドを閉じ込めることがなく、蛍光体層の内部のボイドを抑制することができる。
 本発明に係る波長変換素子およびその製造方法、波長変換素子を用いたLED素子および半導体レーザ発光装置の一実施形態の概要は以下の通りである。
 本発明の一実施形態にかかる波長変換素子は、複数の蛍光体粒子と、前記複数の蛍光体粒子の間に位置し、c軸に配向した酸化亜鉛または単結晶である酸化亜鉛によって構成されたマトリックスとを含む。
 前記波長変換素子は、前記複数の蛍光体粒子および前記マトリックスを含む蛍光体層を備えていてもよい。
 前記酸化亜鉛のc軸のX線ロッキングカーブ法による半値幅は4°以下であってもよい。
 前記波長変換素子は、前記蛍光体層に接し、酸化亜鉛で構成された薄膜をさらに備えていてもよい。
 前記波長変換素子は、前記薄膜に接する基板をさらに備え、前記薄膜は前記蛍光体層と前記基板との間に位置していてもよい。
 前記波長変換素子は、前記蛍光体層に接する基板をさらに備えていてもよい。
 前記基板は、ガラス、石英、酸化ケイ素、サファイア、窒化ガリウムおよび酸化亜鉛からなる群から選ばれる1つによって構成されていてもよい。
 前記酸化亜鉛は柱状結晶であってもよい。
 前記単結晶の酸化亜鉛がc軸配向であってもよい。
 前記蛍光体粒子が、YAG(イットリウム・アルミニウム・ガーネット)蛍光体およびβ-SiAlON(サイアロン)からなる群から選ばれる少なくとも一方を含んでいてもよい。
 本発明の一実施形態にかかるLED素子は、励起光を放射する半導体発光素子と、前記半導体発光素子から放射される前記励起光が入射する、上記いずれか記載の波長変換素子とを備える。
 前記波長変換素子は、前記半導体発光素子上に直接形成されていてもよい。
 前記LED素子は、前記波長変換素子と前記半導体発光素子との間に位置する結晶分離層をさらに備えていてもよい。
 前記結晶分離層は二酸化ケイ素を主成分とするアモルファス材料によって構成されていてもよい。
 前記結晶分離層はプラズマ化学気相成長法によって形成されていてもよい。
 前記半導体発光素子は、n型GaN層と、p型GaN層と、前記n型GaN層および前記p型GaN層に挟まれたInGaNからなる発光層とを含んでいてもよい。
 前記励起光は青色または青紫の波長帯域の光であってもよい。
 前記複数の蛍光体粒子は、青色蛍光体および黄色蛍光体を含み、前記励起光は青紫の波長帯域の光であり、前記励起光が前記青色蛍光体を励起することにより、前記青色蛍光体が青色光を出射し、前記励起光または前記青色光が前記黄色蛍光体を励起することにより、前記黄色蛍光体が黄色光を出射してもよい。
 本発明の一実施形態にかかる半導体レーザ発光装置は、励起光を放射する半導体レーザチップと、前記半導体レーザチップから放射される前記励起光が入射する、上記いずれかに記載の波長変換素子とを備える。
 前記励起光は青色または青紫の波長帯域の光であってもよい。
 前記複数の蛍光体粒子は、青色蛍光体および黄色蛍光体を含み、前記励起光は青紫の波長帯域の光であり、前記励起光が前記青色蛍光体を励起することにより、前記青色蛍光体が青色光を出射し、前記励起光または前記青色光が前記黄色蛍光体を励起することにより、前記黄色蛍光体が黄色光を出射してもよい。
 本発明の一実施形態にかかるヘッドライトまたは車両は、上記いずれかに記載の半導体レーザ発光装置と、前記半導体レーザ発光装置に電力を供給する電力供給源とを備える。
 本発明の一実施形態にかかる波長変換素子の製造方法は、c軸配向した酸化亜鉛の薄膜上に、蛍光体粒子からなる蛍光体粒子層を形成する工程(a)と、溶液成長法を用いて、前記蛍光体粒子層の内部の空隙を酸化亜鉛で充填し、蛍光体層を形成する工程(b)とを含む。
 前記酸化亜鉛の薄膜のc軸のX線ロッキングカーブ法による半値幅が4.5°以下であってもよい。
 前記酸化亜鉛の薄膜が、エピタキシャル成長した単結晶であってもよい。
 前記蛍光体粒子層を形成する工程が、電気泳動法であってもよい。
 前記蛍光体粒子が、YAG(イットリウム・アルミニウム・ガーネット)蛍光体およびβ-SiAlON(サイアロン)からなる群から選ばれる少なくとも一方を含んでいてもよい。
 本構成によって、蛍光体層での光散乱が小さい波長変換素子、その波長変換素子を用いた光出力が高いLED素子、半導体レーザ発光装置を提供できる。
 以下、図面を参照しながら、本発明の実施の形態を説明する。
 (実施の形態1)
 図1は、実施の形態1の波長変換素子の断面図である。
 本実施形態の波長変換素子6は、複数の蛍光体粒子3と、複数の蛍光体粒子3の間に位置するマトリックス5とを含む蛍光体層7を備える。波長変換素子6は、入射した光のうち、少なくとも一部の光を、入射した際の光の波長帯域とは異なる波長帯域の光に変換して出射する。
 複数の蛍光体粒子3には、発光素子に一般に用いられる種々の励起波長、出射光波長および粒子径を有する蛍光体を用いることができる。例えば、YAG(イットリウム・アルミニウム・ガーネット)、β-SiAlON(サイアロン)などを用いることができる。特に、蛍光体を励起する波長および出射する光の波長は、波長変換素子6の用途に応じて任意に選択し得る。また、これらの波長に応じて、YAGやβ-SiAlONにドープされる元素が選択され得る。
 特に、蛍光体層7を励起する励起光の波長として、青紫光や青色光を選択する場合、蛍光体を効率良く励起できるため、高い出力のLED素子、高い出力の半導体レーザ発光装置等の発光素子や発光装置を実現できる。
 発光素子から放出される青紫光で、青色蛍光体を励起し、発生した青色光を用いて、波長変換素子6の蛍光体粒子3を励起してもよい。このため、波長変換素子6に入射する青色光には、青色蛍光体からの青色光が含まれる。
 蛍光体粒子3として、青色光によって励起される黄色蛍光体を用いた場合は、波長変換素子6から出射する光は、励起光の青色光と蛍光体からの黄色光が合成された白色光となる。ここで、波長400nmから420nmの光を青紫光、波長420nmから470nmの光を青色光と定義する。また、波長500nmから700nmの光を黄色光と定義する。青色蛍光体とは、青紫光で励起され、青色光を出射する蛍光体と定義する。また、黄色蛍光体とは、青色光または青紫光によって励起され、黄色光を出射する蛍光体と定義する。
 蛍光体粒子3として、青紫光によって励起される青色蛍光体と、青色光によって励起される黄色蛍光体を用いてもよい。この場合にも波長変換素子6は、蛍光体からの青色光と黄色光が合成された白色光を出射する。あるいは、蛍光体粒子3として、青紫光によって励起される青色蛍光体と、青紫光によって励起される黄色蛍光体を用いてもよい。この場合にも波長変換素子6は、蛍光体からの青色光と黄色光が合成された白色光を出射する。
 さらに、LED素子や半導体レーザ発光装置の演色性を高めるために、緑色光を発生する蛍光体や、赤色光を発生する蛍光体を合わせて用いても良い。マトリックス5は、c軸に配向した酸化亜鉛によって構成されている。より詳細には、c軸に配向した酸化亜鉛は、ウルツ鉱の結晶構造を有する柱状結晶、または、単結晶である。図1において模式的な線で示しているように、マトリックス5の酸化亜鉛のc軸は、基板1の法線方向に平行または、基板1の法線方向に対するc軸の傾きが4°以下である。ここで、「c軸の傾きが4°以下」とは、c軸の傾きの分布が4°以下という意味で、すべての結晶子の傾きが4°以下とは限らない。「c軸の傾き」は、c軸のX線ロッキングカーブ法による半値幅で評価できる。上述したようにc軸配向の柱状結晶は、c軸方向に結晶粒界が少ない。
 本実施形態では、蛍光体層7において、蛍光体粒子3は互いに接している。マトリックス5は、蛍光体粒子3の間の空隙を埋めるように充填されており、マトリックス5と蛍光体粒子3とは接している。つまり、蛍光体粒子3は、隣接する蛍光体粒子3と互いに接しているとともに、マトリックス5とも接している。また、蛍光体層7において、空隙は実質的には存在していない。
 c軸に配向した酸化亜鉛によって構成されるマトリックス5は、酸化亜鉛の結晶成長性を利用して形成される。このため、波長変換素子6は、基板1と薄膜2とをさらに備えていてもよい。薄膜2は、蛍光体層7の例えば主面7aと接している。また、基板1は、薄膜2と接しており、薄膜2は基板1と蛍光体層7との間に位置している。
 基板1は、上述したように、ガラス、石英、酸化ケイ素、サファイア、窒化ガリウムおよび酸化亜鉛からなる群から選ばれる1つによって構成されている。サファイアまたは窒化ガリウムから構成される基板1を用いる場合、基板1の主面はこれらの結晶のc面であってよい。薄膜2は、単結晶の酸化亜鉛、または、多結晶の酸化亜鉛によって構成される。
 薄膜2が、マトリックス5を構成する酸化亜鉛の結晶成長の核となる種結晶として機能するため、上述したc軸に配向した酸化亜鉛のマトリックス5を形成することができる。
 基板1および薄膜2は、マトリックス5の形成後除去してもよく、波長変換素子6は、基板1または基板1および薄膜2の両方を含んでいなくてもよい。また、基板1上に直接c軸に配向した酸化亜鉛を形成することが可能であれば、波長変換素子6は、基板1を含み、薄膜2を含んでいなくてもよい。基板1を除去した場合のc軸配向の酸化亜鉛とは、マトリックス5の酸化亜鉛のc軸は、蛍光体層7の主面7aまたは7bの法線方向に平行、または、蛍光体層7の主面7aまたは7bの法線方向に対するc軸の傾きが4°以下である。詳細には、c軸のX線ロッキングカーブ法による半値幅が4°以下であれば、c軸方向に結晶粒界が少ない酸化亜鉛を形成できる。
 本実施形態の波長変換素子によれば、蛍光体粒子の間を酸化亜鉛によって構成されるマトリックスで充填しているため、高い耐熱性を有する。また、酸化亜鉛の屈折率が大きいため、蛍光体粒子表面において、波長変換素子に入射する光の散乱を抑制し、光を効率良く外部に取り出すことができる。
 以下、図面を参照しながら、本実施形態の波長変換素子6の製造方法を説明する。
 図2(a)、(b)、(c)は、実施の形態1に係る方法の工程順の断面図を示す。
 実施の形態1においては、蛍光体粒子3で構成される蛍光体粒子層4の内部の空隙を、酸化亜鉛の薄膜2から結晶成長した、c軸配向の酸化亜鉛から構成されるマトリックス5で充填する。
 まず、図2(a)に示すように、基板1上に、酸化亜鉛の薄膜2を形成する。基板1としては、透明性の高い基板が好ましい。ガラス基板、石英基板などを用いることができる。PEN(ポリエチレンナフタレート)フィルムや、PET(ポリエチレンテレフタレート)フィルムなどを用いてもよい。
 結晶構造を有しないアモルファス材料であるガラスなどの基板1を用いた場合、あるいは、単結晶基板であっても、基板と酸化亜鉛の結晶構造の格子不整合率が大きい基板1を用いた場合は、多結晶の酸化亜鉛によって構成される薄膜2が形成される。
 酸化亜鉛の薄膜2を形成する方法としては、電子ビーム蒸着法、反応性プラズマ蒸着法、スパッタリング法、パルスレーザ堆積法などの真空成膜法が用いられる。真空成膜法では、成膜する際の基板温度やプラズマ密度などの成膜条件、成膜した後に行う加熱アニール処理などによって、c軸配向の酸化亜鉛の薄膜2を形成できる。また低い電気抵抗のc軸配向の酸化亜鉛の薄膜2を得るために、酸化亜鉛の薄膜にGa、Al、Bなどの元素を添加してもよい。
 次に、図2(b)に示すように、基板1の上に形成した酸化亜鉛の薄膜2の上に、蛍光体粒子3からなる蛍光体粒子層4を形成する。蛍光体粒子層4を形成する方法としては、蛍光体粒子3を分散させた蛍光体分散溶液を作製し、電気泳動法を用いて、蛍光体粒子3を酸化亜鉛の薄膜2の上に集積できる。あるいは、蛍光体分散溶液中で蛍光体粒子3を沈降させることによって、蛍光体粒子層4を形成してもよい。
 さらに、図2(c)に示すように、c軸配向の酸化亜鉛の薄膜2から、Znイオンを含有する溶液を使用した溶液成長法によって、c軸配向の酸化亜鉛からなるマトリックス5を結晶成長できる。溶液成長法には、大気圧下で行う化学浴析出法(chemical bath deposition)、大気圧以上の圧力下で行う水熱合成法(hydrothermal synthesis)、電圧あるいは電流を印加する電解析出法(electrochemicaldeposition)などが用いられる。結晶成長用の溶液として、例えば、ヘキサメチレンテトラミン(Hexamethylenetetramine)((C6124)を含有する硝酸亜鉛(Zinc nitrate)(Zn(NO32)の水溶液が用いられる。硝酸亜鉛の水溶液のpHの例は、5以上7以下である。これらの溶液成長法は例えば、特開2004-315342号公報に開示されている。
 図3は、図2(c)のc軸配向の酸化亜鉛の薄膜2から、c軸配向の酸化亜鉛からなるマトリックス5を結晶成長により形成する途中過程を示す。溶液成長法を用いることによって、蛍光体粒子3から酸化亜鉛が直接、結晶成長するのではなく、薄膜2を種結晶として、蛍光体粒子層4の下部に形成された薄膜2から、上方に、順にc軸配向の酸化亜鉛が結晶成長できる。なお、図3に示すように、蛍光体粒子層の内部の空隙を通じて、酸化亜鉛が結晶成長するため、蛍光体層の表面において、表面の蛍光体粒子同士の狭い隙間から成長したロッド状の酸化亜鉛からなる凸凹構造が形成されてもよい。この場合、蛍光体層と空気との間の屈折率差による光の反射を低減できる。
 蛍光体粒子層4の内部の空隙を充填するようにマトリックス5を形成することにより、図2(c)に示すように、蛍光体層7が形成される。これにより、波長変換素子6が作製される。上述したように、その後、基板1あるいは基板1および薄膜2を蛍光体層7から除去してもよい。
 (実施の形態2)
 図4は、実施の形態2の波長変換素子の断面図を示す。
 本実施形態の波長変換素子46は、基板41と、薄膜42と、蛍光体層7’とを備えている。基板41は単結晶基板であり、薄膜42は単結晶の酸化亜鉛によって構成されている。また、蛍光体層7’において、マトリックス45は、単結晶の酸化亜鉛によって構成されている。
 実施の形態2においては、蛍光体粒子3により構成される蛍光体粒子層4の内部の空隙を、単結晶の酸化亜鉛の薄膜42から結晶成長した、単結晶の酸化亜鉛で充填する。
 本実施形態の波長変換素子によれば、マトリックス45が単結晶の酸化亜鉛によって構成されているため、マトリックス45中の結晶粒界がより低減されており、蛍光体層内に入射する光の散乱がより低減される。よって、本実施形態の波長変換素子はさらに光を効率良く外部に取り出すことができる。
 以下、図面を参照しながら、本実施形態の波長変換素子46の製造方法を説明する。
 図5(a)、(b)、(c)は、実施の形態2に係る方法の工程順の断面図を示す。
 基板41には、酸化亜鉛の結晶構造と基板の結晶構造との間の格子不整合率が小さい単結晶基板が用いられる。この場合、基板41の結晶方位と、酸化亜鉛の薄膜42の結晶方位との間に、一定の関係をもって、酸化亜鉛を結晶成長させることができる。以下、この成長をエピタキシャル成長とよぶ。エピタキシャル成長した酸化亜鉛の薄膜42において、結晶は全体として同じ向きに配向しており、結晶欠陥等を除いて、基本的には結晶粒界が発生しない。このように、単結晶とは、エピタキシャル成長し結晶粒界が非常に少ない結晶を意味する。単結晶の酸化亜鉛の薄膜42がエピタキシャル成長できる基板41として、サファイア基板、GaN基板、酸化亜鉛基板などを用いることができる。基板41として、基板と酸化亜鉛の結晶構造の格子不整合率を緩和するためのバッファー層を形成した上記の単結晶基板を用いてもよい。例えば基板41として、単結晶のGaN薄膜が形成されたサファイア基板を用いてもよい。
 図5(a)に示すように、基板41上に薄膜42を形成する。単結晶の酸化亜鉛の薄膜42を形成する方法としては、実施の形態1と同様の真空成膜法が用いられる。また、基板41の表面が、溶液成長時に酸化亜鉛の種結晶となりうる場合は、単結晶の酸化亜鉛の薄膜42を溶液成長法で形成してもよい。例えば、単結晶のGaN薄膜が形成されたサファイア基板上に、溶液成長法で、単結晶の酸化亜鉛の薄膜42を形成してもよい。
 次に、図5(b)に示すように、基板41の上に形成した単結晶の酸化亜鉛の薄膜42の上に、蛍光体粒子3からなる蛍光体粒子層4を形成する。蛍光体粒子層4を形成する方法としては、実施の形態1と同様の方法が用いられる。
 さらに、図5(c)に示すように、単結晶の酸化亜鉛の薄膜42から、Znイオンを含有する溶液を使用した溶液成長法によって、単結晶の酸化亜鉛から構成されるマトリックス45が形成できる。マトリックス45の形成には、実施の形態1と同様の方法が用いられる。
 (実施の形態3)
 図6(a)は、実施の形態3の波長変換素子の断面図である。
 本実施形態の波長変換素子200は、基板210と、薄膜220と、蛍光体層230と、2次元周期体240とを備える。基板210は支持体211と反射層212とを含む。支持体211としては、蛍光体粒子231において発生する熱を効率的に排熱するために、アルミニウムや金属やセラミックなどの熱伝導率が高い材料を用いることができる。反射層212には、蛍光を含む可視波長の光を反射する材料を用いることができ、排熱の観点からアルミニウムや銀などの金属を用いることができる。
 薄膜220は、実施の形態1および2と同様、多結晶または単結晶の酸化亜鉛によって構成される。
 蛍光体層230は実施の形態1および2と同様、蛍光体粒子231と、蛍光体粒子231の間に位置するマトリックス232とを含む。マトリックス232は、c軸配向の酸化亜鉛によって構成される。
 2次元周期体240は蛍光体層230の主面230a上に設けられており、複数のロッド241を含む。複数のロッド241は、c軸に配向した酸化亜鉛によって構成されている。
 図6(b)は、主面230a上における2次元周期体240のロッド241の配置を示している。2次元周期体240は、ロッド241が三角格子状に配列されることにより構成されている。
 本実施形態の波長変換素子によれば、蛍光体層上に設けられた2次元周期構造が2次元回折格子として機能し、蛍光体層の2次元周期構造が設けられた面から出射する蛍光の放射角度分布の半値全幅が狭くなる。つまり、波長変換素子から出射する光の放射角度が小さくなる。したがって、波長変換素子から出射する光をレンズを介して用いる場合に、レンズによる集光効率が向上する。
 以下、図面を参照しながら、本実施の形態の波長変換素子200の製造方法を説明する。
 図7(a)~(g)は、実施の形態3における波長変換素子200に係る方法の工程順の断面図を示す。
 まず、図7(a)に示すように、支持体211上に反射層212を設置し、基板210を得る。上述したように、支持体211としては、蛍光体粒子231において発生する熱を効率的に排熱するために、アルミニウムや金属やセラミックなどの熱伝導率が高い材料を用いることができる。反射層212には、蛍光を含む可視波長の光を反射する材料を用いることができるが、排熱の観点からはアルミニウムや銀などの金属を用いることができる。
 次に、図7(b)に示すように、基板210上に、c軸配向の酸化亜鉛から構成される薄膜220を設ける。薄膜220を形成する方法としては、電子ビーム蒸着法、抵抗加熱蒸着法、反応性プラズマ蒸着法、スパッタリング法、有機金属気相成長法、分子線エピタキシー法、パルスレーザ堆積法のような真空成膜法が用いられる。また、上述したように、Znイオンを含有する溶液を使用した溶液成長法も用いられる。溶液成長法には、大気圧下で行う化学浴析出法(chemical bath deposition)、大気圧以上で行う水熱合成法(hydrothermal synthesis)、電圧あるいは電流を印加する電解析出法(electrochemical deposition)などが用いられる。酸化亜鉛はc軸成長しやすいため、温度や成膜速度などの成膜条件を制御することにより、薄膜220を容易に得ることができる。
 なお、電気抵抗の低い薄膜220を得るために、Ga、Al、In、Bなどのドーパントを、薄膜220を構成する酸化亜鉛に添加してもよい。
 次に、図7(c)に示すように、薄膜220の上に、蛍光体粒子231からなる蛍光体粒子層235を形成する。蛍光体粒子層235を形成する方法としては、例えば、蛍光体粒子231を分散させた蛍光体分散溶液を用い電気泳動法により、蛍光体粒子231を薄膜220の上に集積する技術を用いることができる。あるいは、蛍光体分散溶液中で蛍光体粒子231を薄膜220の上に沈降させることによって、蛍光体粒子層235を形成してもよい。また、蛍光体分散溶液を薄膜220の上に塗布し、溶液を乾燥させる方法でもよい。いずれにしても、樹脂のマトリックス中に蛍光体粒子を分散させた蛍光体を形成する従来技術とは異なり、本発明では作製される蛍光体粒子層235中において蛍光体粒子231は互いに凝集した構造体を形成する。その結果、従来技術とは異なり、マトリックス中の分散制御をする必要がなく、蛍光量が蛍光体粒子231の量を調節するだけで制御できる。よって、蛍光特性が安定した波長変換素子を容易に得ることができる。
 次に、図7(d)に示すように、Znイオンを含有する溶液を使用した溶液成長法によって、薄膜220からc軸配向の酸化亜鉛を結晶成長させ、蛍光体粒子231の空隙をc軸配向の酸化亜鉛によって構成されるマトリックス232により充填する。大気圧下で行う化学浴析出法や電解析出法、大気圧以上で行う水熱合成法などが用いられる。結晶成長用の溶液として、例えば、ヘキサメチレンテトラミンを含有する硝酸亜鉛溶液が用いられる。当該硝酸亜鉛溶液のpHの例は、5以上7以下である。このように中性付近の溶液中において成長できることも、他の酸化物にない酸化亜鉛の特徴である。酸化亜鉛を中性付近で溶液成長することにより、アルカリ性の反応液が必要なガラス充填とは異なり、化学エッチングにより蛍光体粒子231の表面に非発光再結合を生じさせないため、マトリックス232の充填は蛍光体粒子231の内部量子効率を低下させることがない。
 溶液成長法を用いることにより、薄膜220を結晶成長の核、すなわち種結晶として、蛍光体粒子231の下部領域の薄膜220から順にc軸配向した酸化亜鉛のマトリックス232を上方に向けて結晶成長できる。その結果、マトリックス232を構成する酸化亜鉛は下地である薄膜220の結晶状態を保持している。従って、薄膜220と同様に、マトリックス232は緻密な結晶構造を有する。
 蛍光体粒子231の下部領域から成長したマトリックス232は、蛍光体粒子231の空隙を埋めるように成長した後に、横方向成長により蛍光体粒子231の上部領域にも形成される。さらに、原料溶液が希薄な水溶液であり、粘度が低いため、蛍光体粒子層235の内部へ原料溶液が容易に到達できる。また、酸化亜鉛を成長させる原料のZnイオンは小さいため、マトリックス232の結晶成長によりZnイオンが消費されても、蛍光体粒子層235の外部の原料溶液から蛍光体粒子層235の内部へ、Znイオンが容易に拡散され到達できる。そのため、原料不足によりおこる蛍光体粒子層235内部でのボイド発生を抑制できる。
 次に、図7(e)に示すように、c軸配向した酸化亜鉛のマトリックス232の上に、フォトレジストなどの樹脂からなる選択成長マスク250を設ける。選択成長マスク250は、下地のc軸配向した酸化亜鉛によって構成されるマトリックス232の表面が露出する開口部が三角格子状に2次元周期で配列させたマスクパターンを有する。選択成長マスク250の形成には、蛍光体層230上にフォトレジストを塗布し、フォトリソグラフィや電子ビーム露光、光ナノインプリントによりパターニングする技術や、熱ナノインプリントにより樹脂パターンを転写する方法などを用いることができる。なお、選択成長マスク250を設ける前に、微細パターニングを容易とするために、蛍光体層230の表面を、化学機械研磨(Chemical Mechanical Polissing;CMP)法による平坦化処理などの前処理を施してもよい。
 次に、図7(f)に示すように、選択成長マスク250の開口部において、蛍光体層230のマトリックス232からc軸配向した酸化亜鉛によって構成されるロッド241を選択成長させる。ロッド241の選択成長には、溶液成長法を用いる。大気圧下で行う化学浴析出法や電解析出法、大気圧以上で行う水熱合成法などが用いられる。結晶成長用の溶液として、例えば、ヘキサメチレンテトラミンを含有する硝酸亜鉛溶液が用いられる。当該硝酸亜鉛溶液のpHの例は、5以上7以下である。ロッド241の選択成長において、選択成長マスク250のパターンが変形しないように、用いる樹脂の軟化点以下、例えば120度以下に結晶成長用の溶液の温度を設定する。
 次に、図7(g)に示すように、選択成長マスク250を除去して、波長変換素子200を得る。選択成長マスク250の除去には、アセトンやメタノールなどの有機溶剤を用いることができる。
 なお、本実施の形態の変形例として、波長変換素子200の2次元周期体240は他の構造を備えていてもよい。例えば、図8(a)に示すように蛍光体層230の主面230aにおいて、2次元周期体240は、正方格子状に配列された複数のロッド241を備えていてもよい。また、図8(b)に示すように、2次元周期体240は、複数の開口部242を有していてもよい。2次元周期体240は、蛍光体層230の主面230aに設けられており、開口部242は、主面230aを露出している。複数の開口部242は、正方格子状または三角格子状に配列されている。
 図8(a)、(b)に示す2次元周期体240は、図7(e)で示す工程において、正方格子状に配列された複数の開口を有するパターンを備えた選択成長マスク250、または、三角格子状に配列された島状のパターンを有する選択成長マスク250を用いることにより、形成することができる。
 (実施の形態4)
 本発明によるLED素子の実施形態を説明する。
 本実施形態のLED素子は、実施の形態1~3のいずれの波長変換素子を用いることもできる。図9(a)は、実施の形態1に示した波長変換素子6を、上下を反転させた状態で示す。
 図9(b)は、実施の形態4によるLED素子の断面図を示す。LEDチップの電極、LEDチップの内部構造などは、分かり易さのため、簡略化している。図9(b)に示すように、LED素子60は、支持体61と、LEDチップ62と、波長変換素子50とを備える。
 支持体61は、LEDチップ62を支持する。本実施の形態では、LED素子60は、面実装が可能な構造を備えている。本実施形態は、高輝度LED素子に好適に用いられるため、LED素子で発生した熱を効率的に外部に拡散することができるように、支持体61は高い熱伝導率を有していてもよい。例えば、アルミナや窒化アルミニウムなどからなるセラミックスを支持体61として用いてもよい。
 LEDチップ62は、波長変換素子50の蛍光体を励起する励起光を出射する。LEDチップ62は、例えば、基板62aと、n型GaN層62bと、p型GaN層62dと、n型GaN層62bおよびp型GaN層62dに挟まれたInGaNからなる発光層62cを含む。LEDチップ62は、例えば、青色光を出射する。LEDチップ62は、支持体61上において、LEDチップからの光の出射面63が上になるように、半田64などによって支持体61に固定されている。またLEDチップ62は、ボンディングワイヤ65によって支持体に設けられた電極66に電気的に接続されている。LEDチップ62の周囲は、支持体61に囲まれており、波長変換素子50は、支持体61に固定されている。波長変換素子50は、図9(a)に示す配置のように、基板1側をLED素子からの光の出射面67の側に配置すれば蛍光体層7が外部に曝されることがない。しかし、LEDチップ62からの光の入射面68側に、波長変換素子50の基板1を配置してもよい。
 LED素子60において、LEDチップ62から出射される励起光は、波長変換素子50に入射される。波長変換素子50において、入射した励起光の一部が、蛍光体粒子3に入射し、蛍光体を励起することによって、励起光と異なる波長帯域の光を出射する。例えば蛍光体が黄色蛍光体である場合、励起光として青色光が入射し、黄色光を出射する。
 蛍光体粒子3に入射しなかった励起光は、そのまま波長変換素子50を透過する。これにより、波長変換素子50から出射する光には青色光と黄色光とが含まれ、LED素子60は白色光を出射する。
 (実施の形態5)
 本発明によるLED素子の他の実施の形態を説明する。実施の形態5では、実施の形態1と同様の方法で形成される波長変換素子を用いたLED素子を説明する。波長変換素子の蛍光体層に用いられるマトリックスをc軸配向の柱状結晶の酸化亜鉛で形成する。
 図10及び図11は、実施の形態5におけるLED素子の断面図を示す。LEDチップの電極、LED素子の支持体、電極、配線などは、分かり易さのため、簡略化している。
 図10(a)に示すLED素子は、LEDチップ70と、波長変換素子75とを備える。LEDチップ70は、基板71と、基板71上に位置する半導体発光素子72とを含む。半導体発光素子72はさらに発光層73を有する。波長変換素子75は、半導体発光素子72上に直接形成されており、実施の形態1の波長変換素子6から基板1を取り除いた構造を有する。つまり、波長変換素子75は、半導体発光素子72上に形成された薄膜2と、蛍光体層7とを備える。
 図10(b)に示すLED素子も、LEDチップ70と、波長変換素子75とを備え、LEDチップ70における上下が図10(a)に示すLED素子と逆転している。つまり、LEDチップ70の発光層73は、波長変換素子75と反対側に位置している。波長変換素子75は、基板71上に形成された薄膜2と、蛍光体層7とを備える。
 例えば、基板71としては、サファイア基板、GaN基板などを用いることができる。これらの基板は、透光性が高く、これらの基板上にn型GaN、InGaNからなる発光層およびp型GaNを含む良好な特性の半導体発光素子が形成できる。
 図10(a)に示す構造および図10(b)に示す構造のいずれにおいても、LEDチップ70を基板として、半導体発光素子72の側、あるいは、半導体発光素子の基板71の側に、実施の形態1と同様の方法で、波長変換素子75を形成できる。
 本実施の形態のLED素子は、結晶分離層74を含むLEDチップ80と、波長変換素子75とを用いて構成してもよい。詳細には、図11(a)、図11(b)に示すように、半導体発光素子72、あるいは、半導体発光素子の基板71の上に、結晶分離層74を形成したLEDチップ80を基板として、実施の形態1と同様の方法で、波長変換素子75を形成できる。結晶分離層74は、c軸配向の酸化亜鉛から構成される薄膜2を形成するための下地層であり、例えば、プラズマ化学気相成長法を用いて、結晶構造を有しないアモルファスの二酸化ケイ素(SiO2)を主成分とする材料によって形成できる。ポリシラザンなどの液状のガラス原料から形成したガラスでも良い。結晶分離層74を形成することによって、例えば、半導体発光素子の基板71がGaN基板のm面であり、半導体発光素子72が、基板71にエピタキシャル成長した結晶構造であっても、結晶分離層74がガラス基板と同様の結晶構造を有しないアモルファスであるため、基板71の結晶構造に関係なく、c軸配向の酸化亜鉛の薄膜2が形成できる。酸化亜鉛の薄膜2がc軸配向であるため、実施の形態1と同様の方法で、波長変換素子75のマトリックス5をc軸配向の酸化亜鉛で形成できる。
 (実施の形態6)
 本発明によるLED素子のさらに他の実施の形態を説明する。実施の形態6においては、実施の形態2と同様の方法で形成される波長変換素子を用いたLED素子を説明する。波長変換素子の蛍光体層に用いられるマトリックスを、c軸配向の単結晶の酸化亜鉛で形成した例である。
 図12は、実施の形態6におけるLED素子の断面図を示す。LEDチップの電極、LED素子の支持体、電極、配線などは、分かり易さのため、簡略化している。
 実施の形態6のLED素子は、LEDチップ70と、波長変換素子95とを備える。
 波長変換素子95は、単結晶の酸化亜鉛の薄膜42と、蛍光体粒子3およびマトリックス45を含む蛍光体層とを含む。実施の形態2と同様、蛍光体層は単結晶の酸化亜鉛によって構成される。LEDチップは実施の形態5と同様、半導体発光素子72と基板71とを含む。
 半導体発光素子72、あるいは、半導体発光素子の基板71の表面の結晶構造が、c軸配向の単結晶の酸化亜鉛の薄膜42を形成しうる結晶構造を有していれば、図12(a)および図12(b)に示すように、LEDチップ70を基板として、半導体発光素子72の側、あるいは、半導体発光素子の基板71の側に、c軸配向の単結晶の酸化亜鉛の薄膜42が形成できる。酸化亜鉛の薄膜42がc軸配向の単結晶であるため、実施の形態2と同様の方法で、波長変換素子95のマトリックス45をc軸配向の単結晶の酸化亜鉛で形成できる。
 例えば、半導体発光素子の基板71としては、c面のサファイア基板、c面のGaN基板などを用いることができる。特に、酸化亜鉛および窒化ガリウムは、いずれもウルツ鉱型の結晶構造を有している。これらのa軸格子の不整合率は1.8%であり、c軸格子の不整合率は0.4%であり、いずれも非常に小さい。そのため、半導体発光素子の側、あるいは、基板側に、c軸配向の単結晶の酸化亜鉛からなる薄膜2をエピタキシャル成長させることができる。
 (実施の形態7)
 本発明による半導体レーザ発光装置の実施形態を説明する。
 図13は、実施の形態7による半導体レーザ発光装置330の断面図を示す。半導体レーザチップの内部構造、電極、接続配線などは、分かり易さのため、簡略化している。半導体レーザ発光装置330は、半導体レーザチップ310と、波長変換素子50と、半導体レーザチップ310および波長変換素子50を支えるステム301とを備える。半導体レーザチップ310はブロック302によってステム301に支持され、波長変換素子50はキャップ303を介してステム301に支持される。ステム301とブロック302は、例えば、FeもしくはCuを主に含む金属性材料からなり、金型で一体成型され、動作時に半導体レーザチップ310中に発生する熱を効率的に排熱する。キャップ303はFeとNiを主に含む金属性材料から成型され、ステム301に溶接などにより融着されている。半導体レーザチップ310は、ブロック302に実装され、ボンディングワイヤによって、半導体レーザチップ310とリード305との間の電気的な接続を行う。キャップ303には、開口部304が設けられており、その開口部304を覆うように、波長変換素子が設けられている。半導体レーザチップ310からの励起光は、波長変換素子50の入射面307から入射する。半導体レーザ発光装置330は、波長変換素子50を透過した励起光と、励起光から変換された蛍光とを合成させた光を出射する。
 図13においては、半導体レーザチップ310はブロック302に直接実装されているが、AlNやSiなどからなるサブマウントを介して、ブロック302に実装してもよい。半導体レーザ発光装置300において、波長変換素子50の基板を出射面308の側に配置すれば、蛍光体層が外部に曝されないという利点がある。しかし、基板を入射面307側に配置してもよい。
(実施の形態8)
 本発明によるプロジェクタ装置の実施形態を説明する。実施の形態8においては、実施の形態1から3のいずれかの波長変換素子をカラーホイールに用いたプロジェクタ装置を説明する。
 図14(a)、(b)は、本実施の形態のプロジェクタ装置に用いられるカラーホイール400を示す図であって、図14(a)は、カラーホイール400と光源から出射する光との位置関係を示し、図14(b)はカラーホイール400の構成を示している。
 図14(a)、(b)に示すように、カラーホイール400は円盤410および波長変換素子200を備え、波長変換素子200を円盤410が保持している。円盤410には、開口411が設けられている。波長変換素子200には、コリメート化された励起光である青色光Bがレンズ420により集光して照射され、波長変換素子200から放射される蛍光の緑色光Gがレンズ420により集光されコリメート化される。円盤410がホイールモータ430により回転され、高輝度の青色光Bが集光される位置が移動することにより、青色光Bが集光されて温度上昇した波長変換素子200の領域が冷却され、波長変換素子200の温度上昇が抑制される。開口411を青色光Bが照射する場合、青色光Bは円盤410を通過し、レンズ421において集光されコリメート化される。
 図14(b)に示すように、円盤410上において、円盤410の回転に伴い青色光Bが集光される位置が変化するため、波長変換素子200および開口411は円弧状に配置されている。円盤410上において、波長変換素子200も開口411もいずれも設けられていない遮光領域412は、プロジェクタの空間光変調において赤色表示をする時間に対応している。なお、波長変換素子200、開口411、遮光領域412の面積比や配置は、プロジェクタの空間光変調に対応して、適時設計し得る。
 図15に、実施の形態8におけるカラーホイール400を用いた、プロジェクタ用の光源500を示す。光源500は、赤色光源501からの赤色光Rと、青色光源502からの青色光Bと、カラーホイール400上の波長変換素子200からの緑色光Gとから、光源の発光タイミングとカラーホイール400の回転とにより、時間分割で出力光510を発生する。プロジェクタにおいては、出力光510が空間光変調器に照射され、出力光510のRGBの時間分割タイミングに同期することにより、カラー画像を生成する。
 赤色光源501は、赤色LEDもしくは赤色レーザーダイオード(LD)からなる。赤色光源501は、時間分割において赤色光Rが必要な時間帯のみ発光動作を行い赤色光Rを放射する。赤色光源501から放射された赤色光Rは、赤色波長の光を透過するダイクロミック・ミラー511、512を通過し、出力される。
 青色光源502は、青色LEDもしくは青色レーザーダイオード(LD)からなる。青色光源502は、時間分割において青色光Bおよび緑色光Gが必要な時間帯のみ発光動作を行う。青色光源502から放射された青色光Bは、青色波長の光を透過するダイクロミック・ミラー511を通過し、カラーホイール400に到達する。時間分割において青色光Bが必要な時間帯において、カラーホイール400の回転により、青色光Bはカラーホイール400の開口411を通過する。カラーホイール400を通過した青色光Bは、ミラー521、522により反射される。さらに青色波長の光を反射するダイクロミック・ミラー512により反射されることにより、赤色光Rと光軸を合わせられ、出力光510として出力される。
 緑色光Gは、時間分割において緑色光Gが必要な時間帯のみ青色光Bが波長変換素子200を励起することにより、カラーホイール400から発生する。カラーホイール400から放射された緑色光Gは、ダイクロミック・ミラー511へ到達する。緑色波長の光を反射するダイクロミック・ミラー511により、赤色光Rと光軸を合わせられる。緑色光Gは、緑色波長の光を透過するダイクロミック・ミラー512を経由して、出力光510として出力される。
(実施の形態9)
 本発明によるヘッドライトおよび車両の実施形態を説明する。実施の形態9においては、実施の形態1から3のいずれかの波長変換素子を用いたヘッドライトおよび車両を説明する。
 図16(a)は本実施形態の車両の構成を概略的に示している。車両601は、車体605と車体605の前部に設けられたヘッドライト602と、電力供給源603と、発電機604とを備える。発電機604は図示しないエンジン等の駆動源によって、回転駆動され、電力を発生する。生成した電力は、電力供給源603に蓄えられる。本実施の形態では、電力供給源603は、充放電が可能な2次電池である。車両601が電気自動車、あるいは、ハイブリッド車である場合には、車両を駆動するモータが発電機604であってもよい。ヘッドライト602は電力供給源からの電力によって点灯する。
 図16(b)は、ヘッドライト602の概略的な構成を示している。ヘッドライト602は、半導体レーザチップ611と光学系612と、光ファイバー613と、波長変換素子614と光学系615とを備える。半導体レーザチップ611は、例えば実施の形態7の半導体レーザ発光装置330において、波長変換素子50の代わりに透明板が設けられている構造を備える。
 半導体レーザチップ611から放射した光は、光学系612によって光ファイバー613の一端に集光され、光ファイバー613を透過する。光ファイバー613の他端から出射した光は、波長変換素子614に入射し、少なくとも一部の波長が変換され、出射する。さらに、光学系615によって照射範囲が制御される。これにより、ヘッドライト602は車両601の前方を照射する。
 本実施形態のヘッドライトによれば、波長変換素子の蛍光体層のマトリックスが、熱伝導性が高く、耐熱性の高い無機材料によって構成されているため、高強度で光を放射することが好ましいヘッドライトに用いた場合でも、優れた排熱性と耐熱性を有し、長期にわたって、蛍光体層が熱によって劣化するのが抑制される。また、出射効率が高いため、電力供給源の電力の消費が少ない。さらに、また、半導体レーザチップから出射した光を、光ファイバーによって波長変換素子へ導くため、ヘッドライトにおける半導体レーザチップと波長変換素子との配置に制約がない。
 以上説明したように、実施の形態1によれば、c軸配向の酸化亜鉛によって構成される薄膜を用いることによって、蛍光体層粒子層の内部の空隙を、c軸配向の柱状結晶の酸化亜鉛で緻密に充填することができる。これにより、蛍光体層における光の出射方向における酸化亜鉛の結晶粒界が抑制でき、かつ蛍光体層のボイドが抑制できる。
 実施の形態2によれば、単結晶の酸化亜鉛によって構成される薄膜を用いることによって、蛍光体粒子層の内部の空隙を、エピタキシャル成長した単結晶の酸化亜鉛で緻密に充填することができる。これにより、蛍光体層での酸化亜鉛の結晶粒界による光散乱が発生せず、かつ蛍光体層のボイドが抑制できる。
 蛍光体層のマトリックスは、酸化亜鉛によって構成される薄膜から、同一の材料である酸化亜鉛を、直接、結晶成長することによって形成する。そのため、蛍光体層と基板の間の密着性が高い。
 蛍光体層は、酸化亜鉛によって構成される薄膜から、蛍光体粒子層の内部の隙間を通じて、酸化亜鉛が結晶成長する。その結果、蛍光体層の表面では、表面の蛍光体粒子同士の狭い隙間からロッド状の酸化亜鉛を自己組織的に形成できる。蛍光体層の表面に、酸化亜鉛ロッドからなる凸凹構造が形成できるため、蛍光体層と空気との間の屈折率差による光の反射を低減できる。
 実施の形態3によれば、蛍光体層の表面に2次元周期構造をさらに備えるため、蛍光体層から出射する光の指向性をより高めることができる。
 実施の形態4によれば、上述した波長変換素子を備えるため、耐熱性を備え、光出力が高いLED素子を実現できる。
 実施の形態5によれば、半導体発光素子上、あるいは半導体発光素子の基板上に、結晶分離層を介して、上述の波長変換素子を形成したLED素子を構成できる。この構成によれば、半導体発光素子、あるいは、半導体発光素子の基板の結晶構造が、酸化亜鉛のc軸配向を妨げる場合であっても、c軸配向の酸化亜鉛によって構成される薄膜を形成できる。これにより蛍光体層のマトリックスをc軸配向の酸化亜鉛によって構成することができる。
 実施の形態6によれば、半導体発光素子、あるいは半導体発光素子の基板の結晶構造を利用して、蛍光体層のマトリックスを単結晶の酸化亜鉛によって構成することができる。高価な単結晶基板を別途用意する必要がなく、LED素子のコストを低減できる。
 実施の形態7によれば、上述の波長変換素子の蛍光体層を半導体レーザチップから放出されるレーザ光で励起する発光装置を構成できる。この構成によれば、半導体レーザチップは、LEDチップよりも、指向性や輝度が高い。また、蛍光体層は、蛍光体での光散乱が抑制されているため、本実施の形態の半導体レーザ発光装置は、指向性の高い、あるいは輝度の高い光源を実現できる。
 実施の形態8によれば、上述の波長変換素子の蛍光体層をLEDチップから放射される光もしくは半導体レーザチップから放出されるレーザ光で励起するカラーホイールに用いることができる。本実施形態のカラーホイールは、蛍光体層での光散乱が抑制できるため、高効率のプロジェクタ光源を構成できる。
 実施の形態9によれば、優れた耐熱性を有し、長期にわたって、蛍光体層の熱による劣化が抑制された信頼性の高いヘッドライトが実現される。
 以下の実施例を用いて、本実施形態の波長変換素子、LED素子、半導体レーザ発光装置を詳細に説明する。
 (実施例1)
 (ガラス基板上の酸化亜鉛の薄膜の形成)
 基板として、厚み1mmのソーダガラス基板を用意した。電子ビーム蒸着法を用いて、150nmの厚みを有し、Gaが3at%ドープされたc軸配向の酸化亜鉛の薄膜(下地ZnO層)をガラス基板の上に形成した。成膜時の基板温度を180℃とし、成膜後に、大気中で、室温~500℃まで30分で昇温し、500℃で20分間アニールを行った。
 (蛍光体粒子層の形成)
 屈折率が1.8、平均粒径が3μmのY3Al512:Ce(YAG:Ce)蛍光体を用いて、蛍光体分散溶液を用意した。分散溶媒のエタノール(30ml)に、YAG:Ce蛍光体粒子(0.1g)と、分散剤として、リン酸エステル(0.0003g)およびポリエチレンイミン(0.0003g)を混合し、超音波ホモジナイザを用いて、溶媒中に蛍光体粒子を分散させた。
 得られた蛍光体分散溶液を用いて、下地ZnO層が形成された基板上に、電気泳動法によって、蛍光体粒子層を形成した。蛍光体粒子層の堆積条件は、下地ZnO層をカソードとし、Pt電極をアノードとして、印加電圧100V、印加時間3分とした。蛍光体粒子層を堆積させた後、溶媒のエタノールを乾燥させて、蛍光体粒子層(厚さは、約17μm)を完成させた。単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
 (酸化亜鉛による蛍光体粒子層の内部の空隙の充填)
 マトリックスとなる酸化亜鉛の溶液成長法として、化学浴析出法を用いた。酸化亜鉛成長溶液として、硝酸亜鉛(0.1mol/L)と、ヘキサメチレンテトラミン(0.1mol/L)が溶解した水溶液を用意した。溶液のpH値は、5~7であった。蛍光体粒子層を形成した基板を、酸化亜鉛成長溶液に浸漬し、酸化亜鉛成長溶液の温度を90℃に保持し、蛍光体粒子層の内部の空隙に、酸化亜鉛を結晶成長させた。この後、基板を取り出し、純水によって洗浄し、乾燥した。
 (波長変換素子のLED素子への実装、LED素子の評価)
 発光波長が465nmで、発光強度が同じ青色LEDチップを複数用意した。蛍光体粒子層の内部の空隙を酸化亜鉛で充填した蛍光体層を、支持体61の大きさに合うよう、ダイシング加工を行って切断し、個片化された波長変換素子を用意した。図9(b)に示すように、青色LEDチップを支持体61に半田64を用いて取り付け、支持体61に設けられた電極66と青色LEDチップとの間の配線を行った。次に、図9(b)に示すように、支持体61の大きさに合うように切断した波長変換素子を、基板側がLED素子からの光の出射面67の側になるよう、支持体61と波長変換素子の端部を、シリコーン樹脂の接着剤で固定し、図9(b)のLED素子を完成させた。完成したLED素子を積分球に取り付け、20mAの定電流で駆動し、LED素子の全放射束の発光強度を測定した。この結果を表1に示す。
 (酸化亜鉛の屈折率の評価)
 実施例1と同じ下地ZnO層が形成されたガラス基板を、蛍光体粒子層を形成せずに、実施例1と同様の溶液成長法で、酸化亜鉛膜のみ結晶成長し形成した。この酸化亜鉛膜の分光エリプソメトリーで測定した屈折率は、2.0であった。
 (比較例1)
 基板として、厚み1mmのソーダガラス基板を用意した。ジメチルシリコーン樹脂のA剤とB剤を同じ重量で混合したシリコーン樹脂に対し、実施例1と同じ蛍光体が、蛍光体層において8vol%になるように混合し、三本ロール混練機に3回通し、真空脱泡を行って、シリコーン樹脂混合物を得た。その後、ガラス基板上に、得られたシリコーン樹脂混合物を塗工し、150℃で4時間、シリコーン樹脂混合物を硬化させ、マトリックスにシリコーン樹脂を用いた蛍光体層(厚さ90μm)を得た。蛍光体層における蛍光体の体積分率と蛍光体層の厚みから算出された単位面積あたりの蛍光体重量は、3.3mg/cm2であった。この蛍光体層を用いて、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表1に示す。
 (比較例2)
 実施例1と同じ下地ZnO層を形成したガラス基板上に、実施例1と同じ方法で、蛍光体粒子層を形成した。単位面積あたりの蛍光体重量は、3.3mg/cm2であった。この蛍光体層を用いて、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表1に示す。
 (比較例3)
 厚み1mmのソーダガラス基板上に、ITO(錫ドープされた酸化インジウム)を電子ビーム蒸着法で成膜したITO付きガラス基板を用意した。実施例1と同様に、ITO付きガラス基板上に、蛍光体粒子層を形成した。単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
 次に、蛍光体粒子層の内部の空隙を、ゾルゲル法による酸化亜鉛で充填した。亜鉛源として、酢酸亜鉛二水和物(Zn(CH3COO)2・2H2O)、溶媒としてエタノール、安定化剤としてジエタノールアミン(HN(CH2CH2OH)2)を用意し、ジエタノールアミンとZn2+のモル比を等量とし、0.5mol/Lの酢酸亜鉛がエタノールに溶解したゾルゲル法の原料溶液を作製した。得られたゾルゲル法の原料溶液を蛍光体粒子層に滴下し、ロータリーポンプで真空引きして蛍光体粒子層の内部の空隙に含浸させ、400℃で1時間加熱を行い、原料溶液から酸化亜鉛に変換させた。この蛍光体層を用いて、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表1に示す。
 図17は、実施例1の波長変換素子のXRD測定結果(2θ/ωスキャン)を示す。この測定は、基板に平行な結晶格子面を検出できる。図17に示されるように、蛍光体のピーク、および酸化亜鉛のc面以外の回折ピークに比べて、非常に大きな酸化亜鉛(002)、(004)のピークが検出された。これにより実施例1の波長変換素子の酸化亜鉛は、c軸配向が非常に強いことが確認できた。このように、波長変換素子のXRD測定結果(2θ/ωスキャン)において、酸化亜鉛のc面の回折ピークが、酸化亜鉛のc面以外の回折ピークよりも大きいことから、この酸化亜鉛がc軸配向の結晶であることが確認できる。
 図18は、比較例3の波長変換素子のXRD測定結果(2θ/ωスキャン)を示す。図18に示されるように、実施例1とは異なり、蛍光体のピーク強度と酸化亜鉛のピーク強度は、同程度であった。また酸化亜鉛(100)、(002)、(101)の各ピークが、同程度のピーク強度で検出された。これにより比較例3の波長変換素子の酸化亜鉛は、ランダムな配向であることが確認できた。表1に、LED素子の発光強度についての結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 単位面積あたりの蛍光体の重量をすべての試料で合わせた。発光強度は、比較例1のLED素子の発光強度を100として他のLED素子の発光強度を示している。実施例1の発光強度は、120であり、シリコーン樹脂に蛍光体粒子を分散させた蛍光体層を用いた比較例1のLED素子の1.2倍の発光強度が得られた。比較例2の蛍光体粒子を基板上に集積しただけの蛍光体層を用いたLED素子の発光強度は、60であり、実施例1は、比較例2の2倍の発光強度が得られた。比較例3の蛍光体粒子層の内部をランダム配向の酸化亜鉛で充填した蛍光体層を用いたLED素子の発光強度は、73であり、比較例3は、比較例2の1.2倍の発光強度が得られたが、比較例3は、実施例1、比較例1よりも、小さい発光強度しか得られなかった。これは、蛍光体粒子層の内部をランダムな配向の酸化亜鉛で充填した場合、光の出射方向に、酸化亜鉛の結晶粒界が数多く存在することによって、蛍光体層での光散乱が大きいからである。
 図19は、実施例1の蛍光体層を破断した断面SEM観察像を示す。図20は、実施例1の蛍光体層を破断した断面SEM観察像の拡大像を示す。蛍光体層を破断した試料を観察しているため、観察像の中で示すような、丸く凹部に見える箇所は、蛍光体粒子が埋められていた跡を示し、破断した試料の反対側の面に蛍光体があると考えられる。図20(a)は、基板界面付近を示し、図20(b)は、中央部を示す。図19に示されるように、蛍光体層の表面には、酸化亜鉛ロッドが成長し、自己組織的に、酸化亜鉛ロッドによる凹凸形成ができた。図19、図20(a)および図20(b)から明らかなように、蛍光体層の全体にわたり、蛍光体層の内部が酸化亜鉛で緻密に充填されていることがわかる。また、蛍光体層の内部の酸化亜鉛には、縦方向に結晶粒界が見られる。これは、溶液成長によって酸化亜鉛が柱状結晶に成長したことを示している。図20(a)から、マトリックスである酸化亜鉛は、酸化亜鉛の薄膜と密に接しており、酸化亜鉛の薄膜から酸化亜鉛が結晶成長したことがわかる。図20(b)から、蛍光体粒子の周囲を酸化亜鉛の柱状結晶が埋めている状態がわかる。光の出射方向に、結晶粒界の少ない柱状結晶の酸化亜鉛が配置できたため、蛍光体層での光散乱が抑制できた。
 図21に、実施例1と比較例1のLED素子の発光スペクトルを示す。実施例1では、蛍光体粒子層の内部を柱状結晶の酸化亜鉛で緻密に充填できたために、比較例1よりも蛍光体層での光散乱が抑制されて、LEDチップからの青色光を、効率良くLED素子の外部に取り出すことができた。
 (実施例2)
 ガラス基板上に、下地ZnO層を成膜する成膜条件を、成膜時の基板加熱をなしとし、成膜後のアニールを行わなかった。それら以外は、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表2に示す。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
 (実施例3)
 ガラス基板上に、下地ZnO層を成膜する成膜条件を、成膜時の基板温度を180℃とし、成膜後のアニールを行わなかった。それら以外は、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表2に示す。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
 (実施例4)
 ガラス基板上に、下地ZnO層を成膜する成膜条件を、成膜時の基板温度を180℃とし、成膜後に、大気中で、室温~300℃まで30分で昇温し、300℃で20分間アニールを行った。それら以外は、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表2に示す。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
 図22に、実施例1の波長変換素子の酸化亜鉛(002)のチルト(結晶軸の傾き)をX線ロッキングカーブ法にて評価したXRD測定結果(ωスキャン)を示す。この測定は、2θ(検出器位置)を固定して、試料のみ回転することで、結晶方位の分布を測定し、それが結晶方位の揃っている程度の指標となる。これによって酸化亜鉛のc軸の傾きを評価した。図22に示されるように、実施例1の酸化亜鉛(002)のロッキングカーブの半値幅は、2.7°であった。これを蛍光体層の酸化亜鉛のc軸の傾きと定義する。
 同様の方法で、実施例2~実施例4の波長変換素子の酸化亜鉛(002)のロッキングカーブの半値幅を測定した。これらの結果を表2に示す。さらに、同様の方法で、実施例1~実施例4のガラス基板上の酸化亜鉛の薄膜(002)のロッキングカーブの半値幅を測定した。これを下地ZnO層のc軸の傾きと定義する。これらの結果を表2に示す。
 なお、実施例1~実施例4のガラス基板上の下地ZnO層および、波長変換素子のXRD測定結果(2θ/ωスキャン)から、すべて、酸化亜鉛がc軸配向していることが確認できた。
 表2に、蛍光体層の酸化亜鉛のc軸の傾きとLED素子の発光強度についての結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 単位面積あたりの蛍光体の重量をすべての試料で合わせた。表2では、分かり易さのため、蛍光体層の酸化亜鉛のc軸の傾きの順で、実施例を示している。発光強度は、比較例1のLED素子の発光強度を100として他のLED素子の発光強度を示している。
 蛍光体層の酸化亜鉛のc軸の傾きとLED素子の発光強度との間に相関関係が見られ、蛍光体層の酸化亜鉛のc軸の傾きが小さくなるにつれて、LED素子の発光強度が向上した。また蛍光体層の酸化亜鉛のc軸の傾きと酸化亜鉛の薄膜のc軸の傾きとの間にも相関関係が見られ、酸化亜鉛の薄膜のc軸の傾きが小さくなるにつれて、蛍光体層の酸化亜鉛のc軸の傾きが小さくなった。これは、酸化亜鉛の薄膜を種結晶として、酸化亜鉛の薄膜のc軸方向に沿って、蛍光体粒子層の内部の酸化亜鉛が成長したからであると考えられる。
 表2に示されるように、蛍光体層のマトリックスである酸化亜鉛のc軸の傾きが4.0°以下の場合に、比較例1のシリコーン樹脂に蛍光体粒子を分散させた蛍光体層を用いたLED素子の発光強度よりも、発光強度が向上した。さらに、蛍光体層の酸化亜鉛のc軸の傾きを4.0°以下にするためには、薄膜のc軸の傾きを、4.5°以下にすればよいことがわかった。
 さらに、実施例4によれば、蛍光体層の酸化亜鉛のc軸の傾きは、2.9°以下が好ましく、その際の酸化亜鉛の薄膜のc軸の傾きは、4.2°以下が好ましい。さらに、実施例1によれば、蛍光体層の酸化亜鉛のc軸の傾きは、2.7°以下が好ましく、その際の下地ZnO層のc軸の傾きは、4.0°以下が好ましい。
 蛍光体層の内部のボイドをより詳細に観察するために、集束イオンビーム(FIB)を用いて、蛍光体層の断面を加工し、SEM観察を行った。図23(a)に、実施例2における蛍光体層のSEM観察像を示し、図23(b)に実施例1における蛍光体層のSEM観察像を示す。図23(a)に示すように、実施例2の蛍光体層では、蛍光体粒子の上部にボイドが観察された。図23(b)から明らかなように、実施例1は、実施例2よりも、ボイドが少なく、ボイドが抑制できていることが確認できた。
 上述したように、蛍光体層の酸化亜鉛のc軸の傾きとLED素子の発光強度に相関関係があることについて、詳細は不明であるが、以下のように考えられる。図24は、溶液成長の酸化亜鉛によって、蛍光体粒子を埋める途中過程の模式図を示す。図24(a)は、蛍光体層の酸化亜鉛のc軸の傾きが大きい場合であり、図24(b)は、蛍光体層の酸化亜鉛のc軸の傾きが小さい場合を示す。分かり易くするために、図中では、蛍光体粒子を1個に簡略化した。溶液成長法による酸化亜鉛成長では、蛍光体は、種結晶に、なりえず、蛍光体粒子からは、酸化亜鉛は、直接、結晶成長しない。蛍光体層の内部の酸化亜鉛は、下地ZnO層からc軸方向に結晶成長する。蛍光体粒子の下方向からc軸方向に結晶成長した酸化亜鉛は、蛍光体粒子にぶつかるとそこで結晶成長が止まる。
 蛍光体粒子の上部では、横方向(ラテラル方向)に酸化亜鉛が結晶成長して、蛍光体粒子を埋めていく。以上のように考えると、下地ZnO層のc軸の傾きが大きい場合は、蛍光体層の酸化亜鉛のc軸の傾きが大きくなる。蛍光体層の酸化亜鉛のc軸の傾きが大きいと、酸化亜鉛のラテラル方向の結晶成長の方向が揃わないために、蛍光体粒子を酸化亜鉛で埋める際に、蛍光体粒子の上部にボイドが残る。下地ZnO層のc軸の傾きが小さい場合は、蛍光体層の酸化亜鉛のc軸の傾きが小さくなる。蛍光体層の酸化亜鉛のc軸の傾きが小さいと、酸化亜鉛のラテラル方向の結晶成長の方向が揃うために、蛍光体粒子を酸化亜鉛で埋める際に、蛍光体粒子の上部にボイドが残らない。このように、蛍光体粒子層の内部の空隙を充填する酸化亜鉛のc軸の傾きを小さくすることによって、蛍光体層のボイドが抑制できた。
 (実施例5)
 基板として、c軸配向の単結晶のGaN薄膜が成膜されたサファイアc面基板を用意した。サファイア基板の厚みは、0.43mm、GaN薄膜の厚みは、5μmであった。GaN/サファイア基板上に、c軸配向の単結晶の下地ZnO層を溶液成長法で形成した。酸化亜鉛の溶液成長法として、化学浴析出法を用いた。酸化亜鉛成長溶液として、硝酸亜鉛(0.1mol/L)と、ヘキサメチレンテトラミン(0.1mol/L)が溶解した水溶液を用意した。溶液のph値は、5~7であった。上記の基板を酸化亜鉛成長溶液に浸漬し、酸化亜鉛成長溶液の温度を90℃に保持し、GaN薄膜/サファイア基板上に単結晶の酸化亜鉛を0.7μm成長させた。この後、基板を取り出し、純水によって洗浄し、乾燥した。
 その後は、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表3に示す。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
 (比較例4)
 基板として、厚み0.43mmのサファイアc面基板を用意した。その後は、比較例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表3に示す。なお、比較例1と同様に算出された単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
 図25は、実施例5の波長変換素子のXRD測定結果(2θ/ωスキャン)を示す。図25に示されるように、蛍光体のピーク、および酸化亜鉛のc面以外の回折ピークに比べて、非常に大きな酸化亜鉛(002)、(004)のピークが検出された。これにより実施例5の蛍光体層の酸化亜鉛は、c軸配向が非常に強いことが確認できた。しかし図25に示すように、酸化亜鉛とGaNは、結晶構造が同じで、格子定数も近いので、(002)、(004)では、酸化亜鉛とGaNのピークが近接しており、明確に分離することが難しい。
 図26は、高角度側での、実施例5の波長変換素子のXRD測定結果(2θ/ωスキャン)を示す。図26に示すように、酸化亜鉛(006)とGaN(006)のピークが、明確に分離して検出された。
 図27は、実施例5の波長変換素子の酸化亜鉛(006)のチルト(結晶軸の傾き)をX線ロッキングカーブ法にて評価したXRD測定結果(ωスキャン)を示す。これによって、酸化亜鉛のc軸の傾きを評価した。図27に示されるように、酸化亜鉛(006)のロッキングカーブの半値幅は、0.2°であった。これを蛍光体層の酸化亜鉛のc軸の傾きと定義する。実施例5の酸化亜鉛のc軸の結晶軸の傾きは、実施例1の柱状結晶の酸化亜鉛と比較して、非常に小さいことが確認できた。さらに、同様の方法で、実施例5のGaN/サファイア基板上の単結晶の下地ZnO層の酸化亜鉛(006)のロッキングカーブの半値幅を測定した。その半値幅は、0.2°であった。これを下地ZnO層のc軸の傾きと定義する。実施例5の下地ZnO層のc軸の傾きも、実施例1の下地ZnO層と比較して、非常に小さいことが確認できた。なお、実施例5のGaN/サファイア基板上の単結晶の下地ZnO層のXRD測定(2θ/ωスキャン)を行った結果から、酸化亜鉛がc軸配向していることが確認できた。
 図28は、実施例5の波長変換素子のXRD測定結果(Φスキャン)を示す。この測定は、試料を面内方向に360°回転することによって、面内の結晶配向を評価できる。酸化亜鉛(202)、GaN(202)、Al23(113)で評価した。図28に示すように、酸化亜鉛の六回対称のパターンが表れていることから、蛍光体層の酸化亜鉛は、結晶方位が揃った単結晶であることが確認できた。またサファイア基板のAl23のピーク位置と、GaNのピーク位置と、酸化亜鉛のピーク位置が、全て一致しているため、酸化亜鉛の結晶方位は、サファイア基板およびGaN薄膜の結晶方位に対し、エピタキシャルな関係を示しており、酸化亜鉛は、サファイア基板およびGaN薄膜に対し、エピタキシャル成長していることが確認できた。
 図29は、実施例5の蛍光体層を破断した断面SEM観察像を示す。図30は、実施例5の蛍光体層を破断した断面SEM観察像の中央付近の拡大像を示す。蛍光体層を破断した試料を観察しているため、観察像の中で示すような、丸く凹部に見える箇所は、蛍光体粒子が埋められていた跡を示し、破断した試料の反対側の面に蛍光体があると考えられる。図29に示されるように、蛍光体層の表面には、酸化亜鉛ロッドが成長し、自己組織的に、酸化亜鉛ロッドによる凹凸形成ができた。図29、図30から明らかなように、蛍光体層の全体にわたり、蛍光体層の内部が酸化亜鉛で緻密に充填されていることが確認できた。さらに実施例1の蛍光体層と異なり、実施例5の酸化亜鉛には結晶粒界が見られない。これは、酸化亜鉛が単結晶の下地ZnO層からエピタキシャル成長したために、蛍光体層の内部を結晶粒界がない単結晶の酸化亜鉛で緻密に充填できたからである。
 図31に、実施例5の蛍光体層の断面TEM観察像を示す。図31から明らかなように、下地ZnO層にc軸配向の単結晶の酸化亜鉛を用いることによって、蛍光体粒子層の内部の空隙を、酸化亜鉛で緻密に充填できたことが確認できた。
 図32は、図31に示した範囲におけるTEMによる電子線回折像を示す顕微鏡写真を示す。図32に示すように、明瞭な酸化亜鉛の回折スポットが見られた。このことから、実施例5の蛍光体層の内部の酸化亜鉛が単結晶であることが確認できた。
 表3に、実施例5と比較例4のLED素子の発光強度についての結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000003
 単位面積あたりの蛍光体の重量をすべての試料で合わせた。発光強度は、比較例4のLED素子の発光強度を100として他のLED素子の発光強度を示している。実施例5の発光強度は、127であり、比較例4のシリコーン樹脂に蛍光体粒子を分散させた蛍光体層を用いたLED素子よりも、1.27倍の発光強度が得られた。蛍光体層の内部をc軸配向の柱状結晶の酸化亜鉛で充填した実施例1は、比較例1に対する発光強度が1.20倍であった。これらの結果を比較すると、蛍光体層の内部を単結晶の酸化亜鉛で充填した実施例5の方が、蛍光体層の内部を柱状結晶の酸化亜鉛で充填した実施例1よりも、発光強度の向上が大きい。これは、蛍光体層の内部を、結晶粒界のない単結晶の酸化亜鉛で緻密に充填できたからである。そのため、柱状結晶の酸化亜鉛で充填した蛍光体層よりも、蛍光体層での光散乱が抑制できた。
 図33に、実施例5と実施例1と比較例4のLED素子の発光スペクトルを示す。図33に示されるように、実施例5では、蛍光体粒子層の内部を結晶粒界のない単結晶の酸化亜鉛で緻密に充填できたために、実施例1、比較例4よりも蛍光体層での光散乱が抑制され、LEDチップからの青色光を、効率良くLED素子の外部に取り出すことができた。
(実施例6)
 発光波長が446nmで、発光強度が同じ青色LEDチップを複数用意した。実施例1のYAG:Ce蛍光体に換えて、屈折率が1.9、平均粒径が6μmのβ-SiAlON(サイアロン):Eu蛍光体を用いて、実施例1と同様の方法で、蛍光体粒子層の内部の空隙を酸化亜鉛で充填した蛍光体層を形成した。なお、蛍光体粒子層の厚さは、約30μmで、単位面積あたりの蛍光体重量は、5.0mg/cm2であった。さらに、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表4に示す。
(比較例5)
 実施例6と同様に、発光波長が446nmの発光強度が同じ青色LEDチップと、屈折率が1.9、平均粒径が6μmのβ-SiAlON:Eu蛍光体を用いて、比較例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表4に示す。なお、シリコーン樹脂を用いた蛍光体層の厚さは、180μmで、比較例1と同様に算出された単位面積あたりの蛍光体重量は、5.0mg/cm2であった。
 図34は、実施例6の波長変換素子のXRD測定結果(2θ/ωスキャン)を示す。図34に示されるように、蛍光体のピーク、および酸化亜鉛のc面以外の回折ピークに比べて、非常に大きな酸化亜鉛(002)、(004)のピークが検出された。これにより実施例6の蛍光体層の酸化亜鉛は、c軸配向が非常に強いことが確認できた。さらに実施例1と同様の方法で、実施例6の波長変換素子の酸化亜鉛(002)のロッキングカーブの半値幅を測定した。実施例6の酸化亜鉛(002)のロッキングカーブの半値幅は、2.5°であった。
 図35は、実施例6の蛍光体層を破断した基板界面付近の断面SEM観察像を示す。蛍光体層を破断した試料を観察しているため、観察像の中で示すような、凹部に見える箇所は、蛍光体粒子が埋められていた跡を示し、破断した試料の反対側の面に蛍光体があると考えられる。図35から明らかなように、蛍光体層の内部が酸化亜鉛で緻密に充填されていることがわかる。また、蛍光体層の内部の酸化亜鉛には、縦方向に結晶粒界が見られる。これは、溶液成長によって酸化亜鉛が柱状結晶に成長したことを示している。図35から、酸化亜鉛は、下地ZnO層と密に接しており、下地ZnO層から酸化亜鉛が結晶成長し、蛍光体粒子の周囲を酸化亜鉛の柱状結晶が埋めている状態がわかる。これにより、蛍光体に、β-SiAlONを用いた場合であっても、光の出射方向に、結晶粒界の少ない柱状結晶の酸化亜鉛が配置できたことが確認できた。
 表4に、実施例6と比較例5のLED素子の発光強度についての結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000004
 単位面積あたりの蛍光体の重量を2つの試料で合わせた。発光強度は、比較例5のLED素子の発光強度を100として他のLED素子の発光強度を示している。実施例6の発光強度は、122であり、比較例5のシリコーン樹脂に蛍光体粒子を分散させた蛍光体層を用いたLED素子よりも、1.22倍の発光強度が得られた。これは、蛍光体層の内部を、c軸配向の結晶粒界の少ない柱状結晶の酸化亜鉛で緻密に充填できたからである。そのため、蛍光体層での光散乱が抑制できた。
 図36に、実施例6と比較例5のLED素子の発光スペクトルを示す。図36に示されるように、実施例6では、蛍光体粒子層の内部をc軸配向の柱状結晶の酸化亜鉛で緻密に充填できたために、比較例5よりも蛍光体層での光散乱が抑制され、LEDチップからの励起光を、効率良くLED素子の外部に取り出すことができた。
(実施例7)
 発光波長が446nmで、発光強度が同じ半導体レーザチップを複数用意した。実施例1と同様の方法で、蛍光体粒子層の内部の空隙を酸化亜鉛で充填した蛍光体層を形成した。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。その蛍光体層を、図13に示すように、キャップ303の開口部304の大きさに合うよう、蛍光体層をダイシング加工によって切断し、個片化された波長変換素子を用意した。さらに、半導体レーザチップをブロック302に半田を用いて取り付け、ボンディングワイヤを用いて、半導体レーザチップ310とステム301に設けられたリード305との間の電気的な接続を行った。次に、個片化された波長変換素子を、基板側が半導体レーザ発光装置からの光の出射面408の側になるよう、開口部304と波長変換素子の端部を、接着剤で固定し、図13の半導体レーザ発光装置を完成させた。完成した半導体レーザ発光装置を積分球に取り付け、30mAの定電流で駆動し、半導体レーザ発光装置の全放射束の発光強度を測定した。この結果を表5に示す。
(比較例6)
 比較例1と同様の方法で、シリコーン樹脂に蛍光体を分散させた蛍光体層を形成した。その後は、実施例7と同様に、発光波長が446nmの発光強度が同じ半導体レーザチップチップを用いて、半導体レーザ発光装置を完成させ、半導体レーザ発光装置の全放射束の発光強度を測定した。この結果を表5に示す。なお、シリコーン樹脂を用いた蛍光体層の厚さは、90μmで、比較例1と同様に算出された単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
 表5に、実施例7と比較例6の半導体レーザ発光装置の発光強度についての結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000005
 単位面積あたりの蛍光体の重量を2つの試料で合わせた。発光強度は、比較例6の半導体レーザ発光装置の発光強度を100として他の半導体レーザ発光装置の発光強度を示している。実施例7の発光強度は、119であり、比較例6のシリコーン樹脂に蛍光体粒子を分散させた蛍光体層を用いた半導体レーザ発光装置よりも、1.19倍の発光強度が得られた。これは、蛍光体層の内部を、c軸配向の結晶粒界の少ない柱状結晶の酸化亜鉛で緻密に充填できたからである。そのため、蛍光体層での光散乱が抑制できた。
 図37(a)、(b)に、実施例7と比較例6の半導体レーザ発光装置の発光スペクトルを示す。図37(a)は、半導体レーザチップからの励起光付近の拡大図であり、図37(b)は、励起光によって励起された蛍光付近の拡大図である。図37(a)、(b)に示されるように、実施例7では、蛍光体粒子層の内部をc軸配向の柱状結晶の酸化亜鉛で緻密に充填できたために、比較例6よりも蛍光体層での光散乱が抑制され、半導体レーザチップからの励起光を、効率良く半導体レーザ発光装置の外部に取り出すことができた。
(実施例8)
 屈折率が1.9、平均粒径が6μmのβ-SiAlON:Eu蛍光体を用いて、実施例6と同様の方法で、蛍光体粒子層の内部の空隙を酸化亜鉛で充填した蛍光体層を形成した。なお、単位面積あたりの蛍光体重量は、5.0mg/cm2であった。さらに、実施例7と同様の方法で、半導体レーザ発光装置を完成させ、半導体レーザ発光装置の全放射束の発光強度を測定した。この結果を表6に示す。
(比較例7)
 屈折率が1.9、平均粒径が6μmのβ-SiAlON:Eu蛍光体を用いて、比較例5と同様の方法で、シリコーン樹脂に蛍光体を分散させた蛍光体層を完成させた。その後は、実施例7と同様の方法で、半導体レーザ発光装置を完成させ、半導体レーザ発光装置の全放射束の発光強度を測定した。この結果を表6に示す。なお、シリコーン樹脂を用いた蛍光体層の厚さは、180μmで、比較例1と同様に算出された単位面積あたりの蛍光体重量は、5.0mg/cm2であった。
 表6に、実施例8と比較例7の半導体レーザ発光装置の発光強度についての結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000006
 単位面積あたりの蛍光体の重量を2つの試料で合わせた。発光強度は、比較例7の半導体レーザ発光装置の発光強度を100として他の半導体レーザ発光装置の発光強度を示している。実施例8の発光強度は、141であり、比較例7のシリコーン樹脂に蛍光体粒子を分散させた蛍光体層を用いた半導体レーザ発光装置よりも、1.41倍の発光強度が得られた。これは、蛍光体層の内部を、c軸配向の結晶粒界の少ない柱状結晶の酸化亜鉛で緻密に充填できたからである。そのため、蛍光体層での光散乱が抑制できた。
 図38(a)、(b)に、実施例8と比較例7の半導体レーザ発光装置の発光スペクトルを示す。図38(a)は、半導体レーザチップからの励起光付近の拡大図であり、図38(b)は、励起光によって励起された蛍光付近の拡大図である。図38(a)、(b)に示されるように、実施例8では、蛍光体粒子層の内部をc軸配向の柱状結晶の酸化亜鉛で緻密に充填できたために、比較例7よりも蛍光体層での光散乱が抑制され、半導体レーザチップからの励起光を、効率良く半導体レーザ発光装置の外部に取り出すことができた。
(実施例9)
 発光波長が430nmで、発光強度が同じ青色LEDチップを複数用意した。実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。この結果を表7に示す。
(比較例8)
 実施例9と同様に、発光波長が430nmの発光強度が同じ青色LEDチップを用いて、比較例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表7に示す。なお、シリコーン樹脂を用いた蛍光体層の厚さは、90μmで、比較例1と同様に算出された単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
表7に、実施例9と比較例8のLED素子の発光強度についての結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000007
 単位面積あたりの蛍光体の重量を2つの試料で合わせた。発光強度は、比較例8のLED素子の発光強度を100として他のLED素子の発光強度を示している。実施例9の発光強度は、112であり、比較例8のシリコーン樹脂に蛍光体粒子を分散させた蛍光体層を用いたLED素子よりも、1.12倍の発光強度が得られた。これは、蛍光体層の内部を、c軸配向の結晶粒界の少ない柱状結晶の酸化亜鉛で緻密に充填できたからである。そのため、蛍光体層での光散乱が抑制できた。
(実施例10)
 発光波長が430nmで、発光強度が同じ青色LEDチップを複数用意した。屈折率が1.9、平均粒径が6μmのβ-SiAlON:Eu蛍光体を用いて、実施例6と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。なお、単位面積あたりの蛍光体重量は、5.0mg/cm2であった。この結果を表8に示す。
(比較例9)
 実施例10と同様に、発光波長が430nmの発光強度が同じ青色LEDチップ、屈折率が1.9、平均粒径が6μmのβ-SiAlON:Eu蛍光体を用いて、比較例5と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表8に示す。なお、シリコーン樹脂を用いた蛍光体層の厚さは、180μmで、比較例1と同様に算出された単位面積あたりの蛍光体重量は、5.0mg/cm2であった。
 表8に、実施例10と比較例9のLED素子の発光強度についての結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000008
 単位面積あたりの蛍光体の重量を2つの試料で合わせた。発光強度は、比較例9のLED素子の発光強度を100として他のLED素子の発光強度を示している。実施例10の発光強度は、115であり、比較例9のシリコーン樹脂に蛍光体粒子を分散させた蛍光体層を用いたLED素子よりも、1.15倍の発光強度が得られた。これは、蛍光体層の内部を、c軸配向の結晶粒界の少ない柱状結晶の酸化亜鉛で緻密に充填できたからである。そのため、蛍光体層での光散乱が抑制できた。
 (酸化亜鉛の透過率の評価)
 実施例1と同じ下地ZnO層が形成されたガラス基板を、蛍光体粒子層を形成せずに、実施例1と同様の溶液成長法で、酸化亜鉛膜のみ結晶成長し形成した。酸化亜鉛膜の厚さは、約20μmであった。酸化亜鉛膜の透過率の測定は、酸化亜鉛膜を形成していないガラス基板を波長範囲330nmから800nmのリファレンスとして用いて行った。ガラス基板に代えて、サファイア基板上にも、実施例1と同様の方法で、下地ZnO層を形成し、実施例1と同様の溶液成長法で、約20μmの酸化亜鉛膜を形成した。サファイア基板上の酸化亜鉛膜についても、同様にサファイア基板をリファレンスとして用いて、透過率の測定を行った。
 図39に、ガラス基板上、サファイア基板上の酸化亜鉛膜の透過率スペクトルをそれぞれ示す。波長470nmでは、ガラス基板上の酸化亜鉛膜の透過率は、90%、サファイア基板上の酸化亜鉛膜の透過率は、95%であった。波長430nmでは、ガラス基板上の酸化亜鉛膜の透過率は、88%、サファイア基板上の酸化亜鉛膜の透過率は、94%であった。波長420nmでは、ガラス基板上の酸化亜鉛膜の透過率は、87%、サファイア基板上の酸化亜鉛膜の透過率は、92%であった。波長400nmでは、ガラス基板上の酸化亜鉛膜の透過率は、72%、サファイア基板上の酸化亜鉛膜の透過率は、75%であった。
 溶液成長で形成した酸化亜鉛膜の透過率は、非常に高く、青紫光の波長400nmから420nmの範囲で透過率が72%以上であるため、励起光が青紫光の場合でも、本発明の蛍光体層を励起できる。さらに、青色光の波長420nmから470nmの範囲では、透過率が87%以上であるため、励起光が青紫光よりも青色光の方が、さらに効率的に本発明の蛍光体層を励起できる。
 上記の実験例から理解されるように、蛍光体粒子層の内部の空隙を、c軸配向であって、c軸の傾きが4°以下の柱状結晶の酸化亜鉛で充填した蛍光体層は、蛍光体層での光散乱が抑制され、その蛍光体層を含む波長変換素子を用いたLED素子は、高い発光強度を達成した。
 さらに、蛍光体粒子層の内部の空隙を単結晶の酸化亜鉛で充填した蛍光体層は結晶粒界がなく、柱状結晶の酸化亜鉛で充填した蛍光体層よりも、さらに蛍光体層での光散乱が抑制され、その蛍光体層を含む波長変換素子を用いたLED素子は、さらに高い発光強度を達成した。また、蛍光体粒子層の内部の空隙を、c軸配向であって、c軸の傾きが4°以下の柱状結晶の酸化亜鉛で充填した蛍光体層は、蛍光体層での光散乱が抑制され、その蛍光体層を含む波長変換素子を用いた半導体レーザ発光装置は、高い発光強度を達成した。
 また、蛍光体として、YAG蛍光体だけでなく、β-SiAlON蛍光体であっても、蛍光体粒子層の内部の空隙を、c軸配向であって、c軸の傾きが4°以下の柱状結晶の酸化亜鉛で充填した蛍光体層は、蛍光体層での光散乱が抑制され、その蛍光体層を含む波長変換素子を用いたLED素子、半導体レーザ発光装置は、高い発光強度を達成した。
 本願に開示された蛍光体層を含む波長変換素子、LED素子、半導体レーザ発光装置は、照明、自動車用HD(Head Light)、自動車用DRL(Daytime Running Light)またはディスプレイ、プロジェクタに組み込まれる。また、本発明によるカラーホイールは、プロジェクタに組み込まれる。
1、41 基板
2 酸化亜鉛の薄膜
3 蛍光体
4 蛍光体粒子層
5 c軸配向の酸化亜鉛
6 c軸配向の酸化亜鉛で形成された波長変換素子
7、7’ 蛍光体層
7a、7b 蛍光体層の主面
42 単結晶の酸化亜鉛の薄膜
45 単結晶の酸化亜鉛
46 単結晶の酸化亜鉛で形成された波長変換素子
50 波長変換素子
60 LED素子
61 支持体
62 LEDチップ
62a 基板
62b n型GaN層
62c 発光層
62d p型GaN層
63 LEDチップからの光の出射面
64 半田
65 ボンディングワイヤ
66 電極
67 LED素子からの光の出射面
68 LEDチップからの光の入射面
70、80 LEDチップ
71 半導体発光素子の基板
72 半導体発光素子
73 半導体発光素子の発光層
74 結晶分離層
75 c軸配向の酸化亜鉛で形成された波長変換素子
95 単結晶の酸化亜鉛で形成された波長変換素子
301 ステム
302 ブロック
303 キャップ
304 開口部
305 リード
307 半導体レーザチップからの光の入射面
308 半導体レーザ発光素子からの光の出射面
310 半導体レーザチップ
330 半導体レーザ発光装置
400 カラーホイール
410 円盤
411 開口
412 遮光領域
420、421 レンズ
430 ホイールモータ
500 光源
501 赤色光源
502 青色光源
510 出力光
511、512 ダイクロミック・ミラー
521、522 ミラー

Claims (27)

  1.  複数の蛍光体粒子と、前記複数の蛍光体粒子の間に位置し、c軸に配向した酸化亜鉛または単結晶である酸化亜鉛によって構成されたマトリックスとを含む波長変換素子。
  2.  前記複数の蛍光体粒子および前記マトリックスを含む蛍光体層を備えた請求項1に記載の波長変換素子。
  3.  前記酸化亜鉛のc軸のX線ロッキングカーブ法による半値幅が4°以下である、請求項1または2に記載の波長変換素子。
  4.  前記蛍光体層に接し、酸化亜鉛で構成された薄膜をさらに備える請求項2または3に記載の波長変換素子。
  5.  前記薄膜に接する基板をさらに備え、前記薄膜は前記蛍光体層と前記基板との間に位置している請求項4に記載の波長変換素子。
  6.  前記蛍光体層に接する基板をさらに備える請求項2または3に記載の波長変換素子。
  7.  前記基板は、ガラス、石英、酸化ケイ素、サファイア、窒化ガリウムおよび酸化亜鉛からなる群から選ばれる1つによって構成されている請求項5または6に記載の波長変換素子。
  8.  前記酸化亜鉛は柱状結晶である、請求項1から7のいずれかに記載の波長変換素子。
  9.  前記単結晶の酸化亜鉛がc軸配向である、請求項1から7のいずれかに記載の波長変換素子。
  10.  前記蛍光体粒子が、YAG(イットリウム・アルミニウム・ガーネット)蛍光体およびβ-SiAlON(サイアロン)からなる群から選ばれる少なくとも一方を含む、請求項1から9のいずれかに記載の波長変換素子。
  11.  励起光を放射する半導体発光素子と、
     前記半導体発光素子から放射される前記励起光が入射する、請求項1から10のいずれかに記載の波長変換素子と
    を備えるLED素子。
  12.  前記波長変換素子は、前記半導体発光素子上に直接形成されている、請求項11に記載のLED素子。
  13.  前記波長変換素子と前記半導体発光素子との間に位置する結晶分離層をさらに備える請求項11に記載のLED素子。
  14.  前記結晶分離層は二酸化ケイ素を主成分とするアモルファス材料によって構成されている請求項13に記載のLED素子。
  15.  前記結晶分離層はプラズマ化学気相成長法によって形成されている請求項14に記載のLED素子。
  16.  前記半導体発光素子は、
     n型GaN層と、
     p型GaN層と、
     前記n型GaN層および前記p型GaN層に挟まれたInGaNからなる発光層と
    を含む請求項11から15のいずれかに記載のLED素子。
  17.  前記励起光は青色または青紫の波長帯域の光である請求項11から16のいずれかに記載のLED素子。
  18.  前記複数の蛍光体粒子は、青色蛍光体および黄色蛍光体を含み、
     前記励起光は青紫の波長帯域の光であり、
     前記励起光が前記青色蛍光体を励起することにより、前記青色蛍光体が青色光を出射し、前記励起光または前記青色光が前記黄色蛍光体を励起することにより、前記黄色蛍光体が黄色光を出射する請求項17に記載のLED素子。
  19.  励起光を放射する半導体レーザチップと、
     前記半導体レーザチップから放射される前記励起光が入射する、請求項1から10のいずれかに記載の波長変換素子と
    を備える半導体レーザ発光装置。
  20.  前記励起光は青色または青紫の波長帯域の光である請求項19に記載の半導体レーザ発光装置。
  21.  前記複数の蛍光体粒子は、青色蛍光体および黄色蛍光体を含み、
     前記励起光は青紫の波長帯域の光であり、
     前記励起光が前記青色蛍光体を励起することにより、前記青色蛍光体が青色光を出射し、前記励起光または前記青色光が前記黄色蛍光体を励起することにより、前記黄色蛍光体が黄色光を出射する請求項20に記載の半導体レーザ発光装置。
  22.  請求項19から21のいずれかに記載の半導体レーザ発光装置と、
     前記半導体レーザ発光装置に電力を供給する電力供給源と
    を備えたヘッドライトまたは車両。
  23.  c軸配向した酸化亜鉛の薄膜上に、蛍光体粒子からなる蛍光体粒子層を形成する工程(a)と、
     溶液成長法を用いて、前記蛍光体粒子層の内部の空隙を酸化亜鉛で充填し、蛍光体層を
    形成する工程(b)
    とを含む波長変換素子の製造方法。
  24.  前記酸化亜鉛の薄膜のc軸のX線ロッキングカーブ法による半値幅が4.5°以下である、請求項23に記載の波長変換素子の製造方法。
  25.  前記酸化亜鉛の薄膜が、エピタキシャル成長した単結晶である、請求項23または24に記載の波長変換素子の製造方法。
  26.  前記蛍光体粒子層を形成する工程が、電気泳動法である、請求項23から25のいずれかに記載の波長変換素子の製造方法。
  27.  前記蛍光体粒子が、YAG(イットリウム・アルミニウム・ガーネット)蛍光体およびβ-SiAlON(サイアロン)からなる群から選ばれる少なくとも一方を含む、請求項23から26のいずれかに記載の波長変換素子の製造方法。
PCT/JP2013/003103 2012-05-16 2013-05-15 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置 WO2013172025A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013002508.6T DE112013002508B4 (de) 2012-05-16 2013-05-15 Wellenlängen-Umwandlungselement, Verfahren zu seiner Herstellung und LED-Element und Laserlicht emittierendes Halbleiterbauteil, die das Wellenlängen-Umwandlungselement verwenden
CN201380001356.0A CN103534824B (zh) 2012-05-16 2013-05-15 波长变换元件及其制造方法和使用波长变换元件的led元件及半导体激光发光装置
JP2013537959A JP6132204B2 (ja) 2012-05-16 2013-05-15 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置
US14/070,882 US8854725B2 (en) 2012-05-16 2013-11-04 Wavelength conversion element, method of manufacturing the same, and LED element and semiconductor laser light emitting device using wavelength conversion element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012112163 2012-05-16
JP2012-112163 2012-05-16
JP2012113250 2012-05-17
JP2012-113250 2012-05-17
JP2012116188 2012-05-22
JP2012-116188 2012-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/070,882 Continuation US8854725B2 (en) 2012-05-16 2013-11-04 Wavelength conversion element, method of manufacturing the same, and LED element and semiconductor laser light emitting device using wavelength conversion element

Publications (1)

Publication Number Publication Date
WO2013172025A1 true WO2013172025A1 (ja) 2013-11-21

Family

ID=49583453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003103 WO2013172025A1 (ja) 2012-05-16 2013-05-15 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置

Country Status (5)

Country Link
US (1) US8854725B2 (ja)
JP (1) JP6132204B2 (ja)
CN (1) CN103534824B (ja)
DE (1) DE112013002508B4 (ja)
WO (1) WO2013172025A1 (ja)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013207226A1 (de) * 2013-04-22 2014-10-23 Osram Opto Semiconductors Gmbh Herstellung eines Schichtelements für einen optoelektronischen Halbleiterchip
JP2015008278A (ja) * 2013-05-31 2015-01-15 パナソニックIpマネジメント株式会社 波長変換素子、波長変換素子を備えた発光装置、発光装置を備えた車両、および波長変換素子の製造方法
JP2015034867A (ja) * 2013-08-08 2015-02-19 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2015034866A (ja) * 2013-08-08 2015-02-19 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2015036790A (ja) * 2013-08-15 2015-02-23 ソニー株式会社 光源装置、画像表示装置、及び光学ユニット
WO2015129223A1 (ja) * 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 発光装置
EP2930418A1 (en) * 2014-01-31 2015-10-14 Christie Digital Systems Canada, Inc. A light emitting wheel with eccentricity for dispelling a thermal boundary layer
DE102015113692A1 (de) 2014-09-11 2016-03-24 Panasonic Intellectual Property Management Co., Ltd. Wellenlängen-Umwandlungs-Element, Licht-emittierende Vorrichtung, Projektor und Verfahren zur Herstellung eines Wellenlängen-Umwandlungs-Elements
JP2016058638A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 波長変換部材、発光装置、プロジェクタ、及び、波長変換部材の製造方法
JP2016070947A (ja) * 2014-09-26 2016-05-09 セイコーエプソン株式会社 波長変換素子、光源装置、プロジェクター
JP2016171298A (ja) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 発光装置および内視鏡
WO2016165570A1 (zh) * 2015-04-16 2016-10-20 深圳市光峰光电技术有限公司 一种漫反射层的制备方法及波长转换装置
JP2016536633A (ja) * 2013-10-15 2016-11-24 アポトロニクス コーポレイション リミテッド 波長変換装置の製造方法
US9515239B2 (en) 2014-02-28 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
US9518215B2 (en) 2014-02-28 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
EP3121859A1 (en) 2015-07-23 2017-01-25 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter, light source, lighting system, and method for producing wavelength converter
JP2017027019A (ja) * 2015-07-22 2017-02-02 パナソニックIpマネジメント株式会社 光源装置
JP2017040905A (ja) * 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 発光装置
WO2017043122A1 (ja) * 2015-09-08 2017-03-16 シャープ株式会社 波長変換部材および発光装置
US9618697B2 (en) 2014-02-28 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Light directional angle control for light-emitting device and light-emitting apparatus
WO2017208572A1 (ja) * 2016-05-30 2017-12-07 ソニー株式会社 画像表示装置、及び光源装置
US9880336B2 (en) 2014-02-28 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US9882100B2 (en) 2015-08-20 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device having surface structure for limiting directional angle of light
US9890912B2 (en) 2014-02-28 2018-02-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US9899577B2 (en) 2015-06-08 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
WO2018038259A1 (ja) * 2016-08-26 2018-03-01 地方独立行政法人神奈川県立産業技術総合研究所 窒化物蛍光体粒子分散型サイアロンセラミックス、蛍光部材、窒化物蛍光体粒子分散型サイアロンセラミックスの製造方法
JP2018056160A (ja) * 2016-09-26 2018-04-05 日亜化学工業株式会社 発光装置
US10012780B2 (en) 2014-02-28 2018-07-03 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US10031276B2 (en) 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer
WO2018163830A1 (ja) * 2017-03-08 2018-09-13 パナソニックIpマネジメント株式会社 光源装置
US10094522B2 (en) 2016-03-30 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device having photoluminescent layer
US10094529B2 (en) 2016-04-20 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member including phosphor that converts light from semiconductor light-emitting element into longer-wavelength light
US10115874B2 (en) 2015-06-08 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US10113712B2 (en) 2015-03-13 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
WO2019003927A1 (ja) 2017-06-29 2019-01-03 パナソニックIpマネジメント株式会社 波長変換部材及び光源
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
WO2019044409A1 (ja) 2017-08-28 2019-03-07 パナソニックIpマネジメント株式会社 波長変換部材、光源、照明装置及び波長変換部材の製造方法
WO2019065193A1 (ja) 2017-09-28 2019-04-04 パナソニックIpマネジメント株式会社 波長変換部材及び光源
WO2019065194A1 (ja) * 2017-09-28 2019-04-04 パナソニックIpマネジメント株式会社 波長変換部材、光源、蛍光体粒子及び波長変換部材の製造方法
WO2019078299A1 (ja) * 2017-10-19 2019-04-25 パナソニックIpマネジメント株式会社 波長変換体
US10359155B2 (en) 2015-08-20 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
CN110412816A (zh) * 2018-04-28 2019-11-05 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法及投影装置
WO2020012923A1 (ja) * 2018-07-12 2020-01-16 パナソニックIpマネジメント株式会社 光源装置、プロジェクタ及び車両
WO2020017536A1 (ja) * 2018-07-19 2020-01-23 パナソニックIpマネジメント株式会社 波長変換部材
JP2020136670A (ja) * 2019-02-21 2020-08-31 シャープ株式会社 発光装置
US10794569B2 (en) 2017-03-02 2020-10-06 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source and lighting device
US11111433B2 (en) 2014-03-06 2021-09-07 National University Corporation Yokohama National University Transparent fluorescent sialon ceramic and method of producing same
DE112019006277T5 (de) 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung und Projektor
DE112019006269T5 (de) 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung, Projektor und Herstellungsverfahren für ein Wellenlängenumwandlungselement
DE112019006812T5 (de) 2019-02-04 2021-10-21 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement und projektor
US11897814B2 (en) 2020-08-07 2024-02-13 Nichia Corporation Rare earth aluminate sintered compact and method for producing rare earth aluminate sintered compact
US11946606B2 (en) 2018-09-12 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source device using same, projector and vehicle

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190778A1 (ja) * 2012-06-21 2013-12-27 パナソニック株式会社 発光装置および投写装置
CN104044540B (zh) * 2014-05-30 2016-03-09 黄建 军用运输车辆蓝紫光防空隐蔽灯罩
JP2016099558A (ja) * 2014-11-25 2016-05-30 セイコーエプソン株式会社 波長変換素子、光源装置、プロジェクターおよび波長変換素子の製造方法
CN105737103B (zh) * 2014-12-10 2018-07-20 深圳市光峰光电技术有限公司 波长转换装置及相关荧光色轮和投影装置
TWI649900B (zh) * 2015-02-04 2019-02-01 億光電子工業股份有限公司 Led封裝結構及其製造方法
US10156025B2 (en) * 2015-05-04 2018-12-18 University Of South Carolina Monolithic heterogeneous single crystals with multiple regimes for solid state laser applications
DE102016106841B3 (de) 2015-12-18 2017-03-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Konverter zur Erzeugung eines Sekundärlichts aus einem Primärlicht, Leuchtmittel, die solche Konverter enthalten, sowie Verfahren zur Herstellung der Konverter und Leuchtmittel
TWI582520B (zh) 2015-12-18 2017-05-11 中強光電股份有限公司 波長轉換裝置及投影機
DE102015226636A1 (de) * 2015-12-23 2017-06-29 Osram Gmbh Leuchtvorrichtung mit laserdiode und wandlereinrichtung
JP6469893B2 (ja) * 2016-01-26 2019-02-13 シャープ株式会社 発光装置および照明装置
JP6967689B2 (ja) * 2016-03-15 2021-11-17 パナソニックIpマネジメント株式会社 光源装置及び投写型映像表示装置
JP6760365B2 (ja) * 2016-05-13 2020-09-23 Agc株式会社 映像投影用構造体、透明スクリーン、および映像投影用構造体の製造方法
EP3537188B1 (en) * 2016-11-02 2021-10-27 Kyocera Corporation Color wheel and method for manufacturing a color wheel
US10700242B2 (en) * 2016-12-27 2020-06-30 Nichia Corporation Method of producing wavelength conversion member
EP3572853B1 (en) * 2017-01-18 2022-12-28 NGK Insulators, Ltd. Optical component and lighting device
DE102017104128A1 (de) 2017-02-28 2018-08-30 Osram Gmbh Konversionselement, optoelektronisches Bauelement und Verfahren zur Herstellung eines Konversionselements
CN108535943B (zh) * 2017-03-03 2021-07-06 深圳光峰科技股份有限公司 一种光源装置及其投影显示系统
US10802385B2 (en) * 2017-08-08 2020-10-13 Panasonic Intellectual Property Management Co., Ltd. Phosphor plate, light source apparatus, and projection display apparatus
CN111699419B (zh) * 2018-02-19 2022-09-09 日本碍子株式会社 光学部件及照明装置
JP2019176076A (ja) * 2018-03-29 2019-10-10 豊田合成株式会社 発光装置
CN111474815A (zh) 2019-01-23 2020-07-31 中强光电股份有限公司 波长转换装置及投影装置
CN111474817A (zh) * 2019-01-24 2020-07-31 中强光电股份有限公司 波长转换模块以及投影装置
CN112441817B (zh) * 2019-08-29 2023-12-29 深圳市绎立锐光科技开发有限公司 荧光陶瓷及其制备方法、光源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338735A (ja) * 1991-05-15 1992-11-26 Ricoh Co Ltd 非線形光学材料
JP2004315342A (ja) * 2003-03-31 2004-11-11 Japan Science & Technology Agency 高密度柱状ZnO結晶膜体とその製造方法
JP2007046002A (ja) * 2005-08-12 2007-02-22 Canon Inc 複合酸化物蛍光体とその製造方法及び発光素子
WO2010114172A1 (ja) * 2009-03-31 2010-10-07 Toto株式会社 ドープ薄層を有する複合材料及びその製造方法
JP2011168627A (ja) * 2010-02-16 2011-09-01 National Institute For Materials Science 波長変換部材、その製造方法、および、それを用いた発光器具

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US8900480B2 (en) * 2003-01-20 2014-12-02 Ube Industries, Ltd. Ceramic composite material for light conversion and use thereof
US7208768B2 (en) * 2004-04-30 2007-04-24 Sharp Laboratories Of America, Inc. Electroluminescent device
DE102005061828B4 (de) * 2005-06-23 2017-05-24 Osram Opto Semiconductors Gmbh Wellenlängenkonvertierendes Konvertermaterial, lichtabstrahlendes optisches Bauelement und Verfahren zu dessen Herstellung
JP4835333B2 (ja) * 2006-09-05 2011-12-14 日亜化学工業株式会社 発光装置の形成方法
US7442568B1 (en) * 2006-10-27 2008-10-28 Sharp Laboratories Of America, Inc. Method to fabricate combined UV light emitter and phosphor for white light generation
JP5347231B2 (ja) 2007-03-23 2013-11-20 日亜化学工業株式会社 半導体レーザ装置
JP5071037B2 (ja) 2007-10-22 2012-11-14 日亜化学工業株式会社 半導体レーザ装置
DE102007053770A1 (de) 2007-11-12 2009-05-14 Merck Patent Gmbh Beschichtete Leuchtstoffpartikel mit Brechungsindex-Anpassung
WO2009105581A1 (en) * 2008-02-21 2009-08-27 Nitto Denko Corporation Light emitting device with translucent ceramic plate
DE102009025266B4 (de) * 2009-06-17 2015-08-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil
JP5406639B2 (ja) 2009-08-31 2014-02-05 カシオ計算機株式会社 光源装置及びプロジェクタ
JP2011111506A (ja) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd 波長変換粒子、波長変換部材及び発光装置
JP2011180353A (ja) 2010-03-01 2011-09-15 Minebea Co Ltd プロジェクタ
WO2011111293A1 (ja) * 2010-03-10 2011-09-15 パナソニック株式会社 Led封止樹脂体、led装置およびled装置の製造方法
JP5704987B2 (ja) * 2011-03-25 2015-04-22 富士フイルム株式会社 波長変換素子および光電変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338735A (ja) * 1991-05-15 1992-11-26 Ricoh Co Ltd 非線形光学材料
JP2004315342A (ja) * 2003-03-31 2004-11-11 Japan Science & Technology Agency 高密度柱状ZnO結晶膜体とその製造方法
JP2007046002A (ja) * 2005-08-12 2007-02-22 Canon Inc 複合酸化物蛍光体とその製造方法及び発光素子
WO2010114172A1 (ja) * 2009-03-31 2010-10-07 Toto株式会社 ドープ薄層を有する複合材料及びその製造方法
JP2011168627A (ja) * 2010-02-16 2011-09-01 National Institute For Materials Science 波長変換部材、その製造方法、および、それを用いた発光器具

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013207226A1 (de) * 2013-04-22 2014-10-23 Osram Opto Semiconductors Gmbh Herstellung eines Schichtelements für einen optoelektronischen Halbleiterchip
JP2015008278A (ja) * 2013-05-31 2015-01-15 パナソニックIpマネジメント株式会社 波長変換素子、波長変換素子を備えた発光装置、発光装置を備えた車両、および波長変換素子の製造方法
JP2015034866A (ja) * 2013-08-08 2015-02-19 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2015034867A (ja) * 2013-08-08 2015-02-19 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
US10120273B2 (en) 2013-08-15 2018-11-06 Sony Corporation Light source apparatus, image display apparatus, and optical unit
JP2015036790A (ja) * 2013-08-15 2015-02-23 ソニー株式会社 光源装置、画像表示装置、及び光学ユニット
JP2016536633A (ja) * 2013-10-15 2016-11-24 アポトロニクス コーポレイション リミテッド 波長変換装置の製造方法
EP2930418A1 (en) * 2014-01-31 2015-10-14 Christie Digital Systems Canada, Inc. A light emitting wheel with eccentricity for dispelling a thermal boundary layer
US9890912B2 (en) 2014-02-28 2018-02-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US10012780B2 (en) 2014-02-28 2018-07-03 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US9515239B2 (en) 2014-02-28 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
US9518215B2 (en) 2014-02-28 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
WO2015129223A1 (ja) * 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 発光装置
US9880336B2 (en) 2014-02-28 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US9618697B2 (en) 2014-02-28 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Light directional angle control for light-emitting device and light-emitting apparatus
US11111433B2 (en) 2014-03-06 2021-09-07 National University Corporation Yokohama National University Transparent fluorescent sialon ceramic and method of producing same
US9785039B2 (en) 2014-09-11 2017-10-10 Panasonic Intellectual Property Managment Co., Ltd. Wavelength conversion member, light emitting device, projector, and method of manufacturing wavelength conversion member
JP2016058638A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 波長変換部材、発光装置、プロジェクタ、及び、波長変換部材の製造方法
DE102015113692A1 (de) 2014-09-11 2016-03-24 Panasonic Intellectual Property Management Co., Ltd. Wellenlängen-Umwandlungs-Element, Licht-emittierende Vorrichtung, Projektor und Verfahren zur Herstellung eines Wellenlängen-Umwandlungs-Elements
JP2016070947A (ja) * 2014-09-26 2016-05-09 セイコーエプソン株式会社 波長変換素子、光源装置、プロジェクター
USRE49093E1 (en) 2015-03-13 2022-06-07 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US10031276B2 (en) 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
JP2016171298A (ja) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 発光装置および内視鏡
US10113712B2 (en) 2015-03-13 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
WO2016165570A1 (zh) * 2015-04-16 2016-10-20 深圳市光峰光电技术有限公司 一种漫反射层的制备方法及波长转换装置
US9899577B2 (en) 2015-06-08 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US10115874B2 (en) 2015-06-08 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US10208899B2 (en) 2015-07-22 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Light source including wavelength converter
JP2017027019A (ja) * 2015-07-22 2017-02-02 パナソニックIpマネジメント株式会社 光源装置
EP3121859A1 (en) 2015-07-23 2017-01-25 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter, light source, lighting system, and method for producing wavelength converter
US10073320B2 (en) 2015-07-23 2018-09-11 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter containing phosphor particles
JP2017040905A (ja) * 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 発光装置
US10359155B2 (en) 2015-08-20 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
US9882100B2 (en) 2015-08-20 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device having surface structure for limiting directional angle of light
WO2017043122A1 (ja) * 2015-09-08 2017-03-16 シャープ株式会社 波長変換部材および発光装置
JPWO2017043122A1 (ja) * 2015-09-08 2018-03-22 シャープ株式会社 波長変換部材および発光装置
US10094522B2 (en) 2016-03-30 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device having photoluminescent layer
US10094529B2 (en) 2016-04-20 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member including phosphor that converts light from semiconductor light-emitting element into longer-wavelength light
WO2017208572A1 (ja) * 2016-05-30 2017-12-07 ソニー株式会社 画像表示装置、及び光源装置
JPWO2018038259A1 (ja) * 2016-08-26 2018-08-23 地方独立行政法人神奈川県立産業技術総合研究所 窒化物蛍光体粒子分散型サイアロンセラミックス、蛍光部材
WO2018038259A1 (ja) * 2016-08-26 2018-03-01 地方独立行政法人神奈川県立産業技術総合研究所 窒化物蛍光体粒子分散型サイアロンセラミックス、蛍光部材、窒化物蛍光体粒子分散型サイアロンセラミックスの製造方法
US10982140B2 (en) 2016-08-26 2021-04-20 Kanagawa Institute Of Industrial Science And Technology Nitride phosphor particle dispersion-type sialon ceramic, fluorescent member, and method for producing nitride phosphor particle dispersion-type sialon ceramic
JP2018056160A (ja) * 2016-09-26 2018-04-05 日亜化学工業株式会社 発光装置
US10794569B2 (en) 2017-03-02 2020-10-06 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source and lighting device
WO2018163830A1 (ja) * 2017-03-08 2018-09-13 パナソニックIpマネジメント株式会社 光源装置
JPWO2019003927A1 (ja) * 2017-06-29 2020-04-30 パナソニックIpマネジメント株式会社 波長変換部材及び光源
WO2019003927A1 (ja) 2017-06-29 2019-01-03 パナソニックIpマネジメント株式会社 波長変換部材及び光源
US11130909B2 (en) 2017-08-28 2021-09-28 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source, illumination device, and method for manufacturing wavelength conversion member
WO2019044409A1 (ja) 2017-08-28 2019-03-07 パナソニックIpマネジメント株式会社 波長変換部材、光源、照明装置及び波長変換部材の製造方法
WO2019065194A1 (ja) * 2017-09-28 2019-04-04 パナソニックIpマネジメント株式会社 波長変換部材、光源、蛍光体粒子及び波長変換部材の製造方法
WO2019065193A1 (ja) 2017-09-28 2019-04-04 パナソニックIpマネジメント株式会社 波長変換部材及び光源
JPWO2019065193A1 (ja) * 2017-09-28 2020-11-26 パナソニックIpマネジメント株式会社 波長変換部材及び光源
US11597875B2 (en) 2017-10-19 2023-03-07 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter
WO2019078299A1 (ja) * 2017-10-19 2019-04-25 パナソニックIpマネジメント株式会社 波長変換体
CN110412816B (zh) * 2018-04-28 2021-08-17 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法及投影装置
CN110412816A (zh) * 2018-04-28 2019-11-05 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法及投影装置
US11105482B2 (en) 2018-07-12 2021-08-31 Panasonic Intellectual Property Management Co., Ltd. Light source device, projector, and vehicle
JPWO2020012923A1 (ja) * 2018-07-12 2021-08-02 パナソニックIpマネジメント株式会社 光源装置、プロジェクタ及び車両
WO2020012923A1 (ja) * 2018-07-12 2020-01-16 パナソニックIpマネジメント株式会社 光源装置、プロジェクタ及び車両
JPWO2020017536A1 (ja) * 2018-07-19 2021-08-12 パナソニックIpマネジメント株式会社 波長変換部材
WO2020017536A1 (ja) * 2018-07-19 2020-01-23 パナソニックIpマネジメント株式会社 波長変換部材
US11946606B2 (en) 2018-09-12 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source device using same, projector and vehicle
DE112019006277T5 (de) 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung und Projektor
DE112019006269T5 (de) 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung, Projektor und Herstellungsverfahren für ein Wellenlängenumwandlungselement
DE112019006812T5 (de) 2019-02-04 2021-10-21 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement und projektor
JP2020136670A (ja) * 2019-02-21 2020-08-31 シャープ株式会社 発光装置
US11897814B2 (en) 2020-08-07 2024-02-13 Nichia Corporation Rare earth aluminate sintered compact and method for producing rare earth aluminate sintered compact

Also Published As

Publication number Publication date
JPWO2013172025A1 (ja) 2016-01-12
US8854725B2 (en) 2014-10-07
US20140071683A1 (en) 2014-03-13
JP6132204B2 (ja) 2017-05-24
CN103534824B (zh) 2016-05-25
DE112013002508B4 (de) 2020-09-24
CN103534824A (zh) 2014-01-22
DE112013002508T5 (de) 2015-04-23

Similar Documents

Publication Publication Date Title
JP6132204B2 (ja) 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置
JP5672622B2 (ja) 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置
JP6307703B2 (ja) 波長変換素子、波長変換素子を備えた発光装置、発光装置を備えた車両、および波長変換素子の製造方法
JP6578588B2 (ja) 蛍光体部材及び発光装置
JP5432435B2 (ja) 蛍光体変換発光デバイス
KR102171024B1 (ko) 반도체 발광소자 패키지의 제조 방법
JP5369486B2 (ja) 発光装置
JP6850885B2 (ja) 赤外発光装置
CN107154454B (zh) 单晶荧光体和发光装置
US9441153B2 (en) UV photoexcited red light-emitting material and light emitting apparatus
JP6356573B2 (ja) 単結晶蛍光体及び発光装置
JP2005079171A (ja) 半導体素子用サファイア基板とその製造方法及びこれを用いたGaN系半導体発光素子並びにGaN系半導体白色発光素子
JP5330880B2 (ja) 発光ダイオード素子及びその製造方法
JP5537326B2 (ja) 発光ダイオード素子及びその製造方法並びに単結晶SiC材料及びその製造方法
JPWO2014203974A1 (ja) 発光装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013537959

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130025086

Country of ref document: DE

Ref document number: 112013002508

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791108

Country of ref document: EP

Kind code of ref document: A1